
Bhupinder Singh Saini

JYU DISSERTATIONS 556

Pioneering Techniques to
Tackle Challenges of Interactive
Multiobjective Optimization

JYU DISSERTATIONS 556

Bhupinder Singh Saini

Pioneering Techniques to
Tackle Challenges of Interactive

Multiobjective Optimization

Esitetään Jyväskylän yliopiston informaatioteknologian tiedekunnan suostumuksella
julkisesti tarkastettavaksi yliopiston vanhassa juhlasalissa S212

syyskuun 9. päivänä 2022 kello 13.

Academic dissertation to be publicly discussed, by permission of
the Faculty of Information Technology of the University of Jyväskylä,

in building Seminarium, auditorium S212, on September 9, 2022 at 13 o’clock.

JYVÄSKYLÄ 2022

Editors
Marja-Leena Rantalainen
Faculty of Information Technology, University of Jyväskylä
Ville Korkiakangas
Open Science Centre, University of Jyväskylä

Cover picture by Bhupinder Singh Saini.

Copyright © 2022, by University of Jyväskylä

ISBN 978-951-39-9196-8 (PDF)
URN:ISBN:978-951-39-9196-8
ISSN 2489-9003

Permanent link to this publication: http://urn.fi/URN:ISBN:978-951-39-9196-8

ABSTRACT

Saini, Bhupinder Singh
Pioneering Techniques to Tackle Challenges of Interactive Multiobjective Opti-
mization
Jyväskylä: University of Jyväskylä, 2022, 80 p. (+included articles)
(JYU Dissertations
ISSN 2489-9003; 556)
ISBN 978-951-39-9196-8 (PDF)

Decision-makers (DMs) must often consider several, potentially conflicting ob-
jective functions simultaneously before making a decision. Such problems do
not usually have a single optimal solution. Instead, they typically have (even in-
finitely) many so-called Pareto optimal solutions representing different trade-offs
between the objectives. One of the ways to solve these multiobjective optimiza-
tion problems (MOPs) is to use interactive methods that incorporate the DM’s
preferences during the solution process.

Interactive multiobjective optimization has various challenges. The process
of formulating an MOP can itself be challenging. How to decide which objectives
to consider or which method to use to solve the MOP? The implementations of
many published methods are not openly available, which introduces additional
challenges. In certain MOPs, objectives can only be evaluated by experimentation
or conducting lengthy computer simulations introducing a need to replace the
objectives with less costly machine learning models trained on data. However,
this introduces further complications, including choosing the best models for the
MOP and model management. Finally, there is also the issue of visualizing the
solutions to the DM and enabling them to interact with the method intuitively.

This thesis tackles the aforementioned problems and more. We propose
the so-called SMTS algorithm, which predicts the best machine learning model
for MOPs. With the so-called IOPIS algorithm, we introduce a completely new
paradigm for interactive multiobjective optimization, enabling modular creation
of interactive methods and supporting various ways of incorporating preferences.
We propose the O-NAUTILUS algorithm to tackle problems with costly function
evaluations in a way that allows a DM to conduct targeted evaluations in their
region of interest. We introduce a novel visualization technique, SCORE bands,
which can simultaneously visualize thousands of solutions with up to a dozen
objectives. The DESDEO framework provides free access to the algorithms men-
tioned above (and many others). The framework enables its users to utilize the
implemented algorithms and easily combine parts of them to create whole new
ones. Finally, we put the above into practice with a case study: solving a complex
data-driven metallurgical problem using the tools provided by DESDEO.

Keywords: preference-based optimization, surrogate modelling, evolutionary al-
gorithms, visualization, decision making, open-source software

TIIVISTELMÄ (ABSTRACT IN FINNISH)

Saini, Bhupinder Singh
Uraauurtavia menetelmiä vastaamaan interaktiivisen monitavoiteoptimoinnin haas-
teisiin
Jyväskylä: University of Jyväskylä, 2022, 80 s. (+artikkelit)
(JYU Dissertations
ISSN 2489-9003; 556)
ISBN 978-951-39-9196-8 (PDF)

Tehdessään päätöksiä päätöksentekijöiden tulee usein samanaikaisesti huomioi-
da monia, tyypillisesti ristiriitaisia tavoitefunktioita. Näillä ns. monitavoiteopti-
moinnin ongelmilla ei ole yhtä optimia vaan useita (jopa ääretön määrä) kompro-
missiratkaisuja, joita kutsutaan Pareto-optimaalisiksi. Ratkaisemiseen voidaan käyt-
tää interaktiivisia menetelmiä, jotka huomioivat päätöksentekijän mieltymykset
ratkaisuprosessin aikana. Interaktiivisten menetelmien käytössä on kuitenkin haas-
teita. Itse optimointiongelman muotoileminen voi olla vaativaa. Miten valitaan
optimoitavat tavoitteet ja käytettävä menetelmä? Monilta julkaistuilta menetel-
miltä puuttuvat avoimesti saatavissa olevat implementaatiot, mikä osaltaan vai-
keuttaa niiden käyttöä. Joissakin ongelmissa tavoitearvojen laskeminen edellyt-
tää käytännön kokeita tai kalliita tietokonesimulaatioita. Tällöin on mielekästä
korvata tavoitteet vähemmän kalliilla koneopin malleilla, jotka sovitetaan ongel-
man dataan. Tässäkin on omat haasteensa, esimerkiksi miten mallit valitaan ja
miten niitä hallitaan. Tärkeää on myös havainnollistaa ratkaisuja päätöksenteki-
jälle ja varmistaa että interaktiivisten menetelmien käyttö on ymmärrettävää.

Tässä väitöskirjassa tarjotaan vastauksia edellä mainittuihin haasteisiin. Työs-
sä esitellään ns. SMTS-menetelmä, joka ehdottaa parhaan koneopin mallin opti-
mointitehtävän muotoiluun. IOPIS-menetelmä puolestaan tarjoaa täysin uuden
paradigman interaktiiviseen monitavoiteoptimointiin. Sen avulla voidaan modu-
laarisesti luoda uusia interaktiivisia menetelmiä ja huomioida eri tavoin esitetty-
jä päätöksentekijän mieltymyksiä. Jos ongelmassa on kalliita tavoitteita, päätök-
sentekijä voi kohdentaa niiden arvojen laskemisen hänelle kiinnostaviin alueisiin
O-NAUTILUS-menetelmällä. Työssä esitellään myös uusi visualisointimenetel-
mä SCORE bands, joka pystyy havainnollistamaan samanaikaisesti jopa tuhan-
sia ratkaisuvaihtoehtoja. Työssä kuvataan myös Pythonilla tehty avoimen lähde-
koodin modulaarinen DESDEO-ohjelmistokehikko, joka sisältää monia interak-
tiivisia menetelmiä. Lopuksi edellä esiteltyjen uusien menetelmien käyttökelpoi-
suutta havainnollistetaan ratkaisemalla interaktiivisesti DESDEOn avulla vaativa
datapohjainen monitavoiteoptimointiongelma metallurgian alalta.

Avainsanat: preferenssipohjainen optimointi, monitavoiteoptimointimenetelmät,
interaktiiviset menetelmät, sijaismallit, evoluutioalgoritmit, visuali-
sointi, päätöksenteko, avoin lähdekoodi

Author Bhupinder Singh Saini
Faculty of Information Technology
University of Jyväskylä
Finland

Supervisors Professor Kaisa Miettinen
Faculty of Information Technology
University of Jyväskylä
Finland

Dr. Babooshka Shavazipour
Faculty of Information Technology
University of Jyväskylä
Finland

Reviewers Professor Hisao Ishibuchi
Department of Computer Science and Engineering
Southern University of Science and Technology
China

Professor Mariano Luque Gallego
Faculty of Economics and Business Administration
University of Málaga
Spain

Opponent Professor Jyrki Wallenius
Department of Information and Service Management
Aalto University
Finland

ACKNOWLEDGEMENTS

I want to thank my supervisors Prof. Kaisa Miettinen and Dr. Babooshka Shavazipour,
for their continued support and advice during my doctoral studies. They always
urged me to pursue my ideas, nudged me in the right direction, and helped me
overcome many challenges. Their expertise in multiobjective optimization and
their confidence in my ideas (sometimes even when I did not have the same con-
fidence) encouraged me greatly. I especially want to thank Prof. Miettinen for
her invaluable critiques of my works, pushing me to become a better researcher.
Her enthusiasm regarding interactive multiobjective optimization was one of the
reasons why working in this field has been so fulfilling. For this, I am eternally
grateful.

I also want to thank Prof. Nirupam Chakraborti from Czech Technical Uni-
versity (former Professor at IIT Kharagpur), who first introduced me to multiob-
jective optimization and set me down the path that culminated in the writing of
this thesis. In addition, I want to thank my international collaborators, especially
Dr. Manuel López-Ibáñez (University of Málaga) and Dr. Michael Emmerich, for
sharing their expertise. For reviewing this thesis, I want to thank Prof. Hisao
Ishibuchi (Southern University of Science and Technology) and Prof. Mariano
Luque Gallego (University of Málaga).

My doctoral studies were funded by the Academy of Finland (grant num-
bers 287496 and 322221). I am grateful for the generosity. The grants allowed
me to make working on the DESDEO framework an essential part of my doctoral
studies. Working with the DESDEO development team, especially Giovanni Mis-
itano and Giomara Lárraga Maldonado, has been a great pleasure.

The current and former members of the Multiobjective Optimization Group
at the University of Jyväskylä played a fundamental part in my growth as an
academic researcher and development of this thesis. I would especially like to
thank Dr. Atanu Mazumdar, Pouya Aghaei Pour, and Adhe Kania for being the
first adopters of the DESDEO framework and for providing valuable comments.
I would also like to thank Dr. Jussi Hakanen for his guidance.

I sincerely appreciate my friends and family, who have always supported
and encouraged me. Lastly, I would like to thank my mother, Kiranjeet Kaur.
Her love and support made me the person I am today.

LIST OF FIGURES

FIGURE 1 Visual representation for the concept of reachability for a biob-
jective problem. .. 24

FIGURE 2 NAUTILUS Navigator interface showing the evolution reach-
able ranges as the step point moves closer to the Pareto front
for one of the objectives. .. 25

FIGURE 3 SMTS algorithm to train the selector for automatic selection of
surrogate modelling techniques.. 31

FIGURE 4 Frequency of ranks achieved surrogate modelling techniques
chosen by the selector for the testing datasets. 33

FIGURE 5 Illustration of the IOPIS algorithm.. 37
FIGURE 6 Effect of a reference point on the solutions returned by IOPIS-

NSGA-III for ZDT2. .. 38
FIGURE 7 The auto mpg data set visualized using a traditional parallel

coordinates plot. ... 42
FIGURE 8 The auto mpg data set visualized using SCORE bands. 43
FIGURE 9 General flow of the O-NAUTILUS method.............................. 45
FIGURE 10 The known set of solutions, known front, and optimistic front

for a biobjective optimization problem. 46
FIGURE 11 A part of O-NAUTILUS graphical user interface showing the

known and optimistic reachable ranges for one of the objec-
tives of an MOP... 47

FIGURE 12 Solutions found by the DMs in three iterations with MultiDM/IOPIS
visualized using SCORE bands... 61

CONTENTS

ABSTRACT
TIIVISTELMÄ (ABSTRACT IN FINNISH)
ACKNOWLEDGEMENTS
LIST OF FIGURES
CONTENTS
LIST OF INCLUDED ARTICLES

1 INTRODUCTION .. 13

2 BACKGROUND CONCEPTS .. 19
2.1 Multiobjective optimization problems .. 19
2.2 Interactive optimization methods and scalarization Functions 22
2.3 Multiobjective evolutionary algorithms 25
2.4 Visualizations to support DMs... 26
2.5 Properties of microalloyed steels .. 27

3 AUTOMATIC SELECTION OF SURROGATE MODELLING TECH-
NIQUES .. 29
3.1 The SMTS algorithm ... 30
3.2 Discussion about the SMTS Algorithm 32

4 INTERACTIVE OPTIMIZATION IN THE PREFERENCE INCORPO-
RATED SPACE... 34
4.1 Interactive Optimization using Preference Incorporated Space (IOPIS)

algorithm... 35
4.2 Discussion about the PIS and IOPIS.. 37

5 VISUALLY APPEALING AND INFORMATIVE VISUALIZATIONS
FOR DECISION MAKERS... 39
5.1 Solution clustering and correlated objectives visualization via

bands (SCORE Bands)... 40
5.2 Discussion about SCORE Bands ... 41

6 HANDLING COSTLY FUNCTION EVALUATIONS WITH INTERAC-
TIVE MULTIOBJECTIVE OPTIMIZATION ... 44
6.1 The O-NAUTILUS method.. 45
6.2 Discussion about the O-NAUTILUS method 48

7 THE DESDEO FRAMEWORK: AN OPEN-SOURCE COLLECTION
OF INTERACTIVE MULTIOBJECTIVE OPTIMIZATION TOOLS 50
7.1 Design of the Framework .. 51
7.2 Discussion about the DESDEO Framework 53

8 SOLVING A REAL-LIFE DATA-DRIVEN MULTIOBJECTIVE OPTI-
MIZATION PROBLEM ... 55
8.1 Overview... 56
8.2 First meeting with the DMs ... 56
8.3 Second meeting with the DMs ... 58
8.4 Third meeting with the DMs.. 59
8.5 Fourth meeting with the DMs .. 60
8.6 Discussion ... 61

9 CONCLUSIONS AND AUTHOR’S CONTRIBUTIONS 63
9.1 Conclusions and Future Research... 64
9.2 Author’s Contributions ... 66
9.3 Final Thoughts ... 69

YHTEENVETO (SUMMARY IN FINNISH) .. 70

REFERENCES.. 71

INCLUDED ARTICLES

LIST OF INCLUDED ARTICLES

PI Bhupinder Singh Saini, Manuel López-Ibáñez, Kaisa Miettinen. Automatic
Surrogate Modelling Technique Selection based on Features of Optimiza-
tion Problems. Proceedings of the Genetic and Evolutionary Computation Con-
ference Companion, Edited by M. López-Ibáñez, ACM, NY, USA, 1765–1772,
2019.

PII Bhupinder Singh Saini, Jussi Hakanen, Kaisa Miettinen. A New Paradigm
in Interactive Evolutionary Multiobjective Optimization. Parallel Problem
Solving from Nature – PPSN XVI, Edited by T. Bäck, M. Preuss, A Deutz, H.
Wang, C. Doerr, M. Emmerich, H. Trautmann, Springer, Cham, 243–256, 2020.

PIII Bhupinder Singh Saini, Kaisa Miettinen, Kathrin Klamroth, Ralph E.
Steuer, Kerstin Dächert. SCORE Band Visualizations: Supporting Decision
Makers in Comparing High-Dimensional Objective Vectors in Multiobjec-
tive Optimization. Submitted to a journal.

PIV Bhupinder Singh Saini, Michael Emmerich, Atanu Mazumdar, Bekir Af-
sar, Babooshka Shavazipour, Kaisa Miettinen. Optimistic NAUTILUS Nav-
igator for Multiobjective Optimization with Costly Function Evaluations.
Journal of Global Optimization, 83, 865–889, 2022.

PV Giovanni Misitano, Bhupinder Singh Saini, Bekir Afsar, Babooshka
Shavazipour, Kaisa Miettinen. DESDEO: The Modular and Open Source
Framework for Interactive Multiobjective Optimization. IEEE Access, 9,
148277–148295, 2021.

PVI Bhupinder Singh Saini, Debalay Chakrabarti, Nirupam Chakraborti, Ba-
booshka Shavazipour, Kaisa Miettinen. Interactive Data-driven Multiob-
jective Optimization of Metallurgical Properties of Microalloyed Steels us-
ing DESDEO. Submitted to a journal.

The author’s contribution is described in Section 9.2.

1 INTRODUCTION

No man ever wetted clay and then left it, as if there
would be bricks by chance and fortune.

Attributed to Plutarch

Decision makers (DMs) often have to consider a plethora of objectives before
making a decision. A person choosing a car to buy may consider not only its
fuel efficiency but also its power, acceleration, weight, and production year. A
city planner placing a fishery may consider the effect of the placement on the
production, profits and tax revenue, as well as the ecological, sociological and
environmental impacts. A vehicle chassis designer may consider the cost of ma-
terials and production, the weight of the chassis, and various measures of crash-
worthiness. Often, the objectives of such problems are conflicting in nature, and
the issue of choosing a solution is not trivial.

Different DMs need different methods to help them solve their problem.
The person choosing a car can look up the reviews to gather the necessary data
to start the decision making process. On the other hand, the city planner may not
have such data. Instead, they may rely on some mathematical models that try
to predict the impact of the placement on the various objectives. Such problems
necessitate one or more optimization steps, where all the objectives are simulta-
neously optimized. Due to the conflicting nature of the objectives, such so-called
multiobjective optimization problems (MOPs) typically have a set of optimal so-
lutions (instead of a single optimal solution). This set of solutions, known as
Pareto optimal solutions, is the only set that needs to be considered by DMs if all
relevant objectives are included in the problem formulation.

Many optimization methods have been proposed to solve MOPs [52,70,104].
They can be categorized into three classes based on the involvement of the deci-
sion maker [70]:

– a priori methods: The optimization algorithm considers the preferences of
the DM and returns Pareto optimal solutions that follow the preferences of
the DM.

14

– a posteriori methods: The optimization algorithm does not utilize the pref-
erences of a DM. Instead, it generates a representative set of Pareto optimal
solutions.

– Interactive methods: The optimization process takes place in iterative steps.
In each step, the DM provides their preferences to the optimization algo-
rithm. The algorithm then returns a solution which may satisfy their prefer-
ences or lead them to change their preferences, resulting in a new iteration.
Hence, the DM “interacts” with the optimization algorithm until a satisfac-
tory solution is obtained.

Unlike a priori methods, interactive methods enable the DM to learn new infor-
mation about the MOP, such as the trade-offs involved. The DM can change their
preferences interactively to gain this information. The DM can also gain this in-
formation using the results from an a posteriori method. However, generating a
representative set of Pareto optimal solutions may be challenging, especially in
MOPs with many objectives. Moreover, these methods require the DM to analyze
potentially thousands of solutions at once, which is cognitively challenging. In-
teractive methods overcome these challenges by focusing only on solutions that
are preferable to the DM in the current iteration. This makes it easier to find
Pareto optimal solutions and the DM only has to focus on a small number of solu-
tions to give their preferences for the next iteration. This thesis focuses primarily
on interactive methods.

Popular multiobjective optimization algorithms include scalarization-based
methods [70] and multiobjective evolutionary algorithms (MOEAs) [52,104]. Sca-
larization-based methods use the preferences of the DM along with a scalariza-
tion function to convert a vector of objective values into a scalar value. This
scalarization enables the usage of traditional single-objective optimizers for solv-
ing MOPs. When the scalarization function is chosen carefully, one can prove
that the solution obtained is Pareto optimal to the original MOP [88]. MOEAs,
on the other hand, emulate the process of evolution and work with a popula-
tion of solutions. This population “evolves” over several generations to converge
closer to the Pareto optimal set of solutions. Most MOEAs are a posteriori and
perform especially well in generating a representative set of near-Pareto optimal
solutions [52]. However, they also require a large number of objective function
evaluations to converge [54].

The requirement of many objective function evaluations engenders many
MOEAs to be inappropriate for some MOPs. The vehicle chassis designer, for
example, may not have exhaustive data or simple mathematical models. Instead,
they may be using computer simulations which can take minutes, hours, days, or
even weeks to simulate a single solution. Alternatively, they may have to create
and test the chassis corresponding to any solution to evaluate it. In either case,
it is not possible to evaluate thousands of solutions. An alternative is to con-
duct surrogate-assisted data-driven optimization [20]. A small number of objec-
tive function evaluations are used to train surrogate models (predictive machine
learning models or metamodels), which MOEAs can then use instead of the orig-
inal objectives. If possible, new function evaluations can be used to update the

15

models every few generations, leading to increasingly better accuracy.
Solving an MOP requires the resolution of many challenges [100]. The prob-

lem formulation process itself may not be a trivial task. The choice of objectives
to be optimized may evolve during the solution process. The choice and nature
of objectives (mathematical models vs surrogate models, fast and cheap vs slow
and expensive to evaluate) depend highly on the resources available, the stake-
holders involved, and the familiarity and experience of the people solving the
MOP with the various methodologies available to do so.

A large number of methods to solve MOPs are published every year. Even
in the narrower field of surrogate-assisted optimization, many choices need to be
made to train the surrogate models themselves (the choice of machine learning
algorithm, the hyperparameters of the model, and strategies to update the model
if more data is available). A DM, who is an expert in their domain but not in mul-
tiobjective optimization, cannot be expected to make all of these choices. Instead,
an analyst with expertise in multiobjective optimization makes those choices and
guides the DM through the decision making and problem-solving process. How-
ever, the issue of making those choices remains. The problem is further exac-
erbated by the fact that while many methods for solving MOPs have been pub-
lished, their implementations may not be openly available [PV].

There is also the issue of presenting solutions obtained by the methods to
the DM in a meaningful manner. One way to present solutions is via visualiza-
tions; however, different DMs may require very different visualizations to tackle
the needs of different MOPs. The person choosing a car, for example, may pre-
fer an interactive visualization which can present tens of solutions (alternative
cars) in an easy to comprehend manner. The city planner placing the fishery may
want the information about the objectives presented on a geographical map. This
may limit the density of information presented (only one solution per map) but
may make it easier for the city planner to provide their preferences for interactive
optimization. The vehicle chassis designer solving the problem using surrogate-
assisted optimization may want to visualize not just the objective values but also
the uncertainty of prediction of the surrogate models used during optimization,
as the amount of such uncertainty may affect their choice of solution.

This thesis is a collection of six articles [PI] – [PVI], published in scien-
tific journals and conference proceedings, discussing and tackling challenges in-
volved with various steps of interactive multiobjective optimization. The thesis
examines challenges arising during problem formulation, method development
and accessibility, visualization, and DM interaction. Specifically, we tackle the
following challenges:

1. How do we choose the best surrogate modelling techniques to mimic the
objectives of a data-driven MOP?

2. How do we reduce the number of function evaluations required by MOEAs
to solve MOPs with expensive objective functions?

3. Problems with higher number of objectives are increasingly difficult to solve.
Can we use scalarization functions and MOEAs together to make interactive
methods that get around this issue?

16

4. How can we create interactive MOEAs that allow the DM to precisely con-
trol the optimization process?

5. How can we create intuitive and helpful visualizations to help a DM under-
stand the trade-offs involved?

6. How can we create visualizations that display the uncertainity from predic-
tions of surrogate models in a data-driven MOP to a DM?

7. How can we enable the DM to control how expensive function evaluations
are spent?

8. How do we make interactive methods accessible to DMs, analysts, researchers,
and students for solving MOPs, experimenting with interactive methods, or
creating new interactive methods?

9. How do we tackle unexpected challenges that one may face while solving a
real-life data-driven MOP?

Chapter 3 tackles the first challenge with the Surrogate Modelling Technique Se-
lector, introduced in [PI]. The Selector is a machine learning model trained to
predict the best surrogate modelling technique for data-driven multiobjective op-
timization problems based on the data’s exploratory landscape features [69]. To
achieve this, the Selector was trained on the performances of many popular sur-
rogate modelling techniques on a large number of benchmark and real multiob-
jective optimization problems. Thanks to the trained Selector, an analyst with
data of some real phenomenon can be supported in finding the most appropriate
surrogate modelling technique to model objectives captured in the data.

In Chapter 4 we present a new paradigm for interactive multiobjective opti-
mization to tackle the second, third, and fourth challenges. We propose the corre-
sponding IOPIS algorithm in [PII]. The IOPIS algorithm combines scalarization-
based methods and MOEAs in novel ways. The algorithm uses multiple scalar-
ization functions and the preferences of a DM to create a new space that we call
the preference incorporated space (PIS). Then, an MOEA is used to optimize in
the PIS, resulting in convergence toward Pareto optimal solutions in the region
of interest of the DM. The IOPIS algorithm enables easy and trivial conversion
of popular a posteriori MOEAs into interactive methods. Moreover, the analyst
can easily control the number of dimensions of the PIS. It is equal to the num-
ber of scalarization functions used and independent of the number of objectives.
Lowering the number of dimensions can have many benefits, ranging from allow-
ing the usage of MOEAs that perform better in a smaller number of dimensions
to drastically reducing the number of objective function evaluations. We imple-
mented two variants of the IOPIS algorithm and compared them against popular
interactive and a posteriori MOEAs in a large number of scenarios.

We introduce the so-called SCORE bands visualization technique in Chap-
ter 5 to support DMs in problems with many objectives and a large number of
Pareto optimal solutions to be compared (fifth challenge). SCORE bands, pro-
posed in [PIII], is an evolution of the parallel coordinates plot [41] that uses and
displays information such as the presence of clusters in the Pareto optimal solu-
tions and correlations between the various objectives in a single interactive vi-

17

sualization. The resulting visualization is rich in information and yet simpler in
presentation than a parallel coordinate plot displaying the same data. Using clus-
tering information allows the DM to show or hide the clusters in the interactive
visualization, whereas using correlation information informs the DM about the
trade-offs between the objectives visually. SCORE bands support a DM in un-
derstanding complicated dependencies and enables digesting large amounts of
information by, for example, studying large trends first. We implemented an ap-
plication that an analyst can use to create SCORE bands plots from raw data and
presented case studies with various artificial, benchmark and real MOPs with up
to dozen objectives and more than 1000 solutions.

In Chapter 6 we present the O-NAUTILUS algorithm for MOPs with expen-
sive function evaluations. O-NAUTILUS, proposed in [PIV] combines a novel
visualization technique as well as a new interactive method to tackle the second,
sixth, and seventh challenges. Like IOPIS, the O-NAUTILUS algorithm also com-
bines scalarization-based methods and MOEAs. It uses uncertainty predictions
from surrogate modelling techniques such as Kriging [97] and Lipshitzian mod-
els [6] with MOEAs to create an “optimistic” representation of the Pareto optimal
solutions. This optimistic representation informs the DM about solutions that
may attain good objective values and can be discovered with one or a small num-
ber of function evaluations. The algorithm presents this information to the DM
in an interface similar to NAUTILUS Navigator [84]. The interface helps the DM
identify a region of interest based on the models’ objective values and prediction
uncertainty. Finally, the algorithm uses a scalarization function to identify the
best solution to evaluate using the actual (but expensive) objective functions in
the region of interest of the DM. The algorithm then retrains the models using
this newly evaluated solution, recreates the optimistic solutions, and enables the
DM to use the interface again, with more accurate solutions in the region of in-
terest. The DM stops the algorithm once they find a satisfactory solution. Thus,
the O-NAUTILUS algorithm tackles the issues of data-driven optimization with
expensive functions, visualization of uncertainty information, interaction with
the DM, and management of surrogate models and function evaluations. We im-
plemented a web-based interface for O-NAUTILUS and compared the algorithm
against other data-driven optimization algorithms using a case study.

Chapter 7 introduces the DESDEO framework and tackles the challenges
involved with the creation and accessibility of interactive methods (the second
and eighth challenges). The DESDEO framework, presented in [PV], is a collec-
tion of open-source Python and TypeScript packages which provide easy-to-use
modular implementations of popular interactive MOEAs and scalarization-based
methods. We introduce the structure of the core packages of the framework. The
framework supports various use cases: formulating an MOP, solving MOPs us-
ing various interactive methods, and combining various methods to create com-
plex optimization pipelines. The modular nature of the implementation enables
researchers to easily create new methods by combining parts of previously im-
plemented methods [PII, PIV, PVI, 3, 67]. The framework also provides analysts
with quick access to open-source implementations of many methods, reducing

18

the barrier to conducting comparative studies or case studies [1, 2, 56].
Finally, in Chapter 8 we explore and tackle the challenges of solving a real

data-driven MOP, a steel alloy composition problem (the ninth challenge). The
major issues we tackled include:

– preprocessing of data to appropriately use it for data-driven optimization,
– training and validating of the surrogate models,
– choosing the objectives to formulate the MOP, and
– designing an interactive MOEA to handle preferences of two DMs who were

previously unfamiliar with interactive methods.

We utilized most of the tools and methods developed for the other papers intro-
duced in this thesis, alongside other popular open-source tools. The chapter and
the corresponding paper [PVI] provide a detailed account of our measures to re-
solve the challenges, including measures that ultimately failed. The chapter thus
functions as a general guideline to resolving challenges researchers, analysts, and
DMs may encounter while solving real data-driven MOPs.

The rest of the thesis is structured as follows. Chapter 2 establishes the
core concepts and terms used throughout the thesis. Chapters 3 – 8 introduce
articles [PI] – [PVI], respectively. Each of those chapters begins by articulating
the challenges tackled by the associated article, followed by a summary of the
fundamental details of proposed pioneering techniques and a brief discussion
of the results. Finally, we provide our conclusions in Chapter 9, put forward
some directions for future research and describe the author’s contributions in the
included articles.

The process of solving an MOP is often portrayed in literature as a linear
process: from problem formulation and optimization to visualization and deci-
sion making. The advent of interactive methods challenges that narrative, forcing
DMs to carefully consider their perspective by simply making them aware of their
control over the optimization process. However, the narrative has always been
somewhat misleading. The previously mentioned challenges can sometimes lead
to unresolvable failures, forcing DMs and analysts to start from the very begin-
ning. Challenges faced in later steps of optimization may force them to reconsider
the decisions made in the former steps. At the same time, the decisions made in
the earlier steps limit the choices they can make in the later steps. Ultimately, the
aim of this thesis is to discuss the possibilities provided by interactive methods;
that these methods can not only resolve those challenges but also turn them into
opportunities for DMs to learn more about their MOPs and lead them towards
making better decisions.

2 BACKGROUND CONCEPTS

If you wish to make an apple pie from scratch, you
must first invent the universe.

Carl Sagan, Cosmos

In this chapter, we introduce the main concepts used throughout this thesis. We
first define the basic terms related to MOPs in Section 2.1. We then focus specif-
ically on interactive optimization methods such as NAUTILUS Navigator, and
scalarization functions in Section 2.2. Understanding the basics of this topic is
necessary for Chapters 4, 6, 7, and 8. In Section 2.3, we give a brief introduction
of multiobjective evolutionary algorithms, required for Chapters 4, 6, 7, and 8. We
follow that by giving a brief description of some of the visualization tools used by
interactive methods in Section 2.4, useful for Chapter 5. Finally, in Section 2.5, we
establish the core metallurgical concepts used in the MOP we solve in Chapter 8.

2.1 Multiobjective optimization problems

We can define an MOP as:

minimize { f1(x), . . . , fk(x)}
subject to x ∈ S,

(1)

where x is a vector (x1, . . . , xn)T of n decision variables. The decision variables
can be confined to S ⊂ Rn by constraint functions, forming a so-called feasible
set. These constraints can be upper and lower bounds on the decision variable
values in the simplest case. The objective functions f = (f1, . . . , fk) map vectors of
S (the decision space) to objective function values (shortened to objective values)
in Rk, forming an objective space. For MOPs, k is greater than or equal to two,
however MOPs with two objectives are generally called biobjective problems in
the literature. MOPs in real life can have objectives that require maximization.

20

However, problem (1) can represent all such MOPs without loss of generality by
simply multiplying the objectives to be maximized by −1.

To find optimal solutions of problem (1), we first need to be able to impart an
ordering to vectors in the k-dimensional objective space. We can do so by using
the concept of dominance 1. A solution x1 ∈ S (and the corresponding objective
vector f(x1)) is said to dominate another solution x2 ∈ S (and its corresponding
objective vector f(x2)) if fi(x1) ≤ fi(x2) for all i = 1, . . . , k and f j(x1) < f j(x2) for
at least one j = 1, . . . , k. Using this relation, we can define the so-called Pareto set
PS ⊆ S as the set of all feasible solutions not dominated by any other feasible so-
lution. By definition, the solutions in PS are mutually non-dominating and their
image in the objective space, called a Pareto front, represent trade-offs between
the different objectives.

Using the Pareto front, we can define a few points of significance in the ob-
jective space. The ideal point represents the best possible values attainable by
each objective function independently. Generally, the ideal point is not feasible,
except in cases where the objectives do not conflict with each other. In such cases,
the Pareto front consists simply of the ideal point. Incidentally, we do not need
to solve the MOP to find the ideal point; we only need to optimize the objective
functions separately. A related point, the utopian point, is defined as a point very
close to the ideal point but slightly dominating it. We can generate it by sub-
tracting a small positive value from the components of the ideal point. The nadir
point represents the worst possible objective values attained by Pareto optimal
solutions. Unlike the ideal and utopian points, we need complete knowledge
of the Pareto front to calculate the nadir point accurately, which is usually not
possible. However, a few approximate methods exist, see, e.g. [25, 26, 70]. These
points are of note because many methods which solve MOPs use them or their
approximations.

MOPs can have thousands (or even an infinite number) of Pareto optimal
solutions that do not dominate each other [70], i.e., are incomparable to each other
without any additional information. However, in real-life MOPs, not all Pareto
optimal solutions are equally important to a DM. Generally, a DM’s ultimate goal
in solving an MOP is to implement one or a few Pareto optimal solutions. A
DM, who is usually a domain expert, may therefore already have preferences
regarding the kind of solutions they want to implement. If they do not start with a
well-defined preference (such as when, for example, a DM is solving a new MOP
without the knowledge of what is feasible), they may still find some solutions
preferable to others during the optimization process.

Interactive optimization methods exploit this fact and involve the DM deeply
in the optimization process. As mentioned in the introduction, these methods
conduct optimization iteratively [70, 104]. The DM provides their preferences to
the method at the beginning of an iteration. The method then finds one of more
Pareto optimal solutions that “satisfy” the DM’s preference as well as possible. If
the DM is truly satisfied, they can terminate the method. Otherwise, they can up-
date their mental model of what solutions may be feasible, thereby learning more
1 More specifically, the dominance relation is a weak partial order.

21

about the MOP. They learn what kinds of preferences are reachable and provide
new preferences.

One way to incorporate the preferences of a DM is to use a scalarization func-
tion [70, 88]. Scalarization functions map the vectors in objective space to scalar
values. The preferences can be incorporated using the parameters of such func-
tions. The interactive method can then use a traditional single-objective optimiza-
tion algorithms to solve the (now) single-objective problem to find a Pareto op-
timal solution that satisfies the DM’s preferences. We discuss scalarization func-
tions and ways of providing preferences in further detail in Section 2.2.

Multiobjective evolutionary algorithms (MOEAs) provide another way of
solving MOPs. MOEAs are a family of nature-inspired methods that evolve a
group of solutions, known as the population, towards optimality by mimicking
the process of evolution [21, 23, 52]. Generally, the individual solutions in the
population recombine their properties (decision variable values) to form new so-
lutions: the offspring. The offspring are then evaluated and are compared against
each other (and their parents) using a selection operator. The selection operator
kills off solutions that are not “fit”, making the population better on average.
MOEAs repeat these operations over multiple generations, pushing the popula-
tion closer toward the Pareto optimal solutions.

MOEAs are metaheuristic algorithms: they cannot guarantee Pareto opti-
mality [21]. Most MOEAs are a posteriori and try to approximate a representative
set of Pareto optimal solutions [21], though a priori and interactive MOEAs also
exist [61,104]. The details of how MOEAs create new offspring and how selection
operators judge the fitness of solutions differ among the various MOEAs. We
discuss MOEAs further in Section 2.3.

We can define the objective functions of an MOP in many different ways.
The values of the objective functions can be evaluated using simple analytical
functions, complicated and time-consuming computer simulations, or even real-
life experiments. In the latter two cases, we may have limited or no capacity to
evaluate objective function values for new solutions. Instead, we can use data
from past experiments (previously evaluated solutions) to enable us to conduct
optimization using very few or no additional objective function evaluations. Such
problems are called data-driven MOPs [55].

Surrogate-assisted optimization methods provide one way to solve data-
driven MOPs [18,54,66]. These methods use the data to form “surrogate models”
which mimic the behavior of the actual objective functions. The optimization
algorithm then uses these surrogate models in place of the objective functions
to solve the MOP. The accuracy of the solutions found thus depends on the ac-
curacy of the surrogate models, which are usually regression algorithms such as
Gaussian process regression2 [33,65,97], neural networks [39], support vector ma-
chines [91], or ensemble methods [16, 37, 43, 55, 57]. MOPs with the possibility to
evaluate the value of the true objective function for some solutions (for example,
to increase the accuracy of the surrogate models) are termed “online” data-driven
MOPs [18, 20, 55]. “Offline” data-driven MOPs are instead limited to the starting
2 also known as Kriging.

22

dataset with no possibility of further true objective function evaluations [55, 66].

2.2 Interactive optimization methods and scalarization Functions

Different interactive methods allow a DM to provide their preferences in different
fashions [70, 87, 104]. Some methods, such as reference point method [101, 102],
allow the DM to provide a “reference point”3, which is a vector in the objective
space consisting of objective values that the DM finds satisfactory. The method
then tries to find solutions similar to the reference point or converge along its
direction. Other methods can use preferences in the form of “reservation levels”
which also form a vector in the objective space [103]. Reservation levels are objec-
tive values that a DM wants to avoid. These levels can be used to focus the search
only in regions of the objective space better than the levels. Another way of pro-
viding preferences is through the use of the so-called navigation-based methods
inspired by Pareto race [59]. These methods [34,49] allow a DM to navigate along
a Pareto front: the DM chooses the speed and direction of navigation and the
methods display the changing Pareto optimal solutions in real-time.

Yet more ways of providing preferences include choosing a preferred so-
lution from among a few alternatives, for example, in E-NAUTILUS [86]. The
method then provides solutions similar to the chosen one. Alternatively, the DM
can choose solutions that they do not like [46]. A method then ignores the areas
in the objective space around such non-preferred solutions in future iterations.
The NIMBUS method [74, 76] asks a DM to choose a solution and then provide
preferences in the form of classification of the objectives. The DM may classify
the objectives as “make better than”, “allow to worsen”, or “keep the same as”
the chosen solution. If the DM classifies a particular objective to change in value,
they can provide a value they wish to achieve or a bound they do not want to
cross.

As mentioned earlier, scalarization functions can be used to incorporate DM
preferences. These functions use the preference information to impart a total or-
der in the objective space by mapping the objective vectors to scalar values. The
preference can be incorporated using the parameters of such functions. However,
not all scalar-valued functions are appropriate for interactive multiobjective opti-
mization as scalarization functions. Some desirable properties for such functions,
as identified in [88] are:

1. The scalarization functions should cover all Pareto optimal solutions, i.e.,
the DM should be able to discover any Pareto optimal solution by changing
their preference that are parameters of the scalarization function.

2. The optimal solution of the single-objective problem formed by the scalar-
ization function should be a Pareto optimal solution of the original MOP.

3 also known as aspiration levels.

23

3. The optimal solution of the single-objective problem formed by the scalar-
ization function should satisfy the DM (if their preferences are feasible).

No single scalarization function can satisfy all three criteria at once. For example,
a weighted sum of the objectives (where the weights represent the preferences)
will not find all Pareto optimal solutions of an MOP with a nonconvex Pareto
front, breaking the first criteria [88]. The achievement scalarizing function [101]
can be formulated as:

s(f(x), z̄) = max
i=1,...,k

[
fi(x)− z̄i

µi

]
+ ρ

k

∑
i=1

(
fi(x)− z̄i

µi

)
, (2)

where ρ is a small positive scalar, µ and z̄ are vectors in the objective space. The
vector z̄ is the preference provided by the DM in the form of a reference point.
By minimizing (2), we can find a Pareto optimal solution of problem (1) along a
vector passing through the reference point, in a direction parallel to µ (a vector
going from the nadir point to the ideal point in the original formulation). The
achievement scalarizing function satisfy the second and third criteria [70]. More-
over, the function can cover arbitrarily large subsets of the Pareto optimal solu-
tions (related to the first criteria) by setting smaller values for ρ and changing DM
preferences. However, the function breaks the second criteria if ρ is set to zero 4.

Note that we do not expect a DM to be well informed about the intricacies
of various interactive methods. Instead, we assume that an analyst, who is an
expert in such methods, guides the DM through the optimization process. An
analyst, among other tasks, chooses the interactive optimization method to solve
the MOP. The GLIDE-II formulation [87] enables an analyst to create scalariza-
tion functions used in many different interactive optimization methods (and use
different kinds of preferences) by simply changing the parameters of a formula.

Methods such as NIMBUS and the reference point method provide a few
(preferable) Pareto optimal solutions to the DM at the end of each iteration. The
DM must then either choose one of those solutions as the final solution, or pro-
vide new preferences, trading-off one or more objectives to improve others. On
the other hand, NAUTILUS Navigator [84] takes a novel approach to interaction
with the DM and does not provide Pareto optimal solutions to the DM for most
of the interaction process 5. Instead, it conducts the interaction process by putting
the DM’s point of view on a “step point”6, a point in the feasible part of the ob-
jective space.

The method begins by putting the step point at the nadir point. The method
requires as input a representative set of Pareto optimal solutions to operate. By

4 More specifically, when ρ is set to zero, the optimal solution of the scalarized problem may
be weakly Pareto optimal in the original MOP. A solution is weakly Pareto optimal if no
other solution is better than it in all objectives. However, there may exist some solutions
that are better than it in some objectives.

5 It should be noted that NAUTILUS Navigator is not a navigation-based method as defined
earlier. NAUTILUS Navigator does not allow the DM to navigate along the Pareto front.

6 The step point is called the current point in the original article. We use the term step point
as that is the term we use in the later chapters.

24

0.6 0.8 1.0 1.2
f1

0.6

0.8

1.0

1.2

1.4

f2

Reachable part of
the front
Unreachable part of
the front
Step point

FIGURE 1 Visual representation for the concept of reachability for a biobjective prob-
lem.

starting at the nadir point, the NAUTILUS Navigator method asks the DM to
choose a direction of improvement to improve all objective values without any
trade-offs. The direction of improvement can come from a reference point (called
aspiration levels in the method) that the DM wishes to achieve. Then the step
point is moved closer to the Pareto front in the direction the DM chooses. The as-
piration levels must always dominate the step point to progress further. Thus ar-
eas of the Pareto front are rendered “unreachable” as the step point moves closer
to the Pareto optimal solutions.

We show the concept of reachability for an MOP with two objectives visu-
ally in Figure 1. The blue point is the step point. The method calculated the
reachable part of the front as the subset of Pareto optimal solutions (from the
previously mentioned representative set) that dominate the step point, shows as
black points. The DM can reach any of those points from the current step point by
setting the aspiration levels appropriately. The unreachable part is shown as red
points. The method ends when the step point reaches one of the Pareto optimal
solutions.

NAUTILUS Navigator simplifies making decisions and choosing aspiration
levels by only visualizing the "reachable" region of the Pareto front for each ob-
jective independently. We show a snapshot of the “navigator” plot for one of the
objectives of an MOP in Figure 2 7. The x-axis of the plot conveys the progress
of the step point. The black vertical line move from left to right as the step point
moves from the nadir point to one of the solutions in the representative set of
Pareto optimal solutions. The y-axis represents the objective values. The span of
the green shaded region, which is drawn as the black vertical line moves forward,
represents the range of objective values that are still reachable at any step. As ex-
pected, the green region spans the entire vertical height at the left edge (when
the step point was at the nadir point). The reachable range shrinks as the black
vertical bar sweeps through the plot. At the current step, the reachable range for
the objective lie between 4 and 6 units.

7 Note that the author reimplemented the navigator plot in DESDEO based on inspiration

25

FIGURE 2 NAUTILUS Navigator interface showing the evolution reachable ranges as
the step point moves closer to the Pareto front for one of the objectives.

The black line moves forward at a constant rate (set by the analyst). The
DM can update their aspiration levels at any point by raising or lowering the
green horizontal line. Similarly, they can provide strict bounds for objectives by
setting the red horizontal line at the desired level. By setting the aspiration levels
and the bounds, the DM can control which solution from the representative set
of Pareto optimal solutions is chosen as the final one. They can also go back in
time and put the step point at an earlier position by dragging the black vertical
bar backward. This allows them to change their aspiration levels if they do not
like how the reachable ranges evolved. As the black bar reaches the right edge at
the end of the navigation, the reachable ranges for every objective shrink down
to single values. These values correspond to the values attained by the Pareto
optimal solution preferred by the DM.

2.3 Multiobjective evolutionary algorithms

We can broadly categorize MOEAs into three types based on their selection mech-
anism: dominance-based MOEAs [21], indicator-based MOEAs [35], and decom-
position-based MOEAs [96]. Dominance-based MOEAs use the concept of dom-
inance to select offspring. However, it becomes increasingly difficult to compare
solutions using the dominance relation in MOPs with a large number of objec-
tives [52], which impairs the optimization process. Some popular dominance-
based MOEAs are NSGA-II [27] and SPEA2 [110]. Indicator-based MOEAs such
as IBEA [109] use indicators such as hypervolume [111] and additive ϵ-indicator
[112] to calculate the fitness of individual solutions for the selection operation.
The calculation of these indicators also becomes computationally expensive with
increasing number of objectives.

Decompositions-based MOEAs use the concept of reference vectors to di-
vide the objective space into smaller regions. Each reference vector acts as a
direction of improvement (usually relative to the ideal point) for a local sub-
population. The selection operator uses these reference vectors to generate scalar
valued functions for each subpopulation which are then used to calculate the fit-

from previous implementations.

26

ness of the solutions. This enables the MOEA to effectively convert the MOP
to a group of single-objective optimization problems, resulting in solutions close
to the Pareto optimal front in the directions of the reference vectors. For a pos-
teriori decomposition-based MOEAs, the number of reference vectors required
to adequately represent the Pareto front grows exponentially with the number of
objectives [52], thus incurring high computational costs. Popular MOEAs include
RVEA [17], MOEA/D [106], and NSGA-III 8 [24]. A surrogate-assisted version of
RVEA, K-RVEA [19], solves online data-driven MOPs effectively by using addi-
tional objective function evaluations to strategically make the surrogate models
more accurate near the Pareto front.

Interactive MOEAs reduce the computational cost of solving MOPs with a
high number of objectives by focusing on the DM’s region of interest. Decom-
position-based MOEAs provide a simple way of using DM preferences in an in-
teractive fashion by limiting the spread of reference vectors towards a DM’s re-
gion of interest [24, 46]. Unlike many interactive methods that only accept DM
preferences in one format, interactive RVEA [46] enables the DM to provide their
preferences in four different ways: a reference point, specifying preferred solu-
tions, specifying non-preferred solutions, and specifying preferred ranges for the
objectives. Indicator-based MOEAs also provide a straightforward way of cre-
ating interactive methods. MOEAs such as PBEA [93], which is an interactive
version of IBEA, use a scalarization function which incorporates DM preferences
in place of the indicator to calculate the fitness of individual solutions.

2.4 Visualizations to support DMs

To enable DMs to make decisions, we need to provide them with information re-
garding different Pareto optimal solutions of the MOP and the possible trade-offs.
For a posteriori methods such as RVEA, the process can involve the visualization
of thousands of solutions. The solutions are generally visualized in the objective
space. We can use scatter plots for visualization in MOPs with two or three ob-
jectives. However, for MOPs with more objectives, we need to use visualization
techniques such as a parallel coordinates plot. Parallel coordinates plots become
messy and difficult to interpret with a large number of solutions. We expand
upon this topic further in Chapter 5.

Even in simpler visualizations, however, comparing a large number of solu-
tions is not a trivial task for any DM. Some visualization tools [47,95] support the
DM by allowing them to interact directly with the plots to, for example, highlight
or hide specific solutions and zoom in and out. These are called interactive or
dynamic plots. We will use the latter term in this thesis to avoid confusion with
the similarly named interactive methods.

Many interactive methods, such as NIMBUS, E-NAUTILUS, the reference
point method, and Pareto race, avoid the issue of comparing thousands of solu-

8 NSGA-III also the dominance relation in a way similar to NSGA-II.

27

tions by only presenting the DM with a small, manageable number (as low as
one) of alternatives. The DM can then compare those solutions and provide their
preference, leading to another set of alternative solutions. NAUTILUS Navigator
avoids the same issue by visualizing reachable ranges of the objectives rather than
individual solutions. Dynamic plots can help the DM even in methods where the
number of alternative solutions is very small. In interactive methods specifically,
we can use dynamic plots not just to explore alternative solutions, but also as
interfaces that the DM can use to input their preferences. For example, the nav-
igator plot shown in Figure 2 is a dynamic plot that allows the DM to provide
aspiration levels and bounds, and go back to a previous step by dragging the
green, red, and black lines in the plot respectively. The navigator plot also pro-
vides text boxes to accept input from the DM, if the DM wants to set an exact
value for the aspiration level or the bound. Dynamic plots can make the process
of providing preferences easier, compared to, for example, providing a reference
point by typing out the values. This encourages DMs to experiment with the
method and test out different preferences.

2.5 Properties of microalloyed steels

Structural materials, such as steels, can undergo temporary or permanent defor-
mation under force [15]. If the structure springs back to its original shape and size
after the removal of the external force, the deformation is termed elastic. Beyond
a specific threshold force, the material can undergo plastic deformation, which
permanently changes the structure’s shape even after removing the force. Yield
strength (YS) measures tensile stress9 that a material can sustain while still being
in the regime of elastic deformation. If the internal stress of the material exceeds
YS, it undergoes plastic deformation. The ultimate tensile strength (UTS) is a
similar metric. It measures the maximum tensile stress that a material can toler-
ate before undergoing a catastrophic fracture. In most applications, the structures
are designed such that the material experiences stresses below YS.

YS and UTS depend on the chemical composition and the material’s mi-
croscopic structure. They are usually measured by performing tension tests on
specimens of a standard shape. The fractional increase in the length of the speci-
men after it is fractured (i.e., the internal stresses cross UTS) is termed percentage
elongation. Another critical criterion that should be measured for many struc-
tural applications is the behaviour of materials at cold temperatures. Many mate-
rials, such as steel, which are very ductile at room temperature, can become brittle
at low temperatures, increasing a structure’s probability of failing and fracturing.
This behaviour can be measured using the Charpy impact test, which measures
the energy required to fracture a specimen of standard shape. The Charpy energy
can be measured at various temperatures depending on the application’s needs.

9 Stress refers to force per unit area. Tensile stress arises from a force that “pulls” a material
apart, as opposed to compression.

28

Microalloyed steels are alloys of steel which contain alloying elements like
vanadium, niobium, and titanium in small amounts. The presence of these ele-
ments changes the microscopic structure of the steel and can lead to better values
for the properties mentioned earlier. As they have a low amount of alloying el-
ements, they also have a lower carbon equivalent value, which is measured as a
weighted sum of the alloying elements present in the steel. The carbon equivalent
value can be used to predict a material’s easability to be welded.

3 AUTOMATIC SELECTION OF SURROGATE
MODELLING TECHNIQUES

Cueball II: This is your machine learning system?
Cueball Prime: Yup! You pour the data into this big
pile of linear algebra, then collect the answers on the

other side.
Cueball II: What if the answers are wrong?

Cueball Prime: Just stir the pile until they start
looking right.

Randall Munroe
Machine Learning

Solving data-driven MOPs, whether online or offline, often requires the usage
of surrogate models. The models are generally used in place of objectives or
constraints that may be difficult (time or resource expensive) or impossible (for
offline data-driven problems) to evaluate during the solution process. An analyst
can choose one or more surrogate modelling techniques for their MOP from a
pool of hundreds of published methods [55]. Different surrogate modelling tech-
niques can have vastly different performances on MOPs from different fields,
different MOPs from the same field, or even different objectives or constraints
within the same MOP. Therefore, the choice of surrogate modelling technique
plays a crucial role in surrogate-assisted data-driven optimization. The choice
can impact the performance of the optimization algorithm and the validity of the
results themselves.

Therefore, it is discouraging that many studies investigating data-driven
MOPs do not provide ample justification for the choice of surrogate modelling
techniques [20]. In most cases, analysts use the techniques they are familiar with
or are popular in the MOP’s domain. In some cases, the analysts choose the
surrogate modelling technique by conducting cross-validation testing of a small
number of models using the limited data from the MOP they want to solve. This
process requires training the various models multiple times and becomes increas-

30

ingly time-consuming with larger datasets and number of surrogate modelling
techniques being considered. This issue is exacerbated in online data-driven
problems, where the inclusion of newly sampled points in the dataset can war-
rant retesting of the surrogate modelling techniques.

The Surrogate Modelling Technique Selection (SMTS) algorithm, proposed
in [PI], provides an efficient way to predict the best or near-best performing sur-
rogate modelling technique for any given dataset. The SMTS algorithm does this
without training any new surrogate models (except linear or quadratic models
that are very quick to train). The field of automatic algorithm selection [58,82,90],
which tackles a similar problem (choosing the best optimization algorithm), in-
spired the SMTS algorithm. The core idea behind the algorithm is the creation of
a “selector” that can predict the optimal surrogate modelling technique for any
MOP based on a standard set of features calculated from the associated dataset.
In short, it is a machine learning model that predicts surrogate modelling tech-
niques.

3.1 The SMTS algorithm

Figure 3 shows the general structure of the SMTS algorithm. The algorithm is
divided into two phases: the training phase and the application phase. The train-
ing phase is a compute- and time-intensive step that trains the selector mentioned
above. Once trained, we can make the selector publicly accessible for use by an-
alysts to predict the best surrogate modelling techniques for their data-driven
MOP. Using the selector (in the application phase) is much faster than conduct-
ing cross-validation because it involves a single prediction from the selector. To
achieve this, we train the selector by (a) identifying patterns in large number of
datasets and (b) correlating those patterns to the performance of surrogate mod-
elling techniques.

Identifying the patterns in datasets

Data-driven MOPs can arise in a variety of fields. The datasets can be very small
or large, sparse or dense, noisy or clean, uniformly distributed or skewed. The
associated underlying objective functions can be linear and simple, complex but
deterministic, or even stochastic. The selector must be able to distinguish be-
tween different datasets and identify such properties. One way to achieve this is
to expose the selector to diverse datasets during the training phase. We suggest
a technique to generate thousands of datasets with a diverse set of characteristics
using well-known benchmarking MOPs in [PI].

Most machine learning techniques (i.e., selector candidates) cannot accept
datasets of arbitrary sizes as their input. Therefore, we first calculate a fixed
number of features from each dataset. We use the exploratory landscape anal-
ysis features [69], which have been successfully used in the literature to select

31

FIGURE 3 SMTS algorithm to train the selector for automatic selection of surrogate
modelling techniques.

32

optimization algorithms for MOPs automatically [58, 90]. The selector can use
these features to identify and distinguish between datasets.

Identifying the best surrogate models

We must first create a shortlist of the best surrogate modelling techniques for
the selector’s consideration. This list should be diverse and represent popular
techniques from various domains. In [PI], we consider techniques such as neu-
ral networks, support vector machines, Kriging, and ensemble models as imple-
mented in the Python package scikit-learn [80]. The next step is relatively
simple but very time-consuming. We train models using every shortlisted sur-
rogate modelling technique on every dataset generated in the previous step. We
need to define what the “best surrogate modelling technique” means. In [PI], we
use the R2 accuracy metric as a measure of goodness. However, many other met-
rics can be used, including the combined performance of a surrogate modelling
technique and an MOEA [111, 112]. Using the latter metric will significantly in-
crease the time consumption of the algorithm, however.

Training the selector

We have features and surrogate modelling technique performances associated
with thousands of datasets by the end of the previous step. We can now use
a classification algorithm to train a selector to predict the best performing tech-
niques based on the features. However, no classification algorithm can predict
the best algorithm a hundred per cent of the time. In the worst-case scenario,
the selector may predict the worst technique for the MOP. To counteract this, we
propose a custom cost function in [PI] which ensures that the selector is trained
to predict techniques in the order of their performance. If the selector fails to pre-
dict the best performing surrogate modelling technique, it will likely predict the
second or third best technique rather than the worst technique.

We implemented the SMTS algorithm in Python using NumPy, pandas, and
scikit-learn packages. The training phase took close to twenty hours to com-
plete on a machine with AMD Ryzen 5 2600 six-core CPU and 8 GBs of RAM.
Once the model is trained, however, an analyst can calculate the features of their
MOP’s dataset and use it with the selector to predict the (close to) best performing
surrogate modelling technique instantaneously.

3.2 Discussion about the SMTS Algorithm

In [PI], we present multiple candidate selectors using different classification algo-
rithms to predict the best surrogate modelling techniques for datasets of MOPs.
We trained the selectors using thousands of benchmarking MOP datasets, tested
them on hundreds of benchmarking MOP datasets (unseen by the selector during

33

1 2 3 4
Rank of chosen surrogate modelling technique

0

20

40

60

80

Fr
eq

ue
nc

y

FIGURE 4 Frequency of ranks achieved surrogate modelling techniques chosen by the
selector for the testing datasets.

the training phase), and validated them using datasets from engineering MOPs
entirely unrelated to the datasets used during the training phase. We compared
nine different classification algorithms as candidates for the selector, and each
candidate selector had the option to choose from ten different surrogate mod-
elling techniques. In our tests, the “extra-trees classifier” as implemented in the
scikit-learn Python package had the best overall performance as the selec-
tor. As a by-product of training ten different surrogate modelling techniques on
thousands of datasets, we also discovered that the “gradient boosted regressor”
as implemented in the scikit-learn package was the best performing surro-
gate modelling technique on most datasets.

In this section, we conduct a simpler version of the experiment done in [PI]
and create a selector using the “extra-trees classifier”. We only consider four
(popular) surrogate modelling techniques for the selector: “gradient boosted re-
gressor”, “neural networks”, “gaussian process regression”, and “support vector
machines”, as implemented in the scikit-learn package with default hyper-
parameter values. We use 500 randomly selected datasets from the datasets cre-
ated for [PI]. We use 400 datasets to train the selector and the remaining 100 to
test it.

Figure 4 displays the results of the experiment. Out of the 100 test datasets,
the trained selector predicted the best surrogate modelling technique for 92 data-
sets. It predicted the second-best surrogate modelling technique for seven datasets
and chose the worst out of four surrogate modelling techniques for one of the
datasets. The selector is very successful at predicting the best surrogate mod-
elling techniques. This selector, however, is inappropriate for real-life MOPs as
it was trained on a minimal set of datasets, with very few options for surrogate
modelling techniques. In [PI], however, we provide a much more general selec-
tor which performs well over a variety of datasets. The selector provides analysts
unfamiliar with various surrogate modelling techniques a quick way to discover
good modelling techniques for their MOP, leading to better solutions.

4 INTERACTIVE OPTIMIZATION IN THE
PREFERENCE INCORPORATED SPACE

We’ve had one, yes. But what about second
breakfast?

Peter Jackson
The Fellowship of the Ring

Calculating a representative set of solutions to approximate the Pareto front for an
MOP with a a posteriori MOEA becomes exponentially more challenging with an
increasing number of objectives [28,52]. This leads to increased time consumption
and worse results; the MOEA can even fail to discover entire sections of the Pareto
front [PVI]. Interactive MOEAs [7] can circumvent the issue by focusing on a
small region of the objective space, the region of interest of a DM. This allows
interactive MOEAs to focus computational resources on quickly converging in
the region of interest, saving time and function evaluations (which may be limited
in some MOPs). As the methods are interactive, they also reduce the cognitive
load on the DM by not requiring them to analyze the entire approximated Pareto
front at once, as is the case with a posteriori MOEAs.

However, interactive MOEAs suffer from many problems. Most interactive
MOEAs are modified versions of their a posteriori counterparts [7]. This adds
additional parameters to the MOEA to control how the preferences of a DM are
utilized within the method. However, this utilization may not be straightforward,
making it difficult for a DM to control the optimization process. Additionally, by
allowing the MOEA to focus primarily or entirely on the region of interest, we
dramatically reduce the diversity of the population (compared to a population
in a a posteriori MOEA). This may lead to issues during the optimization process,
especially when the DM changes their preferences [PII, 7, 29].

An alternative way to solve MOPs interactively is to use scalarization-based
methods [70, 73, 75]. However, as these methods generally use only a single
scalarization function at a time, they return one solution at the end of each iter-

35

ation1. The interpretation of preference information differs considerably among
various scalarization functions. Thus, the choice of scalarization function can
significantly impact the optimization process and the final chosen solution. But
choosing the best scalarization function for an MOP and a DM is not a simple
task. Some scalarization-based methods solve this issue by utilizing multiple
scalarization functions at each iteration [76]. However, these still only return a
few solutions at a time. Having a variety of solutions within the region of interest
can benefit the optimization process. It gives the DM more information about
the trade-offs among the objectives in the region of interest and presents a higher
chance of finding an acceptable solution.

The WASF-GA MOEA [83,85] tackles the issue by using a reference point to
identify a region of interest. The algorithm then uses several achievement scalar-
izing functions with the reference point as the preference information and a set of
uniformly-distributed weight vectors (µ) to find solutions in the region of interest.
WASF-GA conducts evolution in a manner similar to the decomposition-based al-
gorithms described in Chapter 2, and the algorithm’s performance suffers with
an increasing number of objectives.

It is, therefore, desirable to create a method that has the benefits of MOEAs
and scalarization-based methods while avoiding their downsides. Thus, we see a
need for an interactive method that can (a) find a diverse set of solutions in (b) a
region of interest not limited to a singular, strict interpretation of preferences and
(c) free from the issues related to the number of objectives. In [PII], we introduce
not just such a method but a methodology for creating such methods, thereby
introducing a new paradigm in interactive evolutionary multiobjective optimiza-
tion. We achieve this by using multiple (as low as two) scalarization functions
to create a new space, which we call a preference incorporated space (PIS). The
different scalarization functions interpret the same preference information differ-
ently leading to different optimal solution for each individual scalarization func-
tion (with infrequent exceptions) [75]. This leads to a trade-off between the differ-
ent scalarization functions, leading to a Pareto front in the PIS. We then use any a
posteriori MOEA to optimize in the new space instead of the objective space.

4.1 Interactive Optimization using Preference Incorporated Space
(IOPIS) algorithm

We formally define the PIS by extending the MOP (1) as:

x︸︷︷︸
Decision

space

f−→ f(x)︸︷︷︸
Objective

space

s−→̄
z

s(f(x), z̄)︸ ︷︷ ︸
Preference

incorporated
space

(3)

1 Some scalarization-based methods such as synchronous NIMBUS [76] use multiple scalar-
ization functions and return multiple solutions. However, these scalarization functions are
optimized independently of each other.

36

where s is a set of q scalarization functions, and z̄ is the preference information
given by the DM. We first need to establish some properties that the PIS should
have to ensure that optimizing in this new space is worthwhile. We formulated
these properties by modifying the desirable properties of scalarization functions
as stated in [88] and mentioned in Chapter 2. We state the desirable properties of
the PIS in [PII] as:

1. Optimality: Pareto optimal solutions in the PIS remain Pareto optimal in
the objective space.

2. Preferability: Pareto optimal solutions in the PIS follow the preferences
given by the DM in the objective space.

3. Discoverability: Any properly Pareto optimal solution of the MOP can be
discovered by changing the preferences.

We prove in [PII] that if we construct the PIS using achievement scalarizing func-
tions, all of the properties are satisfied. Optimizing in the PIS provides us with
the following benefits compared to optimizing in the objective space:

1. Control of the number of dimensions: We can control q independently of k
by simply changing the number of scalarization functions used to construct
the PIS.

2. Reducing the number of function evaluations: The number of solutions
needed to represent a Pareto front increases exponentially with the num-
ber of dimensions of the objective space (for other MOEAs) or the PIS (for
IOPIS). By setting a low value for q, we can use IOPIS with a much smaller
population size, independent of the number of original objectives.

3. Modular creation of interactive MOEAs: By using the PIS, we incorporate
the preferences directly in the MOP. This allows us to use any a posteriori
MOEA (or a biobjective EA if q is two) with the PIS, functionally making it
an interactive MOEA.

4. Control over the interpretation of preferences: Trade-off between the Pareto
optimal solutions in the PIS represents the trade-off between the interpreta-
tions of preferences by the scalarization functions that form the PIS. Hence,
we can control the interpretation by adding or removing scalarization func-
tions. This interpretation is independent of the choice of MOEA used for
optimization. This has the added benefit of allowing easy comparison of
different MOEAs in the context of interactive evolutionary optimization, an
otherwise challenging task. For example, we can compare how effective
different MOEAs are in optimizing in the same PIS.

We show the structure of the IOPIS algorithm in Figure 5. We assume that an an-
alyst and a DM have worked together to construct an MOP. We also assume that
the analyst has chosen a set of appropriate scalarization functions to construct the
PIS. The IOPIS algorithm then begins with an analyst asking the DM to provide
their preferences. The analyst can support the DM in this step by visualizing
some sample solutions or providing information about the approximated ideal

37

DM provides
preference
 PIS creation

Optimization in the
PIS with EA

Display solutions
from final EA

population

Start

Stop

FIGURE 5 Illustration of the IOPIS algorithm

and nadir points. The algorithm then creates the PIS using the provided prefer-
ences and the set of scalarization functions. An appropriate MOEA is then used
to solve the problem in the PIS, resulting in an approximation of Pareto optimal
solutions in the region of interest of the DM. The analyst then visualizes these
solutions2 to the DM. If the DM is satisfied with one of these solutions, they can
choose to terminate the solution process here. Otherwise, they can provide new
preferences to the algorithm, starting a new iteration and continuing the process
until they find a satisfactory solution.

4.2 Discussion about the PIS and IOPIS

In [PII], we showcase two implementations of the IOPIS algorithm: IOPIS/RVEA
and IOPIS/NSGA-III. Both algorithms use the STOM [79] and GUESS [13] ach-
ievement scalarizing functions to form a two-dimensional PIS. These accept the
DM’s preferences in the form of a reference point. IOPIS/RVEA uses RVEA to
conduct the optimization in the PIS, whereas IOPIS/NSGA-III uses NSGA-III.
We discuss the implications of optimizing in the PIS for the DM and show how a
DM can control the interactive optimization process.

We show the effect of using STOM and GUESS functions to create the PIS
to solve the ZDT2 [108] in Figure 6. The two scalarization functions are repre-
sented by dashed lines3 in equation (2). The DM can “zoom out” and expand the
region of interest by setting the reference point far from the Pareto front. This
can happen naturally during the first few iterations when the DM does not have
enough information about the Pareto optimal solutions. IOPIS provides a general
overview of solutions spanning a large region. With the help of this new infor-
mation, the DM can “zoom in” and shrink the region of interest by placing the
reference point close to the Pareto front. On the other hand, one can say that the
DM learns about how reachable the reference point is. If a wide range or solu-
tions is given, the reference point is far from Pareto optimal solutions while few

2 generally in the objective space, although certain domain-specific visualizations may also
visualize decision variables

3 More precisely, the dashed lines are the directions of improvement for the two scalarization
functions as defined by µ and z̄

38

0.0 0.2 0.4 0.6 0.8 1.0
f1

0.0

0.2

0.4

0.6

0.8

1.0
f2

True front
IOPIS/NSGA-III
Reference point
GUESS
STOM

(a) Reference point is far from the front.

0.0 0.2 0.4 0.6 0.8 1.0
f1

0.0

0.2

0.4

0.6

0.8

1.0

f2

True front
IOPIS/NSGA-III
Reference point
GUESS
STOM

(b) Reference point is close to the front.

FIGURE 6 Effect of a reference point on the solutions returned by IOPIS-NSGA-III for
ZDT2.

solutions near the reference point are shown in the opposite case. In this way, the
interpretation corresponds to the reasoning of the reference point method [101].

We test the performance of IOPIS/RVEA and IOPIS/NSGA-III against a pos-
teriori RVEA and NSGA-III, and their interactive variants that we implemented
as described in [46]. We conducted the tests using close to six hundred MOPs
generated using the DTLZ and WFG benchmark problems [30,50]. We randomly
generated reference points in the objective space to simulate a DM. The IOPIS
variants of RVEA and NSGA-III generally performed better than their a posteri-
ori or interactive but non-IOPIS variants for most of the considered MOPs. They
achieved better convergence towards the Pareto optimal solutions in the region
of interest of the (artificial) DM while consuming significantly fewer objective
function evaluations (fewer by two orders of magnitude in some cases).

IOPIS successfully combines the benefits of MOEAs and scalarization-based
methods. While in [PII], we only implement versions of IOPIS that accept a ref-
erence point from a single DM as the preference information, the algorithm can
create interactive MOEAs to suit a variety of solutions. If the DM prefers to give
their preference in a different format, an appropriate scalarization function can
be incorporated into the PIS to handle that. For example, the NIMBUS scalariza-
tion function can enable expressing the preferences in the form of classification of
objectives [76]. We will discuss another use of the IOPIS algorithm in Chapter 8,
where we use IOPIS to create an interactive MOEA to support multiple DMs in
group decision making.

5 VISUALLY APPEALING AND INFORMATIVE
VISUALIZATIONS FOR DECISION MAKERS

People are not alarmed by the unusual so long as it
is placed in an acceptable context.

Michael Moorcock, The Land Leviathan

Visualization of solutions of MOPs is not a trivial task [42, 60, 64, 71]. A scatter
plot of objective values obtained by all solutions works well for biobjective prob-
lems. Scatter plots can be used for MOPs for a higher number of objectives by
encoding information about some of the objectives as the markers’ colour and
size or by using multiple scatter plots displaying different combinations of ob-
jectives in a scatterplot matrix. However, these can be challenging to interpret
with an increasing number of objectives. Dimensionality reduction techniques
can enable visualization using a smaller number of dimensions while conserving
the structure of the original data [11, 98]. However, such visualizations cannot
visualize the actual objective values and thus can not act as the primary means of
conveying information to the DM.

Parallel coordinate plots can create interpretable visualizations of high-di-
mensional data, as long as the number of alternative solutions is small [41]. Inter-
active MOEAs, which can accumulate thousands of solutions in a few iterations,
can lead to messy and hard-to-interpret visualizations. “Dynamic” plots 1, which
allow a DM to tweak the visualization in real-time, can help the DM interpret the
information. Such plots can allow the DM to reorder the axes to check the trade-
offs between different objective pairs. Moreover, dynamic plots allow the DM to
filter solutions, helping them focus on a subset of solutions at a time. While these
tools can greatly help in decision making, using only them for analysis can take
a long time, especially if the MOP has thousands of solutions with ten or more
objectives. Moreover, for these tools to be effective, a DM must be familiar with
them, which is not always the case.

1 https://d3js.org/

https://d3js.org/

40

Thus additional tools to support a DM in analyzing such visualizations are
needed. In [PIII], we introduce such a tool: the SCORE bands visualization tech-
nique. SCORE bands augments the traditional parallel coordinates plot by (a) or-
dering the objectives in an arrangement that brings out helpful information to a
DM, (b) encoding information regarding the patterns in objectives (such as corre-
lated objective groups and trade-offs) by varying the distances between objectives
in the plot, (c) visualizing solution clusters as bands flowing through the visual-
ization. By default, we do not visualize the individual solutions at the beginning.
Instead, the bands give the DM a general overview of the trends in the solutions
and the objectives, allowing them to identify regions of interest. The DM can
then hide the other bands and display the individual solutions of their preferred
clusters by interacting with the plot. SCORE bands visualizations provide simple
yet information-dense visualizations and gives a DM head start in analyzing so-
lutions. In other words, they support the DM in focusing at a smaller amount of
information at a time and seeing bigger trends more conveniently.

5.1 Solution clustering and correlated objectives visualization via
bands (SCORE Bands)

The SCORE bands algorithm augments a parallel coordinate plot in four steps as
stated in [PIII]:

1. Solution clustering: We cluster the solutions to differentiate the clusters
using different colours. Using clusters in visualization is not a novel idea
[14,105]. However, it is a necessary step and works in tandem with the later
steps to create the SCORE bands visualization. The clustering information
can come from, for example, using clustering algorithms on objective val-
ues, decision variable values, or a combination or a subset of them. Alter-
natively, solutions from different iterations of an interactive methods can be
put into different clusters.

2. Axis ordering: We identify the optimal ordering of the objectives for the
parallel coordinates plot. Related ideas have been proposed [5, 107] before,
leading to varying degrees of success. We treat the problem of ordering
the objectives as a simple travelling salesperson problem: objectives are
the “cities” of the problem, and the correlations between objective pairs are
used to calculate the “distance” which the salesperson uses to find the op-
timal order of travel. Obtaining the order in such a manner ensures that
correlated objectives are placed together in the visualization, highlighting
their patterns. This is very useful in static visualizations, such as plots in
print media, as it immediately illustrates important information to DM. The
step is still helpful for dynamic visualizations, providing the same advan-
tage to the DM as the static plots while giving them the option to reorganize
objectives for further analysis.

3. Axis placement: Traditional parallel coordinates plots encode much infor-

41

mation vertically (all axes are vertical; thus, the height of a trace signifies
the objective value), but not horizontally. We increase the density of use-
ful information provided to the DM by varying the distance between the
objective axes in SCORE bands. This allows us to place highly correlated
objectives close together while increasing the space between otherwise un-
correlated neighbouring objectives. This simple yet novel idea enhances a
DM’s analysis of solutions from interactive methods by providing extra in-
formation that can be visually interpreted at a glance.

4. Solution visualization: The major source of difficulty in understanding par-
allel coordinate plots comes from the number of solutions (which can be in
the thousands, as shown in Figure 7). We alleviate the difficulty by not dis-
playing the individual solutions by default. Instead, we visualize the clus-
ters as bands, finally forming the SCORE bands visualization. The height
of a band at each objective axis represents the median objective value of the
associated cluster. The width represents a statistical measure of spread. We
use the interquartile range as the default way to calculate the width. We use
the clustering information to colour the bands using translucent colours.
This allows the DM to discern and notice the trade-offs between the differ-
ent clusters.

SCORE bands visualizations are dynamic, so they allow the DM to show or hide
the cluster bands and the solutions belonging to those clusters. By not visualizing
the solutions initially, we introduce a natural break in the decision making pro-
cess. The DM first notices the bands and the groups of objectives (in case some
of them are correlated) and immediately begins to absorb information about the
trade-offs. We keep the initial plot visually simple and allow the DM to introduce
complexity consciously by enabling them to show or hide solutions. This pre-
vents the DM from being overwhelmed by information and allows them much
more control over the visualization than traditional parallel coordinates plot.

5.2 Discussion about SCORE Bands

In [PIII], we implemented the SCORE bands visualization using the Plotly Python
package [81]. The implementation provides multiple options for each of the four
steps mentioned earlier, allowing an advanced user (perhaps an analyst) to fine-
tune the visualization. We also implemented a graphical user interface using the
Dash Python package [89], which makes those options available in a user-friendly
application. The interface allows users to import their datasets and experiment
with the visualization. Besides SCORE bands, it provides additional supporting
visualization, such as scatter plots created using dimensionality reduction tech-
niques [11,98]. However, we recommend that DMs and analysts work together to
create MOP-specific supporting visualizations. For example, for a vehicle chassis
design problem, a supporting visualization can show the chassis corresponding
to a solution selected by the DM in the primary SCORE bands visualization.

42

FIGURE 7 The auto mpg data set visualized using a traditional parallel coordinates
plot.

We showcase the utility of each of the steps of the SCORE bands visualiza-
tion using datasets from benchmark problems in [PIII]. We also present multiple
case studies using artificial datasets (which highlight the usefulness of SCORE
bands), and data from a real-life MOP. Here, we demonstrate the SCORE bands
plot using a dataset about cars, the auto mpg dataset, obtained from UCI machine
learning repository [31]. The dataset contains details like seven numeric columns
detailing attributes (such as fuel efficiency, horsepower, and weight of the car)
of about four hundred cars. The person choosing a car mentioned in Chapter 1
would perhaps use a similar dataset. We skip the optimization details (which at-
tributes are objectives, whether they are maximized or minimized, and so on) as
they are not necessary to showcase SCORE bands. However, we assume that the
dataset to be visualized contains non-dominated solutions only.

Figure 7 visualizes the auto mpg data set using a parallel coordinates plot.
We can immediately see that the “cylinders” objective has a small number of
discrete values represented in the solutions. The “cylinders” objective and the
“economy (mpg)” objective are inversely correlated, represented by the crossing
over of the solution traces. However, the static visualization does not immedi-
ately clarify the further relationship between the various objectives. Extracting
this information from a dynamic visualization would require thorough analysis.

Figure 8 presents the same dataset as a SCORE bands visualization. The plot
is significantly less cluttered than the parallel coordinate plot. A DM can see that
the solutions are clustered according to their “cylinders” value. SCORE bands re-
arranges the objectives and puts “power (hp)”, “cylinders”, “displacement (cc)”,
and “weight (lb)” together in a tightly packed group. This visual cue signifies to
the DM that those objectives are positively correlated. The DM can confirm this
by looking at the bands in those four objectives. The bands rarely cross over one
another, signifying a positive correlation. The other objectives are places farther
apart and thus have a very low or negative correlation.

The DM can intuit the correlations between any two objectives, even those

43

FIGURE 8 The auto mpg data set visualized using SCORE bands.

that are not neighbouring, by looking at the vertical order of the bands in those
objectives. For example, the green, light brown, and dark brown bands switch or-
der between the “cylinders” and “economy (mpg)” objectives, signifying a nega-
tive correlation. The blue and grey bands only contain three and four solutions,
respectively (as mentioned below the visualization), and therefore do not con-
tribute to the correlation significantly. The DM can gather this information by
a simple visual inspection of the static visualization. Dynamic SCORE bands
enable the DM to show the solutions or hide specific clusters, allowing further
step-wise and intuitive analysis.

SCORE bands successfully tackle the challenge of supporting DMs in inter-
active multiobjective optimization methods by giving them helpful insight into
the solutions. It simplifies and streamlines the decision making process and gives
the DM control over the level of complexity of the visualization. It has advantages
over the traditional parallel coordinates plot in both static and dynamic formats.
The SCORE bands algorithm, our implementation, and the associated graphical
user interface are open-source, giving DMs and analysts alike easy access for ex-
perimentation and further development.

6 HANDLING COSTLY FUNCTION EVALUATIONS
WITH INTERACTIVE MULTIOBJECTIVE
OPTIMIZATION

I am doing 1000 calculations per second and they are
all wrong.

@shenanigansen, Shen Comix

Online data-driven MOPs raise unique challenges for interactive methods. These
function evaluations may take a long time (and be financially expensive), intro-
ducing breaks in the decision making process. Surrogate-assisted MOEAs, such
as K-RVEA [19] tackle online data-driven MOPs by conducting additional objec-
tive function evaluations strategically during the optimization process to make
the surrogate models more accurate. In surrogate-assisted interactive methods,
the surrogate models may not be very accurate during the first few iterations,
especially close to the Pareto front. Naively constructed interactive MOEA ex-
hibiting such behaviour may hinder the process of interactive optimization and
discourage the DM. The DM may find “good” and preferred solutions when the
interactive MOEA uses (inaccurate) surrogate models. They will then have to
wait for the validation of those solutions by new objective function evaluations.
In the end, they may discover that those solutions are either suboptimal or not in
the region of interest or both, wasting the costly function evaluation.

One way to circumvent the issue is to involve the DM for interaction after
ensuring that the surrogate models are accurate near the Pareto optimal front.
However, this process misuses function evaluations trying to make surrogate
models more accurate in regions where the DM may not be interested. The
scalarization-based interactive method NAUTILUS Navigator [84] ultimately wo-
rks with this assumption. It assumes the availability of a pre-generated repre-
sentative set of Pareto optimal solutions. The set allows a DM to conduct swift
interactive optimization even in MOPs with costly functions since no function
evaluations are conducted when the DM is involved. However, creating such a

45

Train surrogate
models

Optimistic
optimization

Interactive
navigation

Targeted function
evaluation

Start

FIGURE 9 General flow of the O-NAUTILUS method

set, for example, with K-RVEA, still consumes many more function evaluations
than necessary.

To resolve the issues of MOPs with costly function evaluations and enable
functional interaction to solve such MOPs, we introduce the Optimistic NAU-
TILUS Navigator (O-NAUTILUS) method in [PIV]. The method combines MO-
EAs, surrogate models that can relay uncertainty information regarding their pre-
dictions, and scalarization functions to achieve its goal. Unlike the NAUTILUS
Navigator, this method does not require a representative set of Pareto optimal
solutions to begin interaction. Instead, it can use any data (even if it is sub-
optimal) that a DM may already have from past experiments to create surrogate
models. The method creates “Optimistic” representations of the Pareto optimal
front using the models and provides the uncertainty information to the DM in
an interface similar to NAUTILUS Navigator. The DM can interact in confidence
and find a preferred approximate solution with this additional knowledge. The
method enables the DM to conduct function evaluations targeted in their region
of interest. If the DM finds a satisfactory solution, they may end the process here.
Alternatively, the method uses the targeted evaluation to make the models much
more accurate in the region of interest, leading to better interaction and a higher
chance of finding preferred solutions. Function evaluations are conducted spar-
ingly, only when they are needed.

6.1 The O-NAUTILUS method

We show the major components of the O-NAUTILUS method in Figure 9. In
[PIV], we provide extensive details about the algorithms involved in those com-
ponents, as well as implementation details such as algorithm settings and hy-
perparameter values. In the following text, we provide a brief description of the
components and deliver a basic understanding of the O-NAUTILUS method.

Training surrogate models

We begin the O-NAUTILUS method by acquiring data corresponding to the MOP.
This data should include some solutions (not necessarily Pareto optimal), i.e.

46

0.5 1.0 1.5 2.0
f1

0.5

1.0

1.5

2.0

f2

Source
Known
Optimistic
Type
Dominated
Non-dominated

FIGURE 10 The known set of solutions, known front, and optimistic front for a biobjec-
tive optimization problem.

pairs of decision and objective vectors, of the MOP. The DM may already have
access to such data. If the DM does not have access to the necessary data, the
analyst and DM can discuss an appropriate number of function evaluations to
spend for its generation. As the data does not need to be Pareto optimal, this
data can be sampled randomly or uniformly, for example, using Latin hypercube
sampling, thus requiring significantly fewer function evaluations than optimiza-
tion. The case study described in [PIV] uses 100 initial samples. This data forms
the known set of solutions. The non-dominated solutions from this set form the
known front.

O-NAUTILUS requires surrogate modelling techniques that can give an un-
certainty quantification or a bound on the predicted objective values. In [PIV],
we use Gaussian process regression (which can give uncertainty quantification
in terms of standard deviation from the predicted mean value) and Lipschitzian
models (which can give exact bounds on the predicted mean value, assuming
that the objective function is Lipschitz continuous). Other surrogate modelling
techniques which provide similar information, such as random forest regression
models [99], can also be used. We train the surrogate models using the known set
of solutions.

Optimistic optimization

We use the trained models with MOEAs1 to get a so-called optimistic approxima-
tion of the Pareto optimal front, or optimistic front. We obtain this by not using
the predicted objective values from the surrogate models directly. Instead, we
first subtract (or add, in case of maximization) the standard deviation/Lipschitz
bound from the predictions. This optimistic prediction is then optimized, gener-
ating the optimistic front. To a DM, this front, when compared to known set, rep-
resents what can be achieved with function evaluations. In [PIV], we use RVEA
to conduct optimization as it works well for MOPs with a high number of objec-
tives. At the end of this step, we get two sets of fronts, as shown in Figure 10

1 In principle, any a posteriori method can be used.

47

FIGURE 11 A part of O-NAUTILUS graphical user interface showing the known and
optimistic reachable ranges for one of the objectives of an MOP.

for a bi-objective MOP. The black points in the figure are the known set of solu-
tions. The black crosses are the known front. We show the optimistic front as red
crosses.

Interactive navigation

After obtaining the two fronts, the O-NAUTILUS method enables the DM to in-
teract using a navigation interface similar to that of the NAUTILUS Navigator.
A portion of the O-NAUTILUS interface showing the visualization of one of the
objectives for an MOP is shown in Figure 11. O-NAUTILUS begins navigation
by putting a “step point” at the infinimum of the combined set of known and
optimistic fronts. We call this the combined set nadir point, or, simply, the nadir
point in Figure 11. The step point moves closer to the two fronts in a direction
calculated using the preferences given by the DM in the form of aspiration levels.
At each step, the reachable ranges are calculated independently for the known
and optimistic fronts. We calculate the value by finding the minimum and maxi-
mum objective values attained by the solutions that still dominate the step point.
The reachable range for the known front is represented by a blue shaded region
in Figure 11, whereas an orange shaded region represents the reachable range for
the optimistic front.

The step point moves closer to the known front at a constant rate (set by an
analyst, though we provide a default value). The DM can pause the navigation to
update their aspiration levels based on the changes in the known and optimistic
reachable ranges. The DM can also go back to a previous step and change their
aspiration levels to navigate in a new direction. The navigation ends once the
step point reaches the known front and the known reachable range collapses to
a single value. This means that a nondominated solution has been reached and

48

no improvement is possible any more in all objectives simultaneously. In Figure
11, this happens near step number 702. The optimistic reachable range has not
collapsed, signifying the DM that they can possibly reach better objective values
in this region by conducting an additional function evaluation targeted toward
their aspiration levels.

Targeted function evaluation

We use the achievement scalarizing function (ASF) described in Equation (2) to
determine the best decision variable vector to evaluate such that the resulting
solution is likely to be close to the Pareto front and follows the preferences of
the DM. The ASF is a scalarizing function that can take aspiration levels as the
preference information. We optimize the expected value of the ASF while using
surrogate models to find the best candidate solution. As the ASF is a scalarizing
function, the problem is a single-objective optimization problem. We use CMA-
ES [48], which is a state-of-the-art solver for such problems, to find the best candi-
date solution. The solution is then evaluated using the costly objective functions.
Note that this is the only step that involves a true function evaluation, and only a
single true function evaluation is used.

If the newly evaluated solution is acceptable to the DM, they can stop the
optimization process here. Alternatively, they can continue the process, in which
case O-NAUTILUS will retrain the surrogate models with the newly evaluated
point included in the training data. This retraining increases the accuracy of the
surrogate models in the region of interest of the DM. The optimistic front is then
calculated again, after which the DM can continue interacting with the method
and navigate. At the end of the navigation, if the DM concludes that the re-
maining optimistic reachable range is not promising enough to spend function
evaluations, they can stop the optimization process. If they are satisfied with the
solution at the end of navigation, they can choose it as the final solution of the
MOP. They can also push the step point backwards and give new preferences to
get new reachable ranges. The process continues until the DM finds an acceptable
solution.

6.2 Discussion about the O-NAUTILUS method

We implemented the O-NAUTILUS method using the DESDEO framework and
a graphical user interface using the Dash Python package [89]. In [PIV], we used
the O-NAUTILUS method to solve a real-world design optimization problem
named the crash-worthiness design of vehicles problem [63]. It is an MOP with
three objectives, optimizing the frontal structure of a car to improve the safety of
passengers. We also used a combination of K-RVEA (to generate a representative

2 The step number at which the step point reaches the known front can vary between differ-
ent MOPs. This number is not relevant to a DM.

49

Pareto front) and NAUTILUS Navigator (to conduct interactive optimization) to
solve the same MOP. We chose K-RVEA as it uses Kriging, same as O-NAUTILUS,
and NAUTILUS Navigator because it provides the DM with a similar interface
for interactive navigation. We gave the same total function evaluation budget to
O-NAUTILUS and K-RVEA/NAUTILUS Navigator.

Because of the ability of O-NAUTILUS to conduct targeted function evalua-
tions, the DM was able to find better solutions for the MOP than the K-RVEA/NA-
UTILUS Navigator combination. The DM was also able to make more informed
decisions with the help of the uncertainty information provided by the visual-
ization of the optimistic reachable ranges. The DM was also in direct control of
when or whether to conduct a function evaluation.

However, this ability to make informed decisions to efficiently solve data-
driven MOPs comes at the cost of the DM’s time. Given a large enough to-
tal function evaluation budget, K-RVEA/NAUTILUS Navigator can presumably
find solutions of quality similar to O-NAUTILUS. Conducting so many function
evaluations may be very expensive and may take a very long time. However, K-
RVEA/NAUTILUS Navigator only requires the attention of the DM during the
navigation phase, which is a very quick process. O-NAUTILUS on the other hand
requires much fewer function evaluations, and thus less time overall, but the DM
is required to wait for time-consuming function evaluations to see the updated
optimistic front and resume interaction with the algorithm. Thus, between the
two sets of algorithms, there is an inherent trade-off involving the number of
function evaluations and the DM’s wait time.

O-NAUTILUS method provides an efficient way to tackle data-driven MOPs
with costly objective functions. Note that while we provide the details about
the algorithms used in our implementation, an analyst can swap these with al-
ternatives which perform a similar purpose while still maintaining the general
structure of the algorithm. These choices can include, for example, using random
forest regression for surrogate modelling, NSGA-III for obtaining the optimistic
front, and differential evolution [92] for optimizing the expected value of the ASF.

7 THE DESDEO FRAMEWORK: AN OPEN-SOURCE
COLLECTION OF INTERACTIVE
MULTIOBJECTIVE OPTIMIZATION TOOLS

All good things come in open-source packages.

Source unknown

As we established in the previous chapters, interactive multiobjective optimiza-
tion methods can support a DM to tackle MOPs efficiently. The IOPIS algorithm
presented in [PII] enables a DM to control the scope of optimization by putting
the reference point closer or farther from the Pareto front. IOPIS can also re-
duce the number of dimensions of the MOP with the creation of the PIS, which
helps reduce the number of function evaluations. O-NAUTILUS goes a step fur-
ther and significantly reduces the number of (costly) function evaluations us-
ing surrogate-assisted optimization and facilitates a DM to make informed de-
cisions about conducting function evaluations in a targeted fashion. Many other
interactive methods, both evolutionary and scalarization-based, have been pro-
posed [12, 51, 70, 73, 78, 104].

However, obtaining and applying these methods to solve MOPs can be chal-
lenging for both analysts and DMs. Many authors do not make implementations
of their methods publicly available. Methods with available implementations
can be in one of many popular programming languages such as C, C++, R, Julia,
Matlab, Python, or Java. An analyst needs to be proficient in many programming
languages to use these methods. Even methods implemented in the same pro-
gramming language can require different ways of implementing the MOP to be
solved. This makes experimenting with various interactive methods challenging.
The methods may also not provide a user interface, making it challenging for
a DM to use them. Many open-source optimization frameworks exist that bun-
dle together many optimization algorithms and solve some of the earlier chal-
lenges [8–10, 22, 32, 36, 38, 40, 45, 53, 94]. In our survey of such tools in [PV], we
found that none of these frameworks provided interactive methods for optimiza-
tion and only provided either evolutionary or scalarization-based methods.

51

Therefore, there was a need for a framework that provided access to many
interactive MOEAs and scalarization-based methods to enable quick experimen-
tation by analysts as well as as a possibility to conveniently apply different meth-
ods in real applications. Such a framework should also implement these methods
in a modular fashion. Many interactive methods use similar tools, and imple-
menting them with modularity makes it trivial to reuse components for different
methods. Such tools include scalarization functions, tools for collecting and inter-
preting DM’s preferences, and the population’s abstraction used in all MOEAs.
The modularity also enables method developers (for example, researchers) to eas-
ily create new methods by mixing components of previously implemented meth-
ods. The framework should also have a good user interface to enable interactions
with the DM. Finally, the framework should be open-source, allowing analysts,
researchers, and DMs alike open access to all methods for experimentation. With
DESDEO, described in [PV], we provide such a framework.

7.1 Design of the Framework

We designed the framework as a collection of open-source packages, each de-
signed to fulfill a specific need of interactive multiobjective optimization. Some of
these packages, for example, those implementing the interactive methods, form
the framework’s core. These packages are fully mature and are ready for use by
researchers, analysts, DMs, and students. Other packages, such as packages that
support users with a graphical user interface, are under active development. The
framework also includes some packages which implement new methods using
parts of the framework but have not been incorporated into the core packages
yet. Note that while the core packages are mature, we still actively implement
new methods and features into them.

We implement the packages mainly in Python and TypeScript. We provide
thorough documentation on the packages, including descriptions of the pack-
ages, the methods within, their implementations, and how to use them. The doc-
umentation resources include docstrings in the code, documentation websites for
individual packages, tutorials using Jupyter Notebook, as well as multiple video
tutorials available via the YouTube website of the multiobjective optimization
group 1. All packages developed for the DESDEO framework are available via
our website2 and GitHub3 pages. We now describe all the packages that compose
the DESDEO framework.

desdeo-tools. This Python package forms the framework’s base and im-
plements essential tools and techniques used by both scalarization-based and
evolutionary methods. These tools include tools for non-dominated sorting, vali-
dation of different kinds of preference information, and interconversion of differ-

1 https://www.youtube.com/channel/UC6qFfAgD8_aa28pcBmKDXTw/
2 https://desdeo.it.jyu.fi
3 https://github.com/industrial-optimization-group

https://www.youtube.com/channel/UC6qFfAgD8_aa28pcBmKDXTw/
https://desdeo.it.jyu.fi
https://github.com/industrial-optimization-group

52

ent kinds of preference information [76]. This package also contains implemen-
tations of various scalarization functions [13, 74, 79, 101], as well as the GLIDE-II
framework [87], which can be used to parametrically generate different scalariza-
tion functions. We also implemented a tool to connect DESDEO’s methods with
single-objective optimizers implemented outside the framework. Quality indica-
tors that compare the quality of solutions for MOPs are also implemented in this
package [111, 112]. Finally, we have implemented tools to enable the creation of
the PIS by combining multiple scalarizing functions.

desdeo-problem. This Python package contains the abstractions for defin-
ing MOPs. We have implemented classes and functions to define the decision
variables of an MOP individually or in batches. We have implemented differ-
ent classes to handle objectives. For example, the VectorObjective class han-
dles cases where a source (like a simulator) returns values of multiple objec-
tives at once. Alternatively, the ScalarObjective class handles cases where
each objective function can be calculated independently. While we currently
do not utilize this feature in the framework, the ability to selectively calculate
certain objectives is useful in MOPs with objectives of mixed complexities [4].
We have also implemented classes to handle the objectives of data-driven MOPs
and support the creation of surrogate models from the popular Python package
scikit-learn [80] and related packages. Finally, we have the MOProblem and
DataProblem classes which aggregate the previously mentioned tools to imple-
ment MOPs and connect them to the interactive methods implemented in other
packages.

desdeo-mcdm. This package, also implemented in Python, contains im-
plementations of scalarization-based interactive methods. As of early 2022, this
package implements the Pareto navigator [34], NAUTILUS [72], NAUTILUS nav-
igator [84], E-NAUTILUS [86], NAUTILUS 2 [77], synchronous NIMBUS [76], and
the reference point method [101].

desdeo-emo. This Python package implements various interactive and a
posteriori MOEAs. We implement reusable components of MOEAs, such as the
population, crossover, mutation, and selection operators and algorithms to cre-
ate reference vectors (for decomposition-based MOEAs) as modular classes and
functions. Even the basic algorithm of population evolution that some MOEAs
follow (create offspring → select best individuals → repeat) are implemented
base classes and can be inherited into implementations of MOEAs easily. The
package contains implementations of RVEA [17], NSGA-III [24], MOEA/D [106],
IBEA [109], PPGA [62], and tournament EA [44]. However, these algorithms
can be used for interactive optimization using IOPIS. IOPIS is implemented as
a unique problem class rather than an MOEA, thus enabling its usage with all al-
gorithms in desdeo-emo. Additionally, some interactive versions of previously
mentioned MOEAs have also been implemented [46]. These support providing
preferences interactively in the form of a reference point, as bounds on the ob-
jective values, choosing one or more preferred solutions during evolutions, or
choosing solutions that a DM does not like. The package also supports changing
the way preferences are provided during the solution process. It also supports

53

changing the MOEA during the solution process without losing any progress.
desdeo. This is a user-facing package. Anyone (DMs, analysts, or students)

who wants to use the implemented methods only needs to install this package us-
ing the command ‘pip install desdeo‘. It automatically installs all other
packages. This package does not implement any additional methods, but it con-
tains the documentation of the entire framework.

desdeo-components, desdeo-frontend, and desdeo-webapi. These
packages are not a core part of the framework yet. We implemented the first
two packages in TypeScript. The desdeo-components package implements
interactive visual components such as visualizations and forms using which a
DM can see the results of interactive optimization and provide their preferences.
The desdeo-frontend package combines these components to form graphi-
cal user interfaces for the various methods in the DESDEO framework. The
desdeo-webapi package, implemented in Python, connects the graphical user
interface provided by the other packages to the methods provided by the core
packages of DESDEO.

Other packages. We have used the DESDEO framework to develop various
new methods which have not been fully incorporated into the core packages yet.
The O-NAUTILUS package 4 implements the O-NAUTILUS algorithm. It will
become a part of the core packages when desdeo-frontend reimplements its
graphical user interface. The selector (from the SMTS algorithm) depends on
the R language as well. Thus we provide it as an optional install rather than
a core component. Other packages include desdeo-vis, desdeo-dash, and
desdeo-adm, as well as some repositories containing tutorials 5.

7.2 Discussion about the DESDEO Framework

We describe various ways of using the DESDEO framework in [PV]. We showcase
different use cases, such as an MOP with objectives with mathematical functions
and a data-driven MOP requiring the use of surrogate models. We showcase the
process of using different evolutionary and scalarization-based methods and the
process of combining or switching between those methods. The framework has
enabled quick creation and experimentation with the IOPIS and O-NAUTILUS
algorithms. Because of this, we could iterate and improve those algorithms easily,
facilitating us to present those algorithms in [PII] and [PIV] must faster than it
would have been possible otherwise.

The DESDEO framework has been and continues to be a massive collabo-
ration with tens of contributors. The needs of methods developed by the author,
IOPIS and O-NAUTILUS, and the needs of other researchers have shaped the de-
sign of the framework [1–3, 67]. Many courses have utilized the framework to
teach topics related to interactive multiobjective optimization. The framework

4 https://github.com/industrial-optimization-group/O-NAUTILUS
5 Available from https://github.com/industrial-optimization-group

https://github.com/industrial-optimization-group/O-NAUTILUS
https://github.com/industrial-optimization-group

54

fills an otherwise empty niche and provides its users open access to interactive
methods, enabling new research. Furthermore, its accessibility enables those un-
familiar with interactive methods to experiment with them, opening new possi-
bilities.

8 SOLVING A REAL-LIFE DATA-DRIVEN
MULTIOBJECTIVE OPTIMIZATION PROBLEM

Journey Before Destination.

Brandon Sanderson, The Way of Kings

Through Chapters 3-7, we introduced many challenges related to interactive mul-
tiobjective optimization. We designed new techniques to resolve those challenges
successfully. However, real-life optimization problems can present unexpected is-
sues that are not solved trivially. Such issues usually are specific to the MOP to be
solved and require the combined expertise of the analyst and the DM to resolve.
For example, the data available for a data-driven optimization problem may not
elicit a straightforward MOP formulation with clear-cut decisions about which
parts of the data form the decision variables and which parts form the objectives.
Therefore, formulating an MOP can require in-depth deliberation and the com-
bined efforts of a DM (who can identify domain-specific objectives directly or
indirectly obtainable from the data), other domain experts, and an analyst (who
can formulate a meaningful and solvable MOP based on the suggestions of the
DM and available data). Such a process may happen over multiple discussions,
each discussion introducing minor improvements to the formulation. The jour-
ney made by DMs and analysts to formulate and solve an MOP, the challenges
they face during the process, and the choices they employ to overcome the chal-
lenges, therefore, can be as interesting as the MOP’s solutions. From the un-
doubtedly biased view of an analyst (which the author is in the study described
in this chapter), the process followed by the DM and analysts can even be more
interesting.

In [PVI], we document such a process. We considered the problem of opti-
mization of multiple metallurgical properties of microalloyed steels. These prop-
erties depend upon, among other factors, the composition of the alloy, i.e., the
concentrations of the alloying elements present in the steel. Two domain experts
were the DMs for the problem, aided by a single analyst. The problem is an of-
fline data-driven MOP, i.e., we do not have access to new function evaluations.

56

We solved the problem using surrogate-assisted optimization, i.e., we trained sur-
rogate models using the data to use as the objectives of the MOP. We developed
a new interactive MOEA to support two DMs simultaneously. We faced chal-
lenges in all steps, from processing the data, formulating the MOP, choosing the
surrogate models, and conducting interactive optimization with multiple DMs
who did not have experience with interactive methods. In solving those chal-
lenges, we utilized all the techniques we introduced in Chapters 3-7 (except for
O-NAUTILUS, which we designed for online data-driven problems) and more.
In [PVI], we give a detailed account of the tools and techniques we used, includ-
ing those that were unsuccessful in helping us find solutions. Someone wanting
to formulate and solve an MOP using real-data may not face all of the issues dis-
cussed in [PVI]. However, the techniques and the knowledge of the process we
followed to solve our MOP can still make valuable additions to the toolbox of
such a person.

8.1 Overview

In [PVI], we provide a “linear narrative” of the solution process. By this, we mean
that we provide a complete account of the first step of formulating and solving the
MOP (data preprocessing) first. We provide complete accounts of the subsequent
steps (surrogate modelling, MOP formulation, and interactive multiobjective op-
timization) in sequential order. This presentation allows the reader to replicate
our results by following the order presented in the article. In reality, however, the
solution process involved significant backtracking and reformulation of the MOP
based on intermediate results and discussion with the DMs.

In this chapter, we instead discuss the solution process as we conducted it
temporally, thus creating a supplementary to the aforementioned linear narrative.
The solution process had four phases, demarked by four significant discussions
that the author (as an analyst) had with the DMs. In the following four sections,
we will describe the discussions conducted over those four meetings, the work
we did to prepare for them, and the outcomes of the meetings. We discuss the
results of the experiments we conducted only briefly and, instead, refer to [PVI]
for a more detailed account.

8.2 First meeting with the DMs

The author initiated the study by contacting the two supervisors of his master’s
study, who are domain experts in metallurgy and materials engineering. The au-
thor aimed to solve a real-life MOP from his previous field of study (metallurgy
and materials engineering) by utilizing the knowledge gained and the techniques
he developed during his doctoral studies. The former supervisors were intrigued

57

by interactive multiobjective optimization and agreed to provide a dataset to for-
mulate and solve a data-driven MOP. They took up the role of DMs for this study,
while the author took up the analyst’s role (with the support of his current super-
visors).

During the first (virtual, as this study took place during the coronavirus
pandemic) meeting, the DMs provided the dataset to the analyst and discussed
its contents. This original “raw” dataset consisted of 736 rows and 51 columns.
Each row in the dataset represented a particular steel composition and the val-
ues for some of its measured metallurgical properties. The first twenty columns
denoted the concentrations of various alloying elements such as carbon, vana-
dium, and titanium. The concentrations of these elements controlled the values
of the metallurgical properties denoted in the rest of the rows. These proper-
ties included the ultimate tensile strength (UTS), yield strength (YS), percentage
elongation (ELON), and multiple columns for Charpy energy measured at vari-
ous temperatures, among many others. We provided a brief description of these
properties in Chapter 2.

The analyst noted that none of the rows contained values of all of the metal-
lurgical properties (prospective objectives). Moreover, the rows were also missing
values for some alloying element concentrations (prospective decision variables).
The DMs explained that they created the dataset by collating data points (rows
in the raw dataset) from various sources. Some of these sources contributed as
few as a single point. These sources experimented with steels with slightly differ-
ent ranges of alloy composition, and almost no source included all of the alloy-
ing elements observed in the combined raw dataset. Similarly, these sources did
not conduct all the experiments necessary to measure all metallurgical properties
present in the raw dataset.

The YS, UTS, and ELON metallurgical properties were the only ones that
had a significant representation in the dataset. Therefore, including them in the
MOP formulation was an obvious choice. The DMs expressed interest in includ-
ing Charpy energy in the formulation as well. However, no single Charpy en-
ergy column had enough data to train a good surrogate model (which the analyst
planned to use). The analyst noted that the 16 columns of Charpy energy could be
combined into a single column by treating the temperature at which the Charpy
energy was measured as an additional decision variable. Then, the temperature
could be kept constant at a key temperature for the MOP formulation.

Choosing this key temperature led to the general discussion about interac-
tive decision making. The DMs, after deliberation among themselves, proposed
to use different standards and grades of steel (discussed in Chapter 2) as inspira-
tion for their preferences. The DMs would be satisfied if the interactive optimiza-
tion process could utilize the data to find alloy compositions that could satisfy
strict steel standards. Based on the strict steel standards, we set the key temper-
ature for the Charpy energy objective to −80◦C. Therefore, we formed the first
version of the data-driven MOP with YS, UTS, ELON, and Charpy energy as the
four objectives.

58

8.3 Second meeting with the DMs

To prepare for the second meeting, the analyst preprocessed the raw dataset to
make it usable for the later steps. The preprocessing included dealing with empty
cells in the dataset. Some cells had non-numeric contents even though the cor-
responding column was numeric. We describe all steps taken by the analyst to
preprocess the data in [PVI]. The analyst also separated the raw dataset into four
datasets, each representing an objective. Dividing the raw dataset into four clean
datasets (which had no missing or incompatible values) made it easier for the
analyst to conduct many tests with them.

First, the analyst used the selector from the SMTS algorithm [PI] on the four
datasets to predict the best surrogate modelling technique for each of them. The
selector predicted that the extra trees regression (ExTR in [PI]) was the best for
two of the datasets, and the gradient boosted regression (GBR in [PI]) was the
best for the rest. As the datasets were small (20 decision variables and less than
1000 rows), training surrogate models was not a time consuming task. Therefore,
the analyst decided to test many surrogate models using cross-validation testing
to confirm the results of the SMTS algorithm. The analyst also decided to include
two state-of-the-art surrogate modelling techniques (XGBoost 1 and LightGBM2)
that were similar to the extra trees regression technique predicted by the SMTS
algorithm. Based on the results of this test (detailed further in [PVI]), the analyst
chose to use extra trees regression for the YS and ELON objectives and XGBoost
for the UTS objective.

The analyst removed the Charpy energy objective from the MOP as no sur-
rogate modelling technique performed well on the corresponding dataset. To
make the surrogate model perform better, the analyst tried to incorporate knowl-
edge from other metallurgical literature into the surrogate models to especially
control for the relationship between testing temperature and Charpy energy, as
mentioned in Chapter 2. However, this did not make the model perform any bet-
ter. There was simply too much noise in the experiments related to the Charpy
energy compared to the other chosen objectives. Thus, the analyst removed the
objective. Finally, the analyst computed the effect of each of the decision variables
on the objectives as predicted by the chosen surrogate models.

During the second (virtual) meeting with the DMs, the analyst presented the
results of the surrogate modelling. The DMs were happy with the results (except
for the Charpy energy surrogate model). The primary point of discussion for this
meeting was the computed effect of the decision variables (alloy composition).
The DMs compared the computed effect against metallurgical literature. Most of
the computed effects matched the DMs’ expectations. They approved the surro-
gate models, and we decided to start the next phase of the study: optimization.

1 Implemented in the xgboost Python package.
2 Implemented in the lightgbm Python package.

59

8.4 Third meeting with the DMs

The analyst formulated the MOP using DESDEO [PV]. However, during the
problem formulation, he noticed that the three datasets for the three objectives
contained different ranges of values for the decision variables. Therefore, an MOP
that combines the three datasets (using surrogate models) needs to be constrained
within the region of overlap within the three datasets. However, the region of
overlap was tiny, and the initial optimization results were not very promising.

Based on the discussion of the second meeting, the analyst concluded that
not all decision variables were significant for all objectives. The analyst reasoned
that removing unnecessary decision variables from some of the objectives could
increase the region of overlap for the remaining objectives. The analyst confirmed
the validity of this approach with the DMs over email. After receiving the DMs’
approval, the analyst conducted a large number of varied tests to identify the
importance of individual decision variables on each of the objectives. The ana-
lyst did not use computed effects discussed in the previous meeting for this task
because they resulted from a single surrogate model (for each objective).

Based on the results of the new tests (described in detail in [PVI]), the an-
alyst chose a subset of decision variables for each objective. As a result, 17 (out
of the initial 20) decision variables (and three objectives) were considered in the
latest version of MOP. Individual surrogate models considered a subset of the 17
decision variables and ignored the values of the other decision variables. This
successfully expanded the region of overlap and led to much better results. The
DMs approved the choice made by the analyst. The analyst conducted the previ-
ous tests again with this new problem formulation.

With the help of the analyst’s current supervisors, the analyst chose a set of
MOEAs to use for the project. The analyst used RVEA and NSGA-III to precom-
pute an approximate representation of the Pareto front. The precomputed front
would also allow the use of NAUTILUS Navigator [84]. The analyst also chose to
use interactive RVEA [46] and IOPIS for the interactive optimization process. As
the DMs were unfamiliar with interactive methods, the analyst provided short
text and video introduction to those methods via email.

The third (virtual) meeting with the DMs began with the discussion of the
precomputed approximation of the Pareto front of the MOP with three objectives.
The analyst visualized the results for the DMs as an interactive 3D scatter plot.
The DMs found the shape of the Pareto front familiar 3. The analyst then show-
cased NAUTILUS Navigator and interactive RVEA to the DMs using example
MOPs to familiarize them with the methods.

The DMs decided to try using interactive RVEA to solve the current version
of the MOP. However, they found it challenging to provide preferences without
including the Charpy energy objective. To have a meaningful first interaction ses-

3 Biobjective optimization of UTS and ELON of steels is a well-studied phenomenon. The
Pareto front for such problems has a characteristic shape which has earned the name “ba-
nana curve”.

60

sion, the analyst decided to add a simple fourth objective to the problem: the cost
of the materials used to form the alloy. The analyst formulated this objective as
a linear combination of decision variable values weighted using the costs of indi-
vidual elements. The fourth objective introduced trade-offs to the problem that
the DMs found very interesting. Because they saw how quickly the analyst could
implement a new objective using DESDEO, they asked the analyst to implement
yet another objective: the carbon equivalent. The carbon equivalent predicts how
the hardness of steel is affected by welding and can also be calculated as a linear
combination of the alloying element concentrations.

The analyst implemented the new objective solved this new MOP by re-
peating the previous steps. The analyst then displayed the results of interactive
optimization using a dynamic parallel coordinate plot. The DMs again concluded
that the trade-offs were very interesting. Many steel grades also use carbon equiv-
alent as one of the metrics that should be met (or, more specifically, not exceeded).
While this enabled them to give preferences, the solutions found by the interac-
tive RVEA still could not satisfy some of the stricter grades because of the lack of
Charpy energy objective in the MOP. The DMs concluded that the Charpy energy
surrogate model should be included in the MOP, even though it did not perform
as well as the other surrogate models.

8.5 Fourth meeting with the DMs

The analyst noted that the two DMs often provided very different preferences in
the third meeting. The solutions found by interactive RVEA often did not sat-
isfy both DMs simultaneously. During the preceding weeks, the author was also
working on extending the IOPIS algorithm. With inputs from his current supervi-
sors, he had implemented a version of IOPIS that used a function from NIMBUS
as one of the scalarization functions to form the PIS. This version of IOPIS (NIM-
BUS/IOPIS) could accept preferences in the form of a classification of objectives.
The author also implemented a version of IOPIS that used the same scalarization
function multiple times, but with different preferences, to form the PIS. In this
case, each scalarization function could accept preferences from a different DM.
The thus formed MultiDM/IOPIS algorithm returned solutions that satisfied the
preference of all DMs involved and solutions that represented compromises be-
tween the desires of individual DMs. The IOPIS algorithm, which was originally
created for a single DM was thus extended for group decision making. The au-
thor, as the analyst, decided to use these two new interactive MOEAs for the
fourth meeting with the DMs.

The analyst implemented the Charpy energy objective into the MOP formu-
lation to prepare for the fourth meeting. The analyst used GBR surrogate models
for the Charpy energy objective as it was predicted by the SMTS algorithm and
performed the best in the cross-validation testing. This (final) version of the MOP
thus contained six objectives: YS, UTS, ELON, Charpy energy, carbon equivalent,

61

FIGURE 12 Solutions found by the DMs in three iterations with MultiDM/IOPIS visu-
alized using SCORE bands.

and cost of materials. The analyst conducted all of the previously mentioned ex-
periments again. The decision to break down the dataset into four datasets was
very useful in making it easier to automate the process of repeating the experi-
ments.

The fourth (final, and virtual) meeting began with the analyst presenting
an approximate representation of the Pareto front to the DMs. This gave the
DMs enough information about the feasibility of solutions to provide reasonable
preferences. The DMs preferred interacting using the MultiDM/IOPIS method.
Therefore, we discuss the details of MultiDM/IOPIS in [PVI]. The two DMs pro-
vided their preferences independently as reference points (one per DM) each it-
eration. The two DMs interacted with the method for three iterations. and found
much better solutions than any solution in the representative Pareto front calcu-
lated using a posteriori RVEA and NSGA-III. We show the evolution of the solu-
tions returned by MultiDM/IOPIS over the three interactions with the two DMs
in Figure 12 as a SCORE bands plot (one band per iteration). We provide a de-
tailed discussion of the preferences given by the DMs and the solutions obtained
in [PVI].

8.6 Discussion

In this study, we successfully tackled the varied and unforeseen challenges of
solving a real-life data-driven MOPs. We preprocessed a dataset to make it help-
ful in formulating an MOP. We determined and validated the best surrogate mod-
elling techniques to model the potential objectives of the MOP. We iterated over
the MOP formulation multiple times to arrive at the version presented in [PVI],
requiring us to add or remove objectives based on the needs of the DMs and the
limitations of the starting dataset. We designed a new interactive MOEA to en-
able two DMs to give their (different) preferences simultaneously. We also faced

62

and dealt with many minor challenges in the process.
In doing so, we utilized most of the methods previously developed by the

author (and described in previous chapters), as well as well-known data analysis
tools. We introduced the concept of interactive multiobjective optimization to
two DMs, enabling them to notice novel trade-offs. It helped the analyst make
a better MOP formulation for the DMs. Our proposed method, MultiDM/IOPIS
extends the previously discussed IOPIS algorithm. We found better solutions
than those obtained by MOP formulations with fewer objectives or a posteriori
methods. Ultimately, we provided a detailed account of the tools and techniques
we used and the protocols we followed to solve our MOP. We thus created a
general guideline to solve data-driven MOPs interactively.

9 CONCLUSIONS AND AUTHOR’S
CONTRIBUTIONS

How do you want to do this?

Matt Mercer, Critical Role

The field of interactive multiobjective optimization is a vast one. Interactive
methods have the capacity to solve problems from innumerable domains. This
capacity, however, also brings with it multifaceted challenges. Some of these chal-
lenges span the entire breadth of the field of interactive multiobjective optimiza-
tion; others may only show up in specific application domains or even with indi-
vidual DMs. The way we overcome these challenges (or fail to do so) can have
monumental impacts on the decisions made by DMs and the solutions imple-
mented in real life.

This thesis tackles several such challenges, spanning the entire process of
interactive multiobjective optimization, from problem formulation to decision
making. We do not claim to address all major challenges one may face while
solving MOPs, but all challenges we do address are significant ones. We created
tools and techniques to support DMs and analysts achieve good results in various
demanding situations. Moreover, through this thesis and its included articles, we
have provided a general framework to approach such challenges, whether ex-
pected or unforeseen.

With the final chapter of this thesis, we provide our concluding remarks.
In Section 9.1, we draw conclusions for the methods developed and experiments
conducted throughout this thesis. We also discuss avenues of future research
in the section. We follow that by elaborating the author’s contributions to the
included articles in Section 9.2. We close this chapter by providing some final
thoughts in Section 9.3.

64

9.1 Conclusions and Future Research

We began this thesis by addressing the challenge of choosing the best surrogate
modelling techniques for data-driven MOPs to fit surrogate models to data avail-
able so that optimization methods can call these models. We trained a selector
to do this task using the proposed SMTS algorithm. We trained this selector on
thousands of datasets, with the ability to choose between ten different surrogate
modelling techniques. With this selector, an analyst can get good candidate surro-
gate models for their MOPs. Alternatively, they can use the predictions to narrow
down the list of surrogate modelling techniques they consider.

We then introduced a whole new paradigm in interactive multiobjective
evolutionary optimization with the creation of the IOPIS algorithm. The IOPIS
algorithm makes the creation of interactive MOEAs a trivial task by using the con-
cept of the PIS. It offers a middle ground between MOEAs that work in the same
number of dimensions as the number of objectives of an MOP and scalarization-
based methods, which collapse the number of dimensions down to one. IOPIS
allows analysts to create interactive MOEAs tailored to suit the needs of the DM
(or DMs) by letting analysts choose the scalarization functions that form the PIS.
Thus, DMs can provide their preference in ways that they are comfortable.

We then tackled the problem of presenting the results of optimization to
DMs in a meaningful manner. To overcome this challenge, we created an evolu-
tion of the parallel coordinates plot, the SCORE bands plot. The SCORE bands
visualization highlights the patterns in the solutions and the objectives simul-
taneously by using clustering algorithms and information about the correlation
between objectives. We encode this information with the visualization in an ap-
pealing and visually striking fashion. The SCORE bands visualization enables
DMs to gain insights about the MOP and the trade-offs involved quickly and
help digesting even large amounts of information conveniently.

SCORE bands, however, does not address the issue of visualizing the un-
certainty of prediction of surrogate models used in data-driven MOPs. Such in-
formation can be essential to a DM, especially if the problem is online and has
costly objective functions. To support DMs in such cases, we designed the O-
NAUTILUS algorithm. The proposed algorithm enables a DM to make informed
decisions by visualizing known and optimistic fronts. The algorithm also allows
a DM to target the costly function evaluations in their region of interest. The
resulting algorithm, therefore, is very efficient and effective.

The new algorithms we proposed would only be helpful to others if they
are accessible in the first place. DMs, analysts, researchers, and students some-
times face an additional challenge when experimenting with interactive meth-
ods. Authors of interactive methods published in the literature often do not
make their implementations available. We solve this problem by creating the
open-source Python framework for interactive multiobjective optimization: DES-
DEO. The DESDEO framework implements many popular interactive methods in
a modular and easy-to-use manner. DMs and analysts can download the frame-

65

work and solve their MOPs with it. Researchers can experiment with many meth-
ods using a single framework and create new methods using the already imple-
mented modular components in the framework. The framework has also been
used to teach interactive multiobjective optimization to students. We have im-
plemented our previously mentioned algorithms using the DESDEO framework
and made the source code of all our methods publicly available.

We created SMTS, IOPIS, SCORE bands, O-NAUTILUS, and DESDEO to
deal with known, specific challenges. However, real-life MOPs often raise unex-
pected challenges. To showcase the effectiveness of our methods and techniques,
we used them to solve a real-life data-driven problem from the domain of met-
allurgy and materials engineering. In that process, we faced various major and
minor challenges. We processed a raw, noisy dataset to make it suitable for use
in surrogate-assisted optimization. We chose and validated the best surrogate
modelling techniques for the potential objectives of the MOP. We interacted with
the two DMs to formulate a functional MOP over multiple sessions. Interactive
MOEAs were crucial in that process. We implemented a whole new method, Mul-
tiDM/IOPIS, to enable the two DMs to provide their preferences simultaneously
and receive satisfactory solutions for both even if their preferences are different.
Using interactive MOEAs to solve an MOP with six objectives, we discovered
new trade-offs and better solutions.

The new techniques we proposed do much more than just solve the corre-
sponding challenges. They open pathways to exciting new research directions.
The SMTS algorithm can be extended (given enough computational resources)
to predict not just the best surrogate modelling technique for a dataset but also
the best MOEAs. We have only scratched the surface with the IOPIS algorithm.
Studying the landscape in the PIS could lead to exciting discoveries. We limited
the construction of the PIS to use achievement scalarizing functions only. Relax-
ing this condition opens up the variety of scalarizing functions that can be used,
possibly leading to the creation of new methods with valuable properties.

Both SCORE bands and O-NAUTILUS can benefit from extensive case stud-
ies involving many real DMs. The input from the DMs will help us improve those
algorithms to their total capacity. The DESDEO framework will be actively devel-
oped for a long time. In the short term, we plan to finish the initial development
of its graphical user interface and add many test problems and popular interac-
tive methods to the framework. In the long term, we plan to support additional
optimization domains within the framework, such as scenario-based multiobjec-
tive optimization and optimization under deep uncertainty. The DESDEO team
has even made progress on creating physical user interfaces 1 to make the DM’s
interaction experience more “tactile” [68].

1 https://github.com/phoopies/DesdeoInterface

https://github.com/phoopies/DesdeoInterface

66

9.2 Author’s Contributions

The choice of research topics considered in this thesis was influenced significantly
by the author’s membership in the Multiobjective Optimization Group (at the
University of Jyväskylä) and the DESDEO development team. The author’s su-
pervisors had a significant role in setting the overall direction of this thesis toward
interactive multiobjective optimization methods.

The idea of developing the surrogate modelling technique selector in [PI]
originated with Dr. Manuel López-Ibáñez’s (then, University of Manchester, UK)
research visit to JYU in 2018. His summer school course on "Data analytics +
Machine learning + Optimisation" introduced the idea of automatic algorithm
selection to the author. We had further discussions on the topic during his collab-
oration with the Multiobjective Optimization Group. Once the author formulated
the basic idea of the selector with the support of Dr. Manuel López-Ibáñez and
Prof. Kaisa Miettinen, the author implemented the concept in MATLAB. The ini-
tial version of the selector was trained on a small number of features and datasets
and did not perform very well. Dr. Manuel López-Ibáñez suggested the idea of
using exploratory landscape analysis features. The author reimplemented the
idea in Python, incorporated Dr. López-Ibáñez’s idea, and created a workflow to
automatically generate a large amount of data from various sources. The author
then trained and tested the selector on the numerous datasets, leading to better re-
sults, as reported in [PI]. The author conducted all numerical experiments, com-
piled the results, and wrote most of the article [PI], which Prof. Manuel López-
Ibáñez augmented and Prof. Kaisa Miettinen spearheaded the revision process.

The roots of the new paradigm in interactive multiobjective optimization
(introduced in [PII]) have their origin in Dr. Tinkle Chugh’s lecture to the Multi-
objective Optimization Group on the topic "A study on using different scalarizing
functions in Bayesian multiobjective optimization" and the ensuing discussions
with the group. The author then studied the properties of pairs (and later, bigger
groups) of scalarization functions. Prof. Kaisa Miettinen and Dr. Jussi Hakanen
informed the author about the properties of a subset of scalarization functions:
the achievement scalarizing functions. The author used these properties to math-
ematically formulate the desirable properties of the now-named Preference In-
corporated Space. Convinced by these new properties, the author created and
implemented the IOPIS algorithm within the DESDEO framework. The author
compared the IOPIS algorithm with popular interactive and a posteriori evolution-
ary algorithms on hundreds of benchmark test cases. The author also designed
a novel way to visualize the results to enable straightforward interpretation. The
author wrote the initial draft of [PII], and Prof. Kaisa Miettinen and Dr. Jussi
Hakanen were heavily involved in the revision process.

The visualization ideas that eventually evolved into SCORE bands in [PIII]
were first developed by Prof. Kerstin Dächert, Prof. Kathrin Klamroth, Prof. Kaisa
Miettinen, and Prof. Ralph E. Steuer at the Dagstuhl Seminar 20031 (Scalability
in Multiobjective Optimization). The author was initially invited to the project

67

to implement the previously proposed ideas. The visualization did not perform
as well as intended, which led the author to propose significant additions to the
visualization. These include treating the problem of ordering the objectives as
a travelling salesperson problem, developing new metrics to calculate the place-
ment and distance between objectives, and representing clusters of solutions as
bands. The author implemented these ideas in an easy to use interactive graph-
ical user interface that allowed quick prototyping and testing of the effect of the
different choices available in the algorithm (the choice of the distance metric, for
example). The authors of [PIII] collectively selected the most optimal combina-
tion of choices to be presented in the paper. Prof. Ralph E. Steuer provided the
artificial datasets for the case studies presented in [PIII]. The author generated the
benchmark datasets, and Dr. Atanu Maxumdar provided the GAA dataset as an
example of data from a real MOP. The author created all the results and figures,
wrote the initial draft of Sections 3, 4 and 5 of [PIII], and was actively involved in
revising the paper.

Numerous discussions with Dr. Michael Emmerich during his research visit
to the Multiobjective Optimization Group led to the development of the O-NAU-
TILUS algorithm proposed in [PIV]. The development of the algorithm was a
highly collaborative process with equal contributions from all co-authors. The
major contributions of the author during the algorithm development were the
details of evaluating the "Optimistic front" and visualization of the known and
optimistic reachable ranges. The author implemented most of the O-NAUTILUS
algorithm and the associated graphical user interface. The exception was the im-
plementation of the algorithm to conduct targeted function evaluations, which
Dr. Atanu Mazumdar contributed. The author made various algorithmic deci-
sions during the implementation process, such as choosing hyperparameters and
the general flowchart of the optimization process. The author also updated the
user interface design over multiple iterations based on the co-authors’ comments.
The author implemented the problem used for the case study in [PIV], which Dr.
Bekir Afsar then solved as the DM. The author wrote the initial draft of Section
3 (except Subsection 3.4 which Dr. Atanu Mazumdar contributed) of [PIV]. He
also coordinated the writing of the paper, contributing to all Sections of the paper
along with the co-authors, and lead the revision process.

The author initially joined the University of Jyväskylä and the Multiobjec-
tive Optimization Group as a project researcher in the DESDEO project. He was
tasked with implementing evolutionary algorithms within the framework. The
author found the original version of DESDEO challenging and unwieldy to aug-
ment and further develop. Therefore, after considerable discussion with his su-
pervisors, he decided to implement the evolutionary algorithms in a new, uncon-
nected Python package named pyRVEA. The DESDEO development team then
concluded that DESDEO needed to be redesigned with modularity and extensi-
bility as core principles. The abstractions introduced by the author in pyRVEA,
the Problem class, for example, became the foundations of the new DESDEO
framework introduced in [PV]. The pyRVEA package evolved into the desdeo-
emo package as the author (and other contributors) implemented more interac-

68

tive and a posteriori evolutionary algorithms. The author also oversaw and guided
contributors to the DESDEO framework. The author also has various contribu-
tions to the other packages of the DESDEO framework, including desdeo-tools
(implementation of the GLIDE-II framework and fast non-domination sorting
tools), desdeo-problem (various problem classes, test problems, and case stud-
ies), desdeo-frontend (graphical user interfaces for interactive evolutionary al-
gorithms), and desdeo-webapi (the backend for interactive evolutionary algo-
rithms). The author is thus the lead developer of desdeo-emo and one of the
main developers of various other DESDEO packages alongside Giovanni Misi-
tano. The author wrote Sections 3 and 4 of [PV] with Giovanni Misitano. The
author focused especially on the parts of the paper that involved evolutionary
algorithms and was involved in the revision process of the entire paper. The
author also implemented and ran the case studies involving evolutionary algo-
rithms discussed in Section 4.

Prof. Nirupam Chakraborti and Prof. Debalay Chakrabarti were the au-
thor’s supervisors during his master’s study in the Department of Metallurgy
and Materials Engineering at the Indian Institute of Technology Kharagpur. Prof.
Nirupam Chakraborti introduced the concept of evolutionary algorithms to the
author, and Prof. Debalay Chakrabarti provided a metallurgical data-driven prob-
lem and expert guidance for the author’s master’s thesis. Therefore, collaborating
with them to solve a challenging data-driven problem using DESDEO was a nat-
ural choice for the author. They provided the data for the MOP presented in [PV]
and acted as DMs in the case study, though they were previously unfamiliar with
interactive optimization methods. The author took up the analyst’s role and con-
ducted the various tests discussed in [PV] to maximize the utility of the provided
data. The author’s current supervisors guided him throughout the process of
solving the MOP. They also counselled the author to ensure that interaction ses-
sions with the DMs were meaningful and informative. With their support, the
author (as an analyst) conducted multiple meetings with the DMs to:

1. Formulate a meaningful MOP
2. Design an interactive optimization method that would make it easier for

them to provide their preferences
3. Conduct interactive optimization with the newly developed method

Thus, the author was responsible for the items above. The DMs provided domain
expertise while judging the validity of the surrogate models and interpreting the
results. The author wrote Sections 3-8 of [PV], with contributions from Prof. De-
balay Chakrabarti in Section 5 to confirm the validity of trained surrogate models
by comparing the predictions of the models to metallurgical literature. The au-
thor was also involved in writing Sections 1, 2, and 9, and the revision of the
entire paper.

69

9.3 Final Thoughts

Collaborating with the Multiobjective Optimization Group and its visitors has
been crucial in the academic growth of the author and the development of this
thesis. The core idea of the thesis, discussing and solving the challenges of inter-
active multiobjective optimization, came about as a direct result of collaborating
with so many different co-authors and team members.

As mentioned in Chapter 1, the aim of this thesis ultimately is to discuss the
possibilities provided by interactive methods. The methods we presented in this
thesis helped DMs solve MOPs efficiently and effectively and gave them more
control over the interactive process. We pioneered entirely new methodologies to
tackle the challenges we faced. We hope that this thesis will provide an excellent
guide to anyone who wishes to venture into the rewarding field of interactive
multiobjective optimization.

YHTEENVETO (SUMMARY IN FINNISH)

Monitavoiteoptimoinnin ongelmia, toisin sanoen ongelmia, joissa on useita ris-
tiriitaisia tavoitefunktoita, voidaan ratkaista interaktiivisten menetelmien avulla.
Niissä ns. päätöksentekijä ohjailee optimointiprosessia ja voi tehokkaasti löytää
mieleisensä ratkaisun. Tähän liittyy kuitenkin erilaisia haasteita, kuten asianmu-
kainen ongelmaan liittyvän tiedon käsittely, sopivan interaktiivisen menetelmän
löytäminen ja interaktiivisen menetelmän käytön helpottaminen ymmärrettävien
visualisointikeinojen avulla.

Tämän väitöskirjan ensisijainen tavoite on tunnistaa ja ratkoa interaktiivi-
siin menetelmiin ja niiden käyttöön liittyviä haasteita. Työhön sisältyy kuusi ar-
tikkelia [PI-PVI], jotka kukin vastaavat interaktiivisen monitavoiteoptimoinnin
eri vaiheiden haasteisiin. Yksi käsitellyistä haasteista on uusien interaktiivisten
menetelmien tuominen tutkijoiden, opiskelijoiden, analyytikkojen ja päätöksen-
tekijöiden saataville. Ratkaisu tähän on avoimen lähdekoodin DESDEO-ohjelmis-
tokehikko (desdeo.it.jyu.fi). Se sisältää monien interaktiivisten menetelmien mo-
dulaarisia implementaatiota, mukaan lukien tässä väitöskirjassa esitellyt uudet
menetelmät.

Väitöskirjassa esitellään uudet interaktiiviset menetelmät O-NAUTILUS ja
IOPIS. O-NAUTILUS on suunnattu laskennallisesti kalliille ongelmille, joissa tu-
lee laskea optimoitavien funktioiden arvoja tehokkaasti. IOPIS puolestaan esit-
telee täysin uuden paradigman interaktiiviseen monitavoiteoptimointiin evoluu-
tiopohjaisilla menetelmillä. Se yhdistää ideoita skalarisointipohjaisista menetel-
mistä evoluutiopohjaisiin. Täten mikä tahansa evoluutiopohjainen menetelmä
voidaan muuttaa interaktiiviseksi modulaarisin keinoin sisällyttämällä päätök-
sentekijän mieltymyksiä uuteen avaruuteen, ns. preferenssejä liittävään avaruu-
teen.

Työssä myös esitellään SCORE bands -visualisaatiomenetelmä, jonka avulla
voidaan päätöksentekijälle havainnollistaa ymmärrettävästi ja intuitiivisesti lu-
kuisia ratkaisuja, joissa on monia tavoitteita. Tämä tukee päätöksentekijää ym-
märtämään nopeasti eri ratkaisujen kirjoa ja tavoitteiden riippuvuussuhteita, jol-
loin päätöksenteko on helpompaa.

Väitöskirjassa esiteltyjä menetelmiä ja muita työkaluja sovelletaan todelli-
seen metallurgian alan optimointiongelmaan, jossa on 6 tavoitetta ja useita pää-
töksentekijöitä. Ratkaisuprosessin vaativuutta lisäsi tarve ratkoa matkan varrella
ilmenneitä ennalta-arvaamattomia ongelmia, mitä on kuvattu väitöskirjassa. On-
gelma tuo esiin interaktiivisten menetelmien hyötyjä. Täten väitöskirja toimii op-
paana sille, miten käytännön monitavoiteoptimoinnin ongelmia voidaan ratkoa
interaktiivisten menetelmien avulla muillakin sovellusaloilla. Uudet menetelmät
vastaavat todellisiin tarpeisiin ja siten täyttävät aukkoja kirjallisuudessa esitetty-
jen menetelmien kirjossa.

REFERENCES

[1] AFSAR, B., MIETTINEN, K., AND RUIZ, A. B. An artificial decision
maker for comparing reference point based interactive evolutionary mul-
tiobjective optimization methods. In Evolutionary Multi-Criterion Optimiza-
tion, 11th International Conference, EMO 2021, Proceedings (Cham, 2021),
H. Ishibuchi, Q. Zhang, R. Cheng, K. Li, H. Li, H. Wang, and A. Zhou,
Eds., Springer International Publishing, pp. 619–631.

[2] AFSAR, B., RUIZ, A. B., AND MIETTINEN, K. Comparing interactive evo-
lutionary multiobjective optimization methods with an artificial decision
maker. Complex & Intelligent Systems (2021), to appear. 10.1007/s40747-021-
00586-5.

[3] AGHAEI POUR, P., RODEMANN, T., HAKANEN, J., AND MIETTINEN, K.
Surrogate assisted interactive multiobjective optimization in energy system
design of buildings. Optimization and Engineering 23 (2022), 303–327.

[4] ALLMENDINGER, R., HANDL, J., AND KNOWLES, J. Multiobjective opti-
mization: When objectives exhibit non-uniform latencies. European Journal
of Operational Research 243, 2 (2015), 497–513.

[5] ANKERST, M., BERCHTOLD, S., AND KEIM, D. Similarity clustering of
dimensions for an enhanced visualization of multidimensional data. In
Proceedings of the IEEE Symposium on Information Visualization (1998), IEEE,
pp. 52–60.

[6] AUDET, C. A survey on direct search methods for blackbox optimization
and their applications. In Mathematics without Boundaries, P. Pardalos and
T. Rassias, Eds. Springer, 2014, ch. 2, pp. 31–56.

[7] BECHIKH, S., KESSENTINI, M., SAID, L. B., AND GHÉDIRA, K. Chapter
four - Preference incorporation in evolutionary multiobjective optimiza-
tion: A survey of the state-of-the-art. In Advances in Computers, A. R. Hur-
son, Ed. Elsevier, 2015, pp. 141–207.

[8] BENITEZ-HIDALGO, A., NEBRO, A. J., GARCIA-NIETO, J., OREGI, I., AND

DEL SER, J. jMetalPy: A Python framework for multi-objective optimiza-
tion with metaheuristics. Swarm and Evolutionary Computation 51 (2019),
article 100598.

[9] BISCANI, F., IZZO, D., AND YAM, C. H. A global optimisation toolbox for
massively parallel engineering optimisation. arXiv:1004.3824 (2010).

[10] BLANK, J., AND DEB, K. Pymoo: Multi-objective optimization in Python.
IEEE Access 8 (2020), 89497–89509.

72

[11] BORG, I., AND GROENEN, P. J. Modern Multidimensional Scaling: Theory and
Applications. Springer, 2005.

[12] BRANKE, J., DEB, K., MIETTINEN, K., AND SLOWIŃSKI, R., Eds. Multiob-
jective Optimization: Interactive and Evolutionary Approaches. Springer, 2008.

[13] BUCHANAN, J. T. A naïve approach for solving MCDM problems: The
GUESS method. Journal of the Operational Research Society 48, 2 (1997), 202–
206.

[14] CAJOT, S., SCHÜLER, N., PETER, M., KOCH, A., AND MARÉCHAL, F. Inter-
active optimization with parallel coordinates: Exploring multidimensional
spaces for decision support. Frontiers in ICT 5 (2019), article 32.

[15] CALLISTER, W. D., AND RETHWISCH, D. G. Materials Science and Engineer-
ing: An Introduction. Wiley New York, 2018.

[16] CHEN, T., AND GUESTRIN, C. XGBoost: A scalable tree boosting system.
In Proceedings of the 22nd acm sigkdd international conference on knowledge dis-
covery and data mining (2016), pp. 785–794.

[17] CHENG, R., JIN, Y., OLHOFER, M., AND SENDHOFF, B. A reference vec-
tor guided evolutionary algorithm for many-objective optimization. IEEE
Transactions on Evolutionary Computation 20, 5 (2016), 773–791.

[18] CHUGH, T. Handling expensive multiobjective optimization problems
with evolutionary algorithms. PhD Dissertation, Jyväskylä Studies in Com-
puting, University of Jyväskylä, 263 (2017).

[19] CHUGH, T., JIN, Y., MIETTINEN, K., HAKANEN, J., AND SINDHYA, K. A
surrogate-assisted reference vector guided evolutionary algorithm for com-
putationally expensive many-objective optimization. IEEE Transactions on
Evolutionary Computation 22, 1 (2016), 129–142.

[20] CHUGH, T., SINDHYA, K., HAKANEN, J., AND MIETTINEN, K. A survey on
handling computationally expensive multiobjective optimization problems
with evolutionary algorithms. Soft Computing 23, 9 (2019), 3137–3166.

[21] COELLO, C. A. C., LAMONT, G. B., AND VAN VELDHUIZEN, D. A. Evo-
lutionary algorithms for solving multi-objective problems. Springer New York,
2007.

[22] D., H. Platypus: Multiobjective optimization in Python. https://platypus.
readthedocs.io. Accessed May 31, 2022.

[23] DEB, K. Multi-objective optimization using evolutionary algorithms. Wiley UK,
Chichester, 2001.

https://platypus.readthedocs.io
https://platypus.readthedocs.io

73

[24] DEB, K., AND JAIN, H. An evolutionary many-objective optimization al-
gorithm using reference-point-based nondominated sorting approach, part
I: solving problems with box constraints. IEEE Transactions on Evolutionary
Computation 18, 4 (2014), 577–601.

[25] DEB, K., AND MIETTINEN, K. Nadir point estimation using evolution-
ary approaches: Better accuracy and computational speed through focused
search. In Multiple Criteria Decision Making for Sustainable Energy and Trans-
portation Systems (2010), M. Ehrgott, B. Naujoks, T. J. Stewart, and J. Walle-
nius, Eds., Springer, Berlin, Heidelberg, pp. 339–354.

[26] DEB, K., MIETTINEN, K., AND CHAUDHURI, S. Toward an estimation of
nadir objective vector using a hybrid of evolutionary and local search ap-
proaches. IEEE Transactions on Evolutionary Computation 14, 6 (2010), 821–
841.

[27] DEB, K., PRATAP, A., AGARWAL, S., AND MEYARIVAN, T. A fast and elitist
multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolution-
ary Computation 6, 2 (2002), 182–197.

[28] DEB, K., AND SAXENA, D. Searching for Pareto-optimal solutions through
dimensionality reduction for certain large-dimensional multi-objective op-
timization problems. In Proceedings of the World Congress on Computational
Intelligence (WCCI-2006) (2006), pp. 3352–3360.

[29] DEB, K., AND SUNDAR, J. Reference point based multi-objective optimiza-
tion using evolutionary algorithms. In GECCO ’06: Proceedings of the 8th
Annual Conference on Genetic and Evolutionary Computation (New York, 2006),
ACM, pp. 635–642.

[30] DEB, K., THIELE, L., LAUMANNS, M., AND ZITZLER, E. Scalable multi-
objective optimization test problems. In Proceedings of the 2002 IEEE
Congress on Evolutionary Computation (CEC 2002) (2002), IEEE, pp. 825–830.

[31] DUA, D., AND GRAFF, C. UCI machine learning repository. http://archive.
ics.uci.edu/ml, 2017. Accessed May 31, 2022.

[32] DURILLO, J. J., AND NEBRO, A. J. jMetal: A java framework for multi-
objective optimization. Advances in Engineering Software 42, 10 (2011), 760–
771.

[33] EMMERICH, M. Single-and multi-objective evolutionary design optimiza-
tion assisted by Gaussian random field metamodels. PhD dissertation, Uni-
versity of Dortmund (2005).

[34] ESKELINEN, P., MIETTINEN, K., KLAMROTH, K., AND HAKANEN, J.
Pareto navigator for interactive nonlinear multiobjective optimization. OR
Spectrum 32, 1 (2010), 211–227.

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

74

[35] FALCÓN-CARDONA, J. G., AND COELLO, C. A. C. Indicator-based multi-
objective evolutionary algorithms: A comprehensive survey. ACM Comput-
ing Surveys 53, 2 (2020), 1–35.

[36] FORTIN, F.-A., DE RAINVILLE, F.-M., GARDNER, M.-A., PARIZEAU, M.,
AND GAGNÉ, C. DEAP: Evolutionary algorithms made easy. The Journal of
Machine Learning Research 13, 1 (2012), 2171–2175.

[37] FRIEDMAN, J. H. Greedy function approximation: A gradient boosting
machine. The Annals of Statistics 29, 5 (2001), 1189 – 1232.

[38] GANDIBLEUX, X., SOLEILHAC, G., PRZYBYLSKI, A., AND S., R. vOpt-
Solver: an open source software environment for multiobjective mathemat-
ical optimization. In IFORS2017: 21st Conference of the International Federa-
tion of Operational Research Societies (2017).

[39] GARDNER, M. W., AND DORLING, S. Artificial neural networks (the mul-
tilayer perceptron)- A review of applications in the atmospheric sciences.
Atmospheric Environment 32, 14-15 (1998), 2627–2636.

[40] GARRETT, A. inspyred: Bio-inspired algorithms in Python. https://github.
com/aarongarrett/inspyred. Accessed May 31, 2022.

[41] GEOFFRION, A., DYER, J., AND FEINBERG, A. An interactive approach
for multi-criterion optimization, with an application to the operation of an
academic department. Management Science 19, 4 (1972), 357–368.

[42] GETTINGER, J., KIESLING, E., STUMMER, C., AND VETSCHERA, R. A com-
parison of representations for discrete multi-criteria decision problems. De-
cision Support Systems 54, 2 (2013), 976–985.

[43] GEURTS, P., ERNST, D., AND WEHENKEL, L. Extremely randomized trees.
Machine Learning 63, 1 (2006), 3–42.

[44] GOLDBERG, D. E., AND DEB, K. A comparative analysis of selection
schemes used in genetic algorithms. In Foundations of Genetic Algorithms,
G. J. E. Rawlins, Ed. Elsevier, 1991, pp. 69–93.

[45] HADKA, D. MOEA framework: A free and open source java framework for
multiobjective optimization. http://moeaframework.org/. Accessed May
31, 2022.

[46] HAKANEN, J., CHUGH, T., SINDHYA, K., JIN, Y., AND MIETTINEN, K.
Connections of reference vectors and different types of preference infor-
mation in interactive multiobjective evolutionary algorithms. In Proceeding
of the 2016 IEEE Symposium Series on Computational Intelligence (SSCI) (2016),
pp. 1–8.

https://github.com/aarongarrett/inspyred
https://github.com/aarongarrett/inspyred
http://moeaframework.org/

75

[47] HAKANEN, J., RADOŠ, S., MISITANO, G., SAINI, B. S., MIETTINEN, K.,
AND MATKOVIĆ, K. Interactivized: Visual interaction for better decisions
with interactive multiobjective optimization. IEEE Access 10 (2022), 33661–
33678.

[48] HANSEN, N., AND OSTERMEIER, A. Completely derandomized self-
adaptation in evolution strategies. Evolutionary Computation 9, 2 (2001),
159–195.

[49] HARTIKAINEN, M., MIETTINEN, K., AND KLAMROTH, K. Interactive Non-
convex Pareto Navigator for multiobjective optimization. European Journal
of Operational Research 275, 1 (2019), 238–251.

[50] HUBAND, S., BARONE, L., WHILE, L., AND HINGSTON, P. A scalable
multi-objective test problem toolkit. In Evolutionary Multi-Criterion Op-
timization, Third International Conference, Proceedings (Berlin. Heidelberg,
2005), C. A. Coello Coello, A. Hernández Aguirre, and E. Zitzler, Eds.,
Springer, pp. 280–295.

[51] HWANG, C.-L., AND MASUD, A. S. M. Multiple Objective Decision Making-
Methods and Applications: A State-of-the-Art Survey. Springer, 1979.

[52] ISHIBUCHI, H., TSUKAMOTO, N., AND NOJIMA, Y. Evolutionary many-
objective optimization: A short review. In Proceedings of the 2008 IEEE
Congress on Evolutionary Computation (IEEE World Congress on Computational
Intelligence) (2008), pp. 2419–2426.

[53] IZZO, D., AND BISCANI, F. PyGMO: Python parallel global multiobjective
optimizer. https://esa.github.io/pygmo. Accessed May 31, 2022.

[54] JIN, Y. Surrogate-assisted evolutionary computation: Recent advances and
future challenges. Swarm and Evolutionary Computation 1, 2 (2011), 61–70.

[55] JIN, Y., WANG, H., AND SUN, C. Data-Driven Evolutionary Optimization.
Springer, 2021.

[56] KANIA, A., SIPILÄ, J., AFSAR, B., AND MIETTINEN, K. Interactive multi-
objective optimization in lot sizing with safety stock and safety lead time. In
Computational Logistics, 12th International Conference, ICCL 2021, Proceedings
(Cham, 2021), M. Mes, E. Lalla-Ruiz, and S. Voß, Eds., Springer, pp. 208–
221.

[57] KE, G., MENG, Q., FINLEY, T., WANG, T., CHEN, W., MA, W., YE, Q., AND

LIU, T.-Y. LightGBM: A highly efficient gradient boosting decision tree.
In Advances in Neural Information Processing Systems (2017), I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, Eds., vol. 30, Curran Associates, Inc.

https://esa.github.io/pygmo

76

[58] KERSCHKE, P., AND TRAUTMANN, H. Automated algorithm selection on
continuous black-box problems by combining exploratory landscape anal-
ysis and machine learning. Evolutionary Computation 27, 1 (2019), 99–127.

[59] KORHONEN, P., AND WALLENIUS, J. A Pareto Race. Naval Research Logistics
35, 6 (1988), 615–623.

[60] KORHONEN, P., AND WALLENIUS, J. Visualization in the multiple objective
decision-making framework. In Multiobjective Optimization: Interactive and
Evolutionary Approaches, J. Branke, K. Deb, K. Miettinen, and R. Slowinski,
Eds. Springer, Berlin, 2008, pp. 195–212.

[61] LI, K., WANG, R., ZHANG, T., AND ISHIBUCHI, H. Evolutionary many-
objective optimization: A comparative study of the state-of-the-art. IEEE
Access 6 (2018), 26194–26214.

[62] LI, X. A real-coded predator-prey genetic algorithm for multiobjective op-
timization. In Evolutionary Multi-Criterion Optimization, 2nd International
Conference, EMO 2003, Proceedings (Berlin, Heidelberg, 2003), C. M. Fonseca,
P. J. Fleming, E. Zitzler, L. Thiele, and K. Deb, Eds., Springer, pp. 207–221.

[63] LIAO, X., LI, Q., YANG, X., ZHANG, W., AND LI, W. Multiobjective
optimization for crash safety design of vehicles using stepwise regression
model. Structural and Multidisciplinary Optimization 35, 6 (2008), 561–569.

[64] LOTOV, A. V., AND MIETTINEN, K. Visualizing the Pareto frontier. In Mul-
tiobjective Optimization: Interactive and Evolutionary Approaches, J. Branke,
K. Deb, K. Miettinen, and R. Slowinski, Eds. Springer, Berlin, 2008, pp. 213–
243.

[65] MATHERON, G. Principles of geostatistics. Economic Geology 58, 8 (1963),
1246–1266.

[66] MAZUMDAR, A. Novel approaches for offline data-driven evolutionary
multiobjective optimization. PhD Dissertation, JYU dissertations, University
of Jyväskylä, 456 (2021).

[67] MAZUMDAR, A., CHUGH, T., HAKANEN, J., AND MIETTINEN,
K. Probabilistic selection approaches in decomposition-based evo-
lutionary algorithms for offline data-driven multiobjective optimiza-
tion. IEEE Transactions on Evolutionary Computation (2022), to appear.
10.1109/TEVC.2022.3154231.

[68] MAZUMDAR, A., OTAYAGICH, S., AND MIETTINEN, K. Interactive evolu-
tionary multiobjective optimization with modular physical user interface.
In Proceedings of the Genetic and Evolutionary Computation Conference Com-
panion (New York, NY, USA, 2022), GECCO ’22, ACM, p. 1835–1843.

77

[69] MERSMANN, O., BISCHL, B., TRAUTMANN, H., PREUSS, M., WEIHS, C.,
AND RUDOLPH, G. Exploratory landscape analysis. In Proceedings of the
13th Annual Conference on Genetic and Evolutionary Computation (New York,
NY, 2011), GECCO ’11, ACM, p. 829–836.

[70] MIETTINEN, K. Nonlinear Multiobjective Optimization. Kluwer Academic
Publishers, Boston, 1999.

[71] MIETTINEN, K. Survey of methods to visualize alternatives in multiple
criteria decision making problems. OR Spectrum 36, 1 (2014), 3–37.

[72] MIETTINEN, K., ESKELINEN, P., RUIZ, F., AND LUQUE, M. Nautilus
method: An interactive technique in multiobjective optimization based on
the nadir point. European Journal of Operational Research 206, 2 (2010), 426–
434.

[73] MIETTINEN, K., HAKANEN, J., AND PODKOPAEV, D. Interactive nonlinear
multiobjective optimization methods. In Multiple Criteria Decision Analysis:
State of the Art Surveys, S. Greco, M. Ehrgott, and J. Figueira, Eds., 2 ed.
Springer, 2016, pp. 927–976.

[74] MIETTINEN, K., AND MÄKELÄ, M. Interactive bundle-based method for
nondifferentiable multiobjective optimization: NIMBUS. Optimization 34, 3
(1995), 231–246.

[75] MIETTINEN, K., AND MÄKELÄ, M. M. On scalarizing functions in multi-
objective optimization. OR Spectrum 24, 2 (2002), 193–213.

[76] MIETTINEN, K., AND MÄKELÄ, M. M. Synchronous approach in inter-
active multiobjective optimization. European Journal of Operational Research
170, 3 (2006), 909–922.

[77] MIETTINEN, K., PODKOPAEV, D., RUIZ, F., AND LUQUE, M. A new prefer-
ence handling technique for interactive multiobjective optimization with-
out trading-off. Journal of Global Optimization 63, 4 (2015), 633–652.

[78] MIETTINEN, K., RUIZ, F., AND WIERZBICKI, A. P. Introduction to multiob-
jective optimization: Interactive approaches. In Multiobjective Optimization:
Interative and Evolutionary Approaches, J. Branke, K. Deb, K. Miettinen, and
R. Slowinski, Eds. Springer, 2008, pp. 27–57.

[79] NAKAYAMA, H., AND SAWARAGI, Y. Satisficing trade-off method for mul-
tiobjective programming. In Interactive Decision Analysis (Berlin, Heidel-
berg, 1984), M. Grauer and A. P. Wierzbicki, Eds., Springer, pp. 113–122.

[80] PEDREGOSA, F., VAROQUAUX, G., GRAMFORT, A., MICHEL, V., THIRION,
B., GRISEL, O., BLONDEL, M., PRETTENHOFER, P., WEISS, R., DUBOURG,
V., VANDERPLAS, J., PASSOS, A., COURNAPEAU, D., BRUCHER, M., PER-
ROT, M., AND DUCHESNAY, E. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research 12 (2011), 2825–2830.

78

[81] PLOTLY TECHNOLOGIES INC. Collaborative data science, 2015.

[82] RICE, J. R. The algorithm selection problem. In Advances in Computers,
M. Rubinoff and M. C. Yovits, Eds. Elsevier, 1976, pp. 65–118.

[83] RUIZ, A. B., LUQUE, M., MIETTINEN, K., AND SABORIDO, R. An
interactive evolutionary multiobjective optimization method: Interac-
tive WASF-GA. In Evolutionary Multi-Criterion Optimization, 8th Interna-
tional Conference, EMO 2015, Proceedings (Cham, 2015), A. Gaspar-Cunha,
C. Henggeler Antunes, and C. C. Coello, Eds., Springer International Pub-
lishing, pp. 249–263.

[84] RUIZ, A. B., RUIZ, F., MIETTINEN, K., DELGADO-ANTEQUERA, L., AND

OJALEHTO, V. NAUTILUS Navigator: free search interactive multiobjec-
tive optimization without trading-off. Journal of Global Optimization 74, 2
(2019), 213–231.

[85] RUIZ, A. B., SABORIDO, R., AND LUQUE, M. A preference-based evolu-
tionary algorithm for multiobjective optimization: the weighting achieve-
ment scalarizing function genetic algorithm. Journal of Global Optimization
62, 1 (2015), 101–129.

[86] RUIZ, A. B., SINDHYA, K., MIETTINEN, K., RUIZ, F., AND LUQUE, M.
E-NAUTILUS: a decision support system for complex multiobjective opti-
mization problems based on the NAUTILUS method. European Journal of
Operational Research 246, 1 (2015), 218–231.

[87] RUIZ, F., LUQUE, M., AND MIETTINEN, K. Improving the computational
efficiency in a global formulation (GLIDE) for interactive multiobjective op-
timization. Annals of Operations Research 197, 1 (2012), 47–70.

[88] SAWARAGI, Y., NAKAYAMA, H., AND TANINO, T. Theory of Multiobjective
Optimization. Elsevier, 1985.

[89] SHAMMAMAH HOSSAIN. Visualization of bioinformatics data with Dash
Bio. In Proceedings of the 18th Python in Science Conference (2019), Chris Cal-
loway, David Lippa, Dillon Niederhut, and David Shupe, Eds., pp. 126–133.

[90] SMITH-MILES, K. A. Cross-disciplinary perspectives on meta-learning for
algorithm selection. ACM Computing Surveys 41, 1 (2009), 1–25.

[91] STEINWART, I., AND CHRISTMANN, A. Support vector machines. Springer,
2008.

[92] STORN, R., AND PRICE, K. Differential evolution–a simple and efficient
heuristic for global optimization over continuous spaces. Journal of Global
Optimization 11, 4 (1997), 341–359.

79

[93] THIELE, L., MIETTINEN, K., KORHONEN, P. J., AND MOLINA, J. A
preference-based evolutionary algorithm for multi-objective optimization.
Evolutionary Computation 17, 3 (2009), 411–436.

[94] TIAN, Y., CHENG, R., ZHANG, X., AND JIN, Y. PlatEMO: A MATLAB
platform for evolutionary multi-objective optimization. IEEE Computational
Intelligence Magazine 12, 4 (2017), 73–87.

[95] TRINKAUS, H. L., AND HANNE, T. knowCube: A visual and interactive
support for multicriteria decision making. Computers and Operations Re-
search 32, 5 (2005), 1289–1309.

[96] TRIVEDI, A., SRINIVASAN, D., SANYAL, K., AND GHOSH, A. A survey
of multiobjective evolutionary algorithms based on decomposition. IEEE
Transactions on Evolutionary Computation 21, 3 (2016), 440–462.

[97] VAN BEERS, W. C. M., AND KLEIJNEN, J. P. C. Kriging for interpolation
in random simulation. Journal of the Operational Research Society 54, 3 (2003),
255–262.

[98] VAN DER MAATEN, L., AND HINTON, G. Visualizing data using t-sne.
Journal of Machine Learning Research 9, 86 (2008), 2579–2605.

[99] WAGER, S., HASTIE, T., AND EFRON, B. Confidence intervals for random
forests: The jackknife and the infinitesimal jackknife. The Journal of Machine
Learning Research 15, 1 (2014), 1625–1651.

[100] WANG, H., OLHOFER, M., AND JIN, Y. A mini-review on preference mod-
eling and articulation in multi-objective optimization: current status and
challenges. Complex & Intelligent Systems 3, 4 (2017), 233–245.

[101] WIERZBICKI, A. P. The use of reference objectives in multiobjective opti-
mization. In Multiple Criteria Decision Making Theory and Application, G. Fan-
del and T. Gal, Eds. Springer, 1980, pp. 468–486.

[102] WIERZBICKI, A. P. A mathematical basis for satisficing decision making.
Mathematical Modelling 3, 5 (1982), 391–405.

[103] WIERZBICKI, A. P. Convergence of interactive procedures of multiobjective
optimization and decision support. In Essays In Decision Making: A Volume
in Honour of Stanley Zionts, M. H. Karwan, J. Spronk, and J. Wallenius, Eds.
Springer, Berlin, Heidelberg, 1997, pp. 19–47.

[104] XIN, B., CHEN, L., CHEN, J., ISHIBUCHI, H., HIROTA, K., AND LIU, B. In-
teractive multiobjective optimization: A review of the state-of-the-art. IEEE
Access 6 (2018), 41256–41279.

80

[105] YANG, D., DI STEFANO, D., TURRIN, M., SARIYILDIZ, S., AND SUN, Y. Dy-
namic and interactive re-formulation of multi-objective optimization prob-
lems for conceptual architectural design exploration. Automation in Con-
struction 118 (2020), article 103251.

[106] ZHANG, Q., AND LI, H. MOEA/D: A multiobjective evolutionary algo-
rithm based on decomposition. IEEE Transactions on Evolutionary Computa-
tion 11, 6 (2007), 712–731.

[107] ZHEN, L., LI, M., CHENG, R., PENG, D., AND YAO, X. Adjusting paral-
lel coordinates for investigating multi-objective search. In Simulated Evo-
lution and Learning (Cham, 2017), Y. Shi, K. Tan, M. Zhang, K. Tang, X. Li,
Q. Zhang, Y. Tan, M. Middendorf, and Y. Jin, Eds., Springer, pp. 224–235.

[108] ZITZLER, E., DEB, K., AND THIELE, L. Comparison of multiobjective
evolutionary algorithms: Empirical results. Evolutionary Computation 8, 2
(2000), 173–195.

[109] ZITZLER, E., AND KÜNZLI, S. Indicator-based selection in multiobjective
search. In International Conference on Parallel Problem Solving from Nature
- PPSN VIII (Berlin, Heidelberg, 2004), X. Yao, E. K. Burke, J. A. Lozano,
J. Smith, J. J. Merelo-Guervós, J. A. Bullinaria, J. E. Rowe, P. Tiňo, A. Kabán,
and H.-P. Schwefel, Eds., Springer, pp. 832–842.

[110] ZITZLER, E., LAUMANNS, M., AND THIELE, L. SPEA2: Improving the
strength pareto evolutionary algorithm. In EUROGEN 2001. Evolutionary
Methods for Design, Optimization and Control with Applications to Industrial
Problems (Athens, Greece, 2001), K. Giannakoglou, D. Tsahalis, J. Periaux,
P. Papailou, and T. Fogarty, Eds., pp. 95–100.

[111] ZITZLER, E., AND THIELE, L. Multiobjective evolutionary algorithms: a
comparative case study and the strength Pareto approach. IEEE Transactions
on Evolutionary Computation 3, 4 (1999), 257–271.

[112] ZITZLER, E., THIELE, L., LAUMANNS, M., FONSECA, C. M., AND DA FON-
SECA, V. G. Performance assessment of multiobjective optimizers: An anal-
ysis and review. IEEE Transactions on Evolutionary Computation 7, 2 (2003),
117–132.

ORIGINAL PAPERS

PI

AUTOMATIC SURROGATE MODELLING TECHNIQUE
SELECTION BASED ON FEATURES OF OPTIMIZATION

PROBLEMS

by

Bhupinder Singh Saini, Manuel Lopez-Ibanez, Kaisa Miettinen 2019

Proceedings of the Genetic and Evolutionary Computation Conference
Companion, Edited by M. Lopez-Ibanez, ACM, NY, USA, 1765–1772

https://doi.org/10.1145/3319619.3326890

Reproduced with kind permission by Association for Computing Machinery.

https://doi.org/10.1145/3319619.3326890

Automatic Surrogate Modelling Technique Selection based on Features of

Optimization Problems

BHUPINDER SINGH SAINI, University of Jyvaskyla

MANUEL LÓPEZ-IBÁÑEZ, Alliance Manchester Business School, University of Manchester, UK

KAISA MIETTINEN, University of Jyvaskyla

A typical scenario when solving industrial single or multiobjective optimization problems is that no explicit formulation of the problem

is available. Instead, a dataset containing vectors of decision variables together with their objective function value(s) is given and a

surrogate model (or metamodel) is build from the data and used for optimization and decision-making. This data-driven optimization

process strongly depends on the ability of the surrogate model to predict the objective value of decision variables not present in the

original dataset. Therefore, the choice of surrogate modelling technique is crucial. While many surrogate modelling techniques have

been discussed in the literature, there is no standard procedure that will select the best technique for a given problem.

In this work, we propose the automatic selection of a surrogate modelling technique based on exploratory landscape features of the

optimization problem that underlies the given dataset. The overall idea is to learn offline from a large pool of benchmark problems, on

which we can evaluate a large number of surrogate modelling techniques. When given a new dataset, features are used to select the

most appropriate surrogate modelling technique. The preliminary experiments reported here suggest that the proposed automatic

selector is able to identify high-accuracy surrogate models as long as an appropriate classifier is used for selection.

CCS Concepts: • Computing methodologies→ Supervised learning by regression;

Additional Key Words and Phrases: surrogate modelling, automatic algorithm selection, exploratory landscape analysis

ACM Reference Format:

Bhupinder Singh Saini, Manuel López-Ibáñez, and Kaisa Miettinen. 2019. Automatic Surrogate Modelling Technique Selection based

on Features of Optimization Problems. 1, 1 (August 2019), 13 pages.

https://doi.org/10.1145/3319619.3326890

1 INTRODUCTION

Increasingly, data is being used as the starting point of analysis of problems and optimization. Alternatives, such as

running simulations or conducting physical experiments, may be computationally expensive, financially expensive or

both. Data, on the other hand, can be analyzed cheaply and efficiently, while leading to equally relevant insights. One of

the ways to use data is to create metamodels or surrogate models that try to replicate the behaviour of the simulations or

real-life phenomena. Creating these surrogate models is comparatively cheap and the models can be used for descriptive,

Authors’ addresses: Bhupinder Singh Saini, University of Jyvaskyla, Faculty of Information Technology, P.O. Box 35 (Agora)

FI-40014 University of Jyvaskyla, Finland, bhupinder.s.saini@jyu.fi; Manuel López-Ibáñez, Alliance Manchester Business School, University of Manchester,

UK, manuel.lopez-ibanez@manchester.ac.uk; Kaisa Miettinen, University of Jyvaskyla, Faculty of Information Technology, P.O. Box 35 (Agora)

FI-40014 University of Jyvaskyla, Finland, kaisa.miettinen@jyu.fi.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components

of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on

servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Copyright held by the owner/author(s). Publication rights licensed to the Association for Computing Machinery.

Manuscript submitted to ACM

Manuscript submitted to ACM 1

2 Bhupinder Singh Saini, Manuel López-Ibáñez, and Kaisa Miettinen

predictive or prescriptive analysis of the problem. Using surrogate models for prescriptive analysis, such as optimization

of the problem, is particularly beneficial as optimization may require multiple calls to an expensive objective function,

which can be replaced with a cheap surrogate model. However, accurate modelling of data is important for such analysis.

In many papers, there is no reasoning behind the selection of a surrogate modelling technique apart from the

popularity of the technique in the research community and the researcher’s familiarity with it. In the absence of an

evidence-based guide to select a surrogate modelling technique, choices made based on experience or popularity may

be far from optimal [2]. This may lead to inaccurate analysis, which at best is a waste of time and resources and, at

worst, may lead to ill-informed decisions. A possible approach for selecting surrogate modelling techniques would be to

train a large number of techniques in the given dataset, which may require considerable time and, in the worst case,

overfit to the particular dataset. Cross-validation approaches may somewhat overcome this over-fitting. However, they

require setting aside part of the available data for validation of the models. Not only the validation data could otherwise

have been used for training, leading to a better modelling of the problem; but also a selection based on cross-validation

only makes use of the available dataset when making a decision, without any knowledge about similar datasets or

optimization problems. Hence, a better selection approach is desirable, which can help us choose a good surrogate

modelling technique for a problem instance, without sacrificing useful data, while being computationally efficient.

A similar problem is faced when choosing an optimization algorithm to tackle an optimization problem, due to the

large number of algorithms available and the lack of precise guidelines for choosing the most appropriate algorithm

for a given problem. In the field of automatic algorithm selection [10], an optimization algorithm is selected for a

given problem instance by computing features of the problem instance that help to predict the performance of the

available algorithms. In particular, features generated using explorative landscape analysis (ELA) have been used to

automatically select optimization algorithms for continuous black-box optimization problems with promising results [6].

Similar techniques have been applied to combinatorial optimization problems [13]. Similar to the assumptions made by

automatic algorithm selection methods, we expect that there are classes of optimization problems for which certain

surrogate modelling techniques perform better than others.

Instead of selecting an optimization algorithm for a given optimization problem, we propose here to select a surrogate

modelling technique for a given dataset by using classification techniques frommachine learning. Moreover, by assuming

that the dataset originates from an underlying but unknown optimization problem, we propose that the classifier learns

from ELA features, among others. Our working hypothesis is that, due to common properties of the optimization

problems underlying the datasets, ELA features may give enough information to identify a good surrogate modelling

technique, if we can collect enough training data to characterize new, i.e., unseen problems.

The classifier is trained on known optimization benchmark functions from which it is easy to sample datasets with

diverse features and evaluate the accuracy of various surrogate modelling techniques. The computational cost of this

training phase may be large, but it is incurred only once “offline”. When the automatic selection system is applied to an

unseen dataset, the system only has to compute dataset features in order to select the appropriate surrogate modelling

technique to model the dataset.

In this paper, we evaluate the above proposal using a collection of datasets generated from benchmark and real-world

engineering problems from the literature. We also compare the performance of several classifiers when used as the

selector of the proposed system. Our preliminary results show that the proposed system is able to select good surrogate

modelling techniques for almost all engineering problems.

The paper is structured as follows. Section 2 describes the general idea of our proposal for automatic selection of

surrogate modelling techniques. In Section 3, we evaluate this proposal experimentally on benchmark and real-world

Manuscript submitted to ACM

Automatic Surrogate Model Selector 3

Fig. 1. Automatic selection of surrogate modelling techniques based on optimization features.

engineering problems by studying a proof-of-concept system that automatically chooses among ten surrogate modelling

techniques. In addition, we compare the performance of nine classifiers as the selection method used by our automatic

selection system. Finally, we summarise our conclusions in Section 4 and point out ongoing and future work.

2 AUTOMATIC SELECTION OF SURROGATE MODELLING TECHNIQUES

We propose here to automatically select the most appropriate technique for building a surrogate model of a given

optimization problem based on features that have been traditionally used for landscape analysis of optimization

algorithms. Surrogate modelling technique selection (SMTS) uses machine learning techniques to learn and predict

which surrogate modelling techniques would perform best on given data based on certain “features” of the dataset

rather than individual samples. In our SMTS framework, a classifier that we will call a “selector” is trained on landscape

features of optimization problems and on the performance of various surrogate modelling techniques. Later, in an

application phase, given a dataset to be modelled from an underlying optimization problem, the trained selector will

select just one surrogate modelling technique based on features of the given data. By assuming a data-driven context,

the application phase is constrained to the data already available and there is no possibility of generating new data

from the same underlying problem to evaluate the performance of alternative surrogate modelling techniques.

An outline of the proposed automatic SMTS framework is shown in Figure 1. There are two clearly delimited training

and application phases. The training phase proceeds as follows:

(1) Data generation: Training datasets are generated fromwell known optimization problems. Each training dataset

corresponds to a sample of solutions and corresponding objective function values. To ensure the applicability of

the SMTS to a wide range of real-life problems, the individual datasets should differ not only in the characteristics

of the problems, e.g., number of decision variables, but also in the features of the sampling: different numbers

Manuscript submitted to ACM

4 Bhupinder Singh Saini, Manuel López-Ibáñez, and Kaisa Miettinen

of samples, uniform vs. non-uniform distributions of samples in the decision space, presence of noise and/or

missing data, etc.

(2) Surrogate model training: A previously chosen set of surrogate modelling techniques is trained on each

dataset. These techniques will form the choices available to the selector. Then, the accuracy of each surrogate

model is evaluated by using a sample of solutions and objectives values from the same problem but different

from those used for training, and calculating its R2 coefficient.

(3) Feature calculation: Independently of the training of each surrogate model, we also calculate a relatively large

number of features for each training dataset that hopefully help to characterize the landscape of the optimization

problem that underlies the dataset.

(4) Training of the selector: The features of each training dataset together with the R2 value of each surrogate

modelling technique on the problem forms the training data for a classifier that aims to predict the best surrogate

modelling technique (i.e., with the highest R2) for each dataset based on its features.

(5) Custom cost function: We have observed that there are large differences among various surrogate modelling

techniques and, often, the second-best technique is almost as good as the best one, while both of them are

significantly better than the worst one. In other words, when failing to select the best surrogate modelling

technique, selecting instead the second-best is much better than selecting the worst one. Therefore, we use the

following cost function to quantify the performance of the selector relative to the best-performing surrogate

modelling technique:

Loss(Datasetj) = max
k ∈K

{R2
k, j } − R2selected, j (1)

Cost =

∑J
j=1 Loss(Datasetj)

J
, (2)

where

Datasetj = Dataset with index j

R2i, j = R2 value of surrogate modelling technique (SMT) i applied to dataset j

R2
selected, j

= R2 value of the SMT selected by the selector for dataset j

K = Total number of SMTs available for selection

J = Total number of datasets included in cost evaluation.

The best-performing surrogate modelling technique on a particular dataset produces the maximum R2 value and,

if selected, it results in a loss value of zero. Selecting any other surrogate modelling technique will produce a

higher loss value. The cost metric aggregates the loss values over multiple datasets.

Once the selector has been trained using the training datasets, it may be used to select a surrogate modelling

technique on unseen data. In this application phase, we have access to some features of the sampling, such as the

number of samples, presence of noise or missing data, etc. Since we assume that the unseen data arises from an unknown

optimization problem, we can also calculate landscape features of the underlying optimization problem from the data

available. However, we do not have the possibility of creating new data and we do not have access to the underlying

optimization problem. Moreover, we do not attempt to train each surrogate modelling technique on the available data.

Instead, we use the selector trained in the previous phase to select one surrogate modelling technique according to

Manuscript submitted to ACM

Automatic Surrogate Model Selector 5

the features that can be computed on the given sample data. The selected surrogate modelling technique will then be

trained on the available data and used for analysis, prediction and, possibly, for data-driven optimization.

3 EXPERIMENTAL STUDY

We evaluate here a proof-of-concept of our proposed automatic selection of surrogate modelling techniques based

on features of optimization problems. The first goal of our experimental analysis is to understand whether there are

sufficient differences among standard surrogate modelling techniques to justify the computational cost of training a

selector. To answer this question, we consider 10 popular surrogate modelling techniques (Table 2) and evaluate them

on datasets generated from standard numerical optimization benchmark functions.

A second question is whether training a selector in the manner proposed above can identify a good surrogate

modelling technique for a given dataset, which is at least better than a random selection. Of course, an important

component of the proposed selector is the classification method used for selection. Hence, we evaluate here nine

different classifiers (Table 3). Moreover, a key characteristic of our proposal is that, given an unseen dataset, we wish to

select a surrogate modelling technique based on features of the underlying optimization problem extracted from the

available dataset, without training any of the surrogate models, not even on a sub-sample of the dataset. The latter

could in principle help to inform the selection, but it may obscure the contribution of the landscape features, which is

what we are testing here.

Finally, we also want to assess whether a selector trained on data from benchmark functions is better than chance in

identifying a good surrogate modelling technique for real-world engineering problems.

3.1 Experimental Setup

Benchmark Datasets (Training). For the training phase, we generate datasets from well-known benchmark problems.

In particular, we consider separately single functions from several multiobjective benchmark test suites (DTLZ [3],

WFG [4] and ZDT [14]). The number of decision variables, i.e., the dimensionality of the decision space, was varied

between 10, 20 and 30 for the DTLZ and WFG sets, and the recommended dimensionality for ZDT (30 in most cases).

Table 1. Characteristics of datasets generated from benchmark problems.

Benchmark problem family: DTLZ functions {1–5}, ZDT funcs. {1–9}, WFG funcs. {1–4, 6}

Decision variables: {10, 20, 30} (ZDT: only recommended values)

Number of samples: {100, 150, 200, 250, 300, 350, 400, 500, 600, 700, 800, 900, 1000, 1200, 1500, 2000}

Distribution of samples (decision space): {Uniform, Normal with μ = 0.5, sd = 0.25}

Missing data: {None, Missing}

Data from real-life problems may have characteristics that are not usually found in uniformly distributed datasets

generated from benchmark functions. These may include skewed distributions of samples in the data, presence of noise,

and chunks of the decision space may be missing from the data. Datasets may also have too few samples for a surrogate

modelling technique to work correctly, or some surrogate modelling techniques may benefit more than others from

having a large number of samples. We account for these characteristics by sampling several training datasets from each

benchmark problem. In particular, we sample datasets with various sizes ranging from 100 to 2 000 solutions. Samples

are also generated either from a uniform random distribution in the decision space or they are normally distributed

Manuscript submitted to ACM

6 Bhupinder Singh Saini, Manuel López-Ibáñez, and Kaisa Miettinen

Table 2. Surrogate modelling techniques available for automatic selection.

Surrogate modelling technique Keyword

Support vector machine SVR

Neural networks NN

Adaptive boosted regression Ada

Gaussian process regression GPR

Stochastic gradient descent SGD

K Nearest neighbour KNR

Decision trees DTR

Random forest RFR

Extra trees regression ExTR

Gradient boosted regression GBR

with a mean equal to 0.5 and standard deviation equal to 0.25 for each decision variable. Some datasets have chunks of

data missing, which is done by creating the dataset as previously described, and then removing data which lie within

a rectangular hyperbox one-tenth of the size of the decision space. Table 1 summarizes all the variations of training

datasets included in our training phase.

Engineering Datasets (Validation). For evaluating the performance in the application phase, we generated datasets

from several box-constrained engineering problems from the literature:

(1) Kursawe test function [7]

(2) Four bar plan truss problem [1]

(3) Gear train design [11]

(4) Pressure vessel design [11]

(5) Speed reducer problem [12]

(6) Welded beam design problem [11]

(7) Unconstrained function problem 1 [8]

In the case of multiobjective optimization problems, each objective function was treated as a separate problem, leading

to a total of 12 problems. For each problem, we sample several datasets of sizes {50, 100, 150, 200, 400, 700, 1000}, sampling

from the decision space uniformly at random. This resulted in a total of 84 datasets created from the engineering

problems. The number of decision variables ranges from 3 to 7 and there is no missing data.

Dataset Features. In order to calculate landscape features of each dataset that hopefully characterize the underlying

optimization problem, we used the R package FLACCO [5]. The features considered here belong to the set of “simple” or

ELA metamodel features, which are calculated by creating linear and quadratic models on the dataset. The parameters

and accuracy of these models, such as the intercept of the linear model or the adjusted R-square of the models, form the

features of the dataset, resulting in a total of 10 features. In addition to the landscape features, three other features

were included per dataset: the dimensionality of the decision space, the number of samples, and a Boolean variable

representing whether the sampling was uniformly distributed or not. Table 4 describes all features.

Surrogate Modelling Techniques. We consider 10 popular surrogate modelling techniques (Table 2), from which

the selector must choose one. In particular, we use the standard implementations of these techniques available in the

Python package scikit-learn [9] with their default hyper-parameters. Surrogate models are trained and evaluated on

Manuscript submitted to ACM

Automatic Surrogate Model Selector 7

Table 3. Classification methods evaluated for the selector.

Classifier method Keyword

Bagging BC

Support vector machine SVC

K-nearest neighbor KNC

Nearest centroid NC

Gaussian process GPC

Decision tree DTC

Neural network NNC

Extremely randomized tree ExTC1

Extra-trees ExTC2

Table 4. Dataset features used for selector training and application.

Feature Name Description

ela_meta.lin_simple.adj_r2 Adjusted R2 of a simple linear model

ela_meta.lin_simple.intercept Intercept of a simple linear model

ela_meta.lin_simple.coef.min Smallest non-intercept coefficient of the linear simple model

ela_meta.lin_simple.coef.max Largest non-intercept coefficient of the linear simple model

ela_meta.lin_simple.coef.max_by_min Ratio of the largest and smallest non-intercept coefficient of the linear simple model

ela_meta.lin_w_interact.adj_r2 Adjusted R2 of a simple linear model with interactions

ela_meta.quad_simple.adj_r2 Adjusted R2 of a simple quadratic model

ela_meta.quad_simple.cond The ratio of the biggest and smallest cofficients of the simple quadratic model

ela_meta.quad_w_interact.adj_r2 Adjusted R2 of a quadratic model with interactions

ela_meta.costs_runtime Runtime for the computation of the features

numsamples Number of samples in the problem instance

dimensionality Dimensionality of the decision space of the problem instance

is_uniform True if data is uniformly distributed in decision space, otherwise false

one dataset at a time by randomly splitting the dataset into 70% solutions used for training and 30% solutions used to

compute an R2 value to measure the performance of the surrogate model.

Selector. In our proposal, the selector that chooses a surrogate modelling technique is a classifier. Since we do not

have any intuition about which classifier may perform best for this task, we evaluate here nine alternative classifiers

(see Table 3). We use the standard implementation of these classifiers available from scikit-learn with default

hyper-parameters. To compare the classifiers, we use the custom cost function described by Eq. 2. The dataset features

explained above together with the R2 values of each surrogate modelling technique on each dataset are the input

data for the classifier during the training phase, while only the dataset features are available to the classifier on the

application phase when selecting a surrogate model.

Source Code. The SMTS code can be found at https://github.com/industrial-optimization-group/SurrogateAgents2/

releases/tag/GECCO2019

Manuscript submitted to ACM

8 Bhupinder Singh Saini, Manuel López-Ibáñez, and Kaisa Miettinen

BC SVC KNC NC GPC DTC NNC ExTC1 ExTC2
Classification Algorithm

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Co
st

Fig. 2. Cost values of each classifier on the benchmark datasets. Each point is the cost value of the surrogate modelling technique
selected by the corresponding classifier for one random 70%/30% split of the benchmark datasets. Each boxplot contains 50 cost
values.

3.2 Experimental Results

As the first experiment, we train each of the classifiers in Table 3 on 70% of the benchmark datasets and perform

automatic selection of a surrogate modelling technique on the remaining 30% datasets to calculate a cost value.1 We

repeat this step 50 times with different random splits of the benchmark datasets, thus obtaining 50 cost values per

classifier, which are shown as boxplots in Figure 2.

The plot shows that most classifiers were able to select a high-performing surrogate model, with cost values very

close to zero. Of particular note are the BC, SVC, KNC, DTC, ExTC1 and ExTC2 classifiers, all of which had a cost value

below 0.05 consistently. Given the random 70%/30% split of the datasets, the same exact dataset is not available for

training and selection. However, the same underlying optimization problem may appear in both phases. Nevertheless,

some classifiers performed very poorly, which suggests that selecting the best-performing classifier is not trivial.

1As explained above, when training and evaluating each surrogate modelling technique on each dataset, the dataset itself is also randomly split into 70%
points used for training and 30% points used for computing R2 values.

Manuscript submitted to ACM

Automatic Surrogate Model Selector 9

In the second experiment, we focus on the best trained variant of each classifier from the first experiment and

evaluate it on the engineering datasets. In other words, we choose as a selector for the application phase the trained

version of each classifier with the lowest cost out of the 50 repetitions of the training phase performed above. We then

use this selector to select surrogate modelling techniques for each engineering dataset. More specifically, a random

(training) 70% subset of each engineering dataset is used to compute features, the classifier uses these features to select

a surrogate model, the selected surrogate model is trained on the same training subset and its R2 value is computed

on the remainder 30% data of the dataset. We also calculate the R2 value of all other surrogate modelling techniques

so that we can identify the best-performing technique and compute the loss function (Eq. 1). Figure 3 shows the loss

values of all the selectors for all 84 engineering datasets. In this case, obtaining a perfect score is much more difficult, as

the selector was trained in samples of features generated from the benchmark datasets that are quite different from

the feature samples generated from the engineering datasets. Nevertheless, the performance of the various classifiers

follows a similar pattern as in the first experiment. In particular, BC, KNC, SVC, ExTC1 and ExTC2 again perform better

than the rest.

Table 5 shows the means and sample standard deviations of the loss values of each classifier over all engineering

datasets. By looking at the mean loss values we can say that the SVC selector performed the best with a mean value of

0.052 and a standard deviation of 0.096. This means that the classifier is selecting good surrogate modelling techniques,

among the ones available, for most of the engineering problems. However, we noticed that the SVC selector always

selected the same surrogate modelling technique (GBR) for all datasets. This technique belongs to the group of ensemble

based techniques, all of which performed very well for most of the problems. By contrast, the second best selector,

ExTC2, selected different surrogate models for different engineering datasets, and still achieved excellent loss values.

Table 5. Mean and standard deviation of loss values of selection on engineering data.

Classification Standard
method Mean loss deviation of loss

BC 0.1072 0.2369

SVC 0.0518 0.0963

KNC 0.1798 0.3407

NC 0.3887 0.4153

GPC 0.7351 0.3723

DTC 0.2516 0.3972

NNC 0.1553 0.2730

ExTC1 0.0979 0.1895

ExTC2 0.0853 0.1689

Finally, we compare the actual R2 values of the selected surrogate models versus the rest. As described above, all

surrogate modelling techniques were trained on a random 70% subset of each engineering dataset and their R2 value is

calculated on the remainder 30%. Figure 4 shows the mean R2 values (as lines, with a 95% confidence interval as a shaded

area) of each surrogate modelling technique over all datasets generated from each engineering problem (x-axis). Good

surrogate models have R2 values close to 1 with a low variance. Interestingly, popular surrogate modelling techniques

such as support vector machines (SVM), neural networks (NN), and Gaussian processes (GPR), had a significantly worse

accuracy than ensemble methods such as extra-trees regression (ExTR) and gradient boosted regression (GBR).

Manuscript submitted to ACM

10 Bhupinder Singh Saini, Manuel López-Ibáñez, and Kaisa Miettinen

BC SVC KNC NC GPC DTC NNC ExTC1 ExTC2
Classification Algorithm

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ss

Fig. 3. Loss values of each classifier on the benchmark datasets. Each point is the loss value of the surrogate modelling technique
selected by the corresponding classifier for one engineering dataset after training the classifier on the benchmark datasets. Each
boxplot contains 84 loss values.

The black line in Figure 4 shows the mean R2 values obtained when the SVC classifier selects the surrogate

modelling technique for each dataset. Figure 5 shows the same data and, instead, the black line indicates the mean

R2 values obtained by the surrogate modelling technique selected by ExTC2 classifier. These plots show that the SVC

classifier has a lower mean loss value than ExTC2 because it performs significantly better in the pressure_f1 and the

unconstrained_f_f1 problem. Although neither classifier is able to always select the surrogate model with the highest

R2 value, both are always able to select surrogate models with R2 larger than 0.8, except for problems gear_train_f1

and unconstrained_f_f1. Given the behavior of the surrogate models on these two problems, it seems likely that

either our training phase does not have benchmark problems with the appropriate features, or we are lacking the

features required to characterize these problems.

4 CONCLUSIONS

In this paper, we have proposed the automatic selection of surrogate modelling techniques for a given dataset by using

features that aim at characterizing the underlying optimization problem. We describe here a proof-of-concept system

Manuscript submitted to ACM

Automatic Surrogate Model Selector 11

four_bar_f1
four_bar_f2

gear_train_f1
kursawe_f1

kursawe_f2
pressure_f1

pressure_f2

speed_reducer_f1

speed_reducer_f2

speed_reducer_f3

unconstrained_f_f1

welded_beam_f1

problem

0.0

0.2

0.4

0.6

0.8

1.0

R
2

Modelling Technique
Ada
KNR
ExTR

SVM
GPR
DTR
GBR

NN
SGD
RFR
Auto selected

Fig. 4. Mean R2 values (and 95% confidence interval as shaded area) of each surrogate modelling technique when applied to all
datasets generated from each engineering problem (x-axis). The black line indicates the mean R2 value when SVC is used to select a
surrogate modelling technique for each dataset.

four_bar_f1
four_bar_f2

gear_train_f1
kursawe_f1

kursawe_f2
pressure_f1

pressure_f2

speed_reducer_f1

speed_reducer_f2

speed_reducer_f3

unconstrained_f_f1

welded_beam_f1

problem

0.0

0.2

0.4

0.6

0.8

1.0

R
2

Modelling Technique
Ada
KNR
ExTR

SVM
GPR
DTR
GBR

NN
SGD
RFR
Auto selected

Fig. 5. Mean R2 values (and 95% confidence interval as shaded area) of each surrogate modelling technique when applied to all
datasets generated from each engineering problem (x-axis). The black line indicates the mean R2 value when ExTC2 is used to select
a surrogate modelling technique for each dataset.

Manuscript submitted to ACM

12 Bhupinder Singh Saini, Manuel López-Ibáñez, and Kaisa Miettinen

that uses exploratory landscape features provided by the FLACCO package in addition to the dimensionality of the data,

the number of points in the dataset and whether the dataset is a uniform sample or not. These features are used to select

among ten available surrogate modelling techniques. For evaluating our proposal, we have generated a diverse set of

datasets from popular benchmark functions as well as real-world engineering problems. In addition, we have compared

nine different classifiers to be used as the selector of the proposed automatic surrogate model selection technique.

The preliminary experimental results presented in this work show that the choice of a classifier to be used as a

selector is crucial, with significant differences in performance between classifiers. In addition, the best classifiers for

benchmark datasets turned out to also perform well on engineering datasets. Another interesting result was that, despite

the fact that no single surrogate modelling technique was always the best for all datasets, the automatic selection

method was able to select surrogate modelling techniques with R2 values higher than 0.8 in almost all datasets, when

using the best or second-best classifier as a selector.

Although this research is at a very preliminary stage and there is much that could be improved, we believe that our

results already show the potential of automatically selecting surrogate models for unseen data by training on datasets

generated from known optimization problems.

Among the obvious improvements, we plan to simplify the creation and use of cross-validation sets for training and

validating the surrogate models as well as the selector to make better use of the available data while keeping the benefits

of separating training and validation data. In addition, we evaluated the various classifiers using a custom loss function.

However, the training of the classifier could be itself cost-sensitive. Moreover, as surrogate modelling techniques are

frequently used in conjunction with optimization algorithms, the quality of the optimal solutions obtained can also be

used as a metric for training the Selector. The Selector, thus, is trained to select surrogate modelling techniques that

perform well when used along with the considered optimization algorithms. We also considered “only” ten surrogate

modelling techniques with default hyperparameter settings. Although this is a much larger number than what is usually

considered in the data-driven surrogate modelling literature, it should be possible to select not only from an even larger

pool, but also from various sets of hyperparameter settings. Moreover, we plan to analyze the importance of the features

used by the selector. This will give us a better understanding of which characteristics of the problem instances are

desirable as features, and will enable us to explore a much larger landscape of features productively. Finally, we plan

to include more diverse training datasets, as our results suggest that our current training phase does not capture the

characteristics of some real-world engineering problems.

ACKNOWLEDGMENTS

This research was partly supported by the Academy of Finland (grant number 287496, project DESDEO). This related

to the thematic research area DEMO (Decision Analytics utilizing Causal Models and Multiobjective Optimization,

jyu.fi/demo) of the University of Jyvaskyla.

REFERENCES

[1] F. Y. Cheng and X. S. Li. 1999. Generalized center method for multiobjective engineering optimization. Engineering Optimization 31, 5 (1999),

641–661.

[2] T. Chugh, K. Sindhya, J. Hakanen, and K. Miettinen. 2019. A survey on handling computationally expensive multiobjective optimization problems

with evolutionary algorithms. Soft Computing 23, 9 (2019), 3137–3166.

[3] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler. 2005. Scalable Test Problems for Evolutionary Multiobjective Optimization. In Evolutionary

Multiobjective Optimization, A. Abraham et al. (Eds.). Springer, London, UK, 105–145.

[4] S. Huband, P. Hingston, L. Barone, and L. While. 2006. A review of multiobjective test problems and a scalable test problem toolkit. IEEE Transactions

on Evolutionary Computation 10, 5 (2006), 477–506.

Manuscript submitted to ACM

Automatic Surrogate Model Selector 13

[5] P. Kerschke and H. Trautmann. 2016. The R-package FLACCO for exploratory landscape analysis with applications to multi-objective optimization

problems. In Proceedings of the 2016 Congress on Evolutionary Computation (CEC 2016). IEEE Press, Piscataway, NJ, 5262–5269.

[6] P. Kerschke and H. Trautmann. 2019. Automated Algorithm Selection on Continuous Black-Box Problems by Combining Exploratory Landscape

Analysis and Machine Learning. Evolutionary Computation 27, 1 (2019), 99–127.

[7] F. Kursawe. 1991. A variant of evolution strategies for vector optimization. In Proceedings of PPSN-I, First International Conference on Parallel Problem

Solving from Nature, H.-P. Schwefel and R. Männer (Eds.). Springer, Berlin, Heidelberg, 193–197.

[8] M. Mahdavi, M. Fesanghary, and E. Damangir. 2007. An improved harmony search algorithm for solving optimization problems. Appl. Math. Comput.

188, 2 (2007), 1567–1579.

[9] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research 12

(2011), 2825–2830.

[10] J. R. Rice. 1976. The Algorithm Selection Problem. Advances in Computers 15 (1976), 65–118.

[11] E. Sandgren. 1990. Nonlinear integer and discrete programming in mechanical design optimization. Journal of Mechanical Design 112, 2 (1990),

223–229.

[12] J. N. Siddall. 1982. Optimal Engineering Design: Principles and Applications. Marcel Dekker Inc., New York.

[13] K. Smith-Miles. 2008. Cross-disciplinary Perspectives on Meta-learning for Algorithm Selection. Comput. Surveys 41, 1 (2008), 1–25.

[14] E. Zitzler, L. Thiele, and K. Deb. 2000. Comparison of Multiobjective Evolutionary Algorithms: Empirical Results. Evolutionary Computation 8, 2

(2000), 173–195.

Manuscript submitted to ACM

PII

A NEW PARADIGM IN INTERACTIVE EVOLUTIONARY
MULTIOBJECTIVE OPTIMIZATION

by

Aaltola, Kirsi, 2021

Bhupinder Singh Saini, Jussi Hakanen, Kaisa Miettinen 2020

Parallel Problem Solving from Nature – PPSN XVI, Edited by T. Back, M. Preuss,
A Deutz, H.Wang, C. Doerr, M. Emmerich, H. Trautmann, Springer, Cham,

243–256

https://doi.org/10.1007/978-3-030-58115-2_17

Reproduced with kind permission by Springer Nature.

https://doi.org/10.1007/978-3-030-58115-2_17

A New Paradigm in Interactive Evolutionary
Multiobjective Optimization

Bhupinder Singh Saini1[0000−0003−2455−3008], Jussi
Hakanen1[0000−0001−9579−8657], and Kaisa Miettinen1[0000−0003−1013−4689]

University of Jyvaskyla, Faculty of Information Technology, P.O. Box 35 (Agora),
FI-40014 University of Jyvaskyla, Finland

{bhupinder.s.saini,jussi.hakanen,kaisa.miettinen}@jyu.fi

Abstract. Over the years, scalarization functions have been used to
solve multiobjective optimization problems by converting them to one
or more single objective optimization problem(s). This study proposes a
novel idea of solving multiobjective optimization problems in an inter-
active manner by using multiple scalarization functions to map vectors
in the objective space to a new, so-called preference incorporated space
(PIS). In this way, the original problem is converted into a new mul-
tiobjective optimization problem with typically fewer objectives in the
PIS. This mapping enables a modular incorporation of decision maker’s
preferences to convert any evolutionary algorithm to an interactive one,
where preference information is directing the solution process. Advan-
tages of optimizing in this new space are discussed and the idea is demon-
strated with two interactive evolutionary algorithms: IOPIS/RVEA and
IOPIS/NSGA-III. According to the experiments conducted, the new al-
gorithms provide solutions that are better in quality as compared to those
of state-of-the-art evolutionary algorithms and their variants where pref-
erence information is incorporated in the original objective space. Fur-
thermore, the promising results require fewer function evaluations.

Keywords: Interactive methods · Achievement scalarizing functions ·
Evolutionary algorithms · Preference information · Decision maker

1 Introduction

Many multiobjective optimization problems (MOPs) are encountered in real life
applications. Due to the conflicting nature of objectives in these problems, often
there does not exist a single optimal solution. Instead, there exists a set of Pareto
optimal solutions which represent trade-offs among the various objectives.

One family of methods, known as a posteriori methods, solve MOPs by find-
ing a set of solutions which adequately represents the entire set of Pareto optimal
solutions [18]. Evolutionary algorithms (EAs) have been employed for this with
a varying degree of success. An example of such methods is NSGA-II [6], which
works well for solving problems with a low number of objectives, but the per-
formance degrades as the number of objectives increases [9]. Recent a posteriori
EAs have tackled this problem in various ways [14].

2 B. Saini et al.

However, increasing the number of objectives brings forth new challenges.
As the number of objectives increases, the number of solutions required to ade-
quately represent the set of Pareto optimal solutions (which may have an infinite
number of solutions) increases exponentially [9, 14]. Regardless of the number
of objectives, only one or few of these solutions are useful to a decision maker
(DM) who wants to find and implement the desirable solution. Hence, when using
a posteriori methods, computational resources are wasted on finding solutions
that are not relevant. If objective function evaluations require time-consuming
simulations or physical experiments, this problem is compounded and may lead
to a waste of monetary resources as well. Moreover, these algorithms leave the
task of choosing the final solution to the DM. As each solution is a vector in a
high-dimensional objective space, comparing potentially thousands of solutions
is a difficult task. This process can set a high cognitive load on the DM.

As DMs are experts in their domain, they usually have opinions or preferences
regarding which solutions are desirable or undesirable to them. The preference
information may be elucidated in the form of desirable objective function values,
ranking of importances of objectives, pair-wise comparison of solutions and many
other techniques [16]. Recent advances in EAs try to incorporate this information
to limit the scope of search of the EA. As the DM may learn new information
about the problem during the solution process, allowing them to change their
preferences during the solution process is desirable [11]. Methods which allow
such change are known as interactive methods [17–19, 30]. Ideally, this leads
to less waste of resources as only solutions that are preferable to the DM are
focused upon. Moreover, as only a small subset of the Pareto optimal solutions
is to be represented at a time, the number of solutions to be shown to the DM is
smaller, hence reducing the cognitive load. However, many interactive EAs have
problems ranging from addition of hyperparameters to lack of diversity in the
population, which can impair the optimization process [1, 10].

The concept of utilizing the preferences of a DM in the solution process of an
MOP is very popular in the field of multiple criteria decision making [18,19]. One
of the methods adopted is to use scalarization functions [18,20]. These functions
utilize the preferences of the DM to map the objective function values of solu-
tions to scalar values, hence converting the MOP to one or more single objective
optimization problems. Different scalarization functions interpret the same pref-
erence information differently, and may lead to different results [20]. Different
solutions can hence be obtained by solving multiple scalarization functions with
the same preference information, as done in synchronous NIMBUS [21], or by
slightly modifying the preference information multiple times and optimizing the
same scalarization function, as done in the reference point algorithm [28].

In this paper, we explore the concept of using multiple scalarization functions
to create a new space: Preference Incorporated Space (PIS). First, we study the
mathematical properties of this new space. More specifically, we study the effect
of optimizing in the PIS, introducing a new paradigm in preference based opti-
mization: Interactive Optimization using Preference Incorporated Space (IOPIS)
algorithm. The IOPIS algorithm enables us to make use of preference informa-

A New Paradigm in Interactive Evolutionary Multiobjective Optimization 3

tion with any a posteriori EA in an interactive way, as the preference information
is encoded directly in the optimization problem in the PIS. It also enables us to
control the dimension of the space in which dominance is judged, equal to the
number of chosen scalarization functions. We then introduce the IOPIS algo-
rithm, a modular algorithm that takes a given number of specified scalarization
functions, and uses a DM’s preferences to convert a generic MOP to an MOP in
the preference incorporated space. This can then be solved interactively with any
appropriate non-interactive EA together with DM’s preferences. As examples, we
implement two versions of the new algorithm: IOPIS/RVEA and IOPIS/NSGA-
III, where the new problem in the PIS is optimized using decomposition based
EAs RVEA [4] and NSGA-III [5], respectively.

The rest of the paper is organized as follows. Section 2 discusses the back-
ground of multiobjective optimization, EAs, and scalarization functions. Section
3 discusses the mathematical properties of the PIS and introduces the IOPIS
algorithm with a visual explanation. In Section 4, we conduct an experimental
study to compare the performances of the two implementations of the IOPIS al-
gorithm with state of the art a posteriori EAs and their interactive variants and
discuss the results. Finally, we draw conclusions in Section 5. All implementa-
tions and experimental data presented in this paper are open source and publicly
available at https://desdeo.it.jyu.fi as a part of the DESDEO framework.

2 Background

2.1 Multiobjective Optimization

An MOP can be defined as:

minimize {f1(x), . . . , fk(x)}
subject to x ∈ S,

(1)

where x = (x1, . . . , xn)
T are vectors of decision variables belonging to the feasible

set S ⊂ Rn. The k (≥ 2) objective functions fi map vectors of S to R. The
objective function values f(x) = (f1(x), . . . , fk(x)) form objective vectors in the
objective space Rk. A solution x1 ∈ S of problem (1) is said to dominate another
solution x2 ∈ S (written as f(x1) � f(x2)) if fi(x

1) ≤ fi(x
2) for all i = 1, . . . , k

and fj(x
1) < fj(x

2) for at least one j = 1, . . . , k. Pareto optimal solutions are
solutions of the MOP which are not dominated by any other solution in S. For
this reason, they are also referred to as non-dominated solutions. Sometimes, it is
desirable for DMs to consider a subset of Pareto optimal solutions with bounded
trade-offs [18]. Such solutions are called properly Pareto optimal solutions.

We can define the set of solutions of problem (1), known as a Pareto set, as:

PSOS = {x ∈ S | �x∗∈S f(x∗) � f(x)}, (2)

where the subscript OS refers to the fact that the set was obtained by considering
the objective vectors in the objective space. We can now define an ideal point
and a nadir point of problem (1). These points represent the lower and upper

4 B. Saini et al.

bounds of the ranges of the objective function values among the Pareto optimal
solutions, respectively. The ideal point z∗ = (z∗1 , . . . , z

∗
k) can be calculated as

z∗i = minx∈S fi(x). The nadir point znad = (znad1 , . . . , znadk) can be calculated
as znadi = maxx∈PSOS

fi(x). It should be noted that calculating the nadir point
requires the calculation of the PSOS . Hence, the calculation of the nadir point
is tricky in problems with more than two objectives and needs to be estimated
[8,18]. Any objective vector z is defined to be achievable if z belongs to the set:

T = {z ∈ Rk | ∃x∈S f(x) � z or f(x) = z}. (3)

By definition, the nadir point is an achievable point, while the ideal point is not.

2.2 Evolutionary Algorithms

Decomposition-based methods such as NSGA-III [5], RVEA [4], and many vari-
ants of MOEA/D [31] have become popular in the evolutionary multiobjective
optimization community. These methods decompose the objective space into
sections using directional vectors called reference vectors, reference points, or
weights. For simplicity, in what follows, we will be using the term reference
vectors (RVs). These RVs, usually spread uniformly in the objective space, rep-
resent individual single-objective optimization problems. The RVs are typically
generated using a simplex lattice design, and the number of RVs is equal to(
l+k−1
k−1

)
, where l is a parameter controlling the density of the RVs. Subsets of

the population which lie in the decomposed region associated with an RV (in
the objective space) evolve in the direction of that RV based on scalar fitness
values calculated using the RV and their objective function values.

As mentioned in the introduction, EAs which approximate the entire Pareto
front exhibit many downsides. Methods have been proposed to get around those
downsides by incorporating the preferences of the DM in an interactive fash-
ion, see, e.g. [23, 26, 30]. One of the ways to incorporate a DM’s preferences in
decomposition-based EAs is to manipulate the spread of the RVs to account for
the preferences [4,15]. In many such methods, the DM is required to provide their
preferences in the form of a reference point in the objective space [12, 26, 27].
The components of a reference point are desirable values of each objective func-
tion, which may or may not be achievable. Then, uniformly spread RVs are
translated towards this point. This translation introduces a new scalar hyperpa-
rameter which controls the final spread of the RVs around the reference point.
This method introduces a few new problems, though. Firstly, the effect of chang-
ing the value of the newly introduced hyperparameter may be difficult for a DM
to understand. But an appropriate value for this hyperparameter is important
as it has been observed that a small spread of RVs may lead to a degradation in
population diversity, which prohibits the convergence of the EA [1,10].

2.3 Achievement Scalarizing Functions

As mentioned, scalarization functions are functions that map a vector to a real-
valued scalar. The weighted sum function and the Chebyshev function used by

A New Paradigm in Interactive Evolutionary Multiobjective Optimization 5

MOEA/D and the angle-penalized distance function used by RVEA are examples
of scalarization functions [4,31]. To be regarded as a good scalarization function,
it must have some desirable properties [25]. Firstly, the solutions obtained by
optimizing the scalarization function should be Pareto optimal. Secondly, these
solutions should be satisfactory according to the preferences of a DM, if the pref-
erences are feasible. Finally, any Pareto optimal solution should be discoverable
by changing the preferences provided by the DM.

Unfortunately, no single scalarization function satisfies the three conditions
concurrently [25]. However, if we relax the conditions to only account for properly
Pareto optimal solutions, rather than all Pareto optimal solutions, then all three
conditions can be satisfied by some scalarization functions. In this paper, we
focus on a subclass of scalarization functions, known as achievement scalarizing
functions (shortened to achievement function) [29]. An achievement function is
a continuous function s : Rk → R. Achievement functions are characterized
by either being strictly increasing and order-representing, or strongly increasing
and order-approximating [29]. We will focus on the latter kind as they satisfy
all three relaxed desirable properties.

Theorem 1. [29] Let us consider z1, z2 ∈ Rk such that z1 � z2. Then for any
order-approximating achievement function s : Rk → R, we have

s(z1) < s(z2). (4)

From Theorem 1, it can be concluded that solving the following problem:

minimize s(f(x))
subject to x ∈ S

(5)

will lead to a Pareto optimal solution of problem (1) [28, 29].
A general formulation of an (order-approximating) achievement function is:

s(f(x), z̄) = max
i=1,...,k

[
fi(x)− z̄i

μi

]
+ ρ

k∑
i=1

(
fi(x)− z̄i

μi

)
, (6)

where ρ is a small positive scalar and μi are positive scalars and z̄ ∈ Rk is a
reference point provided by the DM [24]. Minimizing s(f(x), z̄) has the effect of
optimizing problem (1) by sliding a cone along the line z̄+ λμ, where λ ∈ R, so
that a minimum (> 0) number of solutions lie in the cone [20]. Bounds of the
trade-offs in the solutions obtained by (5) can be controlled by changing ρ [28].

The general formulation (6) represents achievement functions that can take
preferences in other forms, not just reference points [24]. Different achievement
functions differ in how μ is set, which means they are optimizing along different
directions, albeit starting from the same reference point z̄. Hence, they may
lead to different solutions even if the same reference point is provided to them.
For the implementation of the IOPIS algorithm, we focus on the GUESS [2]
and STOM [22] scalarization functions (based on e.g., [3, 20]). For the GUESS
function, μi = znadi −z̄i and for the STOM function, μi = z̄i−z∗i . As μi > 0 for all

6 B. Saini et al.

i = 1, . . . , k, it follows that for these two achievement functions, z∗i < z̄i < znadi

for all i = 1, . . . , k. Another achievement function of note is the achievement
scalarizing function (ASF) used in the reference point method [28], which is
used in the experimental study section. For ASF, μi = znadi − z∗i .

3 Optimization in Preference Incorporated Space

3.1 Properties of Preference Incorporated Space

Let there be a set of achievement functions s = {s1, . . . , sq} with q ≥ 2. Then
we can define a PIS as the set {s(f(x), z̄) ∈ Rq}, and a new MOP in the PIS as:

minimize s(f(x), z̄) = {s1(f(x), z̄), . . . , sq(f(x), z̄)}
subject to x ∈ S.

(7)

Two solutions x1 and x2 can now be compared in two spaces. As stated
in Section 2.1, a solution x1 is said to dominate another solution x2 in the
objective space if f(x1) � f(x2). A solution x1 is said to dominate x2 in the PIS
if s(f(x1), z̄) � s(f(x2), z̄). Similar to (2), we can define the solutions to problem
(7), i.e., the Pareto set obtained by optimizing in the PIS as:

PSPIS = {x ∈ S | �x∗∈S s(f(x∗), z̄) � s(f(x), z̄)}. (8)

We modify the desirable properties of scalarization functions as stated in [25]
to reflect properties related to the PIS as:

1. Pareto optimal solutions in the PIS remain Pareto optimal in the objective
space.

2. Pareto optimal solutions in the PIS follow the preference given by the DM
in the objective space.

3. Any properly Pareto optimal solution of problem (1) can be discovered by
changing the reference point of problem (7).

It can be shown that the first condition is true regardless of the choice or
number of the achievement functions.

Theorem 2. Let PSPIS be the set of Pareto optimal solutions of problem (7).
Let PSOS be the set of Pareto optimal solutions of problem (1). Then,

PSPIS ⊂ PSOS . (9)

Proof. Suppose x ∈ PSPIS but x 	∈ PSOS . Therefore, there exists some x∗ such
that f(x∗) � f(x). Thus, according to Theorem 1, siz̄(f(x

∗)) < siz̄(f(x)) for all
i ∈ {1, . . . , q}. Hence, sz̄(f(x

∗)) � sz̄(f(x)), which contradicts x ∈ PSPIS .
�
The set PSPIS represents the trade-offs between the values of the various

achievement functions in problem (7). As the different achievement functions
are different interpretations of the same preference information obtained from a

A New Paradigm in Interactive Evolutionary Multiobjective Optimization 7

DM, the solutions in the set PSPIS represent the trade-offs between those inter-
pretations. Hence, it can be said that solutions obtained by solving problem (7)
follow the preferences given by the DM. Moreover, as PSPIS includes solutions
which minimize individual achievement functions present in PIS, and as any
properly Pareto optimal solution in the objective space can be found using the
achievement functions by changing the reference points, it follows that the third
condition also holds. Note that these results are valid for all order-approximating
scalarization functions, and not just STOM and GUESS functions.

Solving the MOP in the PIS has a few benefits compared to solving the MOP
in the objective space. Firstly, we can control the dimension of the PIS, which
is equal to the number of achievement functions chosen. This means that, given
some number (≥ 2) of achievement functions, we can use any multiobjective EA
(or biobjective EA, as PIS can be a two dimensional space) to solve problem
(7), regardless of the number of objectives in the original problem. Secondly,
controlling the dimension of the optimization problem also gives us an indirect
control over the number of function evaluations needed by the EA during the
optimization process. This is because the number of solutions required to ade-
quately represent the set of Pareto optimal solutions increases with increasing
the dimension of the objective space (for problem (1)) or PIS (for problem (7)).
Hence, choosing fewer achievement functions than k is an easy way to reduce
the number of function evaluations needed by an EA to solve an optimization
problem. Thirdly, by incorporating the preference information in the PIS, we
gain the ability to use any non-interactive EA in an interactive fashion. This
modularity enables easy use of well-tested EAs without needing to change them
to enable interaction with a DM.

3.2 The IOPIS algorithm

The IOPIS algorithm takes a formulation of the optimization problem of the form
(1) as input. The algorithm also takes as its input a set of achievement functions
s. The ideal point z∗ and the nadir point znad of the problem are also taken as
inputs. As the calculation of the nadir point can be tricky in problems with more
than two objectives, approximate values of the nadir point (and ideal point) can
also be used. The solutions are generated between these two points. Hence, the
DM can use their expertise to give the approximate values of the points within
which to search. The interactive solution process begins when these points are
shown to the DM. The following four steps are repeated iteratively until the DM
has received a satisfactory solution:

1. Preference elicitation: The DM is asked to give their preferences as a refer-
ence point based on the information currently available to them.

2. Problem creation: Using the original objectives, the known estimates of the
ideal and nadir points, the reference point, and the set of achievement func-
tions, a new optimization problem is created in the PIS, as shown in (7).

3. Problem solution: Solve the problem created in the previous step with an
EA. If this is the first iteration of the algorithm, start the EA with a new

8 B. Saini et al.

population, generated in a manner specific to the selected EA. In subsequent
iterations, the population from the previous iteration is used as the starting
population.

4. Display solutions : Display the solutions obtained in step 3 to the DM. The
DM can indicate the maximum number of solutions to be shown at a time
in step 4. If the number of solutions generated in step 3 exceeds the limit,
e.g., clustering can be applied before displaying solutions.

3.3 Visual Interpretation

Even though the IOPIS algorithm is designed for optimization problems with
more than two objectives, a biobjective problem is easily visualizable to demon-
strate the algorithm. Here we use the ZDT1 problem [32] to study the effect of the
choice of the reference point on the solutions returned by one implementation of
the IOPIS algorithm. In this implementation, STOM and GUESS scalarization
functions are used with NSGA-III to solve the resulting MOP in the PIS.

(a) Reference point is not achievable (b) Reference point is on line connecting
the ideal and nadir points

(c) Reference point is achievable (d) Reference point is close to the front

Fig. 1. Solutions obtained for various reference points for the ZDT1 problem.

Four different reference points are given to the algorithm. Each subfigure
in Figure 1 shows the corresponding objective vectors returned by the IOPIS
algorithm. In each subfigure, the blue dashed curve represents the true Pareto
front of the problem and the red point is the reference point. The green line
represents the direction along which the STOM function optimizes, whereas the
red line represents the direction along which the GUESS function optimizes.

A New Paradigm in Interactive Evolutionary Multiobjective Optimization 9

1. The reference point is not achievable (Figure 1a): There is no solution that
achieves values close to the reference point. Minimizing each achievement
function individually returns the solution corresponding to the point of in-
tersection of the line representing that achievement function and the Pareto
front. As can be seen, the solutions returned by the algorithm include those
solutions, and nondominated solutions in between.

2. Reference point is on the line joining the ideal and nadir point (Figure 1b):
Due to the nature of the chosen achievement functions, only a single solution
is returned by the algorithm. This is because if the reference point is on the
line connecting the ideal and nadir, both achievement functions optimize
along the same line. This behaviour can be changed by choosing a different
set of achievement functions to form the PIS, or by shifting the reference
point slightly to increase the diversity of the solutions.

3. The reference point is achievable and dominated (Figure 1c): The algorithm
returns a set of solutions that satisfy the given reference point. As in the first
case, optimal solutions of the individual achievement functions are included.

4. The reference point is close to the front (Figure 1d): Bringing the reference
point closer to the front has the effect of reducing the spread of the solutions
returned by the algorithm, hence solutions are returned in a narrower region.

The spread of the solutions is controlled by the position of the reference
point. A DM who does not know very well what is realistic may provide a
reference point far from the front. In such cases, the algorithm will return a
diverse set of solutions (with an exception and possible resolutions discussed in
point 2. above). After being provided with such solutions, the DM will have more
knowledge about the trade-offs involved among the solutions, and may want to
fine-tune their search in a narrow region. This is easily accomplished by providing
a reference point closer to the now known region of the front. This methodology
of control is similar to the one proposed in the reference point method [28].

4 Numerical Results

4.1 Experimental Setup

In this study, two versions of the interactive IOPIS algorithm were implemented.
IOPIS/NSGA-III uses NSGA-III to solve the problem in the PIS, while IOPIS/
RVEA uses RVEA. In both implementations, the STOM and GUESS functions
are used as achievement functions to form the PIS. These algorithms were com-
pared against a posteriori RVEA [4] and NSGA-III [5]. Interactive versions of the
two a posteriori algorithms (iRVEA and iNSGA-III) were also implemented and
included in this study. The details of iRVEA can be found in [12] and iNSGA-III
was implemented in a similar manner. RVEA and NSGA-III were chosen for
this study as they have been shown to work well in problems with k > 2 [4, 5].
Even though the problem in the PIS here is biobjective, the implementations of
the IOPIS algorithm use RVEA and NSGA-III to ensure that only the effect of
optimizing in the PIS is reflected in the results, and not the choice of the EA.

10 B. Saini et al.

The algorithms were compared using the DTLZ{2-4} [7] and WFG{1-9} [13]
problems, with 3-9 objectives each. The number of variables was kept as 10+k−1,
as recommended in [7]. For the IOPIS EAs, each component of the nadir point
was randomly generated from a halfnormal distribution with the underlying
normal distribution centered around 1 and having a scale of 0.15, then being
scaled up by a factor equal to the true nadir point components (1 for the DTLZ
problems, varying values for the WFG problems). This led to the generation
of nadir points with components up to 50% worse than the true nadir point.
This was done to test the performance of the IOPIS EAs in cases where only
approximate values of the nadir point are available. The true ideal point was
provided to the IOPIS EAs, as the calculation of it is relatively simpler.

Each EA was run for four iterations. For each EA, an iteration consisted
of a constant number of generations: One of {100, 150, 200, 250} for the DTLZ
problems, 100 for the WFG problems (The reason for using only 100 generations
per iteration for WFG problems will be discussed in the next subsection.). All
other hyperparameters, such as the number of solutions or algorithm specific
hyperparameters, were set to values recommended in their respective papers. In
each iteration, all interactive EAs received a common reference point randomly
generated in a hyperbox with the ideal and nadir points as opposing vertices.
The non-interactive EAs were ran through the iterations uninterrupted. Hence
336 tests with the DTLZ problems1 and 252 tests with the WFG problems2

were conducted for each of the six EAs. The algorithms were compared based
on the optimality and the preferability of the solutions returned at the end of
each iteration, and the number of function evaluations conducted.

4.2 Experimental Results

The Pareto optimal solutions of the DTLZ2-4 problems form a hypersphere in
the objective space, centered around the ideal point, which is the origin, and a
radius of one. Hence, calculating the Euclidean norm of the objective vectors of
the solutions returned by the EAs is a measure of optimality, with lower values
of the norm being closer to the Pareto front. However, these values cannot be
compared between problems, nor can they be compared for the same problem
but with a different number of objectives. Instead, the median of the norm of the
solutions returned at the end of each test was calculated for each of the six EAs.
These values were then used to rank each EA from 1 to 6 for every test, lower
ranks being given to better (lower) median norm values. A similar procedure
was followed for comparing methods based on the preferability of the solutions
returned by the EAs. The achievement function used in the reference point
method (ASF) [28] was chosen as the metric of preferability. The median ASF
values of the solutions were then used to rank the different EAs. The true nadir
point was used in the calculation of the ASF values. For the tests involving the
WFG 1-9 problems, ranks were only calculated based on median ASF values.

1 = 3 (problems) * 7 (objectives) * 4 (generations per iteration) * 4 (iterations)
2 = 9 (problems) * 7 (objectives) * 4 (iterations)

A New Paradigm in Interactive Evolutionary Multiobjective Optimization 11

The Pareto fronts for these problems are not spherical, hence ranks based on
median norm values are not relevant.

(a) Ranks based on median ASF values (b) Ranks based on median norm values

Fig. 2. Heatmaps of ranks of algorithms based on the median ASF value or median
norm value of the solutions obtained.

Heatmaps of the ranks based on ASF and norm are shown in Figures 2a and
2b, respectively. A paired colormap was used in the creation of the heatmaps
which gave ranks 1 and 2 a blue hue, ranks 3 and 4 a green hue, and ranks 5
and 6 a red hue. This choice brings forward a clear clustering in the rankings
of the 6 EAs. As seen in Figure 2a, iRVEA and iNSGA-III tend to return more
preferable solutions than their non-interactive counterparts. This behaviour is
expected as RVEA and NSGA-III focus on the entire Pareto front, whereas
iRVEA and iNSGA-III focus on a limited region. However, as seen in Figure
2b, the solutions returned by iRVEA were farther away from the Pareto front
compared to RVEA. This is because as iRVEA has a much lower diversity of
solutions compared to RVEA, which hampers the optimization process.

In both heatmaps, the PIS based EAs get ranks 1 or 2 in most tests, i.e.,
these algorithms returned solutions that were more preferable, and closer to
the Pareto front than the other four algorithms. It should also be noted that
IOPIS/NSGA-III performed better than IOPIS/RVEA in most cases. Further
investigation of the PIS is required on this. The results obtained on the DTLZ3
problem are also interesting. RVEA returned solutions which were closer to the
Pareto front, compared to the other methods. While the IOPIS EAs still outper-
formed RVEA based on the preferability of the solutions, RVEA outperformed
an interactive method iNSGA-III. This is happening as iNSGA-III failed to con-
verge to the Pareto front because of the lack of diversity of the solutions, and

12 B. Saini et al.

got stuck on one of the local fronts of the problem. While there was a correla-
tion between the problem type and the performance of the methods (IOPIS EAs
got ranks one or two more often in the WFG problems compared to the DTLZ
problems), there was no correlation between the performance of the method and
the number of objectives. In the case of the DTLZ problems, the performance
was also not dependent on the number of generations per iteration, i.e., there
was no improvement in the results after a hundred generations (per iteration).
This is why the number of generations per iterations was fixed to 100 for the
tests involving the WFG problems.

The final metric of comparison is the number of function evaluations con-
ducted. Given a constant number of generations, the number of function evalua-
tions is linearly correlated with the population size, which is equal to the number
of RVs in the EAs considered in this paper. For RVEA, NSGA-III, iRVEA and
iNSGA-III, the RVs (and hence the number of function evaluations) increase
exponentially with an increasing number of objectives. As the IOPIS algorithms
operate in the low-dimensional PIS, the number of reference vectors, and hence
the number of function evaluations, is independent of the number of objectives,
and significantly lower than that for the other algorithms considered in the study.
It should also be noted that for all of the tests, only an approximate nadir point
was provided to the IOPIS EAs, and yet the IOPIS EAs obtain better results
than the current state of the art algorithms.

5 Conclusions

A new space PIS, where preferences are incorporated, was proposed as a new
paradigm of solving MOPs interactively. This new space makes the creation of
interactive EAs very modular, as the algorithm only needs to modify the problem
to enable interactivity, rather than the EA itself. As examples, this enabled easy
creation of the IOPIS/NSGA-III and IOPIS/RVEA implementations.

The results obtained in the numerical experiments were very promising. The
new interactive EAs outperformed standalone NSGA-III and RVEA, as well as
their interactive versions. The solutions obtained by the IOPIS EAs were closer
to the Pareto optimal front, more preferable based on the reference point and
spent less computational resources in the form of function evaluations. Further
study of the landscape of the PIS is needed. The effect of choosing different
achievement functions, their implications on the interaction mechanism by a
DM and the solutions returned by the algorithm also needs to be studied.

Acknowledgements. This research was supported by the Academy of Finland
(grant numbers 322221 and 311877). The research is related to the thematic
research area DEMO (Decision Analytics utilizing Causal Models and Multiob-
jective Optimization, jyu.fi/demo) of the University of Jyväskylä.

A New Paradigm in Interactive Evolutionary Multiobjective Optimization 13

References

1. Bechikh, S., Kessentini, M., Said, L.B., Ghédira, K.: Chapter four - Preference
incorporation in evolutionary multiobjective optimization: A survey of the state-
of-the-art. In: Hurson, A.R. (ed.) Advances in Computers, vol. 98, pp. 141–207.
Elsevier (2015)

2. Buchanan, J.T.: A näıve approach for solving MCDM problems: The GUESS
method. Journal of the Operational Research Society 48(2), 202–206 (1997)

3. Buchanan, J., Gardiner, L.: A comparison of two reference point methods in mul-
tiple objective mathematical programming. European Journal of Operational Re-
search 149(1), 17––34 (2003)

4. Cheng, R., Jin, Y., Olhofer, M., Sendhoff, B.: A reference vector guided evolution-
ary algorithm for many-objective optimization. IEEE Transactions on Evolutionary
Computation 20(5), 773–791 (2016)

5. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using
reference-point-based nondominated sorting approach, part I: Solving problems
with box constraints. IEEE Transactions on Evolutionary Computation 18(4),
577–601 (2014)

6. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjec-
tive genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation
6(2), 182–197 (2002)

7. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable multi-objective optimiza-
tion test problems. In: Proceedings of the 2002 IEEE Congress on Evolutionary
Computation (CEC 2002). pp. 825–830. IEEE (2002)

8. Deb, K., Miettinen, K.: Nadir point estimation using evolutionary approaches:
Better accuracy and computational speed through focused search. In: Ehrgott, M.,
Naujoks, B., Stewart, T.J., Wallenius, J. (eds.) Multiple Criteria Decision Making
for Sustainable Energy and Transportation Systems, Proceedings. pp. 339–354.
Springer, Berlin, Heidelberg (2010)

9. Deb, K., Saxena, D.: Searching for Pareto-optimal solutions through dimensionality
reduction for certain large-dimensional multi-objective optimization problems. In:
Proceedings of the World Congress on Computational Intelligence (WCCI-2006).
pp. 3352–3360 (2006)

10. Deb, K., Sundar, J.: Reference point based multi-objective optimization using evo-
lutionary algorithms. In: GECCO ’06: Proceedings of the 8th Annual Conference
on Genetic and Evolutionary Computation. pp. 635—-642. ACM, New York (2006)

11. Eskelinen, P., Miettinen, K., Klamroth, K., Hakanen, J.: Pareto Navigator for
interactive nonlinear multiobjective optimization. OR Spectrum 32(1), 211–227
(2010)

12. Hakanen, J., Chugh, T., Sindhya, K., Jin, Y., Miettinen, K.: Connections of ref-
erence vectors and different types of preference information in interactive multi-
objective evolutionary algorithms. In: Proceeding of the 2016 IEEE Symposium
Series on Computational Intelligence (SSCI). pp. 1–8 (2016)

13. Huband, S., Barone, L., While, L., Hingston, P.: A scalable multi-objective test
problem toolkit. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.)
Evolutionary Multi-Criterion Optimization, Third International Conference, Pro-
ceedings. pp. 280–295. Springer, Berlin. Heidelberg (2005)

14. Ishibuchi, H., Tsukamoto, N., Nojima, Y.: Evolutionary many-objective optimiza-
tion: A short review. In: Proceedings of the 2008 IEEE Congress on Evolutionary
Computation (IEEE World Congress on Computational Intelligence). pp. 2419–
2426 (2008)

14 B. Saini et al.

15. Li, K., Chen, R., Min, G., Yao, X.: Integration of preferences in decomposition
multiobjective optimization. IEEE Transactions on Cybernetics 48(12), 3359–3370
(2018)

16. Luque, M., Ruiz, F., Miettinen, K.: Global formulation for interactive multiobjec-
tive optimization. OR Spectrum 33(1), 27–48 (2011)

17. Meignan, D., Knust, S., Frayret, J.M., Pesant, G., Gaud, N.: A review and taxon-
omy of interactive optimization methods in operations research. ACM Transactions
on Interactive Intelligent Systems 5(3), 1–43 (2015)

18. Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer Academic Publish-
ers, Boston (1999)

19. Miettinen, K., Hakanen, J., Podkopaev, D.: Interactive nonlinear multiobjective
optimization methods. In: Greco, S., Ehrgott, M., Figueira, J.R. (eds.) Multiple
Criteria Decision Analysis: State of the Art Surveys, pp. 927–976. Springer, New
York (2016)

20. Miettinen, K., Mäkelä, M.M.: On scalarizing functions in multiobjective optimiza-
tion. OR Spectrum 24(2), 193–213 (2002)

21. Miettinen, K., Mäkelä, M.M.: Synchronous approach in interactive multiobjective
optimization. European Journal of Operational Research 170(3), 909–922 (2006)

22. Nakayama, H., Sawaragi, Y.: Satisficing trade-off method for multiobjective pro-
gramming. In: Grauer, M., Wierzbicki, A.P. (eds.) Interactive Decision Analysis.
pp. 113–122. Springer, Berlin, Heidelberg (1984)

23. Ruiz, A.B., Luque, M., Miettinen, K., Saborido, R.: An interactive evolutionary
multiobjective optimization method: Interactive WASF-GA. In: Gaspar-Cunha,
A., Henggeler Antunes, C., Coello, C.C. (eds.) Evolutionary Multi-Criterion Opti-
mization, 8th International Conference, Proceedings. pp. 249–263. Springer, Cham
(2015)

24. Ruiz, F., Luque, M., Miettinen, K.: Improving the computational efficiency in a
global formulation (GLIDE) for interactive multiobjective optimization. Annals of
Operations Research 197(1), 47–70 (2012)

25. Sawaragi, Y., Nakayama, H., Tanino, T.: Theory of Multiobjective Optimization.
Elsevier (1985)

26. Thiele, L., Miettinen, K., Korhonen, P.J., Molina, J.: A preference-based evolution-
ary algorithm for multi-objective optimization. Evolutionary Computation 17(3),
411–436 (2009)

27. Vesikar, Y., Deb, K., Blank, J.: Reference point based NSGA-III for preferred
solutions. In: Proceedings of the 2018 IEEE Symposium Series on Computational
Intelligence (SSCI). pp. 1587–1594 (2018)

28. Wierzbicki, A.P.: The use of reference objectives in multiobjective optimization. In:
Fandel, G., Gal, T. (eds.) Multiple criteria decision making theory and application,
pp. 468–486. Springer (1980)

29. Wierzbicki, A.P.: A mathematical basis for satisficing decision making. Mathemat-
ical Modelling 3(5), 391–405 (1982)

30. Xin, B., Chen, L., Chen, J., Ishibuchi, H., Hirota, K., Liu, B.: Interactive multiob-
jective optimization: A review of the state-of-the-art. IEEE Access 6, 41256–41279
(2018)

31. Zhang, Q., Li, H.: MOEA/D: A multiobjective evolutionary algorithm based on
decomposition. IEEE Transactions on Evolutionary Computation 11(6), 712–731
(2007)

32. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algo-
rithms: Empirical results. Evolutionary Computation 8(2), 173–195 (2000)

PIII

SCORE BAND VISUALIZATIONS: SUPPORTING DECISION
MAKERS IN COMPARING HIGH-DIMENSIONAL OBJECTIVE

VECTORS IN MULTIOBJECTIVE OPTIMIZATION

by

Bhupinder Singh Saini, Kaisa Miettinen, Kathrin Klamroth, Ralph E. Steuer,
Kerstin Dachert

Submitted to a journal.

SCORE Band Visualizations: Supporting

Decision Makers in Comparing High-Dimensional

Objective Vectors in Multiobjective Optimization

Bhupinder Singh Saini1,*, Kaisa Miettinen1, Kathrin Klamroth2,
Ralph E. Steuer3, and Kerstin Dächert4

1University of Jyvaskyla, Faculty of Information Technology, P.O.
Box 35 (Agora), FI-40014 University of Jyvaskyla, Finland

2University of Wuppertal, School of Mathematics and Natural
Sciences, Gaußstr. 20, 42119 Wuppertal, Germany

3Department of Finance, University of Georgia, Athens GA 30502,
USA

4Dresden University of Applied Sciences, P.O. Box 120701,
D-01008 Dresden, Germany

*Corresponding author: Bhupinder Singh Saini,
bhupinder.s.saini@jyu.fi

August 31, 2022

Abstract

Clearly arranged visualizations are needed in optimization problems
with a large number of objective functions and, often simultaneously, a
large number of solution alternatives to support the decision making pro-
cesses. This paper contributes to the visualization of such optimization
problems by proposing the simultaneous clustering of solutions and cor-
related objectives to re-organize parallel coordinate plots in a systematic
and meaningful way.

Parallel coordinate plots are a widely used visualization technique to
represent different solutions. We propose a novel visualization technique
called SCORE bands to be used with parallel coordinate plots to support
the decision maker in identifying patterns in the solutions and correla-
tions among the objectives. The decision maker can, for example, get an
overall impression of the trade-offs among the solutions and zoom in and
out as desired. The decision maker also gets information about the corre-
lations among the objectives from their ordering and from their distances.
The SCORE bands decrease the amount of information to be digested at
a time. Additionally, the interactive nature of the visualizations allows

1

the decision maker to affect the views to gain insight into phenomena
represented in the set of solutions. We demonstrate the added value of
SCORE bands with different examples including a real-life problem with
nine objectives.

Keywords: Multiple objective programming; Parallel coordinate plots;
Correlated objectives; Interactive visualization; Pareto optimality

1 Introduction

The aim of multiobjective optimization methods is to support a domain expert,
to be referred to as a decision maker (DM), in finding the best balance among
conflicting objective functions. Many methods generate so-called Pareto optimal
solutions, where a Pareto optimal solution is one in which no objective can
be improved without impairing at least one of the others. Different methods
generate varying amounts of Pareto optimal solution candidates to compare;
but the task of comparison gets more demanding when the number of objective
functions and the number of solution candidates increases.

Carefully selected visualizations can help a DM in gaining insight in different
trade-offs among solution candidates. Means of visualization for multiobjective
optimization purposes are surveyed, e.g., in Gettinger et al., 2013; Korhonen
and Wallenius, 2008; Lotov and Miettinen, 2008; Miettinen, 2014; Woodruff et
al., 2013. Examples of popular visualization techniques are parallel coordinate
plots (also known as value paths (Geoffrion et al., 1972)), spider web charts,
scatterplot matrices, petal diagrams, star coordinate plots and glyphs. Further
techniques include heatmaps (Hettenhausen et al., 2010), knowCube (Trinkaus
& Hanne, 2005), interactive decision maps (Lotov et al., 2004), the prosection
method (Tusar & Filipic, 2015), PaletteViZ (Talukder & Deb, 2020), and 3d-
radvis (Ibrahim et al., 2016).

As discussed, e.g., in Fonseca et al., 2015, visualizations can be applied
for various purposes in multiobjective optimization ranging from following the
progress of the solution process to visualizing uncertainty and to identifying in-
formation to be visualized. Here we focus on visualizing solution candidates in
the objective space, that is, vectors consisting of objective function values. Re-
cent developments in visualization methods include open-source building blocks
for implementing parallel coordinate plots (Raseman et al., 2019) and consid-
erations of visualizations from the needs of specific application domains, e.g.,
(Haara et al., 2018; Liu et al., 2018; Meignan et al., 2015). In many studies, par-
allel coordinate plots have been found useful in visualizing solution candidates
supported by, e.g, clustering (Cajot et al., 2019; Yang et al., 2020). In parallel
coordinate plots, objective functions are typically represented by vertical axes
and solution candidates are represented by polylines. Naturally, the order of
the axes affects the interpretability since trade-offs in the objectives that are
next to each other are easier to be inspected. Even though Ankerst et al., 1998
is not about multiobjective optimization, the measures of similarity proposed
could be used to order objectives in a parallel coordinate plot. An approach for

2

deriving the order of the axes using Spearman’s rank correlation was proposed
in Zhen et al., 2017. In both Ankerst et al., 1998 and Zhen et al., 2017, the axes
are placed equidistant to each other.

In this paper, we propose means for supporting a DM in understanding the
information contained in a set of Pareto optimal objective vectors that consist of
objective function values of the solution candidates. Our aim is to show trends
in both objectives and solution candidates so that it is easier to digest major
insights. Roughly speaking, we visually cluster both objectives and candidates.
We propose to use Pearson correlation coefficients of all objective pairs to cal-
culate the order of the objectives. Moreover, we visualize the correlation infor-
mation by changing the distance between neighboring axes based on the value
of the Pearson correlation coefficient of the corresponding objectives. Thus, we
not only determine the order in which the objectives should be displayed but
illustrate correlation information visually. This is particularly helpful when the
number of objective functions is above three. While the ideas behind this re-
search are reported in Dächert et al., 2020 (applying different clustering tools),
this is the full development of the initiatives outlined in that piece (including
the idea about modifying the distances between axes in a parallel coordinate
plot, which does not appear elsewhere other than in Dächert et al., 2020).

When the number of solution candidates is high, one can filter out unde-
sired solutions as e.g., in knowCube (Trinkaus & Hanne, 2005). But if one
wants to understand better what kind of trade-offs are represented in the data
available, as we do in this paper, clustering can be applied to first show the
bigger trends among the objectives, and then the DM can be given the ability
to zoom in on clusters of special interest to examine individual solutions more
closely. In support of this kind of an analysis, we propose use of the SCORE
band visualizations.

Overall, our novel contribution to visualize Pareto optimal objective vectors
with modified parallel coordinate plots is three-fold: ordering the objectives, re-
flecting correlation among the objectives in the location of the objectives (with
different distances) and applying SCORE bands to visualize solution candidates
in a visually pleasing way, as seen in the graphical abstract. We do not care
how the set of solutions to be visualized has been generated as long as they do
not dominate each other. The new visualizations can support the DM during a
solution process to get an overall understanding or focus on solutions of interest,
provide preferences as well as identify the final, most preferred solution. Thus,
the proposed visualizations can be used with different multiobjective optimiza-
tion methods.

In general, the data to be visualized does not need to come from a multiob-
jective optimization problem. Instead, it can correspond to a multiple criteria
decision making problem. In principle, the visualization technique can even be
used for data analysis.

The rest of this paper is structured as follows. In Section 2, we introduce
main concepts and notations used, and in Section 3, we propose our new ways
of visualizing sets of Pareto optimal solutions, including SCORE bands. We
give examples in Section 4 as well as discuss different ways of utilizing the new

3

visualizations. Finally, we conclude in Section 5.

2 Concepts and Notation

2.1 Multiobjective Optimization and Pareto Optimality

We consider multiobjective optimization problems

min{f(x) = (f1(x), ..., fk(x)) : x ∈ X} (MOP)

with k ≥ 2 real-valued objective functions fi : X → R, i = 1, . . . , k and a
feasible set X. The objective functions may represent, for example, economical
and ecological goals, or the cost and the quality of a decision. Using the fact
that maximization problems can be reformulated as equivalent minimization
problems, we assume throughout this paper that all objective functions are
to be minimized. Accordingly, we assume that a rational DM prefers smaller
objective values over larger objective values in all objectives. This is reflected in
the concept of Pareto optimal decisions for which none of the objective function
values can be improved without deterioration of at least one other objective
function value. Pareto optimality can be best detected by comparing objective
vectors of feasible decisions in the k-dimensional objective space Rk: An objective
vector z1 = f(x1) dominates z2 = f(x2) in Rk if and only if z1i ≤ z2i for all
i = 1, . . . , k and z1 �= z2. Then a feasible decision x ∈ X is Pareto optimal if
and only if there is no other feasible decision x̄ ∈ X such that f(x̄) dominates
f(x). Corresponding to the set of all Pareto optimal decisions, i.e., the Pareto
set, we have their respective images in the objective space constituting a Pareto
front, i.e., the set of all Pareto optimal objective vectors of problem (MOP). In
this paper, by solutions we refer to objective vectors.

To support the DM in the selection of a most preferred solution, a clearly
arranged graphic presentation of a representative subset of the Pareto front
is crucial. This is particularly true when the number of objective functions
increases, i.e., when k is (considerably) larger than 2 or 3. Indeed, while for
biobjective problems the Pareto front can be visualized in a 2-dimensional plot
that immediately shows the trade-offs between the two objectives, this is no
longer true for higher-dimensional problems. Already in a three-objective case,
a direct visualization of the Pareto front in the objective space is difficult, and it
is generally not useful at all in the case of more than 3 objectives. At the same
time, optimization problems with an increasing number of objective functions
are becoming more and more relevant and popular in practical applications,
and hence there is a growing need for efficient and meaningful presentations of
interesting (Pareto optimal) solution candidates.

We focus on visualizations of a finite set of Pareto optimal objective vectors
or objective vectors that do not dominate each other (i.e., nondominated vec-
tors) on parallel coordinate plots (see, e.g., Geoffrion et al., 1972; Inselberg and
Dimsdale, 1987; Wegman, 1990). Here, each objective function is associated
with a vertical bar, also called an axis, that represents the range of possible

4

function values, while each solution is represented by its respective values on
these bars which are connected by a value path. See Figure 2 for an illustration.

2.2 Structured Datasets with Partially Correlated Objec-
tive Functions

For purposes of illustration, we consider two instances of linear problems given
by

min{f(x) = Cx : Ax ≤ b, 0 ≤ x ≤ u}, (AD)

where C ∈ Rk×n is the objective matrix, A ∈ Rm×n the constraint matrix,
b ∈ Rm the right-hand-side vector, and u ∈ Rn a vector of upper bounds on
the variable values. The problems are designed so that they naturally induce
clusters of similar objective functions and of similar solutions. The first instance
of problem (AD) has three variables and six objective and the coefficients are
chosen as specified in Table 1. The corresponding feasible set as well as objective
vectors are illustrated in Figure 1.

x1 x2 x3

C -5 0.5 1 min

-5 1 0.5 min

2.5 -25 5 min

1 -5 0.5 min

12.5 25 -125 min

1 0.5 -5 min

s.t. 1 1 1 ≤ 1.0

2 1 0 ≤ 1.7

u 0.8 0.8 0.8

all vars ≥ 0

Table 1: Objective and constraint coefficients of the 3-variable, 6-objective in-
stance of (AD)

The first instance has 11 Pareto optimal extreme points {x1, . . . ,x11}. In
Figure 1, they are indicated by dots. We denote the corresponding objective
vectors by (AD1). The vectors −ci, i = 1, . . . , 6, in the graph illustrate the
negative gradient directions of the objectives, indicating the direction of opti-
mization. Note that while their directions are accurate, their lengths are merely
suggestive because of the differences in scale.

As seen, the six objectives are clustered into three batches of two each, with
−c1 and −c2 pointing almost down the x1-axis, −c3 and −c4 pointing almost up
the x2-axis, and −c5 and −c6 pointing along the x3-axis. This suggests that an
appropriate clustering of the objective functions would be in the groups {f1, f2},

5

x3

x2

x1

x1

x2

x3 x4

x5

x6 x7

x8

x9

x10

x11

x3−c1

−c2

−c3

−c4

−c5

−c6

Figure 1: 3-variable instance (AD1) whose 6 objectives are clustered into 3
batches of 2 each.

{f3, f4}, and {f5, f6}, while the 11 Pareto optimal extreme points should be
clustered according to geometrical closeness on the polyhedral feasible set, i.e.,
in the groups {x1, . . . ,x5}, {x6,x7,x8} and {x9,x10,x11}.

Our second instance of problem (AD) has nine objectives. We consider it
later in the paper in connection with its dataset (AD2) of 141 Pareto optimal
objective vectors. We share all datasets used in this paper at https://zenodo.
org/record/5944515.

3 SCORE Bands: Solution clustering and corre-
lated objective visualization via bands

In this section, we describe the algorithm by which SCORE bands and their
visualizations are constructed so as to enable the re-imagination of the concept
of a parallel coordinate plot of this paper. The purpose is to support decision
making in multiobjective optimization with visualizations of sets of Pareto op-
timal (or nondominated) objective vectors in order to highlight key information
contained in them while minimizing clutter that might otherwise distract from
the decision making process. Bear in mind that while the goal of a visualization
is to tailor to the needs of a given DM, the algorithm may have to process many
Pareto optimal objective vectors. Possessing parameters designed to be easy to
operate (to adapt to the needs of the problem at hand and the DM by e.g. an

6

analyst supporting a DM), the algorithm consists of four steps:

1. Solution clustering: Find clusters in the solutions. This information
helps the DM understand the distribution of solutions in the objective
space.

2. Axis ordering: Calculate the optimal ordering for the objective axes of
the parallel coordinate plot visualization. This helps visualizing informa-
tion about the relationships between different objectives, such as trade-offs
or correlations.

3. Axis placement: Expand or contract the space between the objective
axes to highlight or suppress the relationship between neighboring objec-
tives in the parallel coordinate plot. This usage of the inter-axes space
can help the DM focus on important relationships among the solutions or
objectives.

4. Solution visualization: Visualize the information extracted in the pre-
vious three steps in an effective, visually accessible, and pleasing manner.

Other simple visualizations can be presented to a DM in parallel to the
SCORE bands. They can provide additional insight into the problem and make
it easier to understand the SCORE band visualization.

In Subsections 3.1 through 3.5, we describe the various components of the
aforementioned algorithm. We also demonstrate the advantage of using the
components individually with a dataset of 1036 objective vectors generated for
the DTLZ7 problem (Deb et al., 2005) with 3 objectives. The dataset, to
be referred to as (3-DTLZ7) is visualized in Figure 2a as a 3-D scatter plot
and in Figure 2b as a parallel coordinate plot. Note that the SCORE band
algorithm can be used to visualize objective vectors related to problems with,
at least theoretically, any number of objectives, and we only use a three-objective
problem here to describe the algorithm. We compare the results against some
standard visualization techniques.

3.1 Solution clustering

Clustering can be a very useful tool for DMs. Clustering can highlight patterns
in the objective space by identifying groups of solutions that are close to each
other (i.e., in a cluster) and far from solutions in other groups. In Figure 2a,
the 3D scatter plot clearly shows that the solutions are spread among four clus-
ters. However, as can be seen in Figure 2b, the cluster information is harder
to appreciate in the parallel coordinate plot. While the four clusters are clearly
distinguishable with regard to the first two axes, they are not nearly as distin-
guishable with regard to the third. However, the problem is alleviated by giving
colors to the individual solutions according to their cluster. Figure 3 demon-
strates the effectiveness in the parallel coordinate plot shown. It now becomes
trivial to distinguish the four clusters, even in the third objective. The spread
of each cluster is visible along each axis.

7

(a) 3D scatter plot (b) Parallel coordinate plot

Figure 2: (3-DTLZ7) set of nondominated objective vectors visualized using two
techniques.

Figure 3: (3-DTLZ7) set of nondominated objective vectors plotted in a parallel
coordinate plot and colored according to clustering information.

3.2 Axis ordering

The order of the objectives in a parallel coordinate plot can make a significant
difference in interpretation. An axis in a parallel coordinate plot can have at
most two neighboring axes. Hence, the relationship of an objective to its neigh-
boring objectives is very prominent visually. Crossing over of the value paths
of individual solutions between neighboring axes signifies a negative correlation.
If instead, the value paths are primarily parallel to each other, a DM can con-
clude the two neighboring objectives are highly positively correlated. Finally, a
chaotic tangle of value paths signifies a lack of correlation between the neigh-
boring objectives. In static visualizations, i.e., plots that a user cannot interact
with or change, this information comes at the cost of a lack of information about
non-neighboring objective pairs. Dynamic visualizations can help the DMs solve

8

this problem by allowing manual reordering of the axes in real-time, but it may
be time-consuming to find the most informative order. However, static visual-
izations are still necessary for certain media where dynamic visualizations are
impossible, such as in print. Hence, methods to most informatively order the
axes in a parallel coordinate plot to highlight information relevant to a DM are
still required.

One such method to derive a good order of the objectives (represented by
a permutation π) is to solve a travelling salesperson problem TSP (ci,j), where
ci,j ∈ R is a measure of the distance between two objectives. The ordering
is given by a permutation π of the set {1, 2, ..., k}, where k is the number of
objectives, such that fπi

is the ith objective to be placed as an axis in the parallel
coordinate plot. We provide the user with two options for the distance metric.
In the first option (referred to as Metric 1 in the following), ci,j = −ρ(fi, fj),
where ρ(fi, fj) is the Pearson correlation coefficient between fi and fj . By
using this metric, objectives that are positively correlated are placed closer to
each other. Alternatively, the user can choose to use the absolute value of the
Pearson correlation coefficients instead: ci,j = −|ρ(fi, fj)|. This second option
is referred to as Metric 2 in the following. Metric 2 highlights both positive and
negative correlations.

Figure 4: (3-DTLZ7) nondominated objective vectors plotted in a parallel co-
ordinate plot, colored according to the clustering information, and with axes
ordered according to Metric 2, i.e., the absolute values of the Pearson correla-
tion coefficients.

Figure 4 shows the effectiveness of using the axes ordering method described
above on the (3-DTLZ7) dataset. The second metric, which highlights both
positive and negative correlations, was used to generate the figure. One can
immediately notice the visual symmetry in the figure across the f3 axis. The
symmetry corresponds to a similar symmetry seen in the 3D scatter plot visual-
ization (Figure 2a) around the f3 axis. On the other hand, the standard parallel
coordinate plot (Figure 2b) obscures this symmetry to some extent.

9

In static visualizations, the axes ordering method can help the DM to gain
insight into the problem swiftly. In dynamic visualizations, the method can
provide a default first view, which can then be altered by a DM interactively as
desired.

3.3 Axis placement

A standard parallel coordinate plot dedicates an equal amount of space to each
objective axis pair. However, in reality, the information that a DM can gather
from inter-axis space can vary significantly between different objective pairs. For
example, some objective pairs may be highly correlated, whereas others may be
hardly correlated at all. Thus, we can encode relevant information by altering
the space. For example, by varying the relative distances between the objective
axes, we can visually show objective clusters. Objectives that behave similarly
are placed closer to each other, whereas objectives that behave dissimilarly are
placed farther apart.

We provide two different methods for calculating relative distances between
neighboring axes (disti = dist(fπi , fπi+1)):

Method 1: disti = 1− ρ(fπi
, fπi+1

) + δ for all i = 1, . . . , k − 1

Method 2: disti =
1

|ρ(fπi , fπi+1)|
+ δ for all i = 1, . . . , k − 1,

where δ is a user-provided distance parameter which increases the minimum
distance between the axes. Based on our experiments, we recommend Method 1
to be used with Metric 1 (to calculate the axes order), and Method 2 to be used
with Metric 2. These relative distances can be multiplied by a scaling factor to
fit a desired width, for example, the width of a monitor or a page. Note that
due to the symmetrical nature of the considered DTLZ7 problem, this aspect
of the SCORE band visualizations cannot be recognized in Figure 4. However,
we present more problems in the later sections of the paper which demonstrate
the utility of varying relative distances between axes.

3.4 Solution visualization

As mentioned, parallel coordinate plot visualizations tend to grow complicated
and cluttered with an increasing number of objectives and solutions. As the
number of objectives increases, the individual solution traces cross-over more
often due to the trade-offs among the different solutions. On the other hand,
adding more solutions to the plot increases the complexity by simply increasing
the density of information in the visualization. Together, this can result in
visualizations that are difficult to understand, even with the helpful features
described in the previous subsections.

One way to resolve this issue is to plot simplified abstractions rather than
individual solutions. For example, instead of plotting all solutions as individual
traces, the clusters (as identified in Subsection 3.1) can be plotted as bands as

10

Figure 5: Nondominated objective vectors (3-DTLZ7) plotted as a SCORE band
visualization.

the basic unit of visualization. In Figure 5, we showcase this idea by plotting the
(3-DTLZ7) dataset. We call the result a SCORE band visualization. Each band
exemplifies the pattern of the trade-offs followed by the solutions of the corre-
sponding cluster while keeping the visualization simple. The width of the band
at any axis represents the spread of corresponding objective values achieved by
the solutions belonging to the cluster. The height, width, and shape of the
bands can be calculated in various ways. We propose that the center of a band
(on each axis) be placed on the median value achieved by solutions belonging
to that cluster.

A statistical measure of spread, such as standard deviation, interquartile
range, or confidence interval, should be used to determine the width of the
band along each axis. We use interquartile range in Figure 5, referred to as “50%
bands” in the legend. Once we have the height and width at each axis, we draw
the band by interpolating between the axes. A traditional parallel coordinate
plot does this by linear interpolation, leading to piece-wise linear traces for each
solution. However, we have found that using spline interpolation leads to a
more aesthetically pleasing visualization without extraneous information. We
color the bands according to clustering information and make them translucent
to make it easy to distinguish between the different clusters and follow their
patterns.

Note that the SCORE band visualization is meant to be a first or default
visualization to be used in the decision making process. The bands make it easy
for a DM to identify patterns in the solutions and arrive at a region of inter-

11

est. Based on this information, the DM can, for example, give their preferences
for the next step of an interactive decision making process. Alternatively, the
DM may choose to investigate further in one’s region of interest by selectively
visualizing the solutions belonging to clusters of interest or eliminate clusters
from consideration. We have implemented the SCORE band visualization as
an open-source Python package and will make the code available. The pack-
age creates interactive visualizations which support both SCORE bands and
traditional parallel coordinate plots. A DM can show or hide various bands or
solution clusters by interacting with the plot.

3.5 Supporting visualizations

Supporting visualizations, which provide a DM with relevant information in
simple plots, can be helpful in a decision making process. Often, it may be
impossible or undesirable to incorporate such information into the SCORE band
visualization. The types of possible useful supporting visualizations depend
on the optimization problem. For example, in problems involving geographic
locations, plotting some characteristics on a map may be helpful.

We identify two generic visualizations that compliment the SCORE band vi-
sualizations, which can be helpful in any problem. The first is a heatmap of the
Pearson correlation coefficient values between different objectives. Apart from
relaying the correlation information, it can help explain the order of objectives
in the SCORE band visualization. It can also enable the DM to manually decide
the order of objectives in a SCORE band visualization or parallel coordinate
plot. The second supporting visualization is generated by applying dimension-
ality reduction techniques such as t-SNE (van der Maaten & Hinton, 2008) on
the solutions and plotting the results in a 2-D scatter plot. Depending on the
choice of the dimensionality reduction technique, such visualization may help
a DM understand the local structure of various parts of the Pareto front, the
presence or absence of clusters, or connectivity between various parts of the
front.

4 Implementation details

We have implemented the SCORE band visualization and a graphical user in-
terface (GUI) tool to help create the plots from data as a part of the open-source
interactive optimization framework DESDEO (Misitano et al., 2021). We use
the Plotly package (Plotly Technologies Inc., 2015) to implement the SCORE
band visualization and the related Dash (Hossain, 2019) package to create a
web-based GUI. There are various customization options available to a user to
tailor the SCORE band visualization to different needs. A user can import data
into the GUI in the form of a CSV file. The visualization can then be created
without further input from the user. Alternatively, the GUI provides a form,
which the user can use to change the various parameters of the SCORE band
visualization. The GUI can be seen in Figure 6. The options available to the

12

user are:

1. CSV file: It should only contain the objective vectors, such that each
column represents a different objective. The first row should contain the
objective names.

2. Solution clustering: The different clustering algorithms supported are:
DBSCAN (default), Bayesian Gaussian mixture models, K-Means, spec-
tral clustering, Ward hierarchical clustering, and agglomerative clustering.
Providing the number of clusters is necessary for all algorithms except DB-
SCAN and Bayesian Gaussian mixture models. We use the scikit-learn
package to train these models (Pedregosa et al., 2011).

3. Axes ordering: The user can choose whether to use the absolute value of
Pearson correlation coefficient as a distance metric or not. By default,
Metric 1 is used.

4. Axis placement: The user can choose the distance function to be used
(Method 1 is used by default) and the distance parameter δ (default value
= 0.4).

5. Solution visualization: The user can choose whether to display individual
solutions, cluster medians, and SCORE bands in the plot. The user can
also disable each of the three options for each cluster independently. By
default, only the bands are visualized.

6. Supporting visualizations: The user can choose from the following di-
mensionality reduction techniques: locally linear embedding (LLE), LTSA
LLE, Hessian LLE, modified LLE, isomap embedding, multidimensional
scaling, spectral embedding, and t-distributed stochastic neighbor embed-
ding (default). We use the implmentation of these algorithms from the
scikit-learn package.

Additionally, we use the NumPy (Harris et al., 2020) and Pandas (Reback et
al., 2020) Python packages for data handling. We use the SciPy Python pack-
age (Virtanen et al., 2020) to extract statistical information (such as Pearson
correlation coefficients) from the data. Finally, we use the tsp solver2 package
to solve the TSP problem using a greedy algorithm (Shintyakov, 2020).

5 Case Studies

In this section, we demonstrate the usage of the SCORE band visualizations
with a variety of datasets. These include artificially generated datasets, datasets
obtained from multiobjective optimization benchmark problems, and real-life
multiobjective optimization problems. We showcase how the various parameters
of the SCORE band visualizations can be changed to highlight different aspects
of the explored datasets. We also show how supporting visualizations can help
users understand the SCORE band visualizations and the data.

13

Figure 6: A GUI application to analyze datasets using SCORE bands. The
GUI provides support for uploading datasets in a CSV format, allows the user
to customize the visualization parameters, displays the SCORE bands as well
as supporting visualizations, and allows the user to export the visualization as
an image file.

5.1 Artificial datasets

We begin by visualizing a small artificial dataset (AD1) consisting of 11 6-
dimensional objective vectors introduced in Section 2.2. We visualize (AD1)
using a standard parallel coordinate plot in Figure 7. The figure shows that
there are vectors in clusters, but the exact number of clusters is not noticeably
clear. Additionally, as parallel coordinate plots are not designed to display
information related to correlation of objectives, that information is lost in this
visualization.

Figure 8 visualizes (AD1) using the SCORE bands. We used Bayesian Gaus-
sian mixture modelling to calculate the objective vector clusters and Method
1 to determine the axis placement. The three clusters of objective vectors are
immediately clear as three bands of different colors. The clusters of objective
functions are also clearly visible as three pairs: (f2, f1), (f3, f4), (f6, f5). The
objectives that are closer to each other (f1 and f2, for example) have a very low
degree of ”crossing over” of bands, signifying a high correlation. On the other
hand, the bands ”cross over” much larger (vertical) distances between neighbor-
ing objectives that are farther apart (such as f1 and f3), signifying a negative
correlation.

The second dataset (AD2) mentioned in Section 2.2 has three clusters of
objectives with high in-group correlation (consisting of 2, 3, and 4 objectives

14

Figure 7: Visualizing (AD1) using parallel coordinate plot

Figure 8: Visualizing (AD1) using SCORE band visualization

respectively). While creating the dataset, we ordered the objectives such that
consecutive objectives (for example, f1 and f2, or f5 and f6) are negatively
correlated. As seen in Figure 9, such datasets can be particularly challenging
to interpret using a standard parallel coordinate plot.

We visualize the dataset (AD2) using SCORE bands in Figures 10a and
10b. We used the same parameter values for the visualization as for (AD1).
Figure 10a shows the dataset in the form of bands of clustered objective vectors,
whereas Figure 10b hides the bands and shows the solutions directly. The three

15

Figure 9: Visualizing (AD2) using parallel coordinate plot

clusters of objective functions are clearly visible (with 4, 2 and 3 objectives
forming the three clusters). As mentioned earlier, neighboring objectives that
are placed closer to each other have a high correlation. A consequence of this fact
is that a DM can simultaneously improve objectives belonging to such clusters
without much compromise. We can see this in Figure 10b with objectives f5, f3,
and f7. Most of the solutions (especially those belonging to cluster 2 (black))
have value paths that are nearly parallel to each other, with minimal crossing
over. We can improve these three objectives simultaneously (at the cost of
other objectives). Hence, by ordering and placing axes according to Pearson
correlation coefficients, we can simplify the decision-making process.

Figure 10b is further simplified by introducing bands in Figure 10a. As
(AD2) did not have clustered objective vectors, the clusters and bands created
for Figure 10a may be misleading. Some DMs may still prefer Figure 10a as a
starting point for decision making. The bands provide simple abstractions for
the patterns followed by groups of objective vectors (regardless of whether the
clusters genuinely exist or not). Once a DM identifies a region of interest using
the bands, we can hide the bands and show individual solutions. We discuss
this aspect further in the following subsection.

5.2 Benchmark dataset

We show the effectiveness of using clustering algorithms even with datasets,
where no real clusters exist using the DTLZ5 benchmark problem with a de-
generate Pareto front. We consider 3 objectives and denote the set of 1000
nondominated objective vectors by (3-DTLZ5). Figures 11 and 12 show (3-
DTLZ5) as SCORE band visualizations. For generating Figure 11, we used the
DBSCAN algorithm to generate the solution clusters. As there are no clusters
in the dataset, the visualization puts all solutions in a single cluster. Hence, the
resulting singular band does not provide much information to the DM, and it

16

(a) Visualization of bands

(b) Visualization of individual solutions

Figure 10: Visualization of (AD2) using SCORE bands.

is necessary to display individual solutions, instead.
Figure 12, on the other hand, uses Gaussian mixture models for clustering.

The algorithm forcibly breaks the dataset down into many clusters of similar

17

Figure 11: SCORE band visualization of nondominated objective vectors for
(3-DTLZ5) using DBSCAN as the clustering algorithm (the band is hidden and
individual solutions are shown).

Figure 12: SCORE band visualization of (3-DTLZ5) using Gaussian mixture
models as the clustering algorithm.

18

sizes. These clusters group solutions that are close to each other in the objective
space, and individual clusters lie adjacent to other clusters along the degenerate
curve of the Pareto front. These clusters are created randomly, and running the
clustering algorithm multiple times returns slightly different groupings (both in
the number and members of clusters). While the individual clusters have no
real significance, they provide a simpler way of understanding the patterns in
the dataset. Instead of focusing on hundreds or thousands of solutions, as seen
in Figure 11, a DM can focus on a much smaller number of bands. Informa-
tion about the trade-offs and correlations can easily be understood by following
the paths of the bands and comparing the relative distances between the axes,
respectively. It is also easier to compare a small number of bands to discover
a region of interest than doing the same in a plot with thousands of solutions.
When a DM finds such a region, they can focus on the solutions belonging to the
clusters in the regions and hide all other solutions/bands, effectively “zooming”
into the region of interest.

5.3 Real-life data-based problems

To demonstrate the usage of the SCORE band visualizations in real-life prob-
lems, we use the general aviation aircraft design (GAA) problem (Shah et al.,
2011). We use 709 nondominated objective vectors for the problem obtained in
Mazumdar et al., 2020 with eleven objectives. We visualize this (GAA) dataset
using SCORE bands in Figures 13 and 14 and present a supporting visualization
in Figure 15 in the form of a heatmap of pairwise Pearson correlation coefficients
of the eleven objectives.

Figure 13 uses DBSCAN as the clustering algorithm for (GAA), whereas
Figure 14 uses Gaussian mixture models. In both figures, it is immediately
apparent that there are three groups of objectives: two groups with high in-
group correlations ({f1, f2, f3, f5, f6} and {f7, f8, f9}) and the third group with
low correlations to all objectives {f4, f10, f11}. We can verify this property by
looking at the pairwise correlations in Figure 15. Furthermore, by following the
trace of one of the bands (for example, the grey band for “Cluster 7” in Figure
13 which has the lowest value in the f2 objective), it is clear that there is no or
minimal in-group trade-off between the objectives of the first two groups. On the
other hand, there are significant out-group trade-offs between the objectives of
the same two groups. Such a behaviour in the data makes the decision-making
process significantly simpler as instead of focusing on the trade-offs between
eleven objectives, a DM can focus on the first two groups and the remaining
three objectives.

Even though Figures 13 and 14 visualize the same dataset, they look signif-
icantly different because of the behaviour of the corresponding clustering algo-
rithms. Using the DBSCAN algorithm results in a very simplified plot, which
reduces the time taken by a DM to visually gather the information needed to
understand simple patterns in the data. However, this simplicity hides the so-
lutions that can clearly be seen in Figure 14. While this is a major downside in
static visualizations, we solve this problem by making the plots interactive and

19

Figure 13: Score band visualization of the GAA dataset using DBSCAN as the
clustering algorithm

enabling the DM to visualize all solutions from one or more clusters at any time.
We cannot predict the behaviour of the clustering algorithms, as the results are
dependent on both the nature of the objectives and the distribution of solutions
to be visualized (discovered by the optimization algorithm). Hence, we recom-
mend that DMs should be presented with at least two different SCORE band
visualizations using different clustering algorithms.

6 Conclusions

In this paper, we have proposed SCORE band visualizations as a novel way of
presenting the objective vectors of a multiobjective optimization problem with
many objectives to a decision maker. The proposed technique explicitly ad-
dresses the case of many objectives in which it becomes difficult for the decision
maker to process the solution candidates generated. While different methods
generate varying amounts of solution information, the task of evaluating this
information, all other things equal, only gets more demanding as the number of
objectives increases.

Already in the three-objective case, a direct visualization of a Pareto front
in the objective space is difficult, and it is generally not useful at all in cases of
more than three objectives. Hence, there is a growing need for economical and
meaningful presentations of Pareto optimal or nondominated objective vectors.

SCORE bands support decision making by identifying patterns in the infor-

20

Figure 14: SCORE bands of the (GAA) dataset using Gaussian mixture models
as the clustering algorithm

Figure 15: Pearson correlation coefficient values between the objectives in the
(GAA) dataset.

21

mation and breaking it down into digestible components to make it easier to
gain major insights. The decision maker can easily grasp correlated objectives
since they are arranged next to each other. Moreover, in contrast to common
techniques, we vary the distance among objectives to transmit the degree of
correlation. The user can choose between a visualization that shows all single
solutions as well as their combination into bands. The latter reduce the cog-
nitive burden by reducing the amount of hundreds or thousands of solutions
to a much smaller number of colored bands. Our aim is to provide assistance
by an intelligent way of visualization which is applicable beyond multiobjective
visualization.

Our future research directions include integrating SCORE bands in an inter-
active decision making process. This will allow us to utilize these visualizations
to provide preference information to interactive algorithms such as those im-
plemented in the DESDEO framework. This will facilitate us to conduct case
studies and analyze how decision makers use this tool to solve real problems.

Acknowledgements

The idea of this research was developed at the Dagstuhl Seminar 20031 (Scal-
ability in Multiobjective Optimization). This research was partly funded by
the Academy of Finland (grant number 322221). The research is related to the
thematic research area DEMO (Decision Analytics utilizing Causal Models and
Multiobjective Optimization, jyu.fi/demo) of the University of Jyvaskyla.

References

Ankerst, M., Berchtold, S., & Keim, D. (1998). Similarity clustering of dimen-
sions for an enhanced visualization of multidimensional data. Proceed-
ings of the IEEE Symposium on Information Visualization, 52–60.

Cajot, S., Schüler, N., Peter, M., Koch, A., & Maréchal, F. (2019). Interac-
tive optimization with parallel coordinates: Exploring multidimensional
spaces for decision support. Frontiers in ICT, 5, article 32.

Dächert, K., Klamroth, K., Miettinen, K., & Steuer, R. (2020). KaKaRaKe
– user-friendly visualization for multiobjective optimization with high-
dimensional objective vectors. In C. Fonseca, K. Klamroth, G. Rudolpth,
& M. Wiecek (Eds.), Scalability in multiobjective optimization, report
from dagstuhl seminar 20031 (pp. 97–103). Dagstuhl.

Deb, K., Thiele, L., Laumanns, M., & Zitzler, E. (2005). Scalable test problems
for evolutionary multiobjective optimization. In A. Abraham, L. Jain, &
R. Goldberg (Eds.), Evolutionary multiobjective optimization. advanced
information and knowledge processing (pp. 105–145). Springer.

22

Fonseca, C. M., Antunes, C. A., Lacour, R., Miettinen, K., Reed, P. M., &
Tusar, T. (2015). Visualization in multiobjective optimization. In S.
Greco, K. Klamroth, J. Knowles, & G. Rudolph (Eds.), Understanding
complexity in multiobjective optimization, report from dagstuhl seminar
15031 (pp. 129–139).

Geoffrion, A., Dyer, J., & Feinberg, A. (1972). An interactive approach for
multi-criterion optimization, with an application to the operation of an
academic department. Management Science, 19 (4), 357–368.

Gettinger, J., Kiesling, E., Stummer, C., & Vetschera, R. (2013). A comparison
of representations for discrete multi-criteria decision problems. Decision
Support Systems, 54 (2), 976–985.

Haara, A., Pykäläinen, J., Tolvanen, A., & Kurttila, M. (2018). Use of inter-
active data visualization in multi-objective forest planning. Journal of
Environmental Management, 210, 71–86.

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P.,
Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R.,
Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., del
Ŕıo, J. F., Wiebe, M., Peterson, P., . . . Oliphant, T. E. (2020). Array
programming with NumPy. Nature, 585 (7825), 357–362.

Hettenhausen, J., Lewis, A., & Mostaghim, S. (2010). Interactive multi-objective
particle swarm optimization with heatmap-visualization-based user in-
terface. Engineering Optimization, 42 (2), 119–139.

Hossain, S. (2019). Visualization of Bioinformatics Data with Dash Bio. In C.
Calloway, D. Lippa, D. Niederhut, & D. Shupe (Eds.), Proceedings of
the 18th Python in Science Conference (pp. 126–133).

Ibrahim, A., Rahnamayan, S., Martin, M. V., & Deb, K. (2016). 3d-radvis:
Visualization of Pareto front in many-objective optimization. 2016 ieee
congress on evolutionary computation (cec) (pp. 736–745). IEEE.

Inselberg, A., & Dimsdale, B. (1987). Parallel coordinates for visualizing mul-
tidimensional geometry. In T. Kunii (Ed.), Computer graphics 1987,
proceedings of computer graphics international (pp. 25–44).

Korhonen, P., & Wallenius, J. (2008). Visualization in the multiple objective
decision-making framework. In J. Branke, K. Deb, K. Miettinen, & R.
Slowinski (Eds.),Multiobjective optimization: Interactive and evolution-
ary approaches (pp. 195–212). Springer.

Liu, J., Dwyer, T., Marriott, K., Millar, J., & Haworth, A. (2018). Understand-
ing the relationship between interactive optimisation and visual ana-
lytics in the context of prostate brachytherapy. IEEE Transactions on
Visualization and Computer Graphics, 24 (1), 319–329.

Lotov, A. V., Bushenkov, V. A., & Kamenev, G. K. (2004). Interactive deci-
sion maps: Approximation and visualization of Pareto frontier. Kluwer
Academic Publishers.

Lotov, A. V., & Miettinen, K. (2008). Visualizing the Pareto frontier. In J.
Branke, K. Deb, K. Miettinen, & R. Slowinski (Eds.), Multiobjective
optimization: Interactive and evolutionary approaches (pp. 213–243).
Springer.

23

Mazumdar, A., Chugh, T., Hakanen, J., & Miettinen, K. (2020). An interactive
framework for offline data-driven multiobjective optimization. In B. Fil-
ipič, E. Minisci, & M. Vasile (Eds.), Bioinspired optimization methods
and their applications (pp. 97–109). Springer International Publishing.

Meignan, D., Frayret, J.-M., & Pesant, G. (2015). Interactive planning system
for forest road location. Journal of Heuristics, 21 (6), 789–817.

Miettinen, K. (2014). Survey of methods to visualize alternatives in multiple
criteria decision making problems. OR Spectrum, 36 (1), 3–37.

Misitano, G., Saini, B. S., Afsar, B., Shavazipour, B., & Miettinen, K. (2021).
DESDEO: The modular and open source framework for interactive mul-
tiobjective optimization. IEEE Access, 9, 148277–148295.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J.,
Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, E.
(2011). Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12, 2825–2830.

Plotly Technologies Inc. (2015). Collaborative data science. https://plot.ly
Raseman, W., Jacobson, J., & Kasprzyk, J. (2019). Parasol: An open source,

interactive parallel coordinates library for multi-objective decision mak-
ing. Environmental Modelling & Software, 116, 153–163.

Reback, J., McKinney, W., jbrockmendel, den Bossche, J. V., Augspurger, T.,
Cloud, P., gfyoung, Sinhrks, Klein, A., Roeschke, M., Hawkins, S., Trat-
ner, J., She, C., Ayd, W., Petersen, T., Garcia, M., Schendel, J., Hay-
den, A., MomIsBestFriend, . . . Mehyar, M. (2020). Pandas-dev/pandas:
Pandas (Version latest). Zenodo. https ://doi .org/10 .5281/zenodo .
3509134

Shah, R. A., Reed, P. M., & Simpson, T. W. (2011). Many-objective evolutionary
optimisation and visual analytics for product family design. In L. Wang,
A. H. C. Ng, & K. Deb (Eds.), Multi-objective evolutionary optimisation
for product design and manufacturing (pp. 137–159). Springer.

Shintyakov, D. (2020). tsp-solver. Retrieved January 27, 2022, from https://
github.com/dmishin/tsp-solver

Talukder, A., & Deb, K. (2020). Paletteviz: A visualization method for func-
tional understanding of high-dimensional Pareto-optimal data-sets to
aid multi-criteria decision making. IEEE Computational Intelligence
Magazine, 15 (2), 36–48.

Trinkaus, H. L., & Hanne, T. (2005). knowCube: A visual and interactive sup-
port for multicriteria decision making. Computers and Operations Re-
search, 32 (5), 1289–1309.

Tusar, T., & Filipic, B. (2015). Visualization of Pareto front approximations
in evolutionary multiobjective optimization: A critical review and the
prosection method. IEEE Transactions on Evolutionary Computation,
19 (2), 225–245.

van der Maaten, L., & Hinton, G. (2008). Visualizing data using t-sne. Journal
of Machine Learning Research, 9 (86), 2579–2605.

24

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Courna-
peau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der
Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson,
A. R. J., Jones, E., Kern, R., Larson, E., . . . SciPy 1.0 Contributors.
(2020). SciPy 1.0: Fundamental algorithms for scientific computing in
Python. Nature Methods, 17, 261–272.

Wegman, E. J. (1990). Hyper-dimensional data analysis using parallel coordi-
nates. Journal of the American Statistical Association, 85, 664–675.

Woodruff, M. J., Reed, P. M., & Simpson, T. W. (2013). Many objective vi-
sual analytics: Rethinking the design of complex engineered systems.
Structural and Multidisciplinary Optimization, 48 (1), 201–219.

Yang, D., Di Stefano, D., Turrin, M., Sariyildiz, S., & Sun, Y. (2020). Dy-
namic and interactive re-formulation of multi-objective optimization
problems for conceptual architectural design exploration. Automation
in Construction, 118, article 103251.

Zhen, L., Li, M., Cheng, R., Peng, D., & Yao, X. (2017). Adjusting parallel
coordinates for investigating multi-objective search. In Y. Shi, K. Tan,
M. Zhang, K. Tang, X. Li, Q. Zhang, Y. Tan, M. Middendorf, & Y. Jin
(Eds.), Simulated evolution and learning (pp. 224–235). Springer.

25

PIV

OPTIMISTIC NAUTILUS NAVIGATOR FOR
MULTIOBJECTIVE OPTIMIZATION WITH COSTLY

FUNCTION EVALUATIONS

by

Bhupinder Singh Saini, Michael Emmerich, Atanu Mazumdar, Bekir Afsar,
Babooshka Shavazipour, Kaisa Miettinen 2022

Journal of Global Optimization, 83, 865–889

https://doi.org/10.1007/s10898-021-01119-7

Licensed under a Creative Commons Attribution 4.0 License.

https://doi.org/10.1007/s10898-021-01119-7

Journal of Global Optimization
https://doi.org/10.1007/s10898-021-01119-7

Optimistic NAUTILUS navigator for multiobjective
optimization with costly function evaluations

Bhupinder Singh Saini1 ·Michael Emmerich1,2 · Atanu Mazumdar1 · Bekir Afsar1 ·
Babooshka Shavazipour1 · Kaisa Miettinen1

Received: 20 November 2020 / Accepted: 2 December 2021
© The Author(s) 2021

Abstract

We introduce novel concepts to solve multiobjective optimization problems involving (com-
putationally) expensive function evaluations and propose a new interactive method called
O-NAUTILUS. It combines ideas of trade-off free search and navigation (where a decision
maker sees changes in objective function values in real time) and extends the NAUTILUS
Navigator method to surrogate-assisted optimization. Importantly, it utilizes uncertainty
quantification from surrogate models like Kriging or properties like Lipschitz continuity
to approximate a so-called optimistic Pareto optimal set. This enables the decision maker to
search in unexplored parts of the Pareto optimal set and requires a small amount of expensive
function evaluations. We share the implementation of O-NAUTILUS as open source code.
Thanks to its graphical user interface, a decision maker can see in real time how the prefer-
ences provided affect the direction of the search. We demonstrate the potential and benefits
of O-NAUTILUS with a problem related to the design of vehicles.

Keywords Interactive methods · Multiobjective optimization problems · Decision makers ·
Preference information · Computational cost · Kriging

1 Introduction

Multiobjective optimization deals with the simultaneous minimization or maximization of
multiple conflicting objective functions. There, instead of a single optimal solution, so-
called Pareto optimal solutions can be identified with different trade-offs. They form a Pareto
optimal set. Typically, preference information from a domain expert, a decision maker (DM),
is needed to identify the most preferred one among the mathematically incomparable Pareto
optimal solutions.

B Bhupinder Singh Saini
bhupinder.s.saini@jyu.fi

1 Faculty of Information Technology, University of Jyvaskyla, P.O. Box 35 (Agora), FI-40014
Jyvaskyla, Finland

2 Faculty of Science, Leiden Institute of Advanced Computer Science, Niels Bohrweg 1, 2333 CA
Leiden, The Netherlands

123

Journal of Global Optimization

In multiobjective optimization, relevant questions include: How can we scale to problems
with a large number of objectives? How can we solve problems with realistic, computation-
ally expensive objective function formulations? How can an algorithm conveniently integrate
a DM’s preferences into the search? This article answers these questions by proposing a
novel method called Optimistic NAUTILUS Navigator method, for short, O-NAUTILUS,
which extends the interactive NAUTILUS Navigator method [38] to an online data-driven
approach [18], sparingly needing new objective function evaluations during the interactive
solution process and displaying additional information to support the DM. O-NAUTILUS
combines two methodologies, which we briefly discuss next: surrogate modelling and navi-
gation methods.

When dealing with computationally expensive problems, the computing resources are
usually limited and one has to think about how to use them wisely. For instance, in engineer-
ing optimization, numerical simulation is often needed to compute the objective function
values, and the evaluation of an objective function can take from several minutes up to hours
[25]. One can reduce the computational cost by replacing the original (expensive) objective
functions with computationally less costly approximation functions, typically learned from
previous evaluation data. They are called surrogate models or metamodels [2,19,37,39,44,46].
Different surrogate models have been developed in the literature (e.g., radial basis functions
[36], neural networks [23,32], support vector regression [3], polynomial regression [17] and
Kriging [22,25]) and utilized in various optimization methods. To get an overview of the avail-
able methods to handle computationally expensive multiobjective optimization problems, we
refer to [43] (for exact and deterministic methods) and [7] (for evolutionary methods). To
solve such problems, we cannot necessarily rely on mathematical properties such as differ-
entiability or convexity. Metaheuristic approaches like evolutionary algorithms do not make
any such assumptions [8]. However, neither their global nor local convergence can always
be guaranteed [40].

An important aspect when using surrogate models is the handling of prediction uncer-
tainty. Although replacing the original expensive functions with an approximated one is
intended to reduce the computational cost of function evaluations, it often leads to a loss of
accuracy. Approximations include some errors making the solutions inexact. Therefore, in
multiobjective optimization with expensive black-box functions, we cannot always guarantee
to reach actual Pareto optimality but can only compute approximations, particularly when
we have a limited computation budget. Consequently, we cannot always explore all parts
of the feasible region, and some Pareto optimal solutions which can be of interest to a DM
may remain undiscovered. However, it is possible to estimate the range of improvements
that may be achieved by further exploration using uncertainty quantification techniques. As a
surrogate model, Kriging (Gaussian process regression) [22,25,33] is frequently used since it
provides uncertainty quantification in the form of a local mean squared error in addition to the
predicted value of the original function. Furthermore, some mathematical properties (such
as Lipschitz continuity) may hold, which can be used to provide lower and upper bounds of
function values at yet un-evaluated decision vectors. In the literature, Lipschitz continuity
has been utilized in deterministic approaches which can guarantee the global convergence
of solutions under certain conditions (e.g., [11,16,35,39,42,46]). For Lipschitz continuous
functions, lower and upper bounds can be relatively plainly calculated [24,34,48].

The second methodology in this article is navigation, a special type of interactive method
[14]. As mentioned, preference information of a DM is typically needed to find the most
preferred solution. We can classify multiobjective optimization methods based on when
preference information is incorporated [27]. In a priori methods, the DM provides hopes and
expectations first, and then a solution which matches them as well as possible is found, but

123

Journal of Global Optimization

the hopes may be unrealistic. Alternatively, a representative set of Pareto optimal solutions
is found, and then the DM must select the best of them in a posteriori methods. However,
generating a representative set may be computationally demanding and comparing many
solutions cognitively demanding. Interactive methods aim to avoid these shortcomings.

In interactive methods [27,29,31], the DM takes part in the solution process iteratively and
directs it with one’s preference information. At the same time, (s)he learns about the problem,
trade-offs involved and what kind of solutions are available. Thanks to learning, (s)he can also
adjust preferences if so desired. Furthermore, only a limited amount of information needs
to be processed at a time, which decreases cognitive load. The DM can provide preference
information in different ways, for instance, as it is done in this paper, by providing aspiration
levels representing desirable objective function values. These aspiration levels constitute a
so-called reference point.

Many different interactive multiobjective optimization methods have been developed in the
literature (see, e.g. [29,31] and references therein) and most of them deal with Pareto optimal
solutions. Because of trade-offs between the objective functions, to achieve any improvement
in one objective, the DM must sacrifice in some others, and this may hinder the DM’s
willingness to move. Accordingly, trade-off-free interactive methods such as the NAUTILUS
family [30] have been proposed. They start from an inferior solution and iteratively approach
Pareto optimal solutions by simultaneously improving all the objectives while following the
DM’s preferences. The solution process ends when a Pareto optimal solution is reached.

NAUTILUS Navigator [38] combines NAUTILUS ideas with navigation [14]. Supported
by a visual user interface, the DM can navigate to see how objective function values evolve
in real time and improve all objective values simultaneously. The DM directs the navigation
with reference points and the search progresses towards them.

The contribution of this article is as follows. We focus at solving problems that con-
tain computationally expensive objective functions. Our new method, O-NAUTILUS, uses
surrogate models with uncertainty quantification, and can be applied in combination with
both heuristic and deterministic optimization algorithms. In O-NAUTILUS, we consider the
probability or possibility of extending the estimated Pareto optimal set, constructed by using
surrogate models. In our proposed method, we use uncertainty quantification in the form
of (confidence) bounds from Kriging or Lipschitzian models, to build and update an opti-
mistic approximation of the Pareto optimal set and then use this information in the interactive
method.

For biobjective problems, there have been some attempts in the literature to visually aid the
DM in choosing a preferred solution using surrogate models in [47]. However, our proposed
method is not limited to biobjective problems. Another significant difference is that we use
the optimistic approximation as a part of an interactive method to aid the DM in making
targeted function evaluations. Accordingly, the DM has an option to extend the search area
and cross the current borders of the estimated Pareto optimal set for further discovery towards
optimistic boundaries. This will trigger an exploration phase: new evaluations with the costly
objective functions are conducted in a targeted way in order to assess possibilities to extend
the Pareto optimal set and find an improvement in the preferred direction.

An important characteristic of O-NAUTILUS is the alternating phases in the algorithm
which require the presence of a DM (computationally fast phase) and which do not require
the presence of a DM (computationally expensive phase). The DM may use one’s expertise
to judge how long a single exact function evaluation would take. The DM’s attention is not
needed during the computationally expensive phase.

The rest of the paper is structured as follows. We provide some background material
together with concepts and notations in Sect. 2. In Sect. 3, we introduce our new method,

123

Journal of Global Optimization

O-NAUTILUS. We demonstrate the applicability of O-NAUTILUS, and compare it with
NAUTILUS Navigator with a case study in Sect. 4. Finally, we conclude and mention future
research directions in Sect. 5.

2 Background: basic concepts and notation

This section covers basic concepts and notation of multiobjective optimization, NAUTILUS
methods and surrogate models needed in the rest of the paper. As said, we apply Kriging and
Lipschitzian models as surrogate models.

2.1 Multiobjective optimization

We consider multiobjective optimization problems with k ≥ 2 objective functions fi : S →
R

minimize { f1(x), . . . , fk(x)}
subject to x ∈ S,

(1)

where vectors of decision variables (for short, decision vectors) x = (x1, . . . , xn)T belong
to the feasible set S ⊂ R

n in the decision space. We define objective vectors as vectors in
the objective space R

k that consist of objective function values f(x) = (f1(x), . . . , fk(x))T .
Here we assume that objective functions are continuous and their evaluations are expensive.

Because objective functions are typically conflicting with each other, it is not possible
to find a solution with all objectives reaching their individual optima and thus we consider
so-called Pareto optimal solutions. In them, no objective function value can be improved
without impairment in at least one of the others. We say that z(1) dominates z(2) (written as
z(1) � z(2)) with z(1), z(2) ∈ R

k , if z(1)
i ≤ z(2)

i for i = 1, . . . , k and z(1)
j < z(2)

j for at least one

index j . If z(1) and z(2) do not dominate each other, they are called mutually nondominated.
Furthermore, a decision vector x∗ ∈ S and the corresponding objective vector f(x∗) are
called Pareto optimal, if there does not exist another x ∈ S such that f(x) dominates f(x∗).
Typically, problem (1) has many Pareto optimal solutions constituting a so-called Pareto
optimal set E . Its image in the objective space is called a Pareto (optimal) front f(E). Here,
we refer to objective vectors that are mappings of decision vectors as solutions. In addition,
we call vectors in the objective space without any corresponding decision vector as points.

Usually, we need a DM with domain expertise to decide which Pareto optimal solution
is the most preferred one satisfying her/his preferences. We denote it as zpref . An analyst
can also take part in the solution process. By an analyst we refer to a human or a computer
program supporting the DM and typically taking care of mathematical aspects.

Information about the ranges of objective function values in the Pareto front can be useful
for the DM. The best individual optima are components of an ideal point z� = (z�

1, . . . , z�
k)

T

with z�
i = minx∈S fi (x) = minx∈E fi (x) for i = 1, . . . , k. The worst values represented

in a nadir point znad = (znad
1 , . . . , znad

k)T with znad
i = maxx∈E fi (x) for i = 1, . . . , k

are in practice difficult to calculate because the set E is unknown. The nadir point can be
approximated (see, e.g., [27] and references therein). It is also possible to ask the DM to
provide the worst possible objective function values (s)he can think of and constitute a nadir
point of them.

An important concept in this paper is reachability. For a point z ∈ R
k , if f(x) dominates z,

we say that x ∈ S is reachable from z. Furthermore, we define a reachable region as a subset

123

Journal of Global Optimization

of decision vectors in the Pareto optimal set which are reachable from z. In addition, the
image of the reachable region from z in R

k is also called a reachable region and it contains
all objective function values which can be reached from z. In the following, we assume that
z is clear from the context. Therefore, we shorten the term as a reachable region without
explicitly mentioning z.

As mentioned in the introduction, an example of providing preference information is a
reference point q = (q1, . . . , qk)

T consisting of desirable values of each objective function
provided by the DM. If the individual values qi can be simultaneously achieved or improved
in a feasible solution, the reference point is called achievable and if this is not the case, it is
called unachievable.

Scalarization functions such as an achievement scalarization function (ASF) [27] can be
used for solving multiobjective optimization problems in an interactive way. For a reference
point q, the ASF can be defined as:

sz(f(x)) = maxi=1,...,k

[
fi (x) − qi

znad
i − z��

i

]
+ ρ

k∑
i=1

(fi (x) − qi), (2)

where ρ is a small, positive augmentation coefficient, z��
i = z�

i − ε (i = 1, . . . , k) are
components of a so-called utopian point z�� ∈ R

k and ε > 0 is a small scalar. With preferences
given as a reference point q, we can get a Pareto optimal solution to problem (1) by minimizing
the ASF in (2); see, e.g. [27,45] for details.

2.2 Overview of NAUTILUS family

As mentioned in the introduction, the idea of the interactive methods in the NAUTILUS
family [30] is to enable the DM in identifying one’s most preferred solution by starting from
a bad solution (like a nadir point) and proceeding iteratively by gaining improvement in all
objectives simultaneously. In this way, the DM receives solutions that dominate each other
from one iteration to another and gets a Pareto optimal solution only at the end of the solution
process. By avoiding the need of trading off between the objectives, the DM can reach any
Pareto optimal solution [28].

When applying interactive methods that operate with Pareto optimal solutions throughout
the solution process, the DM has to allow sacrifices in at least one objective function to find
a new Pareto optimal solution. This may hinder the DM’s willingness to move, referred to as
anchoring [4]. Furthermore, according to the prospect theory [21], past experiences affect
people’s hopes and expectations, and we do not react symmetrically to gains and losses.
Because of this, the DM may converge prematurely and fail to find one’s most preferred
solution.

All methods in the NAUTILUS family enable the DM to freely focus on the part of the
Pareto front that is interesting without making sacrifices. Family members differ from each
other in the way the DM provides preference information to direct the solution process and
how solutions are generated from iteration to iteration. These differences are described as a
NAUTILUS framework in [30].

Since the DM gradually approaches the Pareto front, the reachable region, that is, the part
of the Pareto front that still can be reached without trading off, shrinks. In other words, there
are other parts of the Pareto front that can only be reached if the DM goes backwards and, in
that way, widens up the reachable region.

123

Journal of Global Optimization

The latest member of the NAUTILUS family is NAUTILUS Navigator [38]. With it, the
DM can navigate in the reachable region in real time and improve simultaneously all objective
values. The information shown to the DM is a visual presentation of how the reachable ranges
shrink when one approaches the Pareto front.

To be more specific, the reachable ranges describe intervals of objective function values
in the subset of Pareto optimal solutions which still are reachable from the current point
without trading off. If the solution process starts from the nadir point, the reachable range
of each objective function is defined at the beginning with the ideal and nadir points. When
the solution process continues, the ranges are defined by the so-called current iteration point
and the point with the best reachable values.

To get started, NAUTILUS Navigator needs a set of solutions that approximate the Pareto
optimal front. They are all assumed to be mutually nondominated. Besides, during the nav-
igation, we lose the connection to the decision space. This is not a problem because we
can guarantee that at the end of the navigation process, the DM will reach a nondominated
solution and can find the corresponding decision vector in the decision space. For details of
the method, see [38].

2.3 Surrogate models

In the following, by exact objective function evaluations, we mean the evaluation of the
objective functions in (1). For the O-NAUTILUS method, we utilize methods that can predict
function values at yet un-evaluated decision vectors x+ ∈ S utilizing a set of N already
evaluated decision vectors, say x(1), . . . , x(N), with y(1) = f(x(1)), . . . , y(N) = f(x(N)). In
multiobjective optimization, a common strategy is to train a surrogate model for each of
the objective functions fi separately. We will denote the predictions of function values with
ŷi ≈ fi (x+) and the corresponding exact function values with yi = fi (x+).

Furthermore, we need methods that can assess the uncertainty of the predictions by pro-
viding an uncertainty quantification in the form of ranges in which the true outcome is (likely)
to be found. Kriging models and Lipschitzian models are two common classes of such surro-
gate models, which is the reason why we chose them as surrogate models in our discussion.
The upper bound of these ranges will be denoted with f i (x

+), and the lower bound with
f

i
(x+). The ranges may have a probabilistic interpretation, such as in the Kriging models,

or a possibilistic, exact interpretation, such as in the Lipschitzian models.

2.3.1 Kriging and Gaussian process regression

The Kriging method and Gaussian process regression are mathematically very similar1. To
obtain a prediction, function values at neighboring decision vectors of the new decision
vector are weighted by distance and a factor that is determined in a training process. While
the training can be time-consuming, predictions and uncertainty quantification for a new
decision vector are very fast for such vectors that have not been evaluated yet. Therefore, in
order to find promising regions for new evaluations, a Kriging model can be evaluated in many
different decision vectors. As mentioned in the general introduction to surrogate models, also
in the Kriging methods we handle multiple objectives typically by learning them separately

1 Kriging (named after geo-scientist Krige) seeks to find a best linear unbiased predictor assuming the observed
data is a realization of a stochastic processes or random field (not necessarily of the Gaussian type). Gaussian
process regression is motivated by Bayesian reasoning and uses conditional mean and variance of Gaussian
random fields to model and bound the objective function at a given decision vector.

123

Journal of Global Optimization

Fig. 1 Kriging prediction in a 1-D and b 2-D objective spaces

for each objective function [9]. The predictive distribution at a new, yet un-evaluated decision
vector x+ is then given by an independent multivariate normal distribution for each decision
vector with mean values ŷi (x+) and standard deviations ŝi (x+) for the objective functions
fi , i = 1, . . . , k. Based on this, we can compute probabilistic confidence ranges with a lower
bound f (x) and an upper bound f (x), respectively, defined for i = 1, . . . , k as:

f
i
(x+) = ŷi (x+) − αŝi (x+) (3)

f i (x
+) = ŷi (x+) + αŝi (x+), (4)

where α ≥ 0 is a user-defined confidence level.
An illustration of a Kriging model for a 1-D decision vector and a single objective function

is provided in Fig. 1a and for a biobjective problem in Fig. 1b. In Fig. 1a, the vertical axis
(y) denotes the function values obtained at three decision vectors, namely y(1) = f (x(1)),
y(2) = f (x(2)) and y(3) = f (x(3)). The predictions at a new decision vector x+ are given by a
1-D normal distribution with a mean value ŷ(x+) and a standard deviation ŝ(x+) quantifying
the uncertainty of the prediction. Figure 1b illustrates three predictions for a biobjective
problem. Again, the uncertain outcome of the expensive evaluations is quantified by means
of normal distributions that are indicated in the figure by their probability density function
(PDF). In the figure, we deal with bi-variate distributions. They can be used to estimate
2-D confidence ranges which are indicated in the figure by rectangles. From these, it is
straightforward to compute optimistic bounds for the objective vector resulting from an
evaluation at a specific decision vector.

The Kriging or Gaussian process method underlies several statistical assumptions, most
importantly a distance based correlation between outputs at decision vectors, where the
distance is measured in the decision space. For an in-depth description of the Kriging method
and its statistical motivation the reader is referred to [41]. In our experiments we use a standard
implementation of Kriging with an isotropic, exponential kernel.

2.3.2 Lipschitz bounds for prediction and uncertainty quantification

The knowledge of the Lipschitz constant can help in designing global search algorithms
[24]. Lower or upper bounds (also called shells) for the values of a Lipschitz continuous
function can then be relatively simply computed and have been used to construct such global
optimization algorithms [24,34,48]. As will be shown, using a Lipschitz constant will also
yield an alternative, yet linear approach to surrogate modeling with uncertainty quantification
in the form of a confidence range. As it is also based on distances in the decision space and

123

Journal of Global Optimization

Fig. 2 Computation of Lipschitz
bounds in one dimension

Fig. 3 Lipschitz envelope for a 1-D function (a). Kriging uncertainty ranges for the same data (b)

provides confidence bounds, it is structurally quite similar to the aforementioned Kriging
method.

A function f is called Lipschitz continuous if there exists a real positive constant L (called
Lipschitz constant) such that for all x, x′ ∈ S

d(f (x), f (x′)) ≤ Ld(x, x′),

where d : R×R → R is a distance function. Let us again assume we are given a data set (set of
evaluations) with N evaluated points (decision vectors). Then, if x+ denotes an un-evaluated
decision vector, its output y+ = f (x+) is bounded by the interval [f (x+), f (x+)] ⊆ R,
with

f
i
(x+) = max

t=1,...,N
{yt

i − Li d(x+, x(t))} and (5)

f i (x
+) = min

t=1,...,N
{yt

i + Li d(x+, x(t))}. (6)

An example of the computation of Lipschitz bounds using these equations is given in
Fig. 2. Moreover, we can define a prediction as the average of the upper and lower bound,
i.e. ŷ(x+) = 1

2 (f (x+) + f (x+)), thus creating a Lipschitzian model. An illustration of the
Lipschitzian envelope is given in Fig. 3a and a figure of the same envelope using Kriging
is provided in Fig. 3b. The example data is part of an interactive Python plot, that can be
accessed and modified at https://trinket.io/python3/c38e5ebdbc. Since the distance function
can also be defined for multivariate decision spaces, the Lipschitzian bound calculation can
also be used efficiently for high-dimensional decision spaces.

123

Journal of Global Optimization

3 O-NAUTILUSmethod

In this section, we introduce the details of the O-NAUTILUS method. To be able to describe
the O-NAUTILUS algorithm, we first need to introduce the major components and concepts
utilized in the method. Hence, we describe them first and then provide a detailed pseudo-code
of the algorithm.

The starting point of O-NAUTILUS is a pre-generated set of solutions. We do not make
any specific assumptions regarding this set. It can, for example, be a rough approximation
of the Pareto front, or even a space filling sample of solutions. The O-NAUTILUS method
extends the NAUTILUS Navigator method by visualizing not just the reachable ranges, but
also optimistic ranges, which represent solutions which are predicted to have good objective
values, but are not represented in the set of known solutions. The O-NAUTILUS method does
this by working with two sets of fronts at once. The first set is the nondominated front from the
set of known solutions, the same as the one used in NAUTILUS Navigator. The second set is
an optimistic estimation of the Pareto front given by a set of points in the objective space that
is calculated by multiobjective minimization on the lower bounds f

i
(x), x ∈ S, i = 1, . . . , k

that are estimated using the surrogate model. We call it an optimistic front to be described
further in the next subsection.

Using the information provided by the optimistic front and the corresponding ranges
enables the DM to strategically conduct function evaluations. In terms of navigation, this
means going beyond the reachable ranges and stepping into an “optimistic area” by con-
ducting function evaluations that are likely to find solutions in that area. This has a two-fold
benefit. Firstly, the function evaluations are conducted in regions of interest of the DM. Hence,
no resources are wasted in finding solutions that may not be of interest to the DM. Secondly,
the newly evaluated decision vectors can be added back to the known set of solutions. Based
on this new known set, surrogate models can be trained again. As this new known set contains
solutions in the region of interest of the DM, the surrogate models themselves perform better
in the region of interest. This means that the optimistic predictions obtained by the models
are more accurate in the region of interest. Hence, as the algorithm continues, the DM gets
an increasingly improved picture of the objective space in the region of interest.

In Sects. 3.1 through 3.4, we describe various components of the O-NAUTILUS method.
These components are modular and can be trivially replaced by alternatives which serve a
similar purpose. Section 3.5 then describes the O-NAUTILUS method, which puts together
the aforementioned components to support a DM to identify the most preferred solution.

3.1 Optimistic pareto Front from surrogatemodels

As described in (3) and (5), Kriging and Lipschitzian models, respectively, can be used to
estimate or determine an optimistic lower bound for an objective fi , i = 1, . . . , k, at any
point in the decision space x ∈ S as f

i
(x). To get an optimistic Pareto front from the surrogate

models, we simply solve the following problem:

minimize { f
1
(x), . . . , f

k
(x)}

subject to x ∈ S,
(7)

with any appropriate solver.
Figure 4 shows the concept of an optimistic front (for a biobjective example) graphically.

The blue (darker in greyscale) points belong to a set of exactly evaluated decision vectors P .
The orange (lighter in greyscale) points belong to the set of solutions obtained by solving

123

Journal of Global Optimization

Fig. 4 Simplified figure to demonstrate the optimistic front

(7), to be denoted by P+. The nondominated points from P form the known front, whereas
the nondominated points from P+ form the optimistic front. These are represented as blue
(darker) crosses (known front) and orange (lighter) crosses (optimistic front) in Fig. 4. These
fronts will be used by the other steps of the O-NAUTILUS method.

3.2 Reachable ranges

In Fig. 5, a path of the O-NAUTILUS method is visualized in the objective space as a 2-D
scatter plot (5a). The blue (darker) points in Fig. 5a represent P , whereas the orange (lighter)
points represent P+. The path is also visualized as a reachable ranges plot (5b) which shows
the reachable ranges for various objectives at different steps [38]. The vector z(i) in the
objective space is the step point at the i th step and has a function similar to the current point
in [38].

The intention of this visualization is to show how for every step point the reachable ranges
change and how this can be visualized in the 2-D objective space plot (5a) and in the reachable
ranges plot (5b). Note that the objective space visualization becomes impractical in higher
dimensions, whereas the reachable ranges plot can still be used.

For the j th objective, the known reachable range at step i is defined as:

[
min

y∈P,y�z(i)
y j , max

y∈P,y�z(i)
y j

]
, (8)

whereas the optimistic reachable range, which is newly introduced in this paper, is defined
by replacing P by P+ in (8). These values are displayed in the reachable range paths as
described in [38].

Focusing on the visualization of the path, we here omit details of the algorithmic procedure
and interaction with the DM, which will be discussed in Sect. 3.3. The path starts in Fig. 5 at
point 1©. In the first step, the DM aims at merely improving f2 which leads to 2©. Then, the
subsequent moves 2©– 5© are conducted such that f1 and f2 are equally improved. The last
move 5©– 6© steps into the ‘orange (lighter) region’ where additional exploration in terms
of exact function evaluation of the objective functions in the region of interest are required
in order to assess the feasibility of the move. The fact that the move does not step beyond
the orange region is indicating that such explorations will be promising and have a realistic
chance of success.

123

Journal of Global Optimization

(a) (b)

Fig. 5 Path of O-NAUTILUS visualized as a 2-D scatter plot (a) and as reachable ranges plot (b)

Looking at the relation between Fig. 5a (coordinate plot) and Fig. 5b (reachable ranges
plot), let us focus on a single point on the path, say 2©. As improvement is expected in
all objectives, the maximal improvement of this point for which we still can guarantee the
existence of a solution is indicated by the blue dashed lines (5a). This equates to values
ranging from 1 to 6 units for f1 and from 0 to 5 units for f2, as shown by the span along
the two axes in Fig. 5a. The blue (darker) ranges in Fig. 5b show the same span at step 2©.
The orange (lighter) optimistic range, which extends the lower bound of the blue (darker)
range, indicates how much we can still realistically expect to maximally improve by further
exploration. This range is determined by the optimistic front.

3.3 Navigation

O-NAUTILUS uses the concept of navigation to help a DM make function evaluations at
regions of interest and arrive at a desirable solution. Similar to NAUTILUS Navigator, the
navigation begins at the worst possible objective values, a point that we will call a combined
set nadir point (zCS,nad). This point is calculated as the supremum of the combined set of
known and optimistic fronts. The DM then takes a “step” by advancing the step point towards
the solutions in any preferred direction, thus, gaining in each objective without any trade-
offs. Unlike NAUTILUS Navigator, however, the DM does not reach a solution on the known
front at the end of the navigation. This is because, unlike NAUTILUS Navigator, which uses
an unchanging front, both the known and the optimistic fronts in O-NAUTILUS can change
with further exact function evaluations.

Instead, the navigation is conducted in the following way. Firstly, a combined set ideal
point (zCS,∗) is defined as the infimum of the combined set of known and optimistic fronts.
From this, the combined set utopian point (zCS,∗∗) is generated in a corresponding manner
to how the utopian point is derived from the ideal point. The combined set nadir point is
calculated as described in the previous paragraph. Then, a hyperbox is formed with the
combined set utopian and nadir points as the opposing corners. This hyperbox is divided
using equidistant “rungs” perpendicular to the line connecting the combined set utopian and
nadir points, starting and ending on those points, as shown in Fig. 6. The step point is then
constrained to be inside the hyperbox and on one of these rungs throughout the navigation
process. The number of these rungs is one more than the total number of steps to be taken
during the navigation process, and it is pre-defined by an analyst. A higher step count divides

123

Journal of Global Optimization

Fig. 6 Progressing the step point from step 1 to step 2 in the O-NAUTILUS algorithm. The step point (red
square) jumps from rung 1 to rung 2 in the direction of the reference point (green circle). Here, combined set
nadir and utopian points act as the zeroth and fifth rung, respectively

the hyperbox into smaller sections, giving the algorithm a higher resolution. This gives the
DM a finer control over the navigation process.

The navigation begins at the step point at the zeroth rung, i.e. the combined set nadir point.
The DM provides preference information that is used to define the direction of navigation (and
hence, improvement). At any step, preference information (given in the form of aspiration
levels) is valid if the corresponding reference point dominates the current step point. This is
shown graphically in Fig. 6, for step 1. The step point is represented as the red square point
on “Rung 1”. The reference point given, shown as a green circle, dominates the step point.

Once valid preference information is provided, the step point moves from the current rung
to the next, in the direction of the reference point, as shown by the arrow in Fig. 6. The step
points then keep jumping on the successive rungs in the same direction at a rate that can
be controlled by a DM or an analyst. At every step, the reachable ranges are calculated and
shown to the DM. The DM can update preference information, i.e., provide a new reference
point at any step. Note that the basic unit of O-NAUTILUS is called a “step”, as opposed to
“iteration”, which is the terminology used in most other interactive methods. In them, two
iterations are typically separated by a DM providing new preference information. On the
other hand, the steps in O-NAUTILUS proceed at a constant rate even if no new preference
information is obtained from the DM after the first one. The rate can have a default value.

The following formula is used to calculate the successive step points:

z(i+1) = z(i) + ss(i)sd(i)

sd(i) =
(
zpref − z(i)

)
‖zpref − z(i)‖

ss(i) =
(‖zCS,∗∗ − zCS,nad‖

itotal

)2
/(

zpref − z(i)
) · (

zCS,∗∗ − zCS,nad
)

itotal‖zpref − z(i)‖ ,

(9)

where itotal is the pre-defined maximum number of steps, zpref is a valid reference point, sd(i)

is the step direction and ss(i) is the step size at the i th step (length of the arrow in Fig. 6). The
· symbol is used to denote the dot product of vectors, whereas ‖ · ‖ denotes the magnitude or
�2 norm of a vector.

123

Journal of Global Optimization

The navigation continues as long as there are known solutions reachable from the suc-
ceeding rung. At the end of these steps, the DM has a few options. (S)he can choose the last
remaining known solution as the final solution, or restart the navigation process and navigate
in a different direction to explore the two fronts. These options are available in NAUTILUS
Navigator as well. In addition to these options, O-NAUTILUS provides the option to con-
duct a function evaluation at a single point. The DM, utilizing the information provided by
the optimistic regions in the reachable ranges path, can decide whether to conduct an exact
function evaluation to find a solution in the current region of interest (the optimistic regions
of the reachable ranges plot). The mechanism to find such a potential solution to be evaluated
is described in Sect. 3.4.

Based on the results of the function evaluation, the DM can choose to end the solution
process, choosing the newly evaluated solution as the final solution. Alternatively, the DM
can continue the search for alternative solutions. This is done by including the new solution
in the known set of solutions P . Based on this updated set, new (and more accurate) surrogate
models are trained. A new set of optimistic solutions P+ is calculated as described in Sect. 3.1.
The navigation is then restarted with the step point at the combined set nadir point, and with
the last known aspiration levels as preference information. The DM can thus follow the same
path travelled in the previous navigation phase to see how the reachable ranges have changed,
or change preferences and follow a new path.

3.4 Expected ASF

Solving a surrogate assisted multiobjective optimization problem efficiently requires updating
the surrogate models by utilizing an infill criterion. An infill criterion determines where the
next sample is to be evaluated for updating the surrogate models. The infill criterion is
obtained by optimizing an acquisition function that provides a mapping from a decision
vector to a scalar value. In the literature, different acquisition functions have been suggested,
i.e. expected improvement (EI) [20] and expected hypervolume improvement (EHVI) [10].
Both represent a trade-off between exploration and exploitation. The multiplicative EI (mEI)
[12] is interesting in the context of the O-NAUTILUS method because it also takes into
account a reference point provided by the DM. However, in our tests, solutions produced by
mEI did not follow the DM’s preferences very well.

We propose an infill criterion called expected ASF (eASF) which is the expected value
of (2). We use Monte Carlo sampling [15] to find the expected ASF. For a decision vector x,
we sample NS points using the distribution predicted by the surrogate models. For example,
while using Kriging surrogates, we use a normal distribution and the multivariate Gaussian
PDF:

PDFKriging
f =

k∏
i=1

1

ŝi (x)
√

2π
exp

(
− (ŷi (x) − yi)

2

2ŝi (x)2

)
. (10)

Here it can be observed that the distribution is Gaussian for Kriging surrogates. However,
in case of Lipschitzian surrogates, we use a multivariate uniform distribution as the PDF
to draw the samples. The set of samples

{
ŷ1(x), . . . , ŷNS (x)

}
that is drawn using (10) for

a decision vector x+ is then used to calculate the ASF using (2). The set of ASF values is
ξ z(x) = {

sz
1(x), . . . , sz

S(x)
}
. The final aquisition function is expected ASF or E

[
ξ z(x)

]
. To

find the infill point we solve the following single objective optimization problem:

gASF (x) = minimize
{

E
[
ξ z(x)

]}
123

Journal of Global Optimization

by using an appropriate optimization method. As the expected ASF considers the distribution
of the ASF, it takes exploration in the search into account along with exploitation.

3.5 Algorithm description

Algorithm 1: O-NAUTILUS Algorithm
Input: Problem definition(1) M O P , set P of decision vectors and corresponding objective vectors, set

of surrogate models SMT , multiobjective optimization algorithm (MOA) and function
evaluation budget B.

1 b ← 0 // Function evaluation counter
2 s1, . . . , sk ← Train(SMT , P) // Surrogate-models

3 P+ ← Optimistic_Optimize(MOA, s1, . . . , sk)

4 if Function_Evaluations_Needed(P, P+) then
5 P ← P ∪ Individual_Optima(s1, . . . , sk , M O P)
6 b ← b + k // k exact objective function evaluation used
7 Go to step 2
8

9 zCS,∗∗, zCS,nad ← Calculate_Utopian_And_Nadir(P, P+)
10 i ← 0 // Step number

11 z(i) ← zCS,nad // Step point

12 Display_Reachable_Ranges(P, P+, zi)
13 if DM provides new preference or i = 0 then
14 zpref ← Get_Preference_From_DM()
15

16 if DM wants to stop then
17 Go to step 29
18

19 if Front P is not reached then
20 z(i) ← Compute_Next_Iteration_Point(z(i), zpref)
21 i ← i + 1
22 Go to step 12
23 if b < B and DM wants to conduct exact function evaluation then
24 P ← P+ Max_Expected_ASF(z(i), s1, . . . , sk)
25 b ← b + 1 // 1 exact point evaluation used
26 Go to step 2
27

28 else
29 Display_Chosen_Solutions(P, z(i))
30 end

Next, the complete interactive O-NAUTILUS algorithm is described. We pay particular
attention to the use of exact objective function evaluations and the use of surrogate function
evaluations, because the number of exact objective function evaluations will govern the total
computational effort. The flow of the method is given in Algorithm 1. The various functions
and variables involved in the algorithm are as follows:

1. Train takes as its input the choice of surrogate modeling technique (SMT) and the
known set of solutions (P), and returns k trained surrogate models s1, . . . , sk , one for
each of the k objectives. Here, SMT can be any surrogate modeling technique capable of
giving optimistic predictions. In this paper, as mentioned, we consider the Kriging and
Lipschitzian surrogate modeling techniques.

123

Journal of Global Optimization

2. Optimistic_Optimize uses a multiobjective optimization method, in our imple-
mentation an evolutionary algorithm, with the surrogate models s1, . . . , sk to find an
optimistic Pareto front (P+) for the problem as described in Sect. 3.1. Note that no exact
function evaluations are conducted in this step.

3. Function_Evaluations_Needed compares P and P+ to determine whether fur-
ther exact function evaluations are needed before the navigation and the involvement of
the DM begins.
This need may arise, for example, if all solutions in P are dominated by the nondomi-
nated solutions in P+. This may happen because of two reasons. Firstly, the solutions
in P may be far from the exact Pareto front of the problem. Alternatively, the surrogate
models may not provide good predictions in certain regions, especially near the Pareto
front. Either case may give misleading information to the DM when (s)he is asked to
provide preferences. The first case can be resolved by conducting further exact function
evaluations, preferably closer to the front. This will also lead to the generation of more
samples for training the surrogate models, resolving the second case. There may be other
cases where further exact function evaluations are desirable. The choice is left up to the
analyst and not included in the algorithm.

4. Individual_Optima uses the surrogate models s1, . . . , sk to find k solutions cor-
responding to the maximum expected ASF (eASF) of the individual surrogate models.
These solutions are then evaluated using the exact objective functions. Other strategies
may be used in place of Individual_Optima to find good solutions to evaluate. For
example, an alternative option is to use a few representative solutions from P+.

5. Calculate_Utopian_And_Nadir combines the nondominated solutions from the
sets P and P+ and returns the combined set utopian point (zCS,∗∗) and the combined set
nadir point (zCS,nad) of this combined set.

6. Display_Reachable_Ranges uses P , P+ and z(i) to calculate and display the
known and optimistic reachable ranges. See also Subsec. 3.2.

7. Get_Preference_From_DM stores the most recent DM’s preferences as zpref .
8. Compute_Next_Iteration_Point calculates the step point for the next step as

described in (9).
9. Max_Expected_ASF uses the surrogate models s1, . . . , sk to find a solution that fol-

lows the DM’s preferences and is likely to lie close to the Pareto front, as described in
Sect. 3.4. This solution is then evaluated using the exact objective functions and added
to the set of known solutions.

10. Display_Chosen_Solutions displays the solutions chosen by the DM by calcu-
lating and plotting solutions from P that are reachable from z(i).

A DM can affect the algorithm by providing preferences, controlling when and where to
conduct exact function evaluations, and by terminating the algorithm once satisfied. The DM
can also pause the algorithm at any point (for example, in between steps during navigation)
e.g., to update preference information or to jump backwards. An analyst can further affect the
algorithm by choosing the surrogate modeling algorithm used in Train, the optimization
algorithms used inOptimistic_Optimize andIndividual_Optima, and by setting
the number of steps and the rate at which they progress.

4 Case study

In this section, we demonstrate how O-NAUTILUS can be used to solve a multiobjective
optimization problem. The implementation of the O-NAUTILUS method and this example

123

Journal of Global Optimization

are openly available at https://desdeo.it.jyu.fi as a part of the DESDEO software framework
and in a Zenodo repository via the link https://doi.org/10.5281/zenodo.5396677. Kriging is
used as the surrogate modeling technique and RVEA [5] as the evolutionary multiobjective
optimization algorithm to find the optimistic front as it generalizes well to a high number
of objectives. For evaluating expected ASF, CMA-ES [13] is used in our implementation.
CMA-ES is a state-of-the-art algorithm for continuous black-box optimization.

A video showcasing the UI of the O-NAUTILUS implementation can be viewed at https://
desdeo.it.jyu.fi/o-nautilus. Data generated during the experiments can also be accessed via
the same link.

4.1 Crash-worthiness design of vehicles

As the role of the DM is crucial in interactive methods, we can best demonstrate the appli-
cability of these methods with problems where the objective functions are meaningful to a
DM. Therefore, we apply O-NAUTILUS to a real-world engineering design optimization
problem called crash-worthiness design of vehicles, originally proposed in [26]. It describes
the design of the frontal structure of vehicles for crash safety optimization. When a car acci-
dent occurs, the frontal structure of the vehicle absorbs the energy caused by the crashing in
order to increase the safety of the passengers. Improving the capacity of energy absorption
can often lead to an increase in the total mass of the vehicle. However, lightweight designs
are needed to reduce the mass and the fuel consumption of a vehicle, accordingly. Therefore,
there is a trade-off between the safety and the environmental aspects, and a balanced decision
must be made in the capacity of energy absorption and the mass of the vehicle.

In the problem design, a full frontal and an offset-frontal crash test are considered to
simulate real-world accidents. A full-frontal crash usually results in a higher deceleration
compared to an offset-frontal crash, which can cause severe injuries to the passengers. An
offset-frontal test is needed to assess the structural integrity of a vehicle. In the design of the
frontal structure, these two crashing types should be considered simultaneously to improve
the overall crash-worthiness of the vehicle. Hence, there are three objectives: minimizing the
mass of a vehicle (f1, in kg), minimizing deceleration during the full-frontal crash (f2, in
m/s) and minimizing toe-board intrusion in the offset-frontal crash (f3, in m). The thickness
of five components of the frontal structure of the vehicle have been chosen as the decision
variables. A mathematical formulation of the multiobjective optimization problem can be
found in Appendix A (see [26] for more details).

4.2 Interactive solution process

Next, we describe the interactive solution process using the O-NAUTILUS method. Before
involving the DM, 100 sampling points (P) were generated using the latin hypercube sam-
pling (LHS) technique based on the objective functions. The default number of steps for the
navigation was set as 100 and the default rate of navigation as 10 steps per second. First, Krig-
ing models were trained with the available sampling points. We then evaluated the optimistic
front (P+) by using RVEA on the trained Kriging models, as described in Sect. 3.1.

The combined set utopian and nadir points were calculated from P and P+ as (1661.58,
6.46, 0.058) and (1693.61, 11.28, 0.23), respectively. Initially, the known and optimistic
reachable ranges were calculated, as described in Sect. 3.2. The reachable ranges were then
shown to the DM in a graphical user interface.

123

Journal of Global Optimization

0 10 20 30 40 50 60 70 80
1660

1670

1680

1690 Nadir Point
Utopian point
Aspiration Level
Known Reachable Range
Optimistic Reachable Range

Steps

f1

0 10 20 30 40 50 60 70 80

8

10
Nadir Point
Utopian point
Aspiration Level
Known Reachable Range
Optimistic Reachable Range

Steps

f2

0 10 20 30 40 50 60 70 80
0.05

0.1

0.15

0.2 Nadir Point
Utopian point
Aspiration Level
Known Reachable Range
Optimistic Reachable Range

Steps

f3

Fig. 7 Navigation view until the first change in the preference information

First, the DM wanted to provide aspiration levels for each objective based on the lower
bounds of the known reachable range. As these values seemed very promising, the DM set the
aspiration levels 1669.39 kg for f1, 7.16 m/s for f2 and 0.058 m for f3, close to the combined
set utopian point. Then, the navigation process was started to see whether these values were
achievable or not. The DM saw real-time movement, in the sense that the reachable region
started shrinking. Figure 7 shows the navigator view in the user interface of O-NAUTILUS.
In this view, the combined set utopian and nadir point is shown by green and red lines,
respectively. Also, the aspiration level provided by the DM is shown by the black line. As
the navigation continues, the known and the optimistic reachable ranges are shown in blue
(darker) and orange (lighter) areas, respectively. As can be seen in Fig. 7, the DM stopped
the navigation since the aspiration levels for f2 and f3 became unachievable based on the
known reachable ranges (shown in blue (darker shade)). However, the optimistic reachable
ranges (shown in orange (lighter shade)) indicated that solutions close to the aspiration levels
may still be achievable. Therefore, the DM decided to evaluate a new point and provided
aspiration levels for f2 and f3 based on the current lower bounds of the optimistic reachable
ranges with the intention to find a solution in the orange (lighter) area. The new reference
point was (1669.39, 7.09, 0.07) and one additional function evaluation was made by using
this reference point and eASF, as described in Sect. 3.4. The newly evaluated point (1672.33,
7.30, 0.08) had better objective function values than the current lower bounds of the known
reachable area and was added to the set of known solutions.

The navigation was restarted with the preference information which was provided for
the additional function evaluation. After a few steps, the known reachable area started to
shrink and as a consequence of the newly added point, the DM realized that the aspiration
levels for f2 and f3 were near the new lower bounds of the known reachable area. Based on
the optimistic reachable ranges, there could be solutions better in the first objective without
sacrificing in others. Therefore, the DM stopped the navigation and wanted to make another
function evaluation by providing a new reference point (1661.58, 7.09, 0.07). The newly

123

Journal of Global Optimization

0 10 20 30 40 50 60 70 80
1660

1670

1680

1690 Nadir Point
Utopian point
Aspiration Level
Known Reachable Range
Optimistic Reachable Range

Steps

f1

0 10 20 30 40 50 60 70 80

8

10
Nadir Point
Utopian point
Aspiration Level
Known Reachable Range
Optimistic Reachable Range

Steps

f2

0 10 20 30 40 50 60 70 80
0.05

0.1

0.15

0.2 Nadir Point
Utopian point
Aspiration Level
Known Reachable Range
Optimistic Reachable Range

Steps

f3

Fig. 8 Navigation view until the Pareto front is reached

evaluated point (1666.37, 7.05, 0.09) had better values than the current lower bound of the
known reachable area for the first two objectives and was added to the set of known solutions.

The DM restarted the navigation with the newly added point. After a few steps of the
navigation, the DM realized that the known reachable areas were shrinking and while the
aspiration levels for f2 and f3 were achievable, the aspirations for f1 was not. Then, he
decided to pause the navigation in order to adjust his aspiration level for the first objective
based on the lower bounds of known reachable area. He provided a new reference point
(1666.60, 7.09, 0.07), which indicates a relaxation in the first objective. At this moment,
he decided to let the navigation reach the Pareto front to see if his desires were achievable
or not. The change in the aspiration levels and the navigation reaching the Pareto front are
illustrated in Fig. 8.

As shown in Fig. 8, the reached solution reflected the desired values for the first and
second objectives but not for the third objective. Because of this, the DM was not fully
satisfied and realized that it may be possible to improve the third objective based on the final
lower bound of the optimistic reachable ranges. Therefore, the DM wanted to conduct one
more function evaluation by adjusting the aspiration level for the third objective according
to the current optimistic front. He kept the same aspiration levels for the first two objectives.
The new reference point for additional function evaluation was (1664.60, 7.09, 0.07). Then,
the navigation was restarted with this reference point and the newly found solution added
to the known set. The DM did not change his preference information in this last navigation
since he had gained enough insight about the feasibility of his aspiration levels. Thus, he let
the navigation reach a new final solution. As can be seen in Fig. 9, this time, the reached
solution (1667.53, 7.22, 0.08) reflected the DM’s preference information quite well, and the
DM selected it as the most preferred solution. Table 1 summarizes the details of the interactive
solution process. The table lists the values of combined set nadir and utopian point, lower
and upper bounds of the known and optimistic reachable ranges, and the aspiration levels
given for each objectives for each iterations. By iterations, we mean instances when the DM
paused the navigation and provided preference information.

123

Journal of Global Optimization

0 10 20 30 40 50 60 70 80
1660

1670

1680

1690 Nadir Point
Utopian point
Aspiration Level
Known Reachable Range
Optimistic Reachable Range

Steps

f1

0 10 20 30 40 50 60 70 80

8

10
Nadir Point
Utopian point
Aspiration Level
Known Reachable Range
Optimistic Reachable Range

Steps

f2

0 10 20 30 40 50 60 70 80
0.05

0.1

0.15

0.2 Nadir Point
Utopian point
Aspiration Level
Known Reachable Range
Optimistic Reachable Range

Steps

f3

Fig. 9 Navigation view until a satisfactory solution was reached

4.3 Comparison with NAUTILUS navigator

To the best of our knowledge, no quality indicators for assessing and comparing the perfor-
mance of interactive methods have been developed yet in the literature [1]. Therefore, we
make the comparison by solving the same problem with NAUTILUS Navigator.

With O-NAUTILUS, the DM made only 3 additional exact objective function evaluations
to reach the most preferred solution. As pointed out in the previous section, 100 function eval-
uations were made to generate LHS sampling data as an input for the O-NAUTILUS method.
Therefore, a total of 103 function evaluations were conducted. Since in O-NAUTILUS, Krig-
ing was used as a surrogate modeling technique and RVEA as an evolutionary algorithm, we
used K-RVEA [6], an extension of RVEA which uses Kriging models, to generate the initial
data set needed by NAUTILUS Navigator. K-RVEA generated 20 nondominated solutions
with the same budget (103 exact function evaluations; 53 for LHS sampling data and 50 for
K-RVEA). K-RVEA was run for the same number of generations as RVEA in the previous
experiment.

With NAUTILUS Navigator, the DM provided similar preference information per iteration
and eventually reached a satisfactory solution, which was (1668.49, 7.00362, 0.13276), in a
similar manner. When this solution is compared with the one obtained by O-NAUTILUS, the
DM reached a solution reflecting his preferences for the first two objectives but not for the
last one. Therefore, we can say that he sacrificed more in the third objective in comparison
to the final solution reached with O-NAUTILUS. Based on the DM’s experience with both
methods, for the sake of brevity we list the differences without numerical details below:

• Optimistic ranges of O-NAUTILUS supported the DM in providing preference informa-
tion and finding a region of interest.

• Additional function evaluations of O-NAUTILUS supported the DM in finding and
adding new solutions in the region of interest which remained unexplored in NAUTILUS
Navigator.

123

Journal of Global Optimization

Ta
bl
e
1

Su
m

m
ar

y
of

so
m

e
da

ta
sh

ow
n

to
an

d
pr

ov
id

ed
by

th
e

D
M

w
he

n
th

e
D

M
pa

us
ed

th
e

na
vi

ga
tio

n
an

d
pr

ov
id

ed
as

pi
ra

tio
n

le
ve

ls

It
er

at
io

n
nu

m
be

r
O

bj
ec

tiv
es

N
ad

ir
po

in
t

Id
ea

lp
oi

nt
K

no
w

n
re

ac
ha

bl
e

O
pt

im
is

tic
re

ac
ha

bl
e

A
sp

ir
at

io
n

le
ve

ls

M
ax

M
in

M
ax

M
in

1
f 1

16
93

.6
1

16
61

.5
8

16
93

.6
1

16
69

.3
9

16
82

.5
9

16
61

.5
8

16
69

.3
9

f 2
11

.2
87

62
6.

46
59

7
11

.2
87

62
7.

16
43

3
8.

08
40

8
6.

46
59

7
7.

16
43

3

f 3
0.

23
01

5
0.

05
83

3
0.

18
66

3
0.

05
83

3
0.

23
01

5
0.

07
09

9
0.

05
83

3

2
f 1

16
93

.6
1

16
61

.5
8

16
74

.3
9

16
69

.3
9

16
73

.3
9

16
61

.5
8

16
69

.3
9

f 2
11

.2
87

62
6.

46
59

5
8.

63
58

7
7.

97
71

1
8.

08
40

2
7.

09
04

9
7.

09
04

9

f 3
0.

23
01

5
0.

05
83

3
0.

12
75

6
0.

09
02

1
0.

14
12

3
0.

07
09

9
0.

07
09

9

3
f 1

16
93

.6
1

16
61

.5
8

16
72

.3
4

16
69

.3
9

16
75

.2
9

16
61

.5
8

16
61

.5
8

f 2
11

.2
87

62
6.

43
31

1
8.

63
58

7
7.

97
71

1
8.

08
62

5
7.

00
58

9
7.

09
04

9

f 3
0.

22
75

1
0.

05
83

3
0.

12
75

6
0.

09
02

1
0.

10
21

2
0.

07
08

0
0.

07
09

9

4
f 1

16
93

.6
1

16
61

.5
8

16
72

.3
4

16
69

.3
9

16
75

.2
9

16
61

.5
8

16
66

.6
0

f 2
11

.2
87

62
6.

43
31

1
8.

63
58

7
7.

97
71

1
8.

08
62

5
7.

00
58

9
7.

09
04

9

f 3
0.

22
75

1
0.

05
83

3
0.

12
75

6
0.

09
02

1
0.

10
21

2
0.

07
08

0
0.

07
09

9

5
f 1

16
93

.6
1

16
61

.6
8

16
66

.6
0

16
66

.6
0

16
68

.7
6

16
66

.5
1

16
66

.6
0

f 2
11

.2
87

62
6.

39
66

5
6.

99
39

8
6.

99
39

8
7.

47
18

0
6.

98
59

6
7.

09
04

9

f 3
0.

22
68

4
0.

05
83

3
0.

09
33

7
0.

09
33

7
0.

09
39

7
0.

08
50

7
0.

08
50

7

123

Journal of Global Optimization

• NAUTILUS Navigator needed optimized points to start the solution process. Because of
this, there is a pre-processing stage to generate nondominated solutions by using some
appropriate multiobjective optimization method, for instance an evolutionary algorithm.
On the contrary, O-NAUTILUS can start with any initial data which is not optimized.
This means that if the DM has some available data of function evaluations for her/his
optimization problem, it can readily be utilized.

• In NAUTILUS Navigator, the satisfaction degree of the final solution was highly depen-
dent on the nondominated solutions found in the pre-processing stage. However, in
O-NAUTILUS, even if initial solutions are not good, the DM can reach very good solu-
tions with the help of additional function evaluations during the solution process. They
will be conducted in a focused manner based on her/his preference information.

The positive features of O-NAUTILUS have some trade-offs as well. Because of the opti-
mistic ranges and ability to make additional function evaluations, the DM needed to digest
more information at a time in O-NAUTILUS. In NAUTILUS Navigator, as the DM saw only
the reachable ranges, and no additional function evaluations were made in the solution pro-
cess, NAUTILUS Navigator was easier to use than the O-NAUTILUS method. Furthermore,
in O-NAUTILUS, the DM needs to wait for the additional exact function evaluation during
the solution process. In NAUTILUS Navigator, waiting is out of the question during the
interactive phase since no additional function evaluations are conducted during the solution
process.

To conclude the comparison, O-NAUTILUS effectively supported the DM by providing
optimistic reachable ranges and enabling additional function evaluations in the region of
interest of the DM. Even with randomly generated initial points, the method could achieve
satisfactory solutions by using few exact function evaluations. However, one needs to digest
more information in each iteration and wait for the function evaluations conducted in the
solution process.

5 Conclusions

In this paper we have proposed a novel method in the NAUTILUS family, termed O-
NAUTILUS for interactive multiobjective optimization. The overarching challenge was to
propose a new version of the NAUTILUS family that can be used for optimization problems
where expensive function evaluations are to be used sparingly. To meet this challenge, we had
to design a new, general algorithmic framework by integrating surrogate models with uncer-
tainty handling into NAUTILUS methods. The new methodology allows for an interactive
mode of exploration with alternating phases of decision making and compute-intensive steps
where new evaluations of expensive objective functions are conducted to acquire information
about promising regions of the decision space.

We have introduced novel concepts to tackle problems with expensive function evalua-
tions. These new concepts have been implemented as an interactive O-NAUTILUS algorithm
supported by a graphical user interface. With this user interface, the decision maker can see in
real time how the preferences provided affect the direction of the search in terms of reachable
ranges evolving. The usefulness of the new concepts is demonstrated as follows:

• We developed O-NAUTILUS as an extension of NAUTILUS Navigator by showing
optimistic ranges to the decision maker. This allows the decision maker to schedule
additional exact function evaluations to explore regions of the objective space where

123

Journal of Global Optimization

(s)he can still expect (based on optimistic bounds) further improvements. This is useful
for optimization with expensive function evaluations.

• We created an open source implementation of O-NAUTILUS in Python which can be
accessed at https://desdeo.it.jyu.fi.

• We demonstrated the implementation on an instance from the domain of crashworthiness
design, which is a typical context where expensive function evaluations occur in practice.

• We augmented the graphical representation of the reachable ranges plot to accommodate
optimistic ranges.

• We made several detailed decisions when developing the ideas into a workable algorithm:
the type of user interaction and preference model and the choice of surrogate modeling
and uncertainty handling techniques. Kriging models were used but also other surrogate
models providing uncertainty quantification can be utilized. As an example of alternative
models, we mentioned Lipschitzian models.

In this contribution, we have introduced surrogate modeling techniques with uncertainty
handling for the first time in the context of NAUTILUS methods. Surrogate modeling is in
itself a very active field of research which has recently brought forward many results. Future
work should therefore include the choice and update of the surrogate modeling techniques.
One should note that although Kriging and Lipschitzian models are utilized in this paper
to approximate the optimistic Pareto front, the ideas are not limited to these two surrogate
model types and one can also use other surrogate model types which feature uncertainty
quantification. Understanding when to apply Kriging and when Lipschitzian models, or
other types of surrogate models deserves further analysis. Further experiments are also to be
conducted with O-NAUTILUS, especially with real-life problems.

Acknowledgements This research was partly funded by the Academy of Finland (Grants 322221 and 311877).
The research is related to the thematic research area Decision Analytics utilizing Causal Models and Multi-
objective Optimization (DEMO), jyu.fi/demo, at the University of Jyväskylä.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Mathematical formulation of themultiobjective optimization
problem for the crash-worthiness design of vehicle

Following [26], the multiobjective optimization problem for the crash safety design of vehi-
cles is formulated as follows:

minimize F(x) = { f1(x), f2(x), f3(x)}
subject to 1 ≤ x j ≤ 3 j = 1, . . . , 5,

(11)

123

Journal of Global Optimization

where fi (i = 1, 2, 3) representing the relevant surrogate models, formed based on the data
collected from simulation models as described in [26], have the following formulations:

f1(x) = 1640.2823 + 2.3573285x1 + 2.3220035x2 + 4.5688768x3

+ 7.7213633x4 + 4.4559504x5

f2(x) = 6.5856 + 1.15x1 − 1.0427x2 + 0.9738x3 + 0.8364x4

− 0.3695x1x4 + 0.0861x1x5 + 0.3628x2x4

− 0.1106x2
1 − 0.3437x2

3 + 0.1764x2
4

f3(x) = −0.0551 + 0.0181x1 + 0.1024x2 + 0.0421x3 − 0.0073x1x2

+ 0.024x2x3 − 0.0118x2x4 − 0.0204x3x4 − 0.008x3x5

− 0.0241x2
2 + 0.0109x2

4

Here, the objective functions f1, f2, and f3 are the vehicle mass, deceleration during
the full-frontal crash, and toe-board intrusion in the offset-frontal crash, respectively. The
decision variable x j (j = 1, . . . , 5) represents the thickness of a component of the frontal
structure of the vehicle. See [26] for more details about the surrogate construction and problem
formulation.

References

1. Afsar, B., Miettinen, K., Ruiz, F.: Assessing the performance of interactive multiobjective optimization
methods: a survey. ACM Comput. Surv. 54(4), 85 (2021)

2. Audet, C.: A Survey on Direct Search Methods for Blackbox Optimization and Their Applications. In:
Pardalos, P.M., Rassias, T.M. (eds.) Mathematics without boundaries, vol. 2, pp. 31–56. Springer, Berlin
(2014)

3. Aytuğ, H., Sayın, S.: Using support vector machines to learn the efficient set in multiple objective discrete
optimization. Eur. J. Oper. Res. 193(2), 510–519 (2009)

4. Buchanan, J.T., Corner, J.: The effects of anchoring in interactive MCDM solution methods. Comput.
Oper. Res. 24(10), 907–918 (1997)

5. Cheng, R., Jin, Y., Olhofer, M., Sendhoff, B.: A reference vector guided evolutionary algorithm for
many-objective optimization. IEEE Trans. Evol. Comput. 20(5), 773–791 (2016)

6. Chugh, T., Jin, Y., Miettinen, K., Hakanen, J., Sindhya, K.: A surrogate-assisted reference vector guided
evolutionary algorithm for computationally expensive many-objective optimization. IEEE Trans. Evol.
Comput. 22(1), 129–142 (2016)

7. Chugh, T., Sindhya, K., Hakanen, J., Miettinen, K.: A survey on handling computationally expensive
multiobjective optimization problems with evolutionary algorithms. Soft Comput. 23(9), 3137–3166
(2019)

8. Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms. Wiley (2001)
9. Emmerich, M.: Single-and multi-objective evolutionary design optimization assisted by Gaussian random

field metamodels. PhD dissertation, University of Dortmund (2005)
10. Emmerich, M., Yang, K., Deutz, A., Wang, H., Fonseca, C.M.: A Multicriteria Generalization of Bayesian

Global Optimization. In: Pardalos, P.M., Zhigljavsky, A., Žilinskas, J. (eds.) Advances in stochastic and
deterministic global optimization, pp. 229–242. Springer, Berlin (2016)

11. Floudas, C.A., Pardalos, P.M. (eds.): Encyclopedia of Optimization. Springer, Berlin (2008)
12. Gaudrie, D., Le Riche, R., Picheny, V., Enaux, B., Herbert, V.: Targeting solutions in Bayesian multi-

objective optimization: sequential and batch versions. Ann. Math. Artif. Intell. 88(1), 187–212 (2020)
13. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strategies. Evol. Com-

put. 9(2), 159–195 (2001)
14. Hartikainen, M., Miettinen, K., Klamroth, K.: Interactive nonconvex pareto navigator for multiobjective

optimization. Eur. J. Oper. Res. 275(1), 238–251 (2019)
15. Hastings, W.D.: Monte Carlo sampling methods using Markov chains and their applications. Biometrika

57(1), 97–109 (1970)
16. Horst, R., Pardalos, P.M. (eds.): Handbook of Global Optimization. Springer, Berlin (1995)

123

Journal of Global Optimization

17. Husain, A., Kim, K.-Y.: Enhanced multi-objective optimization of a microchannel heat sink through
evolutionary algorithm coupled with multiple surrogate models. Appl. Therm. Eng. 30(13), 1683–1691
(2010)

18. Jin, Y., Wang, H., Chugh, T., Guo, D., Miettinen, K.: Data-driven evolutionary optimization: an overview
and case studies. IEEE Trans. Evol. Comput. 23(3), 442–458 (2019)

19. Jones, D.R.: A taxonomy of global optimization methods based on response surfaces. J. Glob. Opt. 21(4),
345–383 (2001)

20. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions.
J. Glob. Opt. 13(4), 455–492 (1998)

21. Kahneman, D., Tversky, A.: Prospect theory: an analysis of decisions under risk. Econometrica 47, 313–
327 (1979)

22. Knowles, J.: ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiob-
jective optimization problems. IEEE Trans. Evol. Comput. 10(1), 50–66 (2006)

23. Kourakos, G., Mantoglou, A.: Development of a multi-objective optimization algorithm using surrogate
models for coastal aquifer management. J. Hydrol. 479, 13–23 (2013)

24. Kvasov, D.E., Sergeyev, Y.D.: Lipschitz global optimization methods in control problems. Autom. Remote
Control 74(9), 1435–1448 (2013)

25. Li, M., Li, G., Azarm, S.: A Kriging metamodel assisted multi-objective genetic algorithm for design
optimization. J. Mech. Des. 130(3), 031401 (2008)

26. Liao, X., Li, Q., Yang, X., Zhang, W., Li, W.: Multiobjective optimization for crash safety design of
vehicles using stepwise regression model. Struct. Multidiscipl. Opt. 35(6), 561–569 (2008)

27. Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, Boston (1999)
28. Miettinen, K., Eskelinen, P., Ruiz, F., Luque, M.: NAUTILUS method: an interactive technique in multi-

objective optimization based on the nadir point. Eur. J. Oper. Res. 206(2), 426–434 (2010)
29. Miettinen, K., Hakanen, J., Podkopaev, D.: Interactive Nonlinear Multiobjective Optimization Methods.

In: Greco, S., Ehrgott, M., Figueira, J. (eds.) Multiple criteria decision analysis: state of the art surveys,
2nd edn., pp. 931–980. Springer, Berlin (2016)

30. Miettinen, K., Ruiz, F.: NAUTILUS framework: towards trade-off-free interaction in multiobjective opti-
mization. J. Bus. Econ. 86(1–2), 5–21 (2016)

31. Miettinen, K., Ruiz, F., Wierzbicki, A.P.: Introduction to Multiobjective Optimization: Interactive
Approaches. In: Branke, J., Deb, K., Miettinen, K., Slowinski, R. (eds.) Multiobjective Optimization:
Interative and Evolutionary Approaches, pp. 27–57. Springer, Berlin (2008)

32. Mitra, K., Majumder, S.: Successive approximate model based multi-objective optimization for an indus-
trial straight grate iron ore induration process using evolutionary algorithm. Chem. Eng. Sci. 66(15),
3471–3481 (2011)

33. Mockus, J., Tiesis, V., Zilinskas, A.: The application of Bayesian methods for seeking the extremum.
Towards Glob. Opt. 2(117–129), 2 (1978)

34. Paulavičius, R., Žilinskas, J., Grothey, A.: Investigation of selection strategies in branch and bound
algorithm with simplicial partitions and combination of Lipschitz bounds. Opt. Lett. 4(2), 173–183 (2010)

35. Pintér, J.D.: Global Optimization in Action: Continuous and Lipschitz Optimization: Algorithms, Imple-
mentations and Applications. Springer, Berlin (2013)

36. Qasem, S.N., Shamsuddin, S.M., Hashim, S.Z.M., Darus, M., Al-Shammari, E.: Memetic multiobjective
particle swarm optimization-based radial basis function network for classification problems. Inf. Sci. 239,
165–190 (2013)

37. Regis, R.G., Shoemaker, C.A.: Combining radial basis function surrogates and dynamic coordinate search
in high-dimensional expensive black-box optimization. Eng. Opt. 45(5), 529–555 (2013)

38. Ruiz, A.B., Ruiz, F., Miettinen, K., Delgado-Antequera, L., Ojalehto, V.: NAUTILUS Navigator: free
search interactive multiobjective optimization without trading-off. J. Glob. Opt. 74(2), 213–231 (2019)

39. Sergeyev, Y.D., Kvasov, D.E.: Deterministic Global Optimization: An Introduction to the Diagonal
Approach. Springer, Berlin (2017)

40. Sergeyev, Y.D., Kvasov, D.E., Mukhametzhanov, M.S.: On the efficiency of nature-inspired metaheuristics
in expensive global optimization with limited budget. Sci. Rep. 8(453), 1–9 (2018)

41. Stein, M.L.: Interpolation of Spatial Data: Some Theory for Kriging. Springer, New York, NY (1999)
42. Strongin, R.G., Sergeyev, Y.D.: Global Optimization with Non-convex Constraints: Sequential and Parallel

Algorithms. Springer, Berlin (2013)
43. Tabatabaei, M., Hakanen, J., Hartikainen, M., Miettinen, K., Sindhya, K.: A survey on handling computa-

tionally expensive multiobjective optimization problems using surrogates: non-nature inspired methods.
Struct. Multidiscip. Opt. 52(1), 1–25 (2015)

44. Van Beers, W.C.M., Kleijnen, J.P.C.: Kriging for interpolation in random simulation. J. Oper. Res. Soc.
54(3), 255–262 (2003)

123

Journal of Global Optimization

45. Wierzbicki, A.P.: On the completeness and constructiveness of parametric characterizations to vector
optimization problems. OR Spektrum 8, 73–87 (1986)

46. Zhigljavsky, A., Žilinskas, A.: Stochastic Global Optimization, vol. 9. Springer Science & Business
Media, Berlin (2007)

47. Žilinskas, A.: Visualization of a statistical approximation of the Pareto front. Appl. Math. Comput. 271,
694–700 (2015)

48. Žilinskas, A., Žilinskas, J.: Adaptation of a one-step worst-case optimal univariate algorithm of bi-
objective Lipschitz optimization to multidimensional problems. Commun. Nonlinear Sci. Numer. Simul.
21(1–3), 89–98 (2015)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

PV

DESDEO: THE MODULAR AND OPEN SOURCE
FRAMEWORK FOR INTERACTIVE MULTIOBJECTIVE

OPTIMIZATION

by

Giovanni Misitano, Bhupinder Singh Saini, Bekir Afsar, Babooshka Shavazipour,
Kaisa Miettinen 2021

IEEE Access, 9, 148277–148295

https://doi.org/10.1109/ACCESS.2021.3123825

Licensed under a Creative Commons Attribution 4.0 License.

https://doi.org/10.1109/ACCESS.2021.3123825

Received October 1, 2021, accepted October 20, 2021, date of publication October 27, 2021, date of current version November 8, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3123825

DESDEO: The Modular and Open
Source Framework for Interactive
Multiobjective Optimization
G. MISITANO , B. S. SAINI , B. AFSAR , B. SHAVAZIPOUR , AND K. MIETTINEN
Faculty of Information Technology, University of Jyväskylä, 40014 Jyväskylä, Finland

Corresponding author: G. Misitano (giovanni.a.misitano@jyu.fi)

This work was supported by the Academy of Finland under Grant 322221.

ABSTRACT Interactive multiobjective optimization methods incorporate preferences from a human deci-
sion maker in the optimization process iteratively. This allows the decision maker to focus on a subset of
solutions, learn about the underlying trade-offs among the conflicting objective functions in the problem
and adjust preferences during the solution process. Incorporating preference information allows computing
only solutions that are interesting to the decision maker, decreasing computation time significantly. Thus,
interactive methods have many strengths making them viable for various applications. However, there is a
lack of existing software frameworks to apply and experiment with interactive methods. We fill a gap in the
optimization software available and introduce DESDEO, a modular and open source Python framework for
interactive multiobjective optimization. DESDEO’s modular structure enables implementing new interactive
methods and reusing previously implemented ones and their functionalities. Both scalarization-based and
evolutionary methods are supported, and DESDEO allows hybridizing interactive methods of both types in
novel ways and enables even switching the method during the solution process. Moreover, DESDEO also
supports defining multiobjective optimization problems of different kinds, such as data-driven or simulation-
based problems. We discuss DESDEO’s modular structure in detail and demonstrate its capabilities in four
carefully chosen use cases aimed at helping readers unfamiliar with DESDEO get started using it. We also
give an example on how DESDEO can be extended with a graphical user interface. Overall, DESDEO offers
a much-needed toolbox for researchers and practitioners to efficiently develop and apply interactive methods
in new ways – both in academia and industry.

INDEX TERMS Data-driven multiobjective optimization, evolutionary computation, interactive methods,
multi-criteria decision making, nonlinear optimization, open source software, Pareto optimization.

I. INTRODUCTION
Optimization in many real-life problems is typically char-
acterized by several conflicting objectives to be consid-
ered simultaneously. In these multiobjective optimization
problems, the presence of conflicting objectives results in
many so-called Pareto optimal solutions with different trade-
offs instead of a single optimal solution. These solutions
are incomparable without additional information. Therefore,
there is a need for a domain expert, referred to as a decision
maker (DM), to ultimately choose one of the Pareto optimal
solutions as the final one based on his/her preferences.

The associate editor coordinating the review of this manuscript and

approving it for publication was Huaqing Li .

Different types of methods have been developed for solv-
ing multiobjective optimization problems in the multiple
criteria decision making (MCDM) (e.g., [1]–[3]) and evo-
lutionary multiobjective optimization (EMO) (e.g., [4], [5])
communities. Most MCDM methods incorporate a DM’s
preferences to focus on subsets of the Pareto optimal solutions
reflecting the interests of the DM. These methods have a
strong theoretical background and can guarantee Pareto opti-
mality (see, e.g., [3]). Most MCDM methods use so-called
scalarization or scalarizing functions to transform the origi-
nal multiobjective optimization problem with the preference
information into a scalarized problem (with a single objec-
tive) to be optimized. After this transformation, an appropri-
ate single-objective optimizationmethod is to be used to solve
the scalarized problem. By carefully selecting the scalarizing

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 148277

G. Misitano et al.: DESDEO: Modular and Open Source Framework for Interactive Multiobjective Optimization

function, one can guarantee getting a Pareto optimal solu-
tion for the original problem so that the DM’s preferences
are considered. With different preferences, one can typically
get different Pareto optimal solutions. For comparisons of
different scalarizing functions, see, e.g., [6], [7]. In contrast,
EMO methods handle a population of solutions at a time and
generate several approximated Pareto optimal solutions to
represent different Pareto optimal solutions. They often start
from a random set of solutions and use different selection,
mutation and recombination operators to create the next gen-
eration of solutions. Because of their heuristic nature, they
cannot guarantee Pareto optimality, but they can be applied to
challenging problems with, e.g., discontinuous or nonconvex
functions.
One can classify different multiobjective optimization

methods based on when a DM with preference information
takes part in the solution process [1], [3]. A no preference
method is applied in absence of preferences. The DM may
provide his/her preferences before or after the solution pro-
cess in a priori or a posteriori methods, respectively. In a pri-
ori methods, theDMprovides hopes and expectations, and the
method tries to find the best matching solution. In contrast,
a representative set of Pareto optimal solutions is generated
in a posteriori methods for the DM to choose from.
The fourth class of methods, known as interactive multi-

objective optimization methods, involves the DM during the
solution process. In this way, the DM iteratively provides
his/her preferences while gradually gaining further insight
into the problem and learning about hidden limitations such
as the feasibility of the preferences and attainable solu-
tions [8]. Therefore, the DM has a chance to modify his/her
preferences based on new insight and learning. Moreover,
the cognitive load set on the DM (at a time) is usually
low compared to other methods, e.g., a posteriori methods.
Indeed, the DM can focus the search on a subset of solutions
and only consider Pareto optimal solutions of interest. This
also saves computational resources. Because of these reasons,
we consider here interactive methods. As mentioned, they
consist of iterations. At each iteration, the DM sees a solution
or some solutions reflecting the provided preferences and can
adjust the preferences to eventually find the most preferred
solution. Thanks to learning, the confidence of the DM grows
during the solution process.
The DM can provide various types of preference informa-

tion. Examples of them include so-called reference points
whose components represent desired values for objective
functions (also called aspiration levels), ranges for acceptable
objective function values, classification, pairwise compar-
isons and selecting desired or undesired solutions out of a
subset, to name a few (see, e.g., [3], [9]).
Over the years, different interactive methods have been

developed in the literature, and they have shown their poten-
tial in various applications, see, e.g., [10]. They differ
from each other mainly in terms of preference informa-
tion used, how solutions reflecting preferences are gen-
erated, and what kind of information is provided to the

DM [3], [8], [11]. However, their implementations are done
in isolation, and they are not readily available. Even though
most interactive methods utilize similar components (such
as types of preference information, scalarizing functions,
sampling techniques), each method has a different way
of implementation. These issues slow down the practical
usage of interactive methods from different perspectives
and introduces various challenges, which we have listed as
follows:

1) It is not easy to find implementations of different inter-
active methods to be applied.

2) Identifying the most suitable interactive methods to be
used in various real-life applications is challenging.

3) Comparing interactive methods is difficult because of
the lack of having various interactive methods within
the same framework.

4) Utilizing the implemented methods or some parts of
their implementation in new developments is hard,
so every new construction needs to be started from
scratch.

5) The lack of openness limits applicability.
6) The iterative nature of the interactive methods, together

with some standard components, enables switching
between methods in different iterations of the solution
process, at least in theory. Nonetheless, separate imple-
mentations have been preventing the chance of testing
this exciting idea.

To the best of our knowledge, only one framework has
been developed for interactive methods, which, to some
extent, aims to address the listed issues. It is the so-called
DESDEO framework [12]. However, the version discussed
in [12] had practical issues in its implementation, overall
structure, and modularity and was, thus, not ready for broader
usage and extensions. For these reasons, there was a need to
first re-structure and then to re-implement a new DESDEO
framework, which is introduced in this paper. The new frame-
work has a clear potential in addressing all the six listed
challenges.
The newDESDEO framework implemented in Python [13]

has a modular structure and , thus, involves reusable modules
that can be utilized for implementing new interactivemethods
or modifying the existing ones. DESDEO enables solving
computationally expensive simulation-based and data-driven
problems using surrogate models, including uncertainty con-
siderations. It contains implementations of several old and
new interactive methods by various developers covering
methods of bothMCDM and EMO types. Thanks to the mod-
ular structure, new or revised methods can be conveniently
included in the framework.
DESDEO consists of packages and modules. We introduce

them and also demonstrate how DESDEO can be applied
to solve problems with analytical expressions as well as
data-driven and simulation based problems. The strengths of
DESDEO include the option to hybridize scalarization based
and evolutionary methods and the convenience of comparing
different methods in the same environment. For instance,

148278 VOLUME 9, 2021

G. Misitano et al.: DESDEO: Modular and Open Source Framework for Interactive Multiobjective Optimization

there is no need to specify the problem to be solved for each
method separately.
The modular structure enables hybridization between dif-

ferent types of methods. By hybridization, we mean the
ability to use final or intermediate results of one method
in another method, such as generating approximated Pareto
optimal solutions utilizing an EMO method and using the
solutions in an MCDMmethod or switching the method dur-
ing the solution process, e.g., when the DM wants to change
the type of preference information. This opens up new oppor-
tunities for utilizing different features of various methods
while the DM is not limited to using only one method or one
type of preferences. Various visualizations and a graphical
user interface are also being developedwith a similar modular
structure in mind. The methods implemented in DESDEO
can be utilized by anyone who has basic programming skills
in Python, which has become a widely-used programming
language in data and business analytics. Since the framework
is open source, it is readily available for various applica-
tions and can be conveniently tailored for different problems,
if needed. It is naturally also open to new contributions and
anybody interested is welcome to contribute.
The rest of the paper is structured as follows. In Section II ,

we outline the general concepts and notations of multiobjec-
tive optimization that we use in this paper, briefly review the
related open source frameworks for multiobjective optimiza-
tion in the literature, and overview some interactive methods
(referred to in this paper). Section III is targeted at readers
interested in contributing to the development of DESDEO.
For this, the framework structure introducing packages, mod-
ules, and external dependencies is described in detail. Those
who only wish to apply the framework for solving multiob-
jective optimization problems can skip Section III and focus
on four diverse illustrative use cases outlined in Section IV.
In Section IV, we also give a basic example of a graphical
user interface that can be implemented to ease interaction
between the interactive methods in DESDEO and the DM.
In Section V, we discuss the potential of the modular frame-
work, such as adjusting or hybridizing methods and creat-
ing user interfaces for various interactive methods. Finally,
we conclude in Section VI.

II. BACKGROUND
In this section, we first introduce the main notation and
concepts used in this paper. We then survey the state-of-
the-art of open source software frameworks available for
multiobjective optimization. Finally, we very briefly outline
some of the interactive methods referred to in the use cases
considered in Section IV.

A. MULTIOBJECTIVE OPTIMIZATION
We consider the following form of multiobjective optimiza-
tion problems minimizing k ≥ 2 objective functions [3]:

min f(x) = (f1(x), . . . , fk (x))

s.t. x ∈ S, (1)

where fi : S → R (i = 1, . . . , k) are objective functions
and x = (x1, . . . , xn)T is a vector of n decision variables in
the feasible region S ⊂ Rn defined by constraint functions.
Without loss of generality, we here assume that all functions
are to be minimized. If some function fi is to be maximized,
it is equivalent to minimize −fi.
A decision (variable) vector x∗ ∈ S is called Pareto optimal

if there exists no x ∈ S, so that for all i, fi(x) ≤ fi(x∗)
and for some j, fj(x) < fj(x∗). The image of Pareto optimal
decision vectors in the objective space Rk is called a Pareto
front and it consists of Pareto optimal objective vectors. In the
definition of Pareto optimality, a solution is not dominated
by any other feasible solution. As we deal with evolutionary
methods that cannot guarantee Pareto optimality, we also use
the term nondominated solutions. They are not dominated by
any solution in the solution set considered (typically referred
to as a population), but are not necessarily Pareto optimal.
The best and the worst possible values of objective func-

tions in the Pareto front are represented by an ideal and a nadir
point, respectively. The components of the ideal point can
be calculated by optimizing each objective function subject
to S as a single-objective optimization problem. In contrast,
computing the nadir point is difficult in practice as the set
of all Pareto optimal solutions is unknown. However, some
methods (e.g., a payoff table [14]) are available that can
approximate the nadir point (see e.g., [3] and references
therein).

B. DATA-DRIVEN MULTIOBJECTIVE OPTIMIZATION
As mentioned in the introduction, DESDEO can be applied
to solve different types of multiobjective optimization prob-
lems. Typically, the analytical forms of objective functions
and constraints cannot be formulated in most real-life prob-
lems. In some cases, simulation models can be used to
evaluate function values. In other cases, the objective or con-
straints values must be gained from some real experiences (or
laboratory experiments). In either case, evaluating the func-
tion values is usually expensive from different perspectives.
Therefore, so-called surrogate models can be utilized instead
of the original expensive models or experiments.
On the other hand, in today’s digital societies, various data

from different sources are continuously recorded, which can
be used as a new source of information in decision making.
Making the most of the data available can lead to data-driven
optimization problems. In this case, no other information than
the data is available, giving no other option than fitting surro-
gate models to formulate functions for optimization problems
based on the data. Then, surrogate models approximate the
objective or constraint values.
Different types of surrogate models, such as probabilistic

(e.g., Bayesian network [15] andMarkov chain Monte Carlo)
or machine learning techniques (e.g., radial basis func-
tions [16], Kriging or Gaussian processes [17], [18], support
vector regression [19], and neural networks [20], [21]) exist
and can be utilized to derive functions for multiobjective
optimization problems. Most of these techniques are freely

VOLUME 9, 2021 148279

G. Misitano et al.: DESDEO: Modular and Open Source Framework for Interactive Multiobjective Optimization

available in different Python packages and libraries, which
can be used within the DESDEO framework.

C. LITERATURE REVIEW ON OPEN SOURCE
FRAMEWORKS FOR MULTIOBJECTIVE
OPTIMIZATION
Wehave surveyed open source frameworks for multiobjective
optimization problems. We do not consider closed source
and commercial software implementations because they do
not provide an opportunity to adjust the methods to one’s
needs in the way open source software does. Several open
source software frameworks have been proposed in the lit-
erature. Each of them has its own strengths and limitations
and differs in some nuances from the others. In general, many
aspects should be considered when selecting an appropriate
framework for one’s needs. For example, familiarity with the
programming language used to implement the framework, the
characteristics of the problem to be solved, the availability
of visualization tools, and an exemplary user interface can
influence the selection of a framework.
Table 1 summarizes well-known open source frameworks

proposed for solving multiobjective optimization problems.
We also list some common frameworks with a modular struc-
ture, where multiobjective optimization methods can be cre-
ated. Besides the name and the programming language used,
the table lists whether the frameworks focus onmultiobjective
optimization, includeMCDMor EMO types of methods, pro-
vide a decision-making mechanism where a DM can provide
his/her preference information and choose the most preferred
solution, visualization tools, and a user interface. The table
also states whether the framework has a modular structure
or not. In the following, we briefly describe each of the
frameworks.
DEAP [22] and Inspyred [23] do not focus specifically

on multiobjective optimization but provide Python imple-
mentations of e.g., genetic algorithms, simulated annealing,
and differential evolution. The (a posteriori) EMO method
NSGA-II for multiobjective optimization is also included.
Since these two frameworks have been developed with a
modular structure, moremultiobjective optimizationmethods
can be developed by using the modules available in the
framework. Inspyred includes further nature-inspired opti-
mization algorithms such as particle swarm optimization and
ant colony optimization.
vOptSolver [24] has been implemented in the Julia lan-

guage. It integrates several exact algorithms for multiobjec-
tive linear optimization problems (including mixed-integer
problems).
Platypus [25] involves Python implementations of several

well-known EMO methods concentrating, thus, on multi-
objective optimization. It also includes an analysis tool for
visual comparison of EMO methods by applying some per-
formance indicators.
MOEA [26] is a Java-based framework that enables auto-

matic parallelization of methods across multiple processor

cores. It includes most of the state-of-the-art a posteriori
EMO methods.
PyGMO [27] is a Python extension of PaGMO (C++) [28]

which has implementations of a variety of single- and mul-
tiobjective optimization methods and real-life engineering
problems in an object-oriented architecture. Automatic par-
allelization of the implemented methods enables using the
underlying multicore architecture efficiently.
jMetalPy [29] extends the Java-based framework

jMetal [30] (which contains metaheuristic methods like evo-
lutionary methods) for multiobjective optimization to be used
in Python. jMetalPy provides improved data analysis, interac-
tive visualization of Pareto optimal solutions, and increased
computational performance by applying libraries available in
Python. Additionally, jMetalPy facilitates parallel computing
for computationally expensive problems.
Pymoo [31] is a multiobjective optimization framework in

Python and offers evolutionary methods for single- and mul-
tiobjective optimization problems. It involves several visu-
alization techniques for illustrating results and well-known
indicators to compare the performance of the methods.
Finally, PlatEMO [32] is an open source framework

developed in MATLAB including many EMO methods,
widely used performance indicators, and benchmark prob-
lems. It also has a graphical user interface. However, one
should note that even though the implementation is openly
available, a MATLAB license is required to use it. There-
fore, while being commercial software, PlatEMO still allows
adjusting its implementation to meet specific needs.
The frameworks mentioned so far do not contain inter-

active methods. They include either MCDM or EMO types
of methods, but not both, and only one of the frameworks
comes with a user interface. As this summary shows, overall,
DESDEO is unique since it is the only open source frame-
work including interactive methods. Thus, DESDEO fills
a gap in the software available in the multiobjective opti-
mization community. DESDEO has a clear modular structure
making it easy for users and developers to contribute new
contents. Importantly, DESDEO involves both MCDM and
EMO types of methods, enabling hybridizing and switching
between methods depending on needs and application areas.
Moreover, elements for building custom graphical user inter-
faces for efficient interaction between the DM and interactive
methods are a planned future inclusion in DESDEO. These
elements are currently under active development and are to
be included as additional packages in DESDEO eventually.
Therefore, visualization and user interface (UI) items for
DESDEO are in parentheses in Table 1 for the time being.
However, specialized non-modular graphical user interfaces
have been developed for DESDEO in the past as seen in
Section IV-F.

D. SOME INTERACTIVE METHODS IMPLEMENTED
As mentioned earlier, different interactive multiobjective
optimization methods have been implemented in DESDEO.
In this section, we briefly introduce a few that are utilized

148280 VOLUME 9, 2021

G. Misitano et al.: DESDEO: Modular and Open Source Framework for Interactive Multiobjective Optimization

TABLE 1. Summary of open source optimization frameworks. In the table, MO stands for multiobjective optimization.

later in Section IV: the reference point method [33], the
synchronous NIMBUS method [34] and the NAUTILUS
family [35] (particularly E-NAUTILUS [36]) from MCDM
methods, and RVEA [37] and NSGA-III [38] from EMO
methods.
The reference point method [33] is a popular interactive

multiobjective optimization method in which the DM pro-
vides preferences as desired objective function values consti-
tuting a reference point. Then, at each iteration, k + 1 Pareto
optimal solutions reflecting the reference point are found by
utilizing an achievement scalarizing function. The DM can
iterate (i.e., compare solutions and provide new reference
points) until the most preferred solution is found.
In NIMBUS, starting from a Pareto optimal solution, a DM

expresses his/her preferences by classifying the objective
functions corresponding to the Pareto optimal solution into
up to five preference classes to indicate how the current
objectives should change to be more preferable to the DM.
In each iteration of NIMBUS, based on the DM’s preferences,
1–4 Pareto optimal solutions are generated and shown to the
DM (the DM decides how many new solutions (s)he wants to
see). Besides classification, the DM can ask for the desired
number of solutions generated between any two Pareto opti-
mal ones. Like other interactive methods, the solution process
continues until the DM has found his/her most preferred
solution.
The NAUTILUS family [35] contains interactive trade-

off-free methods. This means that the DM does not deal
with Pareto optimal solutions but gradually approaches the
Pareto front starting from an inferior solution (like a nadir
point). Then, following the DM’s preferences, all objectives
are simultaneously improved until a Pareto optimal solution is
reached. During the solution process, the ranges of objective
function values that still can be reached without trading-off
naturally shrink. Once a Pareto optimal solution is reached,
the solution process stops since it is no longer possible to pro-
ceed without trading-off. NAUTILUS variants vary regarding
the types of preference information used and how solutions
are generated in each iteration (see [35] for a comparison
of the differences). For example, in each iteration of the
original NAUTILUS [39] method, the DM ranks the objective

functions based on the preferred improvement of the current
objective values. In contrast, in NAUTILUS 2 [40], ratios of
improvement are provided by the DM. In E-NAUTILUS [36],
which is particularly developed for handling computationally
expensive problems, the DM can compare multiple solutions
(referred to as intermediate points) at each iteration. Finally,
NAUTILUS Navigator [41] integrates NAUTILUS with nav-
igation ideas [42], where the DM sees ranges of objective
function values that are still reachable from the current itera-
tion point shrinking in real-time and provides preferences as
desired aspiration levels and bounds not to be exceeded.
Besides MCDM type of methods, various interactive EMO

methods have also been developed and implemented in
DESDEO. They include interactive versions [43] of the ref-
erence vector-guided evolutionary algorithm (RVEA) [37]
and NSGA-III [38]. RVEA and NSGA-III are originally a
posteriori methods. The interactive version of NSGA-III has
been implemented, corresponding to how RVEA was made
interactive in [43]. The main type of preference information
used in both is a reference point, but other preference types
are also available for RVEA.

III. STRUCTURE OF THE DESDEO FRAMEWORK
In this section, we describe the structure of the DESDEO
framework, including packages of the framework and the
modules in each package. In addition, we discuss the purpose
of each package and its dependencies. We also consider the
implementation of the DESDEO framework and its external
dependencies. Lastly, we discuss the architectural choices
made in DESDEO that any aspiring developer and user of
the frameworks should be aware of. This section is intended
mostly for those interested in contributing to the framework’s
development. Those interested only in utilizing the frame-
work for solving multiobjective optimization problems may
proceed to Section IV.

A. PACKAGES AND MODULES
In the modular structure of DESDEO, each package is a
collection of modules, which contain class and function
definitions to tackle specific tasks in modeling and solving
multiobjective optimization problems interactively. The main

VOLUME 9, 2021 148281

G. Misitano et al.: DESDEO: Modular and Open Source Framework for Interactive Multiobjective Optimization

packages, called core packages, and their individual modules
are presented in Figure 1. Each package has a well-defined
purpose and is built to address a certain set of tasks in interac-
tive multiobjective optimization methods. The modules may
depend on other packages lower in the structure, as shown in
Figure 2.

FIGURE 1. The main structure of the DESDEO framework with packages
and modules included in each package. Further packages and modules
can be added as needed.

FIGURE 2. The packages of DESDEO and their dependencies on each
other.

In Figure 2, the arrows represent the internal dependen-
cies of packages in DESDEO, e.g., the package desdeo-emo
depends on both the packages desdeo-tools and desdeo-
problem. A modular structure allows users to choose which
parts of the framework to use. For example, to model a
multiobjective optimization problem, one can use the desdeo-
problem package and avoid the needless inclusion of the other

packages. Additionally, having the framework structured in
a modular fashion eases the development of the framework
by encapsulating features and functionalities related to inter-
active multiobjective optimization in their own respective
packages.
In what follows, we describe packages included in

DESDEO and their dependencies on other packages. The
packages also depend on existing popular Python packages,
which are discussed further at the end of this section.
The desdeo-problem package contains features related to

the formulation and modeling of multiobjective optimiza-
tion problems. Problems can be analytical expressions of
functions depending on decision variables, or modeled based
on collected data related to the multiobjective optimization
problem (either utilizing data available or data obtained
by running a problem-specific simulator). The problem can
naturally also have constraint functions defining a feasible
region. Tools for problem formulation can be found in the
module problem. As already mentioned, surrogate models
may be trained and used to model functions of a multiob-
jective optimization problem based on data. For example,
Gaussian regression is available as a surrogate model but
any other machine learning-focused package can be used to
train surrogate models. The tools for building surrogates can
be found in the surrogatemodels module. Moreover, com-
monly utilized test problems in multiobjective optimization
can be found in the testproblems module. Such problems
include, for example, the DTLZ problems [44]. The desdeo-
problem package does not depend on any other package in the
DESDEO framework.
The desdeo-tools package contains utility tools that are

expected to be used during any phase of the optimization
process, irrespective of the method type (MCDM or EMO)
used for optimization. Such tools include abstractions for var-
ious preference elicitation techniques, scalarizing functions,
and nondominated sorting. The interaction module contains
methods to ease interaction between a DM and an interac-
tive multiobjective optimization method. The scalarization
module contains scalarization tools for transforming multi-
objective optimization problems into single-objective prob-
lems (incorporating preference information). As mentioned
in the introduction, we can get Pareto optimal solutions by
using appropriate scalarization functions, such as achieve-
ment scalarizing functions [45] and the scalarization function
of the ε-constraint method [2]. The maps module contains
tools for transforming objectives from one space to another,
such as e.g., the so-called preference incorporated space [46].
Finally, the solver module contains tools for solving scalar-
ized problems. These solversmust be appropriate for the char-
acteristics of the problem in question (considering, e.g., the
type of variables and the nature of functions involved). The
desdeo-tools package does not depend on any other package
in the DESDEO framework.
The desdeo-emo package is the repository of evolutionary

algorithms (EAs) and tools which are specifically used with
EMO methods. Besides interactive EMO methods, it has

148282 VOLUME 9, 2021

G. Misitano et al.: DESDEO: Modular and Open Source Framework for Interactive Multiobjective Optimization

implementations of basic (a posteriori) EMO methods and
some a priori methods as they can be used as elements
of interactive ones. The package contains the following
modules: population, recombination, selection, EAs, surro-
gatemodelling, and utilities. The first three modules con-
tain abstractions representing the population, crossover and
mutation operators as well as selection operators. We use
these abstractions as building blocks to implement various
evolutionary algorithms in the EAs module. New EAs can be
implemented by either modifying the implementations in the
EAs module or by using the building blocks in other mod-
ules in entirely new ways. The surrogatemodelling module
implements certain EA based methods which are specifically
designed to train surrogate models. Finally, utilities contains
miscellaneous tools that are used by one or more EMOmeth-
ods, but do not fit in the other modules. The desdeo-emo
package depends on the desdeo-problem and desdeo-tools
packages.
As the name suggests, the desdeo-mcdm package con-

tains implementations of interactive multiobjective optimiza-
tion methods of the MCDM type (involving scalarization
functions to generate Pareto optimal solutions). The meth-
ods themselves are in the interactive module. For example,
the synchronous NIMBUS and methods belonging to the
NAUTILUS family are implemented in this module. The
utilities module contains various utilities often needed in
MCDM methods. For instance, the utilities include a payoff
table method for computing an ideal and an approximation
of the nadir point. The desdeo-mcdm package depends on the
desdeo-problem and desdeo-tools packages.
Besides the core packages of DESDEO discussed so far,

other packages can be, and have also been, developed based
on the packages discussed. Examples of these packages
consist of specialized graphical UIs and new experimental
interactive multiobjective optimization methods not mature
enough to be included in DESDEO yet. Due to their experi-
mental nature, we will not discuss these additional packages
further here.
As mentioned, the DESDEO framework has been imple-

mented in Python and is available online as open source
software on GitHub.1 The framework makes use of exist-
ing Python libraries in the SciPy ecosystem, most notably
NumPy [47], SciPy (the library) [48] and Pandas [49].
NumPy offers numerically efficient data structures, which
enables an efficient handling of array-like structures present
everywhere in the DESDEO framework. SciPy offers exist-
ing computational routines. For example, it offers excellent
optimization routines for optimizing constrained problems
with a single objective. As mentioned, this kind of problem
emerges, for instance, when scalarizing a multiobjective opti-
mization problem. In turn, Pandas has excellent and efficient
data manipulation routines. They are needed especially when
representing data-driven multiobjective optimization prob-
lems, which may sometimes consist of large amounts of data

1https://github.com/industrial-optimization-group/DESDEO

requiring extensive feature engineering before modeling a
multiobjective optimization problem.
For a more detailed description of each package and

module found in DESDEO, the reader is encouraged to
check DESDEO’s main documentation. The documenta-
tion is found online (https://desdeo.readthedocs.io/en/latest/)
where the individual documentation of each core package can
be found with additional details about implemented classes
and functions.

B. ARCHITECTURAL DECISIONS IN DESDEO
A couple of choices have been made during the development
of DESDEO. The user of the framework should keep them in
mind while developing or using the framework.
As mentioned in Section II, objective functions in mul-

tiobjective optimization problems can either be minimized
or maximized, but within the optimization methods in
DESDEO, functions are always assumed to be minimized.
This means that we convert functions to be maximized to
functions to be minimized and internally only deal with mini-
mization problems. This choice has been made to remove any
possible software bugs, confusion, and guesswork related to
keeping trackwhether an objective is to beminimized ormax-
imized, transforming problems from one type to another, and
parsing preference information. Naturally, when displaying
information related to a multiobjective optimization problem
and its solutions to a DM, the objectives are presented in their
original form. The task of making the conversion whenever
needed (also in the preference information) is the responsi-
bility of the UI.
As interactive multiobjective optimization methods vary in

the type of interaction and preference information required
from the DM, abstraction of interaction has been kept simple
and non-restrictive in DESDEO. Each interactive method
has at least two (object) methods: start and iterate.
As the name suggests, the former is always used to start a
method after it has been instantiated. Likewise, theiterate
method is then used for any subsequent interactions after
starting the method. Both the start and iterate meth-
ods return at least one request (Python) object. These
objects contain all the necessary information to carry out
a required interaction with the interactive method in their
content attribute, which is a Python dictionary. The con-
tents of a request may vary depending on the interactive
method, but each content dictionary in DESDEO comes
at least with a message entry meant to give a hint to
the user of what is expected of them interaction-wise. Each
request object has a response attribute, which is also
a dictionary. The response dictionary has its own entries,
which the user must define to continue iterating the interac-
tive method. After the entries of the response have been
defined, theiteratemethod can be invoked by giving it the
request containing the responsewith defined entries as
an argument. The iterate method will then return a new
request. Examples of this request-response struc-
ture can be found in the use cases in Section IV. However,

VOLUME 9, 2021 148283

G. Misitano et al.: DESDEO: Modular and Open Source Framework for Interactive Multiobjective Optimization

it is not expected that a DM oneself would directly handle
these Python dictionaries. Instead, it is expected that some
external interface is used to facilitate interaction between a
DM and DESDEO. The request and response should
be mainly used to store and communicate information to and
from interactive methods available in DESDEO.

IV. USE CASES
In this section, we demonstrate how one can use the DESDEO
framework to define different types of problems and solve
them by applying interactive multiobjective optimization
methods. For simplicity, we use a river pollution problem
with five objective functions and two decision variables
presented in Section IV-A. In Section IV-B, we describe
how to define a problem with an analytical formulation and
solve it using the synchronous NIMBUS method [34]. This
method is in the desdeo-mcdm package and incorporates
classification types of preferences. Section IV-C is devoted
to defining and solving a data-driven problem. The inter-
active RVEA [43] method in the desdeo-emo package is
applied, where preference information is given as a reference
point. In Section IV-D, we consider some challenges of com-
putationally expensive problems and follow the three-stage
approach [50], where first, NSGA-III is utilized in a pre-
decision-making stage to generate nondominated solutions.
Then, a computationally inexpensive surrogate problem is
formed. In the decision-making stage, the DM applies the
interactive E-NAUTILUS [36] method to solve the surrogate
problem. There can also be a post-decision-making stage to
assure the Pareto optimality of the final solution. Here we
consider the first two stages as a hybrid way of using methods
within the DESDEO framework. Lastly, in Section IV-E we
demonstrate how the DM can switch interactive methods in
DESDEO to express his/her preferences in different ways.
This example also illustrates some of the advantages the
DESDEO environment provides. Finally, we discuss some
graphical user interfaces in Section IV-F.
Asmentioned, themain documentation ofDESDEO can be

found online (https://desdeo.readthedocs.io/en/latest/). The
documentation of each core package discussed in Section III,
can be readily accessed through the main documentation.
We advice the reader to check the documentation for any
additional details related to the use cases considered in
Sections IV-B, IV-C, IV-D, and IV-E. The examples shown
in these sections can also be found online in a Jupyter
Notebook.2

A. THE RIVER POLLUTION PROBLEM
The river pollution problem [51] considers a river close to a
city. There are two sources of pollution: industrial pollution
from a fishery and municipal waste from the city and two
treatment plants (in the fishery and the city). The pollution
is reported in pounds of biochemical oxygen demanding

2https://desdeo.readthedocs.io/en/latest/notebooks/four_simple_use_
cases.html

material (BOD), and water quality is measured in dissolved
oxygen concentration (DO).
Cleaning water in the city increases tax rate, and cleaning

in the fishery reduces the return on investment. The problem
is to improve the DO level in the city and at the municipality
border (f1 and f2, respectively) while, at the same time, max-
imizing the percent return on investment at the fishery (f3)
and minimizing addition to the city tax (f4). We consider a
variant of the problem [52] with one more objective to ensure
the treatment plants’ efficiency by keeping the proportional
amount of BOD removed from the water close to the ideal
value of 0.65 (f5). The corresponding multiobjective opti-
mization problem where all objectives have been converted
to be minimized is as follows:

min f1(x) = −4.07 − 2.27x1
min f2(x) = −2.60 − 0.03x1 − 0.02x2

− 0.01

1.39 − x21
− 0.30

1.39 − x22

min f3(x) = −8.21 + 0.71

1.09 − x21

min f4(x) = −0.96 + 0.96

1.09 − x22
min f5(x) = max{|x1 − 0.65|, |x2 − 0.65|}
s.t. 0.3 ≤ x1, x2 ≤ 1.0, (2)

where the proportional amounts of BOD removed from water
in the two treatment plants are, respectively, the decision
variables x1 and x2.

B. USE CASE 1: PROBLEM WITH AN ANALYTICAL
FORMULATION
DESDEO has good support for defining and optimizing
problems with analytical formulations. DESDEO provides
individual classes to define components of problem (1),
i.e., objective functions, variables, and constraint functions
separately. Box-constraints for variables are also supported.
Here we analytically define (2) and use modules of the

desdeo-problem package and NumPy. The imports needed
are shown in Source code 1. Notice that this problem has only
box-constraints.

SOURCE CODE 1. Needed imports for a problem defined analytically. The
class MOProblem is used to define a problem, the class Variable its
decision variables, and the class ScalarObjective the objective
functions.

We define the five objective functions as shown in Source
code 2 as individual functions. These functions are expected
to return a 1-dimensional NumPy array with each element
representing the respective objective value when evaluated
with one or more decision variable vectors. These decision

148284 VOLUME 9, 2021

G. Misitano et al.: DESDEO: Modular and Open Source Framework for Interactive Multiobjective Optimization

variable vectors are stored in 2-dimensional NumPy arrays,
with each row representing a single vector. The defined
functions are then used in the ScalarObjective class to
instantiate new objects. Finally, each of the objects is stored
in a list.

SOURCE CODE 2. Defining the objective functions of problem (2).

The variables of the problem are defined similarly in
Source code 3. EachVariable object is instantiated by pro-
viding the variable’s name, initial value, and lower and upper
bound (i.e., box-constraints). The objects are then stored in a
list.

SOURCE CODE 3. Defining the variables and their bounds for problem (2).

Finally, we define the multiobjective optimization problem
by instantiating an MOProblem object in Source code 4
using the lists of ScalarObjectives and Variables
defined earlier. If the problem had additional constraints, they
would be defined in a similar way to objective functions
and provided as a third argument (constraints) to the
initialization method of the MOProblem class. However,
here we only have box-constraints, which were accounted for
when defining the variables in Source code 3.
As mentioned, we solve problem (2) in this case with the

synchronous NIMBUS method [34]. Since it needs the ideal

SOURCE CODE 4. Defining the multiobjective optimization problem
object of problem (2).

and nadir points, we approximate them with the payoff table
method found in the desdeo-mcdm package’s utilitiesmodule
in Source code 5.We store them inside the object defining our
problem to have easy access to them later.

SOURCE CODE 5. Applying the payoff table method to get
approximations of the ideal and nadir points.

SOURCE CODE 6. Instantiating a NIMBUS object and invoking its start
method. The start method returns two requests of which the second
one is irrelevant to this example and is therefore matched to an
underscore on line 5.

We can now start solving problem (2) using NIMBUS
as shown in Source code 6. After importing the NIMBUS
class, we instantiate an object of it by providing it
mo_problem, which was defined earlier. The start
method returns a classification_request, which is
used to interact with the method as described in Section III-B.
The message-entry found in the content attribute of
classification_request is printed in Console 1.
We remind the reader that in practice, a UI should han-
dle requests. An example of such can be found in
Section IV-F.

CONSOLE 1. The message printed in the request returned by NIMBUS.

As seen in Console 1, we have been provided with instruc-
tions on how to proceed. The content of the response,

VOLUME 9, 2021 148285

G. Misitano et al.: DESDEO: Modular and Open Source Framework for Interactive Multiobjective Optimization

CONSOLE 2. The objective values of the initial solution computed by
NIMBUS, and the ideal and nadir points of the problem.

in the case of NIMBUS, also contains objective vectors,
which we can inspect by printing them as done in Console 2.

SOURCECODE 7. Defining a response with preference information
required by NIMBUS, and then iterating. Newly computed objective
vectors are then printed.

We then define a response in Source code 7 con-
taining preference information, in this case, classifications,
and continue iterating by invoking the iterate method of
NIMBUS. The new objective vectors computed in the first
iteration of NIMBUS are shown in Console 3.

CONSOLE 3. The objective vectors computed by NIMBUS based on the
classification given by the DM.

Iterations of the NIMBUS method may continue by defin-
ing new responses to the requests returned by subse-
quent invocations of the iteratemethod. According to the
definition of NIMBUS [34] the subsequent requests can
also prompt the DM to choose previously computed solutions
between which to compute additional solutions, or to select
previously computed solutions to be saved into an archive
for later viewing, for example. How each of the requests
is handled in practice and how information is displayed to
the DM depends on the choice of a UI, as stated before.
Here, we have only shown the information in textual format
to showcase the concepts of requests and responses,
which can be found in other interactive methods defined in
DESDEO as well.

C. USE CASE 2: DATA-DRIVEN PROBLEM
As mentioned, the DESDEO framework can be used to solve
data-driven problems by fitting surrogate models to the data.

This means that the data is assumed to contain samples of
decision variable values, and corresponding objective vectors
and surrogate models are fitted to represent each objective
function individually. To demonstrate this, in this use case,
we assume that we only have access to a small number of
data points generated before the initiation of the solution
process. We have generated data points for problem (2) by
sampling the feasible region in the decision space using
Latin hypercube sampling [53], and evaluated them using
the analytical functions to obtain the corresponding objective
vectors. A total of 100 points were sampled and the resulting
data set saved on disk. The structure of the dataset is shown in
Table 2, where the first row contains the names of the columns
(decision variables or objectives).

TABLE 2. Format of the raw data used for surrogate-assisted
optimization.

SOURCECODE 8. Formulating the problem using data.

We formulate the problem as shown in Source code 8. The
Pandas package is used for importing and handling the data as
shown in line 5 with the variable training_data. We can
now define the problem by instantiating a DataProblem
object. This is done by passing training data, names of the
decision variables and the objective functions, and the lower
and upper bounds of the decision variables. If these bounds
are not provided, the infimum and supremum of the dataset
are assumed to be the bounds.
In Source code 9, we show how the newly created

DataProblem object can be used to train surro-
gate models for the objectives. We begin by import-
ing the surrogate modeling technique of choice. Here,
we use the GaussianProcessRegressor class from
desdeo_problem, which is a wrapper around the scikit-
learn class of the same name. Similar wrappers can be defined
for other options of existing surrogate models. The modeling

148286 VOLUME 9, 2021

G. Misitano et al.: DESDEO: Modular and Open Source Framework for Interactive Multiobjective Optimization

SOURCECODE 9. Training Gaussian process regression surrogate models
for the objectives.

algorithm and model parameters can be passed to the train
method of the DataProblem object, which automatically
trains the surrogate models for all objectives. Details about
advanced use cases of the train method, such as training
different kinds of surrogate models for different objectives,
can be found in the documentation of desdeo-emo. More
information about the model parameters is available in the
documentation of the package of the model used, in this case,
scikit-learn.
Once the surrogate models have been trained, we apply

here the interactive RVEA method from the desdeo-emo
package to solve the resulting problem using reference points
as preference information. In Source code 10, we pass
the problem variable as the first argument to the RVEA
instance. This is followed by two Boolean arguments:
interact=True and use_surrogates=True. The
first argument enables the use of an interactive version of
RVEA as presented in [43]. The second argument enables
RVEA to use the surrogate models as objectives in place
of analytical functions. Details about other arguments which
control various aspects of the evolutionary method can be
found in the documentation of desdeo-emo.

SOURCECODE 10. Using interactive RVEA to solve the surrogate problem.

We begin the interactive solution process by providing
the first reference point to evolver. This is done by
first calling the request method of evolver, which
returns refp_request and additional requests, irrele-
vant in this example, matched to underscores. This is sim-
ilar to the requests returned by the start method of
nimbus in the previous subsection. The refp_request
variable accepts preferences as a reference point. Similar to
classification_request in the previous subsection,
this object also has a content method and a response
attribute. The comment on line 11 in Source code 10

signifies the DM providing preferences to refp_request.
As mentioned in the previous subsection, this can be
achieved by a command-line interface, a graphical UI,
or by using a console environment, like IPython or Jupyter
Notebook.
In Console 4, we show how preferences can be defined.

The content attribute of refp_request can be shown
to the DM to describe the acceptable ranges of the pref-
erences (here, ranges for aspiration levels as components
of the reference point) and how the preference information
will be utilized in the method used. The DM then provides
preferences to the response attribute of refp_request
using a Pandas data frame. The names of the columns of
this data frame have to be the same as the objective function
names, and the values contained in the data frame reflect
the preferences of the DM in the form of a reference point.
The preference information can then be submitted to the
iterate method of the evolver object to run one iteration
of interactive RVEA. This involves running the evolutionary
method for a number of generations. This number can be
changed by the user using arguments of the RVEA class, and
the details can be found in the documentation.

CONSOLE 4. Checking the contents of the preference request object and
saving the DM’s preferences using a console environment.

After each iteration, the solutions generated can be
accessed through the individuals and objectives
attributes of evolver.population. The former con-
tains the decision variable vectors of the set of solutions,
whereas the latter contains the corresponding set of objective
vectors. The solutions received after one iteration of RVEA
are shown in Figure 3 in the parallel coordinates plot. As can
be seen, many solutions were found that follow the reference
point of the DM (denoted in green color) closely. If, however,
the DM is not satisfied with the results or wants to see
solutions in a different region of the objective space, the steps
shown in Console 4 can be repeated as many times as desired
with different preference information.

VOLUME 9, 2021 148287

G. Misitano et al.: DESDEO: Modular and Open Source Framework for Interactive Multiobjective Optimization

FIGURE 3. Solutions obtained for the data-driven river pollution problem
after using RVEA for one iteration.

D. USE CASE 3: COMPUTATIONALLY EXPENSIVE
PROBLEM
Multiobjective optimization problems can involve expensive
function evaluations. In such cases, computing new solutions
in each iteration of an interactive method is not feasible
because of the long periods of time a DM would have to
wait to see new solutions. Instead, we can use an inter-
active multiobjective optimization method that works on a
computationally less expensive surrogate problem based on
a pre-computed representation of Pareto optimal solutions.
To get a representation, we can use, e.g., some a posteriori
methods like EMO methods. Here we use this simple, yet
quite effective, way as an example of combining methods
from the desdeo-mcdm and desdeo-emo packages.

SOURCECODE 11. Generating a representation of Pareto optimal
solutions for problem (2) using the desdeo-emo package.

We first generate a representative set approximating Pareto
optimal solutions for the river pollution problem (2) as shown
in Source code 11. For this, we apply NSGA-III (activated by
using the interact=False argument) as an a posteriori
method to get solutions for the problem as implemented in
Source code 4. The method is run until a pre-determined
termination criterion is met (the default being 1000 genera-
tions). After this, we can use the end method of the evolver
object to extract a representation of the Pareto front (i.e., non-
dominated solutions) from the population as individuals
(decision vectors) and pareto_set (objective vectors).
We then apply the E-NAUTILUS method [36] with the

generated set of nondominated solutions as its input. It
also needs estimates of the ideal and nadir points, typically
estimated from the available solutions. However, because
we have previously computed (in Section IV-B) the ideal

and (estimated) nadir points, we apply them. As mentioned
in Section II-D, the solution process starts with an inferior
solution and gradually approaches the Pareto front.
In Source code 12, we set up the E-NAUTILUS method

using the ENautilus class from the desdeo-mcdm package.
We invoke the start method as we did in the case of
NIMBUS in Section IV-B to start the solution process.We can
get a hint on how to progress by printing the message stored
in the request as done in Console 5.

SOURCECODE 12. Initializing the E-NAUTILUS method using the set of
solutions computed using NSGA-III and the previously computed ideal
and nadir points of problem (2).

CONSOLE 5. The help message returned by starting the E-NAUTILUS
method.

SOURCECODE 13. Specifying the number of iterations to be carried out
and the number of points to be shown in each iteration of the
E-NAUTILUS method.

A response to the request returned by the startmethod is
then defined in Source code 13. We choose five iterations and
want to see three intermediate points after each iteration. We
then continue iterating and get a new request from invoking
the iteratemethod, which contains the message displayed
in Console 6.

CONSOLE 6. The help message in a request returned from iterating the
E-NAUTILUS method after it has been started.

To address the message shown in Console 6, we first
inspect the intermediate points and bounds of the reachable
solutions computed in the first iteration of E-NAUTILUS in
Console 7.
In Source code 14, we define a response to the current

request and continue iterating by invoking the iterate
method. Subsequent iterations are carried out as shown in

148288 VOLUME 9, 2021

G. Misitano et al.: DESDEO: Modular and Open Source Framework for Interactive Multiobjective Optimization

CONSOLE 7. Printing the intermediate points, upper bounds, and lower
bounds computed in the first iterations of E-NAUTILUS.

SOURCECODE 14. Expressing preference to be the second point shown in
Console 7 and iterating.

Source code 14.We show an example of this using a graphical
UI in the next subsection.
This way of exploring an existing representation of a Pareto

front is well suited for computationally expensive problems
since no expensive function evaluations are needed when
the DM is involved. Even though the problem in this exam-
ple is not really computationally expensive, the process of
first using an EMO method to compute a representation of
the Pareto optimal front, and then exploring it using the
E-NAUTILUS method is identical in a computationally
expensive case.

E. USE CASE 4: SWITCHING METHODS
As interactive multiobjective optimization methods vary
in the type of preference information they require from
a DM and the type of information they provide to the
DM, it is sometimes desirable to switch between itera-
tions to a method that is better suited to the changing
needs of the DM. The DESDEO environment enables this
kind of a switch even between different types of meth-
ods. To illustrate this, we consider an example, where we
have finished iterating with the E-NAUTILUS method as
described in Subsection IV-D and arrived at the solut-
ion[-6.27116931, -2.80042652,-3.46795271,
-6.57327201, 0.31967811]. Since this method uses
a set of solutions approximating the Pareto front, we can
improve the solution by utilizing the synchronous NIMBUS
method and considering the original problem (2) in its
analytical form. We can also think that we have applied
E-NAUTILUS as a trade-off-free method to find a good start-
ing point for NIMBUS and avoided anchoring at a randomly
selected starting point. From NIMBUS, we then switch to

applying the reference point method [33], that is, change the
preference information type from classifying the objectives
to providing a reference point.
To begin, we instantiate a NIMBUS object with the solution

we arrived at with E-NAUTILUS. We use this solution to
derive a Pareto optimal solution that NIMBUS starts with
in Source code 15. This solution is shown in Console 8.
Small improvements were made in the values of the third and
fourth objectives while the other objective values remained
unchanged. This is also an example of a possible realiza-
tion of the post-decision-making stage (mentioned at the
beginning of Section IV) to assure the Pareto optimality of
the solution found using E-NAUTILUS since EMO methods
(used here to generate the input set for E-NAUTILUS) cannot
guarantee Pareto optimality.

SOURCECODE 15. Instantiating a NIMBUS object with a specified starting
point and starting the method.

CONSOLE 8. Printing the solution to be classified in the first iteration of
synchronous NIMBUS in Source code 15.

SOURCECODE 16. Providing classification to synchronous NIMBUS and
iterating the method further.

Next, we take an iteration with the synchronous NIMBUS
using the classification shown in Source code 16. Based on
this preference information, the method provides four new
Pareto optimal solutions shown in Console 9. While inspect-
ing the solutions, we find the first to our liking, but we would
next like to provide a reference point instead of a classifica-
tion. Thus, we switch to using the reference point method in
the desdeo-mcdm module. We initialize the reference point
method by instantiating a ReferencePointMethod
object as done in Source code 17.
We provide the best (i.e., the solution we like the

most) NIMBUS solution ([-6.06739, -2.79173,

VOLUME 9, 2021 148289

G. Misitano et al.: DESDEO: Modular and Open Source Framework for Interactive Multiobjective Optimization

CONSOLE 9. Printing the new solutions computed in Sourcecode 16.

SOURCECODE 17. Instantiating a reference point method object and
starting it.

-5.96145, -6.57333, 0.30863]) as the reference
point in Source code 18 by defining the reference point as
a part of the response. We get the solutions shown in
Console 10 and since the first one is so similar to the reference
point, we stop the solution process and select the first solution
as the final one.

SOURCECODE 18. Iterating with the reference point method by providing
a reference point.

CONSOLE 10. Printing the alternative solutions computed by the
reference point method after providing the reference point as done in
Source code 18.

If we were not satisfied yet, we could continue iterating
by providing a new reference point in a similar way to
what was done in Source code 18. We could also switch
back to the synchronous NIMBUS method by initializing a
NIMBUS object once more, as was done in Source Code 15.
In principle, we could also switch to an EMO method, for
example, by providing one of the solutions as a reference
point to RVEA similar to how it was done in Source code
10, while also switching back to the surrogate version of
problem (2). But in this case it makes no sense to switch
from Pareto optimal to approximated solutions. Naturally,

we are not limited to the interactive methods considered in
the use cases, but any method in DESDEO is applicable.
Without DESDEO, we would be forced to resort to switching
our whole working environment, which may require need-
less repetition, for example, redefining the same problem
multiple times (and possibly in a different syntax). Thanks
to DESDEO, we have all the methods, problems, and other
relevant information (e.g., solutions computed with different
methods) in the same environment, which allows to readily
switch methods and re-use already created information.

F. SOFTWARE APPLICATIONS BUILT UTILIZING DESDEO
So far, we have not really discussed UIs in the DESDEO
framework apart from using a console environment. However,
DESDEO is easy to extend to build more advanced software
applications, such as graphical user interfaces (GUIs), which
facilitate interaction between DMs and interactive methods.
In this section, we explore an example of such a GUI imple-
mented for a method in the desdeo-mcdm package. It is
naturally possible to implement similar GUIs for methods in
the desdeo-emo package as well.
We consider an interface implemented for E-NAUTILUS.

We have furthermore chosen a web interface because they are
accessible to anyone through any modern web browser. The
interface has been developed using the Python libraries plotly
and plotly-dash (https://plotly.com/) due to their ease of use
and versatility for developing web interfaces. However, there
is a significant lack in support for interactive visualizations in
these libraries, which we had to circumvent, leading to a lack
in general usability.
The web interface for E-NAUTILUS can be seen in

Figure 4. At the top of the interface, we have controls for
the DM to engage with E-NAUTILUS: the DM can choose
the most preferred intermediate point (labeled as ‘candidate’
in the figure) by using the radio buttons and click on the
‘ITERATE’-button to continue iterating. Below the controls,
there are three different ways to visualize information about
the intermediate points calculated: at the top left, a spider
plot showing the intermediate points (solid lines) and the best
reachable objective function values from each point (dashed
lines); at the top right, a parallel coordinate plot showing
only the intermediate points with the currently selected point
(using radio buttons) being highlighted in red; and at the
very bottom, the values of each intermediate point and their
best reachable values in a table with the currently selected
intermediate point highlighted in blue.
The spider plot in Figure 4 is worth a closer look. First, each

intermediate point can be explored by clicking the respective
point on the legend to the right of the plot. Second, the plot
also shows in black the intermediate point chosen by the DM
in the previous iteration. Showing the previously chosen point
was desired by a real DM in a practical application where
this interface was used. This is an example of a subjective
need that may arise when interacting with real DMs. Lastly,
it is worth comparing the information in Figure 4 to the
information outputted in Console 7 to see that the information

148290 VOLUME 9, 2021

G. Misitano et al.: DESDEO: Modular and Open Source Framework for Interactive Multiobjective Optimization

FIGURE 4. The GUI of the E-NAUTILUS method implemented in plotly-dash. A toy multiobjective optimization problem with three objectives (INCOME,
QUALITY, VOLUME) to be maximized is shown.

shown for a single iteration in the web interface and the
console are virtually the same. In practice, the presented
interface simply handles the requests and responses

(discussed in Section III-B) as was done in Section IV-D.
In the E-NAUTILUS GUI, we have a different multiobjective
optimization problem with three objectives to be maximized

VOLUME 9, 2021 148291

G. Misitano et al.: DESDEO: Modular and Open Source Framework for Interactive Multiobjective Optimization

instead of problem (2). We have chosen a problem with
fewer objectives for simplicity. Note that the arrows after the
function names remind of the maximization.
The interface described for E-NAUTILUS is available

online (https://desdeo.it.jyu.fi/dash) alongside an interface
implementation for NAUTILUS Navigator as well. The
source code for the interface shown is available on GitHub
online.3 To test the interfaces, we have provided the interested
reader with toy data online.4

V. POTENTIAL OF THE DESDEO FRAMEWORK
Because the DESDEO framework contains various interac-
tive methods, it enables versatile ways of applying them.
As said, the DM can conveniently switch the method during
the solution process. This can be desirable if (s)he wants to
change the type of preference information in the middle of the
solution process or get different types of information about
the problem. This opens up vast possibilities when the DM is
not forced to stick with a single method to be applied but can
select methods that best suit the different phases of the solu-
tion process (e.g., learning and decision phases [54]). This
potential has been considered in [55], where a generic multi-
agent architecture for interactive methods was proposed to
support DMs in selecting the most suited interactive method
based on preferred preference type and their needs in different
phases during the solution process. Without a framework like
DESDEO, switching the method is inconvenient; the problem
to be solved must be connected to individual multiobjective
optimization methods separately, and the solution history
with the previous method is not easily available.
DESDEO has clear potential in allowing researchers to

hybridize EMO and MCDM methods in novel ways. This
potential is not just limited to the example seen in Section IV,
where an EMOmethod was used to compute a representation
of a Pareto front, which was then explored using an MCDM
method. More innovative and advanced ways of combining
not just methods but also their individual components are
possible. This is because of the modular fashion in which
the various multiobjective optimization methods have been
implemented in DESDEO. Combining individual compo-
nents enables the development of new interactive methods,
which can be also included in DESDEO extending the frame-
work further. The IOPIS algorithm, described in [46], is an
example of such a method.
Moreover, DESDEO offers a promising basis for imple-

menting new interactive multiobjective optimization methods
that are not based on combining existing components. Due to
the modular structure, a developer can easily reuse already
implemented components and only add those that are not yet
available (if needed). For example, the desdeo-tools package
has awide variety of different tools ranging from achievement
scalarizing functions to fast nondominated sorting, which

3https://github.com/industrial-optimization-group/desdeo-dash
4https://github.com/industrial-optimization-

group/DESDEO/blob/master/docs/notebooks/data/toy_data.csv

can prove useful in implementing new methods. In addition,
experimenting with new methods and ideas in multiobjective
optimization is also made easy thanks to DESDEO and the
reusability of its components. DESDEO can also encourage
and lower the threshold for researchers to implement their
methods as open source code, contributing to the openness of
the research conducted in multiobjective optimization. This
way, DESDEO has the potential and is on a good track to
becoming a central hub for open implementations of interac-
tive multiobjective optimization methods.
Apart from being interesting from an academic per-

spective, DESDEO can naturally be utilized for modeling
and solving real-life problems from any field as long as
the problem can be modeled as a multiobjective optimization
problem. Depending on the type and requirements of the
problem, DESDEO might still lack certain features neces-
sary for modeling and solving the problem, which is also
one of the current limitations of DESDEO. However, due
to DESDEO’s modular structure and open source nature,
implementing these missing features is possible by anyone.
For example, the underlying optimization methods for single-
objective optimization problems arising in various interactive
methods in DESDEO can be changed to better account for
the type of problem being solved. Similarly, the crossover and
mutation operations in EMOmethods can also be customized
if need be. Lastly, in modeling a data-driven multiobjec-
tive optimization problem, almost any surrogate model can
be implemented and used. Obviously, existing features in
DESDEO can be combined with new features as well allow-
ing practitioners to save time and help them focus on solving
the problem at hand. In this way, DESDEO can be extended to
account for any kind of multiobjective optimization problem
from any field while decreasing the potential workload for
practitioners.
Being a software framework, DESDEO has a learning

curve to it, which means that a certain level of proficiency
in Python and multiobjective optimization is to be expected
from the user. This clearly limits the size of the potential user
base of DESDEO and is, therefore, one of the framework’s
major limitations at the present time. We already offer a
written documentation of DESDEO’s features, but to make
DESDEO even more accessible, we plan on including more
topical guides in the documentation on how to use DESDEO
(such as the ones presented in Section IV) and consider pro-
ducing tutorial videos on how to use DESDEO in the future.
This should help broaden DESDEO’s user base and allow
users to extend DESDEO to meet their individual needs.
All of this will help DESDEO grow further as a software
framework.
Comparison and identifying the best suited method for var-

ious needs are important. DESDEOdoes offer very promising
opportunities for comparing and validating different interac-
tive methods. This is vital and demanding because the DM
plays an important role in the solution process and conducting
experiments with human participants is challenging. To be
able to compare interactive methods, their performance needs

148292 VOLUME 9, 2021

G. Misitano et al.: DESDEO: Modular and Open Source Framework for Interactive Multiobjective Optimization

to be evaluated and validated using appropriate quality indi-
cators. To the best of our knowledge, no quality indicators
for interactive methods have been proposed. For such quality
indicators, the desirable properties that qualify interactive
solution processes should be defined. In [56], a systematic
literature review of the assessments of interactive methods
is provided along with desirable properties for interactive
methods. This can be considered as the initial step towards
developing quality indicators for interactive methods. More-
over, there has been some interest in comparing interac-
tive methods with so-called artificial DMs in the literature
(e.g., [57]–[59]). Within the DESDEO framework, an arti-
ficial DM has recently been proposed to compare refer-
ence point-based interactive EMO methods [60]. DESDEO
provides an excellent platform for comparisons because it
involves various interactive methods within the same frame-
work. To utilize the opportunities available, we need artificial
DMs capable of handling different types of preferences and
methods.

VI. CONCLUSION
In this paper, we fill a gap in the optimization software
available. We introduced DESDEO: an open source multi-
objective optimization framework implemented in Python.
DESDEO makes interactive multiobjective optimization
methods openly available for both users and developers.
We introduced the modular structure of DESDEO and its
different packages and their modules. We also described
the purpose of each package and its dependencies and the
framework’s external dependencies. Besides, with a five-
objective optimization problem, we demonstrated how to use
the DESDEO framework to define different types of prob-
lems (i.e., with analytical expressions, data-driven, and com-
putationally expensive problems) and solve them by applying
and hybridizing interactivemultiobjective optimizationmeth-
ods of MCDM and EMO types.
The modularity of DESDEO eases developing new

methods and offers a convenient possibility of comparing dif-
ferent interactive methods. Furthermore, implementing dif-
ferent types of methods in the same framework, as done in
DESDEO, will start a new era in hybridization and allows
the DM to switch between methods in various iterations of
the solution process.
We also noted that for efficient interaction with the DM,

there is a need for interactive visualization tools and suitable
(graphical) UIs in multiobjective optimization, which is lack-
ing in the literature. We are addressing this practical concern
by actively developing a D3 (https://d3js.org/) based Type-
script library of interactive visualization components, such
as interactive parallel coordinate plots within DESDEO. Our
primary goal with this library is to provide the multiobjective
optimization community with new and needed tools to build
their own interfaces for interactive multiobjective optimiza-
tion; similar to the example seen in Section IV-F. To facilitate
the use of the packages in DESDEO to be extended to other
software, such as web based interfaces, we are also working

on a web API (application programming interface) through
which we can expose interactive methods in DESDEO to
enable their use in a variety of applications. The interested
reader can follow the latest developments of DESDEO via
its homepage (desdeo.it.jyu.fi). The realization of this vision
should make interactive multiobjective optimization methods
much more accessible in the future, not just for researchers
developing them, but also for the needs of applications in
various fields.

ACKNOWLEDGMENT
The authors would like to thank all of those who have
contributed to DESDEO in the past. Especially, they would
like to thank Giomara Lárraga, Johanna Silvennoinen,
Pouya Aghaei Pour, Juuso Pajasmaa, Stefan Otayagich, and
Antti Luopajärvi. Theywould also like to thankVesaOjalehto
for his pioneering work in developing the old version of the
DESDEO framework. This work is a part of the thematic
research area Decision Analytics Utilizing Causal Models
andMultiobjective Optimization (DEMO, jyu.fi/demo) at the
University of Jyväskylä.

REFERENCES
[1] C.-L. Hwang andA.Masud,Multiple ObjectiveDecisionMaking–Methods

and Applications: A State-of-the-Art Survey. Berlin, Germany: Springer,
1979.

[2] V. Chankong and Y. Y. Haimes, Multiobjective Decision Making: Theory
and Methodology. New York, NY, USA: Elsevier, 1983.

[3] K. Miettinen, Nonlinear Multiobjective Optimization. Boston, MA, USA:
Kluwer, 1999.

[4] C. A. C. Coello, G. B. Lamont, and D. A. Van Veldhuizen, Evolutionary
Algorithms for Solving Multi-Objective Problems, 2nd ed. New York, NY,
USA: Springer, 2007.

[5] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms.
Chichester, U.K.: Wiley, 2001.

[6] K. Miettinen and M. M. Mäkelä, ‘‘On scalarizing functions in multiobjec-
tive optimization,’’ OR Spectr., vol. 24, no. 2, pp. 193–213, May 2002.

[7] F. Ruiz, M. Luque, and J. M. Cabello, ‘‘A classification of the weighting
schemes in reference point procedures for multiobjective programming,’’
J. Oper. Res. Soc., vol. 60, no. 4, pp. 544–553, Apr. 2009.

[8] K. Miettinen, J. Hakanen, and D. Podkopaev, ‘‘Interactive nonlinear multi-
objective optimization methods,’’ in Multiple Criteria Decision Analysis:
State of the Art Surveys, 2nd ed., S. Greco, M. Ehrgott, and J. Figueira,
Eds. New York, NY, USA: Springer, 2016, pp. 931–980.

[9] M. Luque, F. Ruiz, and K. Miettinen, ‘‘Global formulation for interac-
tive multiobjective optimization,’’ OR Spectr., vol. 33, no. 1, pp. 27–48,
Jan. 2011.

[10] J. Branke, K. Deb, K. Miettinen, and R. Slowinski, Eds., Multiobjective
Optimization: Interative and Evolutionary Approaches. Berlin, Germany:
Springer, 2008.

[11] B. Xin, L. Chen, J. Chen, H. Ishibuchi, K. Hirota, and B. Liu, ‘‘Interac-
tive multiobjective optimization: A review of the state-of-the-art,’’ IEEE
Access, vol. 6, pp. 41256–41279, 2018.

[12] V. Ojalehto and K. Miettinen, ‘‘DESDEO: An open framework for inter-
active multiobjective optimization,’’ inMultiple Criteria Decision Making
and Aiding, S. Huber, M. J. Geiger, and A. T. de Almeida, Eds. Cham,
Switzerland: Springer, 2019, pp. 67–94.

[13] G. Rossum, ‘‘Python reference manual,’’ NLD, Centrum voor Wiskunde
en Informatica, Amsterdam, The Netherlands, Tech. Rep., 1995.

[14] R. Benayoun, J. de Montgolfier, J. Tergny, and O. Laritchev, ‘‘Linear
programming with multiple objective functions: Step method (STEM),’’
Math. Program., vol. 1, no. 1, pp. 366–375, Dec. 1971.

[15] X. Wang, Y. Jin, S. Schmitt, and M. Olhofer, ‘‘An adaptive Bayesian
approach to surrogate-assisted evolutionary multi-objective optimization,’’
Inf. Sci., vol. 519, pp. 317–331, May 2020.

VOLUME 9, 2021 148293

G. Misitano et al.: DESDEO: Modular and Open Source Framework for Interactive Multiobjective Optimization

[16] S. N. Qasem, S. M. Shamsuddin, S. Z. M. Hashim, M. Darus, and
E. Al-Shammari, ‘‘Memetic multiobjective particle swarm optimization-
based radial basis function network for classification problems,’’ Inf. Sci.,
vol. 239, pp. 165–190, Aug. 2013.

[17] J. Knowles, ‘‘ParEGO: A hybrid algorithm with on-line landscape approx-
imation for expensive multiobjective optimization problems,’’ IEEE Trans.
Evol. Comput., vol. 10, no. 1, pp. 50–66, Feb. 2006.

[18] M. Li, G. Li, and S. Azarm, ‘‘A kriging metamodel assisted multi-objective
genetic algorithm for design optimization,’’ J. Mech. Design, vol. 130,
no. 3, pp. 1–10, Mar. 2008.

[19] H. Aytuğ and S. Sayın, ‘‘Using support vector machines to learn the
efficient set in multiple objective discrete optimization,’’ Eur. J. Oper. Res.,
vol. 193, no. 2, pp. 510–519, Mar. 2009.

[20] G. Kourakos and A. Mantoglou, ‘‘Development of a multi-objective opti-
mization algorithm using surrogate models for coastal aquifer manage-
ment,’’ J. Hydrol., vol. 479, pp. 13–23, Feb. 2013.

[21] K. Mitra and S. Majumder, ‘‘Successive approximate model based multi-
objective optimization for an industrial straight grate iron ore induration
process using evolutionary algorithm,’’ Chem. Eng. Sci., vol. 66, no. 15,
pp. 3471–3481, Aug. 2011.

[22] F.-A. Fortin, F.-M. De Rainville, M.-A. G. Gardner, M. Parizeau, and
C. Gagné, ‘‘DEAP: Evolutionary algorithms made easy,’’ J. Mach. Lang.
Res., vol. 13, pp. 2171–2175, Jul. 2012.

[23] A. Garrett, Inspyred: Bio-inspired algorithms in Python.
Accessed: Nov. 19, 2020. [Online]. Available: https://github.com/
aarongarrett/inspyred

[24] X. Gandibleux, G. Soleilhac, A. Przybylski, and S. Ruzika, ‘‘vOptSolver:
An open source software environment for multiobjective mathematical
optimization,’’ in Proc. 21st Conf. Int. Fed. Oper. Res. Societies (IFORS),
2017, pp. 17–21.

[25] D. Hadka. Platypus: Multiobjective Optimization in Python.
Accessed: Nov. 19, 2020. [Online]. Available: https://platypus.
readthedocs.io

[26] D. Hadka. MOEA Framework: A Free and Open Source Java Framework
for Multiobjective Optimization. Accessed: Dec. 1, 2020. [Online]. Avail-
able: http://moeaframework.org/

[27] D. Izzo and F. Biscani. PyGMO: Python Parallel Global Multi-
objective Optimizer. Accessed: Nov. 19, 2020. [Online]. Available:
https://esa.github.io/pygmo

[28] F. Biscani, D. Izzo, and C. H. Yam, ‘‘A global optimisation toolbox for
massively parallel engineering optimisation,’’ 2010, arXiv:1004.3824.

[29] A. Benítez-Hidalgo, A. J. Nebro, J. García-Nieto, I. Oregi, and J. Del Ser,
‘‘JMetalPy: A Python framework for multi-objective optimization
with metaheuristics,’’ Swarm Evol. Comput., vol. 51, Dec. 2019,
Art. no. 100598.

[30] J. J. Durillo and A. J. Nebro, ‘‘jMetal: A Java framework for multi-
objective optimization,’’ Adv. Eng. Softw., vol. 42, no. 10, pp. 760–771,
2011.

[31] J. Blank and K. Deb, ‘‘Pymoo: Multi-objective optimization in Python,’’
IEEE Access, vol. 8, pp. 89497–89509, 2020.

[32] Y. Tian, R. Cheng, X. Zhang, and Y. Jin, ‘‘PlatEMO: A MATLAB plat-
form for evolutionary multi-objective optimization,’’ IEEE Comput. Intell.
Mag., vol. 12, no. 4, pp. 73–87, Nov. 2017.

[33] A. P. Wierzbicki, ‘‘A mathematical basis for satisficing decision making,’’
Math. Model., vol. 3, no. 5, pp. 391–405, 1982.

[34] K. Miettinen and M. M. Mäkelä, ‘‘Synchronous approach in interac-
tive multiobjective optimization,’’ Eur. J. Oper. Res., vol. 170, no. 3,
pp. 909–922, May 2006.

[35] K.Miettinen and F. Ruiz, ‘‘NAUTILUS framework: Towards trade-off-free
interaction inmultiobjective optimization,’’ J. Bus. Econ., vol. 86, nos. 1–2,
pp. 5–21, Jan. 2016.

[36] A. B. Ruiz, K. Sindhya, K. Miettinen, F. Ruiz, and M. Luque, ‘‘E-
NAUTILUS: A decision support system for complex multiobjective opti-
mization problems based on the NAUTILUS method,’’ Eur. J. Oper. Res.,
vol. 246, no. 1, pp. 218–231, Oct. 2015.

[37] R. Cheng, Y. Jin, M. Olhofer, and B. Sendhoff, ‘‘A reference vector guided
evolutionary algorithm for many-objective optimization,’’ IEEE Trans.
Evol. Comput., vol. 20, no. 5, pp. 773–791, Oct. 2016.

[38] K. Deb and H. Jain, ‘‘An evolutionary many-objective optimization algo-
rithm using reference-point-based nondominated sorting approach, part
I: Solving problems with box constraints,’’ IEEE Trans. Evol. Comput.,
vol. 18, no. 4, pp. 577–601, Apr. 2013.

[39] K. Miettinen, P. Eskelinen, F. Ruiz, and M. Luque, ‘‘NAUTILUS method:
An interactive technique in multiobjective optimization based on the nadir
point,’’ Eur. J. Oper. Res., vol. 206, no. 2, pp. 426–434, Oct. 2010.

[40] K. Miettinen, D. Podkopaev, F. Ruiz, and M. Luque, ‘‘A new preference
handling technique for interactive multiobjective optimization without
trading-off,’’ J. Global Optim., vol. 63, no. 4, pp. 633–652, Dec. 2015.

[41] A. B. Ruiz, F. Ruiz, K. Miettinen, L. Delgado-Antequera, and V. Ojalehto,
‘‘NAUTILUS Navigator: Free search interactive multiobjective optimiza-
tion without trading-off,’’ J. Global Optim., vol. 74, no. 2, pp. 213–231,
Jun. 2019.

[42] M. Hartikainen, K. Miettinen, and K. Klamroth, ‘‘Interactive nonconvex
Pareto navigator for multiobjective optimization,’’ Eur. J. Oper. Res.,
vol. 275, no. 1, pp. 238–251, May 2019.

[43] J. Hakanen, T. Chugh, K. Sindhya, Y. Jin, and K. Miettinen, ‘‘Connections
of reference vectors and different types of preference information in inter-
active multiobjective evolutionary algorithms,’’ in Proc. IEEE Symp. Ser.
Comput. Intell. (SSCI), Dec. 2016, pp. 1–8.

[44] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, ‘‘Scalable test problems
for evolutionarymultiobjective optimization,’’ inEvolutionaryMultiobjec-
tive Optimization: Theoretical Advances and Applications, A. Abraham,
L. Jain, and R. Goldberg, Eds. London, U.K.: Springer, 2005, pp. 105–145.

[45] A. P.Wierzbicki, ‘‘On the completeness and constructiveness of parametric
characterizations to vector optimization problems,’’ Oper.-Res.-Spektrum,
vol. 8, no. 2, pp. 73–87, Jun. 1986.

[46] B. S. Saini, J. Hakanen, and K. Miettinen, ‘‘A new paradigm in interac-
tive evolutionary multiobjective optimization,’’ in Parallel Problem Solv-
ing From Nature—PPSN XVI, T. Bäck, M. Preuss, A. Deutz, H. Wang,
C. Doerr, M. Emmerich, and H. Trautmann, Eds. Cham, Switzerland:
Springer, 2020, pp. 243–256.

[47] S. van der Walt, S. C. Colbert, and G. Varoquaux, ‘‘The NumPy array:
A structure for efficient numerical computation,’’ Comput. Sci. Eng.,
vol. 13, no. 2, pp. 22–30, 2011.

[48] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,
D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, and
S. J. Van Der Walt, ‘‘SciPy 1.0: Fundamental algorithms for scientific
computing in Python,’’ Nature Methods, vol. 17, no. 3, pp. 261–272,
Feb. 2020.

[49] W. McKinney, ‘‘Data structures for statistical computing in Python,’’ in
Proc. 9th Python Sci. Conf., S. van der Walt and J. Millman, Eds. SciPy,
2010, pp. 56–61.

[50] I. Steponavičė, S. Ruuska, and K. Miettinen, ‘‘A solution process for
simulation-based multiobjective design optimization with an application
in the paper industry,’’ Comput.-Aided Des., vol. 47, pp. 45–58, Feb. 2014.

[51] S. C. Narula and H. R. Weistroffer, ‘‘A flexible method for nonlinear mul-
ticriteria decision-making problems,’’ IEEE Trans. Syst., Man, Cybern.,
vol. 19, no. 4, pp. 883–887, Jul. 1989.

[52] K.Miettinen andM.M.Mäkelä, ‘‘Interactive method NIMBUS for nondif-
ferentiable multiobjective optimization problems,’’ in Multicriteria Anal-
ysis, J. Clímaco, Ed. Berlin, Germany: Springer, 1997, pp. 310–319.

[53] M. D. McKay, R. J. Beckman, and W. J. Conover, ‘‘A comparison of three
methods for selecting values of input variables in the analysis of output
from a computer code,’’ Technometrics, vol. 21, no. 2, pp. 239–245, 1979.

[54] K. Miettinen, F. Ruiz, and A. P. Wierzbicki, ‘‘Introduction to multiobjec-
tive optimization: Interactive approaches,’’ inMultiobjective Optimization:
Interative and Evolutionary Approaches, J. Branke, K. Deb, K. Miettinen,
and R. Slowinski, Eds. Berlin, Germany: Springer, 2008, pp. 27–57.

[55] B. Afsar, D. Podkopaev, and K. Miettinen, ‘‘Data-driven interactive mul-
tiobjective optimization: Challenges and a generic multi-agent architec-
ture,’’ Proc. Comput. Sci., vol. 176, pp. 281–290, Jan. 2020.

[56] B. Afsar, K. Miettinen, and F. Ruiz, ‘‘Assessing the performance of inter-
active multiobjective optimization methods: A survey,’’ ACM Comput.
Surveys, vol. 54, no. 4, p. 85, 2021.

[57] C. Barba-González, V. Ojalehto, J. M. García-Nieto, A. J. Nebro,
K. Miettinen, and J. F. Aldana-Montes, ‘‘Artificial decision maker driven
by PSO: An approach for testing reference point based interactive meth-
ods,’’ in Proc. 15th Int. Conf. Parallel Problem Solving Nature—PPSN
XV, A. Auger, C. M. Fonseca, N. Lourenço, P. Machado, L. Paquete, and
D. Whitley, Eds. Cham, Switzerland: Springer, 2018, pp. 274–285.

[58] S. Huber, M. J. Geiger, and M. Sevaux, ‘‘Simulation of preference
information in an interactive reference point-based method for the bi-
objective inventory routing problem,’’ J. Multi-Criteria Decis. Anal.,
vol. 22, nos. 1–2, pp. 17–35, Jan. 2015.

[59] V. Ojalehto, D. Podkopaev, and K. Miettinen, ‘‘Towards automatic testing
of reference point based interactive methods,’’ in Parallel Problem Solving
From Nature—PPSN XIV, J. Handl, E. Hart, P. R. Lewis, M. López-Ibáñez,
G. Ochoa, and B. Paechter, Eds. Cham, Switzerland: Springer, 2016,
pp. 483–492.

148294 VOLUME 9, 2021

G. Misitano et al.: DESDEO: Modular and Open Source Framework for Interactive Multiobjective Optimization

[60] B. Afsar, K. Miettinen, and A. B. Ruiz, ‘‘An artificial decision maker
for comparing reference point based interactive evolutionary multiobjec-
tive optimization methods,’’ in EvolutionaryMulti-Criterion Optimization,
H. Ishibuchi, Q. Zhang, R. Cheng, K. Li, H. Li, H.Wang, and A. Zhou, Eds.
Cham, Switzerland: Springer, 2021, pp. 619–631.

G. MISITANO received the M.Sc. degree from
the University of Jyväskylä, in 2020, where
he is currently pursuing the Doctoral degree
with the Multiobjective Optimization Group.
His research interest includes the interpretability
aspects of interactive multiobjective optimization.
This includes, but is not limited to, research-
ing new ways to make interactive multiobjective
optimization methods less opaque to the decision
maker and analyst alike. In addition, he is inter-

ested in studying how to apply interpretable and explainable artificial intel-
ligence to multiobjective optimization in general. He is also one of the main
contributors to the DESDEO Framework.

B. S. SAINI received the M.Tech. degree from IIT
Kharagpur, in 2018. He is currently pursuing the
Doctoral degree with theMultiobjective Optimiza-
tion Group, University of Jyväskylä. His research
interests include multiobjective optimization, data
visualization, data-driven optimization, and devel-
opment of evolutionary algorithms. He has worked
on many open source implementations of the
methods from the aforementioned topics with a
focus on modularity and interpretability. He is also

one of the primary contributors to the DESDEO Framework.

B. AFSAR received the Ph.D. degree in computer
engineering from Ege University, Izmir, Turkey,
in 2014. He is currently a Postdoctoral Researcher
with the Multiobjective Optimization Group, Uni-
versity of Jyväskylä. His main research interests
include multiobjective optimization, data-driven
multi-criteria decision-making, evolutionary com-
putation, interactive multiobjective optimization
methods and their applications, and multi-agent
systems. He is also working on assessing the

performance of interactive multiobjective optimization methods with both
artificial and human decision-makers.

B. SHAVAZIPOUR received the Ph.D. degree
in operations research from the University of
Cape Town, Cape Town, South Africa, in 2018.
He is currently a Postdoctoral Researcher with
the Multiobjective Optimization Group, Univer-
sity of Jyväskylä. His principal research interests
include multiobjective optimization and multi-
criteria decision-making both in theory and appli-
cations, mathematical programming, data analysis
and impacts upon the data envelopment analysis,

scenario planning, and decision-making under (deep) uncertainty.

K. MIETTINEN received the Ph.D. degree in
mathematical information technology from the
University of Jyväskylä (JYU), Finland. She is cur-
rently a Professor of industrial optimization with
JYU. She heads the Research Group on Multiob-
jective Optimization and is the Director of the the-
matic research area Decision Analytics utilizing
Causal Models and Multiobjective Optimization
(DEMO, jyu.fi/demo) at JYU. With her group,
she develops an open source software framework

for interactive multiobjective optimization methods (desdeo.it.jyu.fi). She
has authored about 190 refereed journals, proceedings, and collection
papers; edited 17 proceedings, collections, and special issues; and written a
monograph on nonlinear multiobjective optimization. Her research interests
include theory, methods, applications, and software of nonlinear multiob-
jective optimization. She is a member of the Finnish Academy of Science
and Letters, Section of Science, and the Steering Committee of Evolutionary
Multi-Criterion Optimization. She has been the President of the International
Society on Multiple Criteria Decision Making (MCDM). She has received
the Georg Cantor Award of the International Society on MCDM for develop-
ing innovative ideas. She belongs to the editorial board of seven international
journals.

VOLUME 9, 2021 148295

PVI

INTERACTIVE DATA-DRIVEN MULTIOBJECTIVE
OPTIMIZATION OF METALLURGICAL PROPERTIES OF

MICROALLOYED STEELS USING DESDEO

by

Bhupinder Singh Saini, Debalay Chakrabarti, Nirupam Chakraborti, Babooshka
Shavazipour, Kaisa Miettinen

Submitted to a journal

Interactive Data-driven Multiobjective

Optimization of Metallurgical Properties of

Microalloyed Steels using the DESDEO

Framework

Bhupinder Singh Saini1,∗, Debalay Chakrabarti2, Nirupam
Chakraborti3,2, Babooshka Shavazipour1, Kaisa Miettinen1

1University of Jyvaskyla, Faculty of Information Technology
P.O. Box 35 (Agora), FI-40014 University of Jyvaskyla, Finland
2Department of Metallurgical and Materials Engineering, Indian
Institute of Technology Kharagpur, Kharagpur, West Bengal,

721302, India
3Faculty of Mechanical Engineering Czech Technical University

Prague, Czech Republic
∗ Corresponding author: Bhupinder Singh Saini,

bhupinder.s.saini@jyu.fi

August 31, 2022

Abstract

Solving real-life data-driven multiobjective optimization problems in-
volves many complicated challenges. These challenges include preprocess-
ing the data, modelling the objectives, getting a meaningful formulation
of the problem, and supporting decision makers to find preferred solu-
tions in the existence of conflicting objectives. In this paper, we tackle
the problem of optimizing the composition of microalloyed steels to get
good mechanical properties such as yield strength, percentage elonga-
tion, and Charpy energy. We formulate a problem with six objectives
based on data available and support two decision makers in finding a so-
lution that satisfies them both. To enable two decision makers to make
meaningful decisions for a problem with many objectives, we create the
so-called MultiDM/IOPIS algorithm, which combines multiobjective evo-
lutionary algorithms and interactive scalarization functions in novel ways.
We use the DESDEO framework, an open-source Python framework for
interactively solving multiobjective optimization problems, to create the
MultiDM/IOPIS algorithm. We provide a detailed account of all the chal-
lenges faced while formulating and solving the problem. We discuss and

1

use many strategies to overcome those challenges. Overall, we propose
a methodology to solve real-life data-driven problems with multiple ob-
jectives and decision makers. We successfully obtained microalloyed steel
compositions with excellent mechanical properties using this methodology.

Keywords: Data-driven evolutionary computation; Multiobjective optimiza-
tion; Surrogate-assisted optimization; Multiple decision makers; Interactive op-
timization; Open-source software.

1 Introduction

Digitalization sheds light on new data collection and information sharing meth-
ods, leading the world toward a data-centered era and opens up many oppor-
tunities for novel data-based methodology developments in data analytics and
decision-making. However, various elements and challenges are involved in any
decision-making process, starting from data.

Decision makers (DMs), in many real-life problems, often need to consider
multiple criteria, called objectives, simultaneously when making decisions. In a
decision-making process involving data, they first need to identify the objectives
to be optimized with the help of the data available and the independent vari-
ables that control them. This process may require the data to be preprocessed.
A multiobjective optimization problem (MOP) that considers the objectives im-
portant to the DMs can then be formulated. A DM is expected to be a domain
expert. An analyst, who is an expert in multiobjective optimization, typically
coordinates the formulation of the MOP with the DMs and supports in solving
it.

One of the ways to solve data-driven MOPs is to use surrogate-assisted
optimization algorithms [1, 2]. These algorithms use regression models, called
surrogate models, to mimic the behavior of the objectives as recorded in the
data. In this, we assume that the data has been obtained from phenomena that
can be treated as objectives to be optimized. The choice of surrogate modelling
techniques to model the objectives and the methods of training and validating
the models significantly impact the solutions found by the optimization method.

MOPs generally do not have a single optimal solution. Instead, due to poten-
tially conflicting objectives, there exist many so-called Pareto optimal solutions
that reflect the trade-offs between the various objectives [3]. Many optimization
algorithms aim to find a representative approximation of the Pareto optimal so-
lutions, see, e.g. [3, 4]. However, such algorithms can return upwards of a
thousand solutions to the DMs. Comparing many solutions, especially in prob-
lems with many objectives, can be a cognitively challenging task. Thus, without
assistance, DMs may find it difficult to make decisions in such problems.

One of the ways to tackle this challenge is to use interactive methods for
optimization [3]. Such methods incorporate the preferences of a DM during the
optimization to focus the search of Pareto optimal solutions to be limited to
ones that a DM prefers. Focusing the search in a smaller area helps interac-
tive methods find Pareto optimal solutions quicker and reduces the number of

2

alternative solutions that a DM must consider at a time. Once the DM sees
the solutions discovered using their preferences, they can select a solution they
like as the final solution. Alternatively, if they do not like the solutions, they
can provide new preferences to the method, signifying interest in a different set
of trade-offs. The interactive method then provides them with new solutions
that reflect the new preferences. This process enables the DM to learn about
the possible trade-offs in the MOP in manageable and iterative steps, making
finding preferable solutions easier.

We call the process of problem formulation, optimization and decision-making
a seamless chain. We show a simple schematic of the steps involved in data-
based decision-making in Figure 1. The figure presents a simple, linear pathway
from data and modelling to multiobjective optimization and decision-making.
However, solving real-life MOPs can be a more complicated process. It must
involve lengthy deliberations between the DM and the analyst to formulate a
meaningful MOP. The data may introduce constraints limiting which objec-
tives the DMs can consider in their MOP and how the analyst can model such
objectives. The optimization and decision-making steps may reveal significant
issues in the problem formulation of modelling phases. This would require going
back and fixing the issues in the earlier steps and conducting optimization and
decision-making again. The presence of more than one DM can also complicate
the consideration, as most interactive methods are designed for a single DM.

In this paper, we formulate and solve an MOP to obtain alloy compositions
that optimize multiple physical properties of a microalloyed steel. To achieve
this, we follow the seamless chain structure1, described in Figure 1, to make the
most efficient use of the data available. We discuss in detail the challenges we
faced during the modeling and the solution process, and the steps we took to
overcome them. We used many established and some new and novel techniques.
In particular, we developed the interactive MultiDM/IOPIS algorithm, an ex-
tension of the IOPIS algorithm [5], to support two decision makers to find a
solution that meets their different preferences. The new method can be applied
for group decision making.

Figure 1: A schematic of the seamless chain from data to decision-making
(adapted from http://jyu.fi/demo)

In Section 2, we establish the core background concepts. In Sections 3-6,
we describe the various steps involved in formulating and solving the MOP.

1adapted from http://jyu.fi/demo

3

We start in Section 3 by describing the dataset which contains information
about alloys of microalloyed steels. More specifically, the dataset contains the
compositions and the corresponding values of various metallurgical properties of
the alloys. We then discuss the tools and strategies used to preprocess the data
to make it suitable for use in MOPs. Following this, in Section 4 we test a large
number of surrogate modelling techniques to find the ones that work best with
the data. In Section 5, using the results of the previous steps, and with the help
of the DMs, we formulate meaningful MOPs to be solved. Finally, in Section
6 we use the open-source software framework DESDEO2 [6] to implement the
MultiDM/IOPIS algorithm and solve the MOPs interactively with two DMs.
We also use two non-interactive optimization methods and compare the results.

It should be noted that the process of problem formulation and solution is
usually an iterative one: we update the methodologies used in earlier steps based
on the results obtained in the later steps. However, in Sections 3-6 we provide
a linear narrative of the steps involved for the benefit of the reader. In Section
7, we discuss the effectiveness of the various steps we took to solve the MOP,
including steps that did not succeed. We also discuss the insights gained via
the seamless chain process. In doing so, we provide a general framework and
a guideline to solve data-driven MOPs. Finally, in Section 8, we conclude and
mention some future research directions.

2 Background

2.1 Multiobjective optimization

This paper considers the following form of a multiobjective optimization prob-
lem:

minimize {f1(x), . . . , fk(x)}
subject to x ∈ S ⊂ Rn,

(1)

where x = (x1, . . . , xn)
T represents decision vectors (vectors of decision vari-

ables) in the feasible region S of the decision space Rn. The number of objective
functions is k and the vectors of objective function values, denoted by f(x) =
(f1(x), . . . , fk(x))

T , are defined as objective vectors belong to the objective space
Rk.

Because the analytical form of functions is not available in data-driven op-
timization problems, the decision variables and their corresponding objective
function values are often collected from simulators, real-life processes, or exper-
iments and are only available in a dataset format. In such problems, approxi-
mation models, also called surrogates (or metamodels), are created, using the
available data to approximate objective function values. Then, these surrogates
are utilized to perform the optimization process. Surrogates may also be utilized
as replacements for computationally expensive functions or simulators to reduce
the evaluation time and save computations resources [7, 8]. When collecting new

2https://desdeo.it.jyu.fi

4

data is not possible during the optimization process, as in the case of this paper,
the problem is called an offline data-driven optimization [9] problem. It means
that the constructed surrogates cannot be updated with some new data.

Typically, in MOPs, identifying a single optimum is not possible because
of the existing conflict between the objective functions. Instead, multiple (can
be infinitely many) so-called Pareto optimal solutions exist, where improving
any objective function value is impossible without impairment in at least one of
the other objective function values. The set of Pareto optimal objective vectors
in the objective space is called a Pareto front. DM needs to compare Pareto
optimal solutions, study the existing trade-offs between objectives, and choose
the most preferred one based on their preferences. Besides the DM, an analyst
(or a group of analysts) is responsible for performing the analyses, computations,
and supporting the interactive decision-making process. Generally, an analyst
can be a human or a computer program [10].

Based on when preference information is incorporated, multiobjective op-
timization methods can be classified as a priori, a posteriori, and interactive
methods [3]. DM provides their preferences before and after the solution pro-
cess, respectively, in a priori and a posteriori methods. Providing unrealistic
preferences is the major shortcoming of the a priori method, particularly if the
DMs do not have prior deep insight into the problem. On the other hand, com-
putational cost of generating a representative set of Pareto optimal solutions
and heavy cognitive loads of many comparisons are the main difficulties in us-
ing the a posteriori methods, especially when there are many objectives [11,
12].

When the DM actively directs the solution process by providing preferences
iteratively, the multiobjective optimization method is called interactive [3, 10].
In this way, the DM can learn about the interdependencies of the objectives in
the problem and the feasibility of their preferences. Furthermore, these methods
limit both cognitive and computational load since only a limited amount of
information needs to be analyzed at a time, and only solutions reflecting the
DM’s preferences need to be generated, respectively. The DM can pursue the
interactions by adjusting the preferences until they get satisfied and converge
to the most preferred solution (see [10] for more details).

There are different ways to solve MOPs (see, e.g., [3, 4, 10]); among them,
one widely used approach is to transform the MOP into an equivalent single-
objective problem utilizing a so-called scalarization function while incorporating
DM’s preferences [3, 13, 14]. The scalarized MOP can then be solved using an
appropriate single objective optimizer, resulting in one or more Pareto optimal
solutions that reflect the preferences to satisfy the DM.

Another way to solve MOPs is to use multiobjective evolutionary algorithms
(MOEAs) [4, 12]. They are metaheuristic approaches which use a “population”
of solutions simultaneously to mimic the process of evolution. Popular MOEAs
such as RVEA [15] and NSGA-III [16] have proven to be successful at generating
a representative set of Pareto optimal solutions for MOPs with many objectives.
However, MOPs become exponentially more difficult to solve with an increasing
number of objectives [11]. The DESDEO framework provides open-source and

5

modular Python implemenetations of RVEA and NSGA-III (and many other
MOEAs), as well as many scalarization functions [6].

The IOPIS algorithm [5] provides a middle ground between using scalar-
ization functions (which optimize in a single dimension) and MOEAs (which
generally optimize in the objective space with many dimensions). The IOPIS
algorithm incorporates a DM’s preferences using multiple scalarization func-
tions (typically fewer than the number of objectives in the original problem).
Together, these functions form a new space called a preference incorporated
space (PIS). An appropriate MOEA is then used to optimize in this new space,
making the MOEA interactive (since preferences are incorporated). An analyst
can therefore control the number of dimensions in which the MOEA optimizes
by changing the number of scalarization functions, which form the PIS.

The IOPIS algorithm is of note as it enables easy and modular creation of
interactive MOEAs. Moreover, as shown in [5], it guarantees that the interactive
MOEAs will have the beneficial properties of optimality (the solutions found by
the MOEA are Pareto optimal), preferability (the solutions found by the MOEA
follow the preferences of the DM), and searchability (the MOEA enables the DM
to find any Pareto optimal solution by changing the preferences). However, the
IOPIS algorithm was originally designed for solving MOPs with a single DM.

2.2 Microalloyed steels

As mentioned, we consider a data-driven problem of microalloyed steel. Steels
used for structural, linepipe and naval applications must meet strict perfor-
mance standards and withstand mechanical stresses imposed in such applica-
tions without failure. Microalloyed steels 3 exhibit the required high strength,
toughness, ductility, and weldability capacity [17]. Entities such as the British
and European standards (BS EN standards), the American petroleum institute
(API standards), and the US naval sea systems command (MIL standards) have
published standards for usage of microalloyed steels in various domains. Each
published standard includes one or more grades of microalloyed steel which set
the minimum requirements and maximum bounds that should be met by the
steel for specific applications.

Yield strength (YS) and ultimate tensile strength (UTS) are two important
measures of the strength of materials. The YS measures the maximum stress
(force per unit area) a material can sustain before undergoing permanent (plas-
tic) deformation. Below the YS, the material deforms elastically, i.e., it reverts
to its original shape and size after removing the external force. The UTS mea-
sures the maximum stress a material can sustain before undergoing a fracture.
Percentage elongation (ELON) measures the ductility as the fractional increase
in the length of a specimen that undergoes fracture upon reaching the UTS.

We can use Charpy impact tests to measure the toughness of materials at
various temperatures. The test measures the energy required to fracture a
standard specimen made from the material using an impact. The Charpy impact

3A subcategory of high-strength low-alloy steels.

6

energy generally decreases at lower temperatures as ductile materials (such as
steels) start showing brittle behavior at such temperatures. Good toughness at
low temperatures is required for steels used at such temperatures. The result of
these tests can be reported as Charpy energy values at specific temperatures or
impact transition temperature (ITT) values at specific Charpy energy values.

In minute quantities, alloying elements such as titanium, molybdenum, and
vanadium generally positively affect the strength, ductility, and toughness of
microalloyed steels. However, they can hinder the ability of structures made
from such steels to be welded. The weldability of steels is correlated with the
carbon equivalent (Ceq), which can be calculated as [18]:

(2)Ceq = %C +
%Mn+%Si

6
+

%Cr +%Mo+%V

5
+

%Cu+%Ni

15
.

The terms on the right-hand side of (2) measure the concentration of the cor-
responding alloying elements as a mass percentage. Various steel grades set
different upper limits to the acceptable levels of Ceq to account for weldability
needs.

3 Data Description and Preprocessing

The starting point of the consideration is a set of data. The raw dataset,
compiled from a database and available in the DESDEO framework, contains
details about the metallurgical properties of microalloyed steels. There are 736
rows and 51 columns in the dataset. Each row denotes information related to
microalloyed steel of a specific composition, which we later refer to as a sample.
The first twenty columns contain information about the concentration of various
alloying elements. The rest of the columns contain information about various
metallurgical properties of the samples. The first three among these are YS,
UTS, and ELON. The next ten columns denote the ITT at ten different Charpy
impact energy levels (ranging from 13 J to 80 J). The next six columns measure
the Charpy impact energy value at different temperatures (ranging from -80◦C
to 19◦C). The remaining columns contain properties such as fracture toughness,
pearlite content and hardness.

As in may cases with real data, there are many issues with the raw dataset.
As the raw dataset is a compilation of data from various sources, the data quality
is not consistent across the rows. For example, some cells have exact numbers,
whereas others have a range. Moreover, measurements of properties such as
the Charpy energy are very noisy. While the raw dataset contains 736 rows of
samples, many cells are empty in various columns. Consequently, many rows
do not completely contain information about the samples’ composition, grain
size, and metallurgical properties. For example, there are only 599 samples
that measure YS, 537 UTS measurements, and 296 ELON measurements. The
number of rows that contain information about other metallurgical properties
is much lower. Moreover, these measurements are spread across the data points
such that the overlap in rows that measure two different metallurgical properties

7

is very small. This means that the different properties are measured for entirely
different alloy compositions, with minimal overlap.

3.1 Preprocessing the Data

We cleaned and divided the raw dataset into multiple sets to be used in later
steps. Firstly, all empty cells in the alloy composition columns were assigned
a value of zero. As the dataset was collected from various studies, empty cells
signify that those alloying elements were not a part of the study, and hence did
not exist in the alloy. Secondly, we merged the columns named “Nb” (niobium)
and “Cb” (columbium) as they refer to the same alloying element. Finally, we
replaced the cells in the alloy composition columns that were represented as a
range of values by the average value of the range. At this step, all cells in the
alloy composition columns had numerical values.

We then divided the dataset into multiple sets such that each set contained
all the alloy composition columns but only one metallurgical property. For this,
we only considered rows which documented the respective metallurgical prop-
erty. This led to, for example, a YS dataset with 599 samples. We repeated
the process for UTS and ELON. None of the columns documenting ITT or the
Charpy energy had more than 300 samples. Hence, instead of breaking these
columns into multiple small sets, we combined the 10 ITT columns and the 6
Charpy energy columns into just two columns documenting the temperature
and the corresponding Charpy energy4. This process led to a Charpy dataset
with 781 samples. We used the Pandas Python package to carry out the afore-
mentioned tasks [19].

4 Surrogate Modelling

4.1 Model selection and training

To begin the modelling process, we first analysed the dataset to identify which
alloying elements significantly impacted the various metallurgical properties.
We compared the results of the feature importance analysis against metallur-
gical literature to confirm the reliability of the data. In brief, we conducted
the following tests to identify significant alloying elements for the YS, UTS,
Elongation, and Charpy datasets using the scikit-learn Python package [20]:

• Principal component analysis (PCA): This method can help us find “fea-
tures” (alloying elements in our case) that have the most variance in the
dataset.

• Cross decomposition: We use the PLSCanonical, PLSSVD, PLSRegres-
sion, and Canonical Correlation Analysis (CCA) algorithms to find out

4This process is known is data “melting” and converts “wide” data (more columns, fewer
rows) to “tall” data (fewer columns, more rows)

8

which features lead to the most variance in the various metallurgical prop-
erties.

• Random forest regression: We calculate feature importance (FeatImp) and
permutation importance (PermImp) using random forest models trained
on the dataset.

• ANOVA tests: We rank various features according to their F-values.

• Mutual importance (MI): We rank the various features according to their
MI values.

The results of the tests are presented in Figure 2 as heatmaps. The x-axis in
each of the sub-figures denotes the aforementioned tests, whereas the y-axis rep-
resents the alloying elements (and temperature values for the Charpy dataset).
The color of the heatmap represents the relative importance (calculated as a
rank) of the alloying element as measured by each test. Elements with lighter
hues achieved a better rank and are considered more important by the tests.

There are various reasons why a test may consider a certain alloying element
unimportant for a given mechanical property. The alloying element may have
no effect, or a mixed effect on the mechanical property. For example, nitrogen
can form nitrides with titanium, which can lead to grain refinement, which leads
to better YS. However, in the presence of aluminium, it can form AlN, which
can lead to embrittlement of the steel, which lowers the YS. Hence, nitrogen can
have a mixed effect on YS, and is ranked low by the tests. The dataset may also
have a very skewed distribution of the values of alloying element concentrations.
In the UTS dataset, only 25 (out of 537) samples contained Zirconium. The
effect of such elements may not be adequately represented in the dataset, which
can lead to a low rank. Finally, certain alloying elements may show a mixed
effect on the mechanical properties because of noise in the dataset.

Based on these tests, we removed unimportant or noisy columns from the
datasets. This can increase the overlap in the ranges of alloying element com-
positions for which the various properties are measured and lead to better mod-
elling and optimization results. We discuss this further in Section 5.

We trained metamodels for YS, UTS, ELON, and Charpy energy based on
their respective datasets using many surrogate modelling algorithms and com-
pared their training accuracy using the R2 value. We considered the following
surrogate modelling algorithms: neural networks [21], support vector machines
[22], Gaussian process regression [23, 24], and various ensemble modelling tech-
niques. These surrogate modelling algorithms have been used extensively and
successfully in data-driven multiobjective optimization [2]. We conducted K-
fold cross-validation to choose the best performing surrogate modelling tech-
nique for each metallurgical property. Details of the test, along with a Python
implementation, can be found in the DESDEO framework.

The results of the test are shown in Table 1. In general, ensemble techniques
worked better than other surrogate modelling techniques tested. The extra trees
regression [25], gradient boost regression [26] and random forest regression [27]

9

PC
A

PL
SC

an
on

ica
l

PL
SR

eg
re

ss
io

n
CC

A
PL

SS
VD

Fe
at

Im
p

Pe
rm

Im
p

F-
va

lu
e M
I

Feature importance tests

Ce
V
C

Mn
Mo
Nb
Si
S
Ti
Cr
P

Al
Cu
Ni
N
B

Zr
O

Ca

Fe
at

ur
es

2.5

5.0

7.5

10.0

12.5

15.0

17.5

(a) YS dataset
PC

A
PL

SC
an

on
ica

l
PL

SR
eg

re
ss

io
n

CC
A

PL
SS

VD
Fe

at
Im

p
Pe

rm
Im

p
F-

va
lu

e M
I

Feature importance tests

Ce
V
C

Mn
Mo
Nb
Si
S
Ti
Cr
P

Al
Cu
Ni
N
B

Zr
O

Ca

Fe
at

ur
es

2.5

5.0

7.5

10.0

12.5

15.0

17.5

(b) UTS dataset

PC
A

PL
SC

an
on

ica
l

PL
SR

eg
re

ss
io

n
CC

A
PL

SS
VD

Fe
at

Im
p

Pe
rm

Im
p

F-
va

lu
e M
I

Feature importance tests

Cu
V
C
S
P

Cr
B
Si
Al
Ni
O

Mo
Nb
N
Ti

Mn
Zr
Ce
Ca

Fe
at

ur
es

2.5

5.0

7.5

10.0

12.5

15.0

17.5

(c) Elongation dataset

PC
A

PL
SC

an
on

ica
l

PL
SR

eg
re

ss
io

n
CC

A
PL

SS
VD

Fe
at

Im
p

Pe
rm

Im
p

F-
va

lu
e M
I

Feature importance tests

Ca
Nb
Mn

V
N
O

Temp
Al

Ce
S
P
Ti
Ni
C

Mo
Cu
Si
Cr
Zr
B

Fe
at

ur
es

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

(d) Charpy dataset

Figure 2: Relative ranking of the features calculated for all datasets. A lower
rank value (lighter color in the heatmap) represents higher importance.

(from Python package scikit-learn), XGBoost [28] (from Python package
xgboost, and LightGBM [29] (from Python package lightgbm) performed the
best. As the Charpy dataset was much noisier than the other datasets, the
surrogate models for Charpy energy performed much worse. The model with the
highest median R2 value was chosen for each mechanical property, as highlighted
in bold in Table 1.

4.2 Model validation

In the absence of the ability to create and test new alloys, we can validate the
models by comparing the effect of changing the alloying element compositions on

10

Surrogate
Modelling
Techniques

YS UTS Elongation Charpy Energy

Median R2 Standard
Deviation

Median R2 Standard
Deviation

Median R2 Standard
Deviation

Median R2 Standard
Deviation

ExTR 0.746 0.059 0.8380 0.0709 0.673 0.124 0.166 0.129
Ada 0.604 0.0818 0.7403 0.154 0.575 0.126 0.293 0.0724

Bagging 0.716 0.0492 0.8358 0.0839 0.612 0.108 0.275 0.109
GradBoost 0.712 0.0619 0.8437 0.0629 0.666 0.177 0.436 0.0843
XGBoost 0.742 0.0694 0.8440 0.0781 0.58 0.128 0.178 0.117
XGBRF 0.642 0.0571 0.7678 0.0932 0.651 0.136 0.423 0.0765

LightGBM 0.732 0.0511 0.7833 0.0587 0.642 0.141 0.305 0.103
RandomForest 0.726 0.037 0.8307 0.0679 0.64 0.12 0.317 0.0994

Kriging -204 1920 -85.18 2030 -509 835 -6.5 3.6
SVM1 -0.0253 0.0435 -0.03087 0.0352 0.172 0.0707 -0.0803 0.11
SVM2 -0.232 0.14 -0.3843 0.143 0.0344 0.134 -0.0244 0.184

NN -6.79 1.12 -11.35 7.29 -0.452 0.259 -0.0519 0.113

Table 1: The K-fold cross-validation performance (R2 score) of various surrogate
modelling techniques on YS, UTS, Elongation, and Charpy datasets.

the models’ responses. We can do so using individual conditional expectation
(ICE) plots [30]. They plot the changes in the output of a surrogate model
based on changes in one of the input variables, which are the alloying element
concentrations in our problem. The effect of alloying elements on the mechanical
properties is presented in Table 2.

Alloying
element

Effect
on YS

Effect
on UTS

Effect on
ELON

Effect on
Charpy
energy

C positive positive negative mixed
Si mixed positive negative -

Mn positive positive mixed positive
P negative negative negative negative
S mixed negative negative negative

Mo positive positive negative positive
Ni positive positive negative mixed
Al negative negative positive positive
N - - mixed negative

Nb positive positive positive positive
V positive positive negative negative
B - - mixed -
Ti positive positive negative mixed
Cr positive positive negative negative
Ce positive positive - -
Cu negative positive negative -
Zr negative negative mixed -

Table 2: Effect of alloying element composition on mechanical properties calcu-
lated using ICE plots. The alloying elements with no reported effects were not
considered for the model.

11

In the table, we divide the effect of changing alloying element concentrations
into four categories. A positive effect means that the alloying element benefits
the property modeled by the surrogate model, whereas a negative effect implies
a negative correlation. A mixed effect implies that the alloying element has a
complex relationship with the modeled property. It can have a beneficial or
a detrimental effect based on other criteria, for example, the concentration of
other alloying elements. In contrast, a nil effect (signified with “-”) means that
the alloying element has no effect on the surrogate model, or its effect could
not be detected. We present a complete discussion of the effect of all alloying
elements in Appendix A. The discussion is based on an extensive review [31–54]
covering the effects of alloying elements on strengths (YS and UTS), ductility
(ELON), and impact toughness (Charpy impact energy absorption at different
test temperatures) in a variety of low-carbon steels used for structural, linepipe,
automotive, naval, and pressure vessel applications.

The DMs concluded that the metallurgical theory and literature back a
majority of ICE plot results. The models can be deemed valid and be used to
study steels’ mechanical behaviour. We can see in Table 2 that many elements
have conflicting effects on YS, UTS, Elongation, and Charpy energy. This is
ultimately the source of trade-offs in MOPs that consider such objectives.

5 Problem Formulation

Based on the consideration described in the previous section, the selected sur-
rogate models (ExTR for YS and ELON, XGBoost for UTS, and GradBoost
for Charpy energy), can predict the values of YS, UTS, ELON, and Charpy
energy value of vanadium microalloyed steels as functions of their compositions
(and additionally the temperature for the Charpy energy). Thus, the metallur-
gical properties form the objectives of an MOP to be optimized with the alloy
composition as the decision variables. Besides the surrogate models, two more
objectives were added to the problem formulation: carbon equivalent value and
the cost of materials. These objectives can be numerically calculated as func-
tions of the steel composition. Equation (2) is used to calculate the carbon
equivalent value. The cost of materials is calculated as a linear combination of
the alloy composition values weighted by the cost of the elemental components
as stated in Table 3.

We formally define the MOP (MOP-I) as:

maximize YS(comp)
maximize UTS(comp)
maximize ELON(comp)
maximize Charpy(comp, temp)
minimize Ceq(comp)
minimize Cost(comp)
subject to LB ≤ comp ≤ UB,

(MOP-I)

where YS, UTS, ELON, and Charpy are the surrogate models for YS, UTS, ELON,

12

Alloying
Element

Lower bound
(MOP-I)

Upper bound
(MOP-I)

Lower bound
(MOP-II)

Upper bound
(MOP-II)

Cost
(USD per Kg)

C 0.009 0.34 0.006 0.4 0
Si 0.01 0.55 0 0.6 0.122

Mn 0.28 1.63 0.28 1.63 1.7
P 0 0.035 0 0.035 1.82
S 0 0.035 0 0.042 2.69

Mo 0 0.53 0 1.0 0.0926
Ni 0 3.12 0 3.12 40.1
Al 0 0.06 0 0.06 13.9
N 0 0.024 0 0.024 1.79

Nb 0 0.086 0 0.45 0.140
V 0 0.2 0 0.2 72
B 0 0.001 0 0.001 3.68
Ti 0 0.18 0 0.31 11.5
Cr 0 1.24 0 1.5 9.4
Ce 0 0.015 0 0.015 4.6
Cu 0 0.312 0 0.312 6
Zr 0 0.008 0 0.008 237

Table 3: The upper and lower bound for the concentrations (in percentage
weight) of the alloying elements and their cost as used in MOP-I and MOP-II.

and the Charpy energy, respectively. The decision variable comp is the vector
of the concentration of 17 alloying elements in the steel bounded by lower and
upper bounds LB and UB. The function Ceq refers to the carbon equivalent
value, and the Cost function refers to the cost of materials. The temperature
temp input for the Charpy surrogate model is kept constant at −80◦C. The
bounds LB and UB are calculated as the bounds of the intersection of the
datasets used for all four surrogate models and the values are given in Table
3. Expanding this range makes the search space larger, which increases the
likelihood of finding suitable alloy compositions. This is why removing unim-
portant or noisy columns was a crucial step in surrogate modelling, as described
in Section 4.

We create a simpler version of MOP-I (named MOP-II) by removing the
Charpy energy objective from MOP-I. We consider this version since, as men-
tioned, the Charpy surrogate model had a worse accuracy than the other sur-
rogate models. Removing this objective also led to an expansion of the bounds
of the decision variables (calculated as the bounds of the intersection of the
remaining datasets). The upper and lower bound values for the various alloying
elements can be seen in Table 3.

13

6 Optimization

The open-source software framework DESDEO [6] provides a variety of inter-
active and some non-interactive methods to solve multiobjective optimization
problems We begin by solving the two problems formulated in the previous sec-
tion with two non-interactive evolutionary algorithms: RVEA and NSGA-III,
to generate an approximate representation of Pareto optimal solutions. These
method have been reported to work well with problems with more than four
objectives. The details of the optimization and the results are discussed in
Subsection 6.1. We conducted optimization using non-interactive MOEAs and
presented visualizations of the results to the DMs to help them form their initial
preferences.

In Subsection 6.2, we outline the details of the interactive MOEA called
MultiDM/IOPIS, a method developed to solve the MOP interactively with more
than one DM. We then describe the interactive optimization process itself and
the results obtained in Subsection 6.3.

6.1 Non-interactive optimization

We ran the RVEA and NSGA-III algorithms for 150 generations each to solve
MOP-I and MOP-II. There was no improvement in the objective values at-
tained by the solutions after around 120 generations. The other parameters of
the algorithms were otherwise unchanged from the values suggested in origi-
nal publications which proposed RVEA and NSGA-III. We combined the final
solutions from both RVEA and NSGA-III and removed the ones where some
objective function value was worse and other values not better than in some
other solution. Figures 3 and 4 show the remaining solutions for MOP-I and
MOP-II, respectively, in parallel coordinates plots. Interactive versions of these
plots can be seen at https://desdeo.it.jyu.fi.

The two methods found 1055 solutions for MOP-I and 1599 solutions for
MOP-II. The ideal, i.e., best possible, values for the objectives of MOP-I were
(726 MPa, 1577 MPa, 34%, 103 J, 0.087, 43 USD per kg). The ideal values for
the objectives of MOP-II were (752 MPa, 1593 MPa, 34%, 0.055, 42.9 USD per
kg). The methods were able to find slightly better solutions for MOP-II than for
MOP-I. This may be because optimization becomes exponentially more difficult
with an increasing number of objectives. As the parameters of the methods were
the same for solving MOP-I and MOP-II, the results were slightly worse in the
version with one more objective.

Despite the differing performance, certain similarities can be visually ob-
served in the solutions of MOP-I and MOP-II. For example, in both cases,
there is a cluster of solutions with very high UTS values, followed by a disconti-
nuity, and then a different cluster of medium and low UTS values. There are also
three clusters in the Cost objective. In both problem formulations, Cost did not
have significant trade-offs with the ELON objective. The solutions represented
high values for ELON for both low Cost and high Cost alloys. However, Cost
was very strongly correlated with UTS. Low Cost alloys could only achieve UTS

14

Figure 3: Solutions of MOP-I presented as a parallel coordinates plot. The
solution traces are coloured based on the Carbon equivalent value.

Figure 4: Solutions of MOP-II presented as a parallel coordinates plot. The
solution traces are coloured based on the Carbon equivalent value.

15

values of up to 1200 MPa. Only the highest Cost alloys could achieve the best
UTS values. Increasing Cost also generally increased the YS values. However,
the low Cost alloys could still achieve the best YS values. Among the solutions
of MOP-I specifically, the Charpy objective was weakly conflicting with all other
objectives.

Standard Grade
Solutions
(MOP-I)

Solutions
(MOP-II)

BS EN-10025-4 S275ML 2 47
BS EN-10025-4 S355ML 2 47
BS EN-10025-4 S420ML 5 45
BS EN-10025-4 S460ML 5 17
BS EN-10149-2 S315MC 7 132
BS EN-10149-2 S355MC 8 149
BS EN-10149-2 S420MC 9 226
BS EN-10149-2 S460MC 7 182
BS EN-10149-2 S500MC 7 175
BS EN-10149-2 S550MC 3 133
BS EN-10149-2 S600MC 2 84
BS EN-10149-2 S650MC 1 58
BS EN-10149-2 S700MC 0 22
BS EN-10025-6 S460QL1 5 39
BS EN-10025-6 S500QL1 1 28
BS EN-10025-6 S550QL1 1 12
BS EN-10025-6 S620QL1 0 1
API - 5L - 2018 X42M 1 2
API - 5L - 2018 X46M 1 2
API - 5L - 2018 X52M 1 2
API - 5L - 2018 X56M 1 1
API - 5L - 2018 X60M 1 0
API - 5L - 2018 X65M 1 0
API - 5L - 2018 X70M 1 0
API - 5L - 2018 X80M 1 0
MIL-S-24645A(1984) HSLA-80 0 0
MIL-S-24645A(1989) HSLA-100 0 0

Table 4: Number of solutions of MOP-I and MOP-II that match structural (BS
EN), linepipe (API), and naval (MIL) steel standards.

We compared the solutions of MOP-I and MOP-II against structural and
pipeline steel grades. We enumerate the solutions that match various steel
grades in Table 4. The MOP-II formulation resulted in many more feasible
alloy compositions for structural steels than the MOP-I formulation. This is
because, as mentioned earlier, MOP-II is easier to optimize than MOP-I. How-
ever, for linepipe steels, the MOP-I formulation discovered alloy compositions

16

to satisfy a more diverse range of grades than MOP-II. The inclusion of the
Charpy energy objective in MOP-I allowed a more diverse search space. Hence,
the formulation was able to satisfy more grades. Neither formulation was able
to discover solutions that matched the naval steel grades. This signifies that
RVEA and NSGA-III were not able to find solutions in all regions of the Pareto
front.

6.2 MultiDM/IOPIS

As mentioned earlier, optimization with MOEAs to approximate the entire
Pareto front becomes increasingly more challenging with more objectives. In-
teractive MOEAs resolve this issue by using the preferences of a DM to narrow
down the search to solutions that are of interest to the DM, thus, focusing com-
putational resources in a smaller region. As mentioned, in this study, there were
two domain experts who acted as DMs, whereas one of the authors acted as an
analyst to guide them through the interactive decision making process. As the
number of objectives is not an issue for the interactive MOEAs, only MOP-I
was solved.

As mentioned, IOPIS was originally proposed for a single DM. We devel-
oped and implemented a new variant of the IOPIS algorithm [5], called Mul-
tiDM/IOPIS, to support collaborative interaction with multiple DMs simul-
taneously, that is, group decision making. The new algorithm provides this
support while maintaining the beneficial properties of the original IOPIS algo-
rithm, i.e., the guarantees of optimality, preferability, and searchability. The
original IOPIS algorithm uses multiple scalarization functions, which take the
same preference information, to convert an MOP to a new MOP with a lower
number of objectives. The new MOP, with the preference information as a
fundamental building block, allows non-interactive MOEAs such as RVEA and
NSGA-III to focus on the region of interest of the DM and, thus, converts these
non-interactive methods as interactive ones.

MultiDM/IOPIS reverses this concept by using copies of the same scalar-
ization function, taking different preferences as input. The multiple preferences
can come, for example, from multiple DMs, as in our case. MultiDM/IOPIS,
thus, creates a new MOP with the same number of objectives as the number of
DMs, regardless of the number of objectives in the original MOP. In our case,
the number of DMs (two) is much smaller than the number of objectives (six),
making the new MOP formed by MultiDM/IOPIS much easier to solve.

In brief, the interactive optimization process with multiple DMs applying
MultiDM/IOPIS involves the following steps: 1) The DMs provide individually
their own reference points reflecting their desired values for the objectives. 2)
The new MOP is formed, where the objective functions are scalarization func-
tions containing the preferences of one of the DMs. 3) The MOP is solved with
an MOEA to get a set of solutions to be shown to the DMs. 4) The DMs an-
alyze the solutions to see how their own and the preferences of the others are
reflected. If a satisfactory solution is found, stop. Otherwise, go to 1).

17

Let us elaborate the behaviour of MultiDM/IOPIS in the case of two DMs
(for simplicity). It has the following modes of operation:

1. Case 1. The DMs provide extremely different preferences: The MOEA
converges towards the two solutions that best satisfy the two preferences
individually, as well as many solutions that present a compromise between
the preferences of the DMs. The inclusion of compromise solutions pro-
vides necessary information to the DMs to collaborate on a compromise.

2. Case 2. One DM explores the objective space by changing preferences
but the other DM stays anchored: The MOEA converges further and
provides better solutions near the region of interest of the DM that did not
change preferences. At the same time, the MOEA discovers new solutions
to reflect the new preferences given by the first DM. The MOEA also
provides compromise solutions between the two regions of interest. This
mode allows for quick but controlled exploration of potential solutions:
discovery of new solutions in new regions of interest and the corresponding
trade-offs with the anchored preferences. Thus, even the anchored DM can
find new, potentially favourable solutions.

3. Case 3. The DMs provide preferences close to each other: The DMs are
expected to arrive at a favourable compromise during the interactive op-
timization process. The MOEA returns solutions in a narrower region as
the preferences draw closer, providing many solutions with minor varia-
tions in the objective values. This variety allows the DMs to choose a
finely-tuned solution for their application.

To solve our problem, we applied MultiDM/IOPIS with the scalarization
function from the STOMmethod [55] in our implementation of MultiDM/IOPIS
(it was already available in DESDEO) and NSGA-III to solve the resulting biob-
jective optimization problem. NSGA-III generally performs better than RVEA
in MOPs with a lower number of objectives [56]. The STOM scalarization func-
tion takes a DM’s preferences as a reference point: a vector of objective values
(for all objectives) that the DM aspires to achieve. In the interactive optimiza-
tion process, the DMs can change the reference points at any time, resulting in
MultiDM/IOPIS creating a new MOP which reflects the new preferences. How-
ever, the population from the MOEA continues its evolution from the previous
MOP. Thus, no progress on optimization is lost.

We set the population size of NSGA-III to be 50. While this is an inadequate
size for a problem with six objectives, we found that it is sufficient for the modi-
fied MOP generated by MultiDM/IOPIS. Moreover, we only ran the MOEA for
30 generations between iterations, i.e., asking the DMs for preferences and pro-
viding near-Pareto optimal solutions to analyze and update their preferences.
In our experiments, the small number of generations and population size led to
a near-instantaneous return of solutions and high computational efficiency.

18

6.3 Interactive Optimization Process

We started the process of interactive optimization by first showing the solutions
of the non-interactive optimization methods to the DMs (Figures 3 and 4) in
interactive plots that allowed brushing and filtering of solutions. This process
enabled them to explore the approximated Pareto optimal solutions to learn
about the trade-offs and form their initial preferences. The analyst introduced
MultiDM/IOPIS to the DMs by describing how they can steer the interactive
optimization process with their preference information (and the three modes of
operation).

Preferences in the first iteration

DM 1: (460, 550, 17, 27, 0.47, 50)
Similar to structural grade S460QL1
DM 2: (690, 770, 14, 27, 0.65, 80)

Similar to structural grade S690QL1

Preferences in the second iteration

DM 1: (552, 600, 20, 81, 0.6, 50)
Similar to naval grade HSLA-80
DM 2: (690, 770, 14, 27, 0.65, 80)

Similar to structural grade S690QL1

Preferences in the third iteration

DM 1: (552, 600, 20, 81, 0.6, 50)
Similar to naval grade HSLA-80
DM 2: (690, 770, 18, 81, 1, 80)
Similar to naval grade HSLA-100

Table 5: Preferences given by the two DMs during interactive optimization using
MultiDM/IOPIS in the form of reference points. The values of components of
each reference point represents the preferences for objectives in the order (YS,
UTS, ELON, Charpy, Ceq, Cost).

We show the first reference points given by the two DMs in Table 5. The
first DM set the reference point to target solutions to match the structural steel
grade S460QL1 and the second DM did the same for S690QL1. During non-
interactive optimization, the MOP-I formulation resulted in only five solutions
to match the S460QL1 grade. The MOP-II formulation resulted in 39 solutions
that matched that grade. Neither formulation had resulted in any solutions for
the S690QL1 grade, as it is a stricter grade.

The analyst visualized the solutions generated based on the two reference
points to the DMs in a parallel coordinate plot, see green lines in Figure 5. We
combine the solutions of all iterations in Figure 5 for the sake of brevity. The
solutions of the first iteration vastly exceeded the first DM’s preferences. The
solutions closely matched the second DM’s much stricter preferences, while still
giving much better values for the Charpy objective compared to the reference
point. No solution discovered during the non-interactive optimization could
match the solutions found in the first iteration of the interactive optimization
in all six objectives.

For the second iteration, the presence of solutions with very good Charpy

19

Figure 5: Results of interactive optimization using MultiDM/IOPIS. The results
from three iterations are presented in green (iteration 1), blue (iteration 2), and
grey (final iteration).

values led to the first DM changing preferences to a much stricter naval steel
grade: HSLA-80. The second DM chose not to change preferences to preserve
the newly discovered solutions for further consideration. The exact values of
the two reference points are presented in the second row of Table 5.

We visualize the solutions of the second iteration in Figure 5 in blue. The
most apparent differences between the solutions of the two iterations were in
the ELON and Charpy objective values. The Charpy values were much better for
solutions of the second iteration, which came at the cost of worse ELON values
(although still better than the given preferences). This change was because of
the much higher value for the Charpy objective in the reference point given by
the first DM. The equivalent carbon content Ceq for the solutions of the second
iteration was also higher but still well within the grade specifications. There was
a small number of solutions that satisfy the preferences given by the first DM
(higher Charpy and ELON), and a small number that met the preferences given
by the second DM (higher YS and UTS). A majority of solutions represented the
trade-offs between the two preferences.

Based on the results of the second iteration, the second DM decided to
change the preferences to a much stricter naval steel grade HSLA-100. The
reference points for the third iteration (in the third row of Table 5) were very
close to each other: the two DMs were coming into agreement regarding their
preferences.

The solutions of the third iteration, shown in Figure 5 in grey, had a narrower
spread compared to the previous iterations. A significant trade-off this time was
present between the UTS and ELON objectives. This trade-off originated from the
differences in the two reference points. Even though the second DM allowed for
a much higher Cost value of 80 USD/kg, MultiDM/IOPIS achieved satisfactory
values for all other objectives at close to half of the Cost value. The DMs

20

were satisfied with the solutions obtained and decided to end the interactive
optimization process. The solutions of the third iteration were very similar
and the solution with the objective values (700, 846, 24.2, 87, 0.470, 47) was
chosen. This solution is better than the preferences provided by either DM as
seen in Table 5, which is why it was chosen. The complete set of all solutions
found by MultiDM/IOPIS in all three iterations can be found via the DESDEO
framework.

7 Discussion

MOPs and their solution processes are often presented straightforwardly in the
literature: problem formulation (often given without details of modeling), fol-
lowed by optimization, visualization and discussion of results. It provides a
straightforward approach to give an account of the problem and the steps taken
to solve it. However, it hides many complexities of the challenges faced in solv-
ing real MOPs, particularly data-driven MOPs. In Sections 3-6, we provided a
detailed account of all the steps taken to formulate and solve MOPs in the case
considered. However, we did not discuss why some of those steps were necessary.
This is because, for example, we took the measures taken during the first steps
of solving the MOP (i.e., data preprocessing) to solve issues that arose during
the last steps (i.e., optimization). We discovered many fundamental issues while
solving the MOP, which required us to rethink our approach, apply fixes to ear-
lier steps, and restart the solution process. An explanation of such issues and
their resolutions requires the knowledge of the entire solution process.

After Sections 3-6, having discussed the entire solution process, we can now
elaborate on the challenges we faced and justify the choices we made to solve
them. In this section, we also talk about approaches that lead to dead-ends
and, therefore, did not warrant a mention in the previous sections.

The first issue we faced was converting the data into a usable format. The
naive approach of simply training surrogate models on the raw datasets (mostly
empty cells) would lead to issues related to extrapolation (models giving bad
predictions in areas outside the bound of a given objective but within the bound
of the dataset). Sometimes, the models trained in such a manner also led to run-
time errors. Thus, cleaning and preprocessing the data were needed. Dividing
the dataset into individual datasets for each objective also allowed us to calculate
each objective’s domains (ranges of decision variable values). This information
helped us define the constraints of the MOP during the later steps.

The dataset involving the Charpy energy and ITT experiments required ad-
ditional treatment as it required combining multiple columns (Charpy energy
measured at various temperatures/ITT measured at various energy levels) into
just two columns (temperature and Charpy energy). No individual column in
the original dataset contained enough information for proper training of corre-
sponding surrogate models. Therefore, initially, we chose not to include Charpy
energy in this study. However, the MOEAs could not find solutions to match
steel grades requiring high performance at very cold temperatures because of the

21

lack of Charpy energy in our initial problem formulations. The Charpy dataset
we created enabled us to train reasonably well-performing models, which solved
the issue.

Creating the MOP required us to find the intersection of the domains of all
the objectives. We discovered in our initial calculations that the intersection was
a null set. Thus, the models trained on the individual datasets would constantly
be extrapolating if used together. This issue was mildly resolved by removing
some extraneous columns that were almost entirely empty. This demanded
further additions to the data preprocessing steps. However, the intersection
was still very restricting. Expanding on the previous idea, we posited that we
could remove even more columns to increase the intersection area. Therefore, it
was essential to identify which decision variables had little or no impact on the
objective values. We discuss the tests conducted for this task at the beginning
of Section 4.

The choice and verification of models are crucial in data-driven optimiza-
tion and help build trust in the solutions generated by the methods. Ideally,
such models should be verified by confirming their predictions from experi-
ments (creating and testing alloys, in our case). However, those resources were
not available to us during this study. Therefore, we conducted rigorous test-
ing of many surrogate modelling techniques to determine the best choice for
each objective. We also confirmed that the predictions of the models matched
current metallurgical literature. For modelling Charpy energy specifically, we
tried some novel approaches of combining metallurgical knowledge (such as ap-
proximate functions which predict Charpy energy based on temperature) and
surrogate modelling techniques. However, because the dataset contained many
different kinds of steels, this approach did not work as well as simply using the
surrogate model with the Charpy dataset.

During interactive optimization, we encountered the issue of supporting mul-
tiple DMs. We could not find implementations of interactive optimization meth-
ods that could solve our MOP while incorporating the preferences of multiple
DMs. Therefore, we created a new method using DESDEO, based on the IOPIS
algorithm. We elaborated on MultiDM/IOPIS in Subsection 6.2, which uses ref-
erence points as the mode of receiving preferences. However, we had created
multiple variants of IOPIS which use different forms of preferences. The DMs in
question felt most comfortable giving preferences in the form of reference points,
so we only discuss MultiDM/IOPIS in this paper. The creation of these new
methods was greatly quickened by the modularity of the DESDEO framework,
which enabled us to reuse the components already present in the framework
instead of implementing everything from scratch.

The ease of use of the DESDEO framework also allowed the analyst to
quickly switch between and demonstrate different MOP formulations to the
DMs. This, along with being actively involved in the interactive optimization
process, inspired the DMs to suggest the addition of the carbon equivalent
value as one of the objectives. Thus, MultiDM/IOPIS and DESDEO led to the
formulation of a better MOP.

To sum up, we faced many interesting challenges while solving (or even for-

22

mulating) our MOP. We made additions to the DESDEO framework to resolve
the challenges successfully. We implemented the novel MultiDM/IOPIS method
that helped us arrive at a better problem formulation. It also provided better
results than RVEA and NSGA-III while being computationally much more ef-
ficient, requiring fewer generations with a smaller population size.

Figure 6: A realistic depiction of the seamless chain.

As we have established, the linear schematic of a seamless chain presented in
Figure 1 does not capture the complexity of solving real-life data-driven prob-
lems entirely. We present a new depiction that reflects our experience of solving
the MOPs presented in this study in Figure 6. The decisions made to prepro-
cess the data, model the objectives, formulate the MOP, and supporting one
or multiple DMs are interconnected and interdependent. The data limits which
objectives can be considered for the MOP. The modeling and MOP formulation
steps can reveal further shortcomings and issues with the data, forcing the an-
alyst to change the preprocessing strategy. The expertise of the DMs is crucial
not just in decision making, but also in understanding the data, validating the
surrogate models, and formulating meaningful MOPs. An analyst’s role is to
channel the expertise of DMs to successfully tackle the issues that arise during
all steps of the seamless chain process.

To resolve such issues, an analyst needs to use a variety of tools, many of
which we have described in this study. While other real-life data-driven problems

23

may not have the same challenges we faced, we document the entire process as
a general guideline of the seamless chain method to solve MOPs. We make all
methods, procedures, implementations, data, and visualizations developed or
created during this study openly available via the DESDEO framework [6].

8 Conclusions

We considered many challenges in formulating and solving real-life data-driven
multiobjective optimization problems. The challenges covered all steps of a
seamless chain from data to decision-making that we introduced. The concrete
steps related to microalloyed steels demonstrated the reasoning. We processed
the raw dataset significantly to enable using it. We identified the essential de-
cision variables, and trained and tested the best surrogate models to emulate
the objectives derived from the data. We validated those models by comparing
their response to changing decision variables to known metallurgical literature.
With the surrogates as objectives, we formulated multiobjective optimization
problems. We introduced interactive optimization to two domain experts who
acted as DMs, which inspired them to create better problem formulations. We
developed a novel interactive evolutionary method called MultiDM/IOPIS to
simultaneously support the two DMs (who had different preferences) in inter-
active optimization. The solutions obtained were very satisfactory to the DMs
and the solution process had a low computational cost.

We utilized many popular open-source tools in the process of formulating
and solving our problems. The DESDEO framework was instrumental as it
enabled us to experiment quickly with different versions of the problems. It
also allowed us to implement the MultiDM/IOPIS method quickly by utilizing
its modular implementations of scalarization functions (implemented via the
GLIDE-II framework [57]) and MOEAs. We discussed the steps taken to solve
the MOPs in great detail and established a methodology and guidelines for
solving real-life data-driven MOPs. We provide all tools, data, and methods
created or used openly via the DESDEO framework, enabling their usage by
others.

MultiDM/IOPIS enables supporting multiple DMs simultaneously to solve
multiobjective optimization problems. It worked very well in our study and
found solutions that non-interactive evolutionary algorithms RVEA and NSGA-
III could not find. While our study had only two DMs, MultiDM/IOPIS can
support any number of DMs (by having as many scalarization functions in its
formulation). The properties of such a formulations and the application of
MultiDM/IOPIS with more than two DMs need further studies. Another inter-
esting area of study is the application of MultiDM/IOPIS in online data-driven
MOPs, i.e., data-driven MOPs with the option to conduct further function
evaluations to increase the accuracy of the surrogates. Moreover, solving such
problems requires tackling challenges specific to online data-driven problems,
and a guideline to do so will be of great use.

24

Acknowledgements

This research was partly funded by the Academy of Finland (grant 322221).
The research is related to the thematic research area Decision Analytics utilizing
Causal Models and Multiobjective Optimization (DEMO), jyu.fi/demo, at the
University of Jyvaskyla.

References

[1] T. Chugh, K. Sindhya, J. Hakanen, and K. Miettinen, “A survey on
handling computationally expensive multiobjective optimization problems
with evolutionary algorithms,” Soft Computing, vol. 23, no. 9, pp. 3137–
3166, 2019.

[2] Y. Jin, H. Wang, and C. Sun, Data-Driven Evolutionary Optimization.
Springer, 2021.

[3] K. Miettinen, Nonlinear Multiobjective Optimization. Kluwer Academic
Publishers, 1999.

[4] J. Branke, K. Deb, K. Miettinen, and R. Slowinski, Eds., Multiobjective
Optimization: Interative and Evolutionary Approaches. Springer, 2008.

[5] B. S. Saini, J. Hakanen, and K. Miettinen, “A new paradigm in interac-
tive evolutionary multiobjective optimization,” in Parallel Problem Solv-
ing from Nature, PPSN XVI, 16th International Conference, Part II, T.
Back, M. Preuss, A. Deutz, H. Wang, M. Doerr C. and. Emmerich, and
H. Trautmann, Eds., Springer, 2020, pp. 243–256.

[6] G. Misitano, B. S. Saini, B. Afsar, B. Shavazipour, and K. Miettinen,
“Desdeo: The modular and open source framework for interactive multi-
objective optimization,” IEEE Access, vol. 9, pp. 148 277–148 295, 2021.

[7] T. Chugh, Y. Jin, K. Miettinen, J. Hakanen, and K. Sindhya, “A surrogate-
assisted reference vector guided evolutionary algorithm for computation-
ally expensive many-objective optimization,” IEEE Transactions on Evo-
lutionary Computation, vol. 22, no. 1, pp. 129–142, 2016.

[8] M. Tabatabaei, J. Hakanen, M. Hartikainen, K. Miettinen, and K. Sind-
hya, “A survey on handling computationally expensive multiobjective
optimization problems using surrogates: Non-nature inspired methods,”
Structural and Multidisciplinary Optimization, vol. 52, no. 1, pp. 1–25,
2015.

[9] H. Wang, Y. Jin, C. Sun, and J. Doherty, “Offline data-driven evolutionary
optimization using selective surrogate ensembles,” IEEE Transactions on
Evolutionary Computation, vol. 23, no. 2, pp. 203–216, 2018.

[10] K. Miettinen, F. Ruiz, and A. P. Wierzbicki, “Introduction to multiobjec-
tive optimization: Interactive approaches,” inMultiobjective Optimization:
Interative and Evolutionary Approaches, J. Branke, K. Deb, K. Miettinen,
and R. Slowinski, Eds., Springer, 2008, pp. 27–57.

25

[11] K. Deb and D. Saxena, “Searching for Pareto-optimal solutions through
dimensionality reduction for certain large-dimensional multi-objective op-
timization problems,” in Proceedings of the World Congress on Computa-
tional Intelligence (WCCI-2006), 2006, pp. 3352–3360.

[12] H. Ishibuchi, N. Tsukamoto, and Y. Nojima, “Evolutionary many-objective
optimization: A short review,” in Proceedings of the 2008 IEEE Congress
on Evolutionary Computation (IEEE World Congress on Computational
Intelligence), 2008, pp. 2419–2426.

[13] K. Miettinen and M. M. Mäkelä, “On scalarizing functions in multiobjec-
tive optimization,” OR Spectrum, vol. 24, no. 2, pp. 193–213, 2002.

[14] F. Ruiz, M. Luque, and J. M. Cabello, “A classification of the weighting
schemes in reference point procedures for multiobjective programming,”
Journal of the Operational Research Society, vol. 60, no. 4, pp. 544–553,
2009.

[15] R. Cheng, Y. Jin, M. Olhofer, and B. Sendhoff, “A reference vector guided
evolutionary algorithm for many-objective optimization,” IEEE Transac-
tions on Evolutionary Computation, vol. 20, no. 5, pp. 773–791, 2016.

[16] K. Deb and H. Jain, “An evolutionary many-objective optimization algo-
rithm using reference-point-based nondominated sorting approach, part
I: Solving problems with box constraints,” IEEE Transactions on Evolu-
tionary Computation, vol. 18, no. 4, pp. 577–601, 2014.

[17] N. J. Kim, “The physical metallurgy of HSLA linepipe steels—a review,”
JOM, vol. 35, no. 4, pp. 21–27, 1983.

[18] J. F. Lancaster, Metallurgy of Welding, 6th ed. Elsevier, 1999.

[19] J. Reback et al., Pandas-dev/pandas: Pandas, version latest, 2020. doi:
10.5281/zenodo.3509134.

[20] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” Journal
of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[21] M. W. Gardner and S. Dorling, “Artificial neural networks (the multi-
layer perceptron)- A review of applications in the atmospheric sciences,”
Atmospheric Environment, vol. 32, no. 14-15, pp. 2627–2636, 1998.

[22] I. Steinwart and A. Christmann, Support vector machines. Springer, 2008.

[23] G. Matheron, “Principles of geostatistics,” Economic Geology, vol. 58,
no. 8, pp. 1246–1266, 1963.

[24] M. Emmerich, “Single-and multi-objective evolutionary design optimiza-
tion assisted by Gaussian random field metamodels,” PhD dissertation,
University of Dortmund, 2005.

[25] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized trees,”
Machine Learning, vol. 63, no. 1, pp. 3–42, 2006.

[26] J. H. Friedman, “Greedy function approximation: A gradient boosting
machine.,” The Annals of Statistics, vol. 29, no. 5, pp. 1189–1232,

26

[27] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5–32,
2001.

[28] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,” in
Proceedings of the 22nd acm sigkdd international conference on knowledge
discovery and data mining, 2016, pp. 785–794.

[29] G. Ke et al., “LightGBM: A highly efficient gradient boosting decision
tree,” in Advances in Neural Information Processing Systems, I. Guyon et
al., Eds., vol. 30, Curran Associates, Inc., 2017.

[30] A. Goldstein, A. Kapelner, J. Bleich, and E. Pitkin, “Peeking inside the
black box: Visualizing statistical learning with plots of individual condi-
tional expectation,” Journal of Computational and Graphical Statistics,
vol. 24, no. 1, pp. 44–65, 2015.

[31] R. Abbaschian and R. E. Reed-Hill, Physical Metallurgy Principles-SI Ver-
sion. Cengage Learning, 2009.

[32] H. K. Bhadeshia and D. Hansraj, Bainite in Steels: Theory and Practice.
CRC Press, 2019.

[33] H. Bhadeshia and R. Honeycombe, Steels: Microstructure and Properties.
Butterworth-Heinemann, 2017.

[34] T. Gladman, The Physical Metallurgy of Microalloyed Steels. Maney Pub,
1997.

[35] C. Bae, C. Lee, and W. Nam, “Effect of carbon content on mechani-
cal properties of fully pearlitic steels,” Materials Science and Technology,
vol. 18, no. 11, pp. 1317–1321, 2002.

[36] M.-Y. Chen, D. Linkens, and A. Bannister, “Numerical analysis of fac-
tors influencing charpy impact properties of TMCR structural steels us-
ing fuzzy modelling,” Materials Science and Technology, vol. 20, no. 5,
pp. 627–633, 2004.

[37] Y. Li, D. N. Crowther, M. J. W. Green, P. S. Mitchell, and T. N. Baker,
“The effect of vanadium and niobium on the properties and microstructure
of the intercritically reheated coarse grained heat affected zone in low
carbon microalloyed steels,” ISIJ International, vol. 41, no. 1, pp. 46–55,
2001.

[38] E. Rozhkova, M. Garber, and I. Tsypin, “Effect of manganese on the
transformation of austenite in white chromium cast irons,” Metal Science
and Heat Treatment, vol. 23, no. 1, pp. 59–63, 1981.

[39] R. Mesquita and H.-J. Kestenbach, “On the effect of silicon on toughness
in recent high quality hot work steels,”Materials Science and Engineering:
A, vol. 528, no. 13-14, pp. 4856–4859, 2011.

[40] H. Erhart and H.-J. Grabke, “Equilibrium segregation of phosphorus at
grain boundaries of fe–p, fe–c–p, fe–cr–p, and fe–cr–c–p alloys,” Metal
Science, vol. 15, no. 9, pp. 401–408, 1981.

27

[41] S. Vervynckt, K. Verbeken, B. Lopez, and J. Jonas, “Modern HSLA steels
and role of non-recrystallisation temperature,” International Materials
Reviews, vol. 57, no. 4, pp. 187–207, 2012.

[42] S.-H. Kim, C.-Y. Kang, and K.-S. Bang, “Weld metal impact toughness of
electron beam welded 9% ni steel,” Journal of Materials Science, vol. 36,
no. 5, pp. 1197–1200, 2001.

[43] L.-Å. Norström and O. Vingsbo, “Influence of nickel on toughness and
ductile-brittle transition in low-carbon martensite steels,” Metal Science,
vol. 13, no. 12, pp. 677–684, 1979.

[44] A. DeArdo, “Niobium in modern steels,” International Materials Reviews,
vol. 48, no. 6, pp. 371–402, 2003.

[45] W. Morrison, “Microalloy steels–the beginning,” Materials Science and
Technology, vol. 25, no. 9, pp. 1066–1073, 2009.

[46] W. Yan, Y. Shan, and K. Yang, “Effect of tin inclusions on the impact
toughness of low-carbon microalloyed steels,” Metallurgical and Materials
Transactions A, vol. 37, no. 7, pp. 2147–2158, 2006.

[47] F. Wilson and T. Gladman, “Aluminium nitride in steel,” International
Materials Reviews, vol. 33, no. 1, pp. 221–286, 1988.

[48] P. J. Uggowitzer, R. Magdowski, and M. O. Speidel, “Nickel free high
nitrogen austenitic steels,” ISIJ International, vol. 36, no. 7, pp. 901–908,
1996.

[49] T. Baker, “Processes, microstructure and properties of vanadium microal-
loyed steels,” Materials Science and Technology, vol. 25, no. 9, pp. 1083–
1107, 2009.

[50] A. Ghosh, S. Sahoo, M. Ghosh, R. Ghosh, and D. Chakrabarti, “Effect of
microstructural parameters, microtexture and matrix strain on the Charpy
impact properties of low carbon HSLA steel containing mns inclusions,”
Materials Science and Engineering: A, vol. 613, pp. 37–47, 2014.

[51] D. Isheim, M. S. Gagliano, M. E. Fine, and D. N. Seidman, “Interfacial seg-
regation at cu-rich precipitates in a high-strength low-carbon steel studied
on a sub-nanometer scale,” Acta Materialia, vol. 54, no. 3, pp. 841–849,
2006.

[52] D. Ye, J. Li, W. Jiang, J. Su, and K. Zhao, “Effect of cu addition on mi-
crostructure and mechanical properties of 15% cr super martensitic stain-
less steel,” Materials & Design, vol. 41, pp. 16–22, 2012.

[53] Z. Adabavazeh, W. Hwang, and Y. Su, “Effect of adding cerium on mi-
crostructure and morphology of ce-based inclusions formed in low-carbon
steel,” Scientific Reports, vol. 7, no. 1, pp. 1–10, 2017.

[54] A. Guo et al., “Effect of zirconium addition on the impact toughness of the
heat affected zone in a high strength low alloy pipeline steel,” Materials
Characterization, vol. 59, no. 2, pp. 134–139, 2008.

28

[55] H. Nakayama and Y. Sawaragi, “Satisficing trade-off method for multi-
objective programming,” in Interactive Decision Analysis, M. Grauer and
A. P. Wierzbicki, Eds., Berlin, Heidelberg: Springer, 1984, pp. 113–122,
isbn: 978-3-662-00184-4.

[56] K. Li, R. Wang, T. Zhang, and H. Ishibuchi, “Evolutionary many-objective
optimization: A comparative study of the state-of-the-art,” IEEE Access,
vol. 6, pp. 26 194–26 214, 2018.

[57] F. Ruiz, M. Luque, and K. Miettinen, “Improving the computational ef-
ficiency in a global formulation (GLIDE) for interactive multiobjective
optimization,” Annals of Operations Research, vol. 197, no. 1, pp. 47–70,
2012.

A Effect of concentrations of alloying elements
on metallurgical properties of microalloyed
steels

Carbon: Being the primary interstitial solute in steel, C atoms strongly inter-
act with both edge- and screw-dislocations and provide significant solid solution
strengthening. Besides, C increases hardenability and promotes the formation
of harder phase constituents like pearlite, bainite and martensite which increases
the strength. In addition, iron carbides and alloy carbides contribute to pre-
cipitation strengthening. An increase in strength by the increase in C content
in general hampers ductility, toughness, formability and even weldability. The
coarse and brittle carbide particles can act as the crack initiators (or void nucle-
ation sites) and thus, affect impact toughness. On the other hand, fine carbide
precipitates pin down the grain boundaries and restrict grain growth. The ben-
eficial effect of microalloy carbide precipitates (say, NbC) on the retardation of
austenite recrystallization and the consequent ferrite grain refinement in ther-
momechanical processed microalloyed steels is well known. Grain refinement
is beneficial for impact toughness. As a result, C shows a positive effect on
strength, a negative effect on ductility and a mixed response on impact tough-
ness.

Silicon: As a substitutional solute, Si provides solid solution strengthening
and shows a positive effect on strength (particularly UTS) and a negative ef-
fect on ductility. Si is preferred in steels containing low levels of C and other
strengthening elements like Mn. That could result in a mixed response of Si
on YS. Si decreases the cohesive strength of the atomic planes helping cleav-
age crack propagation and renders steel brittle, affecting impact toughness. In
contrast, Si restricts the formation of iron-carbides (detrimental to roughness)
and contributes to carbide free bainitic microstructures. As a result, Si does
not show a clear trend on Charpy energy.

Manganese: Being present at a considerable amount (0.5 to 2.0 wt.%),
Mn is a strong solid solution strengthener in steels, which can naturally affect

29

ductility. Mn is maintained at a higher side typically in low-C steels, having high
ductility and impact toughness. Besides, Mn stabilizes retained austenite which
contributes to the TRIP (transformation induced plasticity) effect. Mn also
suppresses pearlite formation and coarsen the interlamellar spacing in pearlite.
Although MnS inclusion is detrimental to toughness, it is not as harmful as
iron-sulfide. These combined factors resulted in a mixed response of Mn on
ductility and a positive influence on impact toughness.

Phosphorous: Segregation of P at the grain boundaries reduces the bound-
aries’ cohesive strength, and the associated embrittlement seriously affects duc-
tility and impact toughness. Although P is a solid solution strengthener, its
content is restricted in commercial grades of steel. It is only allowed when the
levels of C and the other alloying elements are very low (like P strengthened
interstitial free steel). That is possibly the reason behind P’s negative effect on
strength, as detected here.

Sulfur: S has a strong negative effect on steel properties, particularly on
ductility and toughness. Coarse and elongated MnS inclusions initiate large
voids and fissures (promoting ductile fracture), cause anisotropy in properties,
and even act as the cleavage crack initiators. Segregation of S at grain bound-
aries and interdendritic regions and the formation of iron-sulfides can be even
more detrimental for properties. Being softer than the steel matrix, MnS can
reduce the strength when present at a high fraction. However, occasionally fine
MnS particles can offer grain refinement by (i) pinning the grain boundaries,
and (ii) VN precipitation on MnS can provide nucleation sites for intergranular
ferrite within austenite grains. Hence, S showed a mixed response on the YS
and a negative influence on other properties.

Molybdenum: Mo provides solid solution strengthening and precipitation
strengthening by forming various precipitates such as Mo2C, (Ti, Mo)C and
(V, Mo)C. Mo also increases hardenability and promotes bainite transforma-
tion in steels. It refines the interlamellar spacing of pearlite. These aspects can
have a beneficial effect on strength but a detrimental impact on ductility. Be-
sides, Mo significantly retards temper embrittlement. In modern structural and
linepipe grades of steel (and their weld joints), acicular ferrite microstructure is
preferred to achieve high strength and high toughness. Mo can promote such
microstructure and improve the impact toughness.

Niobium: As a microalloying element in thermomechanically processed
high-strength low-alloy (HSLA) steels, NbC, NbN, and Nb(C, N) precipitate
contribute significant ferrite-grain refinement as well as precipitation strength-
ening. Nb is also a scavenger of C and N from solution, which can improve duc-
tility. Besides, being a substitutional solute, Nb offers solid solution strengthen-
ing, increases hardenability and promotes the formation of bainite and acicular
ferrite microstructures. Thus, Nb shows a clear trend, i.e., a positive effect on
all the investigated properties.

Vanadium: As a microalloying element, the primary contribution of V
is precipitation strengthening in steels by the formation of numerous fine VC
and V(C, N) precipitates during austenite to ferritic transformation. How-
ever, strong precipitation strengthening from V negatively affects ductility and

30

toughness. Although VN particles in austenite can act as nucleation sites for
intragranular ferrite grains, V, in general, is not a strong grain refiner. Thus,
V demonstrates a positive response on strength but a negative response on
ductility and impact toughness.

Titanium: As a microalloying element, the primary contribution of Ti is
to restrict austenite grain growth during soaking, welding, and even conven-
tional hot-rolling by the formation of stable TiN and Ti(C, N) precipitates.
Such a grain size control can be beneficial for impact toughness. Similar to
Nb, dissolved Ti improves hardenability and provides solid solution strength-
ening. Fine-scale precipitation of TiC (at relatively lower temperatures) can
also offer precipitation strengthening. Recently there has been an emphasis
on nanometer-sized (Ti, Mo)C precipitation strengthened ferritic steels for au-
tomotive applications. Precipitation strengthening can hamper ductility and
toughness. Ti and N contents should be controlled carefully in steels as course
and brittle TiN particles are the potent sites for cleavage crack initiation that
can seriously hamper impact toughness and ductility. Thus, Ti shows a positive
effect on strength, a negative effect on ductility, and a mixed response on impact
toughness.

Silicon: As a substitutional solute, Si provides solid solution strengthening
and shows a positive effect on strength (particularly UTS) and a negative ef-
fect on ductility. Si is preferred in steels containing low levels of C and other
strengthening elements like Mn. That could result in a mixed response of Si
on YS. Si decreases the cohesive strength of the atomic planes helping cleav-
age crack propagation and renders steel brittle, affecting impact toughness. In
contrast, Si restricts the formation of iron-carbides (detrimental to roughness)
and contributes to carbide free bainitic microstructures. As a result, Si does
not show a clear trend on Charpy energy.

Manganese: Being present at a considerable amount (0.5 to 2.0 wt.%),
Mn is a strong solid solution strengthener in steels, which can naturally affect
ductility. Mn is maintained at a higher side typically in low-C steels, having high
ductility and impact toughness. Besides, Mn stabilizes retained austenite which
contributes to the TRIP (transformation induced plasticity) effect. Mn also
suppresses pearlite formation and coarsen the interlamellar spacing in pearlite.
Although MnS inclusion is detrimental to toughness, it is not as harmful as
iron-sulfide. These combined factors resulted in a mixed response of Mn on
ductility and a positive influence on impact toughness.

Phosphorous: Segregation of P at the grain boundaries reduces the bound-
aries’ cohesive strength, and the associated embrittlement seriously affects duc-
tility and impact toughness. Although P is a solid solution strengthener, its
content is restricted in commercial grades of steel. It is only allowed when the
levels of C and the other alloying elements are very low (like P strengthened
interstitial free steel). That is possibly the reason behind P’s negative effect on
strength, as detected here.

Sulfur: S has a strong negative effect on steel properties, particularly on
ductility and toughness. Coarse and elongated MnS inclusions initiate large
voids and fissures (promoting ductile fracture), cause anisotropy in properties,

31

and even act as the cleavage crack initiators. Segregation of S at grain bound-
aries and interdendritic regions and the formation of iron-sulfides can be even
more detrimental for properties. Being softer than the steel matrix, MnS can
reduce the strength when present at a high fraction. However, occasionally fine
MnS particles can offer grain refinement by (i) pinning the grain boundaries,
and (ii) VN precipitation on MnS can provide nucleation sites for intergranular
ferrite within austenite grains. Hence, S showed a mixed response on the YS
and a negative influence on other properties.

Nickel: Being a solid solution strengthener Ni is expected to improve the
strength of steel. Although strengthening can negatively affect ductility and
toughness, Ni is particularly beneficial in improving the low-temperature im-
pact toughness, preventing ductile-to-brittle transition in ferritic steels. Be-
ing an austenite stabilizer, Ni can also enhance impact toughness through the
TRIP effect of retained austenite. Ni may not be as effective in improving
room-temperature toughness as low-temperature toughness. Besides being an
expensive alloying element, Ni is typically added in special grades of heavily
alloyed high-strength steels, which inherently have a low ductility and impact
toughness (to restore these properties). Therefore, Ni showed a negative re-
sponse to ductility and a mixed response to impact toughness.

Aluminium: Al is used for deoxidation and grain refinement in steel by the
formation of Al2O3 and AlN, respectively. Al has a weak effect on hardenability,
and it stabilizes the soft and ductile ferrite phase. The ability of Al to scavenge N
from solution reduces the strengthening effect of N, which can improve ductility,
toughness, and formability. The steel also becomes resistant to strain-ageing
and the associated yield point phenomenon as desired in formable automotive
grades of steel. AlN particles restrict grain growth and help achieve a fine
grain size, which is beneficial for impact toughness. In bainitic steels, Al also
retards carbide precipitation (iron-carbides are detrimental to toughness) which
stabilizes retained austenite and contributes TRIP effect. Hence, Al showed
a negative effect on strength but a positive response on ductility and impact
toughness.

Nitrogen: Although N is a strong solid solution strengthener, it significantly
hampers ductility, toughness, and formability when in solution. Therefore, N in
solution is minimized by the scavenging action of strong nitride forming elements
such as Ti, Al, Nb and V. The grain refinement of microalloy nitride and carbo-
nitride precipitates, along with the N free matrix, can improve ductility and
toughness. Therefore, N does not show any trend on strength, mixed response
on ductility, and positive influence on impact toughness.

Boron: B is used at a controlled quantity to increase the hardenability of
special grades of steels having bainite or tempered martensite microstructures.
In this study, B does not show a clear trend with any of the properties possibly
due to the following reasons. (i) B in solution at only tens of ppm can be effective
for enhancing hardenability. However, higher addition of B can be detrimental
due to the formation of hard and brittle particles like BN, metal-borides and
boro-sulfides. (ii) To prevent BN formation, B is shielded by the addition of
stronger nitride formers such as Ti, Al and Zr, and those elements also influence

32

the steel’s properties. (iii) Finally, the data available on B containing steels is
limited.

Chromium: Cr enhances hardenability, refines interlamellar spacing of
pearlite, and provides solid solution strengthening and precipitation strength-
ening. Hence, Cr has a positive effect on strength. Coarse Cr23C6 precipitates,
however, can impose a negative effect on ductility and toughness.

Cerium: Being a rare earth metal, Ce is occasionally added in steels to
control the shape and size of sulfide and oxide inclusions. Ce in solution and
its grain boundary segregation may impart some strength apart from inclu-
sion refinement, which can benefit toughness. However, Ce is usually added in
high-strength steels with low ductility and toughness. Ce addition needs to be
carefully controlled and a high Ce level (> 0.03 wt.%) can be detrimental. Data
availability on Ce containing steels is also limited. Hence, Ce shows a positive
effect on strength but no clear trend on the other properties.

Copper: Cu has low solubility in ferritic steels. It precipitates out as
metastable BCC which is coherent with the matrix and then transforms to inco-
herent FCC, increasing strength. The negative effect of Cu on steels is difficult
to explain apart from the fact that being softer than the matrix, Cu precip-
itates may soften the steel at the onset of plastic deformation when present
at a high fraction. High addition of Cu can result in its segregation at grain
boundaries and surface regions and can hamper the ductility, particularly at
high temperatures, causing hot cracking. FCC-Cu precipitates can restrict the
ductile-to-brittle transition at the low test temperature. However, the present
study could not detect its beneficial effect on impact toughness.

Zirconium: Being a rare and expensive alloying element, Zr is occasionally
used in steels. Its affinity for O, S, and N is the primary reason behind Zr
addition: controlling the non-metallic inclusions and scavenging N from solution
(say, to protect B). Zr’s oxides, sulfides, and nitrides can prevent grain growth at
high temperatures. However, the beneficial effects of Zr could not be identified
here possibly due to limited data availability of Zr steels.

Some of the elements mentioned in Table 2 are added to steels to improve
certain properties beyond the present study’s scope. For example, Cr, N and
Cu are beneficial for corrosion resistance.

33

	Pioneering Techniques to Tackle Challenges of Interactive Multiobjective Optimization
	Abstract
	Tiivistelmä (Abstract in Finnish)
	Acknowledgements
	List of Figures
	Contents
	List of Included Articles
	Introduction
	Background Concepts
	Multiobjective optimization problems
	Interactive optimization methods and scalarization Functions
	Multiobjective evolutionary algorithms
	Visualizations to support DMs
	Properties of microalloyed steels

	Automatic Selection of Surrogate Modelling Techniques
	The SMTS algorithm
	Discussion about the SMTS Algorithm

	Interactive Optimization in the Preference Incorporated Space
	Interactive Optimization using Preference Incorporated Space (IOPIS) algorithm
	Discussion about the PIS and IOPIS

	Visually Appealing and Informative Visualizations for Decision Makers
	Solution clustering and correlated objectives visualization via bands (SCORE Bands)
	Discussion about SCORE Bands

	Handling costly function evaluations with interactive multiobjective optimization
	The O-NAUTILUS method
	Discussion about the O-NAUTILUS method

	The DESDEO Framework: An open-source collection of interactive multiobjective optimization tools
	Design of the Framework
	Discussion about the DESDEO Framework

	Solving a real-life data-driven multiobjective optimization problem
	Overview
	First meeting with the DMs
	Second meeting with the DMs
	Third meeting with the DMs
	Fourth meeting with the DMs
	Discussion

	Conclusions and Author's Contributions
	Conclusions and Future Research
	Author's Contributions
	Final Thoughts

	Yhteenveto (Summary in Finnish)
	References
	ORIGINAL PAPERS
	AUTOMATIC SURROGATE MODELLING TECHNIQUES ELECTION BASED ON FEATURES OF OPTIMIZATION PROBLEMS
	A NEW PARADIGM IN INTERACTIVE EVOLUTIONARY MULTIOBJECTIVE OPTIMIZATION
	SCORE BAND VISUALIZATIONS: SUPPORTING DECISION MAKERS IN COMPARING HIGH-DIMENSIONAL OBJECTIVE VECTORS IN MULTIOBJECTIVE OPTIMIZATION
	OPTIMISTIC NAUTILUS NAVIGATOR FOR MULTIOBJECTIVE OPTIMIZATION WITH COSTLY FUNCTION EVALUATIONS
	DESDEO: THE MODULAR AND OPEN SOURCE FRAMEWORK FOR INTERACTIVE MULTIOBJECTIVE OPTIMIZATION
	INTERACTIVE DATA-DRIVEN MULTIOBJECTIVE OPTIMIZATION OF METALLURGICAL PROPERTIES OF MICROALLOYED STEELS USING DESDEO

