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ABSTRACT 

Kalyakin, Igor 
Extraction of Mismatch Negativity from Electroencephalography Data 
Jyväskylä: University of Jyväskylä, 2010, 47 p. (+included articles) 
Jyväskylä Studies in Computing, 
ISBN 978-951-39-3850-5 
ISSN 1456-5390; 110 
Finnish Summary 
Diss. 
 
In this thesis, we consider three procedures to extract the mismatch negativity, 
a component of event-related potential, from electroencephalography data: 
optimal digital filtering, wavelet decomposition, and independent component 
analysis decomposition procedures. The procedures are compared on two 
different datasets, stressing their advantages over the conventional difference 
wave procedure. The main results of the thesis support the use of the wavelet 
decomposition and independent component analysis decomposition 
procedures to reveal the experimental effects which are expected from the 
literature, but not distinguishable through the traditional procedure, and show 
that these developed procedures may allow us to reduce the duration of an 
experimental session. Also, we discuss some practical issues related to the use 
of independent component analysis-based procedures in the extraction of the 
mismatch negativity. Finally, we consider a method for spatial denoising in 
multi-channel electroencephalography data, which can be used as a 
preprocessing step prior to the extraction of the mismatch negativity or any 
event-related potential as well. 
 
 
Keywords: electroencephalography, event-related potential, mismatch 

negativity, difference wave, optimal digital filtering, wavelet 
decomposition, independent component analysis, signal-to-noise 
ratio, support-to-absence ratio 
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1 INTRODUCTION 

It is evident that, during the last four decades, a new branch of science, 
cognitive neurophysiology, has been developing rapidly. This branch of science 
attempts to answer one of the most basic questions of humanity — the 
underlying neuronal mechanisms of human mental activity — more concretely 
and directly than before. The noninvasive study of human brain activity under 
normal conditions has a relatively limited arsenal of available methods and 
techniques. So far, the most widely used method is electroencephalography 
(EEG) — the measurement of the electrical activity generated in the brain with 
electrodes attached to the scalp. The EEG activity can be registered under 
spontaneous passive conditions or as responses to some external stimuli. The 
latter responses are often called event-related potentials (ERPs) to emphasize 
that they reflect the electrical activity in the brain associated with information 
processing. 

So far, a large amount of articles devoted to the study of different ERPs 
has been published. Among them, the mismatch negativity (MMN) studies of 
the central auditory function have recently become very popular. There are 
several reasons for this wide interest in one of the smallest component of ERP. 
The MMN has created an unparalleled tunnel to the central auditory processing 
and underlying neural mechanisms. This tunnel provides the way to achieve a 
totally new level of understanding of the brain processes, which underlie 
central auditory perception, and the different types of auditory memory. At the 
same time, it allows for a better understanding of the attentional processes 
which control the access of auditory sensory input to conscious perception and 
other higher forms of memory. 

Despite the aforementioned attractive perspectives in favor of the use of 
MMN, several pitfalls may emerge on the stage of signal processing of the 
collected data. The main problem comes from the fact that the MMN deflection 
is a relatively small signal compared to ongoing spontaneous EEG activity and 
noise, which are always present during a recording session. Usually, for more 
or less reliable evaluation of the basic quantitative characteristics of the MMN, 
hundreds of trials need to be averaged to allow an MMN peak to emerge. 
Moreover, in most cases, the so-called difference wave (DW) procedure needs 
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to be applied to further clean up the MMN peak from irrelevant ERPs. Due to 
the nature of this procedure, where two different time intervals (sweeps) of a 
trial are subtracted from each other, the resulting MMN traces may contain up 
to two times more noise than before the subtraction. In practice, this is often the 
case as noise in these time intervals is only partly uncorrelated and, thus, is an 
additive quantity. The DW procedure is simple and, thus, widely used. 
However, due to the aforementioned noise increase in this procedure, new 
signal processing procedures need to be developed to avoid necessity of the 
subtraction. 

In this thesis, we propose three procedures for the extraction of the MMN: 
optimal digital filtering (ODF), wavelet decomposition (WLD; both are single-
channel methods), and independent component analysis (ICA) decomposition 
(multi-channel method) procedures. These procedures are considered to be 
alternative ways to extract the MMN from EEG data, supplementing the results 
obtained with the conventional DW procedure and making them more precise. 
It should be noted that the studies with application of the ICA-based 
procedures to extract the MMN are quite infrequent in the literature in contrast 
to the relatively large number of studies devoted to their application to extract 
other ERPs, thus being candidates for increased attention of the research 
community. Moreover, we briefly consider some practical issues of application 
of the ICA-based procedures to the MMN data when the so-called abnormal 
polarity reversal may arise as the result of the local optimization in a stochastic 
ICA algorithm. Also, we compare the ICA decomposition procedure with the 
non-negative matrix factorization (NMF), assuming weaker requirements of the 
latter to the MMN data under study, which may have a positive impact on the 
performance of the separation of the MMN from other irrelevant ERPs. Finally, 
we consider an ERP denoising procedure which uses the spatial information 
from multi-channel EEG data and, thus, may provide better results than simple 
single-channel averaging methods. Such denoising procedures may be used in 
particular as the preprocessing step prior to the extraction of the MMN or any 
other ERP as well. 

The thesis is divided into two parts. The first part is the summary of the 
collection of the original papers which are then presented in the second part. 
The included articles are listed before this introductory chapter. The rest of the 
summary is organized as follows: Chapter 2 presents the basic topics of 
neurophysiology, which are necessary for the understanding of the results of 
the thesis; in Chapter 3, we consider the traditional and recently proposed 
procedures for the extraction of the MMN from EEG data; Chapter 4 contains 
summaries of the articles included in this thesis; and finally, in Chapter 5, the 
main results of the thesis are summarized, limitations of the research and 
further work are discussed. 
 



 

 

2 OUTLINE OF NEUROPHYSIOLOGY: ELECTRICAL 
BRAIN SIGNALS 

In this chapter, we present some basic topics of neurophysiology, which are 
necessary to understand the results of the thesis. In this context, the concepts 
exposed are not intended to provide a complete background on 
neurophysiology. On the contrary, here we only focus on describing EEG, and 
its derivative, ERPs. Finally, we introduce MMN, its technical characteristics, 
and why this small electrical brain response is important in clinical 
neurophysiology. Despite the relatively wide application of these topics, some 
fundamental issues are still controversial and, thus, need to be shortly 
described. 

 
 

2.1 Electroencephalography 

Originally, EEG was developed as a method for investigating mental processes. 
Soon, it started to be used in clinical applications, mostly in the study of 
epilepsy. The EEG recordings became even more popular with the introduction 
of ERPs (see Section 2.2) where it correlates with sensory and cognitive brain 
processing. 

Research in EEG can be traced back to 1875, to the work of Richard Caton 
who first recorded electrical brain activity in exposed brains of rabbits and 
monkeys. In 1929, Hans Berger (Berger, 1929) discovered the so-called alpha 
rhythm in the ongoing EEG activity in man and this was considered as the first 
measurement of electrical brain activity in humans. Visual patterns, which are 
available through recording of the EEG signals, were correlated with various 
states, functions, dysfunctions, and diseases of the brain and central nervous 
system. Thus, it became one of the most important tools in neurophysiology to 
study these functions and diagnose diseases. 

The EEG can roughly be defined as the recording of the mean electrical 
activity of the brain in different sites of the head. More specifically, it is the sum 
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of the extracellular current flows of a synchronously active group of nerve cells. 
In turn, the electrical activity elicited by single nerve cells stems from the 
electrochemical processes underlying the generation of “action potentials”, 
essential for information transfer between nerve cells. These processes can have 
excitatory or inhibitory nature, respectively causing a reduction or increase of 
the membrane potential. The summed “action potentials” are the primary 
origins for the electrical potentials recorded from the scalp (Başar, 1980).  

The EEG recording is obtained by placing electrodes on the scalp. A 
conductive gel or paste is normally used to improve the contact between these 
electrodes and the scalp. It is usually done after preparing the scalp area under 
electrodes by light abrasion, which removes dead skin cells, in order to reduce 
impedance. A recording system for the EEG usually consists of electrodes, 
amplifiers, filters, and a recording unit. The most widely used placement of 
electrodes is the so-called 10–20 international system (Reilly, 1993). It consists of 
up to 20 electrodes which are uniformly distributed along the head. 
Measurements of the electrical brain potentials can be recorded between pairs 
of active electrodes (bipolar recordings) or with respect to a supposed passive 
electrode called reference (monopolar recordings). Different electrode 
placements may be used as the reference, e.g., the tip of the nose or two 
earlobes. High-density (up to 256 electrodes) systems of electrode placement are 
also used. 

Conventionally, EEG activity presented in spontaneous conditions can be 
characterized by the brain oscillations or rhythms. Brain oscillations are divided 
into frequency bands that are related with different brain states, functions, or 
pathologies, i.e., alpha (7.5–l2.5 Hz), beta (12.5–30 Hz), theta (3.5–7.5 Hz), delta 
(0.5–3.5 Hz), and gamma (30–60 Hz) rhythms (Niedermeyer, 1993; Steriade, 
1993). Their contribution to the overall brain activity is changed in different 
situations, particularly with the level of vigilance, e.g., alertness, relaxation, 
sleep, etc. 

 
 

2.2 Event-related potential 

Spontaneous EEG activity can be altered by some stimulation. It can be internal 
(omission of an expected stimulus in a sequence of repeated stimuli) or external 
(sound tone, light flash, etc.) stimulation. The alteration of ongoing EEG activity 
caused by this stimulation is called ERP, and, in the case of external stimuli, also 
called evoked potential (EP). Thus, the EPs are a class of ERPs, which require 
the physical presence of a stimulus. The EPs are originated at the brainstem 
level and related to the execution of basic functions of perception, e.g., forming 
an internal representation of a stimulus and passing the retrieved information 
to the cortex centers involved in the execution of cognitive functions. 

More technically, the ERPs are small voltage fluctuations (peaks) resulting 
from neural activity evoked by a stimulus in the EEG activity. The amplitude of 
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the ERP peaks is usually under 5 µV and rarely exceeding 15 µV. This makes 
the ERPs much smaller than the spontaneous EEG activity which has a typical 
amplitude of 20–200 µV. Owing to this fact, it is a commonly applied practice to 
perform averaging of as many responses as available during the recording 
session to visualize the ERP of interest. The rationale behind the averaging is 
that the ERPs are time-locked to the stimulation event and have a similar 
pattern of response throughout repetitive homogeneous stimulation and that 
noise has a zero mean with symmetrical marginal distributions (Başar, 1980; 
Harmony, 1984). The averaging tends to decrease the influence of random EEG 
activity (i.e., spontaneous or non-event related fluctuations) while maintaining 
the consistent event related activity. Due to its simplicity and high efficiency, 
this procedure is by far the fundamental approach in the study of the ERPs. 

There are mainly three modalities of stimulation (Regan, 1989): auditory 
(e.g., the stimuli are tones, clicks, etc.), visual (e.g., the stimuli are light flash, 
reversal of a pattern, etc.), and somatosensory (e.g., the stimuli are elicited by 
electrical stimulation of peripheral nerves, pain, senses, etc.). 

By convention the ERP waveforms are divided into several parts or 
components which are the positive and negative-going fluctuations (Cacioppo 
et al., 2000). The components that occur prior to 100 ms after the stimulation 
onset are thought to reflect the information processing in the early sensory 
pathway. Cognitive scientists are mostly interested in the so-called long-latency 
ERPs which include P1, P2, N1, N2, and P3 (or P300) components. The long-
latency ERPs are associated with cognitive processes, e.g., execution of memory, 
language, changes in the mental state, attention tasks, etc. These components 
are named by their polarity (P for positive and N for negative) and either their 
ordinal position after stimulus onset (P1 is the first positive peak), or their 
latency after stimulus onset (P300 is a positive-going component peaking at 
300–400 ms). In general, the long-latency components which occur prior to 
200 ms are thought to reflect late sensory and early perceptual processes while 
those after 250 ms or later are thought to reflect higher-level cognitive processes 
(e.g., memory, language, etc.). The ERP components can also be classified to 
either exogenous or endogenous components. The exogenous responses (mostly 
those prior to 200 ms) are elicited by sources clearly outside the processing 
system and reflect the physical features of the stimuli while the endogenous 
responses (mostly those after 200 ms) are internally paced (Näätänen, 1992). 

 
 

2.3 Mismatch negativity 

The MMN is a component of ERP. It occurs under any modality of stimulation 
described in the previous section, but has most frequently been studied for 
audition and vision. The oddball paradigm is most often used in the 
experiments to record the MMN. For example, in the auditory modality of 
stimulation, it consists in presentation of an infrequent and unpredictable 
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irregularity (target or deviant stimulus) within a relatively long sequence of 
repetitive sounds (non-target or standard stimuli) (Näätänen, 1992; Näätänen et 
al., 1978). Such an irregularity can consist in a deviation from the standard 
stimuli in a first-order feature such as frequency, intensity, location, or duration 
of a sine or harmonic tone. However, it can also consist in a deviation from the 
standard stimuli in higher-order features, for example, a tone that differs from 
the preceding series of stimuli in the conjunction of two of its features (Gomes 
et al., 1997). The MMN is elicited regardless of whether the subject is paying 
attention to the auditory stimuli. The MMN peaks at 100–200 ms after deviation 
onset with the amplitude of peaks being up to –3 µV (rarely, up to –10 µV). The 
main intra-cerebral sources of the MMN are located in the auditory cortices of 
the temporal lobe (Näätänen, 1992). It has the fronto-centrally predominant 
scalp distribution and, when the nose reference is used, it reverses the polarity 
at leads positioned below the Sylvian fissure (Deacon et al., 2000). The polarity 
reversal may be absent with deviations in higher-order features (Gomes et al., 
1997), however these types of stimulation are uncommonly used. Various kinds 
of physical changes in the auditory stimuli (intensity, duration, frequency, rise 
time, sound location, etc.) elicit the MMN (for a review, see Näätänen, 1992). 
Additionally, experimental variables, such as the probability of the deviant 
stimuli, magnitude of the deviation, and length of stimulus onset asynchrony 
(SOA), affect the basic characteristics of the MMN (Schröger, 1998; Sinkkonen & 
Tervaniemi, 2000). The SOA is usually defined as the time interval between the 
onset of two successive stimuli and, in extreme case, can be equal to the 
duration of a stimulus, e.g., an uninterrupted sound paradigm with no silence 
between the stimuli (Pihko et al., 1995; Winkler & Schröger, 1995). 

Let us emphasize the main quantitative measures which can be used to 
characterize the MMN deflection from the signal processing point of view. The 
MMN can be quantified mainly through its peak amplitude and latency 
(Schröger, 1998; Sinkkonen & Tervaniemi, 2000). The polarity of the MMN 
corresponds to the sign of voltage of the MMN peak and is often incorporated 
to the peak amplitude measure. Calculation of signal-to-noise ratio (SNR) and 
support-to-absence ratio (SAR) is also useful, since these measures can serve as 
indicators of quality of the MMN data and success of the application of the 
procedures under study. The peak amplitude of the MMN is usually defined as 
a single data point most distant from the baseline value. The latency of the 
MMN is defined as a time interval corresponding to the MMN peak amplitude 
and calculated starting from the onset of the deviant stimulus. The single trial 
SNR of any ERP can be calculated using several procedures (Elberling & Don, 
1984; Furst & Blau, 1991; Möcks et al., 1988; Rohde et al., 2002; Schimmel et al., 
1974; Özdamar & Delgado, 1996). The most widely used procedure was 
originally reported in the study by Möcks et al. (1988). In short, the signal 
power estimate is the variance of the averaged trace of all available single trials 
of one type of deviant stimuli. The noise power estimate is the mean value of 
the variances of all available single trials minus the signal power estimate. The 
division of these two estimates results in the single trial SNR estimate based on 
these available single trials. The estimation of the SNR becomes more accurate 



 

 

15 

with increasing the number of single trials involved in this estimation. Finally, 
the SAR of any ERP, recently proposed quality measure of ERP data (Cong et 
al., 2008a, b), is the quantity which reflects the relations between different time-
frequency parts of a signal under study. In short, the time-frequency 
representation of an ERP needs to be calculated, providing a data matrix with 
the dimensions of time by frequency. In this matrix, the frequency range 
corresponds to the spectrum feature of the ERP of interest. In the time domain, 
the time range of a trace where the ERP is present is named as its support and 
residuals are named as its absence (Harmony, 1984). For the case of the MMN, 
the SAR reflects the relative power of the MMN time-frame to other parts of the 
recording within a trial through the time and frequency information 
simultaneously. This feature is considered to be the advantage of the SAR 
compared to the single trial SNR measure as the latter only uses information 
from the time domain. Since the support and absence are analyzed within the 
same frequency band, this parameter is particularly useful in reflecting the 
separation performance of overlapped ERPs. When the overlapped ERPs are 
removed, the support signal should become more evident and, thus, the SAR is 
improved. The larger the SAR is, the better the support signal is obtained. 
However, the main disadvantage of the SAR is the necessity to know a priori 
the frequency content of the ERP of interest, which often is not available. 

One important and well-known characteristic of the MMN, supported by 
a substantial number of publications, is that the more deviant stimulus elicits a 
more pronounced MMN whose peak amplitude is larger and whose latency is 
shorter than for the less deviant stimulus (for a comprehensive review, see 
Näätänen, 1992). However, the decrease of the MMN latency is considered to be 
a more sensitive correlate of the increase of the magnitude of deviation than the 
increase of the MMN peak amplitude. This was recently confirmed in the study 
by Horváth et al. (2008) who showed that a larger magnitude of deviation did 
not necessarily result in a larger MMN in the paradigm with minimized 
confound of other ERPs, but these did result in an earlier MMN. 

At present, the MMN provides the best known objective measure of the 
accuracy of the central auditory function in the human brain associated with the 
detection of changes in the auditory environment (Näätänen et al., 2007). There 
is no comparable measure in cognitive neuroscience, not even among those 
provided by the most modern brain-imaging technologies. The MMN does not 
require attention and is task independent. This makes it appropriate for testing 
the differences, e.g., between clinical populations. It can also be used in the 
assessment of individuals such as infants who are unable to respond in a test 
situation by speaking. It can be measured in sleep and coma. Moreover, the 
MMN allows us to study the accuracy of auditory discrimination independently 
for any acoustic feature (e.g., frequency, intensity) and for learned categories 
(e.g., language phonemes). Also, with the MMN, there is a possibility to 
estimate the duration of sensory memory. This can be done by measuring the 
decay of the MMN amplitude as a function of the interval between two 
successive stimuli. The measurement of the MMN is inexpensive and easy. 
Ontologically, it is the first “cognitive” ERP component with relatively well 
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know generators and their functional significances. Due to its several 
advantages, the MMN has numerous existing and potential applications, both 
clinical and other. The most important of them are listed bellow (Näätänen & 
Escera, 2000). 

� Pediatrics and Neuropediatrics: newborns, preterm infants. 
� Developmental disorders: dyslexia, dysphasia, autism. 
� Speech and language: aphasia, early language development. 
� Audiology: cochlear implants. 
� Psychiatry: schizophrenia, depression, somatization, alcoholism. 
� Neurology: aging, Alzheimer’s and Parkinson’s diseases, coma 

(monitoring and prognosis), frontal-lobe damage, thalamic infarctions, 
neglect and auditory extinction. 

� Others: anesthesia, drug effects (alcohol, antihistamine, cholecystokinin, 
and so on), learning (native language, foreign language), musicality, noise 
effect, and hypnosis. 
The fast detection of the MMN has significant importance in the training 

of auditory/speech perceptual ability in clinical and other populations 
(Lyytinen et al., 2005). Auditory discrimination, which is evidenced by the 
MMN, can be assessed by computation and evaluation of the simple peak 
amplitude and latency measurements of this ERP. The human brain can be 
trained on the auditory discrimination following an online procedure. This 
procedure may consist in changing the type of stimulation (e.g., reducing the 
magnitude of deviation) and assessing if the auditory discrimination is 
improved with training. The human brain trained under these conditions is 
theoretically able to discriminate very small changes between the auditory 
stimuli even during sleep. This has a high psychophysiological relevance for 
different brain studies. However, until the present day, there is a limited 
amount of computational ways to follow perceptual learning on the basis of 
ERPs (in particular, MMN) responding to changes in the auditory environment. 
Since the MMN responses are averaged over a number of trials in order to 
obtain a reliable measure of the peak amplitude and latency of these responses 
and then further inefficiently processed (the DW procedure; see Section 3.1), it 
may be too slow for the online assessment of learning. In this context, the online 
computation and evaluation of the basic parameters of the MMN is a highly 
essential step forward to be able to train the human brain in such a manner. 
However, due to a very low amplitude of the MMN peaks compared to 
spontaneous EEG activity, the first step towards such online assessment 
procedure requires the development of the reliable procedures which will 
evaluate the basic quantitative characteristics of the MMN in a fewer number of 
trials than the traditional techniques. 
 



 

 

3 METHODS FOR EXTRACTION OF MISMATCH 
NEGATIVITY 

In this chapter, we present the traditional and recently proposed procedures for 
the extraction of the MMN from EEG data: DW, ODF, WLD, and ICA 
decomposition procedures. 

 
 

3.1 Difference wave 

Due to the fact that the physical characteristics of standard and deviant stimuli 
are quite similar to each other, both of them may elicit some identical 
exogenous ERP components that may, similarly to the MMN, be sensitive to the 
irregularities in repetitive auditory stimulation (e.g., P1, N1; Näätänen, 1992). 
However, only the deviant stimulus elicits the MMN. The conventional 
approach to remove the common exogenous processing is to apply the DW 
procedure (Schröger, 1998). It consists in the subtraction of the ERPs elicited by 
the standard stimulus (standard sweep) from that elicited by the deviant 
stimulus (deviant sweep). This procedure only leaves a clean MMN if these 
common ERPs are indeed identical. It means that these ERPs do not depend on 
the difference between the standards and deviant stimuli. However, in practice, 
this is not always the case, leading to an under- or overestimation of the MMN 
(Horváth et al., 2008; Jacobsen & Schröger, 2003). Additionally, the DW 
procedure reduces the SNR because noise in the standard sweep is added to 
that in the deviant sweep, that is, in practice, often the case, since noise in these 
sweeps is only partly uncorrelated. Thus, if a paradigm eliciting practically flat 
responses to the standard stimuli is available, the responses to the deviant 
stimuli can be used without application of the DW procedure (Sinkkonen & 
Tervaniemi, 2000). In fact, mainly N1 component, a negative deflection peaking 
at 50–150 ms after stimulus onset and, thus, partly overlapping the time 
window of the MMN, contributes to common exogenous processing (Näätänen, 
1992). The N1 consists of at least three components, two of which are sensitive 
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to the SOA, becoming smaller with shortening the SOA (for a review of 
component structure of the N1, see Näätänen & Picton, 1987). 

Due to its simplicity and high efficiency, the DW procedure is so far the 
standard frame of reference for quantification of the MMN. However, as it 
reduces the SNR in the resulting MMN traces, alternative procedures which 
will avoid the necessity of the subtraction should be developed and paradigms 
eliciting nearly flat responses to the standard stimuli should preferably be used. 

 
 

3.2 Time-frequency methods 

3.2.1 Optimal digital filtering 
 
Any time signal, including EEG recordings, can be represented in different 
ways depending on the interest in visualizing certain characteristics. Among 
these, the frequency representation is the most powerful and conventional one. 
It allows for the visualization of the periodicities of EEG signals, which often 
helps to understand the underlying physical phenomena. That is the main 
advantage over the time representation. Frequency analysis was developed by 
Jean Baptiste Fourier (1768–1830). The Fourier transform is computationally 
very attractive as it can be calculated by using an efficient algorithm called fast 
Fourier transform (FFT; Cooley & Tukey, 1965; Yuen & Fraser, 1979). 

Regardless of the experimental design employed to elicit the MMN, 
increasing the SNR of recordings is necessary, especially if the MMN is 
considered to be used for the assessment of individuals. The noise level can be 
reduced by digital filtering which can be implemented, for example, using the 
FFT algorithm. The rationale behind linear filtering is that certain frequencies of 
EEG data completely consist of meaningless variations and can thus be 
discarded (Sinkkonen & Tervaniemi, 2000). This applies to both very low 
frequencies, which may slowly shift the baseline (reference voltage in EEG 
recordings), and very high frequencies, which, if present at longer latencies, 
may likely be independent of the stimulus. 

The frequency range of the MMN is a question still under speculation in 
the literature (Picton et al., 2000; Sabri & Campbell, 2002; Sinkkonen & 
Tervaniemi, 2000). An analog band-pass of 0.1–30 Hz is often used during 
recording of the MMN. However, these are probably not the optimal filter 
settings with respect to the SNR, since the MMN has most of its energy in the 2–
5 Hz frequency range (Picton et al., 2000). Sinkkonen and Tervaniemi (2000) 
noted that a band-pass filter in the frequency range of 1–20 Hz is, in most cases, 
acceptable for visualization of the MMN, but this is not optimal to perform 
quantitative amplitude and latency analyses of the MMN. In this context, they 
proposed to apply the optimized low-pass filter (e.g., a cosine slope of 5–10 Hz 
width centered at 10 Hz) and then measure the amplitude and latency of the 
MMN peak. The numerical values of the MMN amplitude obtained after such a 
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filtering do not behave on the scale of the original responses as this filtering 
smoothes the shape of the MMN peak. Using these values for comparisons 
between experimental conditions, groups, or individuals is preferable due to 
the increased SNR (Sinkkonen & Tervaniemi, 2000). In fact, this approach may 
be preferred in the treatment of data from paradigms that are unlikely to 
produce other significant activities at the nearby latencies. This is so, because 
such an optimized filter spans a wider time interval than the response itself to 
account for the temporal correlation of data. However, considerations about the 
high-pass filter settings are limited in the literature. The MMN can significantly 
be distorted by slow ERPs and low-frequency background EEG activity, which 
should be eliminated by a suitable high-pass filter. 

The aforementioned optimized filter, but with some variations in choice of 
the cut-off frequencies, was used in several studies. For example, Tervaniemi et 
al. (1999) used the band-pass digital filter of 1–30 Hz for data illustration and of 
2–10 Hz (24 dB/octave in both) for the subsequent amplitude and latency 
analyses of the MMN; Sabri and Campbell (2002) proposed to use the band-pass 
digital filter with the cut-offs not narrower than 3–12 Hz. These studies use 
different experimental designs to elicit the MMN. This fact may explain the 
differences in the settings of the band-pass digital filter. 

It should be noted that the main purpose of any filter applied to MMN 
data is to reduce background noise, reject other irrelevant ERP activities, and, in 
the process, not to distort the actual MMN. However, distinguishing between 
the signal and unwanted activities is not always easy, since this requires some 
knowledge about their frequency contents. The frequency content of the MMN 
may be overlapped with that of the unwanted activities and, thus, the settings 
for the optimized digital filter should be adjusted in an experimental paradigm 
under study. 

 

3.2.2 Wavelet decomposition 
 
The Fourier transform consists in expressing the signal of interest as a linear 
function of complex sinusoids of different frequencies. However, it gives no 
information about time and requires stationarity of the signal. By “windowing” 
the complex sinusoidal functions of the Fourier transform, a time evolution of 
the frequencies can be obtained when the windows are slid throughout the 
signal. This procedure is called Gabor transform. The Gabor transform gives an 
optimal time-frequency representation for the chosen size of the window. 
However, one critical limitation appears when windowing the data, due to the 
uncertainty principle (Chui, 1992). If the window is too narrow, the frequency 
resolution will be poor, and if the window is too wide, the time localization will 
not be so precise. EEG data, which may involve slow activities, will require 
wide windows and, on the other hand, for EEG data with fast transients (high 
frequency fluctuations) a narrow window will be more suitable. Thus, due to its 
fixed window size, the Gabor transform is not suitable for the analysis of EEG 
signals involving different ranges of frequencies. 
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Grossmann and Morlet (1984) introduced wavelet transform in order to 
overcome this problem. The main advantage of the wavelet transform is that it 
provides a varying window size, being wide for the slow frequencies and 
narrow for the fast frequencies. In turn, it leads to an optimal time-frequency 
resolution in all frequency ranges (Chui, 1992; Mallat, 1989). Furthermore, 
owing to the fact that windows are adapted to the transients of each scale, 
wavelets do not impose stationarity of the signal. Due to this advantage, a 
band-pass digital filter based on the wavelet transform may provide better 
results compared to that based on the Fourier transform. The latter removes the 
frequency content of a certain frequency range. Its output is the reconstruction 
based on the whole period of the original data within a certain frequency band. 
As a result, it cannot separate the ERPs overlapped in the frequency domain 
(see above), and the filter coefficients do not reflect any particular information 
of the ERPs in the time domain. The MMN is time-locked to the deviant stimuli 
and should appear at a certain time interval and certain frequency band 
according to the experimental paradigm. Consequently, to separate the MMN 
from the overlapped ERPs in the time and frequency domains simultaneously, 
it is necessary to somehow exploit the time and frequency information of the 
MMN. This can be achieved by using the WLD (Burrus et al., 1998). The core of 
the WLD is to apply the appropriate wavelet (“mother wavelet”) to decompose 
the signal into different levels and then to find the proper levels to reconstruct 
the desired parts of the original signal. This decomposition and reconstruction 
can be implemented using a hierarchical scheme called multiresolution analysis 
(MRA; Chui, 1992; Mallat, 1989). Under this scheme, contracted versions of the 
wavelet function match the high frequency components of the original signal 
and, on the other hand, dilated versions match the low frequency oscillations. 
By projecting the original signal into wavelet functions of different sizes, it is 
possible to obtain the details of the signal on different scale levels. In other 
words, with the MRA, higher temporal resolutions at higher frequencies and 
lower temporal resolutions at lower frequencies can be obtained. The optimal 
mother wavelet to be applied to a certain signal can be chosen based on its 
mathematical properties or just based on visual features that can more or less be 
suitable for the analysis of a certain signal. 

The WLD has already been used in the analysis of EEG signals with 
different wavelets (Adeli et al., 2003; Bartnik et al., 1992; Bertrand et al., 1994; 
Bostanov & Kotchoubey, 2006; Jongsma et al., 2006; Kalyakin et al., 2003; Quian 
& Garcia, 2003; Rossoa et al., 2006; Wilson, 2004; Zhang & Zheng, 1997). Some of 
these studies use the WLD as a preprocessing technique for digital filtering of 
the ERPs of interest and report better results than those obtained with Fourier-
based techniques, especially when applied to non-stationary signals. As in the 
case of Fourier-based digital filtering, the main goal of WLD-based digital 
filtering is to extract the ERPs of interest by eliminating the contribution of 
ongoing EEG activity and other irrelevant ERP components. The WLD-based 
digital filters were implemented in some MMN studies, e.g., for denoising in 
MMN data of adults using a biorthogonal wavelet (Atienza et al., 2005), for the 
decomposition of the MMN of children using Coifman wavelets (Burger et al., 



 

 

21 

2007), etc. These two studies use different types of wavelets and analyze 
different MMN datasets (adults and children). Thus, the MMN patterns differ 
between these two datasets, explaining the use of different mother wavelets. 

 
 

3.3 Source separation methods (ICA) 

In general, the methods for ERP signal processing can be divided into two 
groups. The first group is the single-channel methodologies, such as a digital 
filtering, WLD, etc., and the second group is the multi-channel methodologies, 
for example, principal component analysis (PCA), factor analysis (FA), ICA, etc. 
(Sanei & Chambers, 2007). The multi-channel methods usually require much 
more computations compared to the single-channel methods. Due to this 
requirement, the multi-channel methods are often uneconomical and hardly 
implemented in fast real-time data processing systems. However, they can 
provide better results due to the utilization of spatial information about the 
ERPs of interest among recordings from different electrode locations. 

So far, among these multi-channel methodologies, the most widely used 
approach is ICA (Hyvärinen et al., 2001). The ICA is a particular class of 
methods to solve the relaxed blind source separation (BSS) problem. In general, 
the BSS problem consists of recovering unobserved signals or “sources” from 
several observed mixtures. Usually, the observations are obtained at the output 
of a set of sensors, where each sensor receives a different combination of the 
source signals. The term “blind” means that the source signals are not observed 
and no information is available about the mixture. The lack of prior knowledge 
about the mixture can be compensated by a statistically strong but often 
physically plausible assumption of independence between the source signals 
(the relaxed BSS problem). This independence assumption is used by the ICA. 

The linear BSS model can be expressed formally, where a set of m  linear 
and instantaneous mixtures ( ) ( )txtx m,,1 K  of some n  original unknown source 

signals ( ) ( )tsts n,,1 K  is observed and the goal is to determine the source signals 

given only their mixtures. That is, given the equation: 

 Asx = , (1) 

where ( ) ( )( )T
m txtx ,,1 K=x , [ ]maaA ,,1 K=  is the unknown nm ×  mixing matrix 

and ( ) ( )( )T
n tsts ,,1 K=s . The aim is to estimate a demixing matrix 1−≈ AB  such 

that the mixing process A  can be inverted and the source signals s  recovered: 

 sBAsBxs ≈==)

, (2) 

where s
)

 denotes the estimated source signals. 
In order to solve the relaxed BSS problem, the ICA assumes the source 

signals to be non-Gaussian mutually independent and identically distributed 
(i.i.d.) processes and the mixing matrix A  to be full rank with nm ≥  (i.e., there 
are at least as many mixtures as source signals). Under these assumptions, 
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mixing matrix A  can be estimated up to a row permutation and scale factor. 
The estimated source signals in the case of the ICA are called independent 
components (ICs). Considering the case of the separation of ERPs, if the ICs 
with indexes in some set Ω  are found to be ERPs of interest (e.g., MMN), these 
can easily be projected back to the electrode locations by: 

 ( ) ( )∑
Ω∈

=
j

jjICAsep tt sax
))

. (3) 

This effectively cancels activities irrelevant to MMN (other ERPs, background 
electrical brain and non-brain fluctuations, artifacts, etc.) and considerably 
increases the SNR of the experimental data. 

The source separation methods can be classified into four groups by the a 
priori information or criteria used to find a solution (Cichocki & Amari, 2002): 

ICA-based methods: as mentioned above, the source signals are assumed 
to be i.i.d processes, thus, only statistical (distributional) properties of the 
observable mixtures are used, discarding time autocorrelation within each 
sensor observation of these mixtures. The main differences among algorithms in 
this group consist of the definition of a suitable contrast function measuring 
independence (non-Gaussianity, mutual information, marginal entropies, 
maximum likelihood, cumulants, etc.) and the optimization procedure 
(gradient-based or algebraic methods) used to find the extremum of the contrast 
function. The well-know algorithms from this group are FastICA, Infomax ICA, 
JADE, etc. (for a review, see Hyvärinen et al., 2001). 

Temporal/spectral structure: the criteria of this category exploit the fact 
that, if the source signals have a temporal/spectral structure, then they also 
have non-zero autocorrelations. In this case, the statistically very strong 
assumption of independence between the source signals can be relaxed to the 
assumption of their uncorrelatedness. As a consequence, the separation can be 
achieved by using simple second-order statistics in contrast to the ICA-based 
methods from the first group, which use higher-order statistics. The well-know 
algorithm from this group is TDSEP (Ziehe & Müller, 1998). 

Diversities of the signals: these include different discriminating a priori 
known properties of the signals in temporal, spatial, and frequency domains or 
in combinations of these domains. Thus, the source signals are initially divided 
into several categories by their discriminative properties in the chosen domains. 
The separation algorithm should be aware of this division and automatically 
classifies estimated components into defined groups. For example, Särelä and 
Valpola (2005) proposed an algorithmic framework called denoising source 
separation (DSS) which incorporates some prior knowledge to the source 
separation algorithm by means of denoising of the source signal estimates. 

Non-stationarity: the second-order non-stationarity is usually considered 
within this category. This means that the variance of signals changes in time. 
The source separation problem under the variance non-stationarity assumption 
can be solved, for example, by perfoming second-order decorrelation. 

Additionally, combinations of the methods from these four groups can 
also be used. For example, JADETD algorithm is a straightforward combination 
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of higher-order statistics and temporal information. It performs the BSS by 
simultaneous diagonalization of a set of cumulant matrices and a set of time-
delayed correlation matrices, achieving comparable performance to JADE or 
TDSEP as long as their respective assumptions are fulfilled and clearly 
outperforming them otherwise (Müller et al., 1999). 

In this thesis, we mostly focus on solving the relaxed BSS problem by the 
ICA-based procedures, i.e., the first group of methods (see Sections 4.1.3–4.1.6). 
However, some BSS approaches from the other groups are also considered in 
two our studies (see Sections 4.1.7–4.1.8). We discuss below some problems 
with the ICA-based methods and present the main applications of these 
methods to EEG (ERP) signals. 

An important problem with some ICA algorithms is that they are 
stochastic. This means that the results of one run of the algorithm may differ 
from those of another run. Thus, an ICA algorithm gives a specified number of 
ICs but it may be unclear which of these are stable and can be considered 
relevant. For example, marginal distribution-based ICA algorithms try to find 
the global extremum of a contrast function (e.g., likelihood, mutual information, 
negentropy). The probability of finding this extremum may be very low, 
especially in a high dimensional space (for a discussion, see Hyvärinen et al., 
2001). Himberg et al. (2004) presented an approach to investigate the 
algorithmic and statistical reliability of the ICs obtained after the FastICA 
algorithm (Hyvärinen, 1999). Their method is based on estimating a large 
number of IC candidates by running the FastICA algorithm many times and 
visualizing their clustering in the signal space. This approach was implemented 
in the ICASSO software package (Himberg et al., 2004). Another important 
problem with the ICA, as in any other parameter estimation problem, is 
overfitting (for a review, see Särelä & Vigário, 2003). In general, ICA overfitting 
occurs when the number of parameters to be estimated from the data is too 
large with respect to the number of data samples. In the BSS problem, ICA 
overfitting leads to completely wrong ICs which show poor reliability. In the 
case of marginal distribution-based ICA algorithms, such estimated ICs have a 
single spike or bump and are practically zero elsewhere. These ICs can easily be 
interpreted as non-existent ERPs. 

The ICA is widely used in biomedical applications and, in particular, to 
study EEG (ERP) signals (for a review, see Albera et al., 2010). These 
applications assume that several conditions are verified, at least approximately: 
the existence of statistically independent sources of brain signals, their 
instantaneous linear mixing at the electrode locations, stationarity of the 
mixing, and stationarity of the ICs. It should be noted that the ICA can be seen 
as an extension to the PCA and FA. However, it is considered as a much more 
powerful technique which is capable of estimating the underlying sources when 
these classic methods completely fail (e.g., see Jung et al., 2000b). 

The first line of application of the ICA to EEG signals is the separation of 
artifacts (Jung et al., 2000a, b; Vigário, 1997; Vigário et al., 1998; Zvyagintsev et 
al., 2008). Artifacts mean signals not generated by brain activity, but some other 
external disturbances, such as ocular, muscular activity, cardiac cycle, etc. The 
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ICA, in contrast to the PCA, gives a method for artifact removal where an 
accurate model of the process that generated the artifacts is not needed. This is 
the blind aspect of the method. Moreover, specified observation intervals that 
contain mainly the artifact and additional inputs are also not needed. This is the 
unsupervised aspect of the method. It turns out that the artifacts are quite 
independent from the rest of the signal and, thus, even this requirement of the 
model is reasonably well fulfilled. 

The second line of application of the ICA to EEG signals is the separation 
of the ERP components. Makeig et al. (1996) presented the first application of 
blind decomposition to the biomedical time series. They applied the Infomax 
ICA algorithm to decomposition of the ERP data and reported the use of the 
ICA to monitor alertness. Successive comprehensive studies from this research 
group (Makeig et al., 1999a, b) demonstrated the success of the ICA in the 
separation of some early (e.g., N1–P1 complex) and late positive (e.g., P3 
complex) ERPs during visual spatial attention tasks. Vigário et al. (1999) 
compared the PCA and ICA in the quality of the decomposition of different 
ERPs and showed that the PCA often could not really separate the independent 
signals. In fact, after computing the principal components (PCs) of these signals, 
most of them still represented a mixture of the ERPs, making it difficult for any 
kind of interpretation. In contrast, after computing the ICs, the psychologically 
plausible ERP components could be visible and separated. 

The studies with application of the ICA to the analysis of the MMN are 
relatively infrequent in the literature. By saying the “analysis of the MMN”, we 
consider here the second line of application of the ICA to EEG and ERP signals, 
namely the separation of the ERP components from each other. Indeed, 
cleaning the initial EEG data, which involves the separation of the ERPs from 
ocular, muscular artifacts, etc. and denoising, may (and should) be considered 
as a preprocessing step prior to the separation of the MMN from other 
irrelevant ERPs. In this connection, the publications devoted to cleaning the 
MMN data from artifacts are not present here. 

Marco-Pallarés et al. (2005) designed a two-step approach to uncover the 
spatiotemporal pattern of brain activations underlying the MMN. They 
separated statistically independent sources by preprocessing the data with ICA 
and subsequently identified the cerebral sources of each IC using low-
resolution tomography (LORETA). The authors found six main ICs using 30 
electrode locations that accounted for more than 67% of data variance in the 
time window of the MMN defined as 100–300 ms from the onset of the deviant 
stimuli. They argued correspondence of the sources associated with these ICs to 
those proposed in the classical MMN literature. 

Hill et al. (2005) used support vector machine classification and recursive 
channel elimination on the ICs of the averaged ERPs after application of the 
FastICA algorithm to show that untrained user’s ERP (MMN) data can be 
classified with a high level of accuracy. However, they noted that application of 
the DW procedure reduced the SNR of the MMN, in turn, yielding poorer 
classification accuracy. They argued that an auditory paradigm eliciting the 
MMN could be used as a basis for brain–computer interfaces. 



 

 

4 THESIS CONTRIBUTION 

In this chapter, we provide a brief summary of each article included in the 
thesis and discuss the main results obtained in each corresponding article. Also, 
contribution of the author of the thesis for joint publications is presented. 

 
 

4.1 Summary of the included articles 

4.1.1 “ODF vs. DW on MMN in uninterrupted sound” 
 
Reference: Kalyakin, I., González, N., Joutsensalo, J., Huttunen, T., Kaartinen, J., 
& Lyytinen, H. (2007). Optimal Digital Filtering versus Difference Waves on the 
Mismatch Negativity in an Uninterrupted Sound Paradigm. Developmental 
Neuropsychology, 31(3), 429–452. 
 
In this study, we investigate and illustrate an alternative way of the 
quantification of the MMN, the ODF procedure, and compare it with the 
traditional DW procedure. To begin with, we briefly introduce the MMN, the 
experimental variables, which may affect its elicitation, and the traditional way 
to remove common exogenous ERPs, i.e., the DW procedure. The latter involves 
the subtraction of the ERP responses elicited by the standard auditory stimuli 
(standard sweep) from that elicited by the deviant auditory stimuli (deviant 
sweep). Then, we discuss that, in some experimental paradigms, e.g., in an 
uninterrupted sound paradigm, this subtraction may have a negative impact on 
the quantification of the MMN as the common exogenous ERPs may differ in 
the standard and deviant sweeps. Moreover, the subtraction reduces the single 
trial SNR of the MMN in any paradigm. For our experiments, we use the 
stimulation procedure originally reported in the study by Pihko et al. (1995) and 
slightly modified in the study by Huttunen et al. (2007). Such a stimulation 
procedure was initially designed to obtain a large number of trials (350 for each 
of two types of deviant stimuli) over a short time (15 min). We hypothesize that, 
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in this paradigm, the DW procedure is not the most efficient way to quantify 
the MMN, and we provide several reasons to acknowledge this statement. At 
the same time, we assume that the ODF procedure may behave more efficiently 
in the context of the extraction of the MMN. Similarly to the case of the DW 
procedure, we provide the reasons which underlie our assumptions. We review 
the literature where the frequency range of the MMN is discussed, and digital 
filtering is performed on the data collected under different experimental 
paradigms. We apply these two procedures separately to the same ERP data 
and then compare statistically the peak amplitude, latency, and single trial SNR 
of the MMN to ascertain any advantages of application of the ODF procedure 
over the DW procedure. 

After a brief description of the procedure of the recording and the design 
of the experimental paradigm itself, the ODF procedure is considered in detail. 
It consists of a set of low- and high-pass digital filters which are used to 
determine the digital filter settings for the optimal extraction of the MMN. We 
use FFT-based digital filters with zero padding to increase the resolution in the 
frequency domain. Repeated measures ANOVAs are used in the statistical 
analyses. 

By performing all necessary calculations, analyses, and comparisons, we 
demonstrate that the ODF procedure performs better than the DW procedure in 
the quantitative MMN analyses in the experimental paradigm under study. It 
increases the single trial SNR and has no effect on the temporal characteristics 
of the MMN. An increased single trial SNR means that a smaller number of 
trials can be collected when applying such a filtering to obtain the same single 
trial SNR than when applying the DW procedure (about 250 trials instead of the 
original 350 trials). This shortens the experimental session, which is especially 
relevant when the participants are children. However, the proposed procedure 
reduces the MMN peak amplitude, which may be explained by the biased 
baseline level in the DW procedure and the low frequency drift presented in the 
recordings. Neither the ODF or DW procedures extract the MMN whose 
quantitative characteristics are supported by the literature, i.e., the more 
deviant stimulus should produce an MMN with a larger peak amplitude and 
earlier latency than the less deviant stimulus. The possible explanations are 
given. The frequency range for the optimal extraction of the MMN in the 
paradigm under study is 2–8.5 Hz. This finding is used in the subsequent 
studies where the same dataset is utilized by the author of this thesis and 
colleagues. Finally, we discuss in detail why the DW procedure produces an 
unclean MMN in this particular paradigm. The two main reasons are a partial 
lack of the time synchronization between the responses to the corresponding 
repeated stimuli in the standard and deviant sweeps and the difference at the 
amplitude of these responses. Also, we provide the considerations about the 
digital filters which may be used in the ODF procedure and about the methods 
for the SNR estimation of ERPs. 

It should be noted that this study is the principal study of this thesis as it 
raises the most important research question concerning the MMN extraction 
from EEG data, which have subsequently been tried to be answered in the 
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following studies. In this context, in the following four studies, the research 
question remains the same, namely, to obtain a cleaner MMN with some new 
procedure than with the referenced DW procedure, whose quantitative 
characteristics are supported by the literature. 

 

4.1.2 “WLD on MMN in uninterrupted sound” 
 
Reference: Cong, F., Kalyakin, I., Huttunen-Scott, T., Li, H., Huang, Y., Guttorm, 
T., Ristaniemi, T., & Lyytinen, H. Wavelet Decomposition on Mismatch Negativity 
of Children in Uninterrupted Sound Paradigm. Manuscript submitted for 
publication. 
 
This study introduces another single-trial methodology, the WLD procedure, an 
alternative way of the quantification of the MMN. This procedure is compared 
to the ODF and DW procedures considered in the previous study on the same 
dataset to ascertain whether it contributes with a cleaner MMN than the other 
two procedures. As mentioned in Section 3.2.2, wavelets have a varying 
window size adapted to each frequency range. Thus, wavelet-based filtering of 
some frequency bands does not affect the morphology of the others. This is not 
the case for Fourier-based filters where filtering the high frequencies of EEG 
data affects the morphology of the low frequencies. As a consequence, the 
shape of the ERP spikes may be modified, thus, obscuring important details. In 
general, Fourier-based filtering gives a smoother signal than that obtained by 
using wavelets (MRA) due to the nearly optimal time-frequency resolution of 
wavelet transform for every scale. Thus, wavelet-based filtering leads to a better 
resolution of the ERP responses compared to Fourier-based filtering. These 
considerations explain the choice of the WLD procedure to extract the MMN. 

The core of the WLD procedure is to apply the appropriate wavelet to 
decompose the signal of interest into different levels and then to find the proper 
levels to reconstruct the desired parts of the original signal. Thus, we choose 
several types of wavelets and analyze their frequency responses in order to 
define the most appropriate wavelet for the extraction of the MMN in the 
experimental paradigm under study. Then, we choose the corresponding levels 
for the decomposition and reconstruction of the MMN. By conducting a series 
of simulations, the chosen mother wavelet is a reverse biorthogonal wavelet of 
order 6.8 (rbio6.8). In the MRA, we use seven levels for the decomposition (D1–
D7) and two levels for the reconstruction of the MMN, namely D5 (6.25–
3.125 Hz) and D6 (3.125–1.5625 Hz), as these two levels correspond as close as 
possible to the frequency range of the ODF procedure, i.e., 2–8.5 Hz, defined in 
the previous study. The implementation of the DW and ODF procedures is the 
same as in the previous study. 

The results show that the WLD procedure extracts a cleaner MMN than 
the other two procedures. It extracts the MMN whose quantitative 
characteristics are supported by the literature. The more deviant stimulus 
produces an MMN with a larger peak amplitude (however, only in quantitative 
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values; surprisingly, no statistical significance) and earlier latency (statistically 
significant) than the less deviant stimulus. After application of the WLD 
procedure, contribution of other ERPs to the resulting traces is the smallest 
compared to the referenced procedures (especially compared to the DW 
procedure). However, the peak amplitude of the MMN is also reduced. This 
may be explained by stronger filter settings in the WLD procedure. The ODF 
procedure has a longer latency of the MMN than that for both the WLD and 
DW procedures. There is no difference in the latency of the MMN between the 
WLD and DW procedures. 

The WLD procedure is recommended for the extraction of the MMN from 
EEG data in the studies which use single-channel methods and the time-
frequency representation of data. However, it should be noted that some 
methodologies used in this study, namely the choice of the appropriate wavelet 
based on its frequency response and the desired levels for the reconstruction in 
the MRA, require prior knowledge of the MMN frequency content, which, in 
general, is unknown. For the experimental paradigm under study, we define 
this range in the previous report and directly use it in this study. However, in 
other experimental designs, such information may not be available and needs to 
be somehow obtained, e.g., through the MMN spectrum analysis, prior to the 
use of the aforementioned methodologies. This is a limitation of the approach. 

 

4.1.3 “ICA on MMN in two sound paradigms” 
 
Reference: Kalyakin, I., González, N., & Lyytinen, H. (2008). Extraction of the 
Mismatch Negativity on Two Paradigms Using Independent Component 
Analysis. Proceedings of the CBMS 2008. In S. Puuronen, M. Pechenizkiy, A. 
Tsymbal, & D. J. Lee (Eds.), 21st IEEE International Symposium on Computer-Based 
Medical Systems, CBMS 2008 (pp. 59–64). Los Alamitos, CA: IEEE Computer 
Society Conference Publishing Services. 
 
In this short pilot study, we develop, implement, and preliminarily test a new 
procedure for the extraction of the MMN, which utilizes a multi-channel 
methodology. The procedure is based on ICA and, thus, called the ICA 
decomposition procedure. The goal is to evaluate whether it extracts a cleaner 
MMN and produces an increased SNR, when compared to the conventional 
DW procedure. Such an approach is tested in two slightly different 
experimental paradigms, employing uninterrupted and interrupted sounds. 

After a brief introduction to the ICA and how it can be used to separate 
the ERPs, the core of the procedure is described. It consists of four consecutive 
steps: (1) decomposition of the original traces into ICs, (2) validation of the 
obtained ICs, (3) division of the validated ICs to the MMN-like and non-MMN-
like ICs, and (4) projection of the MMN-like and non-MMN-like ICs back to the 
electrode locations separately. Each step is considered in detail to explain the 
chosen methodology. The FastICA algorithm and the ICASSO software package 
are used. 
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The obtained results show that the ICA decomposition procedure 
performs better than the DW procedure in the extraction of the MMN in both 
studied experimental paradigms. It extracts a cleaner MMN and facilitates 
improvement of the single trial SNR compared to the DW procedure. Due to 
this improvement, it may allow for shorter recording sessions of the MMN. 
However, in this pilot study, we use the ERP data from only one participant 
from each of the two paradigms. Thus, the obtained results should be validated 
through performing a series of statistical tests. This is done in the following two 
studies. 

 

4.1.4 “ICA on MMN in uninterrupted sound (extended)” 
 
Reference: Kalyakin, I., González, N., Kärkkäinen, T., & Lyytinen, H. (2008). 
Independent Component Analysis on the Mismatch Negativity in an 
Uninterrupted Sound Paradigm. Journal of Neuroscience Methods, 174(2), 301–312. 
 
The purpose of this study is to compare the efficiency of the ICA decomposition 
procedure against the ODF and DW procedures in the quantitative analyses of 
the MMN elicited in an uninterrupted sound paradigm. To begin with, we 
briefly introduce the MMN, the particular paradigm for its elicitation, and 
discuss the results of application of the ODF and DW procedures to the ERP 
data obtained in our previous study (see Section 4.1.1). We raise the main 
drawbacks of their application, which motivated us to develop a new 
procedure. Then, the ICA is introduced in the context of how it may improve 
the results of the extraction of the MMN. The potential problems of application 
of marginal distribution-based ICA algorithms (i.e., stochasticity, overfitting) as 
well as types of the ICA (BSS) algorithms are discussed. We hypothesize that 
the MMN and other irrelevant ERP and non-ERP activities are elicited from 
spatially different sources in the brain and are independent from each other. 
Thus, a marginal distribution-based ICA algorithm can separate them. We 
assume that this procedure would allow us to extract a cleaner MMN and 
obtain an increased single trial SNR compared to the referenced procedures 
mentioned earlier. We apply each of these three procedures separately to the 
same ERP data. Then, we compare statistically the peak amplitude, latency, and 
single trial SNR of the MMN to ascertain any advantages of application of the 
ICA decomposition procedure over the two referenced procedures. 

After a brief description of the procedure of the recording and the design 
of the experimental paradigm itself, an extended description of the ICA 
decomposition procedure compared to the previous pilot study is given. The 
implementation of the two referenced procedures is the same as in our study in 
Section 4.1.1. Repeated measures ANOVAs are used in the statistical analyses. 

By performing all necessary calculations, analyses, and comparisons, we 
demonstrate that the ICA decomposition procedure performs better than the 
ODF and DW procedures in the quantitative analyses of the MMN in the 
present paradigm employing an uninterrupted sound. The statistical 
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comparisons among the three procedures show that the ICA decomposition 
procedure significantly improves the single trial SNR compared to the DW 
procedure. Also, it produces a similar single trial SNR compared to the ODF 
procedure that does not support our hypothesis of a better single trial SNR after 
application of the ICA decomposition procedure. Nevertheless, application of 
the ICA decomposition and ODF procedures would require fewer experimental 
trials to obtain the same single trial SNR than application of the DW procedure, 
about 265 and 281 trials, respectively, instead of 350 trials for one type of 
deviant stimuli. This may shorten the experimental session. Reduction at the 
MMN peak amplitude is significant after application of both the ICA 
decomposition and ODF procedures compared to the DW procedure. The main 
reason is a biased baseline in the DW procedure as a result of the subtraction. 
The MMN peak amplitude is similar after application of the ICA decomposition 
procedure compared to the ODF procedure. Finally, the temporal characteristics 
of the MMN are not affected by any of the procedures under study. 

The ICA decomposition procedure allows for the extraction of a cleaner 
MMN whose characteristics are in agreement with most of the literature. The 
MMN elicited by the more deviant stimulus is significantly larger at the peak 
amplitude and earlier in the latency compared to the less deviant stimulus. In 
contrast, the peak amplitude and latency of the MMN for the two deviant 
stimuli do not differ significantly between deviants when extracted through the 
ODF or DW procedures. 

The main limitation of this study is the number of available electrode 
locations. The collected ERP data contain only nine electrode locations that may 
not be sufficient for the ICA to separate enough of the MMN from other ERPs. 
However, the obtained results seem to be reasonable and, thus, the proposed 
ICA decomposition procedure is recommended to be used for interpretation of 
the MMN component in ERP studies, supplementing the conventional DW 
procedure. This is especially relevant for the cases when the experimental 
effects which are expected from the literature are not distinguishable through 
the DW procedure alone. We also suggest that the proposed procedure can be 
used to study the MMN in experimental paradigms similar to this 
uninterrupted sound paradigm with small modifications. 

 

4.1.5 “ICA on MMN in interrupted sound (extended)” 
 
Reference: Kalyakin, I., González, N., Ivannikov, A., & Lyytinen, H. (2009). 
Extraction of the Mismatch Negativity Elicited by Sound Duration Decrements: 
A Comparison of Three Procedures. Data & Knowledge Engineering, 68(12), 1411–
1426. 
 
The purpose of this study is to compare statistically the performance of the 
conventional DW, ODF, and recently proposed ICA decomposition procedures 
in the quantitative analyses of the MMN. The comparison is performed in the 
context of the experimental paradigm, employing a more prototypical MMN 



 

 

31 

protocol with a silence between the stimuli. The employed paradigm with 
duration decrement deviants is a small modification of the uninterrupted sound 
experimental paradigm used in our previous studies (see Sections 4.1.1–4.1.4). 
This modification allows us to test the sensitivity of the ODF and ICA 
decomposition procedures to small variations in the stimulus setup. Each of the 
three aforementioned procedures is separately applied to the same ERP data. 
Then, the results obtained after application of these procedures are statistically 
compared on the peak amplitude, latency, and single trial SNR of the MMN to 
ascertain the most suitable procedure for the quantitative analyses of the MMN, 
which can then be used in similar paradigms with sound duration decrements. 
This study extends the results described in the study in Section 4.1.3. 

After a brief description of the procedure of the recording and the design 
of the experimental paradigm itself, the DW, ODF, and ICA decomposition 
procedures are considered, stressing differences in their implementation 
compared to the previous studies. The main difference is the use of an 
alternative approach to obtain DW traces, which is called the DW procedure 
with an average standard sweep. This approach may reduce up to three times 
(corresponding to the number of types of deviant stimuli) the noise variance in 
the average standard sweep to be subtracted from each single trial deviant 
sweep. In turn, this should provide cleaner DW traces and lead to an improved 
single trial SNR of the MMN. Repeated measures ANOVAs are used in the 
statistical analyses. 

In general, the obtained results are comparable with those obtained in our 
previous study with an uninterrupted sound paradigm (see Section 4.1.4). 
However, the procedures differ in the performance of the MMN extraction. 
Application of the DW procedure is reasonable in this paradigm, since it 
removes common exogenous processing, but not endogenous processing (P3a 
component), and keeps the MMN unchanged. In contrast, application of the 
ODF procedure with the frequency range of 2–8.5 Hz used for the extraction of 
the MMN is not efficient, since this produces the residuals of both the 
exogenous and endogenous processing, which partly overlap the MMN and 
bias the baseline (e.g., exogenous P1 component). The best performance among 
the three procedures is achieved by application of the ICA decomposition 
procedure, where no residuals of any exogenous responses with negligible 
residual of the P3a responses are observable. 

The main statistical comparisons among the three procedures show that 
reduction at the MMN peak amplitude is significant after application of both 
the ICA decomposition and ODF procedures compared to the DW procedure. 
The MMN peak amplitude is lower after application of the ICA decomposition 
procedure compared to the ODF procedure. This finding can be explained by 
the biased baseline in the case of the ODF procedure. The temporal 
characteristics of the MMN are not affected by any of the procedures under 
study. Finally, application of the ODF procedure significantly improves the 
single trial SNR compared to the DW and ICA decomposition procedures. 
However, as mentioned earlier, the ODF procedure produces a mixture of the 
MMN and residuals of some exogenous responses. The ICA decomposition 
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procedure numerically requires a smaller number of trials than the DW 
procedure, but only for the two most deviating stimuli. Statistically, these 
values are non-significant. The lack of a significant effect in the single trial SNR 
between these two procedures can be explained by the use of an alternative 
method to obtain the DW traces, i.e., the DW procedure with an average 
standard sweep (see above), which, as the results show, performs better than 
the ordinary DW procedure for the MMN extraction. We recommend usage of 
the DW procedure with an average standard sweep when an experimental 
paradigm involves more than one type of deviant stimulus. In particular, if this 
number is greater than two, the DW traces become much cleaner. 

After performing the ICA decomposition, the MMN for the most deviant 
stimulus is significantly larger at the peak amplitude and earlier in the latency 
than for the second (by magnitude of deviation) deviant stimulus. These results 
are in agreement with well-known characteristics of the MMN, supported by a 
substantial number of publications. However, there is no statistically significant 
difference in the latency of the MMN between the third and second deviant 
stimuli, whereas the difference at the peak amplitude is present. One possible 
explanation of these results can be that the difference between the standard 
stimulus and the third deviant stimulus is too small to elicit a reliable effect in 
the latency of the MMN, rather than an inability of the ICA decomposition 
procedure to extract a genuine MMN. The DW and ODF procedures show 
statistically significant differences at the peak amplitude of the MMN for all 
pairs of types of deviant stimuli (except one pair in the DW procedure), but not 
in the latency of the MMN. Despite the lack of a significant effect between 
deviants in the latency of the MMN (probably due to a lack of power in the 
statistical tests), it should be noted that the values of the latency of the MMN for 
the DW procedure are also in agreement with the expected characteristics of the 
MMN, but this is not the case for the ODF procedure where reversed inter-
relations are observed. The lack of an effect on latency, while an effect on 
amplitude is obtained, may mean that the DW procedure is not sufficiently 
powerful to reveal a clean MMN with the current sample size compared to the 
ICA decomposition procedure with its different mathematical background. 

The main results obtained in this study support the use of the ICA 
decomposition procedure as a supplementary tool to validate the results 
obtained with the DW procedure. They also show the insensitivity of the ICA 
decomposition procedure to variations in the experimental design. At the same 
time, such variations drastically affect the performance of the ODF procedure 
whose application is limited by a paradigm it is developed for. 

 

4.1.6 “Polarity indeterminacy at local optimization in ICA” 
 
Reference: Cong, F., Kalyakin, I., Ristaniemi, T., & Lyytinen, H. (2008). 
Drawback of ICA Procedure on EEG: Polarity Indeterminacy at Local 
Optimization. IFMBE Proceedings, 20(4). In A. Katashev, Y. Dekhtyar, & J. 
Spigulis (Eds.), 14th Nordic-Baltic Conference on Biomedical Engineering and 
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Medical Physics, NBC 2008 (pp. 202–205). Berlin, Heidelberg, Germany: Springer-
Verlag. 
 
This study considers the case of finding the local extremum of an optimization 
function in a stochastic ICA algorithm which may use various gradient descent 
methods. When such an ICA algorithm is applied to some multi-channel EEG 
data, it is usually the case of a high-dimensional signal space. The probability to 
find the global extremum of the optimization function in this ICA algorithm is 
relatively low. Thus, the ICA may extract some ICs at the local optimization, 
which, as shown in this study, produce the artificial polarity indeterminacy at 
some electrode locations when projected back to the signal space. 

The polarity of a peak is an important characteristic of ERP responses. It is 
often used to correctly identify ERPs observed during a recording session. This 
is also the case for the MMN. As mentioned in Section 2.3, when all electrode 
locations are referred to the tip of the nose, the MMN has a negative amplitude 
on the frontal, central, and parietal electrode locations and positive amplitude 
on the mastoid electrode locations. This polarity reversal property of the MMN 
is used to automatically identify the MMN-like ICs in the ICA decomposition 
procedure (see our previous studies where the latter is applied). 

By performing the numerical simulations, we show that the artificial 
polarity indeterminacy may occur in approximately 10% of cases of the locally 
optimized function. We propose to correct the sign in the ERP traces obtained 
after the projection of the chosen ICs back to the electrode locations in these 
10% of cases. However, this correction is possible only when prior knowledge 
of the polarity of the desired ERP at different electrode locations is available. 
This information is usually known for the MMN and mostly defined by the 
electrode placement used as the reference. 

Undoubtedly, the main intention in the studies where stochastic ICA 
algorithms are used should be to achieve a global solution in an optimization 
function of the algorithm rather than simply to correct the sign at the local 
inaccurate solution. To find the global solution, other methodologies can be 
considered, e.g., testing of different ICA optimization algorithms which may 
incorporate some prior knowledge of the signal of interest, different approaches 
for data preprocessing, dimensionality reduction, etc. However, this simple sign 
correction should not be left aside and may be used with careful control of the 
possible negative effects which may be caused by the inaccurate estimation of 
an ERP component under study. 

 

4.1.7 “NMF vs. FastICA on MMN in uninterrupted sound” 
 
Reference: Cong, F., Zhang, Z., Kalyakin, I., Huttunen-Scott, T., Lyytinen, H., & 
Ristaniemi, T. (2009). Non-negative Matrix Factorization Vs. FastICA on 
Mismatch Negativity of Children. IJCNN 2009 Conference Proceedings. The 2009 
International Joint Conference on Neural Networks, IJCNN 2009 (pp. 586–590). Eau 
Claire, WI: Documation LLC for IJCNN [CD-ROM]. 
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Recently, the NMF has begun to be applied in different scientific fields, 
including EEG data processing. The NMF does not require the assumption 
about independence of the source signals and is not restricted to the length of 
data, as compared to the ICA. In this method, the basis functions are not strictly 
ranked, but represent intrinsic properties of data, in contrast to the ICA where 
the basis functions are ranked, e.g., by their non-Gaussianity. Application of the 
NMF looks promising as it takes into account spatial and temporal correlations 
between variables in a more accurate fashion than the ICA does. 

In this short study, we estimate whether the NMF provides better 
separation of the MMN from other irrelevant ERPs than that achieved by the 
ICA. The SAR, a new recently proposed quantity (see Section 2.3), is calculated 
to estimate the performance of the separation. The FastICA algorithm is used in 
this study. Repeated measures ANOVAs are used in the statistical analysis of 
the SAR values in both procedures under study. 

After averaging all of the single trials in each electrode location, type of 
deviant stimuli, and subject separately, time-frequency representations of the 
traces are obtained. This step transforms the data into non-negative values 
which are required by the NMF procedure. Finally, the NMF of this time-
frequency representation of the data is applied, providing the estimated NMF 
components. The obtained results show that the SAR of the MMN component is 
49.0 dB, 33.6 dB, and 30.5 dB for the NMF, ICA, and ordinary averaging 
procedures, respectively. The difference between any two procedures is 
significant. Both the NMF and ICA extract a cleaner MMN compared to the 
ordinary averaging procedure, and the NMF statistically outperforms the ICA. 

It should be noted that calculation of the SAR requires prior knowledge of 
the frequency content of the MMN, which, in general, is unknown. We use this 
information from our previous study in Section 4.1.1. However, in other 
experimental designs, the spectrum analysis of the MMN should be performed 
prior to the calculation of the SAR. This is a limitation of the approach. 

 

4.1.8 “ERP denoising in multi-channel EEG data” 
 
Reference: Ivannikov, A., Kalyakin, I., Hämäläinen, J., Leppänen, P. H. T., 
Ristaniemi, T., Lyytinen, H., & Kärkkäinen, T. (2009). ERP Denoising in 
Multichannel EEG Data Using Contrasts between Signal and Noise Subspaces. 
Journal of Neuroscience Methods, 180(2), 340–351. 
 
This study introduces a new procedure for ERP denoising in multi-channel EEG 
data. The procedure consists in the separation of ERP and noise subspaces in 
multidimensional EEG data, using the spatial information of the data. The 
separation is performed by a linear transformation with a subsequent 
dimension reduction, involving the rejection of the noise components during 
inverse transformation to the original signal space. The goal of this study is to 
develop, implement, and validate the ERP denoising procedure, and then to 
compare statistically its performance with the traditional averaging procedure. 
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We hypothesize that the proposed denoising procedure should provide better 
results in terms of the SNR than the averaging procedure as it should benefit 
from the spatial information contained in the multidimensional EEG data. 
High-density EEG data (128 channels) from 52 children are used in this study. 
Repeated measures ANOVAs are used in the statistical analysis. 

The main criteria used for validation of the proposed procedure are the 
amount of remaining noise power in the denoised ERP estimate and the 
possible signal loss during denoising. Both quantities affect the SNR and, thus, 
should be controlled separately. Denoising can be considered successful when 
an increased SNR value is obtained after application of the procedure and 
simultaneously the signal loss is insignificant. Maximization of the SNR is also 
the criterion used in the optimization procedure (the core of denoising) to find 
the linear projections of the signal and noise subspaces. 

The obtained results show that the proposed procedure outperforms the 
averaging procedure in a small and medium number of trials (2–150 in average 
over participants), whereas the averaging procedure performs slightly better 
than the proposed procedure for larger numbers of trials (more than 150). The 
possible explanation is below. As carefully discussed in this study, in practice, 
the signal and noise subspaces cannot be fully separated due to the violation of 
some theoretical assumptions. Thus, a loss of energy of the signal when 
rejecting the noise subspace takes place. In the case of a small number of trials, 
noise removal by the denoising procedure dominates more than the negligible 
signal loss. This provides better performance of the proposed procedure 
compared to the averaging procedure. On the other hand, in the case of a larger 
number of trials, noise removal by the denoising procedure is not sufficient 
enough to compensate the signal loss in this procedure, thus, providing lower 
SNR values than those in the averaging procedure. Despite this, the obtained 
results are encouraging. The proposed procedure performs better than the 
averaging procedure in terms of the SNR on small and medium number of 
trials. It may reduce the duration of a recording session. These results are 
confirmed by the statistical test which is conducted for the case of medium 
number of trials (100 trials). This test shows that the proposed procedure 
significantly improves the SNR compared to the averaging procedure. 

It should be noted that, in this study, we try to establish a framework for 
the class of the methods for ERP denoising as well. The proposed procedure is 
one of several realizations of ERP denoising within this class of methods. 
Regarding the case of the extraction of the MMN, this denoising procedure is 
definitely beneficial. Indeed, in the analysis of the MMN, the standard frame of 
reference is the DW procedure. The standard and deviant sweep should be 
clean enough prior to the subtraction in the DW procedure to minimize the 
effect of the increase of noise after the subtraction. Such denoising may also be 
useful prior to application of the ICA decomposition procedure. In this case, 
dimensionality of the resulting ERP traces obtained after the rejection of the 
noise subspace is reduced. Thus, the performance of the ICA decomposition 
procedure in the separation of the MMN from other irrelevant ERPs should be 
improved. 
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4.2 Author’s contribution to joint publications 

The present introductory part has been written solely by the author who has 
received comments and suggestions concerning its content and structure from 
the supervisors and reviewers of the thesis. 

In Article I, the author of this thesis is the principal and corresponding 
author who has proposed the main idea of the study, developed the 
methodology, implemented all signal processing procedures under study by 
means of MatLab, and conducted the necessary statistical analyses. 
Documentation of the results of the study has been performed by the author of 
this thesis with subsequent correction of the terms and language by the co-
authors. The development of the experimental paradigm and EEG data 
collection have been performed by the co-authors. Preprocessing of the raw 
EEG data and their conversion to MatLab-readable format have been done by 
the author of the thesis. These data have subsequently been used in Articles II, 
III, IV, and V. The article has been refereed by two international reviewers and 
published as a regular journal paper (in special issue). 

In Article II, the author of this thesis is the second author who has 
implemented one of the three signal processing procedures under study, given 
comments and suggestions to the principal author, and contributed to 
documentation and revision of the study. The article has been refereed by two 
international reviewers and already re-submitted after the major revision as a 
regular journal paper. 

In Article III, the author of this thesis is the principal and corresponding 
author who has proposed the main idea of the study, developed the 
methodology, and implemented all signal processing procedures under study 
by means of MatLab. The development of the experimental paradigm, EEG data 
collection (part of the data), and conversion of these data to MatLab-readable 
format have also been performed by the author of this thesis with contribution 
of the colleagues on the stage of data collection. The converted EEG data have 
subsequently been used in Article V. Documentation of the results of the study 
has been performed by the author of this thesis with subsequent correction of 
the terms and language by the co-authors. The article has been refereed by two 
international reviewers and published in the proceedings of international 
conference. The results of the study have been presented at the conference 
personally by the author of this thesis. 

In Article IV, the author of this thesis is the principal and corresponding 
author who has proposed the main idea of the study, developed the 
methodology, implemented all signal processing procedures under study by 
means of MatLab, and conducted the necessary statistical analyses. 
Documentation of the results of the study has been performed by the author of 
this thesis with subsequent correction of the terms and language by the co-
authors. In this study, the same converted EEG data as in Article I have been 
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used. The article has been refereed by two international reviewers and 
published as a regular journal paper. 

In Article V, the author of this thesis is the principal and corresponding 
author who has proposed the main idea of the study, developed the 
methodology, implemented all signal processing procedures under study by 
means of MatLab, and conducted the necessary statistical analyses. 
Documentation of the results of the study has been performed by the author of 
this thesis with subsequent correction of the terms and language by the co-
authors. In this study, the same converted EEG data as in Article III have been 
used. The article has been refereed by two international reviewers and 
published as a regular journal paper (in special issue). 

In Article VI, the author of this thesis is the second author who has given 
comments and suggestions to the principal author on the stage of data 
simulation, and contributed to documentation and revisions of the study. The 
article has been published in the proceedings of international conference. The 
results of the study have been presented at the conference by the principal 
author. 

In Article VII, the author of this thesis is the third author who has 
implemented one of the three signal processing procedures under study, given 
comments and suggestions to the principal author, and contributed to 
documentation and revision of the study. The article has been refereed by four 
international reviewers and published in the proceedings of international 
conference. The results of the study have been presented at the conference by 
the principal author. 

In Article VIII, the author of this thesis is the second author who has 
performed preprocessing of the raw EEG data and their conversion to MatLab-
readable format, developed the design for statistical analyses of the results 
obtained after application of the procedure under study, given comments and 
suggestions to the principal author, and contributed to documentation and 
revision of the study. The article has been refereed by two international 
reviewers and published as a regular journal paper. 
 



 

 

5 CONCLUSIONS 

In this thesis, we have considered three procedures for the extraction of the 
MMN, a component of ERP, from EEG data: ODF, WLD, and ICA 
decomposition procedures. We have shown that these procedures can provide 
alternative ways of quantification of the MMN which is conventionally 
analyzed through the calculation of DWs. We have shown that, in some 
experimental paradigms, the DW procedure was not the most optimal way for 
the extraction of the MMN. Moreover, this procedure reduced the SNR as it 
required the subtraction of different time intervals of the ERP traces. In contrast, 
no subtraction was needed in the ODF, WLD, and ICA decomposition 
procedures, which, in turn, made their application more attractive. However, in 
the analysis of ERP data collected under two different experimental paradigms, 
we have shown that the performance of the extraction of the MMN was 
different between all proposed procedures. Let us emphasize the main 
differences of these procedures compared to the DW procedure. 

The ODF procedure: is a single-channel method; has originally been 
developed for an uninterrupted sound paradigm; is very sensitive to changes in 
the experimental design; reveals no difference between types of deviant stimuli; 
provides an increased single trial SNR; may reduce the duration of a recording 
session. This procedure is recommended to be used only in the paradigm to 
which the procedure is developed for. 

The WLD procedure: is also a single-channel method; has originally been 
developed for an uninterrupted sound paradigm; requires prior knowledge 
about frequency content of the MMN; reveals significant difference in the 
latency (but not at the peak amplitude) of the MMN between types of deviant 
stimuli; provides an increased single trial SNR; may reduce the duration of a 
recording session. This procedure is recommended to be used in the paradigms 
where the frequency range of the MMN is known a priori. 

The ICA decomposition procedure: is a multi-channel method; has been 
developed regardless of any particular experimental paradigm; is insensitive to 
changes in the experimental design; reveals significant difference both at the 
peak amplitude and in the latency of the MMN between types of deviant 
stimuli; provides an increased single trial SNR (compared to the ordinary DW 
procedure, see Section 4.1.4; but similar SNR compared to the improved DW 
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procedure, see Section 4.1.5); may reduce the duration of a recording session. 
This procedure is recommended to be used when the quantitative 
characteristics of the MMN, which are expected from the literature, are not 
distinguishable through the DW procedure alone. 

As a resume, it should be noted that the WLD and especially ICA 
decomposition procedures are computationally sophisticated methods. The 
standard frame of reference for the MMN component is the DW procedure. 
Although the DW procedure will continue to be used as a reference to interpret 
the MMN component in ERP studies, the WLD and ICA decomposition 
procedures, as the results of this thesis have shown, can certainly supplement it. 
With their use, our initial goal — to reduce the duration of a recording session 
by collecting fewer number of trials without loss in the performance of the 
extraction of the MMN component — seems to be realistic and reachable. For 
example, the ICA decomposition procedure required about 265 trials instead of 
350 original trials needed for the DW procedure to obtain the same single trial 
SNR. In this particular case, the achieved improvement is equal to 24.3% and is 
definitely a step forward towards the online procedure for training the 
auditory/speech perceptual ability in clinical and other population (for more 
details, see Section 2.3). In this context, the questions of the relative complexity 
of these two developed procedures can easily be solved by the use of modern 
equipment which, at present, is computationally powerful enough for such 
tasks. 

The main limitations of this thesis are the use of a limited set of available 
methods or their combinations for the separation of the ERPs, a limited set of 
parameters to manipulate within each of the procedures under study, as well as 
a limited set of MMN datasets. 

Under this set of methods, we mean the use of more sophisticated single-
channel procedures, e.g., the weighed averaging instead of the ordinary 
averaging, and different multi-channel methodologies. The latter ones include 
different source separation methods which use different a priori information or 
criteria to find a solution, e.g., ICA (considered in this thesis), temporal/spectral 
structure, diversities of the signals, non-stationarity, or their combinations. One 
of these source separation methods with different assumptions compared to the 
ICA is NMF (see Section 4.1.7). Combinations of these single- and multi-channel 
methodologies can also be considered, including those proposed in this thesis. 
For example, the ICA decomposition procedure can be applied subsequently 
after the WLD procedure. This combination may provide better performance 
than each of these procedures separately (unpublished results). Of course, ERP 
denosing procedures, one of which has been considered in Section 4.1.8 and 
showed better results than the ordinary averaging, should be applied to clean 
up the data prior to the use of the procedures to separate the ERPs (MMN). In 
this context, it should be noted that the ODF and WLD procedures can be 
considered as the latter approaches, i.e., for the separation of ERPs from each 
other. However, they can simultaneously be considered as the approaches for 
denoising, i.e., removing low- and high-frequency noise and preserving ERPs as 
well. At the same time, the ERP denoising procedure described in Section 4.1.8 
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was namely designed to remove noise, but not to separate ERPs. Nevertheless, 
the ICA decomposition procedure can be applied after any of these procedures 
regardless of their conditional division. Concatenation of the procedures should 
result in a much cleaner MMN analysis as mentioned above. 

Under this set of parameters, we mean different types of filters in the ODF 
procedure; different mother wavelets, levels of decomposition, the use of 
wavelet packets in the WLD procedure; different contrast functions (e.g., 
maximization of non-Gaussianity, information-theoretic measures, maximum 
likelihood estimation, tensorial methods) and optimization algorithms 
(gradient-based or algebraic methods), the number of electrode locations and, 
subsequently, the number of the MMN-like and non-MMN-like ICs, the use of 
data mining techniques to classify the ICs in the ICA decomposition procedure. 

Under this set of datasets, we mean that only two MMN datasets have 
been analyzed in this thesis. Both of them contained only duration deviants. A 
number of other experimental paradigms have been developed so far, including 
both the traditional oddball paradigms with frequency, intensity, rise/fall time 
deviants, etc. and recent “optimal” paradigms. Paradigms belonging to the 
second category aim at reducing the duration of recording sessions without 
reducing the reliability of the MMN (Näätänen et al., 2004). Application of the 
procedures developed in this thesis to data from these optimal paradigms looks 
very promising in the context of reducing the duration of recording sessions. 

These limitations can directly be addressed in future research. Some of 
them are currently being considered and will be reported in future scientific 
contributions. 
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YHTEENVETO (FINNISH SUMMARY) 

Tämän “Poikkeavuusnegatiivisuuden erottaminen EEG-signaalista” otsikoidun 
väitöskirjatutkimuksen tavoitteena on ollut kehittää, kokeilla ja validoida uusia 
signaalinkäsittelyratkaisuja poikkeavuusnegatiivisuutena (mismatch negativity, 
MMN) tunnetun herätevaste-(event-related potential, ERP-)komponentin 
erottamiseksi elektroenkefalografisesta (EEG-)signaalista. 

MMN-tutkimuksia, joilla voidaan kartoittaa aivojen kuulomodaliteettiin 
liittyviä funktiota, on viime aikoina tehty enenevässä määrin. MMN tarjoaa 
keinon ymmärtää uudella tasolla niitä aivojen prosesseja, joihin kuulohavainnot 
ja erityyppiset kuulomuistin ilmiöt perustuvat. MMN:n nopealla tunnistuksella 
on potentiaalisesti tärkeä rooli auditorisen ja/tai puheen havaintokyvyn 
harjoittamisessa sen ollessa esimerkiksi kliinisistä syistä tarpeen. MMN:n 
ilmaisemaa auditorista diskriminaatiota voidaan arvoida ERP:stä yksinkertaisia 
amplitudi- ja latenssiarvoja laskemalla. Niiden tulkinta on kuitenkin erityisen 
ongelmallista siksi, että MMN on suhteellisen heikko signaali spontaaniin 
EEG:hen ja kohinaan verrattuna. Lisäksi useimmissa tapauksissa on käytettävä 
erotuskäyrän (difference wave, DW) laskentamenettelyä MMN:n erottamiseksi 
irrelevantista herätevastevaihtelusta. Kuitenkin DW menetelmän edellyttämän 
kahdesta aikaikkunasta eristetyn signaalin erotuksen laskemisesta seuraa, että 
tuloksena saatu MMN-käyrä voi sisältää jopa kaksi kertaa enemmän kohinaa 
kuin mitä signaalissa oli ennen erotuksen laskua. 

Tässä väitöskirjatutkimuksessa ehdotetaan kolmea MMN:n 
eristämismenettelyä: optimaalista digitaalista suodatusta (ODF), wavelet-
hajotelmaa (WLD) ja riippumattomien komponenttien analyysiin (ICA) 
perustuvaa erottelua. DW-laskennasta poiketen nämä menettelyt eivät edellytä 
kahden käyrän erotuksen laskentaa. Kahden ensin mainitun etuna on se, että 
niissä arvioidaan MMN:ä taajuusalueella. ICA erottelun etuna on DW-
menettelyyn nähden taajuusalueen informaation käyttö MMN:stä. Menettelyjä 
arvioidaan vaihtoehtoisina ja tarkentavina keinoina eristää MMN EEG-
aineistosta täydentämään tuloksia, joita voidaan saada perinteisellä DW-
menettelyllä. 

Työn päätulokset tukevat wavelet- ja ICA-pohjaisia menettelyjä siinä, että 
ne paljastavat MMN:n amplitudeissa ja latensseissa kirjallisuuden perusteella 
näkyväksi odotettuja kokeellisia vaikutuksia, joita ei saada selville yksinomaan 
erotuskäyrää hyväksi käyttämällä. Tulokset ovat myös osoittaneet, että 
kehitetyillä menettelyillä voidaan lyhentää MMN:n tunnistamisen edellyttämää 
mittausaikaa. Tämä on erityisen huomionarvoista lasten ja potilaiden 
mittauksissa. Lisäksi tarkastelun kohteina on käytännöllisiä kysymyksiä, jotka 
liittyvät ICA-pohjaisiin MMN:n tunnistuskeinoihin. Lopuksi tuodaan esiin 
monikanavaisen EEG:n spatiaalisen häiriönpoiston keinoja, joita voidaan 
käyttää MMN:n tai minkä tahansa ERP:n eristämisen esikäsittelyvaiheessa. 
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