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a b s t r a c t 

Achilles sub-tendons are materially and geometrically challenging structures that can 

nearly undergo around 15% elongation from their pre-twisted initial states during physical 

activities. Sub-tendons’ cross-sectional shapes are subject-specific, varying from simple to 

complicated. Therefore, the Achilles sub-tendons are often described by three-dimensional 

elements that lead to a remarkable number of degrees of freedom. On the other hand, 

the continuum-based beam elements in the framework of the absolute nodal coordinate 

formulation have already been shown to be a reliable and efficient replacement for the 

three-dimensional continuum elements in some special problems. So far, that element type 

has been applied only to structures with a simple cross-section geometry. To computa- 

tionally efficiently describe a pre-twisted Achilles sub-tendon with a complicated cross- 

section shape, this study will develop a continuum-based beam element based on the ab- 

solute nodal coordinate formulation with an arbitrary cross-section description. To demon- 

strate the applicability of the developed beam element to the Achilles sub-tendons, 16 

numerical examples are considered. During these numerical tests, the implemented cross- 

section descriptions agreed well with the reference solutions and led to faster convergence 

rates in comparison with the solutions provided by commercial finite element codes. Fur- 

thermore, it is demonstrated that in the cases of very complicated cross-sectional forms, 

the commercial software ANSYS provides inflated values for the elongation deformation in 

comparison with ABAQUS (about 6.2%) and ANCF (about 9.4%). Additionally, the numeri- 

cal results reveal a possibility to model the whole sub-tendons via coarse discretization 

with high accuracy under uniaxial loading. This demonstrates the huge potential for use 

in biomechanics and also in multibody applications, where the arbitrary cross-section of 

beam-like structures needs to be taken into account. 

© 2022 The Author(s). Published by Elsevier Inc. 

This is an open access article under the CC BY license 

( http://creativecommons.org/licenses/by/4.0/ ) 

 

1. Introduction 

The Achilles tendon is one of the most important tendons of the human body. As the largest and strongest tendon, it has

enormous energy-storing abilities and plays a key role during movements such as running or jumping. It is also character- 
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ized by its high tensile strength, non-linear deformations, up to 15% from its initial state [1] , and viscoelastic properties [2] .

Its analysis in the framework of computational modelling has been under investigation over the past decade, and its achieve- 

ments have received wide attention in the literature [3] . However, the analysis itself is challenging because the exact form,

functions and inner structure of the Achilles are very complex: a pre-twisted anisotropic structure consisting of several 

sub-tendons, sliding one around another, where each of them has a sophisticated geometrical shape with differential motor 

control from the muscles [4–6] . Additional factors affecting the mechanical behaviour may include age, gender and genet- 

ics contributions [7] . Thus, it is not surprising that most of the studies simplify the Achilles tendon models by considering

only some features attributed to the tendon. For example, authors may consider it as an isotropic solid [3,8,9] , treat it as a

single non-divided structure [10,11] , or ignore its pre-twisted configuration [12] . However, each of these approaches has a 

significant effect on the final results. The work of Handsfield et al. [4] , the authors conclude that the twist between 15 and

45 degrees optimizes rupture load and stress distributions. Kinugasa et al. [10] have demonstrated the importance of the 

fiber orientation for the Achilles tendon. Hansen et al. [7] have shown the tendon cross-section geometry is an important

determinant of injury risk even if the internal division of the tendon is omitted. On the other hand, the inclusion of all the

features simultaneously leads to a computationally demanding model. A possible solution without resorting to physical or 

geometrical simplifications is the utilization of more efficient and robust approaches. 

Multibody system dynamics offers various computer-based approaches for generating and solving equations of motion of 

complex mechanical systems. About two decades ago, the absolute nodal coordinate formulation (ANCF) was introduced to 

describe large deformations within beam-, plate- or shell-type structures in multibody applications [13,14] . Since then, the 

ANCF has actively been developed and utilized by the multibody community for various large deformation problems [15–18] . 

The ANCF is a nonlinear finite element approach in which beam and plate/shell element cross-sections can be deformable. 

The key idea behind ANCF-based elements is that having element nodal coordinates at hand, including the position vector 

derivatives, i.e., slope vectors, the kinematics of flexible spatial bodies can be described using polynomial based spatial 

shape functions [19] . Generally speaking, the use of components of the deformation gradient as degrees of freedom (DOFs) 

can be seen as a trademark of the ANCF. As a result, in specific situations, ANCF-based elements demonstrate computational 

efficiency in comparison with conventional three-dimensional finite continuum elements for the modelling of the beam- 

and plate/shell-like structures [17,20,21] . 

During the past decades, several ANCF elements have been proposed based on the various types of displacement interpo- 

lations and descriptions of internal energy [20,22,23] . So far, ANCF-based beam and plate/shell elements can be categorized 

mainly into three groups with respect to the number of slopes (first-order) vectors and higher-order slope vector deriva- 

tives: low-order, fully-parameterized, and higher-order elements. In the low-order elements (see examples in Nachbagauer 

et al. [16] , Kerkkänen et al. [24] , Garcìa-Vallejo et al. [25] ), the displacement interpolation is accomplished in a manner

where all slope vectors are not taken into account in the kinematics description. In the fully-parameterized elements (see 

example studies [26–28] ), all first-order slope vectors are utilized. On the downside, the usage of all slope vectors leads to

a higher computational cost in comparison to the low-order elements [20] . Additionally, the above-mentioned ANCF-based 

beam elements can either be defined with respect to the material laws based on general continuum mechanics, i.e., using 

full three-dimensional elasticity, or alternatively, with respect to structural mechanics-based approaches. For higher-order 

ANCF elements [29–31] , higher than first-order derivatives are used in displacement interpolation to describe the cross- 

section deformation more precisely [32] . On the downside, in the case of the higher-order ANCF elements, internal energy 

needs to be derived based on general continuum mechanics. 

Despite great effort s that have been devoted to introducing a variety of ANCF elements and demonstrating their usability 

in solving various problems, their applications have solely been limited to beams with simple geometries, such as cylindrical 

or parallelepiped structures [15,17,20,33,34] . In [35,36] , a subdomain integration method was introduced to capture the local 

surface geometry. The drawback of this numerical area integration method is that in the case of complex shapes, the body

has to be divided into a significant number of subdomains, and each requires different integration methods. 

The aim of the study is to provide a general description for beam-like structures with an arbitrary cross-section in the

framework of the ANCF, and subsequently, describe the Achilles sub-tendons. For this reason, we study the usability of the 

method based on a numerical integration scheme via Greens integral formula [37,38] for a three-node quadratic continuum- 

based ANCF beam element [16] . The advantage of this method is the implementation of the Gaussian integration scheme 

for the whole domain with piece-wise regular boundaries. That reduces the approximation error, which appears due to the 

splitting of the domain into the subdomains, and requires fewer degrees of freedom, increasing computational efficiency. 

2. The kinematics of an ANCF beam element 

In this section, the kinematics of a three-node quadratic ANCF beam element (denoted by ANCF 3333c) proposed by 

Nachbagauer et al. [16] is briefly reviewed. These four numbers in the element name abcd have the following meaning: a is

the dimension of the element, b denotes the number of nodes, c is the number of vectors used in the approximations, and d

is the polynomial basis used to approximate all three dimensions [20] . The position vector field at the current configuration

is defined as r = r ( x, y, z ) , with the position vector in the initial configuration being r ; see Fig. 1 . The connection between

the position and displacement field vectors can be written as: 

r = r + u , (1) 
h 
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Fig. 1. ANCF 3333c beam element with the position vector r of an arbitrary particle p in the current and reference configurations, respectively [16,17] . 

 

 

 

where vector u h describes a displacement field. Thus, the position and displacement fields of isoparametric finite elements 

can be interpolated in the form: 

r (x, y, z) = N m 

( x, y, z ) q , (2) 

u h (x, y, z) = N m 

( x, y, z ) u , (3) 

where N m 

is a shape function matrix, u is a vector of nodal displacements, and q is a vector of nodal position coordinates

that in the case of the element 3333c for the i th node read as follows: 

q i = 

[
r i 

T 

r i 
T 

,y r 
i T 

,z 

]T 
. (4) 

Hence, shorthand symbols are used as follows: 

r i ,α = 

∂ r i 

∂α
, α = { y, z} . (5) 

A local bi-normalized coordinate system ξ = { ξ , η, ζ } is formed as illustrat ed in Fig. 1 , with the range for the local coor-

dinates [ −1 , 1 ] . The position and nodal displacement vectors can, respectively, be expressed in terms of the bi-normalized 

coordinates as follows: 

r (ξ , η, ζ ) = N m 

( ξ , η, ζ ) q , 

u h (ξ , η, ζ ) = N m 

( ξ , η, ζ ) u , 
(6) 

where the non-dimensional quantities are defined as follows: 

ξ = 

x 

� x 
, η = 

y 

� y 
, ζ = 

z 

� z 
, (7) 

where l x , l y and l z are the physical dimensions of the element. The shape function matrix in the case of the ANCF 3333c

takes the following form: 

N m 

(ξ , η, ζ ) = [ N 1 I N 2 I N 3 I . . . N 9 I ] , (8) 

where I is an 3 × 3 identity matrix, and shape functions can be written as 

N 1 = 

1 

2 

ξ (ξ − 1) N 2 = 

1 

4 

l y ξη(ξ − 1) N 3 = 

1 

4 

l z ξζ (ξ − 1) 

N 4 = 1 − ξ 2 N 5 = 

1 

2 

l y η(1 − ξ 2 ) N 6 = 

1 

2 

l z ζ (1 − ξ 2 ) 

N 7 = 

1 

2 

ξ (ξ + 1) N 8 = 

1 

4 

l y ξη(ξ + 1) N 9 = 

1 

4 

l z ξζ (ξ + 1) . 

From (6) , the deformation gradient F can be written as: 

F = 

∂ r 

∂ r 
= 

∂ r 

∂ ξ

(
∂ r 

∂ ξ

)−1 

= I + 

∂ u h 

∂ ξ

(
∂ r 

∂ ξ

)−1 

. (9) 
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The determinant of F defines the volume ratio of the element, and in this regard, considering continuity, it can be said

that 

J = det F > 0 . (10) 

3. Equilibrium equation 

In this section, we derive the weak equilibrium equation as follows: 

F ext δq + F int δq = 0 , (11) 

where the vectors F ext and F int are the vectors of external and internal forces, respectively, and δq is a variation of nodal

position coordinates. The latter one can be rewritten as 

F int = S : 
∂ E 

∂ q 

, (12) 

where S is the second Piola–Kirchhoff stress, and E is the Green–Lagrange strain given as 

E = 

1 

2 

(
F T · F − I 

)
. (13) 

In this work, we deal with the description of biomaterials, which are often considered as incompressible hyperelastic 

solids [39] . This assumption is reasonable, as the biological tissues contain a significant amount of water [40] To obtain the

form of the second Piola–Kirchhoff stress S for such solids, the Helmholtz free energy function 	 is usually used. Then, fol- 

lowing the common approach presented in Handsfield et al. [3] , 4 ], Obrezkov et al. [17] , Holzapfel and Gasser [41] , Holzapfel

and Ogden [42] , the multiplicative decomposition of the deformation into dilational (volumetric) and distortion (isochoric) 

parts is considered: 

F = J 
1 
3 F , (14) 

where F represents the deviatoric part with det F = 1 . Therefore, the right and left Cauchy–Green deformation tensors are 

C = F 
T · F , B = F · F 

T 
. (15) 

In the isotropic case, all deformations can be defined as a function of the right Cauchy–Green tensor. However, bioma- 

terials often demonstrate anisotropic behaviour. To describe anisotropy, the preferable deformation direction in the current 

configuration can be defined via a vector field a at each point. In the initial configuration, this vector is unit one and defined

as a 0 , and the connection between them described as a = F · a 0 . The square of the preferable direction vector extension is

defined as follows: 

λ2 
a 0 

= C : A 0 , (16) 

where A 0 is a structural tensor of order two and takes the form A 0 = a 0 � a 0 . Thus, the strain energy density for elastic ma-

terials reinforced by one family of fibers (preferred deformation direction) can be expressed as 	 = 	( C , A 0 , J) . If necessary,

the concept can be easily extended to several families of fibers. The additive split (14) leads to the following expression

[43] : 

	 = 	( C , A 0 ) + 	v ol (J) , (17) 

where 	v ol (J) is the volumetric part and 	( C , A 0 ) is the isochoric part. In this work, the former is represented by a quadratic

function: 

	v ol = 

d 

2 

(J − 1) 2 . (18) 

The experimental results [44] have demonstrated its possibility to adequately describe the volume change for slightly 

compressible solids in simple tensions. In (18) , d is the penalty coefficient, which need to be large enough for imposing

the incompressibility constraint. Further, the deviatoric part can be expressed via the invariants of the Cauchy–Green and 

structural tensors [41,42] : 

	 = 	( I 1 , I 2 , I 4 , I 5 ) , (19) 

where 

I 1 = tr C , I 2 = 

1 
2 

(
tr C 

2 + tr 2 C 

)
, 

I 4 = C : A 0 , I 5 = C 

2 
: A 0 . 

(20) 

The total strain energy density 	 for anisotropic materials can be written as 

	 = 	( I 1 , I 2 , I 4 , I 5 ) + 	v ol (J) . (21) 
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Usually, for mathematical simplicity, I 5 is mostly neglected. References [45–47] showed its importance for shear defor- 

mations, but for axial loading cases it can be omitted. It should also be remembered that I 3 = det C = 1 does not have an

effect on the function 	 . The total second Piola–Kirchhoff stress is 

S = 2 

∂	

∂ C 

= 2 

∂	

∂ C 

: 
∂ C 

∂ C 

. (22) 

Using the form of the strain energy density described in (21), (22) can be rewritten [17] : 

S = 2 

∂ 	

∂ C 

∂ C 

∂ C 

+ 2 

∂	v ol 

∂ J 

∂ J 

∂ C 

= 2 

( ∑ 

k 

∂ 	

∂ I k 

∂ I k 

∂ C 

) 

∂ C 

∂ C 

+ 

∂	v ol 

∂ J 
J C 

−1 
. (23) 

Then, with (23) , the expression for the total second Piola–Kirchhoff (12) can reach its final form 

S = S + S v ol , (24) 

where the volumetric part from (18) is 

S v ol = d ( J − 1 ) J C 

−1 
, (25) 

where the form of S depends on the material model. 

4. Material models under consideration 

This section presents the Neo–Hookean and GOH [48] material models, alongside the expressions for the deviatoric parts 

of the strain energy densities and the corresponding second Piola–Kirchhoff stress tensors. For hyperelasticity modelling of 

biological tissues, there are various material models [39] . The chosen models are the most used (see [3,4,7,12,41–43,48–

50] etc.) because of their simplicity and the minimal required number of material parameters for their characterization. 

They are also implemented in various software programs, which allows independently verifying research. The presented 

choice helps to consider the material description from two points of view, such as isotropic and anisotropic solids. Material 

laws usually describe anisotropy with exponential functions, as in the so-called GOH model [39] . The first model is the

Neo–Hookean one. The deviatoric part is 

	 = 

1 

2 

c 10 

(
I 1 − 3 

)
. (26) 

The corresponding deviatoric part of the second Piola–Kirchhoff stress has the form 

S = 2 c 10 J 
− 2 

3 

[ 
I − 1 

3 

I 1 C 

−1 
] 
. (27) 

The next material model under consideration is the anisotropic GOH model [48] : 

	 = c 10 

(
I 1 − 3 

)
+ 

c 1 
2 c 2 

(
e c 2 ( I 4 −1 ) − 1 

)
, (28) 

and the corresponding deviatoric part of the second Piola–Kirchhoff stress tensor is 

S = 2 J −
2 
3 

[ 
c 10 I + 

c 1 
2 

e c 2 ( I 4 −1 ) A 0 

] 
− 2 

3 
J −

2 
3 

[ 
c 10 I 1 + 

c 1 
2 

e c 2 ( I 4 −1 ) I 4 

] 
C 

−1 
. 

(29) 

Despite the significant number of papers considering the analysis of tendons, material parameters may differ due to a 

lack of consensus [50,51] . Moreover, the aim of this paper is to present a tool for tendon description. Thus, the authors will

use the parameter values provided in the papers that describe related models [12,50] . 

5. Gauss–Green cubature 

Usually, the standard Gaussian quadrature integration scheme is used for calculations performed with ANCF elements 

[52] . The formula for the integration of any function f ( x, y ) can be applied only to the rectangular � and, according to this

scheme, has the following form: ∫ 
�

f ( x, y ) d� = 

n ∑ 

i =1 

n ∑ 

j=1 

f 
(
x i , y j 

)
w i w j , (30) 

where 2 n − 1 is the polynomial exactness degree of function f over one of the axis line, and w is the so-called weight

of the point. In the case of other simple cross-section types (circular, etc.), the formula (30) might be updated according

to Abramowitz et al. [53] . In this work, we aim to overcome the limitation of simple geometry applications via a combination

ANCF approach with an advanced integration scheme. Here, the method originally proposed by Sommariva and Vianello 
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Fig. 2. An arbitrary domain in initial and local coordinate systems. 

 

 

[38] is discussed for the arbitrary cross-section description. That allows to extend the application of a ANCF element to 

various fields where the arbitrary cross-section of beam-like structures needs to be taken into account. This method allows 

avoiding splitting the area into subdomains, as it does in standard FE approximations with three-dimensional elements, thus 

minimizing the number of elements and approximation errors. 

Let us consider a closed domain �, which has a piece-wise border ∂� with points V i on it: 

V i = (αi , βi ) , i = 1 , . . . , ϕ, 

∂� = [ V 1 , V 2 ] ∪ [ V 2 , V 3 ] ∪ . . . ∪ [ V ϕ , V 1 ] . 
(31) 

Moreover, the lines [ V i , V i +1 ] have several additional control points, such as P i 1 = V i , P i 2 , . . . , P im i 
= V i +1 , or in the bi-

normalized coordinates as P 
ξ
i 1 

= V 
ξ
i 

, . . . , P 
ξ
im i 

= V 
ξ
i +1 

. Subsequently, a parametrization is recalled; for example, the cumulative

chordal formula [38] : 

[ αξ
i j 
, βξ

i j 
] = 

[ 

0 , 

m i −1 ∑ 

j=1 

�t i j 

] 

, | �t i j | = | P ξ
i j+1 

− P 
ξ
i j 

| , j = 1 , . . . , m i − 1 . 

Then, each line [ V 
ξ
i 

, V 
ξ
i +1 

] is tracked by a spline curve S i (t) = (S i 1 (t) , S i 2 (t)) degree of p i , where p i ≤ m i − 1 , ( Fig. 2 ). 

Then the cubature formula with the 2 n − 1 polynomial exactness degree over the � domain has the form 

I 2 n −1 = 

∑ 

λ∈ �2 n −1 

w λ f (ηλ, ζλ) , (32) 

where 

�2 n −1 = { λ = (i, j, k, h ) : 1 � i � ϕ, 1 � j � m i − 1 , 

1 � k � n i , 1 � h � n } , 
and w λ, ηλ and ζλ are: 

ηλ = 

S i 1 (q i jk ) − �

2 

τ n 
h + 

S i 1 (q i jk ) + �

2 

, 

ζλ = S i 2 (q i jk ) , 

w λ = 

�t i j 

4 

ω 

n i 
k 
ω 

n 
h (S i 1 (q i jk ) − �) 

d S i 2 (t) 

d t 
| t= q i jk 

, 

q i jk = 

�t i j 

2 

τ n i 
k 

+ 

t i j+1 + t i j 

2 

, �t i j = t i j+1 − t i j , 

n i = 

{
np i + p i / 2 , p i is even , 

np i + (p i + 1) / 2 , p i is odd . 

Thus, only τ
n i 
k 

, ω 

n i 
k 

and � need to be defined. � is an arbitrary straight line 

� ⊆ R 

2 = [ a, b] × [ c, d] , �(η) ∈ [ a, b] , η ∈ [ c, d] . 
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Table 1 

Border and control points of the square domain example in 

the initial and bi-normalized coordinate systems . 

i V i P i 1 V 
ξ

i 
P 

ξ
i 1 

1 (−0 . 05 , −0 . 05) (0 , −0 . 05) (−1 , −1) (0 , −1) 

2 (0 . 05 , −0 . 05) (0.05,0) (1 , −1) (1,0) 

3 (0.05,0.05) (0,0.05) (1,1) (0,1) 

4 (−0 . 05 , 0 . 05) (−0 . 05 , 0) (−1 , 1) (−1 , 0) 

Fig. 3. Examples of integration points from Tables 2 and 3 for the whole domain with different polynomial exactness degrees n given in the local coordinate 

system. 

Table 2 

The integration points for the side i = 2 of the 

square domain with polynomial exactness de- 

gree 2 n − 1 = 1 ; spline degree p 2 = 2 . 

ω λ ηλ ζλ

0.2778 0.5 −0.1127 

0.4444 0.5 −0.5 

0.2778 0.5 −0.8873 

0.2778 0.5 0.8873 

0.4444 0.5 0.5 

0.2778 0.5 0.1127 

 

 

 

 

 

The choice of � does not have any influence. However, it is necessary in obtaining the nodes and weights relative to it.

τ
n i 
k 

, ω 

n i 
k 

are the nodes and weights, respectively, of the Gauss–Legendre quadrature formula of the exactness degree 2 n i − 1 

on [ −1 , 1] . 

As an example, the method is applied to the square domain with a side length of 0.1 m. Each side of the square is

described via three points; see Table 1 . Therefore, we have i = 4 and m i = 3 . 

Applying the algorithm to, for example, the second side, we have: [ αξ
2 j 

, βξ
2 j 

] = [(0 , 0) , (0 , 1) , (0 , 2)] , j = 1 , 2 , 3 , p 2 ≤ m 2 −
1 = 2 . Then, we apply a spline interpolation to the sequence of points [ αξ

2 j 
, βξ

2 j 
] to obtain the curves S 2 (t) = (S 21 (t ) , S 22 (t )) .

Assuming n = 1 (however, this number can be arbitrarily large), we obtain n 2 = 3 . The next step is to determinate the �

line. After assuming �(η) = 0 , the following sequence of points is obtained: 

The point coordinates and their weights for the sides 1, 3 and 4 can be obtained similarly, and the result can be seen in

Fig. 3 (a). Assuming n = 2 , we can obtain n 2 = 5 and by repeating the whole procedure again, we get Table 3 and Fig. 3 (b). 

Thus, the substitution of the points’ coordinates multiplied by their weights (e.g. Fig. 3 (a)) into deformation characteristic 

functions described in Section 3 , which are in their turn based on the kinematics presented in Section 2 , enables obtaining

the deformation of any arbitrary cross-section beam via a ANCF continuum-based beam element description. 
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Table 3 

The integration points for the side i = 2 of the square domain from 

Table 1 , with the polynomial exactness degree 2 n − 1 = 3 and spline 

degree p 2 = 2 . 

ω λ ηλ ζλ ω λ ηλ ζλ

0.0592 0.7887 −0.0469 0.0592 0.2113 −0.0469 

0.1197 0.7887 −0.2308 0.1197 0.2113 −0.2308 

0.1422 0.7887 −0.5000 0.1422 0.2113 −0.5000 

0.1197 0.7887 −0.7692 0.1197 0.2113 −0.7692 

0.0592 0.7887 −0.9531 0.0592 0.2113 −0.9531 

0.0592 0.7887 0.9531 0.0592 0.2113 0.9531 

0.1197 0.7887 0.7692 0.1197 0.2113 0.7692 

0.1422 0.7887 0.5000 0.1422 0.2113 0.5000 

0.1197 0.7887 0.2308 0.1197 0.2113 0.2308 

0.0592 0.7887 0.0469 0.0592 0.2113 0.0469 

 

 

 

 

 

 

 

 

 

 

 

6. Analytical solutions for beams 

This section derives analytical solutions for isotropic and anisotropic beams with rectangular and arbitrary cross-sections. 

It is assumed that, structures have no holes or other imperfections. 

6.1. Analytical solutions for the rectangular beams 

This section derives the analytical solution for a rectangular beam from the incompressible material model. The volume 

of the beam in the initial configuration denoted as V for rectangular bars can be expressed as 

V = HW L, (33) 

where L is the length (in the longitudinal direction) of the beam-like structure, and H and W are the height and the width

of the beam (in the transverse directions), respectively. After the application of the tensile load N, we assume that initial

length L changes γ times; thus, in the deformable state the length is l = γ L . As we consider the beam as an incompressible

solid, the volume does not change. Hereafter, we have w = 

W √ 

γ and h = 

H √ 

γ , where h and w are the dimensions in the actual

configuration. The Cauchy stress tensor for incompressible solids is [42] : 

σ = −p I + 2 F 

(
∂	

∂ C 

)
F T , (34) 

where 	 is the potential density function (17) , and p is a function of hydrostatic stress, which is not determined. C = F T · F

and B = F · F T are, respectively, the right and left Cauchy–Green tensors before the multiplicative decomposition. 

Based on the assumption (19) , Eq. (34) can be rewritten as [42] 

σ = −p I + 2 

∂	

∂ I 1 
B + 2 

∂	

∂ I 2 
(I 1 B − B 

2 ) + 2 

∂	

∂ I 4 
a � a + 2 

∂	

∂ I 5 
( a � B a + a B � a ) . (35) 

As I 2 and I 5 in (35) are not used in the materials under consideration, namely in the Neo–Hookean and GOH material

models presented in Section 4 , Eq. (35) can be reduced to 

σ = −p I + 2 

∂	

∂ I 1 
B + 2 

∂	

∂ I 4 
a � a . (36) 

p is not established directly from the deformation, but it can be obtained from the boundary conditions. Let us say that

the elongation of the beam happens along one of the axes. Let us name it x (shown in Fig. 4 ). The components of stress

tensors in other directions, i.e. y, z, are zero, and in that case, the expression for the deformation gradient tensor F is: 

F = 

⎡ 

⎣ 

γ 0 0 

0 

1 √ 

γ 0 

0 0 

1 √ 

γ

⎤ 

⎦ 

From this condition, the form of p can be derived and then substituted into σxx . The final expression for tensile force can

be written as 

N = 

∫ h 

0 

∫ w 

0 

σxx d yd z = 

∫ H 

0 

∫ W 

0 

P xx d yd z = P xx HW, (37) 

where P xx is a component of the first Piola–Kirchhoff stress tensor, P = Jσ · F −T . γ , as a part of the deformation gradient

tensor, is included in the expressions of stress tensors σ and P . Then, after obtaining γ from (37) , the final results for the

displacements along the axis x will take the following form: 

u x = (γ − 1) L. (38) 
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Fig. 4. Tensile loading case for ANCF- and ANSYS-based models. 

 

 

 

 

 

 

 

 

 

Thus, we can conclude that the final result depends on the applied load, initial length, material properties, and initial

cross-section area. 

6.2. Analytical solutions for sub-tendon models 

The analytical solutions for beams with arbitrary cross-sections are not straightforward, as in Section 6.1 . To address it,

we will rely on the approach derived in Section 5 . Then, combining formulas (37) and (32) , the final analytical solution takes

the following form: 

N = 

∑ 

λ∈ �2 n −1 

w λP xx . (39) 

7. Numerical examples 

In this section, numerical examples are solved to demonstrate the potential of the ANCF-based approach in comparison 

to the standard commercial software in the simple loading case for the straight and pre-twisted constructions, as well as 

Green’s integration-based method in the description of the continuum-based ANCF beam element (denoted by ANCF using 

Green’s integration). Firstly, we consider beams with rectangular cross-sections in which another end is simply supported, 

e.g. r | x =0 = 0 (to make a valid comparison with analytical solutions) and a tensile load is applied to the other end (in N), as 

presented in Fig. 4 . 

Secondly, for the verification of the whole procedure, the beam elongations of the rectangular cross-sections approxi- 

mated via the Gauss-Green integration scheme under axial loading are analyzed and compared with the results obtained 

earlier. Then, we consider the beams with cross-sections of the human sub-tendons arising from the soleus muscle. 

The results for the ANCF-based models will be compared with the presented analytical solutions and the results ob- 

tained by the commercial finite element software ANSYS. For the comparison, in ANSYS software, the 20-node brick element 

SOLID186 is used. The reason for the usage of the solid element instead of a beam one is the inability of the latter to cap-

ture transversal cross-section deformations. Furthermore, to avoid distortions at the edges of the ANSYS-based model and 

to make the solutions provided by the two approaches more comparable, in the geometrical center of the free end surface,

we create the mass point MASS21, which is assumed to be a node. With this point, we couple the nodes’ displacements on

the free end’s surface along the load direction. The load will be applied on the point. 

This section will also present the convergence analysis. Considering a different number of nodes and nodal position 

coordinates in elements, the total number of DOFs is used in the analysis for comparison. The relative error is defined as 

Relative error = 

|| sol i +1 − sol i || 
sol i +1 

, (40) 

where || · || is defined as L 2 norm. The relative error figures will be also accompanied by sets of parallel lines with different

rates of convergence, i.e., Relative error 
| DOFs −c| = a , where a is the rate of convergence, c is a positive constant, meaning the parallel 

shift of lines from the set along the abscissa. 

7.1. Rectangular cross-section beam 

Here, we consider the isotropic Neo–Hookean material model, with the constants for the strain energy density function 

taken from the earlier work of Obrezkov et al. [17] , c 10 = 0 . 9 MPa. To describe the rectangular cross-section, we take beams

which have the width W = 0 . 1 m, the height H = 0 . 1 m, and the length L = 1 m. Firstly, we consider the straight beam.

Results for the displacements are presented in Table 4 . 
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Table 4 

Comparison of the elongation test results in meter for the straight and pre- 

twisted beams from the Neo–Hookean material model. 

Load [ N] Elongation [m] 

Straight beam Pre-twisted beam 

Analytical ANSYS ANCF ANSYS ANCF 

500 0.018866 0.018865 0.018866 0.018906 0.018866 

2000 0.079830 0.079830 0.079831 0.079987 0.079832 

3500 0.147857 0.147858 0.147861 0.148124 0.147861 

5000 0.223538 0.223538 0.223543 0.223910 0.223543 

8000 0.399475 0.399475 0.399487 0.400052 0.399487 

9500 0.500000 0.500000 0.500017 0.500678 0.500017 

Fig. 5. Relative errors derived from Table 5 for the straight and pre-twisted beams from the Neo–Hookean material model subjected to N = 9 . 5 kN tensile 

force, dashed lines represent the rate of convergence equal to 2. 

 

 

 

 

 

 

 

 

 

 

As one can see, the results are well-matched, but the ANCF-based model results are closer to the analytical ones. The

maximal error for the ANSYS-based model is 0 . 005% and for the ANCF-based model 0 . 003% . Further, we compare the con-

vergence rates for two models via the number of used degrees of freedom against the elongation results. 

We can see from Fig. 5 that in the simple tensile test, the ANCF shows a better convergence rate than the solid element.

The ANCF results are not presented in Table 5 , because the differences between values obtained with the ANCF-based model

are very small and have differences only in the 10th digit. Moreover, it was revealed that even one element with 27 DOFs

is enough to obtain results very close to the analytical solutions. 

The aim of the current paper is to propose an approach for sub-tendon’s cross-section description in the framework of 

the absolute nodal coordinate formulation. There are many studies which provide information related to the pre-twisted 

sub-tendon structure [4–6,54] . Let us take a look at the deformation of the pre-twisted beam with the same physical and

geometrical features. The only difference is that its cross-sections are twisted about the centroidal axis from 0 ◦ at the

clamped end to ψ degrees at the free end. The centroidal axis of the beam remains straight. It is a worth mentioning that

there are several kinds of the pre-twisted structures [55] . In this work, we consider only the linearly pre-twisted structure;

see an example of the pre-twist in Fig. 6 . As described in Section 6 , an analytical solution for pre-twisted structures is

not straightforward. It requires separate careful study especially in the case of hyperelastic anisotropic material models. 

Therefore, the analytical solution has not been included in this work. Instead, a solution provided by commercial finite 

element packages is offered as a reference solution. 
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Table 5 

Elongation results for a number of mesh refine- 

ments for the straight and pre-twisted beams 

from the Neo–Hookean material model sub- 

jected to N = 9 . 5 kN tensile force in meter. 

Elongation [m] 

ANSYS 

DOFs Straight Pre-twisted 

243 0.49999 0.501355 

1275 0.49999 0.500718 

8019 0.50005 0.500679 

14,883 0.49998 0.500682 

56,355 0.49999 0.500681 

107,163 0.50000 0.500678 

Fig. 6. Pre-twisted beam with ψ = 90 ◦ in the initial configuration. 

Table 6 

Comparison of the elongation test results in meter for the straight and pre- 

twisted beams from the GOH material model. 

Load [ N] Elongation [m] 

Straight beam Pre-twisted beam 

Analytical ANSYS ANCF ANSYS ANCF 

500 0.003246 0.003245 0.003246 0.003481 0.004548 

2000 0.012743 0.012743 0.012744 0.013637 0.014701 

3500 0.021792 0.021792 0.021794 0.023289 0.023870 

5000 0.030316 0.030316 0.030320 0.032351 0.032457 

8000 0.045675 0.045674 0.045679 0.048591 0.047902 

9500 0.052526 0.052526 0.052532 0.055795 0.054800 

 

 

 

 

 

 

 

 

As shown by Table 4 , we have the same situation as in the previous numerical. The results given by ANSYS and ANCF

are quite close to each other. Further, we again compare the convergence rates of the two solutions using graphical ( Fig. 5 )

approach. 

As shown before, the ANCF-based model for a pre-twisted structure has a faster convergence rate in comparison to the 

ANSYS-based model. 

Now we consider a beam-type structure described with a so-called GOH material model (28) . The beam has the following

dimensions: the width W = 0 . 1 m, the height H = 0 . 1 m, and the length L = 1 m. The parameters used in this work are taken

from the work of Khayyerin et al. [12] and are c 10 = 30 . 6 kPa, c 1 = 378 . 59 kPa, c 2 = 7 . 8085 , a 0 = [0 , 0 , 1] T . The results for

the tensile tests of the straight beams are presented in Table 6 . 

Table 6 shows the close results for ANCF- and ANSYS-based models, with the ANSYS model being closer to the analytical

solution. Again, let us also compare the convergence rates for two models. 

The results in Fig. 7 show a faster rate of convergence for the ANCF-based model than for the ANSYS-based one, and its

results for the straight beam are not given in Table 7 , because there are only value differences in the 13th digit. Then, we

consider the deformations of the pre-twisted beams from the GOH material model. The geometrical and physical parameters 

are the same as in the previous example. The pre-twisted angle ψ = 90 ◦ (see Fig. 6 ). 

Table 6 shows the agreement between the solutions based on the ANCF and ANSYS approaches. Analogous to the previous 

examples, the solution convergence analysis demonstrates the performance and computational merits of the ANCF-based 

approach in the case of tensile deformation of the anisotropic materials. 
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Fig. 7. Relative errors derived from Table 7 for the straight beams from the GOH material model subjected to N = 9 . 5 kN tensile force, dashed and dotted 

lines represent the rates of convergence equal to 2 and 4, respectively. 

Table 7 

Elongation results for a number of mesh refinements for the 

straight and pre-twisted beams from the GOH material model 

subjected to N = 9 . 5 kN tensile force in meter. 

Elongation [m] 

ANSYS ANCF 

DOFs Straight Pre-twisted DOFs Pre-twisted 

243 0.052530 0.055963 27 0.0547885 

1275 0.052526 0.055738 45 0.0547991 

8019 0.052526 0.055789 81 0.0547997 

14,883 0.052526 0.055790 153 0.0547998 

56,355 0.052526 0.055793 297 0.0547998 

107,163 0.052526 0.055795 585 0.0547998 

Fig. 8. Fibers form for the pre-twisted beam, dashes are enlarged a 0 . 
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Fig. 9. Relative errors for the rectangular ANCF-based beams from the Neo–Hookean material model with standard Gaussian quadrature and Green’s 

integration scheme subjected to N = 9 . 5 kN tensile force, dashed lines represent the rate of convergence equal to 2. 

Fig. 10. Relative errors for the rectangular ANCF-based beams from the GOH material model with standard Gaussian quadrature and Green’s integration 

scheme subjected to N = 9 . 5 kN tensile force, dashed and dotted lines represent the rates of convergence equal to 2 and 4, respectively. 

 

 

 

 

 

 

The comparison between the results in Table 7 and Fig. 7 as well as the other previous graphical and tabular results

presented in this section show that the ANCF-based model provides reliable results for the tensile tests for the beams from

the hyperelastic materials with requirements of fewer degrees of freedom to obtain the solutions. 

7.2. Rectangular cross-section beam via Gauss–Green integration scheme 

Let us again consider the beams with a rectangular cross-section with W = 0 . 1 m, H = 0 . 1 m, and L = 1 m. Firstly, to

compare the results with Section 7 , we take the Neo–Hookean and GOH material models, with the material constants related

to these models. Results for the tests of straight and pre-twisted beams are very close, with the same convergence rate for

the straight beam and approximately the same for the pre-twisted ones (see Figs. 9 and 10 ). 

Table 8 , Figs. 9 and 10 show that for the simplest cross-section (rectangular), the Green-based integration formula agrees 

well with the standard Gaussian quadrature integration scheme. The model based on the Gauss-Green cubature formula 

provides similar results, with approximately the same convergence rate. Thus, one can conclude that the developed element 

based on Green’s integration scheme is a reliable substitution for the ANCF with the standard Gaussian quadrature integra- 

tion scheme in tensile deformations. The results for the Neo–Hookean model are not given in tabular form, as the relative

error is small, with its maximum at about 10 −9 . 

7.3. The Achilles sub-tendon cross-sections 

It was already mentioned that previous studies have mostly considered the Achilles tendons as one-piece constructions 

with simple cross-sections. However, the tendons are a combination of three interconnected sub-tendons with arbitrary 

cross-sections [4–6,54] . Each of the sub-tendons has a complicated shape. To demonstrate the usability of the developed 
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Table 8 

Comparison of the elongation test results of the ANCF-based beams from 

the GOH material model with standard Gaussian quadrature and Green’s 

integration schemes 

Load [ N] Elongation [m] of the ANCF-based beams 

Using Green’s integration Standard integration scheme 

ψ = 0 ◦ ψ = 90 ◦ ψ = 0 ◦ ψ = 90 ◦

500 0.003248 0.004445 0.003248 0.004548 

2000 0.012754 0.014474 0.012754 0.014701 

3500 0.021813 0.023627 0.021813 0.023870 

5000 0.030346 0.032207 0.030346 0.032457 

8000 0.045725 0.047646 0.045725 0.047902 

9500 0.052587 0.054529 0.052587 0.054800 

Fig. 11. The sub-tendon representation for the Type I tendon [6] . 

 

 

 

 

 

 

 

 

 

 

continuum-based ANCF beam element with the arbitrary cross-sectional description, the Achilles sub-tendons under elonga- 

tion are used as numerical examples. There are three types of the Achilles tendon [5] . In this work, we consider two of the

most common ones: Type I and Type II [6] . In our numerical analyses, we extract the geometrical description of sub-tendons

that are connected to the soleus muscle. 

Now we deal with the first type of the Achilles tendon. The exact geometrical data of the sub-tendon are not presented

in Edama et al. [6] . Therefore, we resorted to a CAD software to approximate the points’ positions. The coordinates for the

leftmost point are (17 , 30) . For the rightmost, the highest and the lowest points, the coordinates are, respectively, (191 , 52) ,

(137 , 99) and (99 , 0) . Based on the geometrical results of Yin et al. [50] related to this tendon type, we can obtain the

approximation area of 19.2 mm 

2 and the length of L = 0 . 04 m. The Type I sub-tendon’s cross-section representation can be

seen in Fig. 11 (a) alongside its point approximation in Fig. 11 (b). 

Then, we consider the Type II tendon. The tendon length is L = 0 . 07 m according to Yin et al. [50] . Again, resorting to

CAD software, the approximate position for the leftmost point is (438 , 436) , and (910 , 311) , (593 , 549) , and (649 , 85) for the

rightmost, the highest and the lowest points, respectively. The sub-tendon cross-sectional area equals 47 . 135 mm 

2 , which 

can be seen in Fig. 12 (a) and its approximation at the integration point form is given in Fig. 12 (b). 

Due to the usage of the graphical editor, there is discretization error. For the Type I tendon, it is about 0 . 36 % and for

the Type II tendon 0 . 14 % . 

Moreover, the sub-tendons are the pre-twisted structure [4,5,54] . Here, we consider the straight and pre-twisted beams 

(see Fig. 13 (a) and (b), for the Type I sub-tendon, and Fig. 14 (a) and (b), for Type II). 
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Fig. 12. The sub-tendon representation for the Type II tendon. 

Fig. 13. The sub-tendon representations of the Type I tendon. 

Fig. 14. The sub-tendon representations of the Type II tendon. 
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Table 9 

Comparison of the elongation test results in [mm] for the straight and pre-twisted sub- 

tendons Type I and Type II from the Neo–Hookean material model . 

Elongation [mm] of the straight sub-tendons 

Load [ N] Sub-tendon Type I Sub-tendon Type II 

Analytical ANSYS ANCF Analytical ANSYS ANCF 

10 0.067470 0.067637 0.068295 0.048048 0.048047 0.048098 

20 0.135167 0.135503 0.136798 0.096161 0.961606 0.096262 

30 0.203092 0.203599 0.205511 0.144341 0.144340 0.144492 

40 0.192587 0.271925 0.274436 0.192587 0.192585 0.192788 

50 0.240899 0.340481 0.343575 0.240899 0.240897 0.241149 

60 0.408247 0.409270 0.412929 0.289277 0.289275 0.289577 

70 0.477093 0.478291 0.482499 0.337722 0.337719 0.338070 

80 0.546172 0.547548 0.552288 0.386233 0.386230 0.386630 

90 0.615484 0.617034 0.622297 0.434811 0.434808 0.435256 

100 0.685030 0.686759 0.692528 0.483456 0.483452 0.483949 

Elongation [mm] of the pre-twisted sub-tendons 

Load [ N] Sub-tendon Type I Sub-tendon Type II 

ANSYS ABAQUS ANCF ANSYS ANCF 

10 0.079618 0.074342 0.068297 0.048047 0.048098 

20 0.157767 0.147273 0.136805 0.961606 0.096262 

30 0.234953 0.219354 0.205526 0.144340 0.144492 

40 0.311484 0.290901 0.274462 0.192585 0.192788 

50 0.387556 0.362131 0.343614 0.240897 0.241150 

60 0.463306 0.433186 0.412984 0.289275 0.289578 

70 0.538829 0.504157 0.482574 0.337719 0.338072 

80 0.614198 0.575105 0.552385 0.386230 0.386632 

90 0.689465 0.646091 0.622417 0.434809 0.435259 

100 0.764674 0.717157 0.692674 0.483452 0.483952 

Fig. 15. Relative errors derived from Table 10 for the sub-tendons of Type I and Type II from the Neo–Hookean material model subjected to N = 100 N 

tensile force, dashed and dotted lines represent the rates of convergence equal to 2 and 4, respectively. 

 

 

 

 

 

7.3.1. Neo–Hookean material model 

In this subsection, we repeat the tensile example presented in Yin et al. [50] . We use the Neo–Hookean material model

with the shear modulus equal to c 10 = 103 . 1 MPa undergoing the maximum applied tensile load of 100 N. 

As one can see from Table 9 , the results are in a good agreement for the straight structures. For Type I, the ANSYS-based

model provides results, where the difference between analytical solutions is about 0 . 3% . The difference between the ANCF-

based model and analytical solutions is about 1 . 1% . In the Type II model, the differences are 0 . 001% in the ANSYS-based

model and 0 . 1% in the ANCF-based model. Further, we compare the converge rates for the two models (see Fig. 15 (a) and

(b). 
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Table 10 

Elongation results for a number of mesh refinements for the straight and pre-twisted sub-tendons from the 

Neo–Hookean material model subjected to N = 100 N tensile force in [mm]. 

Elongation [mm] of the straight sub-tendons 

ANCF ANSYS 

DOFs Type I Type II DOFs Type I DOFs Type II 

27 0.692520 0.4839487 2895 0.686781 2331 0.4834519 

45 0.692525 0.4839488 5766 0.686755 3807 0.4834519 

81 0.692526 0.4839488 19,107 0.686755 7251 0.4834519 

153 0.692527 0.4839488 31,443 0.686755 46,749 0.4834520 

297 0.692527 0.4839488 93,618 0.686755 92,529 0.4835619 

585 0.692528 0.4839488 259,641 0.686759 125,568 0.4834520 

Elongation [mm] of the pre-twisted sub-tendons 

ANCF ANSYS ABAQUS 

DOFs Type I Type II DOFs Type I DOFs Type II DOFs Type I 

27 0.69247 0.48394 2898 0.766294 2331 0.4834518 47,292 0.7165 

45 0.69265 0.48395 6123 0.764394 3807 0.4834518 53,556 0.7166 

81 0.69267 0.48395 19,842 0.764600 7251 0.4834519 75,042 0.7167 

153 0.69267 0.48395 31,830 0.764629 46,749 0.4834520 96,132 0.7168 

297 0.69267 0.48395 102,063 0.764666 92,529 0.4835619 146,145 0.7169 

585 0.69267 0.48395 259,074 0.764674 125,568 0.4834520 298,815 0.7172 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is obvious that the ANCF-based models require significantly fewer DOFs for the structures’ descriptions, and can deliver 

accurate results with the discretization of one element. Now, we consider the deformation of the pre-twisted models. There 

are several proposals related to the pre-twisting Handsfield et al. [4] , P ̧e kala et al. [54] . In this work, we consider ψ = 90 ◦. 

A comparison of the elongation results in Table 9 indicates that the results of the two models of the Type I sub-tendon

differ significantly in the case of the pre-twisted structures. The ANSYS-based model gives noticeably higher displacements 

for the body with the complicated cross-section. Meanwhile, the model based on the ANCF approach shows almost the 

same results as the straight beam, with a small difference up to 1 . 1% for the maximal displacement. Due to the significant

discrepancy between the ANCF and ANSYS solutions for the maximum elongation, the tensile test was replicated with an- 

other software, namely, ABAQUS, using the quadratic 20-node continuum element in ABAQUS denoted as C3D20, which is 

similar to the used ANSYS element type. According to Table 9 , the ABAQUS solutions for the elongation are closer to the

ANCF results than the ANSYS solution. Further, we consider the Type II sub-tendon (see Table 9 ). 

For both pre-twisted models, the rate of convergence of solutions are presented in Fig. 15 (b), Table 10 . 

7.3.2. GOH material model 

As mentioned above, the real biological tissues are anisotropic. To simulate such behaviour, we consider the GOH material 

model (28) with the material parameters adopted from Section 7.1 and by applying a tensile load of up to 100. We also

consider the straight and pre-twisted beam models. Let us firstly, consider the Type I sub-tendon, with the total area of

19 . 15 mm 

2 , the length of L = 0 . 04 m [50] , and the material parameters c 10 = 30 . 6 kPa, c 1 = 378 . 59 kPa, c 2 = 7 . 8085 , a 0 =
[0 , 0 , 1] T [12] . 

Table 11 demonstrates that the results are relatively close to each other for the straight sub-tendons. The differences of 

the analytical solutions are about 0 . 14% for ANCF and 0 . 1% for ANSYS. Further, Fig. 16 (a) and Table 12 display the conver-

gence rates for both models of the sub-tendons. 

Now we consider a pre-twisted tendon. Section 7.3.1 and Table 9 showed for the Type I sub-tendon that the ANCF

delivers results close to the analytical results in the case of a straight beam and ABAQUS solutions in the case of a pre-

twisted structure. Therefore, for this type, we consider only one ANCF-based model. In the case of the Type II sub-tendon,

we provide our readers with both models. 

Comparing the results of Table 11 , the pre-twisted anisotropic beam underwent greater elongations under an uniaxial 

load than the straight beam, which can be partly explained by the structure’s longer fibers (see Fig. 8 ). As one can notice,

the difference between the results of the ANCF- and ANSYS-based models is quite small, despite the complicated form and 

sophisticated structure. The comparison of the rate of convergence for that case is presented in Fig. 16 (b). Fig. 16 (b) shows

that the pre-twisted sub-tendon, regardless of its type, could be described with relatively high accuracy with one ANCF- 

based element only. 

8. Limitations 

This research has several limitations. In the study, the geometrical data were extracted with the usage of the graphical

redactor, therefore, the accuracy is questionable. To mitigate this limitation, the error estimation due to discretization errors 

is presented. Additionally, the cross-section area is considered the same along the longitudinal axis. However, it can vary, 

but there is no data to approximate such geometry. The interaction between fluid and solid is also omitted from this work.
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Table 11 

Comparison of the elongation test results in [mm] for the straight and pre-twisted sub- 

tendons Type I and Type II from the GOH material model . 

Elongation [mm] of the straight sub-tendons 

Load [ N] Sub-tendon Type I Sub-tendon Type II 

Analytical ANSYS ANCF Analytical ANSYS ANCF 

10 1.25805 1.2627115 1.25523 0.94460 0.944630 0.94334 

20 2.25806 2.2626906 2.25444 1.82587 1.825854 1.82358 

30 3.02459 3.0299230 3.02145 2.63080 2.630783 2.62774 

40 3.62189 3.6274931 3.61986 3.35677 3.356751 3.35318 

50 4.10099 4.1066824 4.10039 4.00787 4.007843 4.00393 

60 4.49603 4.5017274 4.49700 4.59139 4.591365 4.58726 

70 4.82943 4.8351068 4.83208 5.11556 5.115528 5.11134 

80 5.11627 5.1219006 5.12065 5.58826 5.588231 5.58403 

90 5.36697 5.3725359 5.37312 6.01657 6.016543 6.01239 

100 5.58893 5.5944432 5.59685 6.40660 6.406570 6.40251 

Elongation [mm] of the pre-twisted sub-tendons 

Load [ N] Sub-tendon Type I Sub-tendon Type II 

ANCF ANSYS ANCF 

10 1.490723 1.022816 1.077669 

20 2.506607 1.976414 1.978382 

30 3.283207 2.840383 2.799663 

40 3.887926 3.615008 3.541619 

50 4.373086 4.305867 4.208678 

60 4.773447 4.920263 4.808188 

70 5.111770 5.473186 5.348351 

80 5.403297 5.968654 5.837045 

90 5.658558 6.416557 6.281320 

100 5.885057 6.823999 6.687249 

Fig. 16. Relative errors derived from Table 11 for the sub-tendons of Type I and Type II from the GOH material model subjected to N = 100 N tensile force, 

dashed and dotted lines represent the rates of convergence equal to 2 and 4, respectively. 

 

 

 

 

 

 

Nonetheless, it can be added with the usage of poroelasticity as it is done for the rat Achilles tendons in Khayyerin et al.

[12] , Khayyeri et al. [56] . The material time-dependency is not included, however, the compatibility of the ANCF element and

viscoelastic models was successfully considered in Obrezkov et al. [21] . Additionally, the current research aims to provide a 

tool for the description of beam-like structures, and such an important issue as uncertainties of parameters of the models 

is not considered here. Even with the limitations imposed on the geometry and physical parameters, it is shown, that the

elongation results for the pre-twisted sub-tendon Type I differ for ABAQUS-, ANCF- and ANSYS-based models, although the 

two first are close to each other. Moreover, the material model used in this study could be still approximated to be closer

to the real tendon’s tissues. In our study, the fibers of the anisotropic model follow the pre-twist angle given for the whole

model. However, there are studies, as [54] , that show fiber pre-twist for the sub-tendons can differ from the pre-twist of
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Table 12 

Elongation results for a number of mesh refinements for the straight and pre- 

twisted sub-tendons Type I and Type II from the GOH material model subjected 

to N = 100 N tensile force in [mm]. 

Elongation [mm] of the straight sub-tendons 

ANCF ANSYS ANSYS 

DOFs Type I Type II DOFs Type I DOFs Type II 

27 5.59689 6.40251 2895 5.596247 2331 6.414917 

45 5.59691 6.40251 5766 5.594443 3807 6.406605 

81 5.59692 6.40251 19,107 5.596247 7251 6.406590 

153 5.59692 6.40251 31,443 5.594445 46,749 6.406572 

297 5.59693 6.40251 93,618 5.594443 92,529 6.406570 

585 5.59690 6.40251 259,644 5.594443 125,568 6.406570 

Elongation [mm] of the pre-twisted sub-tendons 

ANCF ANSYS 

DOFs Type I Type II DOFs Type II 

27 5.882218 6.685200 3807 6.817963 

45 5.884770 6.686978 7251 6.821308 

81 5.885005 6.687203 51,039 6.824065 

153 5.885005 6.687236 101,019 6.825072 

297 5.885057 6.687249 125,568 6.823999 

 

 

 

 

 

the model. Another important feature of the biological tissue, presence of the inner stresses can be added into the model

via inclusion of the pre-strain field [57] . 

9. Conclusion 

This work applies the continuum-based ANCF beam element to analyze the deformation of the human Achilles sub- 

tendons under tensile loading. To describe the sub-tendons, a continuum-based ANCF beam element with an arbitrary cross- 

section description has been developed based on the Gauss-Green cubature integration formula. The developed element is 

verified analytically and numerically with commercial finite element software using three-dimensional continuum elements. 

The material parameters were taken from the works of other researchers. It was found that the developed ANCF element 

with an arbitrary cross-section description performed well in all numerical tests. Furthermore, the computational advantage 

of the proposed ANCF-based approach for the deformation analysis of the Achilles sub-tendon in terms of the convergence 

rate against commercial software was demonstrated. Moreover, it was found that if the sub-tendons are pre-twisted, the 

ANCF-based beam model provides more reliable solutions than commercial finite element software does. It can be concluded 

that the developed ANCF elements with an arbitrary cross-section description based on the Gauss-Green integration scheme 

is a reliable and computationally efficient approach for analyzing the deformation of Achilles sub-tendons. The developed 

element has potential also in other applications with beam-like flexible structures, such as in the modelling of soft robotics, 

where flexible beam-like structures often appear and can now be described in more realistic forms. 
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Appendix A. Cross-sectional deformation 

The continuum-based ANCF beam are able to capture the cross-section deformations due to their kinematic description 

given in Section 2 . To demonstrate it, the results of the deformed cross-section areas at the applied force end are gathered

in Table A.13 . To obtain the values of the deformed ANSYS-based model due to the absence of the procedure in the soft-

ware postprocessor the following procedure has been done: the software was put into the preprocessor again; using saved 

nodal positions the form was generated with SURF154 surface skin elements; the recreated area was calculated with the 

preprocessor command. 

As one can see from Table A.13 , the results for the tendon Type II and rectangular cross-sections are in good agreement.

However, the results of the ANSYS-based model for the Type I tendon are significantly different from the analytical and 
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Table A1 

Cross-sectional areas before and after deformation in [mm 

2 ] . 

Cross-sectional areas [mm 

2 ] 

Cross-section type Material model Pre-twist angle Area before deformation Area after deformation 

Analytical solution ANSYS solution ANCF solution 

Rectangular Neo–Hookean ψ = 0 ◦ 10 4 6 . 667 × 10 3 6 . 667 × 10 3 6 . 667 × 10 3 

Rectangular Neo–Hookean ψ = 90 ◦ 10 4 – 6 . 667 × 10 3 6 . 667 × 10 3 

Rectangular GOH ψ = 0 ◦ 10 4 9 . 5 × 10 3 9 . 501 × 10 3 9 . 501 × 10 3 

Rectangular GOH ψ = 90 ◦ 10 4 – 9 . 5142 × 10 3 9 . 482 × 10 3 

Type I Neo–Hookean ψ = 0 ◦ 19.15 18.877 20.957 18.949 

Type I Neo–Hookean ψ = 90 ◦ 19.15 – 21.009 18.949 

Type I GOH ψ = 0 ◦ 19.15 16.849 19.564 16.909 

Type I GOH ψ = 90 ◦ 19.15 – – 16.224 

Type II Neo–Hookean ψ = 0 ◦ 47.135 46.812 46.121 46.884 

Type II Neo–Hookean ψ = 90 ◦ 47.135 – 46.125 46.884 

Type II GOH ψ = 0 ◦ 47.135 43.183 43.161 43.252 

Type II GOH ψ = 90 ◦ 47.135 – 43.357 41.695 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ANCF-based solutions. That indicates the limited ability of the commercial software to reproduce this sophisticated tendon 

form. 
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