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Predicting ACL Injury Using Machine
Learning on Data From an Extensive
Screening Test Battery of 880 Female
Elite Athletes

Susanne Jauhiainen,*y MSc, Jukka-Pekka Kauppi,y PhD, Tron Krosshaug,z PhD,
Roald Bahr,z PhD, Julia Bartsch,z BSc, and Sami Äyrämö,y PhD
Investigation performed at University of Jyväskylä, Jyväskylä, Finland

Background: Injury risk prediction is an emerging field in which more research is needed to recognize the best practices for accu-
rate injury risk assessment. Important issues related to predictive machine learning need to be considered, for example, to avoid
overinterpreting the observed prediction performance.

Purpose: To carefully investigate the predictive potential of multiple predictive machine learning methods on a large set of risk
factor data for anterior cruciate ligament (ACL) injury; the proposed approach takes into account the effect of chance and random
variations in prediction performance.

Study Design: Case-control study; Level of evidence, 3.

Methods: The authors used 3-dimensional motion analysis and physical data collected from 791 female elite handball and soccer
players. Four common classifiers were used to predict ACL injuries (n = 60). Area under the receiver operating characteristic curve
(AUC-ROC) averaged across 100 cross-validation runs (mean AUC-ROC) was used as a performance metric. Results were con-
firmed with repeated permutation tests (paired Wilcoxon signed-rank-test; P \ .05). Additionally, the effect of the most common
class imbalance handling techniques was evaluated.

Results: For the best classifier (linear support vector machine), the mean AUC-ROC was 0.63. Regardless of the classifier, the
results were significantly better than chance, confirming the predictive ability of the data and methods used. AUC-ROC values
varied substantially across repetitions and methods (0.51-0.69). Class imbalance handling did not improve the results.

Conclusion: The authors’ approach and data showed statistically significant predictive ability, indicating that there exists infor-
mation in this prospective data set that may be valuable for understanding injury causation. However, the predictive ability
remained low from the perspective of clinical assessment, suggesting that included variables cannot be used for ACL prediction
in practice.

Keywords: predictive methods; machine learning; prediction significance; cross-validation; motion analysis; ACL injury; team
sports

Anterior cruciate ligament (ACL) injuries are a major con-
cern in team and cutting sports, making injury prevention
essential and prediction alluring.33,38 However, while mul-
tiple potential risk factors have been suggested in the liter-
ature, whether a future ACL injury can be predicted is still
a matter of controversy. Advances in data collection and
storage, as well as computational power, have opened
new possibilities, but there are several potential pitfalls
and, consequently, also a number of important guidelines
to consider to obtain reliable and valid results. The main
pitfall is confusion around what is actually considered

prediction in sports injury research and the difference
between explanatory and predictive analyses.

Sports injury research has mainly been based on tradi-
tional statistical inference43 with a focus on explaining or
understanding phenomena of interest in the data sample
at hand. This approach is also referred to as explanatory
analysis.5,45 The boundary between explanatory analysis
and machine learning (ML) is not at all unambiguous, but
in ML, the generalizability of a model usually takes prece-
dence over its explainability. Generalizability means the
ability to make accurate predictions on new unseen observa-
tions, and this approach is also referred to as predictive
analysis.4,45 Predictive analysis requires testing generaliz-
ability on carefully selected independent (test) data (ie,
examples not involved in model fitting or selection).

Several injury prediction studies have been conducted
in the past using biomechanical data in combination
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with, for example, anthropometrics and strength measure-
ments.17,33,34 However, these studies have several limitations,
making their validity questionable. First, they predict knee
abduction moments as a surrogate for injury based on the
assumption that high knee abduction moments predict ACL
injury risk. This assumption, however, is based on explana-
tory analyses of data from a pilot study with \10 injury
cases,16 which is inadequate. Risk factors recognized in
explanatory studies only demonstrate a statistical association
with injuries but offer no evidence that they have predictive
ability.1,43,45 Moreover, the biomechanical data that these
models are based on originate from a vertical drop jump
(VDJ) task. Other, much larger studies have shown small
or no associations between biomechanics (including knee
abduction moments) and injury risk in the VDJ task.21,47

Another important pitfall in prediction is inadequate
assessment of the generalizability of the predictive models.
Many ML methods have practically infinite ability to fit in
complex phenomena present in the data, given sufficient
computational resources. On the other hand, this high
learning capacity risks overfitting, and therefore it is criti-
cal to test the generalizability of a predictive model properly
before it is implemented into practice.22 Importantly, the
role of chance results should be considered, ensuring that
the predictive performance is better than chance and not
just a singular random result.18 This is essential with small
and/or high-dimensional (ie, large number of variables) data
sets as well as imbalanced data, which often is the case in
sports injury prediction. For example, in neuroscience the
problem of chance findings has been widely recognized
and permutation tests have been suggested for confirming
findings.8 Moreover, the use of cross-validation, the most
popular way to estimate model generalization ability in
many fields, introduces randomness to the analysis and
results can vary widely based on the fold division,12 as
was apparent in a recent hamstring injury prediction
study.44 An example in which these pitfalls were not consid-
ered is a recent ACL injury prediction study that did not
exclude the possibility of a chance result.52 While their
study uses predictive analysis (ie, independent test data to
assess generalizability), the high test accuracy (92%)
against notably lower validation accuracy (70%) strongly
suggests overfitting to test data either by (unconsciously)
repeatedly resampling the test data set or purely by chance.

Obviously, it is also important to consider what types of
data are best for injury prediction use.19 No matter how
appropriately the ML process is planned, no method is
able to describe phenomena that are not captured in the
data in the first place. Sports injury causation is

multifactorial, indicating that a large number of variables,
covering different properties and their interrelationships,
should be considered.25,28 With modern computational
power, ML enables efficient analysis of a large amount of
data and variables, including their interactions and nonlin-
ear relationships, and is therefore thought to have potential
in most fields, including sports injury research.40,41 The pre-
dictive ability of previously recognized factors needs to be
assessed in different settings and populations. However,
periodic screening tests might not be sufficient for sports
injury prediction,1 and thus far only a few studies exist
and results are variable.19,25,42,44

Therefore, the purpose of this study was to investigate
the predictive ability of data from a large prospective
ACL injury screening study, taking into account the effect
of chance results and randomness from cross-validation.
We applied a recently published ML approach19 and
extended the ML hypothesis space by applying different
methods and preprocessing techniques for handling class
imbalance in the data.

METHODS

Participants

The data used in this study were originally collected for
a cohort study designed to examine risk factors for noncon-
tact ACL injuries in female elite handball and soccer play-
ers.21,32,35,38,46,49,50 A total of 451 soccer and 429 handball
players (age, 21 6 4 years; height, 170 6 6 cm, weight, 66
6 8 kg) were tested between the years 2007 and 2015. For
the 2007 season, handball players with a first-team contract
who were expected to play in the premier league were eligi-
ble for participation. Additionally, new players were invited
for preseason testing when new teams advanced to the pre-
mier league between 2008 and 2014. From 2009, soccer
players from the female premier league were also included.
The study was approved by the regional committee for med-
ical research ethics, the South-Eastern Norway Regional
Health Authority, and the Norwegian Social Science Data
Services, Norway. Players signed a written informed con-
sent form before inclusion (including parental consent for
players aged \18 years).

Data Collection

At baseline, each player participated in a comprehensive
set of screening tests designed to assess potential
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demographic, neuromuscular, biomechanical, anatomic,
and genetic ACL injury risk factors. The screening tests
were conducted at the Norwegian School of Sport Sciences
in the preseason, June through August for handball and
February through March for soccer. A baseline question-
naire was completed on player characteristics, elite playing
experience, and history of any previous injuries to the
ACL. Additionally, a variety of tests measuring anthropo-
metrics, strength, flexibility, and balance were conducted
(Figure 1). Included variables are described in Appendix
Table A1 (available in the online version of this article),
and for a more detailed description of the tests see Mok
et al31 and Pasanen et al.37

Three-dimensional motion analysis was carried out on
VDJ and cutting tasks. The VDJ was performed from
a 30-cm box. Players were instructed to drop off the box
and perform a maximal jump upon landing with their
feet on 2 separate force platforms (LG6-4-1; Advanced
Mechanical Technology Inc). For more details on the VDJ
protocol and setup see Krosshaug et al.21 The sidestep cut-
ting task was sport specific (Figure 2); the handball players
performed a handball-specific faking maneuver involving
a static human defender, while the soccer players per-
formed a sidestep cutting task with a soccer through-
pass. For a more detailed description of the cutting proto-
cols see Mok et al.31 Full-body kinematics were captured
with 35 reflective markers attached over anatomic land-
marks on the legs, arms, and torso.20 From 2008 to 2011,
2 additional markers (left and right iliac crest) were used
for those players whose markers on the left and right ante-
rior superior iliac spine were occluded. From 2012 and
onward, the crest markers were included for all players
but only used in cases in which the anterior superior iliac

spine markers were occluded. Between 2007 and 2012,
eight 240-Hz infrared cameras (ProReflex; Qualisys) were
used together with 2 force platforms collecting at 960 Hz.
From 2012, an upgraded 16,480-Hz camera system (Oqus
4; Qualisys) was used. Marker trajectories were calculated
and tracked with the Qualisys Track Manager. For a more
detailed description of the motion data collection and vari-
able extraction, see Krosshaug et al.

We recorded all complete ACL injuries among the tested
players through May 2015, primarily through semiannual
contact with the participating teams (manager, coach,
medical staff). If any acute knee injuries occurring during
regular team training or competition were reported, we
contacted the injured player by telephone to obtain
detailed medical data and a description of the injury situa-
tion. All ACL injuries were verified by magnetic resonance
imaging and/or arthroscopy. The injury mechanisms were
self-reported as contact (ie, direct contact to the lower
extremity), indirect contact (ie, contact with other body
parts), or noncontact, and these were categorized into 2
groups: noncontact/indirect contact or contact.36

Data Preprocessing

All data analyses were performed with MATLAB R2018b
(MathWorks Inc) and classifiers run with the Statistics
and Machine Learning Toolbox 11.0. For the 3-dimensional
motion analysis data as well as other variables with multi-
ple trials or measurements (star excursion, hip abduction,
navicular drop), a mean of trials was calculated for analy-
ses. For generalized joint laxity, the sum of the 9 tests
included was calculated. The variables that had been

Figure 1. Examples of the conducted tests (hip anteversion, knee joint laxity [KT-1000], hip abductor isometric strength, quad-
riceps/hamstrings isokinetic strength, leg press, marker-based static anthropometric measures, knee recurvatum, single-leg bal-
ance, navicular drop/pronation, vertical drop jump, single-leg squat, star excursion test, single-leg drop stabilization).
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measured separately for the right and left legs were trans-
formed to dominant (leg used for kicking a ball) and non-
dominant leg variables, and participants with missing
dominance information were dropped (n = 14; 0 injured).
Participants with a contact ACL injury were excluded (n
= 9) to focus prediction on noncontact and indirect contact.
Additionally, players with more than 50% of missing data
(n = 66; 5 injured) were excluded, and finally, the data
set used for analyses included 791 players with 60 ACL
injuries and 283 variables.

To ensure validity of measurements, the most obvious
outliers were identified with MATLAB’s isOutlier function,
as those that were >2 scaled median absolute deviations
from the variable median (see function documentation for
definition). If the function indicated possible outliers,
visual confirmation was done to decide whether a value
was a clear mistake or measurement error in data. In
this case, only that 1 value from the particular participant
was discarded. Visual analysis is a common preprocessing
approach, and here it ensures as little data as possible are
excluded in the cleaning process. Altogether, 47 values
(0.0001%) from 16 players were discarded, with only 4 val-
ues being from injured players.

After discarding outliers, 9029 missing values (4.01% of
total) existed across 478 players. These were imputed with
the k-nearest-neighbor (knn) imputation with a k value of
10. Knn imputation works by finding the k most similar
(measured with Euclidean distance in this study) observa-
tions and imputing the missing value with a summary
metric (mean used in this study) from these k similar play-
ers. For weight and height, if a measured value was miss-
ing, a linear regression approach was used to impute
a value based on the self-reported values.

Continuous variables were normalized to have a mean
of 0 and SD of 1 for each column, while discrete variables
were centered around 0. In addition, variations in data
between sport (ie, different cut test in soccer vs handball)
as well as different test years, to account for potential
minor differences in testing procedures, were considered

in normalization by including sport and test year in addi-
tion to labels in the stratified cross-validation split and
normalizing each test group separately.

Choice of Classifiers

Four commonly used methods, random forest, L2-regular-
ized logistic regression, and support vector machines
(SVMs) with both linear and nonlinear kernel, were chosen
as binary classifiers in our analyses. Random forest is
a nonlinear classification and regression method that has
become a standard data analysis tool in different fields
such as medicine and bioinformatics3 and has been used
in sports injury research as well.6,19,25,44 It is based on
building an ensemble of multiple decision trees.4 The
model (TreeBagger MATLAB function) was trained with
a hundred trees,4 and Bayesian optimization48 with baye-
sopt function was used to select the minimum number of
observations per tree leaf (from 50 to 150) and the number
of predictors to sample at each split (from 1 to 100). L2-
regularized logistic regression, in turn, is a linear classifier
that shrinks regression coefficients by penalizing the
model with the L2 norm.13 Regularization can discard
irrelevant variables and possibly increase predictive per-
formance and decrease overfitting of a model.13 It also
works well with highly correlated variables.27 The model
was trained with MATLAB’s fitclinear function, and the
optimal amount of penalization was estimated with Bayes-
ian optimization from the default values.

SVMs are powerful and flexible classifiers22 trying to
find a hyperplane that best separates the classes from
each other. They have previously been used to model non-
linear patterns and interactions in sports injury
research.6,44 In this study, we trained the SVM models
with the fitcsvm function with both linear and nonlinear
(rbf) kernel to assess both interactions. Hyperparameters
for kernel scale (as default values from 0.001 to 1000) as
well as box constraint (as default values from 0.001 to
1000) were selected with Bayesian optimization.

Figure 2. The testing situation of (A) the handball-specific sidestep cutting task and (B) the soccer-specific sidestep cutting task.
Reprinted from Mok KM, Bahr R, Krosshaug T. Reliability of lower limb biomechanics in two sport-specific sidestep cutting tasks.
Sport Biomech. 2017;17(2):157-167.31 Reprinted with permission of the publisher (Taylor & Francis Ltd, http://www.tandfonline.com).
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Data Imbalance Handling

Data imbalance means that there are clearly more observa-
tions from 1 (or more) class (majority class) than the other(s)
(minority class). It is a very common and troublesome issue
in the ML field,23 and multiple different approaches to han-
dle data imbalance have been developed and applied, includ-
ing in the sports injury prediction field recently.10,25,43,44

Random undersampling simply means that the majority
class is limited by randomly deleting observations from it,
resulting in a balanced but smaller data set. Random over-
sampling works similarly but instead increases the observa-
tions in the minority class by randomly duplicating them,
thus making the data set larger. The Synthetic Minority
Oversampling Technique (SMOTE) can be used to increase
the minority class observations in a balanced way.7 It works
by utilizing the existing minority examples as input and cre-
ates new observations by combining variables based on the
knn algorithm. In cost-sensitive learning, the cost of mis-
classifying a minority observation is set higher than the
cost of misclassifying a majority example. For example, in
sports injury prediction (or medicine in general), not identi-
fying an injury can be considered more harmful than incor-
rectly predicting some healthy athletes as injured. In
practice, this is often achieved by providing the trained
model a weight vector,24 in which a higher value is set for
observations corresponding to the minority class.

In this study, we experimented with the effect of ran-
dom undersampling, SMOTE, as well as class weight vec-
tor in the training phase on the injury prediction task.
For SMOTE, a MATLAB implementation from the MAT-
LAB Central File Exchange26 based on the original paper
by Chawla et al7 was used. For training class weights,
each of the used methods contains an inbuilt hyperpara-
meter option Weights, and a 10 times higher cost was set
for the minority class.

Validation

In predictive analysis, a model’s generalizability to new
data has to be assessed with independent test data, that
is, data that have not been used in the training of the
model.22 The most common way to do this is by splitting
data into separate training and testing data or by cross-
validation. K-fold cross-validation is based on randomly
splitting the data into K sets and leaving each set at
a time for testing while the rest of the sets are used to train
a model. In general, k-fold is a common approach when
data size is limited, as the complete data can be utilized
for training the model.13 In this study, we used 5-fold
cross-validation.13 Normalization and imputation of the
training data were done separately inside each fold, and
the test data were then normalized using coefficients esti-
mated from the training data.

In addition, the model performance metric needs to be
chosen carefully, especially with imbalanced data sets,
which is often the case in sports injury prediction. Accuracy,
for example, is not suitable with a class imbalance, as sim-
ply assigning all observations to the major class will yield
high results. We assessed test performance with area under

the receiver operating characteristic curve (AUC-ROC).11 It
is based on both true-positive and false-positive rates, and it
can be used with imbalanced class distributions,11,22 which
was the case in our data. The value can be defined as excel-
lent (0.90-1), good (0.80-0.89), fair (0.70-0.79), poor (0.60-
0.69), or fail (0.50-0.59).21,29

Confirmatory Data Analysis

To avoid singular chance findings and ensure that the
achieved results are not just due to some noise or fluctua-
tions in data but actually present patterns significantly
above a chance level, permutation tests with multiple repe-
titions can be utilized.8 By repeating the analyses, the var-
iation in results by cross-validation can be assessed. In
practice, permutation tests are done by training a reference
model, randomly shuffling the labels in the training phase,
and then comparing it with the actual model trained with
true labels. If the true models are consistently better than
the random models across repetitions, the results are con-
firmed not to be observed by chance or just due to some
noise in the data. In this study, the analysis was repeated
a hundred times for both true and random models, and Wil-
coxon signed-rank tests were used for a paired comparison
to confirm the significance of achieved predictive perfor-
mance.19 The limit of significance was set to a = .05, and
in each cross-validation run, the fold divisions were kept
the same for random and true models to allow fair pairwise
comparison. Permutation tests were not run for the data
imbalance handling analyses.

RESULTS

The mean AUC-ROC predictive ability was relatively con-
sistent between the various ML methods (Table 1). Linear
SVM without any imbalance handling achieved the highest
mean AUC-ROC value of 0.63. For all methods, the AUC-
ROC values were higher (P \ .001) with the real responses
than with the random models. With all 4 classifiers, there
was a notable difference between the minimum and maxi-
mum AUC-ROC values achieved across repetitions, caused
by the random cross-validation splits.

The training AUC-ROC values were very high with the
random forest and SVMs, but with logistic regression, reg-
ularization seemed to control overfitting better. The test
AUC-ROC values were, however, relatively similar despite
differences in the training AUC-ROC. Additionally, prepro-
cessing to handle class imbalances, that is, using SMOTE,
class weight, and random undersampling, did not improve
the prediction results, but results seemed similar or even
slightly worse depending on the technique.

DISCUSSION

Main Findings and Clinical Relevance

This study investigated the predictive ability of a large pro-
spective ACL injury screening data set with 60 injury
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cases, using 4 common ML algorithms, repeated cross-
validation runs, and permutation tests that will ensure
reliable, consistent, and confirmed results. The results
demonstrate that, even with an extensive data set, includ-
ing anthropometric, clinical, neuromuscular, genetic, and
sophisticated 3-dimensional biomechanical measurements,
ACL injury prediction was poor (mean AUC-ROC, 0.63 for
the best method). Thus, while statistically significant pre-
dictive ability was discovered, it remained too low for use
in clinical risk assessment. Importantly, our results indi-
cate that the included variables, even those identified as
risk factors in previous explanatory studies, are not able
to predict ACL injuries in practice. Nevertheless, associa-
tions in this prospective data set may still be valuable for
understanding injury causation, but further analysis on
variables is outside the scope of this paper.

Methodological Considerations

The wide range of AUC-ROC values across repetitions is
notable (Table 1) and demonstrates that the use of a single
random cross-validation split can lead to highly varying
interpretations based on the same data and analyses,
even with the current data set, which is by far the largest
prospective cohort study for ACL injury in a team/ball
sport. This variability was clearly visible in the results of
Ruddy et al44 as well. As cross-validation is based on ran-
domly splitting the data into k sets, each model is trained
on a different, random subsample of data and results vary.
Repeated analysis can be used to handle and investigate
the variation in results and reach more robust and reliable
estimates for the data. Utilizing a sufficient number of rep-
etitions is essential for obtaining a reliable estimate (eg,
average AUC-ROC) for the predictive performance. Addi-
tionally, noise in data introduces randomness in results
as methods might capture the noise in prediction. Noise
is inevitable in any real-world data,15 and assessing the
significance of results is especially important with small
data sets or with lower-performance results8 to make
sure they reflect a truly present phenomenon. Our results
were confirmed with permutation tests as suggested in
Combrisson and Jerbi8 and Jauhiainen et al,19 and despite
relatively low predictive performance, there was predictive
ability since the results were significantly above chance

level. This confirms the presence of true phenomena, and
since these relationships were captured by all models, we
can be relatively confident in these results.

Importantly, studies should also report predictive perfor-
mance estimates for test and/or validation data to make reli-
able interpretations and rule out chance results. In our study,
for 3 of the methods—namely, random forest and SVMs—the
training AUC-ROC was noticeably higher than the test AUC-
ROC. In general, random forests should be resilient to overfit-
ting, as the combination of multiple decision trees reduces the
variance of individual trees.4 With a hundred trained trees
and the minimum leaf size of 50, this training AUC-ROC
was surprisingly high, as more trees as well as larger mini-
mum leaf size values should reduce overfitting.4,14 With the
SVMs, the box constraint parameter can be used to control
overfitting in MATLAB so that larger values lead to fewer
support vectors. Looking at the parameter values chosen by
optimization, the values seem relatively high (in the level of
hundreds from 0.001 to 1000) for both SVMs, meaning the
separation between classes remains simpler and smoother
instead of overfitting. Thus, parameter selection for all meth-
ods seems appropriate despite high training AUC-ROCs. Pre-
vious studies show that high or near-perfect training AUC-
ROC values do not cause a generalization problem with clas-
sifiers used in the current study, that is, random forest and
SVM.2,9 Additionally, regularization seems to acceptably con-
trol overfitting of the logistic regression in our results, while
the test AUC-ROC values are very similar compared with
the other methods. This indicates that the predictive perfor-
mance of our models was likely not largely affected by the
high training AUC-ROC values.

The use of imbalance handling techniques before predic-
tion did not improve the predictive performance. This could
possibly be because of existing samples not being separable
to begin with, in which case any resampling techniques
would naturally not improve prediction. However, our
AUC-ROC values were significantly higher than chance,
indicating that some class separation is present in the
data. In the studies by Ruddy et al44 and López-Valenciano
et al,25 the use of SMOTE did not improve injury predic-
tion, but random undersampling yielded slightly better
results in the study by López-Valenciano et al. It seems
that more studies are needed to assess the effect and neces-
sity of imbalance handling in sport injury prediction.

TABLE 1
AUC-ROC Values Over the 100 Repetitionsa

Logistic Regression Random Forest Linear SVM Nonlinear SVM

Test 0.61 6 0.02 0.57 6 0.02 0.63 6 0.02 0.61 6 0.03
Min-max, range 0.57-0.65 0.51-0.63 0.55-0.67 0.53-0.69
Permuted 0.58 6 0.03 0.52 6 0.04 0.50 6 0.04 0.49 6 0.04
Training 0.86 6 0.01 0.98 6 0.01 0.96 6 0.01 0.98 6 0.02
SMOTE 0.60 6 0.02 0.56 6 0.02 0.58 6 0.02 0.59 6 0.02
Weighted 0.61 6 0.02 0.58 6 0.03 0.59 6 0.02 0.60 6 0.02
Undersampling 0.57 6 0.03 0.50 6 0.00 0.57 6 0.03 0.58 6 0.03

aData are presented as mean 6 SD area under the receiver operating characteristic curve (AUC-ROC), unless otherwise indicated. Per-
muted row correspond to the values for the random model and training row to the values for the training data. SMOTE, Synthetic Minority
Oversampling Technique; SVM, support vector machine.
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Using ML for Predicting Sport Injuries: Current Status

Recently, there have been a few examples of using ML
approaches to predict sports injuries from data. Ruddy
et al44 tested the predictive ability of previously recognized
hamstring strain injury risk factors in 2 data sets with 186
and 176 elite Australian footballers and found them to
have a failed predictive power (median AUC-ROCs, 0.58
and 0.52). Jauhiainen et al19 predicted knee and ankle
injuries from a data set with 314 young basketball and
floorball players and obtained an AUC-ROC value of
0.65. López-Valenciano et al25 used screening data with
personal, psychological, and neuromuscular measures to
predict muscle injuries in 122 male professional soccer
and handball players and found AUC-ROC values up to
0.747. Their study, however, did not assess the stability
of random k-fold division and only reported results from
a singular repetition. Considering the randomness from
cross-validation, class imbalance (23.7% injured), and
extensive testing of different approaches, the possibility
of chance findings would be important to consider in their
results.18 Rommers et al42 achieved both precision (fraction
of true injuries among those predicted as injuries) and
recall (fraction of injuries that were correctly predicted)
of 0.85 when predicting acute and overuse injuries in 734
elite youth soccer players with 20% holdout test data.
This study was different from all previous studies in its
age range (11.7 6 1.7 years) as well as the fact that no class
imbalance existed with 368 injured players (50.1% of play-
ers). They reported that the 5 most important variables
that predict injury were anthropometric measures. The
results indicate that injuries are possibly easier to predict
accurately among teenagers during the growth spurt as
well as if a more balanced data set can be collected. Taborri
et al51 predicted ‘‘ACL injury risk’’ (Landing Error Scoring
System [LESS] score, .5)30 with data from inertial sensors
and optoelectronic bars and obtained an accuracy and F1
score of 0.96 and 95%, respectively. However, the LESS
score has been shown to have no association with ACL
injury with biomechanical data,47 and its validity with
wearable data has not been investigated previously. In
addition, their study had a small sample size (N = 39)
and did not assess the stability of random k-fold division
and the possibility of chance results.

Using ML for Predicting Sports Injuries: Future
Considerations and Conclusions

Considering the scale of different classification and prepro-
cessing methods investigated in our analyses, it is possible
that other tests or variables than the ones we have mea-
sured would be better for predicting ACL injuries. It has
been suggested that the VDJ test is not a suitable screen-
ing test for ACL injury in female soccer and handball play-
ers.21,32,38,49 Additionally, training and match loads were
not recorded in our data. It is also possible that 1 single
screening test is not suitable for injury prediction, as base-
line variables might change during follow-up.28 However,
in the current data set it has previously been reported
that changes in landing biomechanics were minor and

that the consistency was high 2 years apart.21,49 It has
been suggested that future studies exploit more continuous
monitoring of athletes and consider short-term changes in
physical variables and training loads.19 Recent studies
indicate that wearable sensors and smartphone applica-
tions could be used to replace traditional laboratory motion
data collection.39 Additionally, there are predictive studies
showing potential in continuous monitoring and wearable
sensors in injury prediction.10,43 Rossi et al43 predicted
noncontact injuries in the next training session or game
based on recent training load measured by wearable sen-
sors in 26 professional male soccer players. They repeated
the analysis 10,000 times to assess the stability with
respect to fold divisions and achieved an AUC-ROC value
of 0.78 6 0.12. While their results are promising, the study
is limited by a relatively small sample size and large class
imbalance (in training data, 279 noninjury examples vs 7
injury examples). Dower et al10 predicted risk of soft tissue
injuries in Australian rules football with GPS data. They
achieved AUC-ROC values between 0.75 and 0.80 with
repeated tests to ensure the stability of k-fold results.

CONCLUSION

Despite analyzing a large prospective data set with extensive
anthropometric, clinical, genetic, neuromuscular, and biome-
chanical measurements, using a variety of ML methods, the
predictive ability was too low for ACL injury risk assessment
in clinical practice. Therefore, further studies are needed to
investigate what type of data and ML approaches should
be used for more accurate injury prediction.
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42. Rommers N, Rössler R, Verhagen E, et al. A machine learning

approach to assess injury risk in elite youth football players. Med

Sci Sports Exerc. 2020;52(8):1745-1751.

43. Rossi A, Pappalardo L, Cintia P, Iaia FM, Fernàndez J, Medina D.
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