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Incorporating the preferences of a domain expert, a decision-maker (DM), in solving multiobjective optimization problems increased
in popularity in recent years. The DM can choose to use different types of preferences depending on his/her comfort, requirements, or
the problem being solved. Most papers, where preference-based and interactive algorithms have been proposed, do not pay attention
to the user interfaces and input devices. If they do, they use character or graphics-based preference input methods. We propose
the option of using a physical or tactile input device that gives the DM a better sense of control over providing his/her preferences.
However, off the shelf hardware devices are not tailored to solve multiobjective optimization problems and provide many controls
that may increase the cognitive load on the DM. In this paper, we propose a fully modular physical user interface to input preference
information for solving multiobjective optimization problems. The modularity allows to arrange each input module in various ways
depending on the algorithm, DM’s requirements, or the problem being solved. The device can be used with any computer and uses
web-based visualizations. We demonstrate the potential of the physical interface by solving a real-world problem with an interactive
decomposition-based multiobjective evolutionary algorithm.
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1 INTRODUCTION

Multiobjective optimization problems (MOPs) consist of 𝐾 ≥ 2 conflicting objective functions that are required to be
optimized simultaneously. An MOP can be defined as follows:

minimize {𝑓1 (x), . . . , 𝑓𝐾 (x)},

subject to x ∈ Ω,
(1)

where Ω is the feasible region of the decision space R𝑛 . The corresponding objective vector for a feasible decision
vector x is f(x), and consists of the objective (function) values (𝑓1 (x), . . . , 𝑓𝐾 (x)).

We have a plethora of algorithms to solve MOPs [15, 22], among them multiobjective evolutionary algorithms
(MOEAs). MOEAs approximate a set of optimal solutions known as the Pareto front that represents the trade-offs
between the objectives. In recent years, MOEAs have become quite popular since they are capable of handling MOPs
with non-convex and disconnected Pareto fronts [25, 27]. The decision-maker (DM) who is the domain expert in the
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2 Mazumdar et al.

MOP being solved is generally interested in a subset of solutions (or a single solution) based on his/her expressed
preferences [15]. There have been many developments in MOEAs to enable the DM to provide preferences in an a
priori and interactive way to produce solutions in the region that is interesting to the DM [15, 20]. Solving MOPs with
interactive algorithms is advantageous primarily because of two reasons. Firstly, it reduces the computation cost of
solving expensive MOPs by evaluating fewer solutions. Secondly, it allows the DM to focus only on certain regions of
the objective space, thereby reducing his/ her cognitive load [15].

There has been a significant amount of work on the development of various interactive algorithms, e.g. [12, 13, 26].
These approaches use different ways for the DM to express his/her preferences, i.e., reference point [8, 21], pairwise
comparison [2], preferred/ non-preferred solutions [6, 10, 21], and preferred ranges [12]. Furthermore, certain interactive
MOEAs also have preferences for uncertainty along with preferences for objectives [14]. Such a wide variety of
preferences are available so that the DM can use an appropriate type that makes him/her comfortable while solving the
MOP interactively. As concluded in the survey [1], previous works have not given enough attention to user interfaces,
the way the DM provides the preferences, or which preference will be advantageous for the DM. To our knowledge,
the past works on user interfaces were primarily focused on visualization techniques and not on input devices in the
context of multiobjective optimization and decision making.

The previous interactive approaches used generic interfaces, i.e., keyboard, mouse, or touchscreen, to input the DM’s
preferences. Though these user interfaces are versatile, they are not tailored to solve MOPs interactively. The advantage
of using a tactile and tangible user interface for solving MOPs is not well covered to our knowledge. However, the works
in [4, 24] have shown that users are more comfortable using a tactile or physical input device rather than a touchscreen
or generic input devices like keyboard and mouse. These studies showed an improved concentration and speed in user
input over generic interfaces. Thus, a physical user interface can give the DM a better feeling of control in providing
preferences and directing the solution process. Feeling in control is a desirable property in interactive algorithms, as
noted in a recent study [1]. A physical user interface also has applications in real-time interactive optimization (e.g.,
power station control, stock markets, etc.), where the concentration and speed of a DM in specifying his/her preferences
are crucial.

One may choose to use off the shelf hardware, i.e. MIDI controllers, as a physical interface, and can be used with
minimal development. However, these controllers are not tailored to provide the preferences we are dealing with while
solving MOPs. Also, these controllers offer more (or less) controls to the DM that again is detrimental to the DM’s
needs, comfort and concentration. A physical interface that can provide only the necessary controls to the DM would be
ideal. A possible way would be to develop physical interfaces for different interactive algorithms, types of preferences
and number of objectives (of the MOP). However, such a physical interface will not be scalable or economically viable.
A better way to tackle this challenge is to develop a physical interface that is highly modular. A modular design has
already shown benefits in various research and design areas [9, 11]. A modular physical interface that can be arranged
as ‘Lego blocks’ by the DM depending on the MOP being solved, type of preference information, his/her comfort and
ergonomics would be a perfect solution. Such a design will make the DM more interested in solving the MOP and give
him/her a sense of complete control over the preferences provided.

In this paper, we propose a modular physical interface that is highly flexible and can be arranged in a wide variety of
combinations depending on the needs of the DM. The physical interface can be connected to any computer via USB
and used to solve MOPs with a wide variety of preference-based MOEAs. We also propose a novel approach that can
automatically detect the arrangement of the modules in the physical interface for visualization. This enables the DM to
map the preferences to the physical arrangement easily. As a proof-of-concept, we demonstrate the potential of the
Manuscript submitted to ACM
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physical interface with the open-source software framework DESDEO [17] by solving the river pollution problem [19]
with an interactive version of RVEA [5, 12]. For simplicity, we use reference point type preference. However, the device
can also be used with other multiobjective optimization algorithms and is capable of handling other types of preferences.
It should be noted that the novel contribution of the paper is in decision making and multiobjective optimization and
not in electronics or embedded systems.

The rest of the paper is structured as follows. In Section 2 we describe the design of the modules of the physical
interface, the communication protocols used and the proposed automatic arrangement detection algorithm. In Section 3
we demonstrate the physical interface by solving an MOP interactively. Finally, in Section 4 we conclude our results
and propose possible future research directions.

2 MODULAR PHYSICAL INTERFACE

We start by outlining requirements for physical interface development. For wider applicability, we develop the physical
interface to handle different types of preferences, i.e. reference point, desired ranges, selecting preferred and non-
preferred solutions. These preferences can be provided in the continuous or discrete scale. Also, it should be able to
handle preferences for uncertainty if necessary. If the DM wants to change his/her preference type in the following
interaction [12], the interface should be able to cope with that. As previously mentioned in the introduction, such a
flexible physical interface can be achieved by constructing it with a modular design.

The modules are the building blocks of the physical interface, and it should not be difficult for the DM to arrange
them according to the requirements. The designed modules should mesh together seamlessly, and the visualization
should reflect the physical arrangement of the modules. All these requirements are aimed to make the DM’s user
experience more comfortable. Next, we discuss the steps taken in designing the modules and the automatic arrangement
detection of the modules.

2.1 Design of the Modules

The physical interface consists of individual building blocks called modules. In other words, the overall arrangement
of modules when they are connected with one another is called the physical interface. Each module has one or more
hardware peripherals embedded in them that can be used for providing inputs (or outputs) to the DM. Next, we describe
the design of the modules and the various hardware peripherals used.

Our primary criterion for the modular physical interface has been to have a Lego block type design to have a seamless
connection between the module. We chose a rectangular design for each module so that they can be stacked together
in a wide variety of arrangements. We used a five-pin connector on all four sides of the modules to connect them in
an arrangement. The connection between the modules is for supplying power to the module, exchanging data and
sensing directions of the other modules connected. Sensing directions is an important feature that is used to find the
arrangement of the connected modules (explained in Section 2.3).

For enabling the DM to use an interactive algorithm, we needed tactile hardware that can be used to input preferences
and embedded in the modules. We chose three types of hardware peripherals for preferences inputs. They were a) rotary
encoders, b) faders or linear potentiometers and c) push switches. These hardware peripherals have different advantages
over one another. The rotary encoders are ‘endless’, or they are not limited by the range of motion. Hence, they can be
used for changing the preferences with any resolution (or the step size of change can be adjusted). The encoders are
also suitable for integer type preference input. However, since the encoders do not have an absolute position and can
rotate endlessly (360+ degrees), the DM is unable to get a good sense of the preferences by observing the position of the

Manuscript submitted to ACM



4 Mazumdar et al.

Fader

+ push switch


Follower module
USB

connection

Leader module

Follower module
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Rotary encoder
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Fig. 1. Three modules connected in a hypothetical arrangement (for demonstration purposes). The overall design of the modules with
different hardware peripherals is also shown.

encoders. We resolved this problem by equipping the modules with faders. Faders have a fixed range of movement and
provide visual (and touch) feedback to the DM about the absolute value of the preferences based on their position. The
DM can also realize the previous preferences he/she had set just by looking at the position of the faders. In addition to
that, we selected push switches that can be used to start an iteration of the MOEA or stop the optimization process
when the DM is satisfied with the solutions.

In Figure 1, we show the design of a few modules connected in a hypothetical arrangement. The modules consist
of rotary encoders and faders, and two of them are equipped with push switches. The figure also shows the five-pin
connector, connecting the modules to one another. The modules also include a status light-emitting diode (LED) to
show the connection status of the module. Every variant of the modules (with different types of hardware) is assigned a
module type ID. This was done to distinguish between the various hardware peripherals available in a module.

The brain of each module was the ATmega32U4 microcontroller (in Arduino Pro Micro form factor) interfacing the
faders, rotary encoders and switches. The major advantages of using the specific microcontroller are low cost and
built-in USB peripheral (that will be utilized later for communication). We will not describe the complex electronics and
interfacing in this paper. The schematics, printed circuit board design and codes are open source 1 , and the readers can
refer for further details.

1GitHub repository for the physical interface can be found at https://github.com/industrial-optimization-group/DesdeoInterface

Manuscript submitted to ACM
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2.2 Communication Protocols Used

In Figure 1, we also show the connections between the modules and the computer. For connecting the modules to the
computer, we used a USB 2.0 connection. In our design, all the modules are equipped with a USB port. The module to
which we connect the USB (to the computer) becomes the leader module (also known as master) and is shown in blue.
The rest of the modules are called follower modules (also known as slave) and is shown in green.

The leader module performs two tasks: a) collecting all the input data from all the modules and sending it to the
computer over USB and b) managing the arrangement of the modules. The leader module is capable of sending data as
serial transmission (UART) or by webUSB [3, 7, 23]. In the demonstration shown in Section 3.2 we have used webUSB
to take advantage of the web browser-based visualizations during the interaction process.

We used the Padded Jittering Operative Network (PJON) [18], an open-source software-defined network protocol to
establish the communication between the leader module and the follower modules. PJON supports various types of
strategies for various media, i.e. Ethernet, serial, etc. We used a ‘software bitbang’ strategy as it does not require any
additional hardware and relies on a simple wire connection between the modules. The current implementation can
support a maximum of 256 modules.

2.3 Automatic Arrangement Detection of the Modules

When the modules are connected in a certain arrangement, the representation of the physical interface should be visible
on display (monitor of the computer). This would allow the DM to map the different components on the modules to the
inputs of the interactive algorithm being used.

The concept of finding the arrangement of the modules can be explained in simple words as ‘finding people in
the dark’. Suppose you want to find your friend in the dark. You flash your torch, and a few moments later, your
friend flashes his torch back at you. If you do not receive a flash within a certain amount of time, you can conclude
that your friend is lost. We implemented a similar strategy to find the arrangement of the modules by utilizing the
microcontroller’s digital input/output pins in all four directions of the module. In digital electronics, ‘pulling a pin
high’ and ‘pulling a pin low’ in the microcontroller is analogous to flashing your torch and turning it off, respectively.
Similarly, ‘reading a pin’ is analogous to your friend seeing the flash from your torch.

When follower modules are connected, the leader module assigns a unique ID to communicate with it. The leader
instructs each connected module to pull a specific direction pin low at a certain point. This way, the leader module can
keep track of the taken directions and determine where the modules are situated in the arrangement. Found modules
IDs are saved in a stack along with the ‘next direction’ they should check. The next direction is the direction in which a
specific module should look for other modules connected to itself after a scan is over. Before the arrangement detection
process can start, the leader module sends a broadcast message informing all the modules to set their direction pins to
input mode. In other words, they are reading the pin value instead of outputting a value.

Algorithm 1 shows the arrangement detection process done by the leader module. It starts with the leader module
pulling its first direction pin low. If a connected module’s direction pin gets pulled low and it has not been already
found, it sends a packet containing its module type ID to the leader module and starts expecting a broadcast message
containing an ID for itself. When the leader module receives the packet, it adds the detected follower module’s ID to
the stack and sends the broadcast packet to it. Note that every other module will ignore the broadcast packet with the
ID as they are not expecting it. The arrangement detection process then continues from the newly added module. The
leader module keeps track of whether a follower module has checked all the four directions. When a follower module
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Algorithm 1 Arrangement detection algorithm (leader module)
Input:Modules connected in a physical arrangement
Output: Stack containing the directions how the modules are connected
Inform all modules that the search has started
Initialize the stack so that it only contains self
ID← 1
while stack is not empty do

current module, next direction← stack top
if next direction is valid then

current module pull next direction low
else

stack pop
end if
Wait for confirmation
if confirmation received then

Determine new module position
Assign ID to new module and increment ID by one
Push new module with initial direction to stack

end if
Update next direction

end while

has checked all its directions, it is removed (popped out of the stack). The arrangement detection process continues
from the topmost module of the stack until all the modules in the arrangement have checked all their directions (or
until the stack is empty). After the arrangement detection is complete, the leader module passes the module types, IDs,
and positions of the follower module to the computer.

Assume an arrangement has four modules in a 2-by-2 grid as shown in Figure 2. If the starting direction is up and the
search rotates clockwise, the modules are found in order 1, 3, 2. Moreover, the stack contains the following information
just before the last module is found:

Module number Next direction
Follower module 3 Left
Follower module 1 Left
Leader module Down

After adding follower module 2 to the stack it is updated as follows:

Module number Next direction
Follower module 2 Up
Follower module 3 Invalid
Follower module 1 Left
Leader module Down

The modules are also ‘plug and play’. Thus new modules can be connected or disconnected even after the algorithm
has detected the arrangement. This is useful if we want to change a module and use a different type of hardware
peripheral. Connecting new modules to the interface after the initial arrangement is straightforward, as every time a
module powers up/connects, it informs the leader module about its connection. If the leader module receives information
of a new connected module, it can simply rerun the arrangement detection algorithm and find the new module along
Manuscript submitted to ACM
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Fig. 2. Four modules connected in an arrangement in the physical interface. The arrows represent the direction pins for detecting
the arrangement. The direction pin for input mode is ‘IN’, and the output pins pulled low is ‘OUT_L’. (a) The state of the physical
interface after the initial arrangement. (b) The state after follower module 2 is disconnected, resulting in follower module 3’s left
direction pin to read high.

with the previous ones. The problem with this approach is that the previous modules may be assigned new or different
IDs. This would cause the computer to lose information. We solved by giving each module a module-based unique
identifier that would always be the same or by reading the free direction pins to determine when and where a new
module is connected.
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After the initial arrangement is detected, the direction pins are responsible for monitoring for disconnected modules.
Direction pins that resulted in finding a new module in the initial arrangement are set to input mode (IN), and the
rest are pulled low (OUT_L). Now all the direction pins in the input mode should be reading low, and in case of a
disconnection, a direction pin value will change to high, indicating a disconnection. When a module determines a
disconnection, it informs about it to the leader module by sending its ID and the disconnection direction. This way, the
leader module can easily identify which module was disconnected.

3 SOLVING MOPS INTERACTIVELY USING THE PHYSICAL USER INTERFACE

The proposed modular physical interface was designed primarily to solve MOPs with an interactive algorithm. Hence,
we solved a river pollution problem [19] to demonstrate the potential of the proposed interface for solving MOPs
interactively. The problem considers the water quality of a river being polluted by municipal waste from a city and
industrial waste from a city. The water quality is measured in dissolved oxygen concentration (DO) and pounds of
biochemical oxygen demanding material (BOD). The city and the fishery have one water treatment plant to remove BOD.
The optimization problem aims to enhance overall water quality at both the city and state levels and simultaneously
reduce costs.

The problem consists of four objectives and two decision variables. The objectives and the bounds of the decision
variables are as follows:

minimize 𝑓1 (x) = − (4.07 + 2.27𝑥1)

minimize 𝑓2 (x) = −
(
2.60 + 0.03𝑥1 + 0.02𝑥2 +

0.01
1.39 − 𝑥21

+ 0.30
1.39 − 𝑥22

)
minimize 𝑓3 (x) = −

(
8.21 − 0.71

1.09 − 𝑥21

)
minimize 𝑓4 (x) = −0.96 +

0.96
1.09 − 𝑥21

subject to 0.3 ≤ 𝑥1, 𝑥2 ≤ 1.0.

The objectives are: a) 𝑓1 is the negative DO level at the city, b) 𝑓2 is the negative DO level at the state boundary, c) 𝑓3
is the negative of the return on investment (ROI) at the fishery, and d) 𝑓4 represents the decrease of the tax rate in the
city due to treatment. The decision variables 𝑥1 and 𝑥2 represents proportionate amounts of BOD removed from water
in the two treatment plants. Since the authors are not domain experts in this MOP, the preferences provided are only
for the purpose of demonstration.

We used an interactive version of RVEA [5] as proposed in [12] to solve the MOP for demonstration purposes. It
adapts the reference vectors in a manner to produce solutions according to the preferences of the DM. The spread
parameter 𝑟 was set to 0.1 for the purpose of demonstration and can be changed depending on DM’s requirements.

Though the algorithm is capable of handling different types of preferences, we decided to use reference points as
our preference type for the purpose of demonstration. The reference point is widely used in interactive MOEAs and
represented on a continuous scale in the physical interface inputs. However, other preference types in discrete scales
(e.g., preferred and non-preferred solutions) can also be provided through the rotary encoders. The modules of the
physical user interface should be arranged depending on the type of preference for better representation and comfort
of the DM.
Manuscript submitted to ACM
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desdeo-emo desdeo-webapi desdeo-frontend

Web interface

Physical user
interface

Fig. 3. Structure of the physical interface with the DESDEO framework.

The MOEA was run for 100 generations at each iteration. The parameter settings for the number of reference vectors,
crossover and mutation were set as suggested in [5]. Next, we discuss how the interactive algorithm was integrated
with the proposed physical interface.

3.1 Interfacing with DESDEO

The physical interface can be used with any algorithm, framework, software etc., that can access the USB (interfaced as
serial port) of the computer. For our tests and demonstration, we used the open-source framework DESDEO [17] that
contains various decomposition-based MOEAs, visualization tools and benchmark problems. The interactive version of
RVEA was already available in the DESDEO framework and hence was a suitable choice. However, the most attractive
feature provided in DESDEO is the web-based interface for visualization and solving MOPs interactively. This was
useful since we could utilize the experimental webUSB [3, 7, 23] technology supported by browsers such as Chrome,
Edge and Opera. The webUSB technology allows the browser to access the microcontroller on the physical interface
over USB.

In Figure 3 we show the interfacing between the various components of the DESDEO [17] framework and the
proposed physical interface. The DESDEO framework can be broadly separated into frontend and backend. The frontend
is the presentation layer that includes the visualization tools and the physical user interface. The backend consists of
running the MOEA and other background tasks. The interactive RVEA [5, 12] classes are in the desdeo-emo package. The
desdeo-emo package is the backend of our application and runs the optimization algorithm. Access to the desdeo-emo
packages is provided by the desdeo-webapi package, a web API (application programming interface) based on Flask. The
desdeo-frontend package provides the web-based graphical user interface (GUI) and provides the DM with a problem
definition tool, visualization tools and interaction. The desdeo-webapi block acts as the bridge between the frontend and
backend, as shown in Figure 3. The dotted box represents the full stack (including the frontend and backend packages)
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10 Mazumdar et al.

of the DESDEO framework that we will be utilizing in this paper. As the proposed physical interface is a frontend
device, interfacing it via USB was implemented in desdeo-frontend.

Our implementation in desdeo-frontend 2 performs two tasks. Firstly, it interfaces the physical interface and creates
a visual layout of the physical arrangement of the modules. This allows the DM to easily map between the physical
inputs and the preferences he/she wants to assign to each of the modules. Secondly, it sends the updated data when the
DM actually provides his/her preferences or other inputs to the relevant fields. This can be better understood from the
demonstration of using the physical interface to solve an MOP interactively.

3.2 Demonstration

The first step of using the physical interface is choosing the module type for providing the components of the reference
point for each objective. As discussed in Section 2, we have two types of modules primarily consisting of a fader and a
rotary encoder. We also have a momentary switch (push to on and release to off) in addition to the fader and rotary
encoder that can be used for starting an iteration or stopping the optimization process. As the river pollution problem
consists of four objectives, and the preference type we are demonstrating is a reference point, we need four modules.
We chose four variants of the modules and connected them in an arrangement to construct the physical interface as
shown in Figure 5. Then the physical interface is connected to the USB port of the computer.

The user then starts the desdeo-webapi and desdeo-frontend server and opens Chrome (or other supported) browser
on the computer. After going through the login process and selecting the river pollution problem and interactive RVEA
as the optimization algorithm, the user is presented with the visualization shown in Figure 4. Next, the user presses the
‘Connect’ button on the visualization and chooses the connected USB device from a list. After choosing the physical
interface device, the automatic arrangement detection process is started. The exact arrangement of the modules in the
physical interface setup is then displayed in the bottom part of the visualization (as shown in Figure 4). The visual
representation of the arrangement enabled the user to feel more connected to the actual physical layout of the modules.
It should be noted that the leader and follower modules 1–3 are referred to as Master and Node 1–3, respectively, in the
visualization.

The user then assigns each of the inputs of the modules (selected from the drop-down list within each module) to
the fields (objectives, iterate, stop etc.) available. For the purpose of demonstration, we assigned the objectives ‘WQ
City’ and ‘WQ Border’ to the rotary encoders and ‘ROI City’ and ‘Tax City’ to the faders. Any changes made in the
physical interface is now reflected on the relevant fields of objective values shown on the left side of Figure 4. The
minimum and maximum values of the reference point that the DM can provide are also displayed. The switch (circle
without an arrow) on the first module (Master) is assigned to start the iteration. The switch one on the last module
(Node 3) is assigned to stop the optimization process. Now the preparations are ready by the user, and the DM can start
solving the problem by providing preferences using the physical interface.

The DM inputs the preferences by moving the rotary encoders (on Master and Node 1) and faders (on Node 2 and
3) to adjust components of the reference point for the objectives. After pressing the iterate switch (on the Master
module), the DM is presented with a set of solutions visualized on the parallel coordinate plot (as shown in Figure
4). The solutions are indicated in green, whereas the reference point is shown in red. The DM repeats the interaction
process by providing the component of the reference point individually for each objective with the physical interface.
He/she repeats this step as many times as needed to find a set of solutions that he/she is satisfied with. In the end, the

2GitHub repository for the physical interface implemented in desdeo-frontend can be found at https://github.com/industrial-optimization-group/physical-
interface-v1.1
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Fig. 4. Solving a problem with interactive RVEA using the modular physical interface. The figure shows the values of the preferences
in terms of components of a reference point, parallel coordinate plot showing the solutions found (and reference point in red), detected
arrangement of the modules in the physical interface.

DM selects a solution as the final decision from the set and the optimization process is stopped by pressing the stop
switch (on Node 3).

Manuscript submitted to ACM
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Fig. 5. Real arrangement of four different modules connected together to setup the physical interface.

From the perspective of the DM, the physical user interface proves to be an improved way of providing the preferences.
The modular nature of the interface keeps unnecessary clutter away for the DM while providing preferences compared
to generic input devices like a keyboard or mouse. This enabled the DM to concentrate more on providing preferences.
The visualization showed the physical arrangement of the modules and can be assigned for different preference inputs
is so desired.

It has been observed that DMs often have different phases during the interactive solution process [16]. In the so-called
learning phase, the DM learns about different trade-offs among the objectives to find a region of interest in the Pareto
front. This may involve changing the preferences even drastically. The physical interface enables the DM to change the
preferences rapidly to a new location in the objective space. This increases the speed of interaction compared to using
generic input devices. In the so-called decision phase, the DM fine-tunes the solutions in the region of interest to find
the most preferred solution. Fine adjustments are convenient to do using the rotary encoders to reach a final, most
preferred solution.

4 CONCLUSIONS

In this paper, we have proposed a novel way for the DM to input preferences by using a modular physical user interface
when solving MOPs with interactive multiobjective optimization algorithms. The user interface is capable of handling
different types of preference inputs and can be used with different types of interactive multiobjective optimization
algorithms. We developed modules that can be connected to each other in arrangements that the DM is comfortable
using. We also proposed a novel algorithm that can automatically detect the physical arrangement of the modules. This
is used to create a visual representation of the physical interface and further improve the DM’s user experience.

As a proof-of-concept, we demonstrated that the physical user interface is beneficial in the context of solving
MOPs with preferences. We showed the potential of the physical interface by solving the river pollution problem with
interactive RVEA utilizing the open DESDEO framework. Overall, the physical interface opened up a new avenue
in decision support by providing the DM with an alternative way of providing preferences. The modularity of the
physical interface and the respective visualizations enabled a greater amount of flexibility and a more comfortable user
Manuscript submitted to ACM
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experience. The proposed modular physical interface achieved its goal of solving an MOP by providing preference
information in a way that gives a feeling of control over the typical user interfaces.

The development of the modular physical interface created the foundation for further research on improving the
decision making process. In our future research, we plan to conduct more experiments comparing different types of
user interfaces. We shall test the ergonomics, input speed, time consumed to reach the most preferred solution, and
overall user experience. Tests are also to be conducted with various other types of preferences, interactive optimization
methods and solving complex MOPs with a higher number of objectives. The design of the modules can be further
improved with magnetic pogo pin connectors, displays, and haptic feedback to further enhance the DM’s experience.
In future, we also plan to perform tests on the robustness of the network of modules and utilize other networking
protocols, e.g., USB, Bluetooth, MODBUS, etc.
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