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Abstract 1 

Alpha suppression is proposed to reflect a surge in cortical excitability to enhance stimulus 2 

processing in working memory. The attenuated state of alpha might reflect the prioritisation of 3 

behaviourally relevant information, making it a proxy for working memory functioning. 4 

Despite the growing interest in utilising the advancement of brain-based measures to evaluate 5 

individuals’ cognitive processes, there was a lack of consistent evidence on the relationship 6 

between alpha suppression and working memory performance. To investigate whether 7 

interindividual differences in alpha suppression might be related to variability in working 8 

memory capacity, we recorded participants’ electroencephalography (EEG) while they 9 

performed an arithmetic task of either low or high working memory load. Participants were 10 

required to calculate either the product of digits (i.e., low-load condition) or the difference 11 

between the product of digits (i.e., high-load condition). We found alpha suppression at parietal 12 

regions, which became more prominent as working memory load increased. The pattern was 13 

present in approximately 80% of the participants. Importantly, the more the alpha suppressed 14 

as working memory load increased, the larger the drops in behavioural performance and the 15 

lower the Digit Span score. That is, alpha suppression was more prominent in participants of 16 

poor working memory capacity. Our findings suggest that alpha activity, subject to 17 

interindividual differences in sensitivity, could serve as a brain-based measure of an 18 

individual’s working memory functioning. 19 

 20 

Keywords: neural oscillations; alpha; working memory; electroencephalography (EEG) 21 

 22 
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1. Introduction 1 

Oscillatory activity in the alpha band (8-12 Hz) is one of the most prominent components of 2 

neural oscillations in the human brain. It is commonly reported to play an important role in the 3 

sensory engagement, as its power decreases in task-relevant areas (e.g., visual: Thut et al., 2006; 4 

auditory: Wöstmann et al., 2016, 2019; somatosensory: Haegens et al., 2011). It is therefore 5 

hypothesised that attenuated alpha power reflects the releases of task-relevant areas from 6 

inhibition (Roux et al., 2014; Klimesch, 2012). Electroencephalography (EEG) and 7 

magnetoencephalography (MEG) research further showed that pre-stimulus alpha power over 8 

posterior regions decreased in rhythmic relative to arrhythmic condition in a temporal attention 9 

task (Rohenkohl et al., 2011). Moreover, smaller amplitude in pre-stimulus alpha power 10 

seemed to be associated with better perceptual performance (visual: van Dijk et al., 2008; 11 

Grabot et al., 2020; somatosensory: Jones et al., 2010; van Ede et al., 2012). These findings 12 

suggest that the attenuated states of alpha oscillations reflect an anticipatory mechanism for 13 

resource allocation to prioritise task-relevant information in working memory (WM) (van Ede, 14 

2018). The power decrease might reduce common noise fluctuations between neurons, which 15 

increases the coding capacity of the neuronal population (Zohary et al., 1994). 16 

 17 

The idea that alpha oscillations are important for WM function received more direct support 18 

from studies using a variety of verbal and spatial tasks, which commonly found that posterior 19 

alpha decreased as WM load increased. For example, Gevins et al. (1997) used an n-back task 20 

where participants had to decide whether the letter stimulus on each trial matched with either 21 

the identity of a designated letter stimulus (i.e., 0-back, easy condition) or the identity of a letter 22 

stimulus occurring three trials back (i.e., 3-back, difficult condition). They found decreased 23 

centroparietal alpha as WM load increased. Pesonen et al. (2007) also used an n-back task of 24 

letter stimuli with varying WM load from 0-back to 3-back. They found event-related 25 

desynchronization in alpha across the scalp for all WM load conditions, which became steadily 26 

longer in time as WM load increased. Stipacek et al. (2003) examined participants’ responses 27 

in a forward span task (where participants had to memorise sets of digits) and a counting span 28 

task (where participants had to count a specified subgroup of digits and memorise the answer), 29 

when set size varied from 3 to 5 items. They found that event-related desynchronization in the 30 

upper alpha band across the scalp (larger in posterior than anterior regions) showed further 31 

decrease as WM load increased in both tasks. Similar findings were demonstrated with spatial 32 

WM tasks (Gundel et al., 1992; Sauseng et al., 2005). 33 

 34 

Partially converging results were reported in studies using a Sternberg-like task where 35 

participants were presented with a variable array of stimuli as a manipulation of WM (for 36 

encoding), a delay (for retention), and a probe when they had to decide whether the probe 37 

matched with the array of stimuli (Jensen et al., 2002; Meltzer et al., 2007; Tuladhar et al., 38 

2007; Michels et al., 2008; Grimault et al., 2009; Crespo-Garcia et al., 2013; Proskovec et al., 39 

2019a; Koshy et al., 2020). It was commonly reported that, during encoding, there was parietal 40 

alpha desynchronization which showed further decrease in power as WM load increased 41 

(Meltzer et al., 2007; Grimault et al., 2009; Proskovec et al., 2019a). Conversely, during 42 

retention, the effect of WM load seems less consistent (Meltzer et al., 2007). Some studies 43 
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demonstrated alpha power desynchronization which showed further decrease in power as WM 1 

load increased (Koshy et al., 2020). Some studies demonstrated alpha power synchronization 2 

which became either less pronounced (Crespo-Garcia et al., 2013) or more pronounced (Jensen 3 

et al., 2002; Tuladhar et al., 2007; Grimault et al., 2009; Proskovec et al., 2019a) as WM load 4 

increased. Michels et al. (2008) further reported both less and more pronounced alpha power 5 

synchronization during retention linked to individual variation. Specifically, there was a 6 

distinction between participants in two subgroups. In one half of the participants (showing 7 

relatively lower peak frequency of alpha), alpha power synchronization decreased with WM 8 

load. In another half of the participants (showing relatively higher peak frequency of alpha), 9 

alpha power synchronization increased with WM load. 10 

 11 

Together, the aforementioned studies converged on the finding of load-dependent alpha 12 

suppression in a variety of WM tasks that combine encoding and retention phases as well as in 13 

a Sternberg-like task during encoding but not necessarily retention phase. Since decrease in 14 

alpha power was associated with increases in WM load, it is proposed that alpha suppression 15 

reflects a surge in cortical excitability to enhance stimulus processing. The attenuated state of 16 

alpha might reflect the prioritisation of behaviourally relevant information to support WM 17 

functioning (van Ede, 2018). 18 

 19 

Nevertheless, it remains largely understudied whether there are interindividual differences in 20 

alpha suppression which potentially explains variability in WM performance. This is 21 

particularly intriguing considering there is an increased interest in utilising the advancement of 22 

brain-based measures, in parallel to standardized psychological tests, to evaluate individuals’ 23 

cognitive processes. While a Sternberg-like task was commonly adopted to look into this issue, 24 

there was a lack of consistent evidence on the relationship between alpha suppression and WM 25 

performance. Some studies, on the one hand, failed to report significant load-related alpha 26 

suppression but still examined the relation between alpha suppression and WM performance. 27 

For example, Proskovec et al. (2019b) recruited 22 healthy adults and found significant clusters 28 

of alpha suppression (relative to baseline) peaking at posterior regions across WM loads 29 

throughout encoding and retention. Meanwhile, the stronger the alpha suppression at inferior 30 

frontal gyrus (IFG) from low-load to high-load trials (reflecting active recruitment of this 31 

region), the smaller the performance decrement from low-load to high-load trials. In other 32 

words, individuals who showed stronger alpha suppression in the IFG tended to have more 33 

preserved performance as WM load increased. The results suggested that load-sensitive alpha 34 

oscillations are central to successfully meeting the demands of WM task. In contrast, Pavlov et 35 

al. (2020) recruited 156 healthy adults as participants. They reported alpha suppression during 36 

encoding and alpha enhancement during retention (relative to baseline) across WM loads over 37 

posterior regions. However, alpha suppression during encoding was not explored further and 38 

alpha enhancement during retention was not related to participants’ WM performance. Some 39 

studies, on the other hand, demonstrated significant load-related alpha suppression but cannot 40 

find the relation between alpha suppression and WM performance. Sghirripa et al. (2020) 41 

recruited 24 younger and 30 older adults as participants. During encoding and retention, they 42 

found that alpha suppression was modulated by WM load, showing decreased alpha power as 43 
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WM load increased. However, individual differences in alpha power did not predict 1 

participants’ WM performance. Overall, despite the postulation that alpha suppression might 2 

actively support WM function, there seems to be a lack of link between the WM-related 3 

attenuation of alpha over posterior regions and individuals’ WM performance when a 4 

Sternberg-like task was used, probably due to the inconsistent finding of load-related alpha 5 

suppression in the first place. Could we observe a correlation between alpha suppression and 6 

WM capacity using the WM tasks that combine encoding and retention phases, where the 7 

finding of load-dependent alpha suppression was more robust? 8 

 9 

To investigate whether alpha suppression might be related to WM capacity, we recorded 10 

participants’ EEG while they performed an arithmetic task, which is more similar to the WM 11 

tasks that combine encoding and retention phases than the Sternberg-like task. Participants 12 

were required to calculate either the product of digits (i.e., low-load condition) or the difference 13 

between the product of digits (i.e., high-load condition), the cognitive underpinnings of which 14 

are noted to heavily involve WM (Logie et al., 1994; Cragg et al., 2017; Zhang et al., 2017). 15 

On the basis of previous literature documenting robust effect of alpha suppression in WM tasks 16 

that combine encoding and retention phases, we expected to see load-related alpha suppression 17 

at posterior regions which correlates with WM capacity. Confirming our hypothesis, we found 18 

alpha suppression at parietal regions, which became more prominent as WM load increased. 19 

The pattern was present in approximately 80% of the participants. Importantly, the more the 20 

alpha suppressed as WM load increased, the larger the drops in behavioural performance and 21 

the lower the scores in the Digit Span subtest in Wechsler Adult Intelligence Scale-Fourth 22 

Edition (WAIS-IV). That is, alpha suppression was more prominent in participants of poor 23 

WM capacity. The results suggest that alpha oscillations, subject to interindividual differences 24 

in sensitivity, could serve as a brain-based measure to indicate individual’s WM capacity. 25 

 26 

2. Results 27 

2.1. Behavioural performance 28 

We detected and removed 3 outliers in either overall accuracy or overall RT (using the 29 

rmoutliers function in Matlab), leaving 35 participants in the sample. On accuracy, there was a 30 

significant load x probe interaction (F(1,34) = 8.27, p < 0.01, ηp
2 = 0.20). Nevertheless, paired 31 

samples t-test (using a Bonferroni-adjusted p = 0.05/2 = 0.025 for post hoc comparisons) 32 

showed that accuracy was higher in low-load than high-load for both same-probe (t(34) = 6.57, 33 

p < 0.001) and different-probe (t(34) = 5.03, p < 0.001). On RT, there was no load x probe 34 

interaction. However, there was a significant main effect of load (F(1,34) = 60.63, p < 0.001, 35 

ηp
2 = 0.64) where low-load < high-load and a significant main effect of probe (F(1,34) = 11.81, 36 

p < 0.01, ηp
2 = 0.26) where same-probe < different-probe (Figure 1A). 37 

 38 
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 1 
Figure 1. (A) Effects of WM load and same/different probe on participants’ accuracy and RT. 2 

On each box, the central mark indicates the median, and the bottom and top edges of the box 3 

respectively indicate the 25th and 75th percentiles. The whiskers extend to the most extreme 4 

data points not considered outliers while the outliers are marked with the + symbol. LS: low-5 

load same-probe; LD: low-load different probe; HS: high-load same-probe; HD: high-load 6 

different-probe. (B) Grand-averaged power spectra in low-load and high-load conditions on 3 7 

midline electrodes (i.e., Fz, Cz, Pz) (N = 35). 8 

 9 

2.2. EEG 10 

2.2.1. Power spectra 11 

Figure 1B shows the power spectra in low-load and high-load conditions on 3 midline 12 

electrodes (i.e., Fz, Cz, Pz) when participants’ mental calculation took place. Relative to low-13 

load condition, high-load condition was associated with attenuated alpha power. 14 

 15 

2.2.2. Time-frequency representations 16 

Time-frequency analysis revealed spectral power decrease across alpha and beta band (12-30 17 

Hz) at parietal regions in both low-load and high-load conditions (Figure 2A). One-way 18 

analysis of variance (ANOVA) using permutation statistics with false discovery rate (FDR) 19 

correction showed that, relative to low-load condition, high-load condition was associated with 20 

more prominent spectral power decrease across upper (10-12 Hz) but not lower (8-10 Hz) alpha 21 

band over 1000-3000 ms, which can be seen in the left but not right parietal regions. 22 

 23 

Therefore, we separately compared the topographical distributions of upper (Figure 2B upper 24 

panel) and lower (Figure 2B lower panel) alpha band activity in low-load and high-load 25 

conditions at 0-1000 ms, 1000-2000 ms, and 2000-3000 ms. The difference between conditions 26 

can be seen over 1000-3000 ms across upper alpha band at parietal regions, particularly on 3 27 

parietal electrodes (i.e.,CP1, P3, P1). 28 

 29 

Considering that time-frequency analysis also revealed spectral power decrease in the beta 30 

band, for exploratory purpose, we also compared its topographical distributions in low-load 31 

and high-load conditions at 0-1000 ms, 1000-2000 ms, and 2000-3000 ms. The difference 32 

between conditions can be seen over 1000-3000 ms around centroparietal regions (Figure 2C). 33 

 34 
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Figure 2. (A) Grand-averaged time-frequency representations on 4 parietal electrodes (i.e., P1, 1 

P3, P2, P4; marked as red dots) for low-load and high-load conditions. Spectral power 2 

decreases across alpha band in both low-load and high-load conditions. The difference between 3 

two conditions can be seen across upper (10-12 Hz) but not lower (8-10 Hz) alpha band and 4 

appears to be lateralised, showing significant difference at the left but not right parietal regions. 5 

(B) Topographical distributions of upper (upper panel) and lower (lower panel) alpha band 6 

activity in low-load and high-load conditions at 0-1000 ms, 1000-2000 ms, and 2000-3000 ms. 7 

Electrodes showing significant differences between conditions are marked as red dots. The 8 

difference between conditions can be seen over 1000-3000 ms across upper alpha band at 9 

parietal regions, particularly on 3 parietal electrodes (i.e.,CP1, P3, P1). (C) Exploratory 10 

analyses on the topographical distributions of beta band activity in low-load and high-load 11 

conditions at 0-1000 ms, 1000-2000 ms, and 2000-3000 ms. Electrodes showing significant 12 

differences between conditions are marked as red dots. The difference between conditions can 13 

be seen over 1000-3000 ms around centroparietal regions (N = 35). 14 

 15 

2.2.3. Correlations between alpha power difference and WM 16 

Since significant difference between conditions was identified over 1000-3000 ms across 3 17 

parietal electrodes (i.e.,CP1, P3, P1) at upper alpha band, we calculated the power difference 18 

between conditions here (min = -2.59, max = 11.16, mean = 1.40, SD = 2.24), where 28/35 19 

participants showed alpha suppression in both conditions, which became more prominent as 20 

WM load increased. We further detected and removed 1 outlier in alpha power difference 21 

(using the rmoutliers function in Matlab) and examined whether the alpha power difference 22 

between conditions might correlate with (1) participants’ behavioural difference in the 23 

arithmetic task between low-load and high-load conditions and (2) participants’ total raw score 24 

in the Digit Span subtest in a sample of 34 participants. 25 

 26 

Alpha power difference significantly correlated with accuracy difference (ρ = 0.41, p < 0.05, 27 

Figure 3 left) and RT difference (ρ = -0.40, p < 0.05, Figure 3 middle) in the arithmetic task. 28 

Alpha power difference also significantly correlated with Digit Span score (ρ = -0.55, p < 0.001, 29 

Figure 3 right). The more the alpha power decreased with WM load, the larger the accuracy 30 

decrease from low-load to high-load condition, the larger the RT increase from low-load to 31 

high-load condition, and the lower the Digit Span score. 32 

 33 
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 1 
Figure 3. Scatterplots representing the correlation between alpha power difference and 2 

behavioural performance on the arithmetic task (including accuracy and RT difference) as well 3 

as Digits Span score (*p < 0.05, ***p < 0.001) (N = 34). 4 

 5 

3. Discussion 6 

Alpha suppression is proposed to reflect a surge in cortical excitability to enhance stimulus 7 

processing. To investigate whether interindividual differences in alpha suppression might be 8 

related to variability in WM capacity, we recorded participants’ EEG while they performed an 9 

arithmetic task of either low or high WM load. We found alpha suppression at parietal regions, 10 

which became more prominent as WM load increased. The pattern was present in 11 

approximately 80% of the participants. Importantly, the more the alpha suppressed as WM load 12 

increased, the larger the drops in behavioural performance and the lower the scores in the Digit 13 

Span subtest in WAIS-IV. That is, alpha suppression was more prominent in participants of 14 

poor WM capacity. 15 

 16 

3.1. Load-dependent alpha suppression in mental calculation 17 

Earlier studies adopting a variety of WM tasks that combine encoding and retention phases 18 

commonly found that posterior alpha decreased as WM load increased (Gundel et al., 1992; 19 

Gevins et al., 1997 Stipacek et al., 2003; Sauseng et al., 2005; Pesonen et al., 2007). Later 20 

studies using a Sternberg-like task that differentiates between encoding and retention phases 21 

also found alpha suppression as WM load increased during encoding, while the effect of WM 22 

load during retention seems less consistent (Meltzer et al., 2007; Michels et al., 2008; Crespo-23 

Garcia et al., 2013; Grimault et al., 2009; Proskovec et al., 2019a; Koshy et al., 2020). Our 24 

results that posterior alpha decreased as WM load increased replicated the aforementioned 25 

findings, confirming the idea that alpha suppression reflects the active support of WM function. 26 

 27 
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Interestingly, the load-dependent alpha suppression was found in the left but not right parietal 1 

regions, across upper but not lower alpha band. The lateralization of the effect was difficult to 2 

interpret due to the poor spatial resolution of EEG. On the other hand, the narrow-band 3 

responses can be interpreted within the framework of functional specialization of upper and 4 

lower alpha, where previous studies reported distinct patterns of alpha desynchronization when 5 

its broad frequency range was subdivided into sub-bands (Klimesch, 1999). While the upper 6 

alpha band was most sensitive to the encoding of task-specific information (Klimesch et al., 7 

1997a, 1997b), the lower alpha band was found to reflect general task demands such as 8 

attentional processes (Klimesch et al., 1998). Therefore, our finding of the load-dependent 9 

alpha suppression across upper but not lower alpha band can be considered as reflecting task-10 

specific processes such as numerical WM but not attentional demands such as alertness and 11 

expectancy. 12 

 13 

3.2. Load-dependent alpha suppression as a proxy for WM capacity 14 

Could alpha suppression be used as a proxy for cognitive test? In recent years there is an 15 

increased interest in utilising oscillatory activity as a measure to evaluate individuals’ cognitive 16 

processes. However, the interindividual differences were relatively understudied. In the current 17 

research, we reported the interindividual differences on time-frequency representations. 18 

Specifically, approximately 80% of the participants showed alpha suppression in both 19 

conditions, which became more prominent as WM load increased.  The existence of 20 

interindividual differences accords with two previous studies using a Sternberg-like task to 21 

examine the role of alpha activity in WM retention. Meltzer et al. (2007) found that, during 22 

retention, the effect of WM load on posterior alpha power manifested as decrease in one half 23 

and increase in another half of the participants. Michels et al. (2008) found that, during 24 

retention, there was a distinction between participants in two subgroups. In one half of the 25 

participants (showing relatively lower peak frequency of alpha), alpha decreased with WM 26 

load which might reflect the release of inhibition associated with attentional demands. In 27 

another half of the participants (showing relatively higher peak frequency of alpha), alpha 28 

increased with WM load which might reflect active inhibition of task-irrelevant areas. 29 

Together, these findings suggest that participants might express different types of alpha-related 30 

processes. 31 

 32 

In addition to the interindividual differences on time-frequency representations, the current 33 

research further demonstrated a negative correlation between alpha suppression and 34 

individual’s WM capacity. Alpha suppression was more prominent in participants showing 35 

larger drops in behavioural performance as WM load increased and lower scores in the Digit 36 

Span subtest, that is, in participants of poor WM capacity. The findings suggested that alpha 37 

suppression, subject to interindividual differences in sensitivity, could serve as a brain-based 38 

measure of an individual’s WM functioning. 39 

 40 

Intriguingly, the result pattern is in contrast with that in Proskovec et al. (2019b), which is to 41 

our knowledge the only report of significant correlation between alpha suppression and WM 42 

performance. Using MEG, they found that individuals who showed stronger alpha suppression 43 
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at IFG tended to have more preserved performance as WM load increased, suggesting that load-1 

sensitive alpha activity is central to successfully meeting the demands of WM task. We 2 

speculate that the discrepancy can be attributed to at least three reasons. 3 

 4 

First, the inconsistent findings might be related to the fact that we correlated parietal alpha 5 

suppression, whereas Proskovec et al. (2019b) correlated frontal alpha suppression with WM 6 

performance. It remains undetermined whether parietal and frontal alpha activity are 7 

interdependent phenomenon. In fact, alpha activity is thought to reflect a complex product of 8 

both thalamocortical and corticocortical interactions in visual cortex (Halgren et al., 2019). 9 

Therefore, alpha activity generated in different regions of the brain should not be considered 10 

as a singular phenomenon but might reflect a number of distinct neural processes (Clayton et 11 

al., 2018). 12 

 13 

Second, the inconsistent findings might be related to the fact that we focused on verbal WM, 14 

whereas Proskovec et al. (2019b) focused on spatial WM. Indeed, significant load-related alpha 15 

suppression has been documented in studies using either verbal WM tasks (Gevins et al., 1997; 16 

Stipacek et al., 2003; Meltzer et al., 2007; Pesonen et al., 2007; Koshy et al., 2020; Michels et 17 

al., 2008; Proskovec et al., 2019a) or spatial WM tasks (Gundel et al., 1992; Sauseng et al., 18 

2005; Crespo-Garcia et al., 2013; Grimault et al., 2009). Nevertheless, since verbal and spatial 19 

WM are associated with distinct theoretical conceptualization as well as separate neural 20 

structures (Smith & Koeppe, 1996), they might as well be supported by different alpha 21 

behaviours. 22 

 23 

Third, the inconsistent findings might be related to the fact that we used an arithmetic task 24 

which is more similar to the WM tasks that combine encoding and retention phases, whereas 25 

Proskovec et al. (2019b) used a Sternberg-like task. Specifically, we utilised an arithmetic task 26 

to mimick how mental calculation takes place in everyday situations, when one would 27 

immediately start the numerical operations involving recursive phases of encoding and 28 

retention. Here, WM load was manipulated by changing the amount of numerical operations to 29 

perform. The low-load condition required participants to calculate the product of digits 30 

(entailing one multiplication, i.e., one set of numerical operations). The high-load condition 31 

required participants to calculate the difference between the product of digits (entailing two 32 

multiplications followed by one subtraction, i.e., three sets of numerical operations). Therefore, 33 

the low-load and high-load conditions likely contained different amounts of recursive 34 

encoding-retention cycle. In contrast, Proskovec et al. (2019b) presented participants with load-35 

varying grids to encode and retain. In other words, WM load was manipulated by changing the 36 

amount of information within a single encoding-retention procedure. It is possible that the two 37 

types of processes are associated with different alpha responses. 38 

 39 

3.3. Spectral power decrease in the beta band 40 

Our time-frequency analysis showed that the load-dependent spectral power decrease also 41 

extended from the alpha to the beta band. In fact, spectral power decrease across alpha and beta 42 

band has been interpreted to reflect memory formation (Hanslmayr et al., 2009, 2011). 43 
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Hanslmayr et al. (2016) further suggested that such low-frequency desynchronization in the 1 

neocortex might serve to mediate the representation of different information during encoding, 2 

including nonverbal and verbal materials. While it remains an open question whether there are 3 

differential alpha and beta processes that support the prioritisation of different information in 4 

WM, we speculate that the concomitant power decrease across alpha and beta band might be 5 

related to the fact that mental calculation can involve a combination of nonverbal and verbal 6 

processing (Clearman et al., 2017). 7 

 8 

3.4. Limitations and implications 9 

One limitation of the current research is that it cannot distinguish between the effects of WM 10 

load and cognitive effort. While some studies equate the two concepts from a theoretical 11 

perspective, some studies suggested that WM load and cognitive effort to be separable, as 12 

participants have limited capacity in WM load but can exert cognitive effort in the absence of 13 

performance gains (Kardan et al., 2020). In order to delineate the relationship between WM 14 

load and cognitive effort in arithmetic task, one future direction is to have more levels of WM 15 

load to reveal whether alpha suppression plateaus (reflecting WM load) or continues (reflecting 16 

cognitive effort) as WM load increases. Nevertheless, as informative first steps, the current 17 

research with two levels of WM load is suitable for application in studies on the development 18 

of numerical skills in childhood, for example, to give indications on how alpha suppression 19 

might change in parallel to achievement level in arithmetic learning. 20 

 21 

3.5. Conclusion 22 

Overall, we demonstrated in an arithmetic task that alpha suppression at parietal regions 23 

became more prominent as WM load increased. Moreover, load-dependent modulation of alpha 24 

oscillations correlated with one’s WM capacity. It seems that alpha activity, subject to 25 

interindividual differences in sensitivity, could serve as a brain-based measure of an 26 

individual’s WM functioning. The results highlight the importance of devising new methods 27 

to further characterise the alpha-related WM processes in different individuals. 28 

 29 

4. Experimental Procedure 30 

4.1. Participants 31 

A total of 38 healthy volunteers (age: mean = 22.89, SD = 3.71; 13 males; 36 right-handed) 32 

participated in the experiment with no history of neurological, neuropsychiatric, or 33 

visual/hearing impairments as indicated by self-report. Participants gave written informed 34 

consent and were paid for participation. The study was conducted in accordance with the 35 

Declaration of Helsinki and approved by the Research Ethics Committee at National Taiwan 36 

Normal University. 37 

 38 

Their WM was measured with the Digit Span subtest in WAIS-IV. Participants were to repeat 39 

the numbers in the same order (digit span forward, DSF), repeat the numbers in reverse order 40 

(digit span backward, DSB), or repeat the numbers in numerical order (digit span sequencing, 41 

DSS). The sum of the DSF, DSB, and DSS raw scores serves as an index of WM capacity 42 

(Table 1). 43 
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 1 

Table 1. Range, mean, and SD of participants’ raw scores in the Digit Span subtest (N = 38). 2 

 DSF DSB DSS Total 

Min 11 5 6 25 

Max 16 16 16 48 

Mean 14.32 10.87 10.61 35.79 

SD 1.76 3.17 2.14 5.96 

 3 

4.2. Procedures 4 

A total of 240 trials were presented in 6 blocks. Each trial contained a horizontally arranged 5 

list of four digits (e.g., 7 5 4 2) displayed in grey against black background at the centre of a 6 

computer monitor for 3000 ms (Figure 4). Participants were instructed at the beginning of each 7 

block the mental calculation to perform. In half of the blocks, participants had to calculate the 8 

product of the first and the last digits (e.g., 7 x 2 = 14) (i.e., low-load condition). In the other 9 

half of the blocks, participants had to calculate the difference between the product of the first 10 

two digits and the product of the last two digits (e.g., 7 x 5 - 4 x 2 = 27) (i.e., high-load 11 

condition). Block order was randomised across participants. The list of four digits was followed 12 

by a probe when participants were instructed to make a same-different judgement on whether 13 

their answer matched the probe. 50% of the probes called for a same response and 50% of the 14 

probes called for a different response. Participants’ response was followed by a jittered ITI of 15 

1200-1400 ms when a grey fixation cross against black background was shown. E-prime 16 

version 2.0 (Psychology Software Tools) was used for stimulus presentation. Stimulation was 17 

randomised individually for each participant. 18 

 19 

 20 
Figure 4. Schematic illustration of a trial. Each trial began with a horizontally arranged list of 21 

four digits presented for 3000 ms (i.e., the time window of interest). Participants had to 22 

calculate either the product of the first and the last digits (in low-load condition) or the 23 

difference between the product of the first two digits and the product of the last two digits (in 24 

high-load condition). The list was followed by a probe when participants were instructed to 25 

make a same-different judgement on whether their answer matched the probe. Participants’ 26 

response was followed by a jittered ITI of 1200-1400 ms. 27 

 28 

4.3. Data recording and analysis 29 

4.3.1. EEG recording and pre-processing 30 

EEG was recorded from 62 sintered Ag/AgCl electrodes on a Neuroscan quik-cap according 31 

to the extended 10-20 system. The ground electrode was placed at AFz and the reference 32 

electrode was placed between Cz and CPz. Eye movements were monitored by additional 4 33 
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electrodes placed above and below the left eye and at the outer canthi of both eyes, which were 1 

bipolarized online to yield vertical and horizontal electro-oculogram (EOG), respectively. All 2 

signals were amplified and online filtered at 0.1-100 Hz with the Neuroscan Synamps 2 3 

amplifier (Compumedics Neuroscan, USA) and sampled at 500 Hz. 4 

 5 

Ocular artefact correction was conducted with independent component analysis (ICA) in 6 

EEGlab (Delorme & Makeig, 2004). Epochs were extracted (from correct trials only) from -7 

1200 to 4198 ms relative to the onset of the list, using the average of the entire epoch as baseline 8 

(i.e., demean). The epoch covered 1200 ms before and 1200 ms after the time window of 9 

interest (when a list of four digits was presented for 3000 ms) to avoid the effect of edge 10 

distortion in spectral analysis. Bad electrodes were identified (if there were more than 25% of 11 

the epochs containing voltage deviations exceeding ±100 μV relative to baseline) and 12 

interpolated using spherical interpolation. The data was recomputed to average reference. 13 

Epochs containing voltage deviations exceeding ±100 μV relative to baseline at any of the 14 

electrodes were rejected. The trial numbers in each condition after all pre-processing are listed 15 

in Table 2. 16 

 17 

Table 2. Range, mean, and SD of trial numbers after artefact rejection in each condition (N = 18 

38). 19 

 Low-load High-load 

Min 60 64 

Max 120 115 

Mean 98.97 94.26 

SD 14.34 16.83 

 20 

4.3.2. Spectral analysis 21 

To examine the frequency content in the data, FieldTrip toolbox (Oostenveld et al., 2011) was 22 

used to estimate the power spectra on the 3000 ms segments when participants’ mental 23 

calculation took place. Spectral power from 4 to 30 Hz was computed using a fast Fourier 24 

transform with a Hanning window. 25 

 26 

To examine the time course of the frequency content, EEGlab (Delorme & Makeig, 2004) was 27 

used to compute the event-related spectral perturbation (ERSP) which provides a time-28 

frequency representation of the mean change in power spectra relative to baseline. To model 29 

ERSP, we applied a 3-cycle Morlet wavelet where the cycles linearly increased with frequency 30 

by a factor of 0.8 from 4 to 30 Hz, using the entire epoch from -1200 to 4198 ms (i.e., 5398-31 

ms long) and the baseline from -800 to -300 ms (i.e., 500-ms long). To estimate the effect of 32 

WM load (i.e., low-load versus high-load, collapsed across same/different probe), we 33 

performed one-way ANOVA using permutation statistics with FDR correction. The p-value 34 

threshold was set at 0.05 and randomization was set at 2000. 35 

 36 

To examine the correlations between alpha suppression and WM capacity, we calculated the 37 

Spearman’s correlation between alpha power difference (between conditions over significant 38 
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time window across significant electrodes) and (1) participants’ behavioural difference in the 1 

arithmetic task between conditions and (2) participants’ total raw score in the Digit Span 2 

subtest. 3 

 4 

  5 
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