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The quantized vortices in superfluids are modeled by the Gross-Pitaevskii equation whose numerical 
time integration is instrumental in the physics studies of such systems. In this paper, we present a 
reliable numerical method and its efficient GPU-accelerated implementation for the time integration of 
the three-dimensional Gross-Pitaevskii equation. The method is based on discrete exterior calculus which 
allows us the usage of more versatile spatial discretization than traditional finite difference and spectral 
methods are applicable to. We discretize the problem using six different natural crystal structures and 
observe the correct choices of spatial tiling to decrease the truncation error and increase the reliability 
compared to Cartesian grids. We pay attention to the computational performance optimizations of the 
GPU implementation and measure speedups of up to 152-fold when compared to a reference CPU 
implementation. We parallelize the implementation further to multiple GPUs and show that 92% of the 
computation time can fully utilize the additional resources.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Gross [1] and Pitaevskii [2] introduced a mathematical model 
for the physics of quantized vortices in superfluids. The model is 
expressed as the Gross-Pitaevskii equation (GPE), also known as the 
non-linear Schrödinger equation, which in the case of dilute gases of 
bosonic atoms [3] reads

ih̄∂t�(r, t) =
[
− h̄2

2m ∇2 + V (r) + g|�(r, t)|2
]
�(r, t), (1)

where � is the complex-valued wave function, i is the imaginary 
unit, h̄ is the reduced Planck constant, m is the atom mass, V is 
the external potential, and g is the effective interaction strength. 
The wave function is normalized so that 

∫ |�(r, t)|2d3r = N , where 
N is the number of atoms.

The numerical time integration of the GPE is of great inter-
est in physics e.g. for simulating and studying the behavior of 
Bose-Einstein condensates as shown by recent studies [4–6]. The 
numerical solutions require the spatial domain to be discretized 
and a comprehensive survey of GPE time integration methods [7]
shows that it is widely done by using evenly spaced square and 
cubic grids, in 2D and 3D domains, respectively. In addition to the 
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finite difference method, recently, the two mostly used discretiza-
tion methods for the GPE have been the Fourier spectral method 
[8,9] and the finite element method which has enabled the us-
age of axial symmetric [10] and triangle [11] grids as well. It has 
been observed however that in the case of Maxwell’s equations the 
choice of more diverse discretization grids can improve the accu-
racy of the solution [12,13]. In this paper, we will show that this 
is the case with the three-dimensional GPE as well, and that the 
accuracy of the time integration and the reliability of numerical 
simulations can be improved by increasing the isotropy of the spa-
tial discretization. We measure the error of the time integration by 
using six different natural crystal structures for the discretization 
and discover the cubic grid to produce the largest error of them 
all.

We enable the usage of more sophisticated grids than what has 
previously been used with the GPE, by applying the concepts of 
differential geometry and exterior calculus. Particularly the em-
ployment of differential forms plays an important role by removing 
the metric from the differential operators and allowing their exact 
presentation also at the discrete level. The discrete extension to 
differential forms is given by the discrete exterior calculus (DEC) 
[14,15] which we will concentrate on in this paper. In DEC the 
only source of discretization error is the discrete Hodge star oper-
ator, which defines the relations between primal and dual discrete 
differential forms, and thus is determined by the relation of the 
primal and dual spatial grids. DEC has previously been successfully 
utilized in elastodynamics [16], fluid dynamics [17], electromag-
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.cpc.2022.108427
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2022.108427&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:markus.i.kivioja@student.jyu.fi
mailto:sanna.monkola@jyu.fi
mailto:tuomo.j.rossi@jyu.fi
https://doi.org/10.1016/j.cpc.2022.108427
http://creativecommons.org/licenses/by/4.0/


M. Kivioja, S. Mönkölä and T. Rossi Computer Physics Communications 278 (2022) 108427
netism [18], and in quantum mechanics in the form of the stan-
dard linear Schrödinger equation [19]. Our work is the first one to 
apply DEC to the non-linear Schrödinger equation.

The computational performance of the time integration is of 
high importance, as the computation time determines how fine 
the discretization, and how large the spatial and time domains 
can be in practice. Those factors may determine the set of physics 
research problems the time integrator is applicable to, as the phys-
ical properties of the simulated systems can compose requirements 
for the accuracy and domain size [20]. The independent nature 
of a time integration step of an individual grid vertex, makes the 
method ideal for the massively parallel computing model [21]. In 
[22], [23], [24], and [25], general-purpose GPU computing (GPGPU) 
[26] has been utilized for solving the non-linear Schrödinger equa-
tion with promising results. Though this has only been done using 
Cartesian spatial discretization and in many cases by utilizing a 
ready-made linear algebra library.

We implement our DEC-based method on multiple GPUs by giv-
ing attention to the lower-level details and common performance 
bottlenecks [27] in the modern GPU hardware architectures. We 
note that the memory utilization and access patterns in particu-
lar play an important role in the performance optimizations of the 
GPU implementation, and we concentrate on them especially. The 
implementation shows up to 152-fold performance improvement 
when benchmarked against a reference CPU version, and good scal-
ability over the number of GPUs. There is no previous research on 
the topic of using GPUs in DEC. Esqueda et al. [28] mention the 
usage of a single GPU in their numerical experiments, but give no 
description of the implementation nor its computing time perfor-
mance, therefore this paper aims to fill those gaps.

The rest of the paper is organized as follows. In section 2 we 
describe the method for discretizing the spatial domain of the 
time integration and the six different grid types used in our ex-
periments. Section 3 presents the application of the concepts of 
discrete exterior calculus to the GPE. We give a detailed descrip-
tion of our implementation and performance optimizations of the 
method on multiple GPUs in section 4. The numerical behavior and 
accuracy, as well as the execution time performance and its scala-
bility, are examined in section 5. Last, we summarize the paper in 
section 6.

2. Spatial discretization

The three-dimensional spatial domain is discretized by using 
cell complexes consisting of linear and convex oriented k-cells, 
where k ∈ {0, 1, 2, 3}. Hence in our case, 0-cells are defined as 
points x ∈ R3, oriented 1-cells as line segments between two 0-
cells, oriented 2-cells as convex two-dimensional linear surfaces 
enclosed by finite sets of 1-cells, and oriented 3-cells as convex 
three-dimensional volumes enclosed by finite sets of 2-cells. The 
(k − 1)-cells enclosing a k-cell are called boundary cells and the 
orientations of k-cells are determined by the order of their bound-
ary cells.

We use sets of two cell complexes which consist of a primary 
complex and a dual complex. The dual complex is constructed by 
assigning a dual (3 − k)-cell for each primary k-cell and by set-
ting the positions of the dual 0-cells to be the circumcenters of 
their corresponding primary 3-cells, which ensures that the dual 
1-cells are always orthogonal to the primary 2-cells and vice versa. 
We choose the circumcentric positioning of the dual cells, since it 
doesn’t yield significant losses in the accuracy [29], but is comput-
ing timewise an optimal option, as we will show in section 3.

Since the quantized vortices modeled by the GP equation can 
advance in all directions, we make a hypothesis that the best accu-
racy for the time integration is achieved by maximizing the spatial 
isotropy of the cell complex. For this purpose, we construct the 
2

Fig. 1. The grid types used for the spatial discretization [13,32].

cell complexes using the six different natural crystal structures 
that were applied to the time integration of Maxwell’s equations 
by Räbinä [30]. These structured grids are the cubic crystal sys-
tems: cubic, face-centered cubic (FCC), and body-centered cubic 
(BCC), and the tetrahedrally close-packed (TCP) structures: A15, 
C15, and Z.

The standard cubic tiling acts as the basis for the other cubic 
crystal systems. The FCC and BCC grids are constructed by adding 
vertices at the center of the faces and bodies of the cubic grid, 
respectively. The FCC grid-based tiling of the spatial domain con-
sists of alternating bodies of regular octrahedra and tetrahedra, and 
the dual bodies are Kepler’s rhombic dodecahedra. In the BCC grid 
tiling, the primary bodies are congruent tetrahedra, whose faces 
are isosceles triangles with the relation of 2 : √3 between the bot-
tom and side edges. The dual bodies of the BCC tiling are truncated 
octahedra with equal length edges.

The motivation for the TCP structures is to achieve small di-
hedral angles, which is shown to be a preferred quality of a grid 
in the time integration of Maxwell’s equations [31]. The A15 and 
C15 grids are constructed by adding vertices to the BCC and FCC 
grids, respectively. The dual bodies of the A15 grid are irregular 
dodecahedra, centered at the BCC grid vertices, and tetrakaidec-
ahedra surrounding the other primal vertices. The dual C15 grid 
consists of 12-hedra and 16-hedra. Unlike the other structures, the 
Z grid is asymmetric in that its z-direction is divergent from the x-,
and y-directions. Though, the xy-plane is symmetric in 60-degree 
increments. Its dual grid is composed of 12-hedra, 14-hedra, and 
15-hedra.

The BCC and C15 grids are expected to perform well since C15 
has the smallest dihedral angle and BCC least variance in the edge 
lengths. Additionally, both grid types are previously shown to be 
the most numerically isotropic [32]. All of the aforementioned cu-
bic crystal systems and TCP structures are visualized in Fig. 1.

With each of the grid types, we construct the full spatial tiling 
by repeating a basis replicable structure, and during the rest of 
this paper we call their separate occurrences replicable structure in-
stances.

3. Computational model

We consider the more general dimensionless form of the time-
dependent GPE (see [33])

i∂t̄�̄(r̄, t̄) =
[
− 1

2 ∇2 + V̄ (r̄) + ḡ|�̄(r̄, t̄)|2
]
�̄(r̄, t̄), (2)

where �̄, V̄ , ḡ, r̄, and t̄ are suitably scaled versions of their barless 
counterparts, and 

∫ |�(r̄, ̄t)|2d3r̄ = 1. In this paper, we concentrate 
only on the time integration of the GPE and omit the computation 
of the initial value, in which case the exact scales can be ignored 
and V̄ and ḡ considered as some adjustable real-valued scalar pa-
rameters that are constant w.r.t. time.

In order to apply discrete exterior calculus, we first transform 
the equation in smooth setting into a more suitable format, which 
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assumes familiarity with differential geometry and exterior alge-
bra.

We can regard the scalar wave function �̄ as a smooth differ-
ential 0-form �̂, which generalizes the equation to smooth differ-
entiable manifolds of arbitrary dimensions

i∂t̄�̂ =
[

1
2 δd + V̄ + ḡ|�̂|2

]
�̂,

where d is the exterior derivative, and δ = − �−1 d� is the codiffer-
ential. Here � is the Hodge star operator which, in n-dimensional 
space, maps k-forms to (n −k)-forms and is defined by the relation 
α ∧ (�β) = 〈α, β〉 e1 ∧ · · · ∧ en for all pairs of k-forms α, β , when 
e1 · · · en are orthonormal basis forms and ∧ the wedge product.

We introduce a differential 1-form û and write the above equa-
tion as a pair of equations

i∂t̄�̂ = 1
2 δû + V̄ �̂ + g|�̂|2�̂,

û = d�̂.

Considering the pair in 3-dimensional space, then by applying the 
Hodge star operator on both sides of the upper equation, inte-
grating the upper and lower equations over a 3-manifold V and 
a 1-manifold C , respectively and applying the generalized Stokes’ 
theorem∫
�

dω =
∫
∂�

ω

to both equations, the system takes an integral form of

i∂t̄

∫
V

��̂ = 1
2

∫
∂V

�û +
∫
V

[
V + g|�̂|2

]
� �̂,

∫
C

û =
∫
∂C

�̂,

(3)

where ∂� denotes the boundary of a manifold �.
Hirani et al. [14] defined the discrete differential k-form on a k-

cell ck by the de Rham map

α̃ = 〈α, ck〉 =
∫

ck

α,

where α is a smooth differential k-form, and α̃ its corresponding 
discrete counterpart. Furthermore the diagonal discrete Hodge star
operator was introduced and defined by the relation

1
|∗ck| 〈�α,∗ck〉 = 1

|ck| 〈α, ck〉, (4)

where ∗ck is the circumcentric dual cell of ck , and |ck| denotes 
the k-volume of the cell. These definitions apply naturally to the 
integral form eq. (3) of the GPE when its smooth manifolds are 
replaced by oriented complex cells and the smooth Hodge star by 
the discrete version.

More precisely, if B is an oriented 3-cell and its boundary ∂B
consists of oriented 2-cells Fi , and we denote their dual 1-cells by 
E∗

i and further their boundaries ∂E∗
i by dual 0-cells Ni

∗
j , we see 

that∫
∂B

�û =
∑

i

∫
Fi

�û =
∑

i

〈�û,Fi〉 =
∑

i

|Fi |
|E∗

i | 〈û,E∗
i 〉,

〈û,E∗
i 〉 =

∫
E∗

i

û =
∫

∂E∗
i

�̂ =
∑

j

∫
Ni

∗
j

�̂ =
∑

j

〈�̂,Ni
∗
j 〉.
3

Then by noting that 
∫
B ��̂ = 〈��̂, B〉 = |B|

|B∗| 〈�̂, B∗〉 and that the 
0-volume |B∗| = 1, we get

i∂t̄〈�̂,B∗〉 = 1
2

1
|B|

∑
i

|Fi |
|E∗

i |
∑

j

〈�̂,Ni
∗
j 〉 + [V̄ + g|�̂|2]〈�̂,B∗〉. (5)

Note that here 〈�̂, B∗〉 is the value of �̄ at the circumcenter of B, 
and 〈�̂, Ni

∗
j 〉 are the signed values at the positions of Ni

∗
j , where 

the signs are defined by the orientations of E∗
i .

When the eq. (5) is applied to every dual 0-cell of a cell com-
plex consisting of m ∈ N 3-cells, the resulting linear system of 
equations can be presented in a matrix form of

i∂t̄ψ =
[

1
2 �3 d2 �−1

2 dT
2 + U

]
ψ, (6)

where d2 ∈ Zm×mF is a sparse incidence matrix whose elements 
are defined as (d2)i, j = ±1 if the jth 2-cell is a boundary cell of 
the ith 3-cell and 0 otherwise. The sign is defined by the orienta-
tion of the boundary 2-cell w.r.t. the orientation of the 3-cell. Here 
mF = ∑m

i #∂Bi , where #∂Bi denotes the cardinality of the set of 
boundary 2-cells of the ith 3-cell. ψ ∈Cm is a column vector con-
sisting of the wave function values at the positions of the dual 
0-cells, and the diagonal matrices �2 ∈ RmF×mF and �3 ∈ Rm×m

defined as

�2 = diag

(
|E∗

1 |
|F1| ,

|E∗
2 |

|F2| , . . . ,
|E∗

#∂Bm
|

|F#∂Bm |
)

,

�3 = diag
(

1
|B1| ,

1
|B2| , . . . ,

1
|Bm|

)
.

U ∈ Rm×m is a diagonal matrix with elements Ui,i = V̄ i + ḡ|ψi|2, 
where V̄ i denotes the value of V̄ (r̄) at the position of the ith dual 
0-cell. The diagonality of the matrices �k is a direct consequence 
of the definition eq. (4) which only applies to circumcentric dual 
complexes.

The truncation error of eq. (6) is fully contained in the matrices 
�k and is numerically shown to be O(|E∗|2) [34].

3.1. Time discretization

The time domain is discretized by using the standard central-
difference method [35] which, when applied to the eq. (6), yields

i ψ(n+1)−ψ(n−1)

2�t̄
=

[
1
2 �3 d2 �−1

2 dT
2 + U (n)

]
ψ(n),

and furthermore gives us the formula for the time integration 
steps:

ψ(n+1) = ψ(n−1) − 2i�t̄M(n)ψ(n), (7)

where �t̄ is the length of the time step, ψ(n) and U (n) the wave 
function value vector and its corresponding matrix U , respectively, 
at a time instant n�t̄ so that n ∈Z, and

M(n) = 1
2 �3 d2 �−1

2 dT
2 + U (n) ∈Rm×m.

In a general case, when the edge lengths of the dual grid vary, 
as is the case with the FCC, A15, C15, and Z grids, the ith row of 
the eq. (7) is written out as

ψ
(n+1)
i = ψ

(n−1)
i − i�t̄

×
⎡
⎣ 1

|Bi |
∑

j

|Fi, j |
|E∗

i, j | (ψ
(n)
i − ψ

(n)
i, j ) + (V̄ + g|ψ(n)

i |2)ψ(n)
i

⎤
⎦ ,

(8)
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where Fi, j denotes the jth boundary cell of the ith 3-cell and E∗
i, j

its dual cell. ψi, j denotes the element corresponding to the dual 
0-cell that is a boundary cell of E∗

i, j but is not the ith dual 0-cell. 
The summation is over all boundary 2-cells of the ith 3-cell.

The cubic and BCC grids are special cases in that their dual 
edge lengths and the numbers of boundary faces of dual bodies 
don’t vary, which allows us to simplify the eq. (8) to

ψ
(n+1)
i = ψ

(n−1)
i − i�t̄

×
⎡
⎣ |F |

|E∗||B| (#∂Bψ
(n)
i −

∑
j

ψ
(n)
i, j ) + (V̄ + g|ψ(n)

i |2)ψ(n)
i

⎤
⎦ .

The time discretization related truncation error of eq. (7) is the 
well known O(�t̄2) error of the central-difference method.

The time discretization method is conditionally stable, in that 
there is a |E∗| dependent upper limit for the time step size and 
when the limit is exceeded the method becomes unstable. The 
instability is generally caused by a real or imaginary part of an 
element of ψ changing its sign on every time step which will 
eventually cause the absolute value to increase without a limit as 
shown in [32].

We try to avoid this by limiting the maximum absolute differ-
ence of changes of ψR := Re(ψ) (or, equivalently, of ψI := Im(ψ)) 
on subsequent time steps with

|(ψR
(n+2)
i − ψR

(n)
i ) − (ψR

(n)
i − ψR

(n−2)
i )| ≤ CψR

max
i , (9)

for some constant C . Here ψR
max is a vector so that |ψR

(n)
i | ≤

ψR
max
i for all i and n. We take a linear approximation of the eq. (7)

by using a matrix M := M(0) and with that we get

(ψ
(n+2)
R − ψ

(n)
R ) − (ψ

(n)
R − ψ

(n−2)
R ) = 2�t̄Mψ

(n+1)
I − 2�t̄Mψ

(n−1)
I

= 2�t̄M(ψ
(n+1)
I − ψ

(n−1)
I ) = −4�t̄2M2ψ

(n)
R ,

which when applied to eq. (9), with the definition of ψR
max, gives 

us

�t̄i ≤
√

CψR
max
i

|4M2
i,∗ψmax

R | ,

where M2
i,∗ denotes the ith row of the matrix M2. We note that 

Mi,i >> Mi, j when j 
= i and hence approximate M by considering 
only its diagonal elements which reduces the above condition to

�t̄i ≤
√

C
2Mi,i

. (10)

For a global �t̄ which holds for all i, the greatest matrix diago-
nal element must be picked. Since eq. (10) is an approximation 
we used numerical experiments to find a sufficient value for the 
constant C . With the grid types introduced in section 2, the time 
integration was found to be stable when C = 1 which gives us the 
final condition

�t̄ < (2 max
1≤i≤m

Mi,i)
−1. (11)

4. GPU implementation

Since the matrix M in the time integration step eq. (7) is usu-
ally large, the vector multiplication may be infeasible slow, when 
computed in a serial manner. We, therefore, take advantage of par-
allel computing and utilize GPGPU. This is done by implementing 
the DEC-based GPE time integrator using Nvidia’s CUDA API [36]
and targeting hardware with CUDA compute capability of 5.2 and 
above. In this and the following sections, we will also use the ter-
minology introduced with CUDA.
4

We assign one GPU thread for each dual 0-cell in the cell com-
plex so that the ith thread will effectively compute the value of 
the expression

ψ
(n+1)
i = ψ

(n−1)
i − 2i�t̄M(n)

i,∗ψ(n), (12)

where Mi,∗ denotes the ith row of the matrix M . Since M is sparse 
we precompute, for each row i, a set J i = { j ∈ N : Mi, j 
= 0} of 
the column indices of the non-zero elements, and only include the 
columns j ∈ J i to the computation of eq. (12). From the derivation 
of the matrix M in section 3, it follows that # J i = #∂Bi +1, where 
Bi is the 3-cell enclosing the ith dual 0-cell.

Since the full spatial grid is constructed by duplicating a repli-
cable structure, we also generate the sets of the columns of the 
non-zero matrix elements only for one structure and reuse them 
with the other structure instances. This is achieved by replacing 
the sets J i by defining new sets

Ĵ i =
{

ĵ ∈Z4 : ĵ =
(

c j
l , s j

x − si
x, s j

y − si
y, s j

z − si
z

)
,

Mi, j 
= 0, i 
= j
}
,

where c j
l is the local index of the jth dual 0-cell in the replica-

ble structure, and s j
x , s j

y , s j
z denote the x-, y-, and z-directional 

indices of the cell’s structure instance, respectively. In other words, 
we express the columns of the non-zero matrix elements using 
four-component vectors consisting of the local index in the replica-
ble structure and the x-, y-, and z-directional offsets of the indices 
of the structure instance w.r.t. the indices of the structure instance 
of the ith dual 0-cell. With this approach, the number of required 
different sets Ĵ i is decreased to ms , where ms denotes the num-
ber of the dual 0-cells in a single replicable structure instance. We 
know that every set J i holds an element with a value of i, so we 
can drop the cases of i = j from the sets Ĵ i and thereby reduce 
their cardinality to # Ĵ i = #∂Bi .

Likewise the matrix M is compressed by storing only the non-
zero elements corresponding to one structure instance so that the 
stored element count is 

∑ms
i=0 # Ĵ i . The matrix M and the sets Ĵ i

depend on the grid type and are computed only once in advance 
for each of the grids. Apart from the optimizations mentioned later 
in the paper, M and Ĵ i are the only grid-dependent components of 
the implementation and hence the runtime part of the integrator 
does not require changes between the different spatial discretiza-
tions.

The solution vector ψ is double buffered in the global GPU 
memory so that one of the buffers holds the values for the time 
instants t(n) of odd n, and the other for the time instants of even 
n. The GPU kernel function treats one of the buffers as the vector 
ψ(n) in eq. (12) and the other one as both ψ(n+1) and ψ(n−1) by 
updating its value cumulatively. The same kernel is invoked for ev-
ery time step and the two value buffers are swapped in between 
the invocations.

The GPU kernel function is described in pseudocode in Algo-
rithm 1, where S is a three component vector, holding the domain 
size, measured in replicable structure instance counts, Js an array 
of all unique sets Ĵ , �s a dense matrix holding the absolute val-
ues of the non-zero elements of �3d2 �−1

2 dT
2 corresponding to the 

indices in J s, and dt the time step size.

4.1. Memory access pattern

The thread group dimensions of the kernel launches are con-
figured in a way that the global y- and z-directional indices of 
the threads match with the indices of the replicable structure in-
stances, whose value elements the threads are assigned to com-
pute. The global thread count in the x-direction is multiplied by 
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Algorithm 1 GPU kernel for computing one time step.

1: procedure TimeStep(ψ(n+1), ψ(n−1), ψ(n), �s, Js, V , g, dt)
2: cl ← (blockIdx.x × blockDim.x + threadIdx.x) mod ms

3: sx ← (blockIdx.x × blockDim.x + threadIdx.x)/ms

4: sy ← (blockIdx.y × blockDim.y + threadIdx.y)

5: sz ← (blockIdx.z × blockDim.z + threadIdx.z)
6: i ← ms × (sz × S.x × S.y + sy × S.x + sx) + cl

7: J ← Js[cl]
8: � ← �s[cl] � Take one row from the matrix �s
9: � ← (0 + 0i) ∈C

10: for ∀ f ∈ {0, 1, ..., # J − 1} do
11: j ← J [ f ] � j is a 4 element array
12: j ← ms × (j[3] × S.x × S.y + j[2] × S.x + j[1]) + j[0]
13: � ← � + �[ f ] × (ψ(n)[i] − ψ(n)[ j])
14: ψ(n+1)[i] ← ψ(n−1)[i] − dt × i × � + (V [i] + g|ψ(n)[i]|2)ψ(n)[i]

ms so that the corresponding x-directional structure index is deter-

mined by sx =
⌊

tx
ms

⌋
, where tx ∈N denotes the global x-directional 

thread index. The local index of the dual 0-cell in the structure is 
then given by cl = tx mod ms .

The memory layout of the vectors ψ is such that the elements 
corresponding to the dual 0-cells in the same replicable struc-
ture instance are stored in a contiguous interval, and the structure 
instances themselves in row-major order, where a row is consid-
ered to coincide with the x-direction. Therefore by structuring the 
thread groups in an aforementioned way, we maximize the coa-
lescing of the global memory load and store access patterns. We 
use double-precision floating-point numbers for all of the data 
and arithmetics, so a complex-valued element of ψ will occupy 
16 bytes of global memory. Hence on our target hardware with 
L2-cached global memory accesses with 32-byte cache lines, every 
pair of two subsequent elements can be accessed with the same 
transaction. Therefore when all of the threads access the element 
of their assigned dual 0-cells simultaneously, a warp of 32 threads 
makes 16 transactions per load/store.

A set Ĵ i contains duplicates of elements of other sets Ĵ l , with 
l 
= i, in which case every element of ψ(n) will be read multiple 
(# J i ) times during the computation of one time step. We avoid in-
creasing the number of global memory accesses by utilizing the 
local on-chip memory on modern GPU hardware, called shared 
memory. This is accomplished by making every thread first load 
its corresponding element of ψ(n) from the global memory into 
the shared memory so that during the computation of ψ(n+1) most 
of the elements of ψ(n) can be loaded from the shared memory 
with low latency. With the current GPU hardware architectures the 
shared memory can be shared only between the threads inside the 
same thread group, and because some of the needed elements of 
ψ(n) might be loaded into the shared memory by threads living in 
a different thread group than the one computing the element of 
ψ(n+1) , those still need to be read from the global memory. The 
number of elements needed to be read from the global memory 
during the computation can be reduced by maximizing the size of 
the thread groups, so that when the threads are associated with 
the dual 0-cells, the area of the borders between thread groups is 
minimized.

In the GPU hardware the shared memory is divided into banks 
so that each bank can be accessed simultaneously. However when 
multiple threads in the same warp make a request to the same 
bank the accesses conflict and are serialized. We avoid this by 
properly permuting the elements of the sets Ĵ i and by adding 
memory padding in between the elements of the vectors ψ . We 
optimize the method for hardware with 32 banks and a bank 
width of 32 bits. Therefore each double-precision complex-valued 
element of 128 bits will occupy 4 consecutive banks in the shared 
memory.

Since one bank can only transfer 32 bits per transaction, a 
load/store of 128 bits per thread will always need at a minimum 
5

of four transactions. For this reason, GPUs with CUDA compute ca-
pability of 5.2 and above will access 128 bits per thread for 8 
threads at a time so that the whole warp access creates exactly 
four transactions and causes no bank conflicts. In consequence, we 
can design our shared memory layout and accesses for eliminating 
bank conflicts by considering an artificial system with a warp size 
of 8 threads and a shared memory with 8 banks of 128 bits per 
bank.

From this, it follows that the element with the local dual 0-cell 
index of cl is stored in the same bank as all the elements with an 
index (cl + 8k) mod ms , where k ∈ N+ . Consequently, the num-
ber of elements of different dual 0-cell indices stored in the same 
bank is lcm(ms,8)

8 , where lcm(·, ·) denotes the least common multi-
ple. When ms is even, the previous expression can have values of 
ms
2 , ms

4 , or ms
8 . When ms is odd every bank would hold elements of 

all the different dual 0-cell indices, but in that case we add a 128
bit-sized padding in between the last and first elements of differ-
ent replicable structure instances, which reduces the case back to 
the even ms . The elements of the sets Ĵ i are strove to be permuted 
so that for any fixed l ∈ {0, 1, · · · , # Ĵ i}, it holds that

Ĵ i
l,0 
= ( Ĵ j

l,0 + 8k) mod ms,

∀i, j ∈ {0,1, · · · ,ms} : i 
= j, � i

32
� = � j

32
�,

(13)

where Ĵ i
l,0 denotes the first component of the lth element in the 

set Ĵ i . The equality of the integer parts of the divisions by 32 re-
laxes the requirement to apply only inside the same warp. When 
ms > 32 there might be no possible permutations for the elements 
so that the inequality eq. (13) would hold, without also permut-
ing the order of the sets Ĵ i themselves. We avoid doing that since 
it would decrease the number of coalesced accesses to the global 
memory, which has a greater performance cost. For that reason 
with some grid types, with large ms , we settle for only minimizing 
the number of pairs (i, j) breaking the rule. A heuristic iterative 
algorithm is used for the generation of the permutations.

We are able to allow for Ĵ i
l,0 = Ĵ j

l,0, because of the shared mem-
ory broadcasting capability offered by our target GPU hardware, 
which permits multiple threads in the same warp to access the 
same 32-bit word without causing bank conflicts. However it is 
not always the case that the target elements of the loads made 
by the ith and jth thread are the same, even though Ĵ i

l,0 = Ĵ j
l,0. 

This happens when loads are made across the borders of structure 
instances, and when ms mod 32 
= 0, so that different threads in 
the same warp may not be assigned with dual 0-cells within the 
same structure instance. We eliminate the bank conflicts caused by 
these cases by first squeezing the thread groups to extend only in 
the x-direction so that one warp is able to access at a maximum of 
three structure instances, which are also guaranteed to be consecu-
tive. Then by adding memory padding in between all the elements 
of ψ , if necessary, to increase the number of structure instances in 
between the two closest elements which have the same local dual 
0-cell index and share the same bank, to be greater than two.

Fig. 2 presents the layout of the shared memory after 64-bit 
padding has been added, in the case of the BCC and FCC grids with 
ms = 12. A matrix cell in the figure represents a combination of 
two consecutive 32-bit banks, and the numbers inside the cells are 
the local dual 0-cell indices corresponding to the elements stored 
in the banks. From the figure, it can be seen how there are 4ms

elements in between the cases where two elements of the same 
cl are stored in the same bank. Without the padding, the interval 
would be only 2ms , and the cases of Ĵ i

l,0 = Ĵ j
l,0 able to cause bank 

conflicts.
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Fig. 2. The layout of ψ in the shared memory banks after the padding has been 
added, in the case of the BCC and FCC grids.

ngpu − 1

ngpu

ngpu + 1

Fig. 3. The stored elements of ψ by different GPUs, and the memory copies between 
them, presented in the units of z-slices. The gray cells denote the z-slices the GPUs 
are assigned to compute.

4.2. Multiple GPUs

The implementation is further parallelized to multiple GPUs by 
using domain decomposition [37]. The buffers for the vectors ψ
are laid out in the memory in a way that the elements correspond-
ing to the replicable structure instances on the same xy-plane (z-
slice) will be in a contiguous memory area. Therefore we distribute 
the work across multiple GPUs by splitting the spatial domain 
across the z-axis, to minimize the number of data copy operations 
between different GPUs, and hence the overhead caused by them. 
The splitting is done as evenly as possible so that the maximum 
difference in the number of assigned z-slices for different GPUs is 
one.

The computation domains assigned to different GPUs are sep-
arate, though two consecutive GPUs store elements of ψ in a 
way that the subdomains covered by the stored elements over-
lap over two z-slices. Hence if we denote the total number of 
z-slices with Nz , and the number of GPUs with Ngpu (and we 
assume that Nz mod Ngpu = 0), the GPU of index ngpu ∈ N will 
be assigned to compute the elements of the z-slices with indices 
from ngpu

Nz
Ngpu

to 
(
ngpu + 1

) Nz
Ngpu

− 1, inclusive, but store the ele-

ments from ngpu
Nz

Ngpu
− 1 to 

(
ngpu + 1

) Nz
Ngpu

. After each time step 
the ngputh GPU will copy the elements of its second z-slice to 
the memory of the last z-slice of the (ngpu − 1)th GPU. Sim-
ilarly the second to last z-slice will be copied to the first z-
slice of the (igpu + 1)th GPU, as shown in Fig. 3. Each array 
cell in the figure represents a whole z-slice and the cells col-
ored with gray denote the assigned computational domains of the 
GPUs.

To avoid unnecessary synchronizations between the CPU and 
GPUs, and between and within individual GPUs, we utilize the 
concepts of streams, events, and asynchronous memory copies and 
kernel launches introduced by the CUDA API. For every GPU there 
are three streams and events created, one for the kernel execu-
tion and one for each of the two memory copies. The two memory 
copies of a single GPU are independent of each other, and there-
fore can be initiated concurrently, which furthermore is achieved 
by placing them in separate streams. The kernel invocations are 
placed in their own stream, with an event after each invocation, to 
signal the memory copy streams when they can start their work. 
An event is also added to each of the memory copy streams, to sig-
nal the kernel streams of the neighboring GPUs of the next time 
6

Table 1
The lengths of dual 1-cells after the scales, for equalizing the operation counts, have 
been applied.

Cubic FCC BCC A15 C15 Z

1 1.09 0.80 0.93 0.68 0.99

step. The CPU is not blocked by any of the GPU work, up until the 
command buffers of the GPUs are fully occupied, or we need to 
access the time integration results on the CPU side.

5. Numerical experiments

We test the method by time integrating the dimensionless GPE 
eq. (2) and initializing the wave functions using stationary vortex 
solutions �̄λ,ḡ,κ , arising from the dynamics of Bose-Einstein con-
densates [38]. The initial values take a form of

�̄λ,ḡ,κ (r̄, t̄) = f (ρ̄, z̄)eiκφ̄−iμ̄t̄,

where f is a real-valued function satisfying the time-independent 
equation
[

1

2

(
κ2

ρ̄2
− ∂2

ρ̄ − 1

ρ̄
∂ρ̄ − ∂2

z̄

)
+ V̄ + ḡ f 2

]
f = μ̄ f . (14)

Here r̄ = (ρ̄, φ̄, ̄z) is the dimensionless position vector presented 
in cylindrical coordinates, κ the so-called winding number, and μ̄
the dimensionless chemical potential. The eq. (14) can be solved 
with e.g. a relaxation method [39]. An example of an initial value 
is visualized in Fig. 4.

We initialize the vectors of the discretized wave functions with

ψ
(n)
i = �̄λ,ḡ,κ (r̄i,n�t̄),n ∈ {−1,0}.

The computational domain is the smallest cuboid so that

|�̄λ,ḡ,κ (r̄,0)| > 10−5 max
r̄

|�̄λ,ḡ,κ (r̄,0)|, (15)

for all r̄ inside the cuboid. As the boundary condition, we use 
�̄(r̄) = 0, for all r̄ outside of the cuboid.

All of the source codes used in the measurements of this sec-
tion are available in a public repository [40].

5.1. Accuracy

We compare the accuracy of different spatial discretizations by 
scaling the grids in a way that the lengths of the dual 1-cells are 
less than 5% of the effective wavelength of �̄λ,ḡ,κ (r̄, 0), and that 
the number of arithmetic operations per integration of one time 
unit 

∑m
i=0 # J i 1

�t̄
, stays constant between the different grid types, 

and is 6×109. The resulting distances of two adjacent dual 0-cells 
w.r.t. the cubic grid are presented in Table 1.

The accuracies are estimated by comparing the time integra-
tion results to a stationary vortex state �̄λ,ḡ,κ . We use a station-
ary vortex state with λ = 1, ̄g = 300, κ = 10, that can be shown 
by the Bogoliubov equations (see [41]), to be dynamically un-
stable. This causes the vortex to split up into multiple smaller 
parts, by even a small perturbation to the stationary state. Hence, 
we first measure the amount of time t̄ the equation can be in-
tegrated before the perturbation caused by the numerical error 
initiates the splitting. We do this by measuring an error defined 
as E(t̄) = 1 −| ∫ �̄∗

λ,ḡ,κ (r̄, 0)�̄(r̄, ̄t)d3r̄|, and considering the split to 
happen when E(t̄) > 0.01.

From Fig. 5a it can be perceived that the simulated vortex stays 
intact for the longest when the BCC and C15 grids are used. The 
cubic grid not only causes the quickest vortex splitting but also 
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Fig. 4. A visualization of an initial value �̄λ,ḡ,κ (r̄, 0), with λ = 0.1, ḡ = 5000, and κ = 10. Three cross sections are highlighted at z = −10, 0, 10. (For interpretation of the 
colors in the figure(s), the reader is referred to the web version of this article.)
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Fig. 5. Errors E(t̄) and RM S E(t̄) produced by the numerical time integration with different spatial discretizations.
results in increasing deviation from the stationary state right from 
the beginning, whereas almost all of the other grids keep the error 
relatively constant at first. A15 is the only other grid that shows 
similar deviation behavior as the cubic grid.

Since E(t̄) only takes the magnitude of the wave function into 
account, we also measure the root mean square error as

RM S E(t̄) =
√√√√ 1

m

m∑
i=0

|�̄λ,ḡ,κ (r̄i,n�t̄) − ψ
(n)
i |2,

which considers the phase as well. The measurement outcomes are 
presented in Fig. 5b, which shows similar results as were observed 
earlier, as in the cubic grid being the least accurate and C15 and 
BCC the most. In this measurement, the FCC grid produces similar 
accuracy with the cubic grid at first, but closer to the end starts to 
deviate, by showing a slightly slower increase in the error. Inter-
estingly, when the phase is taken into account, the error increases 
slower with the BCC grid than with C15, even though C15 main-
tained the vortex shape the longest.

The Bogoliubov equations are also able to predict the split-
ting symmetries of the dynamically unstable stationary states, as 
in how many parts they split up into, when perturbed. With the 
stationary state used in our accuracy measurements, the prediction 
is that a 3-fold splitting should occur. Fig. 6 shows visualizations 
of a cross-section of the wave function at z̄ = 0, after time inte-
grated with the cubic and BCC grids, until E(t̄) > 0.01. The figure 
clearly shows how the splitting symmetry produced by the cubic 
grid doesn’t match with the prediction of the Bogoliubov equations 
but is 4-fold instead. With the BCC grid, a 3-fold splitting can be 
observed, which matches the prediction.
7

Fig. 6. Visualizations of a cross-section of |�̄|2 at z̄ = 0, after time integrations with 
the cubic and BCC grids, until E(t̄) > 0.01.

5.2. Computational performance

At first, we test the computational performance of the GPU im-
plementation by using the same stationary vortex state as in the 
accuracy measurements, but by increasing the dimensions of the 
computational domain, so that it becomes a cube, still satisfying 
the requirement eq. (15). We vary the problem size by scaling the 
spatial grid and monitoring its effect on the speedups the GPU 
provides compared to a serial CPU implementation. This experi-
ment was performed with the BCC grid, and using an NVIDIA®

GeForce® RTX 2080 Ti GPU, and an AMD Ryzen™ 9 3900 CPU. The 
length of an edge of the computation grid cube was varied from 
14 to 270 when measured in replicable structure instance counts. 
Hence, the number of degrees of freedom varied between 143 × 12
and 2703 × 12, inclusive.
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Fig. 7. The computational performance improvements provided by the GPU against 
the CPU, as a function of problem size.

The results are presented in Fig. 7, which shows a rapid in-
crease in the speedups at first, when the problem size increases, 
but then reaches the maximum of 57-fold speedup, at the prob-
lem size of 1893 × 12 degrees of freedom, and stays approximately 
on that level from thereon. From that, we predict that this is the 
maximum reachable speedup with the used GPU and CPU.

We look more deeply into the reasons behind this behavior by 
using the Roofline model [42]. For that, we pick four cases from 
the previous experiment, the grid widths of 14, 27, 54, and 189, 
and examine their computational performances in relation to their 
arithmetic intensities. In Fig. 8a the aforementioned four cases are 
numbered from 1 to 4, respectively. The horizontal ceiling is the 
maximum peak performance of the double-precision pipeline of 
the used GPU, of 368 GFLOP

s . The sloped ceiling is produced by the 
maximum memory bandwidth of 648 GB

s . It can be observed that 
with the smallest problem sizes the GPU is not fully utilized and 
the performance falls significantly behind the possible maximum. 
When the problem size increases the performance approaches the 
ceiling, but at the same time, the arithmetic intensity decreases, 
making the performance memory bandwidth bound. There is an 
anomaly when it comes to the arithmetic intensity of the problem 
size number three, which might be caused by a lucky alignment 
of the borders of thread groups, minimizing the number of the 
required compute time global memory loads, mentioned in sec-
tion 4.1.

We repeat the performance measurements with the other most 
accurate grid type C15 and examine the results likewise using the 
Roofline model, shown in Fig. 8b. With the C15 grid, the distribu-
tion of the arithmetic intensities between different problem sizes 
is smaller than with BCC, but still indicating similar behavior of the 
largest problem size moving the performance from being compute-
bound to bandwidth bound. Also as with BCC, the same anomaly 
in arithmetic intensities in the case of the problem size number 
three is observable. With the BCC grid, we were able to eliminate 
all of the shared memory bank conflicts, but couldn’t achieve that 
with C15, leaving some conflicts to the load transactions. This is 
likely one of the reasons why the C15 grid only achieves 89% of 
the performance of the BCC grid.

Next we examine the computational performance on multiple 
GPUs. The measurements were performed using up to 8 NVIDIA®

Tesla® P100 GPUs. As an initial value, we used a stationary vortex 
solution with λ = 0.1, ̄g = 5000, and κ = 20. For the discretization, 
the BCC grid was used, and a scale which produces 87 ×87 ×302 ×
12 degrees of freedom. We examine the speedups provided by the 
additional GPUs compared to the performance on a single GPU, 
by first retaining the problem size constant and measuring T1

T Ngpu
, 

where T Ngpu is the computation time on Ngpu GPUs. The results 
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are shown in Fig. 9a, where we also present the function from 
Amdahl’s law [43]

St(Ngpu) = 1

(1 − pt) + pt
Ngpu

, (16)

fitted to our observed data, yielding pt = 0.92. St(Ngpu) is the 
speedup, and pt the proportion of the computation time that the 
part benefiting from the additional GPUs originally occupied. With 
this, we can then calculate the maximum achievable speedup to 
be limNgpu→∞ St(Ngpu) = 1

1−pt
= 12.5. The majority of the 8% of 

the computation time that doesn’t gain from the added GPUs, is 
likely caused by the latency of the memory copies between differ-
ent GPUs.

We then measure the speedups by fixing the computation time 
to T1 on all of the considered GPU counts and adjusting the prob-
lem sizes accordingly. In this case, the speedups are defined as 
W Ngpu

W1
, where W Ngpu denotes the computation workload on Ngpu

GPUs. In turn, to these measurements, we fit Gustafson’s law [44]

S w(Ngpu) = 1 − pw + Ngpu pw , (17)

where pw is the proportion of the workload that the part ben-
efiting from the additional GPUs originally occupied. The fitting 
produces pw = 0.78 and both the measured and fitted speedups 
are presented in Fig. 9b. The most significant cause for pw being 
smaller than pt is that we scale the problem size equally in all 
spatial dimensions and if we denote this scale by sw , the amount 

of transferred data between the GPUs increases in O(s
2
3
w ).

Last, we compare the multi-GPU performance against a par-
allelized CPU implementation. The parallelization was done with 
domain decomposition by utilizing the MPI communication proto-
col, and the performance was measured using up to 48 12-core 
Intel® Xeon® E5-2690 v3 CPUs. The same GPUs, initial value, and 
a number of degrees of freedom were used as in the measure-
ments presented in Fig. 9a. This time, we measure the computation 
speed in how many time units of t̄ can be integrated in one sec-
ond, and present both the CPU and the GPU speeds in Fig. 10. It 
is observed that one GPU outperforms 144 CPU cores, and in fact, 
provides 152-fold speedup against one CPU core. The scalability of 
the CPU implementation exceeds the scalability provided by the 
GPUs, which we believe to be caused by the lower computational 
performance of the CPUs, making the computation occupy a larger 
part of the total time and workload, i.e. causing greater pt and pw

in eq. (16) and eq. (17), respectively, than on GPUs.

6. Conclusions

We presented a discrete exterior calculus-based numerical 
time integration method for the three-dimensional Gross-Pitaevskii 
equation. The spatial domain was discretized with six different 
natural crystal structures and the method implemented on mul-
tiple GPUs. We measured the accuracy provided by the different 
discretization grids and the computation time performance of the 
GPU implementation.

All of the discretization grid types showed to provide better 
accuracy than the cubic grid. Especially the C15 and BCC grids 
were proved to be the most accurate ones in all of the experi-
ments, which coincides with previous work showing them to be 
most numerically isotropic. The cubic grid also provided unreliable 
simulation results that didn’t agree with the predictions yielded by 
the physics theory, whereas with all of the other grids the results 
did match the predictions.

The GPU implementation of the method was described with 
the emphasis on the performance optimizations. In which, we paid 
particular attention to the memory utilization, as we then showed 
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later in the paper, that the performance is bound by the maximum 
memory bandwidth of the hardware when the problem size gets 
large enough. The GPU implementation was able to provide up to 
57- and 152-fold speedups against a CPU, depending on hardware. 
The multi-GPU implementation showed that 92% of the computa-
tion time and 78% of the workload has perfect scalability over the 
number of GPUs.

Most parts of the presented GPU implementation, and the per-
formance optimizations, in particular, are independent of the equa-
tion to be integrated. Hence future studies could utilize these parts 
9

to other problems as well when the equations are discretized with 
DEC.
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