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Using Bayesian inference, we determine probabilistic constraints on the parameters describing the
fluctuating structure of protons at high energy. We employ the color glass condensate framework
supplemented with a model for the spatial structure of the proton, along with experimental data from
the ZEUS and H1 Collaborations on coherent and incoherent diffractive J/v production in e+p collisions
at HERA. This data is found to constrain most model parameters well. This work sets the stage for

future global analyses, including experimental data from e+p, p+p, and p+A collisions, to constrain the
fluctuating structure of nucleons along with properties of the final state.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Extracting the multi-dimensional structure of protons and nu-
clei is one of the main goals of future Deep Inelastic Scattering
(DIS) facilities such as the Electron-lon Collider [1,2], LHeC/FC-
he [3] and EicC [4]. Exclusive processes like ]J/v production are
especially powerful probes of the hadron structure at a small lon-
gitudinal momentum fraction x for two reasons. First, the exclusive
nature of the process requires at lowest order at least two gluons
to be exchanged with the target, rendering the cross section ap-
proximately proportional to the squared gluon distribution [5]. Ad-
ditionally, only in exclusive processes is it possible to measure the
total momentum transfer, which is Fourier conjugate to the impact
parameter and thereby provides access to the transverse geometry.

Understanding the proton structure, including its event-by-
event fluctuations [6], is of fundamental interest. Additionally,
knowledge of the spatial structure of the colliding objects in
hadronic and heavy-ion collisions is required in order to construct
realistic initial conditions that can be coupled to relativistic hy-
drodynamic simulations to describe the space-time evolution of
the produced Quark-Gluon Plasma (QGP). Besides heavy-ion col-
lisions, collective phenomena that can be interpreted as signa-
tures of QGP production have been seen in small systems such as
proton/deuteron/>He - nucleus, proton-proton, and even photon-
nucleus collisions, see [7] for a recent review. In such small col-
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lision systems with a proton projectile, the detailed fluctuation
spectrum of the proton geometry is particularly important to de-
termine if QGP is indeed produced.

It is possible to constrain the proton structure from hadronic
collisions by performing a statistical analysis to extract both the
transport coefficients describing the matter produced in proton-
lead collisions (see e.g. Refs. [8-11]), as well as the proton’s fluc-
tuating geometry, by comparing with the LHC data as in Ref. [12].
Another approach, which we take in this work, is to use exclusive
DIS data from HERA, especially exclusive vector meson produc-
tion [13-17], as a complementary input to constrain the proton
shape fluctuations, as initially suggested in Ref. [18]. In the future,
the Electron-Ion Collider will provide a vast amount of precise vec-
tor meson production data with proton and nuclear targets that
will provide further constraints on e.g. momentum fraction xp and
the nuclear mass number A dependence. Additionally, Ultra Pe-
ripheral Collisions [19,20] at RHIC and at the LHC provide access
to very high energy photoproduction processes and to effects of a
nuclear environment on nucleon substructure fluctuations at high
energy [21,22].

In this work, we go beyond previous studies [18,23], where
model parameters were constrained “by eye”, and perform a
Bayesian analysis to extract in a statistically rigorous manner the
non-perturbative parameter values allowed by the HERA data, and
construct initial conditions for hadronic collisions that are compat-
ible with the experimental DIS data.

This paper is organized as follows. In Section 2 we review the
calculation of coherent and incoherent exclusive vector meson pro-
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duction in the dipole picture and discuss the various aspects of our
model for the proton target. In Section 3 we explain the procedure
for our Bayesian analysis. We present results in Section 4 and con-
clude in Section 5.

2. Vector meson production at high energy

In this work we calculate vector meson production in a frame-
work similar to the one used in Refs. [18,23] (see also Refs. [24-
26]), and for completeness briefly review the calculation in this
section.

At high energies, DIS processes can be conveniently described
in the dipole picture in the rest frame of the target proton, and
interaction with the target color field is described in the Color
Glass Condensate (CGC) framework [27]. In the proton rest frame,
the lifetime of a fluctuation of the incoming virtual photon into
a quark-antiquark dipole is much longer than the characteristic
timescale of the dipole-target interaction. Consequently, the scat-
tering amplitude can be factorized into a convolution of photon
and vector meson wave functions and the dipole-target interaction.
The scattering amplitude for exclusive vector meson V production
can then be written as [28,29]

Ay*+p—>V+p =Zi/dzrldzbj_j_;e—i[bl*(%fz)m_]m_

x [WHW,1(Q% r1,2)No(r b, xp). (1)

Here r; is the transverse size of the qq dipole, b; is the impact
parameter measured relative to the proton center, and Q2 is the
photon virtuality. The fraction of the large photon plus momentum
carried by the quark is given by z, and A is the transverse mo-
mentum transfer. Note that at high energies we can employ the
eikonal approximation and assume that the quark transverse coor-
dinates are fixed during the propagation through the target color
field.

The y* — qq splitting is described by the virtual photon light
front wave function W, which can be computed from QED [30].
The vector meson wave function is non-perturbative, and in this
work, we use the so-called Boosted Gaussian parametrization
from [28], where the model parameters are constrained by ex-
perimental data on the vector meson decay width. We note that
there are multiple vector meson wave functions proposed in the
literature (see e.g. Refs. [31-33]). Different wave functions mostly
affect the overall normalization of the J/y production cross sec-
tion, and have a much smaller effect on the |t| spectra, which we
are most interested here [21,28,31]. Consequently, our results will
depend only weakly on the specific wave function choice (except
for the parameter controlling the overall proton density).

Equation (1) is a leading order result for the vector meson
production in the CGC framework (note that multiple scattering ef-
fects are resummed in the dipole amplitude Ng). This framework
is applicable in the high energy limit where the parton densities in
the proton are very large and the DGLAP scale evolution can be ne-
glected (see also e.g. Refs. [34,35] for a complementary approach
based on collinear factorization where one also can study vector
meson production as a function of rapidity gap size). Currently,
there is rapid progress in the field toward next-to-leading order
(NLO) accuracy. In particular, the cross section for the production
of longitudinally polarized heavy vector mesons are now avail-
able [36] at next-to-leading order, as well as the virtual photon
light front wave function [37] and small-x evolution equation [38].

However, the NLO calculations are not yet at the level where
they can be consistently used in phenomenological applications (in
particular the cross section for transversely polarized heavy vector
meson production is still missing). As the purpose of this work
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is to demonstrate the potential of Bayesian analyses to systemat-
ically extract non-perturbative parameters describing the proton
event-by-event fluctuating structure, we do not expect the NLO
contributions to have a large effect on the results we obtain us-
ing our leading order setup.

The coherent cross section, corresponding to the process where
the target proton remains in the same quantum state, can be ob-
tained by averaging over the target color charge configurations
at the amplitude level [39]:

do V" tp—>V+p 1

- 2
dit| 167 )

’(Ay*+pév+p> ‘2

Q

Subtracting the coherent contribution from the total diffractive
vector meson production cross section we obtain the cross sec-
tion for incoherent vector meson production, in which case the
final state of the target is different from the initial state [6,40,41].
Experimentally, this corresponds to processes where the target
proton (or nucleus) dissociates, but the rapidity gap between the
produced vector meson and the target remnants remains. The in-
coherent cross section can then be written as a variance

*+p—V+p*
do? TP _ 1 ’Ay*+p—>v+p‘2
dir| 167 o

_ ‘<Ay*+p—>v+p>9‘2] NE)

Dependence on the small-x structure of the target proton is in-
cluded in the dipole amplitude No(r,, b, xp), which, for a given
target color charge configuration €2, can be written as

1 r r
N, by, xp)=1— —tr[V (bl+ i) vi (bL - i)] (4)
Nc¢ 2 2
Here V(x,) represents a Wilson line, which describes the color
rotation of a quark state when it propagates through the target
field (given the target color field configuration ) at transverse
coordinate x . We suppressed the dependence of V on

My+Q?
w242’

which is the fraction of the target longitudinal momentum trans-
ferred to the meson with mass My in the frame where the tar-
get has a large momentum. In principle xp also depends on the
squared momentum transfer ¢ and on the proton mass, but at
w2 |t|, m,z\, (where my is the invariant mass of the proton) this
dependence is negligible. The photon-proton center-of-mass en-
ergy is denoted by W.

The Wilson lines are obtained in the same way as done in the
[P-Glasma calculation [42] used e.g. in Ref. [43]. The color charges
p® are first determined using the McLerran-Venugopalan [44]
model, assuming that color charges are local Gaussian random
variables with expectation value zero and variance

(5)

Xp

g (p“(X’, x)PP (™, YJ_)> =g ra(x)s®

x 8P (X —yDIX —y7). (6)
Here the color charge density is u? = Sdx"ra(x7), and it is re-
lated to the local saturation scale Qg(x;) determined from the

IPsat parametrization [45] fitted to HERA data [46G]. In our Bayesian
analysis, the ratio

Qs(x1)
g2

: (7)
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is a free parameter, controlling the overall proton density (see also
Ref. [47] for a detailed study of this ratio). The Wilson lines V (x_ )
can be obtained by solving the Yang-Mills equations, and the result
reads

oo
, _ Pt x e
V(XJ_):Pf exp —lg/dz pvzfr:_lz s (8)
—00

where P_ represents path ordering in the x~ direction. Here, we
introduced the infrared regulator m, which is needed to avoid the
emergence of unphysical Coulomb tails, and will be another free
parameter in the Bayesian analysis.

In the IPsat parametrization the saturation scale Qsz(b 1) is di-
rectly proportional to the local density T,(b,). We introduce an
event-by-event fluctuating density by writing the density profile
following Refs. [18,23] as:

Nq
1
Tp®1) == piTg(br —bLp), 9)
9 =1
where
_h2
Tq(by) = o——e /@80, (10)
q

and the coefficient p; allows for different normalizations for in-
dividual hot spots, to be discussed below. Our prescription corre-
sponds to having Ny hot spots with hot spot width Bg (note that
the hot spot transverse root mean square (RMS) radius in \/E).
The hot spot positions b, ; are sampled from a two-dimensional
Gaussian distribution whose width is denoted by B, and the
center-of-mass is shifted to the origin in the end.

Repulsive short-range correlations between the hot spots may
explain the hollowness effect and negative correlation between
the v, and v3 flow harmonics observed in the highest multiplic-
ity proton-proton collisions [48,49]. In order to study if exclusive
vector meson production in DIS can be used to probe such repul-
sive correlations, we also introduce an additional model parameter
dg,min Which controls the minimum three-dimensional distance re-
quired between any two hot spots.! We checked that for a large
number of hot spots Ng =10 in a typical nucleon of size Bgc =4.2
GeV—2, the model parameter dg,min Temains effective more than
90% for dg min < 0.4 fm, meaning that in 10% of the sampled con-
figurations the distance requirement cannot be fulfilled.

Finally, we include saturation scale fluctuations by allowing the
local density of each hot spot to fluctuate independently, follow-
ing again Refs. [18,23] (see also Ref. [51]). These fluctuations are
implemented by sampling the coefficients p; in Eq. (9) from the
log-normal distribution

1 In? p;
P (Inpj) = N exp |:— 2021:| . (11)

The sampled p; are at the end normalized by the expectation
value of the distribution E[p;] = e’/2 in order to keep the av-
erage density unmodified. The magnitude of density fluctuations is
controlled by the parameter o.

1 To implement the minimal distance we follow [50], first sampling 3D distribu-
tions and if necessary resampling the solid angle until the requirement posed by
dg.min is satisfied.
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3. Bayesian analysis setup

Bayesian Inference is a general and systematic method to con-
strain the probability distribution of model parameters # by com-
paring model calculations y(#) with experimental measurements
Vexp [52]. Bayes’ theorem provides the posterior distribution of
model parameters as

P(O01Yexp) o< P(Yexpl@)P(8). (12)

Here P(Yexp|@) is the likelihood for model results with parameter
0 to agree with the experimental data. We choose a multivari-
ate normal distribution for the logarithm of the likelihood with
Ay(0) =y(0) — Yexp [53],

1
I[P (Yexp|0)] = —EAyw)Tz—‘ Ay(8)

—%ln[(Zn)”det z1. (13)

Here n is the number of experimental data points and X = Xexp +
T model 1S the n x n covariance matrix, which encodes experimen-
tal and model uncertainties. In the current analysis, we assume no
correlation among experimental errors of the n observables {oj}.
So the covariance matrix for experimental uncertainty takes a di-
agonal form,

Yexp = diag(alz, . ,anz). (14)

Our model uncertainties ¥,04e; are estimated using the covariance
matrix from the trained Gaussian Process (GP) Emulators [54].

We employ GP emulators [53] for our model and couple them
with the Monte-Carlo Markov Chain (MCMC) method to efficiently
explore the model parameter space [55,56]. The HERA measure-
ments can be represented by five Principal Components (PC) with
a residual variance of less than 0.01%, meaning that 99.99% of
the variation of all studied observables within the prior parame-
ter range are captured by the five principal components. Our GP
emulators are trained to fit these five PCs with 1,000 training sim-
ulations in the model parameter space. In each model parameter
point, we generate 3,000 configurations to compute the coherent
and incoherent cross sections. The relative statistical errors are
within 5%.

All model parameters and their prior ranges (and Maximum a
Posterior values that are discussed in Sec. 4) are summarized in
Table 1. We treat the parameter Ng as a continuous real number.
The fractional part of Ng is treated as a probability to sample ei-
ther [Ng] or [ Ng]| partons inside protons. The same approach was
recently used in Ref. [57]. The experimental data included in the
Bayesian analysis is the H1 data on coherent and incoherent ]/
production cross section measured at W =75 GeV [13]. The inco-
herent data is included in the |t| range 0 < |t| < 2.5 GeV2. We note
that there is incoherent data at higher |t| also (studied in a similar
context in Ref. [24]), but the highest |t| points are not included in
our analysis for two reasons. First, as we determine Wilson lines
at fixed xp, as discussed in Sec. 2, and do not include the full xp
evolution, we neglect |t| dependence in xp (see Eq. (5)). Addition-
ally, at large |t| other effects such as DGLAP evolution [58-60] may
become important.

4. Results

For two distinct scenarios, the first with Ny fixed to 3 (upper
right and red lines), the second with Ng a free parameter (lower
left and blue lines), the posterior distribution of model parameters
is shown in Fig. 1. Particularly for the case of Ng =3, most of the
model parameters are tightly constrained by the H1 data included
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Table 1
Summary of model parameters, their prior ranges, and constrained maximum likelihood values with uncertainty estimates in 90%
credible intervals.

Parameter Description Prior range MAP (variable Ng) MAP (Ngq =3)
m [GeV] Infrared regulator [0.05, 2] 0.506 )32, 0.24675152
Bgc [GeV™2]  Proton size 1, 10] 4.027 130 4.4570 801
Bq [GeV~2] Hot spot size (0.1, 3] 0.47410338 0.34670:2%
o Magnitude of Qg fluctuations [0, 1.5] 0.83370:194 0.563751%
Qs/(g21) Ratio of color charge density and saturation scale [0.2, 1.5] 0.598+0:230 0.747+0:0704
dg min [fm] Minimum 3D distance between hot spots [0, 0.5] 0.25719221 0.25415:222
Ng Number of hot spots [1, 10] 6.791293 3
m [GeV] Bgc [GeV™?] B, [GeV~?] o Qs/(g’W)  dg,min [fm]
051015 3 4 5 05 1.0 0.4 06 050 0.75 0.2 04
1.0
>
)
0.52
_— - S
T 67
> 7.5 >
Q Q
S 5.0 M - - 49
v - v
@ 2.5 o
ton 1.0%
> 1.0 >
S 8
=05 of ‘ 0.5=
@ 8]
1.0 . ? 0.75
- F 0.50 ©
0.5
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~0.75 0873
S \ ‘ o)
0.50 0.6,
o o
€ 0.4
=
$0.2
S
©
7.5
2
<5.0{
0.51.01.52.55.07.5 0.5 1.0 0.5 1.0 0.500.75 0.2 04 255075
m [GeV] B, [GeV~?] B, [GeV~?] o Qs/(g?u)  dg min [fM] Ng

Fig. 1. Bayesian posterior distributions of the model parameters. The diagonal panels show the probability distributions for individual parameters, and off-diagonal panels
illustrate their pairwise correlations. Upper right panels and red lines for Ng = 3, lower left panels and blue lines for variable Ng.
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in the Bayesian analysis. This is due to the fact that different re-
gions of the dataset are sensitive to different model parameters.

First, the infrared regulator m suppresses long-distance Coulomb
tails, and as such, it controls the shape of the proton at large dis-
tances. This part of the proton geometry is probed by coherent
diffraction at low |t| < 0.2 GeV2 [23]: impact parameter and mo-
mentum transfers are Fourier conjugates, and consequently the
low-|t| region is sensitive to large distances and vice versa. On the
other hand, the actual proton size controlled mostly by Bgc de-
termines the overall slope of the coherent spectrum. The hot spot
size Bq then determines the slope of the incoherent cross section
in the |t| > 1 GeV? region: as shown in Ref. [61] the slope of the
incoherent spectra at high |t| is given by the size of the smallest
fluctuating constituent.

The overall normalization is determined by the Q;/(g2u) pa-
rameter and the magnitude of the cross sections constrains that,
however, it can not be determined very precisely from our anal-
ysis as it is strongly correlated with many other parameters,
particularly for the case that Ny is a free parameter. Here we
note that there is some model uncertainty related to the non-
perturbative vector meson wave functions, and different phe-
nomenological parametrizations can result in cross sections that
differ by ~ 20%, see e.g. [21,28,31]. In phenomenological analy-
ses, the so-called skewness correction [28] is sometimes included,
which can also have a numerically significant effect on the cross
section. In this work we include an approximative 42% skewedness
correction following Ref. [23]. The small real part correction dis-
cussed e.g. in Ref. [28] is neglected.

One can see that when leaving Nq variable, its value can not be
constrained in our analysis, except that Ny > 2 is required in order
to get geometry fluctuations that are necessary to describe the in-
coherent HERA data. At first one would expect the configurations
with large N4 to be so smooth that event-by-event fluctuations
would not be enough to result in a large enough incoherent cross
section. However, we note that there is a strong positive correla-
tion between N; and o, which means that large N; goes along
with large hot spot density fluctuations. In this situation one can
not really interpret Ny as the number of hot spots, but one has to
consider effective hot spots, that are generated dynamically from
the sum of the Ny constituents that are each strongly fluctuat-
ing in magnitude. This effective hot spot number will generally
be smaller than Ny. For a quantitative analysis a hot spot finding
prescription, similar to jet clustering algorithms, would be needed.
Additional constraints for o originate from the incoherent cross
section at small |t|, which is sensitive to the fluctuations at long-
distance scales, i.e., overall density fluctuations [18,23].

The minimum distance required between the hot spots in three
dimensions, dq min, €can not be constrained at all in our analy-
sis. This parameter is also only very weakly correlated with the
other parameters, emphasizing its limited effect on the results.
This means that the ]J/v production data allows, but does not re-
quire, repulsive short-range correlations used e.g. in Refs. [48,49].
We note that for large Ng it is not always possible to fulfill the
minimum distance requirement, reducing the effective value of
dg,min that is actually employed.

Let us next study correlations between the model parameters
in more detail. First, we observe that there is a clear positive cor-
relation between the infrared regulator m and the hot spot size By.
This can be understood, as increasing m suppresses color fields at
large distances and as such results in smaller hot spots. Interest-
ingly, we find no clear correlation between the overall proton size
parameter Bgc and the infrared regulator m. In fact, the proton size
Bgc shows no clear correlation with any of the other model pa-
rameters. The infrared regulator m is strongly anti-correlated with
Qs/(g% ). This is again easy to understand: large m results in a re-
duction of the normalization of the cross section, which has to be

Physics Letters B 833 (2022) 137348

compensated by using a larger color charge density which requires
smaller Qs/(g%w).

We also find a strong negative correlation between the number
of hot spots N; and the proton density Qs/(gw). This correlation
can be understood by considering the effect of these parameters on
the incoherent cross section. When the number of hot spots with
the same size increases, the incoherent slope is not significantly
affected but the normalization goes down as there are smaller fluc-
tuations in the scattering amplitude due to the smoother proton
profile. This would result in the incoherent cross section being un-
derestimated, which has to be compensated by smaller Qs/(g%u).

The negative correlation between the hot spot size By and the
proton density Qs/(g?u) can also be understood. First, we note
that large hot spots (large Bg) require a larger infrared regulator
m which effectively makes the hot spots smaller (notice a positive
correlation between B; and m). Then, to compensate for the effect
of the larger infrared regulator, which suppresses the cross section,
a smaller Q;/(g2u) is needed to increase the cross section again.

The posterior distribution of parameters By and By, that de-
termine the proton size, which can be quantified e.g. by the two
dimensional RMS radius, rims = \/2(Bqc + Bg), are shown in the
second and third diagonal panels of Fig. 1. We find that they are
sharply peaked, in particular for the case of fixed Nq = 3. The ex-
tracted gluonic proton two-dimensional radius from this Bayesian
analysis is rms = 0.59175- 03 fm (0.610739%3 fm) for variable Nq
(Ngq = 3) with uncertainty estimates in 90% credible intervals.

We further included the possibility of fluctuating values of By
and Ng, and studied the dependence of the observables on the
respective variances. We found that the considered experimental
data could not constrain these parameters and decided not to in-
clude them in the presented analysis.

Next, we demonstrate explicitly that sampling parameter values
from the posterior distribution lead to a good description of the
HERA data. The main result of the Bayesian analysis is the pos-
terior distribution shown in Fig. 1, but it is also possible to find
the so-called Maximum a Posteriori (MAP) parameter set, which
is the mode of the posterior distribution. Because our prior pa-
rameter distributions are uniform, the MAP parameters shown in
Table 1 maximize the likelihood function and provide the best fit
to the experimental data. We note that statistically the expectation
value for any observable is not obtained using the MAP parame-
ters. Instead, one should calculate observables using averages over
parameter samples obtained from the posterior distribution.

Comparison to the HERA coherent and incoherent J/¢ produc-
tion data measured at W =75 GeV [13] and used in the Bayesian
analysis to constrain the model parameters are shown in panel (a)
of Fig. 2. The spectra calculated by averaging the results computed
using different parametrizations sampled from the posterior dis-
tribution indeed provide an excellent description of the data. We
also show the statistical uncertainty, obtained by calculating the
one standard deviation interval shown as red (coherent) and blue
(incoherent) bands.

Next, we study compatibility with experimental data not in-
cluded in the Bayesian analysis. We do not include full small-x
evolution e.g. by means of the JIMWLK equation (see [62]) in
this work. Consequently, the only center-of-mass energy W (or
momentum fraction xp ) dependence comes from the xp depen-
dence of the saturation scale Q; determined from the IPsat fit.
This almost only affects the overall normalization of the calculated
spectra, and misses important physical effects such as the growth
of the proton with decreasing x. Consequently, we do not expect
that within our setup we can describe ]/ production at different
center-of-mass energies simultaneously. Nevertheless, the geome-
try evolution between W =75 GeV and W = 100 GeV should be
weak enough to make predictions for the higher center-of-mass
energy.
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Fig. 2. Coherent and incoherent ]J/v photoproduction cross sections at (W) =
75 GeV (a) and (W) = 100 GeV (b), calculated by averaging over many parame-
ter sets sampled from the posterior distribution, which was determined using the
(W) =75 GeV HERA data [13]. We compare the case with variable Ng to that
with fixed Ng =3, and to experimental data at (W) =75 GeV [13] and (W) =
100 GeV [14-17], respectively. The bands show the one standard deviation uncer-
tainty.

The calculated ]/v spectra at W =100 GeV are shown in panel
(b) of Fig. 2 and compared with the data from H1 and ZEUS col-
laborations [14,16,17,63]. Again, we show the model prediction as
the average over many samples of the posterior distribution and
provide one standard deviation bands. The results are very simi-
lar to the W =75 GeV case studied above, and the HERA data is
well described (except the coherent cross section at low |t|, and
high |t| in the case of the ZEUS measurement), and variation be-
tween the different parametrizations sampled from the posterior
distribution is small. Similarity to the W =75 GeV case is not sur-
prising, as we use exactly the same fluctuating geometry, with the
only difference being slightly larger Qs values, extracted from the
IPsat parametrization.

5. Conclusions

We have performed a statistically rigorous Bayesian analysis to
extract posterior likelihood distributions for the non-perturbative
parameters describing the event-by-event fluctuating proton geom-
etry as constrained by exclusive ]/v production data from HERA.
We presented a comparison of the |t|-dependent coherent and
incoherent cross sections, obtained from an average over many
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parameter samples from the posterior distribution, to the exper-
imental data.

Generally, model parametrizations sampled from the deter-
mined posterior distribution can be used to systematically take
into account uncertainties in the proton geometry as constrained
by the HERA DIS data when calculating any other observable that
depends on the proton geometry, such as flow observables in high-
multiplicity proton-proton and proton-nucleus collisions. To enable
such studies, we provide 1,000 parametrizations sampled from the
determined posterior distributions in the supplemental material.

Because the model parameters are sensitive to different aspects
of the coherent and incoherent vector meson production spectra,
most of them are well constrained by the Bayesian analysis. The
only exceptions are the minimum distance between the hot spots
(repulsive short-range correlations), and the number of hot spots
Ng, which cannot be well constrained by the considered HERA
data. However, we note that although the analysis suggests that
large Ng is compatible with the HERA data, for Ny 2 5 one should
no longer simply interpret N; as the number of actual hot spots.
In this regime, a good description of the data requires large fluc-
tuations of individual hot spots’ densities, and the sampled ‘hot
spots’ can also overlap significantly. Thus, the effective number of
hot spots is significantly smaller than the parameter N; might im-
ply.

The HERA data used in this work probes the proton structure
at x ~ 1073. The energy (Bjorken-x) dependence can be included
in terms of JIMWLK evolution as e.g. in Refs. [64,65]. In the future
we plan to extend our framework by including the full JIMWLK
evolution and vector meson production data at different center-of-
mass energies from HERA [13,63,66] and from the ultra peripheral
proton-lead collisions measured at the LHC [67-69], allowing us
to extract also the Bjorken-x dependence of the fluctuating proton
geometry.

In addition to constraining the energy dependence, performing
global analyses including both exclusive vector meson production
data from HERA and flow harmonics from the proton-proton and
proton-lead collisions measured at the LHC (including a model cal-
culation along the lines of [70]) would allow for a powerful global
analysis of the fluctuating nucleon substructure and properties of
the final state. More differential DIS measurements from the future
EIC such as dijet [71] or lepton-meson angular correlations [43]
can also provide further constraints and can in principle be in-
cluded in our framework in a straightforward manner.

The numerical framework for our physics models and the
Bayesian analysis package are publicly available on Github [72,73].
Our Bayesian analysis code is developed based on the open-source
numerical package by the Duke group [10]. To help visualize how
observables depend on the model parameters, we provide an in-
teractive web page with the trained GP emulators [74], where one
can also find the posterior samples included in the supplemental
material.

The presented structure of the incoherent cross section in
the CGC approach is notably different from that obtained in the
collinear factorization approaches, where at |t| greater than a few
GeVZ it is proportional to the (generalized) parton distribution
functions [34,35]. However, there should be a kinematical domain
where both approaches are justified, and properly understanding
the mapping between the coordinate space description with event-
by-event fluctuations and the momentum space collinear factoriza-
tion approach would be extremely useful.
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