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ABSTRACT:

The idea is to create a self-learning Minimal Learning Machine (MLM) model that is computationally efficient, easy to implement
and performs with high accuracy. The study has two hypotheses. Experiment A examines the possibilities of introducing new classes
with Recursive Least Squares (RLS) updates for the pre-trained self learning-MLM model. The idea of experiment B is to simulate the
push broom spectral imagers working principles, update and test the model based on a stream of pixel spectrum lines on a continuous
scanning process. Experiment B aims to train the model with a significantly small amount of labelled reference points and update it
continuously with (RLS) to reach maximum classification accuracy quickly.

The results show that the new self-learning MLM method can classify new classes with RLS update but with a cost of decreasing
accuracy. With a larger amount of reference points, one class can be introduced with reasonable accuracy. The results of experiment
B indicate that self-learning MLM can be trained with a few reference points, and the self-learning model quickly reaches accuracy
results comparable with nearest-neighbour NN-MLM. It seems that the self-learning MLM could be a comparable machine learning
method for the application of hyperspectral imaging and remote sensing.

1. INTRODUCTION

For remote sensing and Earth observation, hyperspectral imaging
(HS Imaging) provides powerful tools for a variety of interesting
applications, such as monitoring vegetation, environmental pa-
rameters, agricultural and forestry phenomena (Adão et al., 2017,
Tuominen et al., 2018, Honkavaara et al., 2013, Nevalainen et al.,
2017, Nezami et al., 2020). Due to the continuous HS imaging
technology development, the sizes of the HS imagers has been
decreasing, and the HS imaging sensors have become more af-
fordable. So far, small and lightweight HS imagers can be ap-
plied to unmanned aerial systems (UAS), which are popular and
cost-effective platforms in remote sensing (Adão et al., 2017).

The HS data is highly dimensional, offering high accuracy and
robustness for identification and characterisation tasks (Camps-
Valls and Bruzzone, 2005, Bioucas-Dias et al., 2013). The strengths
and weaknesses of HS imaging in remote sensing applications
arise from the essence of the data. Each (HS) image can be con-
sidered as a stack of frames, each representing an intensity of
a different wavelength of light. The data contains spatial and
spectral information, and each pixel has its spectrum, which is
a strength compared to other less informative imaging methods.
The downside of remote sensing HS imaging applications is a
large amount of data due to the spectral channels. Other chal-
lenges can be the platform’s payload and processing constraints,
restricted available energy and the complexity of the machine
learning methods (Haut et al., 2018, Caba et al., 2020). Thus,
computationally efficient, easy to implement and adaptive ma-
chine learning methods are needed.

Minimal Learning Machine (MLM) is a distance-based super-
vised method for classification, regression and anomaly detec-
tion, which performance is comparable to most state-of-the-art
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methods (Mesquita et al., 2017, Pölönen et al., 2020, Raita-Hakola
and Pölönen, 2021, Hakola and Pölönen, 2020). MLM is easy to
implement. Its learning phase consists of building a linear map-
ping between input and output distance matrices. MLM uses this
model in the generalisation phase for estimating the distances
from the new output reference points to the target output val-
ues. In classification, the output estimation can be seen as an
optimisation problem or, we can use the MLM Nearest neigh-
bour (NN-MLM) variation, a computationally efficient alterna-
tive. The effiency is reached by using a simple linear search over
a set of distance estimations (Mesquita et al., 2017).

Since the core of this method is the linear mapping, a model that
can be solved with the Ordinary Least Squares estimator (OLS), it
is an interesting idea to study if it is possible to create a new vari-
ation from the MLM, which updates itself with Recursive Least
Squares (RLS) algorithm. This study examines the MLM with
RLS, aiming to test two hypotheses.

Hypothesis A is that we can train new classes to the MLM model
with new data and RLS algorithm without re-training the whole
model. Since the MLM needs the whole training set X only at
the beginning and operates with the significantly smaller subset
R. Thus, it is interesting to increase the amounts of classes by in-
troducing the new classes to the model with a new set of training
points. The new training points are only a portion of the subset
R, which ensures the model is computationally efficient.

Hypothesis B: it is possible to increase the accuracy of the MLM
classifier by updating the pre-trained model with new informa-
tion and a recursive least squares estimator. We can use only a
few reference points for the first-round classifier and increase the
accuracy with the model updates. This way, we could create a
model that could learn from the new data and adapt the classifier
better for changing targets, such as forest types or land covers.
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The hypothesis is that the MLM model can be updated without
re-training the whole model, and the new self-learning MLM can
adapt to its new data for increased accuracy. This kind of ma-
chine learning method could be suitable, for example, for real-
time push broom HS imaging applications. In this study, we call
this new approach to self-learning MLM.

The paper is organised as follows. Section 2. describes the meth-
ods and the selected hyperspectral data. The results are intro-
duced in section 3.. The discussion is the fourth section, and the
final conclusions are in the section 5..

2. MATERIAL AND METHODS

2.1 Minimal Learning Machine

The Minimal Learning Machine offers computationally efficient
solutions for classification and anomaly detection (Pölönen et al.,
2020, Raita-Hakola and Pölönen, 2021) applications. It is a com-
putationally efficient and fast machine learning method with the
basic idea of utilising the mapping between the input and output
distances (de Souza et al., 2015).

Let X ⊂ Rd be a training set consisting from spectra and xi ∈ X
a single spectrum i. Also, let R ⊂ X be a set of reference points
and mk ∈ R a single spectrum k. Corresponding, the training
set ground truth labels are yi ∈ Y ⊂ R and for the subset of
Y , labels tk ∈ T . The training set X has N samples, and the
subset R size is K. Now, the distances for the linear mapping are
d(xi,mk) and δ(yi, tk).

When T and R are selected, we can define two distance matrices
∆y ∈ RN×K and Dx ∈ RN×K using previous mappings d and
δ. By assuming the linear mapping between these two distance
matrices, we have a linear model:

∆y = DxB+E, (1)

where B is coefficients and E is the residual. We can approxi-
mate the coefficients B with the Ordinary Least Squares estima-
tor (OLS) (Mesquita et al., 2017)

B̂ = (DT
xDx)

−1DT
x∆y. (2)

As a result, we have a B̂, which is the linear model between the
input distances d(xi,mk) and output distances δ(yi, tk).

Now, for the new spectrum xn the distance between its label yn
and set T is

δ(yn, T ) = d(xn, R)B̂. (3)

Label yn can be estimated by solving an quadratic optimisation
problem

min
yn

K∑
k=1

(
yn − tk)

T (yn − tk)− δ2(yn, T )
)2

. (4)

The classification (equation 4) can be seen as multilateration prob-
lem, where quadratic optimisation can be used (de Souza et al.,
2015). It is also possible to use Tikhonov regularisation to pro-
duce more robust models (Kärkkäinen, 2019). Besides the opti-
misation and regularisation possibilities, we can utilise the dis-
tances and consider the model B̂ to be a generalisation of the
nearest neighbour classifier (NN-MLM) (Mesquita et al., 2017).
Equation 3 gives us distances, and for classifying the xn, we per-
form an argument sorting for δ(yn, T ) and assign the N-closest
label value from T . The detailed implementation of the nearest
neighbour generalisation is in (Hakola and Pölönen, 2020).

2.2 Recursive least squares approach

Ordinary Least Squares (OLS), used in the MLM (equation 2), is
meant for static situations. However, the OLS can be updated
continuously with new data, using a Recursive Least Squares
(RLS) algorithm. The updating is computationally efficient be-
cause it does not need the original data. The RLS is based on a
matrix inversion lemma called the Sherman-Morrison-Woodbury
equation (Meyer, 2000). According to this lemma, it is possible
to update a linear equation system solution efficiently. Detailed
proof and equations can be found from (Romberg, 2016, Haykin,
2008). Algorithm 1 describes the RLS updating phases, which
are implemented and utilised in our following self-learning MLM
model experiments.

Algorithm 1: Recursive Least Squares (Romberg, 2016)
Input: X ,R,Y ,T
Initialize:
Calculate distance matrix Dx,0

Calculate distance matrix ∆y,0

Calculate P0 = (Dx,
T
0 Dx,0)

−1

Calculate model B̂x,0 = P0Dx,
T
0 ∆y,0

for i = 1,2,3... do
New data Xi, Y i appears
Calculate distance matrix Dx,i

Calculate distance matrix ∆y,i

Calculate Px,i = Pi−1Dx,
T
i

Calculate Pi =
Pi−1 −Px,i(I+Dx,iPx,i)

−1Dx,iPi−1

Calculate Ki = PiDx,i
T

Update model B̂x,i =

B̂x,i−1 +Ki(∆y,i −Dx,iB̂x,i−1)
end for

2.2.1 Self-learning MLM: Experiment A In experiment A,
we trained and updated the model in phases. The aim was to train
the model only with a few classes and then use RLS updates to
introduce new classes.

At first, we selected an equal amount (class-wise R size) of data
points to R and their labels T from each of the first four classes.
The first model was trained on the initialization phase in Algo-
rithm 1.

After the initialization, the Algorithm 1 got new data Xi, Y i. The
size of the new data was the class-wise R, and it contained sam-
ples only from a new class. The model was updated and tested
with test data containing the previous and new data class samples.
The updated model provided the new distances δ(yn, T ). Since
the T contains only samples from classes one to four, we needed
to alter how we selected new classes. At first, we classified the
data with T , and nearest neighbour method (Hakola and Pölönen,
2020). Classes from one to four got their labels.

Then we used classification rules shown in Fig. 1. As we know
the new datapoint distances to the reference data points δ(yn, T ),
we can re-check the predictions that had the biggest class label
four (4). The distance from a new label to the first label is longer
than the longest distance of the last known biggest label four (4).
We can see from Fig. 1 that the Euclidean distance from label
four (4) to label four (4) is 0. The longest known distance from
label four (4) to label one (1) is 3. Therefore, the distance from a
new label five (5) to label one (1) is more than 3.5.

Based on the known distances, the halfway limit was set to 0.5.
With this limit, we used a majority voting rule: if more than
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80% (calculated from the class-wise R size) of the distances from
new data point to reference points are longer than the last round’s
biggest class -0.5, the point is classified to a new class, which is
the last round’s biggest class + 1. For every new class, we com-
puted the classes similarly, updating the biggest class in a loop,
until all of the new classes were re-classified.

Distance:

3

   if distance > 3.5, 

class: 52

3
Distance:


> 3.5

Distance:

1

Distance:

2

Distance:

> 4.5

  if distance > 4.5, 

class: 6

NewNew41

 NN-MLM classified data: 

classes 1-4

 Rules for new data:

  example classes 5-6  

Figure 1: Classification rules for the new classes. Classes 1-
4 were classified using the NN-MLM. The distances from the
biggest known class four (4) are written in blue. The image show
the first updating rules. The longest distance of the class four (4)
is 3, all distances longer than 3.5 were re-classified to a bigger
class. The biggest class was updated and again, the longest dis-
tance was set to 4.5 (5 - 0.5), and the data was re-checked. Each
time a new class appeared, all of the biggest class datapoints were
re-checked with this halfway limit as many times as we had new
classes.

2.2.2 Self-learning MLM: Experiment B This experiment B
aims to simulate the push broom spectral imagers working prin-
ciples, update and test the model based on a stream of pixel spec-
trum lines on a continuous scanning process. We will limit the
amount of the reference points R and the sizes of the distance
matrices Dx and ∆y , train the first model and update it with new
data and its new ground truth, labelled with the previous model,
row-by-row.

Usually, machine learning methods need a lot of training data.
MLM differs, it is a method that uses only a subset (R) of the
original data X , and therefore it is computationally efficient. The
first model can be trained with only a few known labelled pixel
spectra in this experiment. Instead of using the X and Y in dis-
tance calculations, the first model was trained (Algorithm 1, ini-
tialize) using only the distances between R to R and T to T . This
reduces the number of distance calculations and decrease the dis-
tance matrices sizes.

The first model was given to the RLS update loop. There were
41 rows in the training and testing datasets. For each row (im-
age A, Fig. 4), the model was updated and tested. Each time the
given new data Xi got an updated ground truth Yi. For the up-
dated ground truth, we classified the new training points Xi with a
previous model B̂i−1. As a result, the model’s behaviour is self-
learning since each time it updates itself, it specifies and updates
its ground truth knowledge based on the current update and uses
it for the next model update, reaching for increasing accuracy.

We run tests for each row. In row-by-row testing (RBR), the test
data Xtest,i , Ytest,i was a new row, top-down from the visu-

alised image B Fig. 4. Besides the RBR testing, each updated
model was tested with whole test data (TDR testing). The av-
erage number of pixels (each with 103 spectral channels) in an
RBR’s training and test row was 67 since the unlabelled pixels
were removed from the data.

Experiments were implemented using Scikit-Learn (Pedregosa et
al., 2011) and SciPy (Virtanen et al., 2020) Python libraries. The
computing was performed with 28 core Linux server for non-
parallel computing, x86 64.

2.3 Hyperspectral data

The experiments were done with two known hyperspectral im-
ages, Pavia University and Salinas A scene. The data is provided
by the Grupo De Intelligencia Computational (GIC)(Graña et al.,
2022). The Pavia Centre HS image is acquired by the ROSIS sen-
sor with 103 spectral channels with the spatial resolution of 1.3
meters and with a spectrum coverage ranging from 430 to 860
nm (Xie et al., 2019). The image size is 1096 x 1096 pixels. The
image ground truth (Fig. 2) is divided into 9 classes (Graña et al.,
2022).

Figure 2: Visualization of the Pavia University ground truth. The
image size is 610 x 340 pixels with 103 spectral channels.

Figure 3: Visualization of the Salinas A scene ground truth. The
image size is 83 x 86 pixels with 204 spectral channels.
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We used the Salinas A scene collected with an AVIRIS sensor in
the self-learning MLM B experiment. The image size is 83 x 86
pixels, it has 204 spectral bands, and the labels are divided into
six classes (Fig. 3). The spatial resolution is 3.7 m over the range
of 400–2500 nm (Sawant and Manoharan, 2020).

Both datasets were normalised between 0 and 1, and the unla-
belled pixels were removed from the training and testing data.
After the preprocessing, the datasets were divided into training
and testing portions as follows. The detailed information of these
datasets can be found from (Graña et al., 2022).

2.3.1 Pavia University, experiment A The Pavia dataset was
divided class-wise with 50:50 portions to training and test datasets.
After the split, the data was randomised. The idea of this dividing-
and pre-processing logic enabled was the introduction of the new
classes for the self-learning MLM model. This way, we could
easily train the first model with four first classes and test it with
four class customised test data. During the next rounds, we could
introduce only new class data points from the training data for
the model and test the updated model with a new customised test
set, including the old and new classes. After removing the un-
labelled data, the training data size was 21391 and the test data
21385 pixels with 103 spectral channels.

2.3.2 Salinas A scene, experiment B The Salinas dataset was
divided horizontally top-down with portions of 50:50. Every other
row to test data, every other to training data. Fig. 4 visualises the
training (A) and test data (B) on frame 144, representing wave-
length 1890 nm. After removing the unlabelled data, the training
data size was 2707 and the test data 2641 pixels with 204 spectral
channels.

Figure 4: Salinas test and training data. Images A and B repre-
sent Salina’s frame number 144 (wavelength 1890 nm) after the
slicing. The dataset was divided horizontally, top-down. Every
other row to training data (A), every other to test data (B).

After selecting the equal amount of the reference points from the
randomised test data class-wise, the self-learning MLM model
utilised the training data row by row, top-down. The accuracy
of the model was tested row-by-row (RBR) with test row (next
index from the original data) and with the whole test data (TDR).

3. RESULTS

3.1 Experiment A

Figure 5: Experiment A confusion matrices. The images visualise
the classification results after the new classes are introduced to
the self-learning MLM. Image A new class: 5, B new class: 6, C
new class: 7, D: new class 8, E: new class 9.
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In experiment A, we introduced new classes to the self-learning
MLM. Fig. 5 visualises the confusion matrices of the classifica-
tion results. Images A-E show (Fig. 5) how the self-learning
MLM classifies the first model’s classes (1-4) and the rest of
classes 5-9. Image A has classes 1-5, B 1-6 until finally, image E
has all of the Pavia dataset’s nine classes.

The self-learning MLM classifier can recognise and classify new
classes with RLS updates and classification rules from Fig. 1, but
with a cost of decreasing accuracy. Table 1 show that the, and the
R size affects the results, increasing the accuracy, but the newly
introduced classes are decreasing it.

Class-wise R size 5 6 7 8 9
100 0.90 0.80 0.78 0.74 0.73
200 0.92 0.82 0.80 0.76 0.76
500 0.94 0.85 0.83 0.79 0.79
800 0.94 0.86 0.84 0.80 0.80

1000 0.94 0.87 0.85 0.80 0.80

Table 1: Experiment A accuracy results for each new class 5-9.
Class R size: number of training points selected per class.

3.2 Experiment B

Experiment B results in table 2 show that the self-learning MLM
is reaching comparable accuracy against the once trained MLM
(OTM).

Model Class R, N.N. Max Min Mean Mode
RBR 10,3 1.00 0.86 0.97 1.00
TDR 10,3 0.97 0.95 0.96 0.96
OTM 10,3 0.98 0.98 0.98 0.98
RBR 10,5 1.00 0.86 0.97 1.00
TDR 10,5 0.97 0.95 0.96 0.96
OTM 10,5 0.98 0.98 0.98 0.98
RBR 10,10 1.0 0.86 0.97 1.00
TDR 10,10 0.97 0.95 0.96 0.96
OTM 10,10 0.98 0.98 0.98 0.98
RBR 20,3 1.00 0.89 0.98 1.00
TDR 20,3 0.98 0.97 0.98 0.98
OTM 20,3 0.99 0.99 0.99 0.99
RBR 20,5 1.00 0.89 0.98 1.00
TDR 20,5 0.98 0.97 0.98 0.98
OTM 20,5 0.99 0.99 0.99 0.99
RBR 20,10 1.0 0.89 0.98 1.00
TDR 20,10 0.98 0.97 0.98 0.98
OTM 20,10 0.99 0.99 0.99 0.99
RBR 100,3 1.00 0.94 0.99 1.00
TDR 100,3 0.99 0.99 0.99 0.99
OTM 100,3 0.99 0.99 0.99 0.99
RBR 100,5 1.00 0.94 0.99 1.00
TDR 100,5 0.99 0.99 0.99 0.99
OTM 100,5 0.99 0.99 0.99 0.99
RBR 100,10 1.0 0.94 0.99 1.00
TDR 100,10 0.99 0.99 0.99 0.99
OTM 100,10 0.99 0.99 0.99 0.99

Table 2: Maximum, minimum, mean and mode values of the ac-
curacy. RBR: row-by-row updated model, one-row test data ac-
curacy, TDR: row-by-row updated model, whole test data row-
by-row model accuracy, OTM: once trained MLM model. Class
R: number of selected training reference points per class, N.N.:
number of neighbours.

The row-by-row results (RBR) in Table 2 and Fig. 6 has the most
variation. The single RBR row accuracy result might be weak, but

Figure 6: Visualisation of the self-learning MLM accuracy re-
sults. RBR: self-learning MLM, one-row accuracy, test data is
original image’s next row from the current update row. TDR:
self-learning MLM, the accuracy of the whole classified test data,
measured after very row-by-row model updates. OTM: once
trained MLM model, tested with the whole test data. First im-
age: classwise R size: 10, number of neighbours: 5, second im-
age classwise R size: 20, number of neighbours: 5, third image
classwise R size: 100, number of neighbours: 5.

the overall effect of the single row low performance is reasonable
for the whole model. For example, the self-learning MLM model
that was trained with 10 as a classwise R size had the lowest sin-
gle row accuracy of 86%. The same model had a mean accuracy
of 97%, and the mode of the one-row pixel-wise classification ac-
curacy results was 100%. The model was also tested row-by-row
with the whole test data (TDR), reaching the mean accuracy of
96%.

In Fig. 6, we can see the accuracy results row by row. RBR, TDR
(self-learning model, tested after every row with whole test data),
and OTM (once trained MLM) models had the same classwise R
size and the number of neighbours. The effect of the increasing
accuracy of the classwise R size for the self-learning MLM can
be seen in Fig. 8, which visualises the accuracy results calculated
row-by-row from the classified whole test data. The number of
neighbours seemed to be a parameter that did not affect the results
of this experiment.
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Figure 7: A: Salinas test data ground truth, B: Self-learning
MLM’s top-down, row by row (RBR) classification map, C: Row-
by-row classification error map.

Figure 8: Self-learning MLM accuracy results row-by-row, using
each time the whole test data.

Self-learning MLM’s row-by-row classification results can be seen

on the classification map (Fig. 7). Image A is the ground truth of
the test data. B visualises the results that are classified row-by-
row from top to down. Between every row shown in the image,
the model is updated with one row of new training data (train-
ing and test data are visualised in Fig. 4. The labels for the new
training data are produced with the previous updated model. Im-
age C in Fig. 7 shows the classification errors of the RBR results.
Yellow represents miss-classification; purple is correct.

4. DISCUSSION

The results of the self-learning MLM experiment A show that the
model can handle new classes after the RLS updates, but the ac-
curacy decreases with every appearing new class. Similarly, with
the previous research, when the size of R approaches the size of
X , the accuracy of the results improves (de Souza et al., 2015).
The number of samples in the Pavia dataset was not classwise
equal; for example, class seven (7) had only 476 samples, which
might have affected the results since the maximum of the updat-
ing phase’s classwise R size in that class was 238.

In our experiment, the number of the training samples in the ref-
erence set R had a positive effect on the results, which means that
with a larger amount of training data, the first new class can be
updated to the model with reasonable accuracy (Table 1, Fig. 5).

However, for introducing several new classes, we would recom-
mend either improving the classification method 1, using the op-
timization methods (de Souza et al., 2015, Kärkkäinen, 2019) or
considering training a new model with accurate ground truth af-
ter every n:th update rounds. Further research is needed for in-
creasing the accuracy of introducing multiple new classes to the
self-learning MLM.

Self-learning MLM experiment B seemed to reach our aim of cre-
ating a method for a model that can be trained with a low number
of samples, and it will adapt itself to the data stream. Originally,
the MLM training distances were the distances between the train-
ing set X , subset R, and the corresponding label distances Y and
T (de Souza et al., 2015). Our once trained model (OTM) calcu-
lated distances from each point of the R to each point of the X .
The self learning-MLM calculated the input distances from R to
R and output distances from T to T .

As an example, we had six (6) classes, and the classwise R size
was 20. OTM calculated the distances from 120 reference points
to all 2707 data points (and similarly the label distances). Our
approach calculated the distances using only the reference points
R and their labels T , which means distances from the 120 points
to 120 data points and similarly with the labels. As a starting
point, the first model can be trained with 20 or 100 pixel spectra
per class, and it can reach the accuracy of the OTM model (98-
99%) by updating and learning from the incoming data stream.
From the computational performance perspective, since we cal-
culate the distances row-by-row, the self-learning MLM is close
to the NN-MLM classifier even though the starting point is less
demanding.

One of the MLM’s benefits against many other machine learn-
ing models is the low number of hyperparameters. A comparable
NN-MLM can be trained, depending on the classification task,
with three hyperparameters: the number of neighbours, the R size
and distance calculation method (Hakola and Pölönen, 2020).
We selected the Euclidian distance method based on the previ-
ous study of MLM classifier, and hyperspectral data (Hakola and
Pölönen, 2020). In that study, the number of neighbours affected
the accuracy. Self-learning MLM seems to be more ignorant on
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the number of neighbours. The most effective hyperparameter
was the classwise R size. In experiment A, the R size had a more
significant role on the results, where the experiment B (Table 2)
show that the self-learning MLM can reach high accuracy with-
out a large number of training data, using only few class-wise
spectra as a reference data.

The row-by-row approach was semi-sensitive to the quality of
the incoming data. Fig. 6 shows how the RBR accuracy varies
depending on the single training or testing row of pixel spectra.
This variation seems to be a phenomenon with only a small effect
on the results conducted using the same row-by-row models with
the whole test data between the updating and learning processes.

RBR classification error map (Fig. 7, image C) reveals the miss-
classified pixels. Visual evaluation over the spectral channels of
the training and test data shows that there might be some anoma-
lous pixel spectra that differ from the other similarly annotated
data around them. For example, the yellow line on the right bot-
tom corner and blue dots on the green area on top of it in image
B (Fig. 4) can be seen on spectral channel 1890 nm. Similar
features can be seen on the classification error map but not in the
ground truth image (Fig. 3). That is an interesting point of view
for further studies. The question could be how sensitive the self-
learning MLM is towards the possible anomalous pixels. Could
the implementation in B be extended for anomaly detection, us-
ing the variance and thresholds method with the output distances
δ(yi, tk), as seen in (Raita-Hakola and Pölönen, 2021).

5. CONCLUSIONS

There is a need for fast, accurate and computationally efficient
machine learning methods in hyperspectral imaging remote sens-
ing applications. In this study, we implemented and tested the
nearest neighbour Minimal Learning Machine (NN-MLM) with
Recursive Least Squares (RLS) updates, and as a result, we cre-
ated a new method, the self-learning MLM.

The self-learning method was tested in two experiments. Experi-
ment A confirms that the updated model can recognise and clas-
sify new classes. The classification accuracy increase when the
training set reference subset’s size increases. The limitation to
this approach is the number of new classes. The updated model
can handle one class relatively well, but the accuracy decreases
after every new class and update. Further research is needed for
achieving better overall accuracy with multiple new classes.

The second experiment was more successful than experiment A.
Experiment B simulated the push broom spectral imagers work-
ing principles. The model was updated and tested based on a
stream of pixel spectrum lines and a continuous scanning process.
The results show that it is possible to train the model with a sig-
nificantly small amount of labelled reference points and update it
continuously with (RLS) to reach quickly high classification ac-
curacy. The accuracy results are comparable with NN-MLM, and
the benefit is that the new self-learning model can be first trained
even with 20 or 100 reference pixel spectra instead of the whole
test data.
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Tuominen, S., Näsi, R., Honkavaara, E., Balazs, A., Hakala, T.,
Viljanen, N., Pölönen, I., Saari, H. and Ojanen, H., 2018. Assess-
ment of classifiers and remote sensing features of hyperspectral
imagery and stereo-photogrammetric point clouds for recognition
of tree species in a forest area of high species diversity. Remote
Sensing 10(5), pp. 1–28.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M.,
Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser,
W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman,
K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson,
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