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Abstract: We revisit the problem of small Bjorken-x evolution of the gluon and flavor-

singlet quark helicity distributions in the shock wave (s-channel) formalism. Earlier works

on the subject in the same framework [1–3] resulted in an evolution equation for the gluon

field-strength F 12 and quark “axial current” ψ̄γ+γ5ψ operators (sandwiched between the

appropriate light-cone Wilson lines) in the double-logarithmic approximation (summing

powers of αs ln2(1/x) with αs the strong coupling constant). In this work, we observe

that an important mixing of the above operators with another gluon operator,
←
D

i

Di,

also sandwiched between the light-cone Wilson lines (with the repeated transverse index

i = 1, 2 summed over), was missing in the previous works [1–3]. This operator has the

physical meaning of the sub-eikonal (covariant) phase: its contribution to helicity evolution

is shown to be proportional to another sub-eikonal operator, Di −
←
D

i

, which is related

to the Jaffe-Manohar polarized gluon distribution [4]. In this work we include this new

operator into small-x helicity evolution, and construct novel evolution equations mixing

all three operators (Di −
←
D

i

, F 12, and ψ̄γ+γ5ψ), generalizing the results of [1–3]. We also

construct closed double-logarithmic evolution equations in the large-Nc and large-Nc&Nf

limits, with Nc and Nf the numbers of quark colors and flavors, respectively. Solving the

large-Nc equations numerically we obtain the following small-x asymptotics of the quark

and gluon helicity distributions ∆Σ and ∆G, along with the g1 structure function,

∆Σ(x, Q2) ∼ ∆G(x, Q2) ∼ g1(x, Q2) ∼
(

1

x

)3.66
√

αs Nc
2π

,

in complete agreement with the earlier work by Bartels, Ermolaev and Ryskin [5].
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1 Introduction

Understanding the proton spin puzzle [6–14] is one of the main goals of contemporary

hadronic physics. Apart from being a question of general scientific interest testing our

understanding of the proton internal structure, the proton spin puzzle is one of the central
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topics to be addressed by the experimental program at the future Electron-Ion Collider

(EIC) [7, 11, 12, 14].

The main question of the proton spin puzzle is how the proton spin (1/2) is made up of

the contributions of quark and gluon helicities and their orbital angular momenta (OAM)

(see [6, 8, 13] and references therein for reviews). It is usually formulated in terms of either

Jaffe-Manohar [4] or Ji [15] spin sum rules. The Jaffe-Manohar sum rule [4] reads

Sq + Lq + SG + LG =
1

2
, (1.1)

where Sq and SG are the contributions to the spin of the proton carried by the quarks and

gluons, respectively, and Lq and LG are their OAM. All four terms on the left-hand side of

eq. (1.1) can be written as integrals over the Bjorken x variable. For the quark and gluon

spin contributions, Sq and SG, the decomposition is (see [16–20] for decompositions for the

OAM terms)

Sq(Q2) =
1

2

1∫

0

dx ∆Σ(x, Q2), SG(Q2) =

1∫

0

dx ∆G(x, Q2), (1.2)

where

∆Σ(x, Q2) =
∑

f=u,d,s,...

∆q+
f (x, Q2) (1.3)

is the flavor-singlet quark helicity distribution function with ∆q+
f = ∆qf + ∆q̄f [21, 22].

Here ∆qf and ∆q̄f are the quark and anti-quark helicity distributions for each quark flavor

f , while ∆G is the gluon helicity distribution. As usual, the distributions also depend on

the momentum scale Q2. The current values of the proton spin carried by the quarks and

gluons, as extracted from the experimental data, are Sq(Q2 = 10 GeV2) ≈ 0.15 ÷ 0.20 for

x ∈ [0.001, 1], and SG(Q2 = 10 GeV2) ≈ 0.13 ÷ 0.26, for x ∈ [0.05, 1] (see [7–10, 12, 13] for

reviews). The fact that the sum of these two numbers comes up short of 1/2, especially if

one takes into account the error bars, is the proton spin puzzle: we do not know where the

rest of the proton spin is. The remaining missing spin of the proton may be found in the

quark and gluon OAM and/or at smaller values of x.

The latter possibility received a lot of attention in the literature, starting with the

groundbreaking work by Bartels, Ermolaev and Ryskin (BER) [5, 23], which studied the

small-x asymptotics of the g1 structure function along with ∆Σ and ∆G employing the

infrared evolution equations (IREE) approach pioneered in [24–27]. The phenomenology

based on BER work was developed in [28, 29]. The BER approach resummed double loga-

rithms in x, that is, powers of αs ln2(1/x). This is known as the double-logarithmic approxi-

mation (DLA). In the pure-glue case the BER approach resulted in the asymptotics given by

∆Σ(x, Q2) ∼ ∆G(x, Q2) ∼ g1(x, Q2) ∼
(

1

x

)3.66
√

αs Nc
2π

. (1.4)

More recently, an effort has been under way [1–3, 22, 30–40] to reproduce BER re-

sults [5, 23] and, possibly, expand on them using the s-channel/shock wave approach to

– 2 –
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small-x evolution from [41–53] (see [54–61] for reviews) modified to work at the sub-eikonal

level and beyond [62–65]. (Small-x asymptotics of parton distribution functions (PDFs)

and transverse momentum-dependent PDFs (TMDs) can be classified by the leading power

of x: our notation is such that, neglecting the quantum-evolution order-αs or
√

αs correc-

tions to the power of x, the eikonal distributions scale as ∼ 1/x, the sub-eikonal ones scale

as ∼ x0, the sub-sub-eikonal ones scale as ∼ x, etc.) The approach to helicity evolution in

the s-channel formalism developed in [1–3, 31–33, 36, 37] resulted in the small-x asymp-

totics of ∆Σ and ∆G different from that found by BER.1 Despite the cross-check in [2] and

an alternative calculation in [39] the origin of the difference remained unknown. In this

work we identify the sub-eikonal operator which was not included in the approach of [1–

3, 31–33, 36, 37]: after including it, we obtain a new set of small-x evolution equations for

helicity, whose solution gives the asymptotics (1.4) consistent with BER.

When going beyond the eikonal approximation, the degrees of freedom are no longer

the light-cone Wilson lines: instead one has to modify the Wilson lines by inserting one

or more sub-eikonal operators between segments of Wilson lines [3, 33, 62–70]. The sub-

eikonal operators entering the helicity evolution of [1–3, 31–33, 36, 37] are the gluon field

strength operator F 12 or the bi-local quark operator ψ̄(x2)γ+γ5ψ(x1). When wrapped

around by light-cone Wilson lines they lead to the operators in eqs. (2.7a) and (2.7b) (or

eqs. (2.12a) and (2.12b)) below. (Our calculations here are carried out in A− = 0 light-cone

gauge of the projectile, while the expressions for the operators are valid in any gauge where

the gluon field Aµ vanishes at x− → ±∞.) The operators F 12 and ψ̄(x2)γ+γ5ψ(x1) enter

the calculation with the helicity-dependent prefactor, e.g., with σ δσ,σ′ in the quark helicity

basis, as defined in light-cone perturbation theory (LCPT) [71, 72]. This is what makes

them natural operators for helicity evolution. The helicity evolution of [1–3, 33] mixes

these two operators with each other. However, since F 12 is a local operator, it cannot

be used to construct a PDF: hence the mapping of evolution from [1–3, 33] onto the spin-

dependent Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equation [73–75]

in the gluon sector has been problematic [2]. At the same time, F 12 is not the only gluon

operator at the sub-eikonal order: there exists another sub-eikonal operator,
←
D

i

Di, as

derived in [30, 64, 66, 70]. Here Dµ = ∂µ − igAµ is the right-acting covariant derivative,
←
Dµ =

←
∂ µ + igAµ is the left-acting covariant derivative, and i = 1, 2 is the transverse index.

The operator
←
D

i

Di, whose contribution is simplified in our helicity-evolution calculations

to Di −
←
D

i

, is related to the Jaffe-Manohar gluon helicity PDF [4], as we show below.

The
←
D

i

Di operator enters the calculations with a helicity-independent prefactor δσ,σ′ ;

an expression for this operator, sandwiched between the light-cone Wilson lines, is given

below in eq. (2.7c) (or (2.12c)). In the background field method [76, 77] this operator

arises naturally due to the canonical momentum squared term, (P i)2, present even in a

scalar particle propagator [66, 67]. In this work we show that small-x helicity evolution

mixes the Di −
←
D

i

operator with F 12 and ψ̄(x2)γ+γ5ψ(x1). This mixing was neglected

1In the flavor non-singlet channel, the two approaches were in complete agreement [2, 23] at large Nc.

– 3 –
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in [1–3, 33] due to the apparent helicity-independence of the
←
D

i

Di term, which gives rise

to the Di −
←
D

i

operator (i.e., due to the fact that it comes in with δσ,σ′). The physical

origin of the mixing still requires further understanding. Here we note that the mixing

probably happens because the quark and gluon polarization indices σ and λ in LCPT are

not true helicities: they are projections of the particle’s spin on the fixed z-axis, instead of

being spin projections on the direction of the particle’s 3-momentum.

In this paper we derive a new small-x evolution equations for helicity distributions

mixing the three operators Di −
←
D

i

, F 12, and ψ̄(x2)γ+γ5ψ(x1). The equations resum

longitudinal logarithms, keeping the accompanying transverse integrals exactly. We, there-

fore, can and do extract the DLA evolution equations from them, obtaining two closed

systems of integral evolution equations in the ’t Hooft’s large-Nc [78] and Veneziano’s

large-Nc&Nf [79] limits. Performing a numerical solution of the large-Nc helicity evolution

equation we arrive at the asymptotics given in eq. (6.12), thus reproducing BER results.

The paper is structured as follows. In section 2 we summarize the results of the earlier

calculation [70] for high-energy S-matrices of massless quarks and gluons scattering on the

background quark and gluon fields at the sub-eikonal accuracy. As we mentioned, these

results are consistent with the earlier calculation [64]. The relevant sub-eikonal operators

are given in eqs. (2.7) and (2.12) for the quarks and gluons, respectively.

To identify which sub-eikonal operators are relevant for helicity distributions and for

the g1 structure function, we re-analyse these quantities at small x in section 3.2 In

section 3.1 we reconstruct the known result [30, 33] that the gluon helicity TMD and PDF at

small x are related to the dipole amplitude Gj from eq. (3.22), dependent on the novel sub-

eikonal operator Di −
←
D

i

entering eq. (3.17). This is summarized in eqs. (3.25) and (3.26)

with the amplitude G2 entering those equations defined in eq. (3.24). Small-x quark helicity

distributions are studied in section 3.2 with the result given by eqs. (3.52) and (3.50).

The dipole amplitude Q in those equations, defined in eq. (3.48), contains the operators

F 12 and ψ̄(x2)γ+γ5ψ(x1): this part of the results for quark helicity distributions was

known before [1–3]. The amplitude G2 in the same expressions contains the new operator

Di−
←
D

i

, which, in turn, originated in the sub-eikonal
←
D

i

Di operator. (Comparing this with

eq. (3.26) we conclude that the
←
D

i

Di operator is related to the Jaffe-Manohar distribution.)

This G2 contribution in eqs. (3.52) and (3.50) is new compared to [1–3, 33]. Finally,

in section 3.3 we re-analyse the g1 structure function at small x, arriving at eqs. (3.61)

and (3.62). Again, the contribution of the dipole Q has been known before [1–3, 40], while

the contribution of G2 is new.

The small-x evolution of the sub-eikonal operators Di −
←
D

i

, F 12 and ψ̄(x2)γ+γ5ψ(x1)

with the appropriate light-cone Wilson lines is studied in sections 4 and 5. The calculation

in section 5 is done using the background field method [44, 77], while in section 4 the calcu-

2Note that there is a possible role of the topological effects in g1 due to the chiral anomaly, which has

been debated in the literature [4, 80–83], see also the recent works [84–87]. This can be inferred from the

first moment of the structure function and is related to the UA(1) problem in QCD. However, we leave the

question about the relation of our results to the chiral anomaly for future publications.

– 4 –
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lation employs a hybrid formalism developed in [3, 33, 70] which combines the elements of

LCPT [71, 72] with the background field method: we refer to it as the light-cone operator

treatment (LCOT) method. In section 5.2 we derive the structure of sub-eikonal operators

from the analysis of quark and gluon propagators in the background field. At the level

of sub-eikonal operators the main evolution equations we obtain are (4.15), (4.19), (4.26),

and (4.27) in section 4.1. The same equations are derived again in section 5 using the

background field method (see eqs. (5.69) and (5.82) there). These equations contain lead-

ing logarithms in the longitudinal integral in their kernels, along with the exact transverse

integrations, similar to the unpolarized small-x evolution [41–53, 88, 89]. Using the tech-

nique of [1, 3] we take the DLA limit of those equations obtaining closed large-Nc evolu-

tion equations (4.53) in section 4.2. Similarly, the large-Nc&Nf evolution equations are

studied in section 4.3, resulting in the closed system of equations (4.75). These large-Nc

and large-Nc&Nf equations extend and generalize the results of [1, 3]. We cross-check

our large-Nc evolution equations (4.53) against the small-x limit of the pure-glue spin-

dependent DGLAP evolution in section 4.4 and find an agreement up to and including three

loops [90, 91], the highest-known order for the spin-dependent DGLAP splitting functions.

The large-Nc evolution equations (4.53) are solved numerically in section 6, following

the technique of [22, 31, 37]. The resulting numerical solution for the amplitudes G (defined

in eq. (4.29) with Q ≈ G at large Nc) and G2 is plotted in figure 6. The extracted intercepts

are given in eq. (6.10); within the uncertainty, they are the same for both amplitudes. This

leads to the asymptotics of eq. (6.12), in complete agreement with BER, eq. (1.4).

We conclude in section 7 by outlining future directions of this research program.

2 Sub-eikonal quark and gluon S-matrices in the background field

We define our light-cone coordinates by x± = (t ± z)/
√

2, while the transverse vectors are

denoted by x = (x1, x2) with xij = xi − xj and xij = |xij | for i, j = 0, 1, 2, . . . labeling the

partons. Our proton is always moving in the light-cone plus direction, while the projectile

quarks and gluons are moving in the light-cone minus direction. The gluon field is denoted

by Aa
µ, while the quark and anti-quark fields are ψ and ψ̄. The calculations for small-x

evolution will be carried out in Aa − = 0 gauge. However, the expressions for the operators

in this section are also valid in the Lorenz gauge ∂µAa µ = 0, and in any gauge where the

gluon field vanishes at x− → ±∞ (cf. [64, 70]).

We denote the fundamental light-cone Wilson lines by

Vx[x−
f , x−

i ] = P exp


ig

x−
f∫

x−
i

dx−A+(0+, x−, x)


 (2.1)

with the abbreviation Vx = Vx[∞, −∞] for infinite lines. Here P is the path ordering

operator, Aµ =
∑

a Aa µ ta is the background gluon field with ta the fundamental SU(Nc)

generators, and g is the strong coupling constant. The adjoint light-cone Wilson line is

– 5 –
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defined similarly as

Ux[x−
f , x−

i ] = P exp


ig

x−
f∫

x−
i

dx−A+(0+, x−, x)


 (2.2)

with Aµ =
∑

a Aa µ T a, where T a are the adjoint SU(Nc) generators, (T a)bc = −ifabc.

Again, Ux = Ux[∞, −∞].

Define an S-matrix for the quark-target scattering in the helicity basis3 by

Vx,y;σ′,σ ≡
∫

d2pin

(2π)2

d2pout

(2π)2
eip

out
·x−ip

in
·y

[
δσ,σ′ (2π)2 δ2

(
p

out
− p

in

)
+ i Aq

σ′,σ(p
out

, p
in

)
]

,

(2.3)

where Aq(p
out

, p
in

) is the scattering amplitude for a quark on a target with p
in

and p
out

the incoming and outgoing quark transverse momenta, respectively, while σ′ and σ are

the outgoing and incoming quark helicities. The amplitude A is normalized such that

A = M/(2s) [60], where M is the conventional textbook scattering amplitude and s is the

center-of-mass energy squared.

Neglecting the quark mass, which does not affect small-x evolution, at the sub-eikonal

order the quark S-matrix is [3, 63, 64, 66, 70]4

Vx,y;σ′,σ =Vxδ2(x−y)δσ,σ′ (2.4)

+
iP +

s

∞∫

−∞

dz−d2z Vx[∞,z−]δ2(x−z)

[
−δσ,σ′

←
D

i

Di+gσδσ,σ′ F 12

]
(z−,z)Vy [z−,−∞]δ2(y−z)

−
g2P +

2s
δ2(x−y)

∞∫

−∞

dz−
1

∞∫

z−

1

dz−
2 Vx[∞,z−

2 ]tbψβ(z−
2 ,x)Uba

x [z−
2 ,z−

1 ]
[
δσ,σ′ γ+−σδσ,σ′ γ+γ5

]
αβ

ψ̄α(z−
1 ,x)taVx[z−

1 ,−∞],

where Di = ∂i − igAi, and
←
D

i

=
←
∂

i

+ igAi.

The S-matrix in eq. (2.4) has two distinct polarization-dependent structures, σ δσ,σ′

and δσ,σ′ . At the sub-eikonal level (that is, for everything except for the first term on

the right-hand side of eq. (2.4)), we define the “polarized Wilson lines” V
pol[1]

x and V
pol[2]

x,y

by [3, 70]

Vx,y;σ′,σ

∣∣∣∣
sub-eikonal

≡ σ δσ,σ′ V pol[1]
x δ2(x − y) + δσ,σ′ V pol[2]

x,y . (2.5)

3Helicity basis refers to the (±)-interchanged Brodsky-Lepage spinor basis defined below in eq. (3.27),

which is commonly used in LCPT. In LCPT, the ez spatial direction is used for spin quantization: we refer

to the projection of particle’s spin onto the z-axis as “helicity”. We note that the proper helicity is the

projection of spin onto the momentum of the particle. This difference between the true helicity and LCPT

“helicity” requires us to keep both δσ,σ′ and σδσ,σ′ structures in, e.g., eq. (2.4), even when only helicity-

dependent quantities are considered. In the rest of the manuscript, both helicity basis and (±)-interchanged

Brodsky-Lepage spinor basis are used interchangeably.
4Note that the sign in front of the γ+γ5 term in eq. (2.4) is different from that in [3, 70] while in

agreement with [92]. In [3] one has to correct eq. (45) by replacing ρ(σ) → ρ(−σ) on its right-hand side.

Similarly, one should replace ρT (σ′) → ρT (−σ′) in eq. (48) of [3]. This would modify eq. (51) of [3] to agree

with our eq. (2.4).

– 6 –
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V
pol[1]

x and V
pol[2]

x,y can be read off eq. (2.4) using their definition in eq. (2.5). In the

following it will be helpful to separate the gluon and quark contributions to V
pol[1]

x and

V
pol[2]

x,y . Therefore, we define

V pol[1]
x = V G[1]

x + V q[1]
x , V pol[2]

x,y = V G[2]
x,y + V q[2]

x δ2(x − y), (2.6)

such that

V G[1]
x =

ig P +

s

∞∫

−∞

dx−Vx[∞,x−]F 12(x−,x) Vx[x−,−∞], (2.7a)

V q[1]
x =

g2P +

2s

∞∫

−∞

dx−
1

∞∫

x−

1

dx−
2 Vx[∞,x−

2 ] tb ψβ(x−
2 ,x)Uba

x [x−
2 ,x−

1 ]
[
γ+γ5

]
αβ

ψ̄α(x−
1 ,x) ta Vx[x−

1 ,−∞], (2.7b)

V G[2]
x,y = − iP +

s

∞∫

−∞

dz−d2z Vx[∞,z−]δ2(x−z)
←

D
i

(z−,z)Di(z−,z)Vy[z−,−∞]δ2(y −z), (2.7c)

V q[2]
x = −g2P +

2s

∞∫

−∞

dx−
1

∞∫

x−

1

dx−
2 Vx[∞,x−

2 ] tb ψβ(x−
2 ,x)Uba

x [x−
2 ,x−

1 ]
[
γ+

]
αβ

ψ̄α(x−
1 ,x) ta Vx[x−

1 ,−∞]. (2.7d)

Curiously, only V
G[2]

x,y is truly a non-local operator in the transverse plane.

Similar to eq. (2.3) we define the S-matrix for the gluon-target scattering by

Ux,y;λ′,λ ≡
∫

d2pin

(2π)2

d2pout

(2π)2
eip

out
·x−ip

in
·y

[
δλ,λ′ (2π)2 δ2

(
p

out
− p

in

)
+ i AG

λ′,λ(p
out

, p
in

)
]

,

(2.8)

with the gluon scattering amplitude AG
λ′,λ(p

out
, p

in
) on the background-field target nor-

malized in the same way as the quark one above. At the sub-eikonal level the S-matrix

is [3, 39, 64, 66, 70]5

(Ux,y;λ′,λ)ba=(Ux)baδ2(x−y)δλ,λ′ (2.9)

+
iP +

s

∞∫

−∞

dz−d2z(Ux[∞,z−])bb′

δ2(x−z)

[
2gλδλ,λ′ (F12)b′a′

−δλ,λ′

←

D

b′c

·Dca′

]
(z−,z)(Uy[z−,−∞])a′aδ2(y−z)

−g2P +

2s
δ2(x−y)

∞∫

−∞

dz−
1

∞∫

z−

1

dz−
2

×(Ux[∞,z−
2 ])bb′

ψ̄(z−
2 ,x)tb′

Vx[z−
2 ,z−

1 ]
[
δλ,λ′ γ+−λδλ,λ′ γ+γ5

]
ta′

ψ(z−
1 ,x)(Ux[z−

1 ,−∞])a′a−c.c..

Here F12 =
∑

a F a 12 T a is the adjoint gluon field strength tensor, while the adjoint co-

variant derivatives are
←
D

ab

=
←
∇ δab + gfacbAc and D

ab = ∇ δab − gfacbAc (or, simply,

Dab
i = ∂iδ

ab − ig(T c)abA
c
i and

←
D

ab

i =
←
∂ iδ

ab + ig(T c)abA
c
i , using (T c)ab = −ifabc with

A = (A1, A2) = −(A1, A2)).

5Similar to eq. (2.4), the sign of the γ+γ5 term in eq. (2.9) is different from that in eq. (64) of [3]:

correcting ρT (σ) → ρT (−σ) in eq. (58) and ρ(σ) → ρ(−σ) in eq. (60), both in [3], would change the sign

of the γ+γ5 term in eq. (64) of [3], making it agree with our eq. (2.9).
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Just as in the fundamental representation, for the adjoint S-matrix at hand we can

identify two polarization structures, λ δλ,λ′ and δλ,λ′ , and define U
pol[1]
x and U

pol[2]
x,y by

(Ux,y;λ′,λ)ba

∣∣∣∣
sub-eikonal

≡ λ δλ,λ′ (Upol[1]
x )ba δ2(x − y) + δλ,λ′ (Upol[2]

x,y )ba (2.10)

at the sub-eikonal order, excluding the eikonal term in eq. (2.9). Again, we separate the

quark and gluon operator contributions by writing

Upol[1]
x = UG[1]

x + Uq[1]
x , Upol[2]

x,y = UG[2]
x,y + Uq[2]

x δ2(x − y), (2.11)

with

(UG[1]
x )ba=

2igP +

s

∞∫

−∞

dx−(Ux[∞,x−])bb′

(F12)b′a′

(x−,x)(Ux[x−,−∞])a′a, (2.12a)

(Uq[1]
x )ba=

g2P +

2s

∞∫

−∞

dx−
1

∞∫

x−

1

dx−
2 (Ux[∞,x−

2 ])bb′

ψ̄(x−
2 ,x)tb′

Vx[x−
2 ,x−

1 ]γ+γ5ta′

ψ(x−
1 ,x)(Ux[x−

1 ,−∞])a′a

+c.c., (2.12b)

(UG[2]
x,y )ba=− iP +

s

∞∫

−∞

dz−d2z (Ux[∞,z−])bb′

δ2(x−z)
←

D

b′c

(z−,z)Dca′

(z−,z)(Uy[z−,−∞])a′aδ2(y−z), (2.12c)

(Uq[2]
x )ba=−g2P +

2s

∞∫

−∞

dx−
1

∞∫

x−

1

dx−
2 (Ux[∞,x−

2 ])bb′

ψ̄(x−
2 ,x)tb′

Vx[x−
2 ,x−

1 ]γ+ta′

ψ(x−
1 ,x)(Ux[x−

1 ,−∞])a′a

−c.c.. (2.12d)

Once more, only U
G[2]
x,y is non-local in the transverse plane.

3 Quark and gluon helicity distributions and g1 structure function at

small x

3.1 Gluon helicity distribution

We begin with the dipole gluon helicity TMD, defined as [93]

gG dip
1L (x, k2

T ) =
−2i

x P +

1

(2π)3

1

2

∑

SL

SL

∫
dξ− d2ξ eixP + ξ−

e−ik·ξ (3.1)

× 〈P, SL| ǫij tr
[
F +i(0) U [+][0, ξ] F +j(ξ) U [−][ξ, 0]

]
|P, SL〉ξ+=0 ,

where U [+] and U [−] are the future- and past-pointing Wilson line staples, kT = |k|, and

ǫij is the transverse Levi-Civita symbol with ǫ12 = +1. The Jaffe-Manohar (JM) gluon

helicity PDF is then [4]

∆G(x,Q2)=

Q2∫
d2kgGdip

1L (x,k2
T )=

−2i

xP +

1

4π

1

2

∑

SL

SL

∞∫

−∞

dξ−eixP +ξ−
(3.2)

×〈P,SL|ǫijF a+i(0+,0−,0)Uab
0 [0,ξ−]F b+j(0+,ξ−,0)|P,SL〉,
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where Uab
0 now is a regular adjoint light-cone Wilson line (2.2) connecting the two points

in the correlator.

We rewrite eq. (3.1) as

gG dip
1L (x, k2

T ) =
−2i

x P + V −

1

(2π)3

1

2

∑

SL

SL

∫
dξ− d2ξ dζ− d2ζ eixP + (ξ−−ζ−) e−ik·(ξ−ζ) (3.3)

× 〈P, SL| ǫij tr
[
F +i(ζ) U [+][ζ, ξ] F +j(ξ) U [−][ξ, ζ]

]
|P, SL〉ξ+=ζ+=0 ,

with the (infinite) volume factor V − =
∫

dx−d2x. The JM gluon helicity PDF is now given

by

∆G(x, Q2) =

Q2∫
d2k gG dip

1L (x, k2
T ) =

−2i

x P + L−

1

4π

1

2

∑

SL

SL

∫
dξ− dζ− eixP + (ξ−−ζ−) (3.4)

× 〈P, SL| ǫij F a+i(0+, ζ−, 0) Uab
0 [ζ−, ξ−] F b+j(0+, ξ−, 0) |P, SL〉 ,

where L− =
∫

dx−.

In any gauge where the field A⊥ is zero at x− → ±∞ we can rewrite eq. (3.4) as

∆G(x,Q2)=
−2i

xP +L−

1

2π

1

2

∑

SL

SL

∞∫

−∞

dξ−dζ−eixP +(ξ−−ζ−) (3.5)

×〈P,SL|ǫijtr
[
V0[−∞,ζ−]F +i(0+,ζ−,0)V0[ζ−,∞]V0[∞,ξ−]F +j(0+,ξ−,0)V0[ξ−,−∞]

]
|P,SL〉.

We further note that in a gauge where the field A⊥ is zero at x− → ±∞ we have [30, 33]

∞∫

−∞

dξ−eixP +ξ−
V0[∞,ξ−]F +j(0+,ξ−,0)V0[ξ−,−∞] (3.6)

=

∞∫

−∞

dξ−eixP +ξ−
{

∂+
(
V0[∞,ξ−]Aj(0+,ξ−,0)V0[ξ−,−∞]

)
−V0[∞,ξ−](∂jA+)V0[ξ−,−∞]

}

=−
∞∫

−∞

dξ−eixP +ξ−
V0[∞,ξ−](∂jA++ixP +Aj)V0[ξ−,−∞],

such that

∆G(x,Q2)=
−2i

xP +L−

1

2π

1

2

∑

SL

SL

∞∫

−∞

dξ−dζ−eixP +(ξ−−ζ−) (3.7)

×〈P,SL|ǫij tr
[
(∂iA+−ixP +Ai)V0[ζ−,ξ−](∂jA++ixP +Aj)V0[ξ−,ζ−]

]
|P,SL〉.

Similarly, for the dipole gluon helicity TMD we write

gG dip
1L (x,k2

T ) =
−2i

xP + V −

1

(2π)3

1

2

∑

SL

SL

∞∫

−∞

dξ− d2ξ dζ− d2ζ eixP + (ξ−−ζ−) e−ik·(ξ−ζ) (3.8)

×〈P,SL|ǫij tr
[
Vζ [−∞, ζ−] (∂iA+ − ixP + Ai)Vζ [ζ−,∞]Vξ[∞, ξ−] (∂jA+ + ixP + Aj)Vξ[ξ−,−∞]

]
|P,SL〉 .
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Let us simplify the gluon helicity TMD operator (3.8) at small x, expanding it down

to sub-eikonal order. Start by defining a “Lipatov vertex”

Lj(x, k) ≡
∞∫

−∞

dξ− d2ξ eixP + ξ−−ik·ξ Vξ[∞, ξ−] (∂jA+ + ixP + Aj) Vξ[ξ−, −∞] (3.9)

and rewriting the gluon dipole helicity TMD as

gG dip
1L (x, k2

T ) =
−2i

x P + V −

1

(2π)3

1

2

∑

SL

SL 〈P, SL| ǫij tr
[
Li †(x, k) Lj(x, k)

]
|P, SL〉 . (3.10)

Next let us expand the Lipatov vertex (3.9) in powers of x, that is, in eikonality. We

get

Lj(x,k) =

∞∫

−∞

dξ− d2ξ e−ik·ξ Vξ[∞, ξ−]
[
∂jA+ + ixP +

(
ξ− ∂jA+ +Aj

)
+O(x2)

]
Vξ[ξ−,−∞].

(3.11)

At order-x0 we get the standard result,

∞∫

−∞

dξ− d2ξ e−ik·ξ Vξ[∞, ξ−]
(
∂jA+

)
Vξ[ξ−,−∞] =

∫
d2ξ e−ik·ξ 1

ig
∂jVξ = −kj

g

∫
d2ξ e−ik·ξ Vξ.

(3.12)

At order-x, let us simplify the ξ− ∂jA+ term. Writing

ξ− = lim
L−→+∞

1

2


−

L−/2∫

ξ−

dz− +

ξ−∫

−L−/2

dz−


 (3.13)

we obtain

ixP +

∞∫

−∞

dξ− d2ξ e−ik·ξ Vξ[∞, ξ−]
[
ξ− ∂jA+(ξ)

]
Vξ[ξ−, −∞] (3.14)

= −xP +

2g

∫
d2ξ e−ik·ξ

∞∫

−∞

dz− Vξ[∞, z−]

[
∂j −

←
∂

j]
Vξ[z−, −∞].

The entire Lipatov vertex becomes

Lj(x,k)=−kj

g

∫
d2ξe−ik·ξ Vξ − xP +

2g

∫
d2ξe−ik·ξ

∞∫

−∞

dz−Vξ[∞,z−]

[
Dj −

←

D
j
]

Vξ[z−,−∞]+O(x2), (3.15)

where we have employed the right-acting covariant derivative Dj = ∂j − igAj and the

left-acting covariant derivative
←
D

j

=
←
∂

j

+ igAj (see [94] for the Dj −
←
D

j

operator arising

in the definitions of quark OAM in the proton). Substituting eq. (3.15) into eq. (3.10) and

– 10 –
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expanding the latter to order-x, we see that only the cross-talk between the leading-order

term and the Dj −
←
D

j

term in eq. (3.15) survives, yielding

gGdip
1L (x,k2

T )=
−2is

P +V −g2

1

(2π)3

1

2

∑

SL

SLǫijki

∫
d2ζd2ξe−ik·(ξ−ζ)〈P,SL|tr

[
V †

ζ V
jpol[2]

ξ −
(

V
jpol[2]

ζ

)†

Vξ

]
|P,SL〉,

(3.16)

where we have defined the fundamental polarized Wilson line of a different type from those

in eqs. (2.7) above, by

V i G[2]
z ≡ P +

2s

∞∫

−∞

dz− Vz[∞, z−]

[
Di(z−, z) −

←
D

i

(z−, z)

]
Vz[z−, −∞]. (3.17)

Defining the standard (but polarization-dependent) “CGC averaging” by

〈
. . .

〉
≡ 1

2

∑

SL

SL
1

2P +V −
〈P, SL| . . . |P, SL〉 (3.18)

and the sub-eikonal one by [1] 〈〈
. . .

〉〉
≡ s

〈
. . .

〉
(3.19)

we recast eq. (3.16) as

gG dip
1L (x, k2

T ) =
−4i

g2 (2π)3
ǫij ki

∫
d2ζ d2ξ e−ik·(ξ−ζ)

〈〈
tr

[
V †

ζ V
j G[2]

ξ −
(
V

j G[2]
ζ

)†
Vξ

]〉〉
. (3.20)

This result should be compared to eq. (35) in [33]. The definition of the polarized Wilson

line in eq. (34) of [33] is different from our eq. (3.17) by keeping only 2ig Ai instead of the

covariant derivative difference, Di −
←
D

i

and excluding the normalization factor of 1
s . The

former explains the sign difference between our eq. (3.20) and eq. (35) in [33].

Finally, interchanging ζ ↔ ξ in the second term of eq. (3.20) and replacing k → −k in

the same term (which we can do since each term in eq. (3.20) depends on k2
T and does not

depend on the direction of k), we arrive at

gG dip
1L (x, k2

T ) =
−4i

g2 (2π)3
ǫij ki

∫
d2ζ d2ξ e−ik·(ξ−ζ)

〈〈
tr

[
V †

ζ V
j G[2]

ξ +
(
V

j G[2]
ξ

)†
Vζ

]〉〉
. (3.21)

Defining the polarized dipole amplitude of the second kind

Gj
10(zs) ≡ 1

2Nc

〈〈
tr

[
V †

0 V
j G[2]

1 +
(
V

j G[2]
1

)†
V0

]〉〉
(3.22)

we obtain (cf. eq. (38) in [33])

gG dip
1L (x, k2

T ) =
−8iNc

g2 (2π)3
ǫij ki

∫
d2x0 d2x1 e−ik·x10 Gj

10

(
zs =

Q2

x

)
. (3.23)

Here x10 = x1 − x0 for the transverse-plane position vectors x1 and x0, with x10 = |x10| to

be used later on.
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Similar to [33] we can introduce the following decomposition of the impact-parameter

integrated amplitude Gj :

∫
d2

(
x1 + x0

2

)
Gi

10(zs) = (x10)i
⊥ G1(x2

10, zs) + ǫij (x10)j
⊥ G2(x2

10, zs). (3.24)

Substituting this into eq. (3.21) we see that G1 does not contribute. We get (cf. eqs. (40)

and (41) in [33])

gG dip
1L (x, k2

T ) =
8iNc

g2 (2π)3

∫
d2x10 e−ik·x10 k · x10 G2

(
x2

10, zs =
Q2

x

)
(3.25)

=
Nc

αs2π4

∫
d2x10 e−ik·x10

[
1 + x2

10

∂

∂x2
10

]
G2

(
x2

10, zs =
Q2

x

)
.

The gluon helicity PDF is obtained by integrating over k, which yields (cf. eq. (124)

in [33])

∆G(x, Q2) =
2Nc

αsπ2

[(
1 + x2

10

∂

∂x2
10

)
G2

(
x2

10, zs =
Q2

x

)]

x2
10= 1

Q2

. (3.26)

We conclude, just as in [33], that the amplitude G2 gives us both the gluon dipole

helicity TMD (3.25) and the gluon helicity PDF (3.26) at small x. The difference here is

in the definition of the operator in eq. (3.17), which is different here from that employed

in [33], where the partial-derivative part of the full covariant derivative was discarded as a

term independent of helicity.

3.2 Quark helicity distribution

To include both sub-eikonal terms from eq. (2.4) into quark helicity distribution we can

employ the analysis carried out in [3], which applies here as well, with the diagram B

from [3] (see figure 1 below) again giving the only contribution we need to keep. Just as

in [3, 92], we will work with the (±)-interchanged Brodsky-Lepage spinors [71] (referred

there as the anti-BL spinors)

uσ(p) =
1√√
2p−

[
√

2p− +mγ0 +γ0 γ ·p]ρ(σ), vσ(p) =
1√√
2p−

[
√

2p− −mγ0 +γ0 γ ·p]ρ(−σ), (3.27)

with pµ =

(
p2+m2

2p− , p−, p

)
and

ρ(+1) =
1√
2




1

0

−1

0




, ρ(−1) =
1√
2




0

1

0

1




. (3.28)

We begin with eq. (15) in [3], which we modify by replacing (for the massless quarks

we will consider from now on) [70]

v̄σ1(k1)
(
V̂ †

w

)ji
vσ2(k2) → 2

√
k−

1 k−
2

∫
d2z

(
V †

z,w;σ2,σ1

)ji
, (3.29)
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ζ

k1
w

k2

ξ

z

σ1 σ2

Figure 1. Diagram of class B with kinematics specified. The antiquark propagates from ζ to w with

momentum k1, undergoes a sub-eikonal interaction with the proton which changes its transverse

position from w on the left of the shock wave (the left shaded rectangle) to z on the right of the

shock wave, and then propagates from z to ξ with momentum k2. The sub-eikonal interaction with

the proton shock wave (shaded rectangle) is denoted by the white box.

which accounts for both the notation change (to the quark S-matrix from eq. (2.4)) and

the fact that the anti-quark position may be different on the two sides of the shock wave,

as depicted in figure 1. (Here i, j are the anti-quark color indices. The shock wave,

representing the proton target, is shown by the shaded rectangle in figure 1.) Additionally,

we need to replace eik·(w−ζ) → eik·(z−ζ) in the same eq. (15) of [3]. We end up with

gq
1L(x,k2

T )=− 2P +

(2π)3

∫
d2ζd2wd2z

d2k1dk−
1

(2π)3
eik

1
·(w−ζ)+ik·(z−ζ)θ(k−

1 )
∑

σ1,σ2

v̄σ2 (k2)
1

2
γ+γ5vσ1 (k1)2

√
k−

1 k−
2

×
〈

Ttr
[
VζV †

z,w;σ2,σ1

]
〉

1[
2k−

1 xP ++k2
1−iǫk−

1

][
2k−

1 xP ++k2+iǫk−
1

]
∣∣∣∣∣
k−

2
=k−

1
,k2

1
=0,k2

2
=0,k

2
=−k

+c.c. (3.30)

for the quark helicity TMD with a future-pointing (semi-inclusive Deep Inelastic Scattering,

or SIDIS) Wilson-line staple.

Using

2
√

k−
1 k−

2 v̄σ2(k2)
1

2
γ+γ5vσ1(k1) = σ1 δσ2σ1 (k2 · k1) − i δσ2σ1 (k2 × k1), (3.31)

in eq. (3.30), along with eq. (2.5), and assuming that 2k−
1 xP + ≪ k2, k2

1 to simplify the

denominators at small x, we obtain

gq
1L(x,k2

T ) = − 4P +

(2π)3

∫
d2ζ d2wd2z

d2k1 dk−
1

(2π)3
eik1·(w−ζ)+ik·(z−ζ) θ(k−

1 )
1

k2
1 k2 (3.32)

×
[
−k ·k1 δ2(z −w)

〈
Ttr

[
Vζ V pol[1]†

w

]〉
+ ik ×k1

〈
Ttr

[
Vζ V pol[2]†

z,w

]〉]
+c.c..

Note that the contribution of the eikonal term in eq. (2.4) to eq. (3.30) is zero, as was

shown in [3].

– 13 –



J
H
E
P
0
7
(
2
0
2
2
)
0
9
5

Performing the k1 integration and adding the complex conjugate terms explicitly in

eq. (3.32) we arrive at

gq
1L(x,k2

T ) = − 4iP +

(2π)5

∫
d2ζ d2w

p−

2∫

0

dk−
1

{
eik·(w−ζ) k

k2
·

ζ −w

|ζ −w|2

〈
Ttr

[
Vζ V pol[1] †

w

]
+T̄tr

[
V

pol[1]
ζ V †

w

]〉

− i
k

k2
×

ζ −w

|ζ −w|2

∫
d2z

〈
eik·(z−ζ) Ttr

[
Vζ V pol[2] †

z,w

]
+e−ik·(z−ζ) T̄tr

[
V pol[2]

z,w V †
ζ

]〉}
. (3.33)

We have also integrated over z in the first term in the curly brackets of eq. (3.33) and

replaced ζ ↔ w in the term containing the second trace from the first angle brackets.

We concentrate on the second term on the right of eq. (3.33). Employing eq. (2.6), we

see that the quark operator contribution to that term is proportional to

∝
∫

d2ζ d2w
k

k2 ×
ζ − w

|ζ − w|2

〈
eik·(w−ζ) T tr

[
Vζ V q[2] †

w

]
+ e−ik·(w−ζ) T̄ tr

[
V q[2]

w V †
ζ

] 〉
. (3.34)

For a longitudinally polarized target proton, the expectation values of the impact-parameter

integrated traces in eq. (3.34) are functions of the dipole size only. Let us illustrate this with

the first such trace: the absence of any preferred transverse direction in the longitudinally

polarized target means

∫
d2

(
ζ + w

2

) 〈
T tr

[
Vζ V q[2] †

w

] 〉
= f(|ζ − w|2), (3.35)

such that

∫
d2ζ d2w

k

k2 ×
ζ − w

|ζ − w|2

〈
eik·(w−ζ) T tr

[
Vζ V q[2] †

w

] 〉

=
k

k2 ×
∫

d2(ζ − w) eik·(w−ζ) ζ − w

|ζ − w|2 f(|ζ − w|2) ∝ k × k = 0. (3.36)

Applying a similar argument to the second term in eq. (3.34), we see that the quark operator

V
q[2]

w does not contribute to the quark dipole TMD at small x in eq. (3.33).

We next consider the gluon contribution to the second term on the right of eq. (3.33).

To evaluate this term, it is easier to go back to eq. (3.32), the second term of which can be

written as

4 (P +)2

s (2π)6

p−
2∫

0

dk−
1

∫
d2ζ d2w d2k1 ei(k1+k)·(w−ζ) k × k1

k2 k2
1

∞∫

−∞

dy− (3.37)

×
〈

T tr

[
Vζ Vw[−∞, y−]

(
←
D

i

w − iki
1

) (
Di

w − iki
)

Vw[y−, ∞]

] 〉
+ c.c.
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with the help of eq. (2.7c). Further, writing Di
w = (Di

w/2) + (Di
w/2) and integrating one

of these terms by parts, while performing the same operation for
←
D

i

w, we arrive at

(P +)2

s(2π)6

p−
2∫

0

dk−
1

∫
d2ζd2wd2k1ei(k1+k)·(w−ζ) k×k1

k2k2
1

∞∫

−∞

dy− (3.38)

×
〈

Ttr

[
Vζ Vw[−∞,y−]

(
←
D

i

w −Di
w+i(ki−ki

1)

)(
Di

w −
←
D

i

w +i(ki
1−ki)

)
Vw[y−,∞]

]〉
+c.c..

The arguments similar to those used to show that the quark operator contribution to this

term vanishes apply here to the (Di
w −

←
D

i

w)2 and (ki
1 − ki)2 terms as well, leaving only the

“cross-talk” between the Di
w −

←
D

i

w and ki
1−ki in eq. (3.38). Employing the definition (3.17),

we recast those remaining non-zero terms in eq. (3.38) as

4iP +

(2π)6

p−

2∫

0

dk−
1

∫
d2ζd2wd2k1ei(k

1
+k)·(w−ζ) k×k1

k2k2
1

(ki−ki
1)

〈
Ttr

[
Vζ V iG[2]†

w

]
−T̄tr

[
V

iG[2]
ζ V †

w

]〉
. (3.39)

Further, employing

− ∂j
2

(
xi

20

x2
20

)
=

δij x2
20 − 2xi

20xj
20

x4
20

+ δij π δ2(x20) (3.40)

we perform the Fourier transform over k1, obtaining

− 4P +

(2π)5

p−
2∫

0

dk−
1

∫
d2ζ d2weik·(w−ζ) ǫmjkm

k2

[
ki (w−ζ)j

|w−ζ|2 + i
δij |w−ζ|2 −2(w−ζ)i(w−ζ)j

|w−ζ|4

]

×
〈

Ttr
[
Vζ V iG[2]†

w

]
− T̄tr

[
V

iG[2]
ζ V †

w

]〉
, (3.41)

where we have also used the fact that tr
[
Vw V

i G [2] †
w

]
= 0. Interchanging the integration

variables ζ ↔ w along with flipping the sign k → −k of the transverse momentum in the

second term of eq. (3.41) (which is allowed since each term in eq. (3.41) is a function of k2
T

only), we obtain

− 4P +

(2π)5

p−
2∫

0

dk−
1

∫
d2ζ d2weik·(w−ζ) ǫmjkm

k2

[
ki (w−ζ)j

|w−ζ|2 + i
δij |w−ζ|2 −2(w−ζ)i(w−ζ)j

|w−ζ|4

]

×
〈

Ttr
[
Vζ V iG[2]†

w

]
+T̄tr

[
V iG[2]

w V †
ζ

]〉
. (3.42)

To further simplify the matrix elements of the traces in eq. (3.42) we can employ the

relations given by eqs. (22) of [3] (see also [95]),
〈
T tr

[
Vx V pol †

y

]〉
=

〈
tr

[
Vx V pol †

y

]〉
, (3.43a)

〈
T̄ tr

[
Vx V pol †

y

]〉
=

〈
tr

[
V pol †

y Vx

]〉
, (3.43b)
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where the ordering of the operators on the right is important, since the right Wilson

line belongs to the amplitude, while the left one is in the complex conjugate amplitude.

Application of eqs. (3.43) yields

〈
T tr

[
Vζ V i G [2] †

w

]
+ T̄ tr

[
V i G [2]

w V †
ζ

] 〉
=

〈
tr

[
Vζ V i G [2] †

w

]
+ tr

[
V i G [2]

w V †
ζ

] 〉
. (3.44)

Comparing this with eq. (3.22), we see that the objects in the angle brackets in the two

equations are similar, but not quite the same: the order of the Wilson lines is different in

the trace. As we noted above, the order of Wilson lines matters for the operators here.

To remedy this issue, we note that the quark helicity TMD is PT-even: hence, we can

substitute eq. (3.44) back into eq. (3.42) and apply the PT-transformation to the latter,

leaving it invariant (while, in the process, changing the SIDIS Wilson-line staple to the

Drell-Yan (DY) one for the TMD). For infinite Wilson lines in question we have

Vζ
PT−−→ V †

−ζ , V i G [2]
w

PT−−→ V
i G [2] †

−w . (3.45)

This means that, under PT, the expression in eq. (3.44) becomes (2Nc/s) Gi
−w,−ζ (cf.

eq. (3.22)), where the sign change in front of w and ζ is not important, since these are

integration variables. Due to the PT-invariance of the quark helicity TMD, we obtain for

eq. (3.42)

− 4Nc

(2π)5

1∫

Λ2/s

dz

z

∫
d2ζd2weik·(w−ζ) ǫmjkm

k2

[
ki

(w−ζ)j

|w−ζ|2 +i
δij |w−ζ|2−2(w−ζ)i(w−ζ)j

|w−ζ|4

]
Gi

w,ζ(zs), (3.46)

where z = k−
1 /p−

2 and Λ is an infrared (IR) cutoff. (Note that the PT-symmetry argument

would not have been needed if we had started with the quark TMD with the DY Wilson-line

staple or interchanged the past- and forward-pointing staples in eq. (3.1).)

Replacing the second term in eq. (3.33) by the expression (3.46), and adding the

contribution of the anti-quark helicity TMD as it was done in [3] to obtain the flavor-

singlet quark helicity TMD, we arrive at

gS
1L(x, k2

T ) = − 8 Nc Nf

(2π)5

1∫

Λ2/s

dz

z

∫
d2ζ d2w eik·(w−ζ)

{
i

ζ − w

|ζ − w|2 · k

k2 Qw,ζ(zs) (3.47)

+
ǫmjkm

k2

[
ki (w − ζ)j

|w − ζ|2 + i
δij |w − ζ|2 − 2(w − ζ)i(w − ζ)j

|w − ζ|4

]
Gi

w,ζ(zs)

}
,

where we have also summed over quark flavors, generating a factor of Nf by assuming, for

simplicity, that all flavors give equal contributions. As in [3], we have defined the “original”

polarized dipole amplitude

Qw,ζ(zs) ≡ 1

2Nc
Re

〈〈
T tr

[
Vζ V pol[1] †

w

]
+ T tr

[
V pol[1]

w V †
ζ

] 〉〉
. (3.48)

While the helicity evolution we will derive below is independent of quark flavor, the ini-

tial conditions for Qw,ζ(zs) may be flavor-dependent [22], meaning that our simplified
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assumption of flavor symmetry may need to be generalized by replacing Nf → ∑
f and

Qw,ζ(zs) → Qf
w,ζ(zs) in eq. (3.47) to include the potential flavor-dependence of the ampli-

tudes Qf
w,ζ(zs).

The flavor-singlet quark helicity PDF (1.3) is

∆Σ(x, Q2) =

Q2∫
d2kT gS

1L(x, k2
T ). (3.49)

Using eq. (3.47) in eq. (3.49) while imposing the 1
x > zsx2

10 lifetime ordering yields

∆Σ(x, Q2) = −Nc Nf

2π3

1∫

Λ2/s

dz

z

min

{
1

zQ2 , 1
Λ2

}

∫

1
zs

dx2
10

x2
10

[
Q(x2

10, zs) + 2 G2(x2
10, zs)

]
(3.50)

where we have employed the decomposition (3.24) and

Q(x2
10, zs) ≡

∫
d2

(
x0 + x1

2

)
Q10(zs). (3.51)

Equation (3.50) is to be compared to eq. (8b) in [2] or, equivalently, eq. (5) in [31], which

contain only the first term in the square brackets of eq. (3.50).

Using the decomposition (3.24) and eq. (3.51), eq. (3.47) can be rewritten as

gS
1L(x,k2

T ) =
8Nc Nf

(2π)5

1∫

Λ2/s

dz

z

∫
d2x10 eik·x

10

[
i

x10

x2
10

· k

k2

[
Q(x2

10,zs)+G2(x2
10,zs)

]
− (k ×x10)2

k2 x2
10

G2(x2
10,zs)

]
.

(3.52)

The integral over the angles of x10 in the last term on the right of eq. (3.52) can be cast

into the same form as in the first term [32]. This yields

gS
1L(x, k2

T ) =
8 i Nc Nf

(2π)5

1∫

Λ2/s

dz

z

∫
d2x10 eik·x10

x10

x2
10

· k

k2

[
Q(x2

10, zs) + 2 G2(x2
10, zs)

]
. (3.53)

We see that both the quark and gluon helicity TMDs and PDFs at small x can be

expressed in terms of the polarized dipole amplitudes Q(x2
10, zs) and G2(x2

10, zs). These

dipole amplitudes enter the expressions (3.53) and (3.50) for the quark helicity TMD and

PDF in a specific linear combination, Q + 2 G2.

3.3 g1 structure function

Next we consider DIS on a longitudinally polarized proton. The hadronic tensor can be

written as (see [96, 97] for a systematic exposition)

Wµν ≡ 1

4πMp

∫
d4x eiq·x 〈P, SL| jµ(x) jν(0) |P, SL〉 (3.54)

= W sym
µν + i ǫµνρσ

qρ

Mp P · q

[
Sσg1(x, Q2) +

(
Sσ − S · q

P · q
P σ

)
g2(x, Q2)

]
,
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σ

σ′

λ

x1 x1′

x0

z

1− z

z

1− z

σ

σ′

λ

x1 x1′

x0

Figure 2. Diagrams needed for the calculation of the g1 structure function in the dipole picture of

DIS. The proton shock wave is denoted by the shaded rectangle, while the white box denotes the

sub-eikonal interaction with the target.

where Mp is the proton mass and W sym
µν denotes the spin-independent (µ ↔ ν symmetric)

part of the hadronic tensor, dependent on the F1, F2 structure functions. As usual, jµ is the

quark electromagnetic current operator and the 4-dimensional Levi-Civita symbol is defined

with ǫ0123 = +1 [98]. We will work in the proton rest frame where P µ = (Mp,~0) and the

spin 4-vector is Sµ = (0, 0, 0, ΣMp) for the longitudinally polarized proton with polarization

Σ = ±1. Adjusting the frame further such that the virtual photon momentum is qµ =

(−Q2/(2q−), q−, 0) in the (+, −, ⊥) light-cone notation, we have the photon polarizations

vectors ǫµ
T λ = (0, 0, ǫλ) for transverse polarizations (with ǫλ = (−1/

√
2)(λ, i) and λ = ±1)

and ǫµ
L = (Q/(2q−), q−/Q, 0) for the longitudinal polarization (see e.g. [60]).

Consider the γ∗ + p scattering cross section,

σγ∗p =
4π2αEM

q0
Wµν ǫ∗ µ ǫν (3.55)

with αEM the fine structure constant. We are interested in the spin-dependent part of this

cross section, which we obtain by using the spin-dependent part of Wµν from eq. (3.54)

in eq. (3.55). In the frame we are working in, one can see that only transverse values

of µ, ν contribute to the spin-dependent part of σγ∗p: this means only transverse photon

polarizations contribute. Assuming that the virtual photon is transversely polarized with

polarization λ, after some algebra we obtain the spin-dependent cross section

σγ∗p(λ, Σ) =
4π2αEM

q0
Wµν ǫ∗ µ

T λ ǫν
T λ = −8π2αEM x

Q2
λ Σ

[
g1(x, Q2) −

4x2M2
p

Q2
g2(x, Q2)

]
.

(3.56)

The object in the square brackets of eq. (3.56) is equal to the virtual photon spin asymme-

try A1 multiplied by the spin-independent structure function F1(x, Q2) [97]. The factor of

x in the prefactor of eq. (3.56), which is absent in the analogue of this equation for the spin-

independent case [60], indicates that the spin-dependent cross section is indeed sub-eikonal

at small x. Furthermore, at small x we have 4x2M2
p /Q2 ≪ 1 (which is also true in the stan-

dard perturbative approaches which assume large Q2): this allows us to neglect the second

term in the square brackets of eq. (3.56), since it is a sub-sub-sub-eikonal contribution (that

is, a contribution suppressed by x3 compared to the eikonal scattering). We thus write

g1(x, Q2) = − Q2

16π2αEM x

[
σγ∗p(+, +) − σγ∗p(−, +)

]
. (3.57)

We see that to obtain the g1 structure function, we need to find the polarization-

dependent part of the γ∗ + p scattering cross section, σγ∗p, with the transversely polarized
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photon. Working in the dipole picture of DIS, appropriate at small x, we write (cf. [60]),

keeping in mind the eikonal and sub-eikonal terms,

σγ∗p(λ,Σ)=−

∫
d2x1d2x1′ d2x0

4π

1∫

0

dz

z(1−z)

∑

σ,σ′,f

2Re

{
Ψγ∗→qq

σ,σ′;λ
(x10,z)

[
Ψγ∗→qq

σ,σ′;λ
(x1′0,z)

]∗〈
Ttr

[
V pol

1′,1;σ,σ
V †

0

]〉
(z)

+Ψγ∗→qq
σ′,σ;λ

(x01,1−z)

[
Ψγ∗→qq

σ′,σ;λ
(x01′ ,1−z)

]∗〈
Ttr

[
V0V pol†

1′,1;σ,σ

]〉
(z)

}
, (3.58)

where the light-cone wave function of a transversely polarized virtual photon in the con-

ventions of [60] is

Ψγ∗→qq
σ,σ′;λ (x10,z)=

eZf

2π

√
z(1−z)

[
δσ,−σ′ (1−2z−σλ)iaf

ελ ·x10

x10
K1(x10af )+δσσ′

mf√
2

(1+σλ)K0(x10af )

]
.

(3.59)

Equation (3.58) is illustrated in figure 2. For each quark flavor f , mf is the quark mass, Zf

is the fractional charge of the quark, and a2
f = z(1 − z)Q2 + m2

f with z the fraction of the

photon’s light-cone (−) momentum carried by the quark or by the antiquark, as labeled

in the diagrams in figure 2. The overall minus sign in eq. (3.58) reflects the sign difference

between the real part of (the interaction term in) the S-matrix and the imaginary part of

the forward scattering amplitude.

The light-cone wave function in eq. (3.59) is defined in such a way that the quark is

located at x1 in the transverse plane, while the anti-quark is at x0. As before, xij = xi −xj

with xij = |xij |. The dipole sizes before and after scattering on the shock wave in eq. (3.58)

are x10 and x1′0, respectively. In eq. (3.59), the quark and the anti-quark carry polarizations

σ and σ′, respectively, while the photon carries polarization λ.

One can easily show that the eikonal part of the S-matrix V pol
1′,1;σ,σ does not contribute a

λ-dependent term in eq. (3.58) that would contribute to eq. (3.57). Therefore, concentrating

on the sub-eikonal terms, we substitute eqs. (2.5) and (3.59) into eq. (3.58) and sum over

σ, σ′. This gives

σγ∗p(+,+)−σγ∗p(−,+) = −
∑

f

2αEM Z2
f

π2

∫
d2x1 d2x1′ d2x0

1∫

0

dz (3.60)

× Re

{
− i [z2 +(1−z)2]a2

f

x10 ×x1′0

x10 x1′0
K1(x10 af )K1(x1′0 af )

〈
Ttr

[
V

G[2]

1′,1 V †
0

]
+Ttr

[
V0 V

G[2] †

1′,1

]〉
(z)

+δ2(x11′ )
[
(2z −1)a2

f [K1(x10 af )]2 +m2
f [K0(x10 af )]2

]〈
Ttr

[
V

pol[1]
1 V †

0

]
+Ttr

[
V0 V

pol[1] †
1

]〉
(z)

}
.

Note that the quark operator V q[2] does not contribute.

Finally, we employ the definition of V
G[2]

1′,1 from eq. (2.7c), along with the polarized

Wilson line (3.17) and the dipole amplitude definitions (3.22), (3.24), (3.48), and (3.51),

in eq. (3.60). Inserting the result into eq. (3.57), after some algebra and after invoking

the PT-symmetry argument we employed earlier on, we obtain our final expression for the
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small-x structure function g1 in terms of the polarized dipole amplitudes:

g1(x, Q2) = −
∑

f

Nc Z2
f

4π4

∫
d2x10

1∫

Λ2/s

dz

z

{
2 [z2 + (1 − z)2] a2

f [K1(x10 af )]2 G2(x2
10, zs)

+
[
(1 − 2z) a2

f [K1(x10 af )]2 − m2
f [K0(x10 af )]2

]
Q(x2

10, zs)

}
. (3.61)

We can cross-check the result (3.61) by considering the double-logarithmic limit of its

integrals. Expanding the integrand of eq. (3.61) for z ≪ 1 and x10 af ≪ 1 and keeping

only the double-logarithmic terms yields

g1(x, Q2) = −
∑

f

Nc Z2
f

4π3

1∫

Λ2/s

dz

z

min

{
1

zQ2 , 1
Λ2

}

∫

1
zs

dx2
10

x2
10

[
Q(x2

10, zs) + 2 G2(x2
10, zs)

]
, (3.62)

where the lower limit of the x2
10-integral arises from the zsx2

10 ≫ 1 conditions, which, in

turn, follows from the validity of the shock wave (dipole picture of DIS) approximation

(see e.g. [36]), and is also implicitly applied to the full eq. (3.61).

Equation (3.62) should be compared to eq. (3.50), also written in the double-

logarithmic approximation. One can rewrite eq. (3.50) as eq. (1.3) with

∆q+
f (x, Q2) = − Nc

2π3

1∫

Λ2/s

dz

z

min

{
1

zQ2 , 1
Λ2

}

∫

1
zs

dx2
10

x2
10

[
Q(x2

10, zs) + 2 G2(x2
10, zs)

]
. (3.63)

Comparing eqs. (3.63) and (3.62) we arrive at the well-known relation [97]

g1(x, Q2) =
1

2

∑

f

Z2
f ∆q+

f (x, Q2), (3.64)

thus confirming consistency of our eqs. (3.62) and (3.50). This completes the cross-check

of eq. (3.61).

We conclude this section by summarizing its main results: at small x, the flavor-singlet

quark and gluon helicity PDFs and TMDs (∆Σ(x, Q2), gS
1L(x, k2

T ), ∆G(x, Q2), gG dip
1L (x, k2

T ))

along with the g1 structure function can all be expressed in terms of the polarized dipole

amplitudes Q(x2
10, zs) and G2(x2

10, zs). Therefore, to describe these observables we need

to construct evolution equations for these two polarized dipole amplitudes. In the earlier

literature [2, 3, 31], the contributions of the amplitude G2 to the quark helicity TMD and

PDF, and to the g1 structure function, have been omitted.
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4 Helicity evolution at small x

Our next step is to derive small-x evolution equations for the polarized dipole amplitudes

in eqs. (3.48) and (3.22), which we summarize here again for convenience:

Q10(zs) ≡ 1

2Nc
Re

〈〈
T tr

[
V0 V

pol[1] †
1

]
+ T tr

[
V

pol[1]
1 V †

0

] 〉〉
(zs), (4.1)

Gi
10(zs) ≡ 1

2Nc

〈〈
tr

[
V †

0 V
i G[2]

1 +
(
V

i G[2]
1

)†
V0

]〉〉
(zs). (4.2)

Ultimately, in the evolution equations we would replace Gi by G2, defined in the decom-

position (3.24).

The evolution equations will be derived in the double-logarithmic approximation

(DLA), which is defined as resumming powers of αs ln2(1/x). We will then compare our

results to those obtained earlier in [1–3, 31, 33].

4.1 Evolution equations in the operator form

4.1.1 Evolution equations for fundamental and adjoint Q10(zs)

Following the procedure outlined in [3, 33], we construct the evolution in the operator

language using the shock wave approximation for the polarized target. We suggest that the

procedure we employ, which uses the operator language in light cone time-ordered Feynman

diagrams (cf. also [95]), could be called the light-cone operator treatment (LCOT). We will

again work in the frame where the target proton has a large P + momentum, while the

projectile Wilson lines are oriented along the x−-axis. To construct the evolution we will

need gluon and quark propagators in the shock wave background. The operators in the

polarized dipole amplitudes Q10 and Gi
10 depend on the gluon field components A+, A and

on the quark fields ψ, ψ̄: we will need propagators connecting those fields. (We are working

in A− = 0 light-cone gauge.)

We begin with the amplitude Q10(zs). Diagrams contributing to its evolution are

shown in figure 3. These are the same diagrams as in the earlier works on the subject [1,

3, 33], except now the square box on the line going through the shock wave indicates both

terms in eq. (2.10) for the gluon line and both terms in eq. (2.5) for the quark line. In the

past works [1, 3, 33], only the first term in each of those equations was included.

In the gluon sector, the sub-eikonal propagator contributing to the evolution of Q10(zs)

is a⊥a+. It contributes to diagrams I, I′, II, II′ in figure 3. Following the steps detailed in [3,

33] while including both polarization structures from eq. (2.10) gives (for the propagator

in the diagram II)

0∫

−∞

dx−
2′

∞∫

0

dx−
2 ai a

⊥ (x−
2′ ,x1)a+ b(x−

2 ,x0) =
∑

λ,λ′

∫
d2x2 d2x2′




0∫

−∞

dx−
2′

∫
d4k2′

(2π)4
e

ik+

2′
x−

2′ eik
2′ ·x

2′1
−i

k2
2′ + iǫ

ǫi ∗
λ′




×
[

(Upol
2,2′;λ,λ′ )

ba 2π(2k−
2 )δ(k−

2 −k−
2′ )

]


∞∫

0

dx−
2

∫
d4k2

(2π)4
e−ik+

2
x−

2 e−ik
2

·x
20

−i

k2
2 + iǫ

ǫλ ·k2

k−
2


 . (4.3)
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0

1

0
−

I

2

0

1

k2′ k2

x−

2′
x−

20
−

II

2

0

1

k2′ k2

x−

2′

x−

2

0
−

2

0

1

k2′ k2

x−

2′ x−

20
−

III

I′

2

0

1

k2′ k2

x−

2′
x−

20
−

II′

2

0

1

k2′ k2

x−

2′

x−

20
−

eikonal

2

0

1

k2′ k2

x−

2′
x−

20
−

other eikonal diagrams

inhomogeneous

term
c.c.

c.c.

ba b

b

b

b

a
a

a

a

2
′

2
′

2
′

2
′

2
′

2
′

1

1

Figure 3. Diagrams representing the evolution of the fundamental polarized dipole amplitude

Q10. The vertical shaded rectangle represents the shock wave. The square box on the gluon and

quark lines represents the sub-eikonal interaction with the target given by eq. (2.10) for gluons and

eq. (2.5) for quarks. The same square box, but with number 1 in it, on the quark line denotes the

interaction described by V
pol[1]

1 only. The black circle denotes the sub-eikonal quark-gluon vertex

generated by the F 12 operator in eq. (2.7a), that is, by the F 12 part of V
pol[1]

1 , which, in turn,

contributes to Q10 through eq. (4.1). All momenta flow to the right.

The propagator (4.3) is separated by the square brackets into the interaction with the

shock wave and two free-gluon propagators on either side of the shock wave. It neglects

the instantaneous terms in the free-gluon propagators in the light-cone perturbation theory

(LCPT) terminology [71, 72], which is justified since such terms do not generate longitu-

dinal logarithms, and, hence, do not contribute to the DLA evolution.

Substituting eq. (2.10) into eq. (4.3), summing over polarizations and integrating over

k2 and k2′ (except for k− = k−
2 = k−

2′) yields

0∫

−∞

dx−
2′

∞∫

0

dx−
2 aia

⊥ (x−
2′ ,x1)a+b(x−

2 ,x0)= (4.4)

=− 1

4π3

p−

2∫

0

dk−

[∫
d2x2ln

(
1

x21Λ

)
ǫijxj

20

x2
20

(U
pol[1]
2 )ba−i

∫
d2x2d2x2′ ln

(
1

x2′1Λ

)
xi

20

x2
20

(U
pol[2]

2,2′ )ba

]
.

The first term on the right of eq. (4.4) was obtained before in [33].

As can be seen from the diagrams I and I′, or II and II′ in figure 3, the propagator (4.4)

enters the evolution of Q10(zs) together with the similar propagator, with the x−-ordering

of the endpoints reversed, along with the color indices a, b of the gluon fields interchanged,

0∫

−∞

dx−
2′

∞∫

0

dx−
2 aib

⊥(x−
2 ,x1)a+a(x−

2′ ,x0)= (4.5)

=− 1

4π3

p−

2∫

0

dk−

[∫
d2x2ln

(
1

x21Λ

)
ǫijxj

20

x2
20

(U
pol[1]
2 )ba+i

∫
d2x2d2x2′ ln

(
1

x21Λ

)
xi

2′0

x2
2′0

(U
pol[2]

2,2′ )ba

]
.
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One can clearly see that the eikonal Wilson line contribution (U2)ba δ2(x22′) from eq. (2.9),

which is neglected here as a non-DLA contribution, would have entered eqs. (4.4) and (4.5)

in the same way as (U
pol[2]
2,2′ )ba does: this eikonal contribution would exactly vanish in the

sum of eqs. (4.4) and (4.5), justifying our neglecting of this contribution.

Adding eqs. (4.4) and (4.5), and employing eq. (2.11), after some algebra we arrive at

0∫

−∞

dx−
2′

∞∫

0

dx−
2

[
ai a

⊥ (x−
2′ , x1) a+ b(x−

2 , x0) + ai b
⊥ (x−

2 , x1) a+ a(x−
2′ , x0)

]
(4.6)

= − 1

4π3

p−
2∫

0

dk−
∫

d2x2

{
2 ln

(
1

x21Λ

)
ǫijxj

20

x2
20

(U
pol[1]
2 )ba

+
P +

s

∞∫

−∞

dz−

[
xi

20

x2
20

xj
21

x2
21

+ ln

(
1

x21Λ

) (
δij x2

20 − 2xi
20xj

20

x4
20

+ δij π δ2(x20)

)]

×
(

U2[∞, z−]

[
D

j −
←
D

j]
(z−, x2) U2[z−, −∞]

)ba
}

,

where we have used eq. (3.40). Note that the contributions of U
q[2]
2 from eq. (2.12d) also

canceled in the sum (4.6), similar to how the eikonal contributions disappeared earlier.

Defining the gluon contribution to the adjoint polarized Wilson line of the second kind

by (cf. eq. (3.17))

U i G[2]
z ≡ P +

2s

∞∫

−∞

dz− Uz[∞, z−]

[
D

i(z−, z) −
←
D

i

(z−, z)

]
Uz[z−, −∞] (4.7)

we rewrite eq. (4.6) as

0∫

−∞

dx−
2′

∞∫

0

dx−
2

[
ai a

⊥ (x−
2′ , x1) a+ b(x−

2 , x0) + ai b
⊥ (x−

2 , x1) a+ a(x−
2′ , x0)

]
(4.8)

= − 1

2π3

p−
2∫

0

dk−
∫

d2x2

{
ln

(
1

x21Λ

)
ǫijxj

20

x2
20

(
U

pol[1]
2

)ba

+

[
xi

20

x2
20

xj
21

x2
21

+ ln

(
1

x21Λ

) (
δij x2

20 − 2xi
20xj

20

x4
20

+ δij π δ2(x20)

)] (
U

j G[2]
2

)ba
}

.

Let us pose here to review the time-ordering arguments, previously detailed in [36]. For

the shock-wave picture to be valid, the light-cone lifetime of a gluon, which is ∼ 2k−/k2
⊥ for

a gluon with momentum k, should be longer than the extent of the “core” shock wave, the

target proton, ∼ 1/P +. This gives 2k−P + ≫ k2
⊥. Since k− = zp−

2 with p−
2 the momentum

of the original probe, 2k−P + = zs. For a dipole, k⊥ ∼ 1/x⊥ with x⊥ the dipole size. The

lifetime ordering condition becomes zsx2
⊥ ≫ 1. The delta function in eq. (4.8), which puts

x20 = 0, should be interpreted as putting x2
20 = 1/zs, since 1/zs is the shortest possible

distance squared in the scattering system at hand. This means that zsx2
20 = 1 and the
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gluon emission, corresponding to the delta-function term, is inside the “core” shock wave

(and deep inside the shock wave made out of the subsequent emissions in the evolution).

Therefore, the subsequent emissions cannot be outside the shock wave, and, hence, cannot

generate longitudinal logarithms of energy. Hence, further evolution stops in the delta-

function term in eq. (4.8), and the delta function only contributes to the inhomogeneous

term in the evolution equations. A similar observation has already been made in [70]. We

will, therefore, discard the contribution of the delta function δ2(x20) to the evolution kernel

in the following. It is possible that the delta-function term is canceled by the instantaneous

term for the gluon propagator (in the LCPT terminology [71, 72]): we are not including

such terms in the DLA calculation at hand and, hence, cannot verify that.

The contribution of the propagator (4.8) to the evolution of F 12 = ǫij∂iAj (at the

Abelian level) is proportional to

ǫji∂j
1




0∫

−∞

dx−
2′

∞∫

0

dx−
2

(
ai a

⊥ (x−
2′ ,x1)a+ b(x−

2 ,x0)+ ai b
⊥ (x−

2 ,x1)a+ a(x−
2′ ,x0)

)
 = (4.9)

− 1

2π3

p−

2∫

0

dk−

∫
d2x2

{
x21

x2
21

· x20

x2
20

(
U

pol[1]
2

)ba

+

[
ǫij (xj

20 +xj
21)

x2
20 x2

21

+
2x20 ×x21

x2
20 x2

21

(
xi

21

x2
21

− xi
20

x2
20

)](
U

i G[2]
2

)ba

}
.

The first term on the right agrees with (twice) the equation (65) in [33]. Its contribution

to the evolution of Q10(zs) in figure 3 has been studied before [3, 33]. Therefore, we need

to concentrate on the contribution of the second term on the right of eq. (4.9).

Employing eq. (4.9) we see that the contribution of the diagrams I, I′, II and II′ from

figure 3 to the evolution of Q10(zs) is (cf. [1, 3, 33, 40])

I+I′+II+II′=
αsNc

2π2

z∫

Λ2

s

dz′

z′

∫
d2x2

{[
1

x2
21

−x21

x2
21

·x20

x2
20

]
1

N2
c

〈〈
Ttr

[
tbV0taV †

1

](
U

pol[1]
2

)ba

+c.c.
〉〉

(z′s) (4.10)

+

[
2

ǫijxj
21

x4
21

− ǫij(xj
20+xj

21)

x2
20x2

21

−2x20×x21

x2
20x2

21

(
xi

21

x2
21

−xi
20

x2
20

)]
1

N2
c

〈〈
Ttr

[
tbV0taV †

1

](
U

iG[2]
2

)ba

+c.c.
〉〉

(z′s)

}
.

Here the emitted gluon’s longitudinal momentum is k− = z′ p−
2 , while the minimum minus

momentum fraction in the parent dipole is labeled z [1, 3, 33, 40]. The second line of

eq. (4.10) was not present in the earlier works [1, 3, 33, 40].

While the eikonal diagrams in figure 3 are evaluated the same way as usual [41–47],

the contribution of the diagram III is evaluated using the anti-quark propagator through

the shock wave [3]
0∫

−∞

dx−
2′

∞∫

0

dx−
2 ψ̄i

α(x−
2 ,x1)ψj

β(x−
2′ ,x1)=

∑

σ,σ′

∫
d2x2d2x2′




0∫

−∞

dx−
2′

∫
d4k2′

(2π)4
e

ik+

2′
x−

2′ eik
2′ ·x

2′1
i

k2
2′ +iǫ

(vσ′ (k2′ ))β




×
[(

V †
2,2′;σ,σ′

)ji

(2k−
2 )(2π)δ(k−

2 −k−
2′ )

]


∞∫

0

dx−
2

∫
d4k2

(2π)4
e−ik+

2
x−

2 e−ik
2

·x
21

i

k2
2+iǫ

(v̄σ(k2))α


, (4.11)

where α, β are the spinor indices, while i, j are the color indices. The propagator (4.11) is

taken to be local in the transverse plane, since this is how it always enters our evolution

in figure 3. Once again, we neglect the instantaneous terms, as being beyond the DLA we

are constructing here.
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Simplifying the propagator (4.11) to (again, k− = k−
2 = k−

2′)
0∫

−∞

dx−
2′

∞∫

0

dx−
2 ψ̄i

α(x−
2 ,x1)ψj

β(x−
2′ ,x1)=− 1

π

∑

σ

∫
dk−k−

∫
d2x2d2x2′

[∫
d2k2′

(2π)2
eik

2′ ·x
2′1

1

k2
2′

(vσ(k2′ ))β

]

×
(

σV
pol[1]†

2 δ2(x22′ )+V
pol[2]†

2,2′

)ji
[∫

d2k2

(2π)2
e−ik

2
·x

21
1

k2
2

(v̄σ(k2))α

]
, (4.12)

we use it to contract the quark fields in the definition (4.1) of Q10(zs), where the quark

field dependence enters through eq. (2.7b) (see [3]). Employing eq. (3.31), we arrive at the

following contribution of the diagram III to the evolution of Q10(zs):

III =
αs

4π2Nc

z∫

Λ2

s

dz′

z′

∫
d2x2

{
1

x2
21

〈〈
Ttr

[
tb V0 ta V

pol[1]†
2

]
U ba

1

〉〉
(z′s) (4.13)

+ i

∫
d2x2′

x21

x2
21

× x2′1

x2
2′1

〈〈
Ttr

[
tb V0 ta V

pol[2]†
2,2′

]
U ba

1

〉〉
(z′s)+c.c.

}
.

Employing eqs. (2.6) and (2.7c) the integral over x2′ can be carried out, yielding

III =
αs

4π2Nc

z∫

Λ2

s

dz′

z′

∫
d2x2

{
1

x2
21

〈〈
T tr

[
tb V0 ta V

pol[1] †
2

]
U ba

1

〉〉
(z′s) (4.14)

+ 2
ǫij xj

21

x4
21

〈〈
T tr

[
tb V0 ta V

i G[2] †
2

]
U ba

1

〉〉
(z′s) + c.c.

}
.

While the first term on the right-hand side of eq. (4.14) was obtained before [1, 3], the

second term is new.

Combining eqs. (4.10) and (4.14), while adding the well-known contribution [41–47] of

the eikonal diagrams from figure 3, and suppressing the time-ordering sign for brevity, we

obtain our final evolution equation for the fundamental polarized dipole amplitude Q10(zs):

1

2Nc

〈〈
tr

[
V0V

pol[1]†
1

]
+c.c.

〉〉
(zs)=

1

2Nc

〈〈
tr

[
V0V

pol[1]†
1

]
+c.c.

〉〉

0
(zs) (4.15)

+
αsNc

2π2

z∫

Λ2

s

dz′

z′

∫
d2x2

{[
1

x2
21

−
x21

x2
21

·
x20

x2
20

]
1

N2
c

〈〈
tr

[
tbV0taV †

1

](
U

pol[1]
2

)ba

+c.c.

〉〉
(z′s)

+

[
2

ǫijxj
21

x4
21

−
ǫij(xj

20+xj
21)

x2
20x2

21

−
2x20×x21

x2
20x2

21

(
xi

21

x2
21

−
xi

20

x2
20

)]
1

N2
c

〈〈
tr

[
tbV0taV †

1

](
U

iG[2]
2

)ba

+c.c.

〉〉
(z′s)

}

+
αsNc

4π2

z∫

Λ2

s

dz′

z′

∫
d2x2

x2
21

{
1

N2
c

〈〈
tr

[
tbV0taV

pol[1]†
2

]
Uba

1

〉〉
(z′s)+2

ǫijxj
21

x2
21

1

N2
c

〈〈
tr

[
tbV0taV

iG[2]†
2

]
Uba

1

〉〉
(z′s)+c.c.

}

+
αsNc

2π2

z∫

Λ2

s

dz′

z′

∫
d2x2

x2
10

x2
21x2

20

{
1

N2
c

〈〈
tr

[
tbV0taV

pol[1]†
1

]
Uba

2

〉〉
(z′s)−

CF

N2
c

〈〈
tr

[
V0V

pol[1]†
1

]〉〉
(z′s)+c.c.

}
.

Here the 0 subscript on the angle brackets,
〈〈

. . .
〉〉

0
, denotes the inhomogeneous

term [1, 3, 33, 40], which is the polarized dipole amplitude calculated in the quasi-classical
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approximation of the Glauber-Mueller/McLerran-Venugopalan model [99–102], extended

in [38] to include helicity dependence.

For brevity reasons we did not include into eq. (4.15) the θ-functions imposing the

lifetime-ordering condition (of the daughter parton lifetime compared to the parent parton

lifetime) [1, 3, 33, 36, 40]. We imply that every IR-divergent integral in eq. (4.15) is

regulated via multiplication of the integrand by such a condition: e.g., by θ(z x2
10 − z′ x2

21).

Similarly, the ultraviolet (UV) divergences are regulated by the lifetime ordering condition

discussed above, min{x2
21, x2

20} > 1/(z′s).

The equation (4.15) contains the DLA evolution of Q10(zs), resumming all powers of

αs ln2(1/x) for this amplitude. In fact, it includes part of the single-logarithmic evolution

too, by resumming all terms with the longitudinal logarithms of x: thus, it sums up some of

the powers of αs ln(1/x). These terms were labeled SLAL in [40], for the single-logarithmic

approximation terms, coming from the longitudinal logarithms.

Note also that the expressions in this section have been written down by ignoring the

nuances of properly ordering the Wilson lines in the correlators discussed in detail in [3].

In part, this is due to the PT-symmetry argument presented above, which shows that

such issues are not relevant for the helicity operators at hand. Additionally, the ordering

of operators is not important in the quasi-classical approximation, which is applicable to

helicity observables as shown in [38].

As is the case with Balitsky hierarchy [44, 45], eq. (4.15) is not closed. It will become a

closed equation only in the large-Nc and large-Nc&Nf limits considered below (see also [1,

3, 33, 40]). Additionally, different from the earlier works [1, 3, 33, 40], this evolution

equation mixes polarized “Wilson lines” of the first “[1]” and second “[2]” kind, in the

notation of eqs. (2.5) and (2.10). Hence, to close this equation, even in the large-Nc and

large-Nc&Nf limits, we will need to develop evolution equations for the polarized “Wilson

lines” of the second “[2]” kind.

Before doing that, we need to construct the evolution of the adjoint analogue of the

amplitude Q10(zs), defined by [3, 40]

Gadj
10 (zs) ≡ 1

2(N2
c − 1)

Re
〈〈

T Tr
[
U0 U

pol[1] †
1

]
+ T Tr

[
U

pol[1]
1 U †

0

] 〉〉
(zs) (4.16)

with Tr denoting an adjoint trace, delineating it from the fundamental one. The evolution

of Gadj
10 (zs) is needed because unlike the large-Nc limit, in the large-Nc&Nf limit there is

no simple relationship between the two amplitudes, Q10 and Gadj
10 , and both of them enter

the corresponding evolution equations [1, 3].

Our discussion of the evolution for Gadj
10 will be brief, since it mirrors the above deriva-

tion for the fundamental dipole; in addition, large parts of this calculation were done before

in [3], albeit omitting the polarized Wilson lines of the second kind. The relevant diagrams

are shown in figure 4 and are similar to figure 3. The notation is the same as in figure 3,

with the (minor) differences detailed in the caption of figure 4.

The contribution of diagrams I, I′, II, and II′ from figure 4 is calculated in the same

way as that for the same diagrams in figure 3, employing the propagator in eq. (4.9), with

the differences being N2
c − 1 in the denominator of eq. (4.16) as opposed to Nc in the
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Figure 4. Diagrams representing the evolution of the adjoint polarized dipole amplitude Gadj
10 .

Again, the square box on the gluon and quark lines represents the sub-eikonal interaction with

the target given by eq. (2.10) for gluons and eq. (2.5) for quarks. The same square box, but with

number 1 in it, on the gluon line denotes the interaction described by U
pol[1]
1 only. The black circle

denotes the sub-eikonal triple-gluon vertex generated by the F 12 operator in eq. (2.12a), that is, by

the F 12 part of U
pol[1]
1 . All momenta flow to the right.

denominator of eq. (4.1), the overall factor of 2 in eq. (2.12a) absent in eq. (2.7a), and the

adjoint representation versus fundamental. We get

I+I′+II+II′=
αs

π2

z∫

Λ2

s

dz′

z′

∫
d2x2

{[
1

x2
21

−
x21

x2
21

·
x20

x2
20

]
1

N2
c −1

〈〈
TTr

[
T bU0T aU†

1

](
U

pol[1]
2

)ba

+c.c.

〉〉
(z′s) (4.17)

+

[
2

ǫijxj
21

x4
21

−
ǫij(xj

20+xj
21)

x2
20x2

21

−
2x20×x21

x2
20x2

21

(
xi

21

x2
21

−
xi

20

x2
20

)]
1

N2
c −1

〈〈
TTr

[
T bU0T aU†

1

](
U

iG[2]
2

)ba

+c.c.

〉〉
(z′s)

}
.

Diagrams III and III’ in figure 4 are calculated similar to the diagram III in figure 3,

with the propagator (4.12) and the operator (2.12b) coming in particularly handy. This

gives

III+III′ = − αs Nf

2π2(N2
c −1)

z∫

Λ2

s

dz′

z′

∫
d2x2

{
1

x2
21

〈〈
Ttr

[
tb V1 ta V

pol[1] †
2

]
Uba

0

〉〉
(z′s) (4.18)

+2
ǫij xj

21

x4
21

〈〈
Ttr

[
tb V1 ta V

i G[2] †
2

]
Uba

0

〉〉
(z′s)+c.c.

}
,

where we multiplied everything by the number of quark flavors Nf to account for the sum

over flavors in the loop.
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Finally, combining eqs. (4.17) and (4.18), adding the well-known contribution of the

eikonal diagrams in figure 4, and again suppressing the time-ordering sign for brevity, we

arrive at the evolution equation for the adjoint polarized dipole of the first kind,

1

2(N2
c −1)

Re

〈〈
Tr

[
U0U

pol[1]†
1

]
+c.c.

〉〉
(zs)=

1

2(N2
c −1)

Re

〈〈
Tr

[
U0U

pol[1]†
1

]
+c.c.

〉〉

0
(zs) (4.19)

+
αs

π2

z∫

Λ2

s

dz′

z′

∫
d2x2

{[
1

x2
21

−
x21

x2
21

·
x20

x2
20

]
1

N2
c −1

〈〈
Tr

[
T bU0T aU†

1

](
U

pol[1]
2

)ba

+c.c.

〉〉
(z′s)

+

[
2

ǫij xj
21

x4
21

−
ǫij (xj

20+xj
21)

x2
20x2

21

−
2x20×x21

x2
20x2

21

(
xi

21

x2
21

−
xi

20

x2
20

)]
1

N2
c −1

〈〈
Tr

[
T bU0T aU†

1

](
U

iG[2]
2

)ba

+c.c.

〉〉
(z′s)

}

−
αs Nf

2π2(N2
c −1)

z∫

Λ2

s

dz′

z′

∫
d2x2

{
1

x2
21

〈〈
tr

[
tbV1 taV

pol[1]†
2

]
Uba

0

〉〉
(z′s)

+2
ǫij xj

21

x4
21

〈〈
tr

[
tbV1 taV

iG[2]†
2

]
Uba

0

〉〉
(z′s)+c.c.

}

+
αs

2π2

z∫

Λ2

s

dz′

z′

∫
d2x2

x2
10

x2
21x2

20

1

N2
c −1

{〈〈
Tr

[
T bU0T aU

pol[1]†
1

]
Uba

2

〉〉
(z′s)−Nc

〈〈
Tr

[
U0U

pol[1]†
1

]〉〉
(z′s)+c.c.

}
.

Just like eq. (4.15), eq. (4.19) resums both the DLA and SLAL terms. The regulator

θ(z x2
10 − z′ x2

21) is implied for the IR-divergent integrals while the min{x2
21, x2

20} > 1/(z′s)

condition regulates the UV divergences. In the previous version of this evolution in the

literature [3], the terms in the third and fifth lines were absent.

4.1.2 Evolution equations for fundamental and adjoint Gi
10

(zs)

Our next step is to construct the evolution equation for the polarized amplitude of the

second kind, Gi
10(zs), defined in eq. (4.2). The process is very similar to the evolution

equations for the polarized dipoles of the first kind constructed above in section 4.1.1. The

diagrams contributing to the evolution of Gi
10(zs) are shown in figure 5 (cf. figure 3 in [33]).

Since the polarized Wilson line of the second kind V
i G[2]

z from eq. (3.17) is a purely gluonic

operator, the evolution of Gi
10(zs) in figure 5 does not involve soft quark emissions, unlike

the evolution of Q10, which contains diagram III in figure 3. Since the eikonal diagrams’

contribution is the same as above and in the literature [41–47], we only need to calculate

diagrams IV, IV′, V, and V′ in figure 5.

Start with the operator in eq. (3.17), which we rewrite as

V i G[2]
z ≡ P +

2s

∞∫

−∞

dz− Vz[∞, z−]

[
Di(z−, z) −

←
D

i

(z−, z)

]
Vz[z−, −∞] (4.20)

= −ig
P +

s

∞∫

−∞

dz− Vz[∞, z−]
[
z−∂iA+(z−, z) + Ai(z−, z)

]
Vz[z−, −∞].

– 28 –



J
H
E
P
0
7
(
2
0
2
2
)
0
9
5

0

1

0
−

IV

2

0

1

k2′ k2

x−

2′
x−

20
−

V

2

0

1

k2′ k2

x−

2′

x−

2

0
−

IV′

2

0

1

k2′ k2

x−

2′
x−

20
−

V′

2

0

1

k2′ k2

x−

2′

x−

20
−

inhomogeneous

term
c.c.

ba b

b

b
a

a

a

2
′

2
′

2
′

2
′

i

eikonal

2

0

1

k2′ k2

x−

2′
x−

20
−

other eikonal diagrams c.c.
ba2

′

i

Figure 5. Diagrams representing the evolution of the polarized dipole amplitude of the second

kind, Gi
10(zs). Once again, the square box on the gluon and quark lines represents the sub-eikonal

interaction with the target given by eq. (2.10) for gluons and eq. (2.5) for quarks. The same

square box, but with an i in it, on the quark line denotes the interaction described by V
i G[2]

1 . The

black circle denotes the sub-eikonal vertex generated by the z−∂iA+(z−, z) + Ai(z−, z) operator in

eq. (4.20), which contributes to Gi
10 through eq. (4.2). All momenta flow to the right.

Sub-eikonal evolution of the operator in eq. (4.20) depicted in the diagram V of figure 5

includes the following propagator:

0∫

−∞

dx−
2′

∞∫

0

dx−
2

[
x−

2′∂
ia+a(x−

2′ ,x1) +aia(x−
2′ ,x1)

]
a+b(x−

1 ,x0) (4.21)

=
∑

λ,λ′

∫
d2x2d2x2′




0∫

−∞

dx−
2′

∫
d4k1

(2π)4
eik+

2′ x
−
2′ eik1·x2′1

−i

k2
2′ + iǫ

(
ǫ∗i
λ′ + ix−

2′ ki
2′

ǫ∗
λ′ ·k2′

k−
2′

)


×
[(

Upol
2,2′;λ,λ′

)ba
2π(2k−

2′)δ(k−
2 −k−

2′)

]


∞∫

0

dx−
2

∫
d4k2

(2π)4
e−ik+

2 x−
2 e−ik2·x20

−i

k2
2 + iǫ

ǫλ ·k2

k−
2


 .

The contraction sign over the square brackets in eq. (4.21) is an abbreviated notation

implying the sum of contractions x−
2′∂ia+ aa+ b and ai aa+ b.

We integrate eq. (4.21) over x−
2′ and x−

2 first, then over k+
2 , k+

2′ , k−
2′ (note the second-

order pole in the k+
2′ integral due to the extra power of x−

2′), Fourier-transform over k2 and

k2′ , and use eq. (2.10) to sum over polarizations. The following Fourier transform integral

comes in handy:

∫
d2k

(2π)2

eik·x

k2
⊥

[
δij − 2kikj

k2
⊥

]
= − 1

4π

[
δij − 2xixj

x2
⊥

]
. (4.22)
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In the end one arrives at

0∫

−∞

dx−
2′

∞∫

0

dx−
2

[
x−

2′ ∂ia+a(x−
2′ ,x1)+aia(x−

2′ ,x1)

]
a+b(x−

2 ,x0) (4.23)

=
1

(2π)3

p−

2∫

0

dk−

{∫
d2x2

[
ǫijxj

20

x2
20

−2xi
21

x21×x20

x2
21x2

20

](
U

pol[1]
2

)ba

−i

∫
d2x2d2x2′

[
xi

20

x2
20

−2xi
2′1

x2′1·x20

x2
2′1

x2
20

](
U

pol[2]

2,2′

)ba
}

,

where, as usual, k− = k−
2 = k−

2′ .

Similarly, for the other time ordering which enters in diagram V′ from figure 5 we

obtain

0∫

−∞

dx−
2′

∞∫

0

dx−
2

[
x−

2 ∂ia+b(x−
2 ,x1)+aib(x−

2 ,x1)

]
a+a(x−

2′ ,x0) (4.24)

=
1

(2π)3

p−

2∫

0

dk−

{∫
d2x2

[
ǫijxj

20

x2
20

−2xi
21

x21×x20

x2
21x2

20

](
U

pol[1]
2

)ba

+i

∫
d2x2d2x2′

[
xi

2′0

x2
2′0

−2xi
21

x21·x2′0

x2
21x2

2′0

](
U

pol[2]

2,2′

)ba
}

,

such that the sum of both time orderings (4.23) and (4.24) is

0∫

−∞

dx−
2′

∞∫

0

dx−
2

{[
x−

2′ ∂
ia+a(x−

2′ ,x1)+aia(x−
2′ ,x1)

]
a+b(x−

2 ,x0)+
[
x−

2 ∂ia+b(x−
2 ,x1)+aib(x−

2 ,x1)
]
a+a(x−

2′ ,x0)

}

=
1

4π3

p−

2∫

0

dk−

∫
d2x2

{[
ǫijxj

20

x2
20

−2xi
21

x21×x20

x2
21x2

20

](
U

pol[1]
2

)ba

(4.25)

+

[
δij

(
2

x20·x21

x2
20x2

21

+
1

x2
20

)
+2

xi
21xj

20

x2
21x2

20

(
2

x20·x21

x2
20

+1

)
−2

xi
21xj

21

x2
21x2

20

(
2

x20·x21

x2
21

+1

)
−2

xi
20xj

20

x4
20

](
U

jG[2]
2

)ba

}
.

Here we have neglected the delta-function terms, similar to those appearing in eq. (3.40).

Employing the propagator (4.25) to calculate diagrams IV, IV′, V, and V′ in figure 5,

and adding in the eikonal contribution, which is the same as in eq. (4.15), we derive the

evolution equation for Gi
10(zs):

1

2Nc

〈〈
tr

[
V0V

iG[2]†
1

]
+c.c.

〉〉
(zs)=

1

2Nc

〈〈
tr

[
V0V

iG[2]†
1

]
+c.c.

〉〉

0
(zs) (4.26)

+
αsNc

4π2

z∫

Λ2

s

dz′

z′

∫
d2x2

{[
ǫijxj

21

x2
21

− ǫijxj
20

x2
20

+2xi
21

x21×x20

x2
21x2

20

]
1

N2
c

〈〈
tr

[
tbV0taV †

1

](
U

pol[1]
2

)ba

+c.c.
〉〉

(z′s)

+

[
δij

(
3

x2
21

−2
x20·x21

x2
20x2

21

− 1

x2
20

)
−2

xi
21xj

20

x2
21x2

20

(
2

x20·x21

x2
20

+1

)
+2

xi
21xj

21

x2
21x2

20

(
2

x20·x21

x2
21

+1

)
+2

xi
20xj

20

x4
20

−2
xi

21xj
21

x4
21

]

× 1

N2
c

〈〈
tr

[
tbV0taV †

1

](
U

jG[2]
2

)ba

+c.c.
〉〉

(z′s)

}

+
αsNc

2π2

z∫

Λ2

s

dz′

z′

∫
d2x2

x2
10

x2
21x2

20

{
1

N2
c

〈〈
tr

[
tbV0taV

iG[2]†
1

](
U2

)ba
〉〉

(z′s)−CF

N2
c

〈〈
tr

[
V0V

iG[2]†
1

]〉〉
(z′s)+c.c.

}
.
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In the version of eq. (4.26) constructed in [33] (see eq. (80) there), the term in the third

and fourth lines of eq. (4.26) was missing, and the kernel of the term in the second line

was different, since the contributions of the fields a+ a(x−
2′ , x1) and a+ b(x−

2 , x1) in eq. (4.25)

was neglected.

The adjoint version of eq. (4.26) can be constructed by analogy. One gets

1

2(N2
c −1)

〈〈
Tr

[
U0U

iG[2]†
1

]
+c.c.

〉〉
(zs)=

1

2(N2
c −1)

〈〈
Tr

[
U0U

iG[2]†
1

]
+c.c.

〉〉

0
(zs) (4.27)

+
αs

4π2

z∫

Λ2

s

dz′

z′

∫
d2x2

{[
ǫijxj

21

x2
21

−
ǫijxj

20

x2
20

+2xi
21

x21×x20

x2
21x2

20

]
1

N2
c −1

〈〈
Tr

[
T bU0T aU†

1

](
U

pol[1]
2

)ba

+c.c.

〉〉
(z′s)

+

[
δij

(
3

x2
21

−2
x20·x21

x2
20x2

21

−
1

x2
20

)
−2

xi
21xj

20

x2
21x2

20

(
2

x20·x21

x2
20

+1

)
+2

xi
21xj

21

x2
21x2

20

(
2

x20·x21

x2
21

+1

)
+2

xi
20xj

20

x4
20

−2
xi

21xj
21

x4
21

]

×
1

N2
c −1

〈〈
Tr

[
T bU0T aU†

1

](
U

jG[2]
2

)ba

+c.c.

〉〉
(z′s)

}

+
αs

2π2

z∫

Λ2

s

dz′

z′

∫
d2x2

x2
10

x2
21x2

20

1

N2
c −1

{〈〈
Tr

[
T bU0T aU

iG[2]†
1

](
U2

)ba
〉〉

(z′s)−Nc

〈〈
Tr

[
U0U

iG[2]†
1

]〉〉
(z′s)+c.c.

}
.

Equations (4.26) and (4.27) resum both the DLA and SLAL terms. The regulator θ(z x2
10 −

z′ x2
21) is implied again for all the IR-divergent integrals in these equations, while the

min{x2
21, x2

20} > 1/(z′s) condition again regulates the UV divergences.

Equations (4.15), (4.19), (4.26), and (4.27) form a closed set of equation at the level

of (polarized) Wilson lines. To achieve a closed set of equations at the level of (polarized)

dipole amplitude, we need to take the large-Nc or the large-Nc&Nf limits [1, 3, 33, 40].

This is what we will do next.

4.2 Evolution equations in the large-Nc limit

To obtain the large-Nc limit of the helicity evolution at hand, we will follow the standard

approach [3]. We start with eq. (4.19), and drop the term proportional to Nf on its right-

hand side, as being due to the quark loop correction, suppressed at large Nc. Similarly

neglecting all quark loop contribution, we replace

Upol[1]
x → UG[1]

x (4.28)

everywhere in eq. (4.19), thus discarding U
q[1]
x in eq. (2.11). In the same spirit, we define

the large-Nc analogue of Q10(zs) from eq. (4.1) by [3]

G10(zs) ≡ 1

2 Nc
Re

〈〈
T tr

[
V0 V

G[1] †
1

]
+ T tr

[
V

G[1]
1 V †

0

] 〉〉
(zs). (4.29)

We employ the well-known relation between the adjoint and fundamental Wilson lines,

(Ux)ba = 2 tr[tbVxtaV †
x ]. (4.30)

Using eq. (4.30) one can show that (see eq. (73) in [3])

(
UG[1]

x

)ba
= 4 tr

[
tb Vx ta V G[1] †

x

]
+ 4 tr

[
tb V G[1]

x ta V †
x

]
. (4.31)
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This relation, in turn, gives

Gadj
10 (zs) = 4 G10(zs) S10(zs) (4.32)

at large Nc. Here we have defined the “standard” unpolarized dipole S-matrix [41–53]

S10(zs) =
1

Nc

〈
T tr

[
V0V †

1

]〉
(zs) . (4.33)

We assume that S10(zs) is real, neglecting the odderon contribution to the imaginary part

of S10(zs), as suppressed by a power of αs [103–114].

Similarly, defining the adjoint version of Gi
10(zs) from eq. (4.2) by

Gi adj
10 (zs) ≡ 1

2(N2
c − 1)

Re
〈〈

T Tr
[
U0 U

i G[2] †
1

]
+ T Tr

[
U

i G[2]
1 U †

0

] 〉〉
(zs), (4.34)

one can use eq. (4.30) to show that

(
U i G[2]

x

)ba
= 2 tr

[
tb Vx ta V i G[2] †

x

]
+ 2 tr

[
tb V i G[2]

x ta V †
x

]
(4.35)

such that

Gi adj
10 (zs) = 2 Gi

10(zs) S10(zs). (4.36)

Using the above results, along with the Fierz identity, we can similarly simplify the

operators on the right-hand side of eq. (4.19) at large Nc, obtaining (cf. [3, 40])

1

N2
c −1

〈〈
Tr

[
T bU0T aU†

1

](
U

G[1]
2

)ba

+c.c.

〉〉
(zs)=4NcS10(zs) [S20(zs)G21(zs)+S21(zs)Γ20,21(zs)], (4.37a)

1

N2
c −1

〈〈
Tr

[
T bU0T aU†

1

](
U

iG[2]
2

)ba

+c.c.

〉〉
(zs)=2NcS10(zs)

[
S20(zs)Gi

21(zs)+S21(zs)Γi
20,21(zs)

]
, (4.37b)

1

N2
c −1

〈〈
Tr

[
T bU0T aU

G[1]†
1

](
U2

)ba
+c.c.

〉〉
(zs)=4NcS20(zs) [S10(zs)G21(zs)+S21(zs)Γ10,21(zs)]. (4.37c)

Here Γ20,21(zs) is the “neighbor” polarized dipole amplitude of the first kind [1–3, 33]:

its operator definition is the same as for G20(zs), see eq. (4.29). However, the evolution

in Γ20,21(zs) is subject to the lifetime of subsequent emissions limited by z x2
21 from above.

Hence the evolution depends on the size of the neighbor dipole 21, justifying the name of

the amplitude. Similarly, the “neighbor” polarized dipole amplitude of the second kind,

Γi
20,21(zs), is defined by eq. (4.2) with the same lifetime constraint on the subsequent

evolution. The choice of which amplitude in eqs. (4.37) becomes the “neighbor” amplitude

is made assuming that x21 ≪ x20 in the DLA, as is justified by the kernel in eq. (4.19).

Employing eqs. (4.32) and (4.37) along with the trick detailed in the appendix D of [40],

we arrive at the large-Nc version of eq. (4.19),

G10(zs)=G
(0)
10 (zs)+

αsNc

2π2

z∫

Λ2

s

dz′

z′

∫
d2x2

{
2

[
1

x2
21

−x21

x2
21

·x20

x2
20

][
S20(z′s)G21(z′s)+S21(z′s)Γgen

20,21(z′s)
]

+

[
2

ǫijxj
21

x4
21

− ǫij(xj
20+xj

21)

x2
20x2

21

−2x20×x21

x2
20x2

21

(
xi

21

x2
21

−xi
20

x2
20

)][
S20(z′s)Gi

21(z′s)+S21(z′s)Γigen
20,21(z′s)

]

+
x2

10

x2
21x2

20

[
S20(z′s)G21(z′s)−Γgen

10,21(z′s)
]
}

. (4.38)
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In spirit with summing up the DLA and SLAL terms simultaneously, we replaced Γ10,21

and Γi
20,21 in eq. (4.38) by the generalized polarized dipole amplitudes [33, 40]

Γgen
10,32(zs) ≡ G10(zs) θ (x32 − x10) + Γ10,32(zs) θ(x10 − x32), (4.39a)

Γi gen
10,32(zs) ≡ Gi

10(zs) θ (x32 − x10) + Γi
10,32(zs) θ(x10 − x32). (4.39b)

The amplitudes in eqs. (4.39) become Γ10,21 and Γi
20,21, respectively, in the DLA limit, and

reduce back to G10 and Gi
10 for the SLAL terms, in which the ordering between the dipole

size and its neighbor dipole size is not important. Note that in eqs. (4.39), x10 and x32 can

be any general transverse separations, that is, neither of them is necessarily the parent or

daughter dipole size.

To extract the DLA contribution from eq. (4.38), we put S21 = S20 = 1 in it, since

the evolution of the unpolarized dipole S-matrix is SLAL [44–53]. In addition, it appears

to be more convenient to integrate eq. (4.38) over the impact parameters, while employing

eq. (3.24). The same decomposition applies to Γi
20,21, since it depends only on the size x21

of the dipole 21, and not on its orientation in the transverse plane,

∫
d2

(
x1 + x0

2

)
Γi

20,21(zs) = (x20)i
⊥ Γ1(x2

20, x2
21, zs) + ǫij (x20)j

⊥ Γ2(x2
20, x2

21, zs). (4.40)

Defining (cf. eq. (3.51))

G(x2
10, zs) ≡

∫
d2

(
x0 + x1

2

)
G10(zs), Γ(x2

20, x2
21, zs) ≡

∫
d2

(
x0 + x2

2

)
Γ20,21(zs)

(4.41)

we write the impact-parameter integrated part of eq. (4.38) as

G(x2
10,zs) = G(0)(x2

10,zs)+
αs Nc

2π2

z∫

Λ2

s

dz′

z′

∫
d2x2

{
1

x2
21

θ(x10 −x21)
[
Γ(x2

10,x2
21,z′s)+3G(x2

21,z′s)
]

(4.42)

+

[
2

x2
21

− x21 ·(x20 +x21)

x2
20 x2

21

+
2(x21 ×x20)2

x4
20 x2

21

]
G2(x2

21,z′s)

+

[
2

x20 ·x21

x4
21

− x20 ·(x20 +x21)

x2
20 x2

21

+
2(x21 ×x20)2

x2
20 x4

21

]
Γgen

2 (x2
20,x2

21,z′s)

}
.

Here we have applied the DLA simplifications to the parts of the integral kernel containing

amplitudes G and Γ. Note that the contributions of G1 and Γ1 defined in the decompo-

sitions (3.24) and (4.40) vanish, due to a single Levi-Civita symbol ǫij multiplying those

functions in the x2 integrals: it is impossible to make a non-zero scalar quantity out of a

single transverse vector x10 and one factor of ǫij .

We now need to extract the DLA part of the kernel containing amplitudes G2 and Γgen
2

in eq. (4.42).6 The x2-integral in those terms appears to have no IR divergence and no UV

6Here and below, when extracting DLA parts of various evolution equations, we will assume that the

impact parameter-integrated amplitudes without transverse indices, G, Γ, G2, Γ2, etc., do not contain integer

powers of the dipole sizes, x10, x21, x20, etc., and the dependence on these distances enters the amplitudes

only as perturbatively small (∼ √
αs or ∼ αs) powers or logarithms of x10, x21, x20, etc. This assumption

is supported by the Born-level initial conditions (the inhomogeneous terms) shown below (see also [2, 33]).
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divergence as x20 → 0. However, there is a divergence at x21 → 0, due to the first term in

each square bracket: keeping those terms only we obtain

G(x2
10,zs)=G(0)(x2

10,zs)+
αsNc

2π2

z∫

Λ2

s

dz′

z′

∫
d2x2θ(x10−x21)

{
1

x2
21

[
Γ(x2

10,x2
21,z′s)+3G(x2

21,z′s)
]

+
2

x2
21

G2(x2
21,z′s)+2

x20·x21

x4
21

Γ2(x2
20,x2

21,z′s)

}
. (4.43)

The last term in eq. (4.43) contains a power-law divergence as x21 → 0: however, this

divergence vanishes after angular averaging. Writing x20 = x10 + x21 in that term, and

expanding in the powers of x21 ≪ x10 while keeping only divergent terms as x21 → 0, we get

∫
d2x2 θ(x10 − x21) 2

x20 · x21

x4
21

Γ2(x2
20, x2

21, z′s) (4.44)

≈
∫

d2x2 θ(x10 − x21)
2

x2
21

[
Γ2(x2

10, x2
21, z′s) + x2

10

∂

∂x2
10

Γ2(x2
10, x2

21, z′s)

]
.

The second term on the right of eq. (4.44) contains a logarithmic derivative with respect

to x2
10. Such derivative removes one power of ln x2

10, and is, therefore, outside of the DLA.

Therefore, we neglect this term here, keeping in mind that it will need to be reinstated in

the single-logarithmic approximation (SLA). Inserting the first term from the right-hand

side of eq. (4.44) into eq. (4.43), we arrive at the DLA version of eq. (4.38),

G(x2
10, zs) = G(0)(x2

10, zs)+
αs Nc

2π

z∫

1

sx2
10

dz′

z′

x2
10∫

1
z′s

dx2
21

x2
21

[
Γ(x2

10,x2
21, z′s)+3G(x2

21, z′s) (4.45)

+2G2(x2
21, z′s)+2Γ2(x2

10,x2
21, z′s)

]
.

The G and Γ terms in eq. (4.45) agree with that found in the literature [1–3, 33], while

the G2 and Γ2 terms are new.

The DLA large-Nc evolution equation for the neighbor amplitude Γ can be found by

analogy, employing the existing techniques [1–3, 33, 36, 40]. One gets

Γ(x2
10,x2

21,z′s)=G(0)(x2
10,z′s)+

αsNc

2π

z′∫

1

sx2
10

dz′′

z′′

min
[

x2
10,x2

21
z′

z′′

]
∫

1
z′′s

dx2
32

x2
32

[
Γ(x2

10,x2
32,z′′s)+3G(x2

32,z′′s) (4.46)

+2G2(x2
32,z′′s)+2Γ2(x2

10,x2
32,z′′s)

]
.

Again, the G2 and Γ2 terms are new.

Equations (4.45) and (4.46) have to be supplemented by the large-Nc DLA evolution

equations for G2 and Γ2. We begin with eq. (4.26) and perform the replacement (4.28) in

it, to remove quark loops which are negligible at large Nc. Employing eqs. (4.30), (4.31),
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and (4.35), along with the Fierz identity, one can readily show that at large Nc

1

N2
c

〈〈
tr

[
tbV0taV †

1

](
U

G[1]
2

)ba
+c.c.

〉〉
(zs)=2S20(zs)G21(zs)+2S21(zs)Γ20,21(zs), (4.47a)

1

N2
c

〈〈
tr

[
tbV0taV †

1

](
U

jG[2]
2

)ba
+c.c.

〉〉
(zs)=S20(zs)Gj

21(zs)+S21(zs)Γj
20,21(zs), (4.47b)

1

N2
c

〈〈
tr

[
tbV0taV

iG[2]†
1

](
U2

)ba
+c.c.

〉〉
(zs)=S20(zs)Gi

12(zs). (4.47c)

Again, in selecting which dipole amplitude are of the “neighbor” type, we assume that the

UV divergences in the DLA limit come only from the x21 ≪ x10 ≈ x20 region, and do not

arise from the x20 ≪ x10 ≈ x21 region.

Employing eqs. (4.47) in eq. (4.26) we arrive at

Gi
10(zs)=G

i(0)
10 (zs) (4.48)

+
αsNc

4π2

z∫

Λ2

s

dz′

z′

∫
d2x2

{
2

[
ǫijxj

21

x2
21

− ǫijxj
20

x2
20

+2xi
21

x21×x20

x2
21x2

20

][
S20(z′s)G21(z′s)+S21(z′s)Γgen

20,21(z′s)
]

+

[
δij

(
3

x2
21

−2
x20 ·x21

x2
20x2

21

− 1

x2
20

)
−2

xi
21xj

20

x2
21x2

20

(
2

x20 ·x21

x2
20

+1

)
+2

xi
21xj

21

x2
21x2

20

(
2

x20 ·x21

x2
21

+1

)
+2

xi
20xj

20

x4
20

−2
xi

21xj
21

x4
21

]

×
[
S20(z′s)Gj

21(z′s)+S21(z′s)Γjgen
20,21(z′s)

]
}

+
αsNc

2π2

z∫

Λ2

s

dz′

z′

∫
d2x2

x2
10

x2
21x2

20

[
S20(z′s)Gi

12(z′s)−Γigen
10,21(z′s)

]
.

Equation (4.48), just like eq. (4.38), resums both the DLA and SLAL terms.

To extract the DLA contribution from eq. (4.48), we put S21 = S20 = 1 and integrate

it over the impact parameters. Since we are interested in the amplitude G2, we invert

eq. (3.24) to write

G2(x2
10, zs) =

ǫij xj
10

x2
10

∫
d2

(
x1 + x0

2

)
Gi

10(zs). (4.49)

Performing the projection (4.49), we arrive at

G2(x2
10,zs) = G

(0)
2 (x2

10,zs) (4.50)

+
αs Nc

4π2

z∫

Λ2

s

dz′

z′

∫
d2x2

x2
10

{
2

[
x10 ·

(
x21

x2
21

− x20

x2
20

)
+2

(x21 ×x20)2

x2
21 x2

20

] [
G(x2

21,z′s)+Γgen(x2
20,x2

21,z′s)
]

+

[
x10 ·x21

(
3

x2
21

−2
x20 ·x21

x2
20 x2

21

− 1

x2
20

)
+2

(x21 ×x20)2

x2
20

(
1

x2
21

+2
x20 ·x21

x2
20 x2

21

− 1

x2
20

)]
G2(x2

21,z′s)

+

[
x10 ·x20

(
3

x2
21

−2
x20 ·x21

x2
20 x2

21

− 1

x2
20

)
+2

(x21 ×x20)2

x2
21

(
− 1

x2
21

+2
x20 ·x21

x2
20 x2

21

+
1

x2
20

)]
Γgen

2 (x2
20,x2

21,z′s)

}

− αs Nc

2π2

z∫

Λ2

s

dz′

z′

∫
d2x2

x2
21 x2

20

[
x10 ·x21 G2(x2

21,z′s)+x2
10 Γgen

2 (x2
10,x2

21,z′s)
]

.
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Next we need to extract the DLA part of the integral kernels in eq. (4.50). We start with

the first term in the kernel on the right-hand side of eq. (4.50), the one multiplying G+Γgen:

it has no UV divergences, neither at x21 → 0 nor at x20 → 0. It does have an IR divergence

when x21 ≈ x20 ≫ x10. We proceed to the next term in the kernel, the one multiplying G2:

it also has no UV divergences, but it does have an IR divergence. The term multiplying

Γ2 contains an IR divergence as well, along with the UV divergence at x21 → 0. Finally,

the term in the last line of eq. (4.50) has neither an IR divergence nor a UV divergence

at x20 → 0: it does contain a UV divergence at x21 → 0. The two UV divergences cancel.

Performing all these DLA simplification yields the DLA large-Nc evolution for G2:

G2(x2
10, zs) = G

(0)
2 (x2

10, zs)+
αs Nc

π

z∫

Λ2

s

dz′

z′

min
[

z
z′ x2

10, 1
Λ2

]
∫

max[x2
10, 1

z′s ]

dx2
21

x2
21

[
G(x2

21, z′s) + 2 G2(x2
21, z′s)

]
.

(4.51)

In arriving at eq. (4.51) we have also employed the fact that for x21 ≈ x20 ≫ x10 we

have Γgen(x2
20, x2

21, z′s) ≈ G(x2
21, z′s) and Γgen

2 (x2
20, x2

21, z′s) ≈ G2(x2
21, z′s), since the two

daughter dipole sizes are comparable to each other. We have also imposed light-cone

time ordering conditions, zx2
10 ≫ z′x2

21 ≫ 1/s, along with the 1/Λ2 IR cutoff on the x2
21

integration. Equation (4.51) is different from the corresponding equation for G2 derived

earlier in [33], for the reasons stated above.

The analogue of eq. (4.51) for the neighbor dipole amplitude Γ2 is constructed similarly.

We get

Γ2(x2
10,x2

21,z′s)=G
(0)
2 (x2

10,z′s)+
αsNc

π

z′
x2

21

x2
10∫

Λ2

s

dz′′

z′′

min
[

z′

z′′
x2

21, 1

Λ2

]
∫

max[x2
10

, 1
z′′s

]

dx2
32

x2
32

[
G(x2

32,z′′s)+2G2(x2
32,z′′s)

]
. (4.52)

Equations (4.45), (4.46), (4.51), and (4.52) form a closed system of DLA evolution

equations for helicity at large Nc. For convenience, we list them all here,

G(x2
10,zs)=G(0)(x2

10,zs)+
αsNc

2π

z∫

1

sx2
10

dz′

z′

x2
10∫

1
z′s

dx2
21

x2
21

[
Γ(x2

10,x2
21,z′s)+3G(x2

21,z′s) (4.53a)

+2G2(x2
21,z′s)+2Γ2(x2

10,x2
21,z′s)

]
,

Γ(x2
10,x2

21,z′s)=G(0)(x2
10,z′s)+

αsNc

2π

z′∫

1

sx2
10

dz′′

z′′

min
[

x2
10,x2

21
z′

z′′

]
∫

1
z′′s

dx2
32

x2
32

[
Γ(x2

10,x2
32,z′′s)+3G(x2

32,z′′s) (4.53b)

+2G2(x2
32,z′′s)+2Γ2(x2

10,x2
32,z′′s)

]
,
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G2(x2
10,zs)=G

(0)
2 (x2

10,zs)+
αsNc

π

z∫

Λ2

s

dz′

z′

min
[

z

z′
x2

10, 1

Λ2

]
∫

max[x2
10

, 1
z′s

]

dx2
21

x2
21

[
G(x2

21,z′s)+2G2(x2
21,z′s)

]
, (4.53c)

Γ2(x2
10,x2

21,z′s)=G
(0)
2 (x2

10,z′s)+
αsNc

π

z′
x2

21

x2
10∫

Λ2

s

dz′′

z′′

min
[

z′

z′′
x2

21, 1

Λ2

]
∫

max[x2
10

, 1
z′′s

]

dx2
32

x2
32

[
G(x2

32,z′′s)+2G2(x2
32,z′′s)

]
. (4.53d)

Note that Γ(x2
10, x2

21, z′s) and Γ2(x2
10, x2

21, z′s) are only defined for x10 ≥ x21. Let us also

stress here that Λ is taken here to be the IR cutoff, such that eqs. (4.53), as written, are

only valid for x10 < 1/Λ.

The equations (4.53) have to be solved with the appropriate initial conditions (inho-

mogeneous terms). At Born level, these are [2, 33]

G(0)(x2
10, zs) =

α2
sCF

2Nc
π

[
CF ln

zs

Λ2
− 2 ln(zsx2

10)

]
, G

(0)
2 (x2

10, zs) =
α2

sCF

Nc
π ln

1

x10Λ
.

(4.54)

(The sign difference in G
(0)
2 compared to that in [33] is due to the sign difference of the Ai

term in the definition of Gi employed here and in that work.)

The solution of eqs. (4.53) would give us the gluon and quark helicity TMD and PDF

along with the g1 structure function at small x by using eqs. (3.25), (3.26), (3.50), (3.52),

and (3.61) (or eq. (3.62)). In using the latter formulas we have to assume that, at large

Nc, Q(x2
10, zs) ≈ G(x2

10, zs) (see section VI of [37] for a brief discussion of the subtleties

associated with taking the large-Nc limit of small-x helicity evolution).

4.3 Evolution equations in the large-Nc&Nf limit

In this section, we consider another limit under which equations (4.15), (4.19), (4.26),

and (4.27) form a closed set of equations, following the standard approach described in [3].

Since Nf and Nc are taken to be comparable in this limit, we include both gluon and quark

loop contributions. We also notice the distinction between the fundamental and adjoint

dipole amplitudes. The fundamental dipole amplitudes we consider in this section are

Q10(zs) =
1

2 Nc
Re

〈〈
T tr

[
V0 V

pol[1] †
1

]
+ T tr

[
V

pol[1]
1 V †

0

] 〉〉
(zs), (4.55a)

Gi
10(zs) =

1

2 Nc
Re

〈〈
T tr

[
V0 V

i G[2] †
1

]
+ T tr

[
V

i G[2]
1 V †

0

] 〉〉
(zs). (4.55b)

Since the polarized Wilson line of the second kind, V
i G[2]

x , contains no sub-eikonal quark

operator, the evolution equation for Gi
10(zs) in the large-Nc&Nf limit will be the same as

in the large-Nc limit given above in eq. (4.48). Furthermore, the relation (4.36) still holds

in the large-Nc&Nf limit, allowing us to consider only the fundamental dipole amplitude,

Gi
10(zs). As for the dipole amplitudes of the first kind, the large-Nc&Nf analogue of

G10(zs) from eq. (4.29) is defined as [40]

G̃10(zs) =
1

2Nc
Re

〈〈
T tr

[
V0 W

pol[1] †
1

]
+ T tr

[
W

pol[1]
1 V †

0

] 〉〉
(zs) , (4.56)

– 37 –



J
H
E
P
0
7
(
2
0
2
2
)
0
9
5

where

W pol[1]
x = V G[1]

x +
g2p+

1

4s

∞∫

−∞

dx−
1

∞∫

x−

1

dx−
2 Vx[∞,x−

2 ]ψα(x−
2 ,x)

(
1

2
γ+γ5

)

βα
ψ̄β(x−

1 ,x)Vx[x−
1 ,−∞] . (4.57)

In the large-Nc&Nf limit the amplitude (4.56) is related to that in eq. (4.16) by Gadj
10 (zs) =

4 S10(zs) G̃10(zs). Note that there is no simple relation between G̃10(zs) and Q10(zs) even

at the large Nc&Nf [3]. The main argument in favor of the definitions (4.56) and (4.57) is

that the following relation holds at large Nc&Nf (cf. eqs. (74) and (83) in [3] along with

eq. (4.31) above),

(
Upol[1]

x

)ba
= 4 tr

[
W pol[1] †

x tbVxta
]

+ 4 tr
[
V †

x tbW pol[1]
x ta

]
, (4.58)

which will simplify our derivations below. For each amplitude of Q10(zs), G̃10(zs) and

Gi
10(zs), we will derive below its DLA evolution equation in the large-Nc&Nf limit, together

with the evolution equation for its neighbor dipole amplitude.

The evolution of the fundamental dipole amplitude, Q10(zs), follows from the evolution

equation (4.15). At large-Nc&Nf , by employing Fierz identity several times along with

eq. (4.36), the expectation values of the operators in eq. (4.15) can be written as

1

N2
c

〈〈
tr

[
tbV0taV †

1

](
U

pol[1]
2

)ba

+c.c.
〉〉

(zs) = 2
[
S21(zs) Γ̃20,21(zs)+S20(zs)G̃21(zs)

]
, (4.59a)

1

N2
c

〈〈
tr

[
tbV0taV †

1

](
U

iG[2]
2

)ba

+c.c.
〉〉

(zs) = S21(zs)Γi
20,21(zs)+S20(zs)Gi

21(zs) , (4.59b)

1

N2
c

〈〈
tr

[
tb V0 ta V

pol[1]†
2

]
U ba

1 +c.c.
〉〉

(zs) = S10(zs)Q21(zs) , (4.59c)

1

N2
c

〈〈
tr

[
tb V0 ta V

iG[2]†
2

]
U ba

1 +c.c.
〉〉

(zs) = S10(zs)Gi
21(zs) . (4.59d)

Here, Γ̃20,21 is the neighbour counterpart of G̃10 defined in eq. (4.56), while Γi
20,21 is, again,

the neighbour amplitude for Gi
10 from eq. (4.55b). Below we will also employ Γ̄20,21, the

neighbour counterpart of the amplitude Q10.

Employing eqs. (4.59) along with (at large Nc&Nf )

1

N2
c

〈〈
tr

[
tb V0 ta V

pol[1] †
1

]
U ba

2 + c.c.
〉〉

(zs) = S20(zs) Q12(zs), (4.60)
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we rewrite eq. (4.15) as

Q10(zs) = Q
(0)
10 (zs) (4.61)

+
αs Nc

2π2

z∫

Λ2

s

dz′

z′

∫
d2x2

{
2

[
1

x2
21

− x21

x2
21

· x20

x2
20

] (
S21(z′s) Γ̃gen

20,21(z′s)+S20(z′s)G̃21(z′s)
)

+

[
2

ǫij xj
21

x4
21

− ǫij (xj
20 +xj

21)

x2
20 x2

21

− 2x20 ×x21

x2
20 x2

21

(
xi

21

x2
21

− xi
20

x2
20

)](
S21(z′s)Γi gen

20,21(z′s)+S20(z′s)Gi
21(z′s)

)
}

+
αsNc

4π2

z∫

Λ2

s

dz′

z′

∫
d2x2

x2
21

S10(z′s)

{
Q21(z′s)+

2ǫij xj
21

x2
21

Gi
21(z′s)

}

+
αs Nc

2π2

z∫

Λ2

s

dz′

z′

∫
d2x2

x2
10

x2
21 x2

20

{
S20(z′s)Q12(z′s)−Γ

gen
10,21(z′s)

}
.

In eq. (4.61), similar to what we did in eq. (4.38), we replaced neighbor dipole amplitudes

by their generalized polarized dipole amplitude counterparts. For the purposes of this

section, the generalized dipole amplitudes in eq. (4.61) are defined as [33]

Γ
gen
10,32(zs) ≡ Q10(zs) θ (x32 − x10) + Γ10,32(zs) θ(x10 − x32), (4.62a)

Γ̃gen
10,32(zs) ≡ G̃10(zs) θ (x32 − x10) + Γ̃10,32(zs) θ(x10 − x32), (4.62b)

Γi gen
10,32(zs) ≡ Gi

10(zs) θ (x32 − x10) + Γi
10,32(zs) θ(x10 − x32). (4.62c)

Similar to eqs. (4.39), neither x10 nor x32 is necessarily the size of the parent or daughter

dipole. Rather, they can be any general transverse separations. As one can infer from their

definitions in eqs. (4.62), the generalized dipole amplitudes only reduce to the neighbor

dipole amplitudes when x32 ≪ x10, as it is the only regime where the lifetime ordering

needs to be expressed using a different transverse separation from the current dipole size.

Otherwise, the generalized dipole amplitudes reduce to their “regular” counterparts.

To further simplify the evolution equation (4.61) in preparation for rewriting it in the

DLA form, we neglect the single-logarithmic unpolarized evolution [41–53, 88, 89] and put

all the unpolarized dipole S-matrices to 1. Subsequently, we integrate eq. (4.61) over the

impact parameter, b =
x1+x0

2 . Upon such integration, Gi
10(zs) and Γi

20,21(zs) decompose

in a similar fashion to eqs. (3.24) and (4.40), that is,

∫
d2

(
x1 + x0

2

)
Gi

10(zs) = (x10)i
⊥ G1(x2

10, zs) + ǫij (x10)j
⊥ G2(x2

10, zs) , (4.63a)

∫
d2

(
x1 + x0

2

)
Γi

20,21(zs) = (x20)i
⊥ Γ1(x2

20, x2
21, zs) + ǫij (x20)j

⊥ Γ2(x2
20, x2

21, zs) . (4.63b)
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Performing all the mentioned steps in eq. (4.61), we obtain (cf. eq. (4.42))

Q(x2
10, zs) = Q(0)(x2

10, zs) (4.64)

+
αs Nc

2π2

z∫

Λ2

s

dz′

z′

∫
d2x2

{
2

[
1

x2
21

− x21

x2
21

· x20

x2
20

] [
Γ̃gen(x2

20,x2
21, z′s)+G̃(x2

21, z′s)
]

+

[
2

x20 ·x21

x4
21

− 1

x2
21

− x20 ·x21

x2
20 x2

21

+
2(x20 ×x21)2

x2
20 x4

21

]
Γgen

2 (x2
20,x2

21, z′s)

+

[
2

x2
21

− x20 ·x21

x2
20 x2

21

− 1

x2
20

+
2(x20 ×x21)2

x4
20 x2

21

]
G2(x2

21, z′s)

}

+
αsNc

4π2

z∫

Λ2

s

dz′

z′

∫
d2x2

x2
21

[
Q(x2

21, z′s)+2G2(x2
21, z′s)

]

+
αs Nc

2π2

z∫

Λ2

s

dz′

z′

∫
d2x2

x2
10

x2
21 x2

20

[
Q(x2

21, z′s)−Γ
gen

(x2
10,x2

21, z′s)
]

,

where we defined the impact-parameter integrated dipole amplitudes in a similar fashion

to (3.51) and (4.41). In particular,

Γ(x2
20, x2

21, zs) ≡
∫

d2
(

x0 + x2

2

)
Γ20,21(zs) , (4.65a)

G̃(x2
10, zs) ≡

∫
d2

(
x0 + x1

2

)
G̃10(zs) , (4.65b)

Γ̃(x2
20, x2

21, zs) ≡
∫

d2
(

x0 + x2

2

)
Γ̃20,21(zs) . (4.65c)

Note that, similar to eq. (4.42), all the terms in eq. (4.64) involving G1 or Γ1 vanish upon

integration over x2 because each of them contains a single Levi-Civita symbol, ǫij , along

with a single transverse vector x10: it is impossible to construct a non-zero scalar quantity

out of such ingredients.

Eq. (4.64) has no DLA term in the x20 ≪ x10 regime. However, there is at least one

DLA term in both x10 ≪ x21 ≈ x20 and x21 ≪ x10 regimes. Combining all the DLA

terms together and taking lifetime ordering into account to specify the integration limits,

we obtain the following DLA evolution equation for Q(x2
10, zs) in the large-Nc&Nf limit,

Q(x2
10,zs)=Q(0)(x2

10,zs)+
αsNc

2π

∫ z

max{Λ2,1/x2
10}/s

dz′

z′

∫ x2
10

1/z′s

dx2
21

x2
21

[
2Γ̃(x2

10,x2
21,z′s)+2G̃(x2

21,z′s)

+Q(x2
21,z′s)−Γ(x2

10,x2
21,z′s)+2Γ2(x2

10,x2
21,z′s)+2G2(x2

21,z′s)
]

(4.66)

+
αsNc

4π

∫ z

Λ2/s

dz′

z′

∫ x2
10z/z′

1/z′s

dx2
21

x2
21

[
Q(x2

21,z′s)+2G2(x2
21,z′s)

]
,

where we changed the lower limit of the z′-integral in the first term of eq. (4.66) in order

to ensure that z′s remains larger than Λ2 for any value of x2
10. A feature of eq. (4.66),
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which is similar to previous treatments of the evolution equations at large-Nc&Nf [1, 3], is

that the squared dipole size, x2
10, can exceed the scale 1

Λ2 [37]. In contrast to the large-Nc

evolution (4.53), we no longer consider Λ as the infrared cutoff in this regime. Rather, 1/Λ

is understood as the typical transverse size of the target [37, 115], which may or may not

be larger than the size x10 of the projectile dipole.

Similar to what we did in the large-Nc limit, we deduce the evolution equation for

Γ(x2
10, x2

21, z′s) by analogy to eq. (4.66), obtaining

Γ(x2
10,x2

21,z′s) = Q(0)(x2
10,z′s)+

αsNc

2π

∫ z′

max{Λ2,1/x2
10

}/s

dz′′

z′′

∫ min{x2
10,x2

21z′/z′′}

1/z′′s

dx2
32

x2
32

[
2Γ̃(x2

10,x2
32,z′′s)

+ 2G̃(x2
32,z′′s)+Q(x2

32,z′′s)−Γ(x2
10,x2

32,z′′s)+2Γ2(x2
10,x2

32,z′′s)+2G2(x2
32,z′′s)

]
(4.67)

+
αsNc

4π

∫ z′

Λ2/s

dz′′

z′′

∫ x2
21z′/z′′

1/z′′s

dx2
32

x2
32

[
Q(x2

32,z′′s)+2G2(x2
32,z′′s)

]
.

Now, we move on to consider the other polarized dipole amplitude of the first kind,

G̃10(zs). The general evolution equation we need for the large-Nc&Nf evolution of G̃10(zs)

has been derived in eq. (4.19) for the related Gadj
10 (zs). We simplify the equation in the large-

Nc&Nf limit: we first apply the Fierz identity several times, together with eq. (4.58), to

obtain the following relations (where we, again, suppress the time-ordering sign for brevity):

1

N2
c −1

〈〈
Tr

[
U0U

pol[1]†
1

]
+c.c.

〉〉
(zs)=8S10(zs)G̃10(zs), (4.68a)

1

N2
c −1

〈〈
Tr

[
T bU0T aU†

1

](
U

pol[1]
2

)ba

+c.c.

〉〉
(zs)=4NcS10(zs)

[
S20(zs)G̃21(zs)+S21(zs)Γ̃20,21(zs)

]
, (4.68b)

1

N2
c −1

〈〈
Tr

[
T bU0T aU

pol[1]†
1

]
Uba

2 +c.c.

〉〉
(zs)=4NcS20(zs)

[
S10(zs)G̃12(zs)+S21(zs)Γ̃10,21(zs)

]
. (4.68c)

Applying eqs. (4.37), (4.59) and (4.68) to eq. (4.19), we obtain

4S10(zs)G̃10(zs)=4S
(0)
10 (zs)G̃

(0)
10 (zs) (4.69)

+
αsNc

π2

z∫

Λ2

s

dz′

z′

∫
d2x2

{
4

[
1

x2
21

−x21

x2
21

·x20

x2
20

]
S10(z′s)

[
S20(z′s)G̃21(z′s)+S21(z′s)Γ̃gen

20,21(z′s)
]

+2

[
2

ǫijxj
21

x4
21

− ǫij(xj
20+xj

21)

x2
20x2

21

−2x20×x21

x2
20x2

21

(
xi

21

x2
21

−xi
20

x2
20

)]
S10(z′s)

[
S20(z′s)Gi

21(z′s)+S21(z′s)Γigen
20,21(z′s)

]
}

−αsNf

2π2

z∫

Λ2

s

dz′

z′

∫
d2x2S10(z′s)

{
1

x2
21

Γ
gen
20,21(z′s)+

2ǫijxj
21

x4
21

Γigen
20,21(z′s)

}

+
2αsNc

π2

z∫

Λ2

s

dz′

z′

∫
d2x2

x2
10

x2
21x2

20

{
S20(z′s)

[
S10(z′s)G̃12(z′s)+S21(z′s)Γ̃gen

10,21(z′s)
]
−2S10(z′s)Γ̃gen

10,21(z′s)

}
.

Once again, employing the trick from appendix D of [40], we simplify eq. (4.69) to

G̃10(zs) = G̃
(0)
10 (zs) (4.70)

+
αsNc

2π2

z∫

Λ2

s

dz′

z′

∫
d2x2

{
2

[
1

x2
21

− x21

x2
21

· x20

x2
20

][
S20(z′s)G̃21(z′s)+S21(z′s) Γ̃gen

20,21(z′s)
]
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+

[
2

ǫij xj
21

x4
21

− ǫij (xj
20 +xj

21)

x2
20 x2

21

− 2x20 ×x21

x2
20 x2

21

(
xi

21

x2
21

− xi
20

x2
20

)] [
S20(z′s)Gi

21(z′s)+S21(z′s)Γi gen
20,21(z′s)

]
}

− αs Nf

8π2

z∫

Λ2

s

dz′

z′

∫
d2x2

{
1

x2
21

Γ
gen
20,21(z′s)+

2ǫij xj
21

x4
21

Γi gen
20,21(z′s)

}

+
αsNc

2π2

z∫

Λ2

s

dz′

z′

∫
d2x2

x2
10

x2
21 x2

20

{
S20(z′s)G̃12(z′s)− Γ̃gen

10,21(z′s)

}
.

This is the DLA+SLAL large-Nc&Nf evolution equation for G̃10(zs).

To extract the DLA limit, we put the unpolarized dipole S-matrices in eq. (4.70) to

1. Then, we integrate the resulting equation over the impact parameters, employing the

definitions from eqs. (3.51), (4.41), (4.63) and (4.65). As a result, eq. (4.70) becomes

G̃(x2
10, zs) = G̃(0)(x2

10, zs) (4.71)

+
αsNc

2π2

z∫

Λ2

s

dz′

z′

∫
d2x2

{
2

[
1

x2
21

− x21

x2
21

· x20

x2
20

] [
G̃(x2

21, z′s) + Γ̃gen(x2
20, x2

21, z′s)
]

+

[
2

x2
21

− x21 · x20

x2
20 x2

21

− 1

x2
20

+
2 (x20 × x21)2

x4
20 x2

21

]
G2(x2

21, z′s)

+

[
2

x21 · x20

x4
21

− 1

x2
21

− x21 · x20

x2
20 x2

21

+
2 (x20 × x21)2

x2
20 x4

21

]
Γgen

2 (x2
20, x2

21, z′s)

}

− αs Nf

8π2

z∫

Λ2

s

dz′

z′

∫
d2x2

{
1

x2
21

Γ
gen

(x2
20, x2

21, z′s) + 2
x21 · x20

x4
21

Γgen
2 (x2

20, x2
21, z′s)

}

+
αsNc

2π2

z∫

Λ2

s

dz′

z′

∫
d2x2

x2
10

x2
21 x2

20

{
G̃(x2

21, z′s) − Γ̃gen(x2
10, x2

21, z′s)

}
.

For the same reason as in eq. (4.64), all the terms involving G1 and Γ1 vanish.

In the x20 ≪ x10 regime, eq. (4.71) contains no DLA terms and is exclusively SLAL.

However, the equation contains DLA terms in both x10 ≪ x21 ≈ x20 and x21 ≪ x10

regimes. Combining all the DLA terms with lifetime ordering taken into account to obtain

the integration limits, we have

G̃(x2
10, zs) = G̃(0)(x2

10, zs) +
αsNc

2π

∫ z

max{Λ2,1/x2
10}/s

dz′

z′

∫ x2
10

1/z′s

dx2
21

x2
21

(4.72)

×
[
3 G̃(x2

21, z′s) + Γ̃(x2
10, x2

21, z′s) + 2 G2(x2
21, z′s) + 2 Γ2(x2

10, x2
21, z′s)

]

− αsNf

8π

∫ z

Λ2/s

dz′

z′

∫ x2
10z/z′

1/z′s

dx2
21

x2
21

[
Γ

gen
(x2

20, x2
21, z′s) + 2 Γgen

2 (x2
20, x2

21, z′s)
]

.

Notice that the lower limit of the longitudinal integral in the first term of eq. (4.72) is

modified in a similar fashion to the first term of eq. (4.66).
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By analogy, the DLA evolution equation for the adjoint neighbor dipole amplitude of

the first kind is

Γ̃(x2
10,x2

21,z′s)=G̃(0)(x2
10,z′s)+

αsNc

2π

∫ z′

max{Λ2,1/x2
10}/s

dz′′

z′′

∫ min{x2
10,x2

21z′/z′′}

1/z′′s

dx2
32

x2
32

(4.73)

×
[
3G̃(x2

32,z′′s)+Γ̃(x2
10,x2

32,z′′s)+2G2(x2
32,z′′s)+2Γ2(x2

10,x2
32,z′′s)

]

− αsNf

8π

∫ z′

Λ2/s

dz′′

z′′

∫ x2
21z′/z′′

1/z′′s

dx2
32

x2
32

[
Γ

gen
(x2

30,x2
32,z′′s)+2Γgen

2 (x2
30,x2

32,z′′s)
]
.

Finally, we consider the adjoint dipole amplitude of the second kind. Since, as we

mentioned above, the polarized Wilson line of this kind does not contain a sub-eikonal

quark operator, the DLA evolution equation for G2(x2
10, zs) and Γ2(x2

10, x2
21, z′s) can be

taken directly from eqs. (4.51) and (4.52), respectively, by replacing G with G̃ in them due

to the difference in the definitions (4.56) and (4.29). This gives

G2(x2
10,zs)=G

(0)
2 (x2

10,zs)+
αsNc

π

z∫

Λ2

s

dz′

z′

z

z′
x2

10∫

max[x2
10

, 1
z′s

]

dx2
21

x2
21

[
G̃(x2

21,z′s)+2G2(x2
21,z′s)

]
, (4.74a)

Γ2(x2
10,x2

21,z′s)=G
(0)
2 (x2

10,z′s)+
αsNc

π

z′
x2

21

x2
10∫

Λ2

s

dz′′

z′′

z′

z′′
x2

21∫

max[x2
10

, 1
z′′s

]

dx2
32

x2
32

[
G̃(x2

32,z′′s)+2G2(x2
32,z′′s)

]
. (4.74b)

A caveat in arriving at eq. (4.74) is that all the terms involving polarized Wilson lines

of the first kind in eqs. (4.26) and (4.27) got absorbed into the adjoint dipole amplitudes

G̃, that is, the amplitude Q does not appear. Diagrammatically, this is due to the fact

that there is no sub-eikonal emission of a polarized soft quark in any of the diagrams in

figure 5. Another difference between the large-Nc counterparts, eqs. (4.26) and (4.27), and

eq. (4.74) is in the upper limit of the transverse integrals, where the constraints imposed

by the infrared cutoff, Λ2, in eqs. (4.26) and (4.27) were removed because Λ2 no longer acts

as the infrared cutoff in the large-Nc&Nf limit.

Equations (4.66), (4.67), (4.72), (4.73) and (4.74) form a closed system of DLA evo-

lution equations involving six polarized (neighbor) dipole amplitudes in the large-Nc&Nf

limit. To summarize, we rewrite all the equations below, utilizing eqs. (4.62) to separate

all integrals into the UV and IR regions.

Q(x2
10,zs)=Q(0)(x2

10,zs)+
αsNc

2π

∫ z

max{Λ2,1/x2
10

}/s

dz′

z′

∫ x2
10

1/z′s

dx2
21

x2
21

[
2G̃(x2

21,z′s)+2Γ̃(x2
10,x2

21,z′s)

+Q(x2
21,z′s)−Γ(x2

10,x2
21,z′s)+2Γ2(x2

10,x2
21,z′s)+2G2(x2

21,z′s)
]

(4.75a)

+
αsNc

4π

∫ z

Λ2/s

dz′

z′

∫ x2
10z/z′

1/z′s

dx2
21

x2
21

[
Q(x2

21,z′s)+2G2(x2
21,z′s)

]
,

Γ(x2
10,x2

21,z′s)=Q(0)(x2
10,z′s)+

αsNc

2π

∫ z′

max{Λ2,1/x2
10

}/s

dz′′

z′′

∫ min{x2
10,x2

21z′/z′′}

1/z′′s

dx2
32

x2
32

[
2G̃(x2

32,z′′s) (4.75b)

+2Γ̃(x2
10,x2

32,z′′s)+Q(x2
32,z′′s)−Γ(x2

10,x2
32,z′′s)+2Γ2(x2

10,x2
32,z′′s)+2G2(x2

32,z′′s)
]

+
αsNc

4π

∫ z′

Λ2/s

dz′′

z′′

∫ x2
21z′/z′′

1/z′′s

dx2
32

x2
32

[
Q(x2

32,z′′s)+2G2(x2
32,z′′s)

]
,
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G̃(x2
10,zs)=G̃(0)(x2

10,zs)+
αsNc

2π

∫ z

max{Λ2,1/x2
10

}/s

dz′

z′

∫ x2
10

1/z′s

dx2
21

x2
21

[
3G̃(x2

21,z′s)+Γ̃(x2
10,x2

21,z′s) (4.75c)

+2G2(x2
21,z′s)+

(
2− Nf

2Nc

)
Γ2(x2

10,x2
21,z′s)− Nf

4Nc
Γ(x2

10,x2
21,z′s)

]

−αsNf

8π

∫ z

Λ2/s

dz′

z′

∫ x2
10z/z′

max{x2
10

,1/z′s}

dx2
21

x2
21

[
Q(x2

21,z′s)+2G2(x2
21,z′s)

]
,

Γ̃(x2
10,x2

21,z′s)=G̃(0)(x2
10,z′s)+

αsNc

2π

∫ z′

max{Λ2,1/x2
10

}/s

dz′′

z′′

∫ min{x2
10,x2

21z′/z′′}

1/z′′s

dx2
32

x2
32

[
3G̃(x2

32,z′′s) (4.75d)

+Γ̃(x2
10,x2

32,z′′s)+2G2(x2
32,z′′s)+

(
2− Nf

2Nc

)
Γ2(x2

10,x2
32,z′′s)− Nf

4Nc
Γ(x2

10,x2
32,z′′s)

]

−αsNf

8π

∫ z′x2
21/x2

10

Λ2/s

dz′′

z′′

∫ x2
21z′/z′′

max{x2
10

,1/z′′s}

dx2
32

x2
32

[
Q(x2

32,z′′s)+2G2(x2
32,z′′s)

]
,

G2(x2
10,zs)=G

(0)
2 (x2

10,zs)+
αsNc

π

z∫

Λ2

s

dz′

z′

z

z′
x2

10∫

max[x2
10

, 1
z′s

]

dx2
21

x2
21

[
G̃(x2

21,z′s)+2G2(x2
21,z′s)

]
, (4.75e)

Γ2(x2
10,x2

21,z′s)=G
(0)
2 (x2

10,z′s)+
αsNc

π

z′
x2

21

x2
10∫

Λ2

s

dz′′

z′′

z′

z′′
x2

21∫

max[x2
10

, 1
z′′s

]

dx2
32

x2
32

[
G̃(x2

32,z′′s)+2G2(x2
32,z′′s)

]
. (4.75f)

Similar to eq. (4.54) for the large-Nc limit, the inhomogeneous terms of eqs. (4.75) are

given by the following expressions at Born level [2, 33]:

G̃(0)(x2
10,zs) = Q(0)(x2

10,zs) =
α2

sCF

2Nc
π

[
CF ln

zs

Λ2
−2 ln(zsx2

10)
]

, G
(0)
2 (x2

10,zs) =
α2

sCF

Nc
π ln

1

x10Λ
. (4.76)

These initial conditions assume that the projectile is much smaller than the target, x10 ≪
1/Λ. To be used in eqs. (4.75), the expressions (4.76) may need to be generalized to also

describe the large-projectile case, x10 ≫ 1/Λ.

4.4 Cross-check against the spin-dependent DGLAP evolution

Let us cross-check our results against the spin-dependent DGLAP evolution equation [73–

75]. We are interested in the gluon sector only, since this is where the previous works’ [1, 2]

agreement with DGLAP evolution was not completely clear. To this end we put the flavor-

singlet quark helicity PDF to zero, ∆Σ(x, Q2) = 0, (for instance, by putting Nf = 0) and

write the DGLAP equation for the gluon helicity PDF only

∂∆G(x, Q2)

∂ ln Q2
=

1∫

x

dz

z
∆PGG(z) ∆G

(
x

z
, Q2

)
. (4.77)

We would like to stress that discarding ∆Σ is not a physical approximation. Rather, it is

a mathematical step to verify that our evolution agrees with that driven by the splitting

function ∆PGG(z). The latter is known up to three loops [90, 91] (see also [116]). At small

z and large Nc it reduces to

∆PGG(z) =
αs

2π
4Nc +

(
αs

2π

)2

4N2
c ln2 z +

(
αs

2π

)3 7

3
N3

c ln4 z + . . . . (4.78)

– 44 –



J
H
E
P
0
7
(
2
0
2
2
)
0
9
5

Since our goal is to check that our evolution in the gluon sector agrees with DGLAP,

we will consider the large-Nc evolution in eqs. (4.53). We choose the initial conditions to be

G(0)(x2
10, zs) = 0, G

(0)
2 (x2

10, z′s) = 1. (4.79)

Employing eq. (3.26), we see that this choice of the initial conditions corresponds to the

initial PDF ∆G(0)(x, Q2) =const, where the value of the constant is not important for us.

Inserting eq. (4.79) into the right-hand sides of eqs. (4.53a) and (4.53c) yields the result

of one iteration of our evolution

G(1)(x2
10, zs) =

αsNc

π
ln2(zsx2

10), (4.80a)

G
(1)
2 (x2

10, zs) = 2
αsNc

π
ln(zsx2

10) ln

(
1

x2
10Λ2

)
. (4.80b)

In arriving at eqs. (4.80) it is convenient to rewrite the kernel of eq. (4.53c) as

z∫

Λ2

s

dz′

z′

min
[

z
z′ x2

10, 1
Λ2

]
∫

max[x2
10, 1

z′s ]

dx2
21

x2
21

=

1
Λ2∫

x2
10

dx2
21

x2
21

z
x2

10
x2

21∫

1

sx2
21

dz′

z′
. (4.81)

Identifying
1

x2
10

→ Q2, zsx2
10 → zs

Q2
→ 1

x
(4.82)

we see that eq. (4.80b), via eq. (3.26), gives

∆G(1)(x, Q2) = 2
αsNc

π
ln

(
1

x

)
ln

(
Q2

Λ2

)
const. (4.83)

This is in complete agreement with one iteration of leading-order (LO) spin-dependent

DGLAP equation: indeed, using ∆G(0)(x, Q2) = const on the right of eq. (4.77) with the

order-αs part of the splitting function (4.78) gives us eq. (4.83). We see that we are in

complete agreement with the one-loop DGLAP equation.

To check the result at two loops, we substitute eqs. (4.80) into the right-hand side of

eq. (4.53c). Employing eq. (4.81) to simplify the integration we get

G
(2)
2 (x2

10, zs) =

(
αsNc

π

)2 [
1

3
ln3(zsx2

10) ln

(
1

x2
10Λ2

)
+ ln2(zsx2

10) ln2
(

1

x2
10Λ2

)]
, (4.84)

which, with the help of eq. (4.82), corresponds to

∆G(2)(x, Q2) =

(
αsNc

π

)2
[

1

3
ln3

(
1

x

)
ln

(
Q2

Λ2

)
+ ln2

(
1

x

)
ln2

(
Q2

Λ2

)]
const. (4.85)

Inserting ∆G(0)(x, Q2) = const into the right side of eq. (4.77) and employing the order-α2
s

part of the splitting function (4.78) we arrive at the first term on the right of eq. (4.85):

hence, we agree with the next-to-leading order (NLO) spin-dependent DGLAP evolution
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(at large-Nc and small-x) as well. The last term on the right of eq. (4.85) results from two

iterations of the LO DGLAP, as can be verified explicitly as well.

Let us push the comparison one step further. To compare our evolution with the next-

to-next-to-leading order (NNLO) DGLAP equation, we need to find G
(3)
2 . To construct it,

we first employ eqs. (4.79) in eqs. (4.53b) and (4.53d) to obtain

Γ(1)(x2
10, x2

21, z′s) = 2
αsNc

π

[
1

2
ln2(z′sx2

21) + ln(z′sx2
21) ln

x2
10

x2
21

]
, (4.86a)

Γ
(1)
2 (x2

10, x2
21, z′s) = 2

αsNc

π
ln(z′sx2

21) ln
1

x2
10Λ2

. (4.86b)

The calculation is simplified if one notices that the kernel of eq. (4.53d) can be rewritten

as

z′ x2
21

x2
10∫

Λ2

s

dz′′

z′′

min

[
z′

z′′ x2
21, 1

Λ2

]

∫

max[x2
10, 1

z′′s ]

dx2
32

x2
32

=

1
Λ2∫

x2
10

dx2
32

x2
32

z′ x2
21

x2
32∫

1

s x2
32

dz′′

z′′
. (4.87)

Employing eqs. (4.86) and (4.80) in eq. (4.53a) we arrive at

G(2)(x2
10, zs) =

(
αsNc

π

)2 [
7

24
ln4(zsx2

10) +
2

3
ln3(zsx2

10) ln

(
1

x2
10Λ2

)]
. (4.88)

Finally, inserting eqs. (4.84) and (4.88) into the right-hand side of eq. (4.53c) yields

G
(3)
2 (x2

10, zs) =

(
αsNc

π

)3 [
7

120
ln5(zsx2

10) ln

(
1

x2
10Λ2

)
+

1

6
ln4(zsx2

10) ln2
(

1

x2
10Λ2

)

+
2

9
ln3(zsx2

10) ln3
(

1

x2
10Λ2

) ]
, (4.89)

which, using eq. (4.82), translates into

∆G(3)(x,Q2) =
(

αsNc

π

)3
[

7

120
ln5

(
1

x

)
ln

(
Q2

Λ2

)
+

1

6
ln4

(
1

x

)
ln2

(
Q2

Λ2

)
+

2

9
ln3

(
1

x

)
ln3

(
Q2

Λ2

)]
const.

(4.90)

The first term on the right of eq. (4.90) exactly corresponds to the contribution of the

order-α3
s part of the splitting function (4.78) to eq. (4.77): our evolution (4.53) thus agrees

with the NNLO DGLAP gluon-gluon splitting function (at large-Nc and small-x). One

can also readily verify that the last term on the right of eq. (4.90) corresponds to three

iterations of the LO DGLAP kernel, LO3, while the second term on the right of eq. (4.90) is

a sum of applying LO and NLO DGLAP in different orders, that is, LO×NLO + NLO×LO.

Therefore, the agreement between our evolution and the small-x limit of spin-

dependent DGLAP equation in the gluon sector has been verified to three loops, the

same order as the IREE of [5, 28, 29]. Further iterations in the solution of our eqs. (4.53)

can be used to generate new higher-order corrections to the small-x anomalous di-

mension (4.78), which have not been derived yet (but can also be extracted using the

technique of [5, 28, 29]). In addition, let us note here that the amplitude G2(x2
10, zs)
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obtained here in eqs. (4.83), (4.85), and (4.90) appears to only contain the solution of

the spin-dependent DGLAP equation (4.77) at small x: if an exact analytic solution of

eqs. (4.53) is constructed in the future work, it would contain the exact expression for the

small-x large-Nc spin-dependent gluon-gluon splitting function, generalizing eq. (4.78) to

all orders in the coupling.

5 Helicity evolution at small x: the background field method

In the previous section we derived the helicity evolution equations at small x in the LCOT

approach. The key element of the calculation was the observation that in the helicity

evolution quarks and gluons couple to the background shock-wave fields through the po-

larized Wilson lines (2.6) and (2.11). This is a non-trivial statement which requires further

explanation. The most powerful framework which allows to unambiguously determine the

form of the operators which define the coupling of “quantum” quarks and gluons to the

background field is the background field method [76, 77]. In this approach the separation

of “quantum” and background fields is done at the level of the QCD Lagrangian which

allows to obtain the most general form of the propagator in the external background.

In this section we will show how the polarized Wilson lines (2.6) and (2.11) appear

in this approach and present an alternative derivation of the helicity evolution equa-

tions (4.15) and (4.26). We will thus show that the helicity evolution equations obtained

in the background field method are in full agreement with the above results obtained in

the LCOT approach.

5.1 The background field method

To introduce the background field method, let us start with a matrix element of an arbitrary

operator O(A, ψ, ψ̄) (corresponding to some observable) which is constructed out of quark

and gluon fields. The matrix element can be represented as a functional integral over those

fields,7

〈P1|O|P2〉 =

∫
DA

∫
Dψ Ψ∗

P1
( ~A(tf ), ψ(tf )) O(A, ψ) ΨP2( ~A(ti), ψ(ti))e

iSQCD(A,ψ) , (5.1)

where ΨP2 is the initial state wave function at the initial time ti → −∞ and, similarly, ΨP1

is the final state wave function at the final time tf → ∞.

The main idea of the background field method is that the fields in (5.1) can be separated

into the “quantum” and background parts,

Aµ → Aq
µ + Abg

µ , ψ → ψq + ψbg . (5.2)

The way we separate the fields is completely arbitrary, see for example [117–121]. However,

in the context of small-x physics the most efficient approach is to separate the fields based

on their longitudinal momentum fraction (or, equivalently, rapidity). This is the rapidity

factorization approach [44, 45]. In this approach the “quantum” fields are defined to have

7For brevity we do not explicitly show the dependence on (and integrals over) the anti-quark fields ψ̄.
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momenta p− > σ, and background fields are characterized by p− < σ, where σ is some

rapidity factorization scale.8 Note that in the small-x limit, due to Lorentz contraction,

the background fields have a shock-wave form with a limited support in the x− direction

(for the plus-direction moving proton).

Assuming that the wave functions depend only on the background fields, we rewrite

the matrix element as

〈P1|O|P2〉 =

∫
DAbg

∫
Dψbg Ψ∗

P1
( ~Abg(tf ),ψbg(tf ))Õ(Abg,ψbg,σ)ΨP2 ( ~Abg(ti),ψ

bg(ti))e
iSQCD(Abg,ψbg) ,

(5.3)

where

Õ(Abg, ψbg, σ) =

∫
DAq

∫
Dψq O(Aq + Abg, ψq + ψbg)eiSbQCD(Aq,ψq;Abg,ψbg) (5.4)

and the QCD action in the background fields is

SbQCD(Aq, ψq; Abg, ψbg) = SQCD(Aq + Abg, ψq + ψbg) − SQCD(Abg, ψbg) . (5.5)

Now we can fix the background fields and evaluate the functional integral over the

“quantum” fields perturbatively to a certain order in the number of loops. This perturbative

calculation in the background field is the essence of the background field method. In

general, the result of calculating the functional integrals has a form of a product of the

coefficient functions (“impact” factors) and the Wilson-line operators constructed from

background fields which describe interaction of “quantum” fields with the background,

Õ(Abg, ψbg, σ) =
∑

i

Ci(σ) ⊗ Vi(A
bg, ψbg, σ) . (5.6)

The sum goes over the different operators. Equation (5.6) should be substituted back into

eq. (5.3). In particular, as we will see in our calculation below, the helicity-dependent

interaction of quarks and gluons with the shock-wave background is described by polarized

Wilson lines (2.6) and (2.11).

To study the dependence of the Wilson-line operators on the rapidity factorization

scale σ one can repeat the procedure described above. We introduce a new scale σ′ and

redefine the background fields as

Abg
µ → Âq

µ + Âbg
µ , ψbg → ψ̂q + ψ̂bg , (5.7)

where the “quantum” fields now have momenta σ > p− > σ′ and the background fields

have p− < σ′. After this we can perform the integration over new “quantum” fields Âq
µ,

ψ̂q (keeping Âbg
µ and ψ̂bg fixed) in eq. (5.3) which corresponds to the functional integral

T [Vi(A
bg, ψbg, σ)] ≡

∫
DÂq

∫
Dψ̂q Vi(Â

q + Âbg, ψ̂q + ψ̂bg, σ)eiSbQCD(Âq,ψ̂q;Âbg,ψ̂bg) . (5.8)

8In the rapidity factorization approach the “quantum” fields are usually called “slow” fields, and the

background fields are called “fast” fields [66].
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This integral can be evaluated by a perturbative calculation in the background field which

yields an evolution equation of the following form

T [Vi(A
bg, ψbg, σ)] =

σ∫

σ′

dp−

p−

∑

j

Kij ⊗ Vj(Âbg, ψ̂bg, σ′) , (5.9)

with some kernels Kij . In particular, in this paper we derive the evolution equation for the

polarized Wilson lines (2.6) and (2.11).

For perturbative calculations of the functional integral (5.8) we need to know the

propagators of “quantum” particles in the background field. Note that the form of such

propagators unambiguously fixes the set of the Wilson-line operators on the right-hand

side of the evolution equation (5.9). In the next section we will derive the quark and

gluon propagators in the shock-wave background and later use them to construct helicity

evolution equations for operators (2.6) and (2.11).

5.2 Quark and gluon propagators in the shock-wave background

In this section we will construct quark and gluon propagators in the external background

field by direct resummation of the corresponding Feynman diagrams. While to solve this

problem in full generality is a formidable task, see [39, 62–67, 122–124], it is still possible to

separate a contribution which dominates at small x. To find this contribution we construct

an expansion of the propagators in inverse powers of p− and find the first few terms in this

expansion. Indeed, at small x, the p− component of the “quantum” field is assumed to be

large. As a result, the leading terms of the expansion in inverse powers of p− dominate at

small x yielding a large logarithm
∫ dp−

p− . In general, the expansion in the inverse powers

of p− corresponds to the expansion in the powers of x or in eikonality we employed above.

The technique we use is similar to the one developed in refs. [66, 67] for the unpolarized

evolution. However, for the helicity evolution we need to extend the approach and assume

the most general form of the background field. In particular, we take into account the

transverse component Ai of the field, which was neglected in [66, 67]. In our calculation

we fix the gauge of the background field as A+ = A− = 0 and assume that the fields are

independent of x+, Aµ = Aµ(x−, x).

5.2.1 Scalar propagator in the shock-wave background

Before we consider quark and gluon propagators in the background field, let us start with

a simpler problem and calculate the scalar propagator in the background field. In the

Schwinger’s notation, see appendix A, we write the scalar propagator in the background

field Aµ as9

(x| 1

P̂ 2 + iǫ
|y) = (x| 1

p̂2 + g{p̂µ, Aµ(x̂)} + g2Aµ(x̂)Aµ(x̂) + iǫ
|y) , (5.10)

where P̂µ = p̂µ+gAµ(x̂). Note that in the Schwinger’s notation p̂ and A(x̂) are operators so

one should take into account their ordering. In particular, one can immediately recognize

9From here on we do not explicitly show the “q” and “bg” labels for “quantum” and background fields.
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in {p̂µ, Aµ(x̂)} and Aµ(x̂)Aµ(x̂) the two vertices of scalar QED, where the latter is the

“seagull” vertex. Of course eq. (5.10) can be obtained by resummation of an infinite

number of interactions of the background field Aµ with the propagating scalar particle.

Indeed, expanding the propagator we write10

(x| 1

P 2 + iǫ
|y) = (x| 1

p2 + iǫ
|y)−(x| 1

p2 + iǫ
(g{pµ,Aµ}+g2AµAµ)

1

p2 + iǫ
|y) (5.11)

+(x| 1

p2 + iǫ
(g{pµ,Aµ}+g2AµAµ)

1

p2 + iǫ
({pµ,Aµ}+AµAµ)

1

p2 + iǫ
|y)+ . . . .

Let us start with the first term of this expansion which is a free propagator of the

scalar particle. Using eq. (A.5) and performing the integration over p+ we find

(x| 1

p2 + iǫ
|y) =

(
− i

2π
θ(x− − y−)

∞∫

0

dp−

2p−
+

i

2π
θ(y− − x−)

0∫

−∞

dp−

2p−

)
e−ip−(x−y)+

×(x|e−i
p2

⊥
2p− x−

e
i

p2
⊥

2p− y−

|y) . (5.12)

Substituting this result for each free propagator11 in eq. (5.11) one finds the following

form of the scalar propagator in the background field

(x| 1

P 2 + iǫ
|y) =

(
− i

2π
θ(x− − y−)

∞∫

0

dp−

2p−
+

i

2π
θ(y− − x−)

0∫

−∞

dp−

2p−

)
e−ip−(x−y)+

×(x|e−i
p2

⊥
2p− x−

S(x−, y−)e
i

p2
⊥

2p− y−

|y) , (5.13)

where the operator S is constructed out of the background fields and describes the inter-

action of the “quantum” scalar field with the background gluons. In general, this operator

has a form of an expansion in inverse powers of p−,

S(x−, y−) = S0(x−, y−) +
1

p−
S1(x−, y−) +

1

(p−)2
S2(x−, y−) + . . . . (5.14)

As we discussed above, the dominant contribution at small x corresponds to the first

few orders of expansion (5.14). Fortunately, it is possible to obtain the exact form of those

terms by considering the first few orders of the expansion in the coupling constant (5.11).

10For brevity we are going to omit the hat sign over momentum and coordinate operators.
11One should also use eq. (A.2) to introduce the integration over intermediate coordinates.
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To show this let us go back to eq. (5.11). Using eq. (5.12) for the second term of the

expansion and taking into account that A+ = 0 we obtain

(x| 1

P 2 + iǫ
|y) =

(
− i

2π
θ(x− −y−)

∞∫

0

dp−

2p−
+

i

2π
θ(y− −x−)

0∫

−∞

dp−

2p−

)
e−ip−(x−y)+

(5.15)

×(x|e−i
p2

⊥
2p− x−

{
1+ ig

x−∫

y−

dz−e
i

p2
⊥

2p− z−(
A−(z−)+

pk

2p−
Ak(z−)+Ak(z−)

pk

2p−

+
g

2p−
Ak(z−)Ak(z−)

)
e

−i
p2

⊥
2p− z−

+ . . .

}
e

i
p2

⊥
2p− y−

|y) ,

where the ellipsis stand for the higher-order terms of the expansion (5.11).

Now let us use the following identity for an arbitrary operator O:

e
i

p2
⊥

2p− z−

Oe
−i

p2
⊥

2p− z−

= O + i
z−

2p−
[p2

⊥, O] − 1

2

(
z−

2p−

)2

[p2
⊥, [p2

⊥, O]] + . . . , (5.16)

which, taking into account that

[p2
⊥, O] = −i{ps, ∂sO} , (5.17)

can be rewritten as

e
i

p2
⊥

2p− z−

Oe
−i

p2
⊥

2p− z−

= O +
z−

2p−
{ps, ∂sO} +

1

2

(
z−

2p−

)2

{ps, {pm, ∂s∂mO}} + . . . . (5.18)

Note that ps is an operator acting on everything to its right, while the partial derivatives

in ∂sO and ∂s∂mO act only on O.

Employing this result in eq. (5.15) we obtain

(x| 1

P 2 + iǫ
|y)ab =

(
− i

2π
θ(x− −y−)

∞∫

0

dp−

2p−
+

i

2π
θ(y− −x−)

0∫

−∞

dp−

2p−

)
e−ip−(x−y)+

(5.19)

×(x|e−i
p2

⊥

2p−
x−

{
1+ ig

x−∫

y−

dz−A−(z−)+
ig

2p−

x−∫

y−

dz−
(

{pk,Ak(z−)}+gAk(z−)Ak(z−)
)

+
ig

2p−

x−∫

y−

dz−z−{ps,∂sA−(z−)}+ . . .

}ab

e
i

p2
⊥

2p−
y−

|y) ,

where we explicitly keep only the first two terms of (5.18).

A similar calculation can be done for the other terms in the expansion (5.11). Even-

tually, each insertion of {pµ, Aµ} + AµAµ generates a structure similar to (5.19). As a

result we see that each coupling to the background field brings an extra inverse power of

p−. The only exception is the eikonal coupling {pµ, Aµ} → p−A+ which does not change
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the counting in inverse powers of p−. However, these terms can be resummed into Wilson-

line factors, which in the operator form are given by eq. (A.6) in appendix A. After this

resummation the scalar propagator takes the form

(x| 1

P 2+iǫ
|y) =

(
− i

2π
θ(x−−y−)

∞∫

0

dp−

2p−
+

i

2π
θ(y−−x−)

0∫

−∞

dp−

2p−

)
e−ip−(x−y)+

(5.20)

×(x|e−i
p2

⊥

2p−
x−

{
V [x−,y−]+

ig

2p−

x−∫

y−

dz−V [x−,z−]
(

{pk,Ak(z−)}+gAk(z−)Ak(z−)
)

V [z−,y−]

+
ig

2p−

x−∫

y−

dz−z−V [x−,z−]{ps,∂sA−(z−)}V [z−,y−]+O
(

1

(p−)2

)}
e

i
p2

⊥

2p−
y−

|y).

Here V [x−, y−] are the light-cone Wilson-line operators akin to those in eq. (A.6), but

defined with finite integration limits.

Now let us rewrite this result in a gauge-covariant form. Introducing d
dz− (z−) = 1

in the second term in the curly brackets of eq. (5.20) and integrating by parts we can

recombine the resulting terms to get the following form of the propagator,

(x|
1

P 2+iǫ
|y) =

(
−

i

2π
θ(x−−y−)

∞∫

0

dp−

2p−
+

i

2π
θ(y−−x−)

0∫

−∞

dp−

2p−

)
e−ip−(x−y)+

(x|e
−i

p2
⊥

2p−
x−

(5.21)

×

{
V [x−,y−]+

igx−

2p−
({pk,Ak}+gAkAk)(x−)V [x−,y−]−

igy−

2p−
V [x−,y−]({pk,Ak}+gAkAk)(y−)

−
ig

2p−

x−∫

y−

dz−z−V [x−,z−]{P k,F−k}V [z−,y−]+O

(
1

(p−)2

)}
e

i
p2

⊥

2p−
y−

|y),

where the second and third terms in the curly brackets are the boundary terms which we

obtained in the integration by parts.

Note that up to this point our calculation has been completely general. Now let

us consider the scalar propagator in the shock-wave approximation with the shock wave

localized near x− = 0. Since there are no fields outside the shock-wave we can neglect the

boundary terms and simplify the gauge factors V [x−, y−] → V for x− > 0 > y− (with V

the infinite light-cone Wilson line operator (A.6)), which yields

(x| 1

P 2+iǫ
|y)=− i

2π

∞∫

0

dp−

2p−
e−ip−(x−y)+

(5.22)

×(x|e−i
p2

⊥
2p− x−

{
V − ig

2p−

∞∫

−∞

dz−z−V [∞,z−]{P k,F−k}V [z−,−∞]+O

(
1

(p−)2

)}
e

i
p2

⊥
2p− y−

|y),

which agrees with ref. [66]. Here we assume that x− > 0 > y−.

We find that at the leading order of the 1/p− expansion the interaction of the scalar

particle with the background field is defined by the eikonal Wilson line V , while at the
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next order the interaction is described by the sub-eikonal operator

∞∫

−∞

dz−z−V [∞, z−]{P k, F−k}V [z−, −∞] . (5.23)

In the subsequent sections we will relate this operator to the polarized Wilson lines (2.7c)

and (3.17).

Note that this type of sub-eikonal operators is neglected in the unpolarized evolution.

Indeed the z− factor under the integral in eq. (5.23) leads to the suppression of the operator

in the shock-wave approximation by a factor of 1/P +, which, when combined with the 1/p−

prefactor of this operator in eq. (5.22) gives a suppression by a factor of 1/s ∼ x. Therefore,

the unpolarized evolution is driven by the eikonal gauge factors (light-cone Wilson lines).

However, as we will see, the interactions via eikonal factors do not contribute to helicity

evolution, which starts with sub-eikonal operators like the one in eq. (5.23).

5.2.2 Gluon propagator in the shock-wave background

In this section we are going to derive the gluon propagator in the background field in the

axial gauge. Using the approach developed in the previous section we will consider the

expansion of the propagator in inverse powers of p− and reconstruct the first several terms

of this expansion by analyzing the first few orders of the perturbative expansion in the

background field,

T[Ca
µ(x)Cb

ν(y)] = (x|−idµν(p)δab

p2 + iǫ
|y)

−ig(x|−idµρ(p)

p2 + iǫ

[
gρσ{pα,Aα}+2i(∂ρAσ −∂σAρ)−pρAσ −Aρpσ

]−idσν(p)

p2 + iǫ
|y)ab (5.24)

−g2(x|−idµρ(p)

p2
ψ̄γρta i/p

/p2 + iǫ
γσtbψ

−idσν(p)

p2
|y)−g2(y|−idνσ(p)

p2 + iǫ
ψ̄γσtb i/p

/p2 + iǫ
γρtaψ

−idρµ(p)

p2 + iǫ
|x)+ . . . ,

where ψ, ψ̄ are background quark and anti-quark fields and the expression in the square

brackets is the QCD three-gluon vertex in the background field. For the free gluon propa-

gator in the axial gauge we have

dµν(p) ≡ gµν − nµpν + pµnν

n · p
, (5.25)

where n is a light-like vector with n+ = 1, n− = 0, and n = 0.

The first term in eq. (5.24) is the free gluon propagator. Integrating over p+ we can

rewrite it as

(x|−idµν(p)

p2 + iǫ
|y) =

(
− 1

2π
θ(x− −y−)

∞∫

0

dp−

2p−
+

1

2π
θ(y− −x−)

0∫

−∞

dp−

2p−

)
e−ip−(x−y)+

(5.26)

×(x|(gµi − nµ

n ·ppi)e
−i

p2
⊥

2p− x−

e
i

p2
⊥

2p− y−

(δi
ν −pi nν

n ·p)|y)+ i(x| nµnν

(n ·p)2
|y) .
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The last term here is the instantaneous term in the LCPT terminology which we neglect

in our calculation. Substituting the right-hand side of eq. (5.26) for each free propagator

in the expansion (5.24) one finds the following general structure of the gluon propagator

in the background field,

T[Ca
µ(x)Cb

ν(y)] =

(
− 1

2π
θ(x− −y−)

∞∫

0

dp−

2p−
+

1

2π
θ(y− −x−)

0∫

−∞

dp−

2p−

)
e−ip−(x−y)+

(5.27)

×(x|(gµi − nµ

n ·pPi)e
−i

p2
⊥

2p− x−

Gij(x−,y−)e
i

p2
⊥

2p− y−

(gjν −Pj
nν

n ·p)|y)ab ,

where Pµ = pµ + gAµ and the operator G(x−, y−) is constructed out of the background

quark and gluon fields and describes the interaction of the “quantum” gluon with the

background. Similarly to the scalar case, the operator G can be expanded in the inverse

powers of p−,

Gij(x−, y−) = Gij
0 (x−, y−) +

1

p−
Gij

1 (x−, y−) +
1

(p−)2
Gij

2 (x−, y−) + . . . . (5.28)

Following the approach developed for the scalar propagator we are going to construct

the first few terms in the series (5.28) using the perturbative expansion (5.24). It is easy to

observe that each intermediate propagator in (5.24) leads to suppression by an extra inverse

power of p−, see eq. (5.26). This suppression can only be compensated by the eikonal term

p−A+ of the three-gluon vertex. However, such terms can be easily resummed to all orders

in the perturbation theory into Wilson-line gauge factors.

As a result, substituting eq. (5.26) into eq. (5.24) and performing manipulations similar

to those done in section 5.2.1 we find

T[Ca
µ(x)Cb

ν(y)]=

(
−

1

2π
θ(x−−y−)

∞∫

0

dp−

2p−
+

1

2π
θ(y−−x−)

0∫

−∞

dp−

2p−

)
e−ip−(x−y)+

(5.29)

×(x|(gµi−
nµ

p−
Pi)

ace
−i

p2
⊥

2p−
x−

[
gijUcd[x−,y−]

−
iggij

2p−

∫ x−

y−

dz−z−(U [x−,z−]{P
k,F−k}U [z−,y−])cd −

gǫij

p−

∫ x−

y−

dz−(U [x−,z−]F12(z−)U [z−,y−])cd

−
g2gij

4p−

∫ x−

y−

dz−

∫ z−

y−

dz′−
(

Ucc′

[x−,z−]ψ̄(z−)tc′

V [z−,z′−]γ+td′

ψ(z′−)Ud′d[z′−,y−]+c.c.

)

+
ig2ǫij

4p−

∫ x−

y−

dz−

∫ z−

y−

dz′−
(

Ucc′

[x−,z−]ψ̄(z−)tc′

V [z−,z′−]γ+γ5td′

ψ(z′−)Ud′d[z′−,y−]+c.c.

)
+O

(
1

(p−)2

)]

×e
i

p2
⊥

2p−
y−

(
gjν −Pj

nν

p−

)db

|y)+... .

One can see that the structure of the operators in the gluon propagator in the background

field, which is in agreement with refs. [33, 63, 66], is richer than the one in the scalar

propagator. But what is more important is that now we explicitly see that the interaction
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of the “quantum” gluon with the shock-wave background fields is described be the polarized

Wilson lines (2.11). Indeed, taking into account that

x−∫

y−

dz−z−U [x−,z−]{P
k,F−k}U [z−,y−] =

x−∫

y−

dz−z−
P

kU [x−,z−]F−kU [z−,y−] (5.30)

+

x−∫

y−

dz−z−U [x−,z−]F−kU [z−,y−]Pk −g

x−∫

y−

dz−
1

z−

1∫

y−

dz−
2 (z−

1 −z−
2 )U [x−,z−

1 ]F−kU [z−
1 ,z−

2 ]F−kU [z−
2 ,y−]

we can finally write the gluon propagator in the shock-wave background as

T[Ca
µ(x)Cb

ν(y)] = − 1

2π

∞∫

0

dp−

2p−
e−ip−(x−y)+

(5.31)

×(x|(gµi − nµ

p−
pi)

ace
−i

p2
⊥

2p− x−

Gij(∞,−∞)e
i

p2
⊥

2p− y−

(gjν −pj
nν

p−
)db|y)+ . . .

where we assume that x− > 0 > y− and

Gij(∞,−∞) = gijU +
gijs

2P +p−
Uq[2] +

iǫijs

2P +p−
Upol[1] (5.32)

− iggij

2p−
pk

∞∫

−∞

dz−z−U [∞,z−]F−kU [z−,−∞]− iggij

2p−

∞∫

−∞

dz−z−U [∞,z−]F−kU [z−,−∞]pk

+
ig2gij

2p−

∞∫

−∞

dz−
1

z−

1∫

−∞

dz−
2 (z−

1 −z−
2 )U [∞,z−

1 ]F−kU [z−
1 ,z−

2 ]F−kU [z−
2 ,−∞]+O

(
1

(p−)2

)
.

As we will show in the next section, see eqs. (5.42) and (5.52), the operator

∞∫

−∞

dz−z−U [∞, z−]F−kU [z−, −∞]

can be further related to the polarized Wilson line (2.12c) and the adjoint version of the

operator (3.17) given in eq. (4.7).12 We will also see that operators U , Uq[2] and the

operator in the last line of (5.32) do not contribute to the helicity evolution.

5.2.3 Quark propagator in the shock-wave background field

In this section we will consider quark propagator in the background of quark and gluon

fields. To simplify the problem we will start the derivation taking into account only the

background gluon field and later extend it to include the contribution of background quarks.

The most general form of the quark propagator, which can be obtained by resummation

of an infinite number of couplings to background gluons, is

T [ψ(x)ψ̄(y)]A = (x| i

/P + iǫ
|y) = (x| /P i

P 2 + g
2σµνFµν + iǫ

|y) , (5.33)

12Note that the fundametal-representation version of this operator, given by eq. (3.17), appears in the

dipole gluon helicity TMD and the Jaffe-Manohar (JM) gluon helicity PDF at small-x after the expansion

of the exponential phases, as shown above in section 3.1.

– 55 –



J
H
E
P
0
7
(
2
0
2
2
)
0
9
5

where we use the identity

/P
2

= P 2 +
g

2
σµνFµν . (5.34)

Here the subscript A denotes the gluon-only background field.

To construct the expansion in inverse powers of p− we write the propagator as an

infinite series

T [ψ(x)ψ̄(y)]A = i(x| /P 1

P 2 + iǫ
|y) − ig(x| /P 1

P 2 + iǫ

1

2
σµνFµν

1

P 2 + iǫ
|y) (5.35)

+ig2(x| /P 1

P 2 + iǫ

1

2
σµνFµν

1

P 2 + iǫ

1

2
σρσFρσ

1

P 2 + iǫ
|y) + . . .

and substitute eq. (5.23) for each scalar propagator. Since each scalar propagator is pro-

portional to 1/p−, it is easy to see that to find the leading contribution at small x, it is

sufficient to consider only the first few orders of the expansion (5.35).

For brevity, let us also simplify the problem and instead of calculating the full quark

propagator consider only its contraction with γ+γ5. Indeed, as shown above in the LCOT

approach, it is the only contraction we need in order to derive the helicity evolution equa-

tions (cf. eq. (2.7b)).13

Starting with eq. (5.35) we obtain14

T[ψβ(x)ψ̄α(y)]A[γ+γ5]αβ (5.36)

=

(
− 1

2π
θ(x−−y−)

∞∫

0

dp−

(2p−)2
+

1

2π
θ(y−−x−)

0∫

−∞

dp−

(2p−)2

)
e−ip−(x−y)+

(x|tr
{((

p2
⊥

2p−
+A+

)
γ−−P iγi

)

×e
−i

p2
⊥

2p−
x−

[
− ig

2

x−∫

y−

dz−
(

V [x−,z−]+
igx−

2p−
({pk,Ak}+gAkAk)(x−)V [x−,z−]+

iz−

2p−
V [x−,z−]P 2

⊥

− ig

2p−

x−∫

z−

dz−
1 z−

1 V [x−,z−
1 ]{P k,F−k}V [z−

1 ,z−]
)

σµνFµν(z−)
(

V [z−,y−]− iz−

2p−
P 2

⊥V [z−,y−]

− igy−

2p−
V [z−,y−]({pk,Ak}+gAkAk)(y−)− ig

2p−

z−∫

y−

dz−
2 z−

2 V [z−,z−
2 ]{P k,F−k}V [z−

2 ,y−]
)

+
g2

8p−

x−∫

y−

dz−
1

z−

1∫

y−

dz−
2 V [x−,z−

1 ]σµνFµν(z−
1 )V [z−

1 ,z−
2 ]σρσFρσ(z−

2 )V [z−
2 ,y−]

]
e

i
p2

⊥

2p−
y−

γ+γ5

}
|y)+O

(
1

(p−)4

)
.

Now we calculate the trace of gamma matrices and simplify the structure of operators.

To do the latter, we utilize the following relations:

[P 2, Pµ] = i{P α, Fαµ} (5.37)

and

g

∫ x−

y−
dz−[x−, z−]F−m[z−, y−] = Pm[x−, y−] − [x−, y−]Pm . (5.38)

13For a more general derivation see refs. [63–65].
14Note that in the scalar propagators one should take care of the exponential factors which, after expan-

sion, can be combined with boundary terms yielding contributions proportional to P 2
⊥.
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After a somewhat lengthy algebra we obtain

T[ψβ(x)ψ̄α(y)]A[γ+γ5]αβ (5.39)

=

(
− i

2π
θ(x− −y−)

∞∫

0

dp−

(2p−)2
+

i

2π
θ(y− −x−)

0∫

−∞

dp−

(2p−)2

)
e−ip−(x−y)+

×(x|
{

4ǫimP ie
−i

p2
⊥

2p−
x−

[
P mV [x−,y−]−V [x−,y−]P m +

ix−

2p−
(p2

⊥P m −P mP 2
⊥)V [x−,y−]

+
ix−

2p−
(P 2

⊥ −p2
⊥)V [x−,y−]P m +

iy−

2p−
V [x−,y−](P mp2

⊥ −P 2
⊥P m)+

iy−

2p−
P mV [x−,y−](P 2

⊥ −p2
⊥)

− ig

2p−
P m

x−∫

y−

dz−z−V [x−,z−]{P k,F−k}V [z−,y−]+
ig

2p−

x−∫

y−

dz−z−V [x−,z−]{P k,F−k}V [z−,y−]P m
]

+gǫmnP ie
−i

p2
⊥

2p−
x− 1

p−

[ x−∫

y−

dz−V [x−,z−]Fmn(z−)V [z−,y−]P i +P i

x−∫

y−

dz−V [x−,z−]Fmn(z−)V [z−,y−]
]

−2gǫmn

(
p2

⊥

2p−
+A+

)
e

−i
p2

⊥

2p−
x−

x−∫

y−

dz−
1 V [x−,z−

1 ]Fmn(z−
1 )V [z−

1 ,y−]

}
e

i
p2

⊥

2p−
y−

|y)+O
(

1

(p−)4

)
.

This result contains three types of operators. The first is the eikonal coupling of

the quark to the background field via Wilson lines V [x−, y−]. As we will see in explicit

calculation below, this operator does not contribute to helicity evolution. The helicity

evolution is defined by the sub-eikonal coupling via operators

x−∫

y−

dz−V [x−, z−]Fmn(z−)V [z−, y−] (5.40)

and
x−∫

y−

dz−z−V [x−, z−]{P k, F−k}V [z−, y−] . (5.41)

While the former operator is obviously related to the small-x polarized Wilson line (2.7a),

the relation of the latter to eqs. (2.7c) and (3.17) can be observed from the identity

g

x−∫

y−

dz−z−V [x−, z−]{P k, F−k}V [z−, y−] = i

x−∫

y−

dz−z−V [x−, z−][P−, P 2
⊥]V [z−, y−]

= −x−P 2
⊥V [x−, y−] + y−V [x−, y−]P 2

⊥ +

x−∫

y−

dz−V [x−, z−]P 2
⊥V [z−, y−] , (5.42)

where the last operator is nothing else but the polarized Wilson line (2.7c).
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Alternatively, one can use

g

x−∫

y−

dz−z−[x−,z−]{P k,F−k}[z−,y−]=P kg

x−∫

y−

dz−z−[x−,z−]F−k[z−,y−]+g

x−∫

y−

dz−z−[x−,z−]F−k[z−,y−]P k

−g2

x−∫

y−

dz−
1

∫ z−

1

y−

dz−
2 (z−

1 −z−
2 )[x−,z−

1 ]F−k[z−
1 ,z−

2 ]F−k[z−
2 ,y−] (5.43)

and (5.52) at small-x to relate the operator (5.41) to the polarized Wilson line (3.17).

Note that the helicity-independent operators like the one in the last line of eq. (5.43) or

the eikonal Wilson lines never contribute to helicity evolution which we will explicitly show

in our calculation below.

For now, let us keep the form of eq. (5.39) and calculate the coupling of the propagator

to the background quark field. It is easy to see that each such coupling comes along with

1/p−, so that at the leading order of the expansion in the inverse powers of p− it is

sufficient to add just a single quark insertion. As a result, for the full quark propagator in

the background field (contracted with γ+γ5) we have

T[ψβ(x)ψ̄α(y)][γ+γ5]αβ = T[ψβ(x)ψ̄α(y)]A[γ+γ5]αβ (5.44)

−g2

∫
d4z1

∫
d4z2tr

{
(x| i /P

P 2 + iǫ
|z1)γρtaψ(z1)(z1| −i

P 2 + iǫ
|z2)abψ̄(z2)γρtb(z2| i /P

P 2 + iǫ
|y)γ+γ5

}

+O

(
1

(p−)4

)
.

Substituting the scalar propagators we obtain

T [ψβ(x)ψ̄α(y)][γ+γ5]αβ = T [ψβ(x)ψ̄α(y)]A[γ+γ5]αβ (5.45)

+

(
− i

2π
θ(x− − y−)

∞∫

0

dp−

(2p−)2
+

i

2π
θ(y− − x−)

0∫

−∞

dp−

(2p−)2

)
e−ip−(x−y)+

tr

{
(x|P iγie

−i
p2

⊥

2p−
x−

× ig2

2p−

∫ x−

y−

dz−
1

∫ z−

1

y−

dz−
2 V [x−, z−

1 ]γρtaψ(z−
1 )U [z−

1 , z−
2 ]abψ̄(z−

2 )γρtbV [z−
2 , y−]e

i
p2

⊥

2p−
y−

γjP j |y)γ+γ5

}

+O

(
1

(p−)4

)
.

Next we use the Fierz identity to decompose the product of background quark fields

in terms of the Dirac matrices, i.e., we apply

Γ =
1

4
tr [Γ] I +

1

4
tr [γµΓ]γµ +

1

8
tr [σµνΓ]σµν − 1

4
tr [γµγ5Γ]γµγ5 +

1

4
tr [γ5Γ]γ5 , (5.46)

which is valid for an arbitrary gamma-matrix Γ. Employing eq. (5.46) we can calculate the
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trace in (5.45) getting

T [ψβ(x)ψ̄α(y)][γ+γ5]αβ = T [ψβ(x)ψ̄α(y)]A[γ+γ5]αβ (5.47)

+

(
− i

2π
θ(x− − y−)

∞∫

0

dp−

(2p−)2
+

i

2π
θ(y− − x−)

0∫

−∞

dp−

(2p−)2

)
e−ip−(x−y)+

(x|Pie
−i

p2
⊥

2p− x−

× ig2

p−

∫ x−

y−
dz−

∫ z−

y−
dz′−V [x−, z−]ta

(
− iǫijψβ(z−)ψ̄α(z′−)[γ+]αβ

+gijψβ(z−)ψ̄α(z′−)[γ+γ5]αβ

)
U [z−, z′−]abtbV [z′−, y−]e

i
p2

⊥
2p− y−

Pj |y) + O

(
1

(p−)4

)
.

At this point we clearly see that the coupling of the propagator to the background quark

field is defined by the polarized Wilson line (2.7b). We will also see that the coupling

via (2.7d) does not survive in helicity evolution.

Though the equation (5.47) we obtained is quite lengthy, it can be significantly sim-

plified in the case of the shock-wave background when there are no fields outside the

shock-wave. The result (5.47) can be simplified even further if we integrate it over the

longitudinal coordinates and consider a particular case of x = y = x1 which we will use

later in the derivation of helicity evolution, see the diagram III in figure 3.

Indeed, after changing the sign of p− and taking into account that

(x1| pi

p2
⊥

O pj

p2
⊥

|x1) =

∫
d2z(x1| pi

p2
⊥

|z)O(z)(z| pj

p2
⊥

|x1) =

∫
d2z(x1| pj

p2
⊥

|z)O(z)(z| pi

p2
⊥

|x1) = (x1| pj

p2
⊥

O pi

p2
⊥

|x1)

(5.48)

is symmetric under i ↔ j for an arbitrary operator O(z), we obtain

0∫

−∞

dx−

∞∫

0

dy− T[ψβ(x−,x1)ψ̄α(y−,x1)][γ+γ5]αβ (5.49)

= − 1

π

∞∫

0

dp−

p−
(x1| ǫ

impi

p2
⊥

g

∞∫

−∞

dz−z−V [−∞,z−]{P k,F−k}V [z−,∞]
pm

p2
⊥

|x1)

− 1

2π

∞∫

0

dp−

p−
(x1| pi

p2
⊥

(
ǫmn ig

∞∫

−∞

dz−V [−∞,z−]FmnV [z−,∞]

−g2

∞∫

−∞

dz−
1

z−

1∫

−∞

dz−
2 V [−∞,z−

2 ]taψβ(z−
2 )U [z−

2 ,z−
1 ]abψ̄α(z−

1 )[γ+γ5]αβtbV [z−
1 ,∞]

)
pi

p2
⊥

|x1)+O

(
1

(p−)2

)
.

Note that the higher-order terms of the expansion in inverse powers of p− do not contain

a logarithm
∫ dp−

p− which dominates at small x. The reader should also note that the large

logarithm arises in the terms with sub-eikonal operators (5.40) and (5.41), while the eikonal

Wilson lines do not contribute.

Now we use the identity (5.43), introduce the integration over the intermediate trans-

verse coordinate x2 and perform the Fourier transformations over transverse momenta
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using15

(x1| pi

p2
⊥

|x2) =
i

2π

xi
12

x2
12

, (x1|p
ipk

p2
⊥

|x2) =
1

2π

δikx2
12 − 2xi

12xk
12

x4
12

. (5.50)

We obtain

0∫

−∞

dx−

∞∫

0

dy− T[ψβ(x−,x1)ψ̄α(y−,x1)][γ+γ5]αβ (5.51)

=
ig

2π3

∞∫

0

dp−

p−

∫
d2x2

ǫmkxm
12

x4
12




∞∫

−∞

dz−z−Vx
2
[−∞,z−]F−k(z−,x2)Vx

2
[z−,∞]




− i

8π3

∞∫

0

dp−

p−

∫
d2x2

1

x2
12


2g

∞∫

−∞

dz−Vx
2
[−∞,z−]F12(z−,x2)Vx

2
[z−,∞]

+ ig2

∞∫

−∞

dz−
1

z−

1∫

−∞

dz−
2 Vx

2
[−∞,z−

2 ]taψβ(z−
2 ,x2)Ux

2
[z−

2 ,z−
1 ]abψ̄α(z−

1 ,x2)[γ+γ5]αβtbVx
2
[z−

1 ,∞]


 .

We can finally relate the operator in the first term of (5.51) to the polarized Wilson

line (3.17),

ig

∞∫

−∞

dz−z−Vx
2
[∞,z−]F−k Vx

2
[z−,−∞]=−ig

∞∫

−∞

dz−Vx
2
[∞,z−](z−∂kA−+Ak)Vx

2
[z−,−∞] (5.52)

=− ig

2
lim

L−→∞




∞∫

−∞

dz−Vx
2
[∞,z−]




z−∫

−L−

dξ−∂kA−+Ak


Vx

2
[z−,−∞]

+

∞∫

−∞

dz−Vx
2
[∞,z−]


−

L−∫

z−

dξ−∂kA−+Ak


Vx

2
[z−,−∞]


=

1

2

∞∫

−∞

dz−Vx
2
[∞,z−]

[
Dk −

←

Dk

]
Vx

2
[z−,−∞] ,

and rewrite our result in a compact form

P +

2s

0∫

−∞

dx−

∞∫

0

dy− T[ψβ(x−,x1)ψ̄α(y−,x1)][γ+γ5]αβ =
1

8π3

∞∫

0

dp−

p−

∫
d2x2

x2
21

[
2

ǫkmxm
21

x2
21

V kG[2]†
x

2
+V pol[1]†

x
2

]
.

(5.53)

This is our final result for the quark propagator in the background field which we will

use in the calculation of the helicity evolution equations. While we consider a particular

projection of the propagator, we should mention that our method of derivation is completely

general and can be used beyond the problem of helicity evolution.

5.3 Evolution equation for Q10 in the background field method

In this section we will use the results we obtained in the previous section for the gluon

and quark propagators in the background field to derive the evolution equation for the

15Note that in the last equation we neglect the instantaneous term, see the discussion after eq. (4.3)

above.
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polarized dipole amplitude Q10. Following the logic of the background field method and

the rapidity factorization approach we define the amplitude as

Q10(σ) ≡ 1

2Nc

〈〈
T tr

[
V0 V

pol[1] †
1

]
+ T tr

[
V

pol[1]
1 V †

0

] 〉〉
(σ), (5.54)

where the operators are constructed from fields with longitudinal momentum fraction p−

restricted from above by a cutoff scale σ. As we discussed in section 5.1, to construct the

evolution equation for the amplitude we shift the scale to a lower value σ′ and integrate

the matrix element in (5.54) over the fields with σ > p− > σ′, see eq. (5.8), while keeping

the fields with momenta p− < σ′ fixed. We will perform this integration at the one-loop

level which is represented by the diagrams in figure 3.

Let us start with the calculation of the diagram I. Expanding Wilson lines of the

operators in eq. (5.54) one can readily obtain

(
Ttr

[
V0 V

pol[1] †
1

]
+c.c.

)

I
=

g2 P +

s

∞∫

0

dx−
0

0∫

−∞

dx−
1 tr

[
V0[∞,x−

0 ]taV0[x−
0 ,−∞] (5.55)

×V1[−∞,x−
1 ] tb V1[x−

1 ,∞]
]

T[Aa+(x−
0 ,x0)F b12(x−

1 ,x1)]+c.c.

=
g2 P +ǫij

s
tr

[
taV0 tb V †

1

]
∞∫

0

dx−
0

0∫

−∞

dx−
1 T[Aa+(x−

0 ,x0)∂iA
b
j(x−

1 ,x1)]+c.c. ,

where in the last line we use the shock-wave approximation to simplify the gauge factors

as V0[∞, x−
0 ] → 1, V0[x−

0 , −∞] → V0, both for x−
0 > 0, etc.

The subsequent steps of the calculation are straightforward. Substituting the gluon

propagator in the shock-wave background field (5.31)

T[Aa+(x−
0 ,x0)∂iAbj(x−

1 ,x1)]

∣∣∣
x−

0
>x−

1

=
i

2π

∞∫

0

dp−

2p−
(x0|e−i

p2
⊥

2p−
x−

0
pm

p−
Gmn(∞,−∞)piδj

ne
i

p2
⊥

2p−
x−

1 |x1)ab, (5.56)

where operator Gmn describes the interaction of the “quantum” gluon with the shock-wave

background, and integrating over the longitudinal coordinates we obtain

(
Ttr

[
V0V

pol[1]†
1

]
+c.c.

)

I
=− ig2P +ǫij

πs
tr

[
taV0 tb V †

1

]
∞∫

0

dp−(x0|pm

p2
⊥

Gmn(∞,−∞)
piδj

n

p2
⊥

|x1)ab+c.c.. (5.57)

Note that until this point we have not explicitly restricted the integration over the longitu-

dinal momentum p−. However, one should take into account that the matrix element 5.54

is integrated over the fields with σ > p− > σ′. As a result, the integration over p− in

eq. (5.57) should be restricted to

∞∫

0

dp− →
σ∫

σ′

dp− . (5.58)

For brevity, we will perform this substitution at the very end of our calculation.
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In an analogous way one can perform the calculation of diagrams II, I′ and II′ in

figure 3. Adding all terms together we obtain

(
Ttr

[
V0 V

pol[1]†
1

]
+c.c.

)

I+II+I′+II′
= − ig2 P +ǫij

πs
tr

[
taV0 tb V †

1

] ∞∫

0

dp− (5.59)

×
[
(x0|pm

p2
⊥

Gmn(∞,−∞)
piδj

n

p2
⊥

|x1)−(x1|p
iδj

m

p2
⊥

Gmn(∞,−∞)
pn

p2
⊥

|x0)−(x0 → x1)

]ab

+c.c. ,

where the second term in the last line corresponds to the diagram II, and the last two

terms are the sum of the diagrams I′ and II′.

Now we need to substitute the explicit form of the operator Gmn from eq. (5.32). Let

us show that the first term of the operator, i.e., the interaction described by the Wilson

line U does not provide any contribution to the evolution equation. Indeed, substituting

this term into eq. (5.59) we obtain a trivial combination

(x0|pm

p2
⊥

Gmn(∞, −∞)
piδj

n

p2
⊥

|x1)ab − (x1|p
iδj

m

p2
⊥

Gmn(∞, −∞)
pn

p2
⊥

|x0)ab (5.60)

→ (x0| pj

p2
⊥

Uab pi

p2
⊥

|x1) − (x1| pi

p2
⊥

Uab pj

p2
⊥

|x0) = (x1| pi

p2
⊥

Uab pj

p2
⊥

|x0) − (x1| pi

p2
⊥

Uab pj

p2
⊥

|x0) = 0 .

Moreover, for the same reason, the interaction of the gluon with the shock wave via oper-

ators Upol[1] and

∞∫

−∞

dz−
1

z−
1∫

−∞

dz−
2 (z−

1 − z−
2 )U [∞, z−

1 ]F−kU [z−
1 , z−

2 ]F−kU [z−
2 , −∞] (5.61)

does not contribute to helicity evolution as well.

Substituting the remaining three terms of eq. (5.32) into eq. (5.59) and introducing the

integration over the intermediate coordinate x2 (see eq. (A.2)), after some straightforward

algebra we obtain

(
Ttr

[
V0V

pol[1]†
1

]
+c.c.

)

I+II+I′+II′

=
g2ǫij

π
tr

[
taV0tbV †

1

]
∞∫

0

dp−

p−

∫
d2x2 (5.62)

×




(
(x1| pi

p2
⊥

|x2)(x2|p
jpk

p2
⊥

|x0)+(x1|p
ipk

p2
⊥

|x2)(x2| pj

p2
⊥

|x0)

)
gP +

s

∞∫

−∞

dz−z−U2[∞,z−]F−k(z−,x2)U2[z−,−∞]

− ǫjn(x1| pi

p2
⊥

|x2)(x2| pn

p2
⊥

|x0)U
pol[1]
2 −(x0→x1)

]ab

+c.c..

Finally, we need to substitute the Fourier transformations16

(x1| pi

p2
⊥

|x2) =
i

2π

xi
12

x2
12

, (x1|p
ipk

p2
⊥

|x2) =
1

2π

δikx2
12 − 2xi

12xk
12

x4
12

(5.63)

16Note again that in the last equation we neglect the instantaneous contribution, see the discussion after

eq. (4.3).
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into eq. (5.62), which yields

(
Ttr

[
V0V

pol[1]†
1

]
+c.c.

)

I+II+I′+II′

=− g2

4π3
tr

[
taV0tbV †

1

]
∞∫

0

dp−

p−

∫
d2x2 (5.64)

×





[
2ǫkj xj

21

x4
21

− ǫkj(xj
21+xj

20)

x2
21x2

20

−2x20×x21

x2
21x2

20

(
xk

21

x2
21

−xk
20

x2
20

)]
igP +

s

∞∫

−∞

dz−z−U2[∞,z−]F−k(z−,x2)U2[z−,−∞]

−
[

1

x2
21

−x21·x20

x2
21x2

20

]
U

pol[1]
2

}ab

+c.c..

Now let us discuss the operator in the second line of eq. (5.64). It is easy to see

that this operator is nothing else but a small-x version of the operator in the dipole gluon

helicity TMD and the Jaffe-Manohar (JM) gluon helicity PDF (see also the discussion

in section 3.1). This operator can be obtained by expanding the exponential factor and

keeping only the term linear in x, cf. eq. (3.6),

∞∫

−∞

dz−eixP + z−
U2[∞, z−]F+k(z−,x2)U2[z−,−∞] (5.65)

=

∞∫

−∞

dz−U2[∞, z−]F+k U2[z−,−∞]+ ixP +

∞∫

−∞

dz− z−U2[∞, z−]F+k U2[z−,−∞]+ . . .

= −
∞∫

−∞

dz−U2[∞, z−]∂kA+ U2[z−,−∞]+ ixP +

∞∫

−∞

dz− z−U2[∞, z−]F+k U2[z−,−∞]+ . . . .

Here the first term of the last line can be rewritten as a derivative of the Wilson line

and for this reason describes the eikonal helicity-independent coupling of the “quantum”

gluon to the shock-wave background. The helicity-dependent coupling in the small-x limit

is described by the second term which explicitly appears in eqs. (5.65) and (5.31) for the

gluon propagator.

Using eq. (5.52) one can rewrite this operator in terms of the adjoint polarized Wilson

line of the second kind defined in eq. (4.7). We obtain

(
Ttr

[
V0 V

pol[1] †
1

]
+c.c.

)

I+II+I′+II′

=
g2

4π3
tr

[
tbV0 ta V †

1

]
∞∫

0

dp−

p−

∫
d2x2 (5.66)

×
{[

2ǫkj xj
21

x4
21

− ǫkj(xj
21 +xj

20)

x2
21x2

20

− 2x20 ×x21

x2
21x2

20

(
xk

21

x2
21

− xk
20

x2
20

)]
U

kG[2]
2 +

[
1

x2
21

− x21 ·x20

x2
21x2

20

]
U

pol[1]
2

}ba

+c.c. .

Let us now calculate the contribution of the diagram III. Using the shock-wave ap-

proximation we can write the following expression for this diagram

(
T tr

[
V0 V

pol[1] †
1

]
+ c.c.

)

III
(5.67)

=
g2P +

2 s

0∫

−∞

dx−
1

∞∫

0

dx−
2 tr

(
V0 ta T[ψβ(x−

1 , x1)ψ̄α(x−
2 , x1)] [γ+γ5]αβ tb

)
U ba

1 + c.c. .
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Substituting the expression for the quark propagator in the background field (5.53)

and integrating over longitudinal coordinates we obtain

(
T tr

[
V0 V

pol[1] †
1

]
+ c.c.

)

III
(5.68)

=
αs

2π2

∞∫

0

dp−

p−

∫
d2x2

(
2

ǫijxj
21

x4
21

tr[tbV0 ta V
iG[2]†

2 ]U ba
1 +

1

x2
21

tr[V0taV
pol[1]†

2 tb]U ba
1

)
+ c.c. .

Finally, one needs to calculate the eikonal diagrams. Since this calculation is similar

to the derivation of the Balitsky-Kovchegov (BK) evolution equation [44–47] with the

well-known kernel
x2

10

x2
21 x2

20
, we will not present the details of the calculation here. Let us

just mention that this calculation can be done similar to the calculation presented above.

However, for the eikonal diagrams, the dominant contribution with the logarithmic integral∫ dp−

p− comes from the interaction through the eikonal Wilson line of the gluon propagator

in the background field, see the first term in eq. (5.32).

Let us now assemble all the terms together. We have

1

2Nc

〈〈
Ttr

[
V0V

pol[1]†
1

]
+c.c.

〉〉
(σ)=

1

2Nc

〈〈
Ttr

[
V0V

pol[1]†
1

]
+c.c.

〉〉

0

(σ) (5.69)

+
αsNc

2π2

σ∫

σ′

dp−

p−

∫
d2x2

{[
1

x2
21

−
x21·x20

x2
21x2

20

]
1

N2
c

〈〈
tr

[
tbV0taV †

1

]
(U

pol[1]
2 )ba+c.c.

〉〉
(σ′)

+

[
2ǫij xj

21

x4
21

−
ǫij(xj

21+xj
20)

x2
21x2

20

−
2x20×x21

x2
21x2

20

(
xi

21

x2
21

−
xi

20

x2
20

)]
1

N2
c

〈〈
tr

[
tbV0taV †

1

]
(U

iG[2]
2 )ba+c.c.

〉〉
(σ′)

}

+
αsNc

4π2

σ∫

σ′

dp−

p−

∫
d2x2

x2
21

{
1

N2
c

〈〈
tr[V0taV

pol[1]†
2 tb]Uba

1

〉〉
(σ′)+2

ǫijxj
21

x2
21

1

N2
c

〈〈
tr[tbV0taV

iG[2]†
2 ]Uba

1

〉〉
(σ′)+c.c.

}

+
αsNc

2π2

σ∫

σ′

dp−

p−

∫
d2x2

x2
10

x2
21x2

20

{
1

N2
c

〈〈
tr

[
tbV0taV

pol[1]†
1

]
Uba

2

〉〉
(σ′)−

CF

N2
c

〈〈
tr

[
V0V

pol[1]†
1

]〉〉
(σ′)+c.c.

}
,

where, following the logic of the background field method, we insert the limits of the

integral over p− and identify the Wilson lines as constructed out of the background fields

with p− < σ′. Now we can see that up to a trivial change of variables we are in a full

agreement with the result obtained in the LCOT approach above, given in eq. (4.15).

The result of a similar calculation employing the background field method in the adjoint

representation, which is not shown here, is also in agreement with eq. (4.19).

5.4 Evolution equation for Gi
10

in the background field method

The operator definition of the polarized dipole amplitude Gi
10 is given by eq. (4.2). Of

course, to derive the evolution equation for the amplitude one can directly start with

that definition. However, we would like to remind the reader that the corresponding

operator (3.17) is a small-x version of the operator in the definition of the dipole gluon

helicity TMD and the Jaffe-Manohar (JM) gluon helicity PDF in eqs. (3.1) and (3.2). To

emphasise this relation let us start with an alternative definition of the amplitude Gi
10

which is more obviously related to the aforementioned distributions.

– 64 –



J
H
E
P
0
7
(
2
0
2
2
)
0
9
5

Indeed, using eq. (5.52) one can rewrite the definition (4.2) as

Gi
10(σ) ≡ igP +

2sNc

〈〈
T tr


V †

0

∞∫

−∞

dz− z−V1[∞, z−] F +i V1[z−, −∞]


 + c.c.

〉〉
(σ) . (5.70)

Following the background field method, to derive the evolution equation for Gi
10 let us

start with the operator definition (5.70) and integrate the matrix element over fields with

σ > p− > σ′ while keeping the background fields with p− < σ′ fixed. At the one-loop level

this corresponds to the calculation of diagrams in figure 5.

Let us start with the calculation of the diagram IV. Rewriting the initial operator as

T tr


V †

0

∞∫

−∞

dz− z−V1[∞, z−] F +i V1[z−, −∞]


 + c.c.

= −T tr


V †

0

∞∫

−∞

dz−V1[∞, z−] ( z− ∂iA+ + Ai) V1[z−, −∞]


 + c.c. , (5.71)

expanding the Wilson lines and simplifying the gauge factors using the shock-wave approx-

imation we obtain
(

Ttr

[
V †

0

∞∫

−∞

dz−z−V1[∞,z−]F +iV1[z−,−∞]

]
+c.c.

)

IV

(5.72)

=tr
[
V †

0 taV1tb
]
ig

∞∫

0

dx−

0∫

−∞

dz−
(
z−T[Aa+(x−,x0)∂iAb+(z−,x1)]+T[Aa+(x−,x0)Abi(z−,x1)]

)
+c.c..

Now we need to substitute the gluon propagators in the shock-wave background. Using

eq. (5.31) we find

T[Aa+(x−,x0)∂iAb+(z−,x1)]
∣∣∣
x−>z−

=− i

2π

∞∫

0

dp−

2p−
(x0|e−i

p2
⊥

2p−
x− pm

p−
Gmn(∞,−∞)

pipn

p−
e

i
p2

⊥

2p−
z−

|x1)ab

(5.73)

and

T[Aa+(x−,x0)Abi(z−,x1)〉
∣∣∣
x−>z−

=
1

2π

∞∫

0

dp−

2p−
(x0|e−i

p2
⊥

2p− x− pm

p−
Gmn(∞,−∞)δi

ne
i

p2
⊥

2p− z−

|x1)ab .

(5.74)

With this result it is straightforward to integrate over the longitudinal coordinates x− and

z−, obtaining
(

Ttr

[
V †

0

∞∫

−∞

dz− z−V1[∞,z−]F +i V1[z−,−∞]

]
+c.c.

)

IV

(5.75)

= −tr
[
V †

0 taV1tb
] ig

π

∞∫

0

dp−

{
2(x0|pm

p2
⊥

Gmn(∞,−∞)
pipn

p4
⊥

|x1)ab +(x0|pm

p2
⊥

Gmi(∞,−∞)
1

p2
⊥

|x1)ab

}
.
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Employing a similar technique one can calculate the diagrams V, IV′ and V′ in figure 5.

For the sum of the diagrams we have

(
T tr

[
V †

0

∞∫

−∞

dz− z−V1[∞, z−] F +i V1[z−, −∞]

]
+ c.c.

)

IV+V+IV′+V′

(5.76)

= −tr
[
V †

0 taV1tb
] ig

π

∞∫

0

dp−

{
2(x0|pm

p2
⊥

Gmn(∞, −∞)
pipn

p4
⊥

|x1) + 2(x1|p
ipm

p4
⊥

Gmn(∞, −∞)
pn

p2
⊥

|x0)

+ (x0|pm

p2
⊥

Gmi(∞, −∞)
1

p2
⊥

|x1) + (x1| 1

p2
⊥

Gin(∞, −∞)
pn

p2
⊥

|x0) − (x0 → x1)

}ab

.

After this we need to substitute the operator Gmn which describes the interaction of

the “quantum” gluon in figure 5 with the shock-wave background field. Similar to the case

of the dipole amplitude Q10, the operators U , Upol[1], and (5.61) do not contribute to the

evolution of the dipole amplitude Gi
10. For example, substituting

Gmn(∞, −∞) → gmnU (5.77)

we obtain

2(x0|p
m

p2
⊥

U
pipm

p4
⊥

|x!)+2(x1|p
ipm

p4
⊥

U
pm

p2
⊥

|x0)+(x0| pi

p2
⊥

U
1

p2
⊥

|x1)+(x1| 1

p2
⊥

U
pi

p2
⊥

|x0)−(x0 → x1) (5.78)

= −2(x1|p
ipm

p4
⊥

U
pm

p2
⊥

|x0)+2(x1|p
ipm

p4
⊥

U
pm

p2
⊥

|x0)−(x1| 1

p2
⊥

U
pi

p2
⊥

|x0)+(x1| 1

p2
⊥

U
pi

p2
⊥

|x0)−(x0 → x1) = 0 .

Substituting the remaining terms of Gmn and introducing the integration over the

intermediate variable x2 we rewrite eq. (5.76) as

(
Ttr

[
V †

0

∞∫

−∞

dz− z−V1[∞,z−]F +i V1[z−,−∞]

]
+c.c.

)

IV+V+IV′+V′

(5.79)

= −tr
[
V †

0 taV1tb
] g

π

∞∫

0

dp−

p−

∫
d2x2

{[
(x1| 1

p2
⊥

(
δim − 2pipm

p2
⊥

)
|x2)(x2|p

mpk

p2
⊥

|x0)

+2(x1|p
ipmpk

p4
⊥

|x2)(x2|pm

p2
⊥

|x0)+(x1| pk

p2
⊥

|x2)(x2| pi

p2
⊥

|x0)

]
g

∞∫

−∞

dz−z−U2[∞,z−]zF−kU2[z−,−∞]z

−ǫmn(x1| 1

p2
⊥

(
δim − 2pipm

p2
⊥

)
|x2)(x2| pn

p2
⊥

|x0)
s

P +
U

pol[1]
2 −(x0 → x1)

}ab

.

The Fourier transformations in this equation can be calculated using eqs. (4.22), (5.50),

and

(x1|p
ipmpk

p4
⊥

|x2) =
i

4π

[
δimxk

12

x2
12

+
δikxm

12

x2
12

+
δmkxi

12

x2
12

− 2
xi

12xm
12xk

12

x4
12

]
, (5.80)
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which gives
(

Ttr

[
V †

0

∞∫

−∞

dz− z−V1[∞,z−]F +i V1[z−,−∞]

]
+c.c.

)

IV+V+IV′+V′

= tr
[
V †

0 taV1tb
] g

8π3

∞∫

0

dp−

p−

∫
d2x2

×
{[

δik

(
−2

x12 ·x20

x2
12x2

20

+
1

x2
20

)
+2

xi
12xk

20

x2
12x2

20

(
2

x12 ·x20

x2
20

−1

)
+2

xi
12xk

12

x2
12x2

20

(
2

x12 ·x20

x2
12

−1

)
(5.81)

−2
xi

20xk
20

x4
20

]
g

∞∫

−∞

dz−z−U2[∞,z−]F−kU2[z−,−∞]+

[
ǫin xn

20

x2
20

−2xi
12

x12 ×x20

x2
12x2

20

]
is

P +
U

pol[1]
2 −(x0 → x1)

}ab

.

From this result we see that at small x the helicity evolution operator

∞∫

−∞

dz−z−Vx[∞, z−]F−kVx[z−, −∞]

mixes with the adjoint version of the same operator and with U
pol[1]
2 . We can finally use

eq. (5.52) and write the sum of all the diagrams in figure 5 as a single evolution equation17

1

2Nc

〈〈
tr

[
V †

0 V
iG[2]

1

]
+c.c.

〉〉
(σ)=

1

2Nc

〈〈
tr

[
V †

0 V
iG[2]

1

]
+c.c.

〉〉

0
(σ) (5.82)

+
αsNc

4π2

σ∫

σ′

dp−

p−

∫
d2x2

{[
ǫij xj

21

x2
21

−ǫij xj
20

x2
20

+2xi
21

x21×x20

x2
12x2

20

]
1

N2
c

〈〈
tr

[
tbV †

0 taV1

]
(U

pol[1]
2 )ab+c.c.

〉〉
(σ′)

+

[
δij

(
3

1

x2
21

−2
x21·x20

x2
12x2

20

− 1

x2
20

)
−2

xi
21xj

20

x2
12x2

20

(
2

x21·x20

x2
20

+1

)
+2

xi
21xj

21

x2
21x2

20

(
2

x21·x20

x2
21

+1

)

+2
xi

20xj
20

x4
20

−2
xi

21xj
21

x4
21

]
1

N2
c

〈〈
tr

[
tbV †

0 taV1

]
(U

jG[2]
2 )ab+c.c.

〉〉
(σ′)−(x0→x1)

}

+
αsNc

2π2

σ∫

σ′

dp−

p−

∫
d2x2

x2
10

x2
21x2

20

{
1

N2
c

〈〈
tr

[
tbV †

0 taV
iG[2]

1

](
U2

)ab
〉〉

(σ′)−CF

N2
c

〈〈
tr

[
V †

0 V
iG[2]

1

]〉〉
(σ′)+c.c.

}
,

where the last line is the sum of the eikonal diagrams, see the discussion after eq. (5.68).

After a trivial change of variables we find a complete agreement with eq. (4.26) above. A

similar calculation employing the background field method in the adjoint representation

yields the helicity evolution equation (4.27).

6 Small-x asymptotics of the quark and gluon helicity distributions and

g1 structure function in the large-Nc limit

As can be seen in eqs. (3.25), (3.26), (3.50), (3.52) and (3.61), gluon and quark helicity

TMD and PDF, together with the g1 structure function, can be determined for small x

using the polarized dipole amplitudes. In particular, the small-x asymptotics of the former

will have the same intercepts as the large-zs asymptotics of the latter. In the large-Nc limit

considered in this section, the polarized dipole amplitudes, G(x2
10, zs) and G2(x2

10, zs), can

be specified by solving eqs. (4.53). Since, at large Nc, Q(x2
10, zs) ≈ G(x2

10, zs), knowing G

17Here we also explicitly introduce the limits for the integral over p−.
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and G2 gives us all the flavor-singlet helicity PDFs and TMDs, along with the g1 structure

function. Owing to the complicated form of eqs. (4.53), we solve the system numerically.

As mentioned above, we begin by examining the asymptotic forms of G(x2
10, zs) and

G2(x2
10, zs) as zs grows large. As discussed in [31, 37], it is more convenient to express

eqs. (4.53) in terms of

η =

√
αsNc

2π
ln

zs

Λ2
, η′ =

√
αsNc

2π
ln

z′s

Λ2
and η′′ =

√
αsNc

2π
ln

z′′s

Λ2
,

s10 =

√
αsNc

2π
ln

1

x2
10Λ2

, s21 =

√
αsNc

2π
ln

1

x2
21Λ2

and s32 =

√
αsNc

2π
ln

1

x2
32Λ2

.

(6.1)

In terms of these parameters, eqs. (4.53), with the help of eq. (4.81), can be written as

G(s10,η) = G(0)(s10,η)+

η∫

s10

dη′

η′∫

s10

ds21

[
Γ(s10,s21,η′)+3G(s21,η′)

+2G2(s21,η′)+2Γ2(s10,s21,η′)

]
, (6.2a)

Γ(s10,s21,η′) = G(0)(s10,η′)+

η′∫

s10

dη′′

η′′∫

max[s10, s21+η′′−η′]

ds32

[
Γ(s10,s32,η′′)+3G(s32,η′′)

+2G2(s32,η′′)+2Γ2(s10,s32,η′′)

]
, (6.2b)

G2(s10,η) = G
(0)
2 (s10,η)+2

s10∫

0

ds21

η−s10+s21∫

s21

dη′
[
G(s21,η′)+2G2(s21,η′)

]
, (6.2c)

Γ2(s10,s21,η′) = G
(0)
2 (s10,η′)+2

s10∫

0

ds32

η′−s21+s32∫

s32

dη′′
[
G(s32,η′′)+2G2(s32,η′′)

]
, (6.2d)

where the ordering 0 ≤ s10 ≤ s21 ≤ η′ is assumed in eqs. (6.2b) and (6.2d). This is the

only region where Γ and Γ2 appear in any large-Nc evolution kernel.

Now, we discretize the integrals in eqs. (6.2) with step size δ both in η and s10 directions.

We express the discretized version of the dipole amplitudes such that

Gij = G (iδ, jδ) , Γikj = Γ (iδ, kδ, jδ) ,

G2,ij = G2 (iδ, jδ) , Γ2,ikj = Γ2 (iδ, kδ, jδ) .
(6.3)

With all the definitions outlined above, we obtain the following discretized evolution equa-
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tions.

Gij = G
(0)
ij + δ2

j−1∑

j′=i

j′∑

i′=i

[
Γii′j′ + 3 Gi′j′ + 2 G2,i′j′ + 2 Γ2,ii′j′

]
, (6.4a)

Γikj = G
(0)
ij + δ2

j−1∑

j′=i

j′∑

i′=max[i, k+j′−j]

[
Γii′j′ + 3 Gi′j′ + 2 G2,i′j′ + 2 Γ2,ii′j′

]
, (6.4b)

G2,ij = G
(0)
2,ij + 2 δ2

i−1∑

i′=0

j−i+i′∑

j′=i′

[
Gi′j′ + 2 G2,i′j′

]
, (6.4c)

Γ2,ikj = G
(0)
2,ij + 2 δ2

i−1∑

i′=0

j−k+i′∑

j′=i′

[
Gi′j′ + 2 G2,i′j′

]
. (6.4d)

To obtain the values of Gij and G2,ij for 0 ≤ i ≤ imax and 0 ≤ j ≤ jmax, we only need to

know the following dipole amplitudes:

• Gij and G2,ij such that 0 ≤ i < j, with i ≤ imax and j ≤ jmax. Note that if i ≥ j, then

we have Gij = G
(0)
ij and G2,ij = G

(0)
2,ij , as can be seen from eq. (6.4a) and eq. (6.4c).

• Γikj and Γ2,ikj such that 0 ≤ i ≤ k ≤ j, with k ≤ imax and j ≤ jmax. This is because

the neighbor dipole amplitudes only appear in eqs. (6.4a) and (6.4b).

In a fashion similar to [37], the numerical computation becomes more efficient once we

realize the following recursive relations that follow directly from eqs. (6.4) for j > 0:

Gij =





G
(0)
ij −G

(0)

i(j−1)+Gi(j−1)+δ2
j−1∑
i′=i

[
Γii′(j−1)+3Gi′(j−1)+2G2,i′(j−1)+2Γ2,ii′(j−1)

]
, i<j

G
(0)
ij , i=j

, (6.5a)

Γikj =





G
(0)
ij −G

(0)

i(j−1)+Γi(k−1)(j−1)+δ2
j−1∑

i′=k−1

[
Γii′(j−1)+3Gi′(j−1)+2G2,i′(j−1)+2Γ2,ii′(j−1)

]
, i<k

Gij , i=k

,

(6.5b)

G2,ij =





G
(0)
2,ij−G

(0)

2,i(j−1)+G2,i(j−1)+2δ2
i−1∑
i′=0

[
Gi′(i′+j−i)+2G2,i′(i′+j−i)

]
, i<j

G
(0)
2,ij , i=j

, (6.5c)

Γ2,ikj =

{
G

(0)
2,ij−G

(0)

2,i(j−1)+Γ2,i(k−1)(j−1) , i<k

G2,ij , i=k
. (6.5d)

In the case where j = 0, each of the dipole amplitudes simply equals its corresponding

inhomogeneous term, as can be seen from eqs. (6.4).

In order to perform the numerical computation, we also need to rewrite the non-

homogeneous terms, eq. (4.54), in terms of the new variables, s10 and η. This gives

G(0)(s10,η) =
α2

sCF

2Nc
π

√
2π

αsNc
[CF η −2(η −s10)] ⇒ G

(0)
ij =

α2
sCF

2Nc
π

√
2π

αsNc
[(CF −2)j +2 i]δ , (6.6a)

G
(0)
2 (s10,η) =

α2
sCF

2Nc
π

√
2π

αsNc
s10 ⇒ G

(0)
2,ij =

α2
sCF

2Nc
π

√
2π

αsNc
iδ . (6.6b)
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(a) ln |G(s10, η)|. (b) ln |G2(s10, η)|.

Figure 6. The plots of logarithms of the absolute values of the two polarized dipole amplitudes

G and G2 versus s10 and η, for the 0 ≤ s10, η ≤ ηmax = 40 range. The amplitudes are computed

numerically using step size δ = 0.05. The inhomogeneities near the η = s10 line result from the

Born initial conditions and the discretization error.

In particular, in terms of the discrete variables, i and j, the one-step differences of the

non-homogeneous terms are

G
(0)
ij − G

(0)
i(j−1) =

α2
sCF

2Nc
π

√
2π

αsNc
(CF − 2) δ , G

(0)
2,ij − G

(0)
2,i(j−1) = 0 . (6.7)

Now, we numerically compute all the dipole amplitudes in eqs. (6.5) with the help of

eq. (6.7), using the step size of δ = 0.05. In the range where 0 ≤ η, s10 ≤ ηmax = 40,

the logarithms of G(x2
10, zs) and G2(x2

10, zs) are plotted in figure 6. From the plots, we

see that both amplitudes grow roughly linearly with η − s10, which corresponds to an

exponential growth in zsx2
10. Mild deviations from the aforementioned pattern, including

the inhomogeneities along η = s10 line, likely result from discretization errors. However,

their actual cause must be determined with certainty through an analytic solution.

As mentioned previously, for the purpose of this section, it is sufficient for us to deter-

mine the asymptotic form of G(s10 = 0, η) and G2(s10 = 0, η) as η → ∞. To do so, we plot

the logarithm of each amplitude at s10 = 0 against η. These plots are shown in figure 7.

As expected, both functions increase linearly once we get sufficiently far away from η = 0,

where the non-homogeneous term and the discretization error remain relatively significant.

This justifies the following ansatze as η → ∞,

G(s10 = 0, η) ∼ e
αhη

√
2π

αsNc , G2(s10 = 0, η) ∼ e
αh,2η

√
2π

αsNc , (6.8)

where αh and αh,2 are given by the slopes of the functions in figures 7a and 7b, respectively.

Since the exponential growth is more dominant at larger η’s, we deduce the approximation

of αh and αh,2 for this step size, δ, and maximum rapidity, ηmax, by regressing ln [G(0, η)]

and ln [G2(0, η)], respectively, on η over the range where 0.75 ηmax ≤ η ≤ ηmax. For

example, at δ = 0.05 and ηmax = 40, corresponding to figure 7, we obtain αh = (3.6825 ±
0.0002)

√
αsNc

2π and αh,2 = (3.6821 ± 0.0002)
√

αsNc
2π . The uncertainty is estimated from the

residual of linear regression performed on ln [G(0, η)] or ln [G2(0, η)] at 95% confidence level.
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100

ln|G(0, η)|

(a) ln |G(0, η)|.

10 20 30 40
η

50

100

ln|G2(0, η)|

(b) ln |G2(0, η)|.

Figure 7. The plots of logarithms of the absolute values of the two polarized dipole amplitudes

at s10 = 0 versus η, for the 0 ≤ η ≤ ηmax = 40 range. The amplitudes are computed numerically

using step size δ = 0.05. The kinks near η = 0 occur due to sign flips in G(0, η) and G2(0, η). By

eqs. (6.6), the Born initial condition leads to G
(0)
0j < 0 for G(0, η) at any j > 0.

δ 0.0125 0.016 0.025 0.032 0.0375 0.05 0.0625 0.075 0.08 0.1

M(δ) 10 10 20 20 30 40 50 60 60 70

Table 1. The maximum, M(δ), of ηmax computed for each step size, δ.

Having estimated the intercepts, αh and αh,2, at δ = 0.05 and ηmax = 40, we then

repeat the steps for other choices of δ and ηmax. In particular, for each step size, δ, we

numerically compute the intercepts for ηmax ∈ {10, 20, . . . , M(δ)}, where M(δ) is given in

table 1 for each δ employed in this work.

Now, we obtain the estimated intercepts and their uncertainties for all 37 combinations

of δ and ηmax. Since the continuum limit corresponds to δ → 0 and ηmax → ∞, we attempt

to model the intercepts using δ and 1/ηmax as independent variables. Afterward, with the

correct model at hand, we will be able to predict the intercepts at δ = 1/ηmax = 0 and use

them as our best estimate for the actual intercepts in the continuum limit.

In what follows, we will detail our process to determine the intercept, αh, in the

continuum limit. The process for αh,2 will be similar. Inspired by the success of [31] in

numerically estimating the correct intercept as verified by the analytic solution [32], we

employ polynomial regression models of various degrees, with interaction terms included,

weighted by the uncertainties of the estimated intercepts. In particular, we consider four

following nested models with increasing maximum polynomial degrees:

• Model 1: αh = a1 ,

• Model 2: αh = a1 + a2δ + a3
ηmax

,

• Model 3: αh = a1 + a2δ + a3
ηmax

+ a4δ2 + a5δ
ηmax

+ a6
η2

max
,

• Model 4: αh = a1 + a2δ + a3
ηmax

+ a4δ2 + a5δ
ηmax

+ a6
η2

max
+ a7δ3 + a8δ2

ηmax
+ a9δ

η2
max

+ a10
η3

max
.

Once we fit and evaluate all four models to our numerical estimates for αh, the Akaike

information criterion (AIC) [125] decreases significantly from model 1 to model 2 and from

model 2 to model 3. However, the AIC is roughly equal for models 3 and 4. Furthermore,
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(a) αh. (b) αh,2.

Figure 8. The plots of estimated intercepts, αh and αh,2, at each δ and 1/ηmax (blue dots),

together with the best-fitted quadratic surface given by eq. (6.9) (yellow surfaces). The continuum

limit, δ = 1/ηmax = 0, corresponds to the lower-left corner of each plot.

the parameters a7, a8, a9 and a10 are all insignificant when the t-test is performed at 10%

significance level for each of them. This implies that all degree-3 terms in model 4 are

not significantly different from zero, that is, model 4 would not account for our intercept

results any better than model 3. Together with the fact that all parameters for model 3

are significant, we decide to use model 3, the quadratic model, to fit the values of αh. The

process and, more importantly, the conclusion about the final model choice are exactly the

same for αh,2, although the resulting parameter values are slightly different.

With model 3, the estimated relation between each intercept and δ and 1/ηmax are

given by

αh =
[
3.661+1.503δ −1.740(1/ηmax)−4.414δ2 +0.116δ (1/ηmax)+1.429(1/ηmax)2

]
√

αsNc

2π
, (6.9a)

αh,2 =
[
3.660+1.509δ −1.734(1/ηmax)−4.438δ2 −0.034δ (1/ηmax)+0.873(1/ηmax)2

]
√

αsNc

2π
. (6.9b)

The estimated quadratic surfaces are plotted together with the intercepts we computed

previously for various combinations of δ and 1/ηmax in figure 8.

Next, we compute the continuum-limit intercepts, whose estimated values are the first

terms in the right-hand sides of eq. (6.9). The uncertainties are estimated while taking

into account both the residuals of the quadratic model and the uncertainties of each data

point, i.e., intercept estimated at each δ and 1/ηmax. This gives

αh = (3.661 ± 0.006)

√
αsNc

2π
, αh,2 = (3.660 ± 0.009)

√
αsNc

2π
. (6.10)

Recall that the uncertainties in eq. (6.10) come from (i) the residual of linear regression

performed on ln |G(0, η)| and ln |G2(0, η)| at each δ and ηmax, and (ii) the residual of

polynomial regression performed on αh and αh,2.
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Now, the pure-glue BER intercept can be shown to be

αh =

√
17 +

√
97

2

√
αs Nc

2π
≈ 3.664

√
αs Nc

2π
(6.11)

by solving the corresponding IREE from [5] analytically [2]. Eq. (6.11) agrees with both αh

and αh,2 from eq. (6.10), within the uncertainties. While the construction of an analytic

solution for eqs. (4.53) is left for future work, eq. (6.11) already provides us with the

analytic expression for the intercept.

Finally, empoying eqs. (6.8) and (6.10) in eqs. (3.26), (3.50) and (3.62), we obtain the

following small-x asymptotics for the quark and gluon helicity PDF, together with the g1

structure function:

∆Σ(x, Q2) ∼ ∆G(x, Q2) ∼ g1(x, Q2) ∼
(

1

x

)3.66
√

αs Nc
2π

. (6.12)

7 Conclusions and outlook

Let us summarize what we have accomplished here. We have extended the helicity evo-

lution formalism of [1–3, 31–33, 36, 37, 40] to include the sub-eikonal operator
←
D

i

Di (or,

equivalently, Di −
←
D

i

). This generalized the small-x evolution equations for the relevant

sub-eikonal operators Di −
←
D

i

, F 12, and ψ̄γ+γ5ψ to those in eqs. (4.15), (4.19), (4.26),

and (4.27). The corresponding DLA evolution equations are given by eqs. (4.53) and (4.75)

in the large-Nc and large-Nc&Nf limits, respectively. We demonstrated that the large-Nc

equations agree with the spin-dependent DGLAP evolution at small x including up to three

loops in the splitting function. We solved these equations numerically showing that the re-

sulting asymptotics of the gluon and flavor-singlet quark helicity distributions, along with

the g1 structure function, are given by eq. (6.12) and agree with that found by BER [5] in

the pure-glue case. We have thus completed the construction of the DLA helicity evolution

equations at small-x in the s-channel/shock wave formalism, which we also refer to as the

light-cone operator treatment (LCOT). We have also cross-checked the LCOT calculation

using the background field method and found a full agreement between the two.

The future steps of working with this now-complete LCOT formalism include solving

the large-Nc&Nf equations (4.75) and comparing the solution to those found in [5] and

in [37]. The two solutions in [5] and [37] have a qualitatively different dependence on x:

the latter exhibits sign-changing oscillations with ln(1/x), while the former changes sign

only once with decreasing x. It would be important to identify which, if any, of those

behaviours are exhibited by the solution of eqs. (4.75).

In the effort to go beyond the large-Nc and large-Nc&Nf limits, a helicity version of

the Jalilian-Marian-Iancu-McLerran-Weigert-Leonidov-Kovner (JIMWLK) [48–53] evolu-

tion was constructed in [36], also without taking the operator
←
D

i

Di into account. The

helicity JIMWLK kernel from [36] also needs to be extended to include the effects of

this operator. The initial conditions for the helicity JIMWLK evolution are given by the
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helicity-dependent version of the McLerran-Venugopalan (MV) model [100–102] derived

in [38], which may also have to be extended to include the terms into the weight functional

needed for the calculations of the expectation value of the Di −
←
D

i

operator.

To further improve the precision of helicity evolution one should go beyond the DLA

limit. This was attempted in [40] using the earlier s-channel helicity formalism of [1–

3, 31–33, 36, 37]. In addition to resumming all the DLA and SLAL terms, the evolution

equations constructed in [40] sum up all the single logarithmic corrections coming from

the UV transverse integrals. These corrections were labeled SLAT in [40]. It remains to

be seen whether the results of [40] can simply be added to the equations obtained in this

work for a complete DLA+SLA helicity evolution at small x. It appears likely that the

IR transverse logarithms need to be resummed as well, such that an interfacing of our

evolution found above with the full spin-dependent DGLAP equation may also be needed

for the DLA+SLA helicity evolution.

Last but not least, the helicity formalism of [1–3, 31] has recently been used to suc-

cessfully describe the world data on the proton and neutron g1 structure functions at small

x [22]. This was the first-ever helicity phenomenology work based on small-x evolution

only, not taken as an improvement of the DGLAP anomalous dimension [28, 29]. It would

be interesting and important to see how much the conclusions of [22] would be affected by

the corrections included in this work. At the very least, the formalism presented here would

allow for a natural inclusion of the gluon helicity PDF (3.26) into the calculation. The fact

that the intercept/power of x in eq. (6.12) is larger than that given by the evolution in [1–

3, 31–33, 36, 37] may generate more quark and gluon spin at small x, while simultaneously

challenging the convergence of the integrals in eqs. (1.2) at small x. The latter prob-

lem may be addressed by including saturation corrections (non-trivial unpolarized dipole

S-matrices) and/or running of the coupling constant in the kernels of our helicity evolution.
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A Schwinger’s notation

In this appendix, we introduce the Schwinger’s notation that we use for the quark and

gluon propagators in section 5. Following Schwinger [126], we consider the coherent states

|x) and |p) which are eigenvectors of the position and momentum operators,

x̂µ|x) = xµ|x), p̂µ|p) = pµ|p) . (A.1)

The states define a particle with position x and momentum p, respectively, and satisfy the

completeness
∫

d4x|x)(x| = 1,

∫
d4p

(2π)4
|p)(p| = 1, (A.2)

and orthogonality

(x|p) = e−ipx, (p|x) = eipx, (x|y) = δ4(x − y), (p|q) = (2π)4δ4(p − q) (A.3)

relations.

For an arbitrary function of the momentum operator, we have

(x|f(p̂)|y) =

∫
d4q

(2π)4
(x|f(p̂)|q) (q|y) =

∫
d4q

(2π)4
f(q) e−iq(x−y) . (A.4)

In particular, this motivates the following representation for the scalar propagator:

(x| 1

p̂2 + iǫ
|y) =

∫
d4p

(2π)4

1

p2 + iǫ
e−ip(x−y) . (A.5)

Similarly, for an arbitrary function of the position operator f(x̂)|x) = f(x)|x). As a

result, for the Wilson line operator

V̂ ≡ P exp


ig

∞∫

−∞

dx−A+(x−, x̂)


 , (A.6)

we write

V̂ |x) = Vx|x) . (A.7)

Note that, for brevity, in the main text of the paper we omit the hat symbol over the

position and momentum operators.
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