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Let G(d, n) be the Grassmannian manifold of n-dimensional 
subspaces of Rd, and let πV : Rd → V be the orthogonal 
projection. We prove that if μ is a compactly supported 
Radon measure on Rd satisfying the s-dimensional Frostman 
condition μ(B(x, r)) � Crs for all x ∈ Rd and r > 0, then

ˆ

G(d,n)

‖πV μ‖pLp(V ) dγd,n(V ) < ∞, 1 � p <
2d− n− s

d− s
.

The upper bound for p is sharp, at least, for d − 1 � s � d, 
and every 0 < n < d.
Our motivation for this question comes from finding improved 
lower bounds on the Hausdorff dimension of (s, t)-Furstenberg 
sets. For 0 � s � 1 and 0 � t � 2, a set K ⊂ R2 is called an 
(s, t)-Furstenberg set if there exists a t-dimensional family L
of affine lines in R2 such that dimH(K∩�) � s for all � ∈ L. As 
a consequence of our projection theorem in R2, we show that 
every (s, t)-Furstenberg set K ⊂ R2 with 1 < t � 2 satisfies

dimH K � 2s + (1 − s)(t− 1).
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This improves on previous bounds for pairs (s, t) with s >
1
2 and t � 1 + ε for a small absolute constant ε > 0. We 
also prove a higher dimensional analogue of this estimate for 
codimension-1 Furstenberg sets in Rd. As another corollary of 
our method, we obtain a δ-discretised sum-product estimate 
for (δ, s)-sets. Our bound improves on a previous estimate of 
Chen for every 1

2 < s < 1, and also of Guth-Katz-Zahl for 
s � 0.5151.
© 2022 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

This paper is concerned with the Lp regularity of orthogonal projections of fractal 
measures, with applications to (s, t)-Furstenberg sets. We introduce the following nota-
tion: M = M(Rd) stands for the space of compactly supported Radon measures on Rd, 
and Ms is the subset of those measures μ ∈ M which satisfy an s-dimensional Frostman 
condition: there exists a constant C > 0 such that μ(B(x, r)) � Crs for all x ∈ Rd and 
r > 0. The Grassmannian manifold of n-dimensional subspaces in Rd is denoted G(d, n), 
and the O(d)-invariant probability measure on G(d, n) is denoted γd,n. For V ∈ G(d, n), 
πV : Rd → V stands for the orthogonal projection onto V . Let us start with the following 
general question:

Question 1. Let 0 < n < d, and let μ ∈ Ms for some s > n. For which values of 
1 � p, q � ∞ does it hold that

http://creativecommons.org/licenses/by/4.0/
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I(p, q) :=

⎛⎜⎝ ˆ

G(d,n)

‖πV μ‖qLp(V ) dγd,n(V )

⎞⎟⎠
1/q

< ∞? (1.1)

The question is well-posed, since it is known since the works of Marstrand [21], Kauf-
man [17], and Mattila [23] that if μ ∈ Ms with s > n, then πV μ � Hn|V for γd,n almost 
every plane V ∈ G(d, n), and in fact I(2, 2) ∼d,n In(μ), where It(μ) stands for the t-
dimensional Riesz energy of μ. So, at least (1.1) holds for p = q = 2, for every s > n. This 
is not the best one can say: it follows easily from Falconer’s Fourier analytic approach [8]
and the Sobolev embedding theorem that if Is(μ) < ∞, then I(2n/(2n − s), 2) < ∞, see 
Section 3.1 for a few more details. Therefore, the answer to Question 1 (where we assume 
μ ∈ Ms instead of Is(μ) < ∞) is positive for all pairs (p, 2) with 1 � p < 2n/(2n − s). 
For s > 2n, the correct interpretation of this is that I(∞, 2) < ∞.

The results above only concern pairs of the form (p, 2), and the literature seems to be 
less complete for general pairs (p, q). Of course I(p, q1) � I(p, q2) for q1 � q2 by Hölder’s 
inequality, but this observation is unlikely to give any sharp results for q1 �= q2. While 
studying problems related to Furstenberg sets (more on this in Section 1.1), we needed 
to understand pairs of the form (p, p). We show the following:

Theorem 1.2. Let μ ∈ Ms with s > n. Then I(p, p) < ∞ for 1 � p < (2d −n −s)/(d −s).

The upper bound for “p” is sharp for d � 2, 0 < n < d, and d −1 � s � d, as the next 
example demonstrates. We do not know how sharp Theorem 1.2 is for n < s < d −1. The 
simplest unknown case occurs for d = 3, n = 1, and 1 < s < 2: what is the supremum 
of exponents p � 1 such that 

´
G(3,1) ‖πLμ‖pp dγ3,1(L) < ∞ for all μ ∈ Ms(R3) with 

1 < s < 2?

Example 1.3. Fix d � 2, 0 < n < d, and d − 1 � s < d. Let C ⊂ L0 := R × {0} ⊂ Rd

be an (s − (d − 1))-regular Cantor set (take C ⊂ [0, 1] × {0} for concreteness), and let 
μ := ν ×Hd−1|{0}×Bd−1 , where ν := Hs−d+1|C , and Bd−1 ⊂ Rd−1 is the open unit ball. 
Then μ ∈ Ms.

Let δ > 0, and let G ⊂ G(d, n) be the δ-neighbourhood of the submanifold G0 := {V ∈
G(d, n) : V ⊃ L0}. We record that G0 is a (d − n)(n − 1)-dimensional submanifold: the 
easiest way to get convinced is to note that the restriction “V ⊃ L0” is equivalent to 
“V ⊥ ⊂ L⊥

0 ”, and the set {W ∈ G(d, d −n) : W ⊂ L⊥
0 } is diffeomorphic to G(d −1, d −n), 

a manifold of dimension (d − n)((d − 1) − (d − n)) = (d − n)(n − 1). Noting that γd,n is 
an n(d − n)-regular measure (see [9, Proposition 4.1]), it follows that

γd,n(G) ∼ δn(d−n) · δ− dimG0 = δd−n.

Now, let us consider the projections πV μ for V ∈ G0, and eventually V ∈ G. Note first 
that
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C = πL0(sptμ) = πL0(πV (sptμ)), V ∈ G0,

using that all the planes in G0 contain L0. Therefore

sptπV μ = πV (sptμ) ⊂ B(1) ∩ (π−1
L0

(C) ∩ V ), V ∈ G0.

Recalling that C is (s − d + 1)-regular, and L0 ⊂ V , the set on the right is regular of 
dimension (s − d + 1) + (n − 1) = n + s − d. It can therefore be covered by ∼ δd−s−n

balls in V of radius δ. In particular, Hn(sptπV μ) � δd−s. These arguments were carried 
for V ∈ G0, but the conclusion remains valid for V ∈ G = G0(δ). Now a lower bound for 
‖πV μ‖Lp(V ) follows from Hölder’s inequality:

‖πV μ‖pLp(V ) � Hn(sptπV μ)1−p � δ(d−s)(1−p) V ∈ G, p � 1.

Finally,

ˆ

G(d,n)

‖πV μ‖pLp(V ) dγd,n(V ) � γd,n(G) · δ(d−s)(1−p) ∼ δd−n+(d−s)(1−p).

The right hand side stays bounded as δ → 0 only if d − n + (d − s)(1 − p) � 0, or 
equivalently p � (2d − n − s)/(d − s). This matches the upper bound in Theorem 1.2.

Remark 1.4. The generalisation of Example 1.3 to the case s < d − 1 is not obvious. For 
s � d − 1, the measure μ was defined as Hausdorff measure supported on a union of 
parallel (d − 1)-planes (or pieces thereof, to be accurate). In the case d = 3, n = 1, and 
1 < s < 2 (for example) it might therefore seem natural to define μ := Hs|C×[0,1], where 
C ⊂ R2 × {0} has Hs−1(C) = 1. However, with this choice of “μ” it looks like

ˆ

G(3,1)

‖πLμ‖pLp(L) dγ3,1(L) < ∞, 1 � p < (3 − s)/(2 − s).

This upper bound for “p” is higher, for all s � 1, than the one predicted by Theorem 1.2.

Remark 1.5. In addition to the sharpness of Theorem 1.2 for n < s < d − 1, another 
special case of Question 1 is worth highlighting: for μ ∈ Ms(R2) with s > 1, determine 
the supremum of exponents p � 1 such that I(p, 1) < ∞. This is closely related to the 
question Peres and Schlag raise in [34, §9.2(ii)]. More precisely, they ask for the value 
of p(s) := sup{p � 1 : πLμ ∈ Lp for a.e. L ∈ G(2, 1), for all μ ∈ Ms(R2)}. We do not 
even have a good guess for the right answer. Measures supported on concentric unions 
of circles give one upper bound for p(s), and measures supported on Furstenberg sets 
give another one. These upper bounds do not coincide.
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Remark 1.6. While the problem regarding I(p, 1) seems difficult, and most likely un-
solved, Theorem 1.2 may be known to experts in harmonic analysis: it is essentially an 
Lp → Lp,α estimate for the (d − n)-plane transform, and there is a formidable amount 
of literature on estimating this operator. For the pairs (d, n) = (d, 1), d � 2, one could, 
with a little effort, deduce Theorem 1.2 from the work of Littman [19], by first expressing 
the (d − 1)-plane transform (also known as the Radon transform) as an averaging oper-
ator over the (d − 1)-dimensional paraboloid in Rd, see the identities (2.1) and (2.9) in 
Christ’s paper [2], and eventually exploiting the curvature of the paraboloid, as Littman 
does.

For more general dimensions and co-dimensions, Strichartz [39, Theorem 2.2] proves 
Lp → Lp,α estimates for the n-plane transform in Rd, but only for 1 < p � 2 (there is a 
good reason, see Remark 3.5). Theorem 1.2 is also closely related to the papers of Drury 
[5], D. Oberlin and Stein [27], and D. Oberlin [28,29]. In these works, the authors prove 
sharp Lp to Lq estimates for the Radon transform, but as far as we can see, they do not 
contain the Lp to Lp-Sobolev result we need for our purposes. Mixed norm estimates 
for Radon transforms are intimately connected with Kakeya and Besicovitch (n, k)-set 
problems, and there is a wealth of literature for d � 3, see for example [11,18,30,35,40]. 
Smoothness and integrability estimates for Radon transforms are also of interest to 
mathematicians working on inverse problems: see the book [26] by Natterer, and in 
particular the bibliographical notes at the end of Section 2. In summary, there is a non-
zero probability that Theorem 1.2 is covered by existing literature, but we could not 
easily find it, and in any case our proof is self-contained and fairly elementary.

1.1. Applications

We then move to the applications which motivate Question 1 for the pairs (p, p). The 
main one concerns Furstenberg (s, t)-sets, defined as follows. A set K ⊂ R2 is called an 
(s, t)-Furstenberg set if there exists a family L of affine lines with dimH L = t such that 
dimH(K ∩ �) � s for all � ∈ L. Here the dimension “dimH L” is defined by viewing L
as a subset of the metric space (A(2, 1), dA), the affine Grassmannian of all lines in the 
plane. We postpone the precise definition of the metric dA to Section 2, see (2.2).

The case t = 1 has attracted the most attention: Wolff [41] introduced the problem 
in the late 90s and showed that every (s, 1)-Furstenberg set K ⊂ R2, 0 < s � 1, satisfies

dimH K � max{2s, 1
2 + s}. (1.7)

Wolff also conjectured that the sharp estimate should be dimH K � 1
2 + 3s

2 . In part 
relying on the work of Katz and Tao [16], Bourgain in 2003 managed to improve on 
Wolff’s estimate by an “ε” in the case s = 1

2 . For 12 < s < 1, a similar ε-improvement was 
achieved in 2021 by the second author and Shmerkin [33], partly relying on the earlier 
paper [32]. In fact, [33] established that dimH K � 2s + ε(s, t) for Furstenberg (s, t)-sets 
with 0 < s < 1 and t ∈ (s, 2]. For 0 < s � 1 − ε, Wolff’s estimate remains the strongest 
2
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one, although an ε-improvement for the packing dimension of s-Furstenberg sets in this 
region of parameters was obtained by Shmerkin [36] in 2020.

For more general t ∈ [0, 2], lower bounds for Furstenberg (s, t)-sets have been recently 
obtained by Molter and Rela [25], Héra [13], Héra, Máthé, and Keleti [14], Lutz and Stull 
[20], and Héra, Shmerkin, and Yavicoli [15]. The best previous bounds for the number

γ(s, t) := inf{dimH K : K ⊂ R2 is an (s, t)-Furstenberg set}

are the following (combining contributions from all the papers cited above):

γ(s, t) �

⎧⎪⎪⎨⎪⎪⎩
s + t for s ∈ (0, 1] and t ∈ [0, s],
2s + ε(s, t) for s ∈ (0, 1] and t ∈ (s, 2s],
s + t

2 for s ∈ (0, 1] and t ∈ (2s, 2].

Our new result concerns the “high dimensional” region where s > 1
2 and t > 1:

Theorem 1.8. Let 0 < s � 1 and 1 < t � 2. Then every (s, t)-Furstenberg set K ⊂ R2

satisfies

dimH K � 2s + (1 − s)(t− 1). (1.9)

More generally, every (d − 1, s, t)-Furstenberg set K ⊂ Rd, with d � 2, 1 < t � d and 
0 < s � d − 1 satisfies

dimH K � (2s + 2 − d) + (t− 1)(d− 1 − s)
d− 1 . (1.10)

We postpone the definition of (d − 1, s, t)-Furstenberg sets for a moment, see Sec-
tion 1.1.1. The estimate (1.9) is stronger than the bound s + t/2, due to Héra [13], in the 
range s > 1

2 and t > 1, and also improves on the bound 2s +ε(s, t) for (1 −s)(t −1) > ε(s, t)
(the constant ε(s, t) > 0 is very small). We derive Theorem 1.8 as a corollary of a follow-
ing δ-discretised incidence result, which also gives some information in higher dimensions. 
To state the result, we first define the notion of (δ, s, C)-sets:

Definition 1.11 ((δ, s, C)-set). Let 0 � s < ∞, 0 < δ < 1, and C > 0. Given a metric 
space (X, d), a bounded set P ⊂ X is called a (δ, s, C)-set if for every δ � r � 1 and 
every ball B ⊂ X of radius r we have

|P ∩B|δ � C · |P |δ · rs.

Here |A|δ denotes the δ-covering number of A, i.e. the minimal number of δ-balls needed 
to cover A (we set |A|δ := ∞ if A cannot be covered by finitely many δ-balls).
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In the following, if A ⊂ Rd, and r > 0, then A(r) := {x ∈ Rd : dist(x, A) � r}.

Theorem 1.12. Let 0 < n < d and C, CF � 1. Let V ⊂ A(d, n) be a δ-separated set of 
n-planes, and let P ⊂ B(1) ⊂ Rd be a δ-separated (δ, t, CF )-set with t > d −n. For r > 0
let Ir(P, V) = {(p, V ) ∈ P × V : p ∈ V (r)}. Then, for every ε > 0 we have

|ICδ(P,V)| �C,d,ε,t δ
−ε · CF · |P | · |V|n/(d+n−t) · δn(t+1−d)(d−n)/(d+n−t).

To derive Theorem 1.8 from Theorem 1.12, the incidence result needs to be applied to 
the dual set of (a suitable discretisation of) “L”, the t-dimensional set of lines appearing 
in the definition of (s, t)-Furstenberg sets. While it is unlikely that Theorem 1.8 is sharp 
for any s ∈ (0, 1) or t ∈ [1, 2), Theorem 1.12 is fairly sharp in the plane, essentially 
because the set V is “only” assumed to be δ-separated. This matter is discussed further 
in Section 5, see Proposition 5.2 and Remark 5.3.

Theorem 1.12, or rather its dual version, also allows us to make progress on the 
δ-discretised sum-product problem in the “supercritical” range t > 1

2 :

Corollary 1.13. Let δ ∈ (0, 1], s, t, t′ ∈ [0, 1] with t + t′ > 1, and c, c′ > 0. Let A, B, C ⊂
[1, 2] be δ-separated sets such that |A| = δ−s, B is a (δ, t, c)-set and C is a (δ, t′, c′)-set. 
Then,

max{|A + B|δ, |A · C|δ} �α,s,t,t′,c,c′ δ
−α|A|, α < (t+t′−1)(1−s)

2 .

We are grateful to Josh Zahl for telling us that Corollary 1.13 follows from The-
orem 1.12 combined with an argument of Elekes [6], see Section 6.3 for the details. 
Corollary 1.13 applied with A = B = C (and assuming that A is a (δ, t)-set with 
t ∈ (1

2 , 1)) improves on recent results of Chen [1] for every t ∈ (1
2 , 1), and of Guth, Katz, 

and Zahl [12] for 1 > t > (
√

1113 − 21)/24 ≈ 0.5151. We refer the reader to these pa-
pers for more background and references on the δ-discretised sum-product problem. Since 
(2t −1)(1 −s)/2 > 0 for t ∈ (1

2 , 1) and s ∈ (0, 1), if we assume that B = C and B is a (δ, t)-
set with t ∈ (1

2 , 1), Corollary 1.13 also implies that max{|A +B|δ, |A ·B|δ} � |B| in cases 
where A is substantially smaller than B (to be precise, this works when s > 1/(3 − 2t); 
note that 1/(3 − 2t) < t for t ∈ (1

2 , 1), so the range s ∈ (1/(3 − 2t), t) is non-empty).

1.1.1. Higher dimensional Furstenberg sets
Theorem 1.8 mentions the notion of (n, s, t)-Furstenberg sets in Rd. These are defined 

just like (s, t)-Furstenberg sets, except that the set L ⊂ A(2, 1) is replaced by a t-
dimensional set V ⊂ A(d, n) of affine n-planes. Thus, a set K ⊂ Rd is called an (n, s, t)-
Furstenberg set if there exists a family V ⊂ A(d, n) with dimH V = t such that dimH(K∩
V ) � s for all V ∈ V. The dimension “dimH V” is defined relative to the metric on 
A(d, n), see Section 2. Since Theorem 1.8 is deduced via duality from Theorem 1.12, we 
only obtain information about the case n = d − 1.
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Furstenberg (n, s, t)-sets have been studied in many of the papers cited above, see 
[13–15]. Additionally, finite field versions of (n, s, t)-Furstenberg sets in Fd

p have been 
considered by Ellenberg and Erman [7], Dhar, Dvir, and Lund [3], and Zhang [42]. We 
also mention the paper of Zhang [43], where the author studies a discrete variant of the 
Furstenberg set problems in Rd.

We only discuss the existing bounds in the case n = d − 1. Héra in [13] proves 
that every (d − 1, s, t)-Furstenberg set K ⊂ Rd with (s, t) ∈ (d − 2, d − 1] × (0, d]
satisfies dimH K � s + t/d. In [14], Héra, Máthé, and Keleti prove the lower bound 
dimH K � 2s − d + 1 + min{t, 1} for all (s, t) ∈ (0, d − 1] × (0, d]. Clearly (1.10) improves 
on the H-K-M bound for all t ∈ (1, d]. One may calculate that (1.10) also improves on 
Héra’s bound for (s, t) ∈ (d − 2 + 1

d , d − 1] × (1, d].

1.2. Outline of the paper

The proof of Theorem 1.2 is conceptually quite straightforward: it is based on complex 
interpolation between the cases s = n and s = d. This argument is heavily influenced 
by the paper [39] of Strichartz. The technical details nevertheless take some work, see 
Section 3. Section 2 only contains some preliminaries.

Theorem 1.8 on (d − 1, s, t)-Furstenberg sets is reduced to the incidence estimate in 
Theorem 1.12 by applying point-plane duality, and standard discretisation arguments. 
The details are contained in Section 6. The proof of Theorem 1.12 is carried out in 
Section 4. The idea is easiest to explain in the plane. Imagine that P ⊂ R2 is a δ-separated 
(δ, t)-set (see Definition 1.11) with 1 < t � 2, and let L ⊂ A(2, 1) be a δ-separated line 
family with excessively many δ-incidences with P . Let μ ∈ Mt with sptμ = P (δ). If 
the word “excessive” is interpreted as the serious failure of Theorem 1.12, then it turns 
out that many radial projections ρxμ of μ relative to base points x ∈ sptμ = P (δ) are 
singular. (The reader should be warned that ρxμ is not precisely the push-forward of μ
under y �→ ρx(y), see (4.7) for the proper definition.)

This sounds like a contradiction: a result of the second author [31] says that the 
radial projections of a t-dimensional measure, t > 1, relative to its own base points are 
(typically) absolutely continuous with a density in Lp, for some p > 1. The result in 
[31] is proved via relating the radial and orthogonal projections of μ by the following 
formula:

ˆ
‖ρxμ‖pLp(S1) dμ(x) =

ˆ

S1

‖πeμ‖p+1
Lp+1(R) dH

1(e).

For a higher dimensional generalisation, see (4.18). With this identity in hand, we may 
estimate the right hand side by appealing to Theorem 1.2: it is finite for all p +1 < (3 −
t)/(2 − t), or equivalently p < 1/(2 − t). Pitting this information against the hypothetical 
singularity of the radial projections ρxμ yields Theorem 1.12. A similar approach also 
works in higher dimensions and co-dimensions: the details can be found in Section 4.
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As we already mentioned above, Section 5 contains a family of examples indicating 
the sharpness of Theorem 1.12. These examples will also indicate where the numerology 
in the lower bound (1.9) comes from.
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2. Preliminaries

We will write f � g as an abbreviation for the inequality f � Cg, where C > 0 is an 
absolute constant. If the constant C depends on a parameter a, we will write f �a g. 
Furthermore, f ∼ g and f ∼a g will denote g � f � g and g �a f �a g, respectively.

In addition to the notations “f � g” and “f ∼ g”, we will also employ “f � g” and 
“f ≈ g”. The notation f � g refers to an inequality of the form f � C · (log(1/δ))C · g, 
where C > 0 is an absolute constant, and δ > 0 is a parameter (always a “scale”) which 
will be clear from context. The two-sided inequality f � g � f is abbreviated to f ≈ g.

The notation B(x, r) stands for the closed ball of radius r > 0 around x. Usually 
x ∈ Rd, in which case B(x, r) denotes the usual Euclidean ball. Occasionally, x will 
belong to another metric space (e.g., the Grassmannian G(d, n), or the circle S1). In 
such cases B(x, r) denotes the metric ball. Sometimes we will write B(r) instead of 
B(0, r).

Our main result on incidences, Theorem 1.12, has been formulated in terms of (δ, s, C)-
sets. We recall (from Definition 1.11) that a bounded set P ⊂ X in a metric space (X, d)
is called a (δ, s, C)-set if

|P ∩B(x, r)|δ � C · |P |δ · rs, x ∈ X, δ � r � 1. (2.1)

If the value of the constant C > 0 is irrelevant, we may also talk casually about (δ, s)-
sets. For more information about basic properties of (δ, s)-sets, see [33, Section 2.1]. Our 
notion of (δ, s)-sets is not entirely canonical: an alternative common definition is where 
(2.1) is replaced by |P ∩ B(x, r)|δ � (r/δ)s. The definitions coincide when |P |δ ∼ δ−s. 
One difference between the definitions is worth noting: our definition implies that if P
is a non-empty (δ, s, C)-set, then |P |δ � δ−s/C. This follows from (2.1) applied to any 
ball B(x, δ) with x ∈ P . In contrast, the alternative definition |P ∩ B(x, r)|δ � (r/δ)s
rather implies an upper bound |P |δ � δ−s, at least if diam(P ) � 1.

In the paper we will only consider (δ, s)-sets in the Euclidean space (Rd, | · |), and in 
the affine Grassmannian (A(d, n), dA). The metric dA is defined as in [22, §3.16]: given 
V, W ∈ A(d, n), let V0, W0 ∈ G(d, n) and a ∈ V ⊥

0 , b ∈ W⊥
0 , be the unique n-planes and 
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vectors such that V = V0 + a and W = W0 + b. The distance between V and W is given 
by

dA(V,W ) := ‖πV0 − πW0‖op + |a− b|, (2.2)

where ‖·‖op denotes the operator norm. Note that G(d, n) can be seen as a submanifold 
of A(d, n), and the restriction of dA to G(d, n) × G(d, n) defines a metric on G(d, n).

For a set A ⊂ Rd and δ > 0, A(δ) will denote the δ-neighbourhood of A.

3. Lp-regularity of projections

3.1. Background

Let 0 < n < d, let G(d, n) be the Grassmannian of n-dimensional subspaces of Rd, 
and let M = M(Rd) be the family of compactly supported Radon measures on Rd. In 
this section we investigate the Lp-regularity of the projections of s-dimensional Frostman 
measures μ ∈ M to planes V ∈ G(d, n).

It is classical that if s > n, and μ ∈ M satisfies the s-dimensional Frostman condition 
μ(B(x, r)) � rs for balls B(x, r) ⊂ Rd, then

ˆ

G(d,n)

‖πV μ‖2
2 dγd,n(V ) < ∞,

where γd,n is the O(d)-invariant probability measure on G(d, n). This can be easily de-
duced from the potential theoretic method due to Kaufman [17] in R2 and Mattila [23]
in higher dimensions, or see [22, Theorem 9.7] for a textbook reference. In fact, a little 
more is known: if the s-dimensional Riesz energy Is(μ) is finite, s � n (in particular: 
if μ(B(x, r)) � rt for some t > s), then γd,n almost every projection πV μ lies in the 
fractional Sobolev space H(s−n)/2(V ) ∼= H(s−n)/2(Rn), and

ˆ

G(d,n)

ˆ

V

|π̂V μ(ξ)|2|ξ|s−n dHn(ξ) dγd,n(V ) � Is(μ). (3.1)

This approach via Fourier transforms was pioneered by Falconer [8], and the estimate 
(3.1) can be found for example in [24, (5.14)]. By the Sobolev embedding theorem [4, 
Theorem 6.5], it follows for that πV μ has a density in Lp� for γd,n a.e. V ∈ G(d, n), with 
p� := p�(n, s) := 2n/(2n − s), and indeed

ˆ

G(d,n)

‖πV μ‖2
Lp�(n,s)(V ) dγd,n(V ) � Is(μ), n � s < 2n. (3.2)

For 2n < s < d, one can even deduce that πV μ ∈ Cc(V ) for γd,n a.e. V ∈ G(d, n), and 
V �→ ‖πV μ‖L∞(V ) ∈ L2(G(d, n)), see the proof of [24, Theorem 5.4(c)] applied to πV μ.
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3.2. New results

We do not know how sharp the facts from Section 3.1 are under the hypothesis Is(μ) <
∞, but they are certainly unsatisfactory under the s-Frostman assumption μ(B(x, r)) �
rs. To see this, consider the situation in R2. If μ ∈ M(R2) with μ(B(x, r)) � rt for 
some 1 < t � 2, then one may deduce from the “mixed norm estimate” (3.2) that 
L �→ ‖πLμ‖2/(2−s) ∈ L2(G(2, 1)) for every s < t. It is reasonable that the exponent 
2/(2 − s) tends to infinity as s, t → 2, but it is unsatisfactory that the exponent “2” in 
“L2(G(2, 1))” stays constant. Indeed, for t = 2, trivially πLμ ∈ L∞ for every L ∈ G(2, 1), 
or in other words L �→ ‖πLμ‖∞ ∈ L∞(G(2, 1)). Therefore, one would expect that there 
exists an exponent p(s) ∈ [2, ∞) such that p(s) → ∞ as s → 2, and L �→ ‖πLμ‖p(s) ∈
Lp(s)(G(2, 1)) for every s-Frostman measure μ ∈ M(R2). This is a special case of the 
theorem below:

Theorem 3.3. Let 0 < n < d, and let μ ∈ M(Rd) with sptμ ⊂ B(1) satisfying the 
Frostman condition μ(B(x, r)) � CF r

s for some CF � 1, s > n, and for all balls 
B(x, r) ⊂ Rd. Then,

ˆ

G(d,n)

‖πV μ‖pp dγd,n(V ) �d,p,s CF , 2 � p <
2d− n− s

d− s
. (3.4)

Remark 3.5. Theorem 3.3 can be viewed as an Lp to Lp-Sobolev estimate for the (d −n)-
plane transform, and there is plenty of existing literature on this topic. The most relevant 
reference is the paper [39] by Strichartz. Using complex interpolation between H1 and 
L2, he proves in [39, Theorem 2.2] the following inequality for f ∈ S(Rd):

⎛⎜⎝ ˆ

G(d,n)

‖πV f‖qp,(d−n)/q dγd,n(V )

⎞⎟⎠
1/q

� ‖f‖Lp(Rd), 1 < p � 2.

Here 1/p + 1/q = 1. This looks a little like (3.4), with two main differences: (i) we are 
interested in exponents p > 2, and (ii) we want to see the Lp-norm of πV μ on the left 
hand side, instead of an Lp-Sobolev norm. The main reason why Strichartz’ estimates 
are restricted to the range 1 < p � 2 is that while the (d − n)-plane transform maps 
L1 to L1, and even H1 to H1, it fails to map L∞ to L∞. This would be the desirable 
right endpoint of interpolation in the range 2 � p < ∞. We will (morally) fix the issue 
by considering a “localised” (d −n)-plane transform, which maps Lp to Lp for every 1 �
p � ∞: such localised estimates are good enough to yield information about compactly 
supported measures. The point (ii) is fairly minor: if T is an operator which commutes 
with fractional Laplacians, such as the (d − n)-plane transform, then every estimate of 
the form ‖Tf‖p,α � C‖f‖p implies an estimate of the form ‖Tf‖p � C‖(−�)−α/2f‖p. 
Eventually, the latter kind of estimate will be applied with f = μ to reach (3.4).
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3.2.1. Fractional Laplacians
The fractional Laplacian operator “(−�)s” already appeared in the discussion above, 

and will also be used extensively in the arguments below. For a thorough introduction, 
see [38, Chapter V]. Here we just mention the basic definitions, and the facts we will 
need. Let S := S(Rd) be the space of Schwartz functions on Rd, and let f ∈ S. Then 
also f̂ ∈ S. If s ∈ C with Re s > −d/2, the function

ξ �→ (2π|ξ|)2sf̂(ξ) (3.6)

is locally integrable, and has polynomial growth, so in particular it defines a tempered 
distribution. Here ru+iv = ruriv for r � 0. By definition, (−�)sf is the tempered 
distribution whose Fourier transform is the function defined in (3.6). Thus,

̂(−�)sf = (2π| · |)2sf̂ , f ∈ S.

For Re s � 0, clearly (2π| · |)2sf̂ ∈ L1 ∩ L2 for f ∈ S, so (−�)sf is represented by a 
continuous L2-function by Plancherel and the Fourier inversion theorem. For s ∈ (0, d)
and f ∈ S, we will need to know that (−�)−s/2f is the function represented by the 
Riesz potential

Vs(f)(x) = cs

ˆ
f(y) dy

|x− y|d−s
, x ∈ Rd. (3.7)

Here cs = πd/2Γ(s/2)/Γ((d − s)/2) > 0. This follows from [38, Chapter V, Lemma 2]. 
The function Vs(f) is continuous if f ∈ S and s ∈ (0, d).

Finally, we will need the following fact about (−�)ivf for v ∈ R:

‖(−�)ivf‖Lp(Rd) � Cp,v‖f‖Lp(Rd), f ∈ S(Rd), 1 < p < ∞, (3.8)

where Cp,v � 1 grows polynomially in |v| (for p ∈ (1, ∞) fixed). In fact, f �→ (−�)ivf
is a Calderón-Zygmund operator. This follows from the Hörmander-Mihlin multiplier 
theorem, see [10, Theorem 5.2.7 + Example 5.2.9]. In particular, (−�)ivf ∈ Lp(Rd) for 
all p ∈ (1, ∞), when f ∈ S, and v ∈ R.

3.3. Proof of Theorem 3.3

We then turn to the details of Theorem 3.3. It will be convenient to parametrise the 
projections πV μ as follows. Let O(d) be the orthogonal group, and let π0(x1, . . . , xd) :=
(x1, . . . , xn) be the projection to the n first coordinates. Note that

π∗
0(x1, . . . , xn) = (x1, . . . , xn, 0, . . . , 0) ∈ Rd, (x1, . . . , xn) ∈ Rn.

For a complex Borel measure μ on Rd, and g ∈ O(d), we define
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πgμ := π0(g∗μ),

where g∗ is the adjoint of g (or the inverse, since g∗ = g−1 for g ∈ O(d)). Of course the 
definition πgμ above also extends to functions f ∈ L1(Rd), and then πgf ∈ L1(Rn). We 
record the following useful formula for the Fourier transforms:

π̂gμ(ξ) = μ̂(gπ∗
0(ξ)) =: μ̂(gξ), ξ ∈ Rn, g ∈ O(d). (3.9)

The second equation means that we have identified ξ ∈ Rn and π∗
0(ξ) ∈ Rd, and we will 

use this abbreviation in the sequel.
It is very well-known that if f ∈ S(Rd), then the projections πgf lie (quantitatively) 

in a certain homogeneous L2-Sobolev space for almost every g ∈ O(d). In fact:
ˆ

O(d)

‖πgf‖2,(d−n)/2 dg � ‖f‖2, f ∈ S(Rd). (3.10)

This formula is essentially based on the Plancherel formula and the identity
ˆ

O(d)

ˆ

Rn

|x|d−nf(gx) dx dg = c(d, n)
ˆ

Rd

f(x) dx, f ∈ L1(Rd), (3.11)

see [24, (24.2)]. We will need a slight variant of (3.10), so we include the full details 
below:

Lemma 3.12. Let 0 < n < d, ψ ∈ C∞
c (Rd), z ∈ C with Re z ∈ [0, 1], and let Tz be the 

operator

Tzf(g, x) := πg(ψ(−�)(1−z)(d−n)/4f)(x), (g, x) ∈ O(d) ×Rn, (3.13)

defined for f ∈ S(Rd), and taking values in measurable functions on O(d) ×Rn. Then,

‖Tzf‖L2(O(d)×Rn) �ψ,d,n ‖f‖L2(Rd), f ∈ S(Rd),

with bounds independent of Re z ∈ [0, 1].

Proof. Fix f ∈ S(Rd). Clearly ψ(−�)(1−z)(d−n)/4f ∈ Cc(Rd) ⊂ L1(Rd), so the Fourier 
transform formula (3.9) is available. We write hz(ξ) := (2π|ξ|)(1−z)(d−n)/2 for the symbol 
of (−�)(1−z)(d−n)/4, and we abbreviate ϕ := ψ̂. Then,

T̂zf(g, ξ) = (ϕ ∗ (hz f̂))(gξ), ξ ∈ Rn, g ∈ O(d),

where T̂zf(g, ξ) is the Fourier transform of x �→ Tzf(g, x) ∈ L1(Rn). With this formula 
in hand, we may apply the Plancherel identity for every fixed g ∈ O(d):
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‖Tzf‖2
L2(O(d)×Rn) =

ˆ

O(d)

ˆ

Rn

|(ϕ ∗ (hz f̂))(gξ)|2 dξ dg. (3.14)

Next, we claim that if f ∈ L2(Rd) is arbitrary (and not only f ∈ S(Rd)), then ξ �→
(ϕ ∗ (hz f̂))(gξ) ∈ L2(Rn) for almost every g ∈ O(d), and in fact

ˆ

O(d)

ˆ

Rn

|(ϕ ∗ (hz f̂))(gξ)|2 dξ dg �d,n,ψ ‖f‖2
L2(Rd). (3.15)

This follows from the next computation:

ˆ

O(d)

ˆ

Rn

|(ϕ ∗ (hz f̂))(gξ)|2 dξ dg �ψ

ˆ

O(d)

ˆ

Rn

(|ϕ| ∗ |hz f̂ |2)(gξ) dξ dg

=
ˆ

Rd

|ϕ(y)|
ˆ

O(d)

ˆ

Rn

(2π|gξ − y|)(1−Re z)(d−n)|f̂(gξ − y)|2 dξ dg dy

(3.11)∼d,n

ˆ

Rd

|ϕ(y)|
ˆ

Rd

|ξ|n−d|ξ − y|(1−Re z)(d−n)|f̂(ξ − y)|2 dξ dy

ξ �→x+y=
ˆ

Rd

|ϕ(y)|
ˆ

Rd

|x + y|n−d|x|(1−Re z)(d−n)|f̂(x)|2 dx dy

=
ˆ

Rd

|f̂(x)|2|x|(1−Re z)(d−n)
ˆ

Rd

|ϕ(y)||x + y|n−d dy dx �
ˆ

Rd

|f̂(x)|2dx.

The final inequality follows from the estimates (1 − Re z)(d − n) � d − n and

ˆ

Rd

|ϕ(y)||x + y|n−d dy �ψ |x|n−d,

using the rapid decay of ϕ = ψ̂, and recalling that n < d. In particular, a combination 
of (3.14)-(3.15) for f ∈ S(Rd) completes the proof of the lemma. �

By Lemma 3.12, and the density of S(Rd) ⊂ L2(Rd), the operators

Tz : (S(Rd), ‖ · ‖L2(Rd)) → L2(O(d) ×Rn), Re z ∈ [0, 1],

have unique extensions to operators L2(Rd) → L2(O(d) ×Rn). We keep denoting these 
operators with the same symbol Tz. We record that the extensions continue to have the 
following concrete representation: if Re z ∈ [0, 1], f ∈ L2(Rd), and G ∈ L2(O(d) × Rn), 
then
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ˆ

O(d)×Rn

(Tzf)(g, x)G(g, x) dx dg =
ˆ

O(d)

ˆ

Rn

(ϕ ∗ hz f̂)(gξ)Ĝ(g, ξ) dξ dg. (3.16)

Indeed, by the definition of the “abstract” extension Tz : L2(Rd) → L2(O(d) × Rn), if 
{fj}j∈N ⊂ S(Rd) is a sequence of Schwartz functions converging to f in L2(Rd), then

ˆ

O(d)×Rn

(Tzf)(g, x)G(g, x) dx dg = lim
j→∞

ˆ

O(d)

ˆ

Rn

(Tzfj)(g, x)G(g, x) dx dg

= lim
j→∞

ˆ

O(d)

ˆ

Rn

(ϕ ∗ hz f̂j)(gξ)Ĝ(g, ξ) dξ dg,

where the final equation is due to Plancherel (for those a.e. g ∈ O(d) such that G(g, ·) ∈
L2(Rn)). But then we may apply the inequality (3.15) to the differences f−fj ∈ L2(Rd)
to conclude that the limit on the right equals the right hand side of (3.16).

Using the representation (3.16), it is not difficult to check (using Morera’s theorem) 
that the family {Tz}Re z∈[0,1] is analytic in the usual sense that

z �→ Ff,G(z) :=
ˆ

O(d)×Rn

Tz(f)(g, x)G(g, x) dx dg =
ˆ

O(d)

ˆ

Rn

(ϕ ∗ hz f̂)(gξ)Ĝ(g, ξ) dξ dg

is analytic for Re z ∈ (0, 1), and continuous for Re z ∈ [0, 1], for all simple functions 
f : Rd → C and G : O(d) × Rn → C (continuity follows from dominated convergence, 
which is justified by repeating the estimates below (3.15)). The map Ff,G is also bounded 
for Re z ∈ [0, 1], as a consequence of the uniform L2(Rd) → L2(O(d) ×Rn)-boundedness 
of the operators Tz. These are the hypotheses needed to apply Stein’s interpolation the-
orem [37], or see [10, Theorem 1.3.7] for a textbook reference. The details are contained 
in the next proposition.

Proposition 3.17. Let 0 < n < d, 2 � p < ∞, and (p − 2)/p < θ � 1. Then, the operator 
Tθ has a bounded extension to Lp(Rd). More precisely, if f ∈ L2(Rd) ∩ Lp(Rd), then 
‖Tθf‖Lp(O(d)×Rn) �p,θ ‖f‖Lp(Rd).

Proof. Fix 2 � p < ∞ and (p − 2)/p < θ � 1. Then, define p∞ ∈ [p, ∞) as the solution 
to

1
p

= 1 − θ

2 + θ

p∞
.

Note that if p and θ are related as above, then θ = (p∞/p) · (p − 2)/(p∞ − 2), and this 
expression takes all values on the interval ((p − 2)/p, 1] as p∞ ranges in [p, ∞).

We write T z := ez
2 ·Tz. Since z �→ ez

2 is a bounded analytic function on Re z ∈ [0, 1], 
the operators T z have all the good properties of the operators Tz, but this (standard) 
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trick helps to establish the following: the operators T 1+ir are uniformly bounded L2(Rd) ∩
Lp∞(Rd) → Lp∞(O(d) ×Rn) for r ∈ R. We first verify this for Schwartz functions, so fix 
f ∈ S(Rd). Then we have the explicit expression (3.13) for the operators T1+ir, which 
allows us to estimate as follows:

‖T 1+irf‖p∞
Lp∞ (O(d)×Rn) � e(1−r2)p∞

ˆ

O(d)

‖πg(ψ(−�)−ir(d−n)/4f)‖p∞
Lp∞ (Rn) dg

�ψ e(1−r2)p∞‖(−�)−ir(d−n)/4f‖p∞
Lp∞ (Rd)

�p∞ poly(|r|) · e−r2p∞‖f‖p∞
Lp∞ (Rd) � ‖f‖p∞

Lp∞ (Rd).

The “localisation” by the fixed bump function ψ ∈ C∞
c (Rd) was crucial to pass from 

the first line to the second: the maps f �→ πgf are not bounded Lp(Rd) → Lp(Rn) for 
any p > 1, but the maps f �→ πg(ψf) are bounded on all Lp-spaces by an application 
of Hölder’s inequality. As another remark, the “poly(|r|)” factor reflects the Lp∞(Rd) →
Lp∞(Rd) boundedness of the imaginary fractional Laplacian (−�)−ir(d−n)/4, recall (3.8). 
The mitigation of this factor was the only reason to introduce the factor ez2 .

It remains to argue that the same estimate holds for f ∈ L2(Rd) ∩ Lp∞(Rd). Pick a 
sequence {fi}i∈N ⊂ S(Rd) which converges to f in both L2(Rd) and Lp∞(Rd). Then, for 
r ∈ R, the functions T1+ir(fi) converge to T1+ir(f) in L2(O(d) × Rn), so after passing 
to a subsequence, we may assume that T1+ir(fi) → T1+ir(f) almost everywhere. Then, 
by Fatou’s lemma,

ˆ

O(d)

ˆ

Rn

|(T1+irf)(g, x)|p∞ dx dg

� lim inf
i→∞

‖T1+ir(fi)‖p∞
Lp∞ (O(d)×Rn) �p∞ lim inf

i→∞
‖fi‖p∞

Lp∞ (Rd) = ‖f‖p∞
Lp∞ (Rd).

(3.18)

Hence T1+irf ∈ Lp∞(O(d) ×Rn), and ‖T1+irf‖Lp∞ (O(d)×Rn) �p∞ ‖f‖Lp∞ (Rd).
We have now verified all the hypotheses of Stein’s interpolation theorem, as stated in 

[10, Theorem 1.3.7], for the operator family {T z}Re z∈[0,1]. The conclusion is that

‖Tθf‖Lp(O(d)×Rn) � ‖T θf‖Lp(O(d)×Rn) �p∞ ‖f‖Lp(Rd)

for all simple functions f on Rd. Since the choice of p∞ only depends on p, θ, the notation 
�p∞ is equivalent to �p,θ. The extension of the bound above for f ∈ L2(Rd) ∩ Lp(Rd)
follows as in (3.18), so the proof of the proposition is complete. �

We are then ready to prove Theorem 3.3.

Proof of Theorem 3.3. Let n < s � d, and let μ ∈ M(Rd) satisfy the assumptions of 
the theorem: sptμ ⊂ B(1) and μ(B(x, r)) � CF r

s for some constant CF > 0, and 
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for all balls B(x, r) ⊂ R2. We assume1 in addition (qualitatively) that μ ∈ C∞(Rd). Let 
ψ ∈ C∞

c (Rd) be a function satisfying 1B(1) � ψ � 1B(2), so μ = ψμ. We abbreviate 
ϕ := ψ̂ ∈ S(Rd).

Now, fix 2 � p < (2d − n − s)/(d − s) and ε ∈ (0, 1), where ε is chosen sufficiently 
small so to satisfy the hypotheses of Proposition 3.20 below (it will then only depend on 
d, p, s, as per Proposition 3.20). Then set

α := (1 − ε)d− n

p
<

d− n

p
.

The rationale for this choice of “α” will be that if “θ” solves (1 − θ)(d − n)/2 = α, then

θ = p− 2
p

+ 2ε
p

=⇒ p− 2
p

< θ < 1, (3.19)

and Proposition 3.17 will be applicable with this “θ”. Note also that (2π|ξ|)α = hθ(ξ)
with the notation used in formula (3.16).

Let q � 1 be such that 1
p + 1

q = 1. Fixing also a simple function G : O(d) × Rn → C

with ‖G‖Lq(O(d)×Rn) � 1, we write

ˆ

O(d)

ˆ

Rn

(πgμ)(x)G(g, x) dx dg =
ˆ

O(d)

ˆ

Rn

(πg(ψμ))(x)G(g, x) dx dg

=
ˆ

O(d)

ˆ

Rn

(ϕ ∗ μ̂)(gξ)Ĝ(g, ξ) dξ dg

=
ˆ

O(d)

ˆ

Rn

(ϕ ∗ hθ
̂Vα(μ))(gξ)Ĝ(g, ξ) dξ dg,

where

Vα(μ)(x) = (−�)−α/2μ(x) = cα

ˆ
μ(y) dy

|x− y|d−α
, x ∈ Rd,

is the Riesz potential of μ with index α, recall (3.7). Note that

α = (1 − ε)d− n

p
and p � 2 =⇒ d− α = d(p− 1 + ε) + (1 − ε)n

p
� d + n

2 >
d

2 ,

so the smoothness and compact support of μ imply Vα(μ)(x) � O((1 + |x|)−d/2−κ) for 
some κ > 0, assuming that ε > 0 in the definition of “α” is chosen sufficiently small. In 

1 That is, we convolve μ with an approximate identity ϕδ, so that the resulting function is C∞(Rd). 
Obviously, our estimates will not depend on δ. For notation’s sake, we will not make this explicit, and we 
will simply make the qualitative assumption above.
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particular, Vα(μ) ∈ L2(Rd). This permits us to use the representation formula (3.16) for 
the operator Tθ with the choices f := Vα(μ) and “θ” as in (3.19):

ˆ

O(d)

ˆ

Rn

(πgμ)(x)G(g, x) dx dg =
ˆ

O(d)×Rn

Tθ(Vα(μ))(g, x)G(g, x) dx dg.

The operator Tθ is bounded L2(Rd) ∩ Lp(Rd) → Lp(O(d) × Rn) for this “θ” by Propo-
sition 3.17, so we conclude that∣∣∣∣∣∣∣

ˆ

O(d)

ˆ

Rn

(πgμ)(x)G(g, x) dx dg

∣∣∣∣∣∣∣ � ‖Vα(μ)‖Lp(Rd)‖G‖Lq(O(d)×Rn) � ‖Vα(μ)‖Lp(Rd).

The proof of Theorem 3.3 is now completed by showing that ‖Vα(μ)‖Lp(Rd) �d,p,s CF

with the choice α = (1 − ε)(d − n)/p, if ε > 0 small enough, depending on d, p, s. 
This follows from [29, (3.1)], but that argument is based on interpolation, and we give 
an elementary proof in Proposition 3.20 for completeness. This concludes the proof of 
Theorem 3.3. �
Proposition 3.20. Let d � 2, n � 1, n < s � d, and let μ ∈ M(Rd) satisfy μ(B(x, r)) �
CF r

s for all balls B(x, r) ⊂ Rd, and sptμ ⊂ B(1). Let 2 � p < (2d − n − s)/(d − s). 
Then, if ε ∈ (0, 1) is small enough, depending only on d, p, s, and α := (1 − ε)(d − n)/p, 
we have

‖Vα(μ)‖p ∼α

[ˆ (ˆ
dμ(y)

|x− y|d−α

)p

dx

]1/p

�d,p,s CF . (3.21)

Proof. Fix 2 � p < (2d − s − n)/(d − s). Fix also x ∈ Rd and ε > 0 (whose value will 
eventually depend on d, p, s), and start by decomposing the inner integral as

(ˆ
dμ(y)

|x− y|d−α

)p

�

⎛⎝∑
j�0

2j(d−α)μ(B(x, 2−j+2))

⎞⎠p

�ε,p

∑
j�0

2j(dp+ε−αp)μ(B(x, 2−j+2))p.

The second inequality is a consequence of Hölder’s inequality with exponent p > 1, after 
introducing artificially the factors 2εj/p and 2−εj/p. The choice of ε > 0 will eventually 
just depend on d, p, s, so “�′′

ε means the same as “�d,p,s 1”. We may restrict to indices 
j � 0 by the assumption sptμ ⊂ B(1). Plugging the inequality above to the left hand 
side of (3.21) yields

ˆ (ˆ
dμ(y)

|x− y|d−α

)p

dx �ε,p

∑
2j(dp+ε−αp)

ˆ
μ(B(x, 2−j+2))p dx. (3.22)
j�0
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To treat the remaining integral, we make the following claim, for δ = 2−j+2 ∈ 2−N :
ˆ

μ(B(x, δ))p dx �d,p Cp
F · δd−s+ps. (3.23)

To prove (3.23), we decompose μ as follows: for i � 0, let Qi ⊂ Dδ(Rd) be the collection 
of those closed dyadic δ-cubes with the property

2−i−1 · CF δ
s � μ(Q) � 2−i · CF δ

s, Q ∈ Qi.

Further, let μi be the restriction of μ to ∪Qi. Clearly μ �
∑

i�0 μi, and μi(B(x, δ)) �
2−i · CF δ

s for all x ∈ Rd. For ε > 0 arbitrary, it follows that

ˆ
μ(B(x, δ))p dx �

ˆ ⎛⎝∑
i�0

μi(B(x, δ))

⎞⎠p

dx

�ε,p

∑
i�0

2iε
ˆ

μi(B(x, δ))p dx

� Cp
F · δps ·

∑
i�0

2i(ε−p) · Hd({x ∈ Rd : B(x, δ) ∩ sptμi �= ∅}).

Recall that sptμi consists of the union of the cubes Q ∈ Dδ(Rd), which satisfy μ(Q) ∼
2−i · CF δ

s. Since ‖μ‖ = μ(B(1)) � CF , we have cardQi � 2i · δ−s, and consequently

Hd({x ∈ Rd : B(x, δ) ∩ sptμi �= ∅}) � δd · (cardQi) � 2i · δd−s.

Therefore, since 1 + ε − p < 0 (recall that p � 2), we have
ˆ

μ(B(x, δ))p dx �ε,p Cp
F · δd−s+ps ·

∑
i�0

2i(1+ε−p) �p Cp
F · δd−s+ps,

as claimed in (3.23).
Inserting the inequality (3.23) into (3.22) now yields

ˆ (ˆ
dμ(y)

|x− y|d−α

)p

dx �d,ε,p Cp
F ·

∑
j�0

2j(dp+ε−αp−d+s−ps).

The geometric series is summable if and only if dp + ε − αp − d + s − ps < 0. Recalling 
that α = (1 − ε)(d − n)/p, this amounts to

p <
(1 − ε)(d− n) + d− s− ε

d− s
.

Since we assumed that p < (2d − n − s)/(d − s), this is true with ε > 0 small enough, 
depending only on d, p, s. �
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4. The incidence estimate

In this section we prove Theorem 1.12, which we recall.

Theorem 4.1. Let 0 < n < d and C, CF � 1. Let V ⊂ A(d, n) be a δ-separated set of 
n-planes, and let P ⊂ B(1) ⊂ Rd be a δ-separated (δ, t, CF )-set with t > d −n. For r > 0
let Ir(P, V) = {(p, V ) ∈ P × V : p ∈ V (r)}. Then, for every ε > 0 we have

|ICδ(P,V)| �C,d,ε,t δ
−ε · CF · |P | · |V|n/(d+n−t) · δn(t+1−d)(d−n)/(d+n−t). (4.2)

Pigeonholing. We start off by finding subfamilies P1 and V1 which have a uniform number 
of incidences. For V ∈ A(d, n), set NV := |P ∩ V (Cδ)|. Note that since P ⊂ B(1) is 
δ-separated, we have NV � δ−d for every V ∈ A(d, n). By the pigeonhole principle, there 
exists a number N ∈ N and a subfamily V1 ⊂ V such that

N
2 � NV � N for all V ∈ V1, and N · |V1| ≈ |ICδ(P,V)|. (4.3)

The implicit constants behind the “≈” notation here are allowed to depend on “d”. For 
p ∈ P , set

Mp := |Vp| := |{V ∈ V1 : p ∈ V (Cδ)}|. (4.4)

Using the pigeonhole principle once more, we find a number M ∈ N and a subfamily 
P1 ⊂ P so that

M
2 � Mp � M for all p ∈ P1, and M · |P1| ≈ |ICδ(P,V)|. (4.5)

Lower bounds for radial projections. Later on, we will apply Theorem 1.2 to the following 
density:

μ(y) := 1
|P |

∑
p∈P

ϕδ(p− y), y ∈ Rd. (4.6)

Here ϕδ = (Cδ)−dϕ(·/(Cδ)) ∈ C∞
c (Rd) is a non-negative radial function satisfying 

ϕδ(x) = (Cδ)−d for x ∈ B(3Cδ), sptϕδ ⊂ B(4Cδ), and Lip(ϕδ) � (Cδ)−d−1. We will 
abuse notation and denote by μ also the measure given by the density above. It is easy 
to check that μ(Rd) ∼ 1, and also it follows from the (δ, t, CF )-set property of P that μ
is a t-Frostman measure with constant ∼ CF , i.e. μ(B(x, r)) � CF r

t for all x ∈ Rd and 
r > 0.

Now fix x ∈ Rd. Since μ has continuous density, we may define another continuous 
density μx on G(d, n) by the following formula:

μx(V) :=
ˆ

μ(y) dHn(y), V ∈ G(d, n). (4.7)

x+V
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Fig. 1. The proof of Lemma 4.9.

In this section, we will keep the notational convention that affine n-planes are denoted 
V, V ′ and n-dimensional subspaces V, V′. For every V ∈ Vp, as in (4.4), there exists a 
unique n-dimensional subspace V ∈ G(d, n) and a point xV ∈ B(p, Cδ) so that V =
V + xV . While the subspaces V ∈ G(d, n) obtained in this way need not be δ-separated, 
it is easy to find (δ/2)-separated subset of cardinality comparable to |Vp| ∼ M .

Lemma 4.8. For every p ∈ P1, there exists a (δ/2)-separated subset Vp
0 ⊂ {V : V + xV ∈

Vp} such that |Vp
0 | ∼d |Vp| ∼ M .

We leave the details to the reader, and turn to proving a lower bound for the integral 
of the density “μ” along certain (affine) n-planes:

Lemma 4.9. Let x ∈ P1(δ/10), so |x − p| � δ/10 for some p ∈ P1. Let V ∈ Vp
0 , and 

V′ ∈ B(V, δ/10) ⊂ G(d, n). Then,

ˆ

V′+x

μ(y) dHn(y) �d N · δ
n−d

C|P | . (4.10)

Proof. The proof is depicted in Fig. 1. By definition of V ∈ Vp
0 , there exists a vector 

xV ∈ B(p, Cδ) such that V+xV ∈ Vp. This plane is drawn in red. Since V+xV ∈ Vp ⊂
V1, recall (4.3), the Cδ-neighbourhood (V + xV )(Cδ) contains a subset PV ⊂ P with 
|PV | = NV ∼ N . Two elements of PV are drawn in red. The density “μ” then satisfies

μ(y) � (C|P |δd)−1, y ∈ B(p′, 3Cδ), p′ ∈ PV , (4.11)

by the definition of μ in (4.6). Finally, if V′ ∈ B(V, δ/10) and x ∈ B(p, δ/10) (as in the 
statement), then the plane V′ + x, drawn in blue, remains close to V + xV inside B(1): 
in particular

Hn((V′ + x) ∩B(p′, 3Cδ)) �d δn, p′ ∈ PV . (4.12)

Two of the intersections (V′ +x) ∩B(p′, 3Cδ) are drawn in green. Now (4.10) follows by 
combining (4.11)-(4.12), and recalling that |PV | ∼ N . �



22 D. Dąbrowski et al. / Advances in Mathematics 407 (2022) 108567
Lemma 4.13. Let x ∈ P1(δ/10), let μ be as in (4.6) and μx be as in (4.7). Then, for q � 1,

‖μx‖qLq(G(d,n)) �d M · δn(d−n)
(
N · δ

n−d

C|P |

)q

. (4.14)

Proof. Fix x ∈ P1(δ/10). By definition,

‖μx‖qLq(G(d,n)) =
ˆ

G(d,n)

∣∣∣∣∣∣
ˆ

V′+x

μ(y) dHn(y)

∣∣∣∣∣∣
q

dγd,n(V′). (4.15)

We will use the well-known fact, see [9, Proposition 4.1], that

γd,n(B(V, r)) �d rn(d−n), V ∈ G(d, n), 0 < r � 1. (4.16)

Since x ∈ P1(δ/10), we may find p ∈ P1 with |x − p| � δ/10. Recall from Lemma 4.8
that |Vp

0 | ∼ M , and the subspaces in Vp
0 are (δ/2)-separated, so in particular the balls 

B(V, δ/10) with V ∈ Vp
0 are disjoint. We may then estimate the right hand side of (4.15):

(4.15) �
∑

V∈Vp
0

ˆ

B(V,δ/10)

∣∣∣∣∣∣
ˆ

V′+x

μ(y) dHn(y)

∣∣∣∣∣∣
q

dγd,n(V′)

(4.10)
�d

∑
V∈Vp

0

γd,n(B(V, δ
10 )) ·

(
N · δ

n−d

C|P |

)q (4.16)
�d M · δn(d−n)

(
N · δ

n−d

C|P |

)q

.

This proves the lemma. �
Upper bounds for radial projections. During the remainder of the section, we will write 
V, V ′ for elements of G(d, n), since elements of A(d, n) no longer appear here. The fol-
lowing identity is useful for computing an upper bound for the Lq norm of μx. In the 
planar case, this is essentially [31, Lemma 3.1].

Lemma 4.17. Let q � 1. With the notation as above,
ˆ

‖μx‖qLq(G(d,n)) dμ(x) =
ˆ

G(d,n)

‖πV ⊥μ‖q+1
Lq+1(V ⊥) dγd,n(V ). (4.18)

Proof. Let V ∈ G(d, n). Since μ ∈ Cc(Rd), also the push-forward measure πV ⊥μ has a 
continuous compactly supported density on V ⊥, and

μx(V ) =
ˆ

x+V

μ(y) dHn(y) = (πV ⊥μ)(πV ⊥(x)), x ∈ Rd. (4.19)
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Writing x = πV (x) + πV ⊥(x) = v + v⊥ for a fixed plane V ∈ G(d, n), and using Fubini’s 
theorem in Rd = V × V ⊥, we may now compute as follows:

ˆ
‖μx‖qLq(G(d,n)) dμ(x) (4.19)=

¨

G(d,n)

(πV ⊥μ)(πV ⊥(x))q dγd,n(V ) dμ(x)

=
ˆ

G(d,n)

ˆ

V ⊥

ˆ

V

(πV ⊥μ)(v⊥)qμ(v + v⊥) dHn(v) dHd−n(v⊥) dγd,n(V )

=
ˆ

G(d,n)

ˆ

V ⊥

(πV ⊥μ)(v⊥)q
⎛⎝ˆ

V

μ(v + v⊥) dHn(v)

⎞⎠ dHd−n(v⊥) dγd,n(V )

=
ˆ

G(d,n)

ˆ

V ⊥

(πV ⊥μ)(v⊥)q+1 dHd−n(v⊥) dγd,n(V ) =
ˆ

G(d,n)

‖πV ⊥μ‖q+1
Lq+1(V ⊥) dγd,n(V ).

This completes the proof of the lemma. �
We are now ready to prove Theorem 1.12.

Proof of Theorem 1.12. Let g : G(d, d − n) → R be the map W �→ ‖πWμ‖q+1
Lq+1(W ), and 

let f : G(d, n) → G(d, d − n) be the map which sends V to its orthogonal complement 
W = V ⊥ ∈ G(d, d − n). Then we can rewrite the right hand side of (4.18) as

ˆ

G(d,n)

(g ◦ f)(V ) dγd,n(V ) =
ˆ

G(d,d−n)

g(W ) d(fγd,n)(W )

=
ˆ

G(d,d−n)

‖πWμ‖q+1
Lq+1(W ) dγd,d−n(W ). (4.20)

In the last equality we used the fact that fγd,n defines an O(d)-invariant probability 
measure on G(d, d − n), so fγd,n = γd,d−n (see [22, (3.10)]).

Recall that the density μ defines a Radon measure satisfying the t-Frostman condition 
with constant ∼ CF , that is, μ ∈ Mt and μ(B(x, r)) � CF r

t for all x ∈ Rd and r > 0. 
Hence, from Theorem 1.2 we find that the integral on the right hand side of (4.20) is 
finite whenever

q + 1 < 2d−(d−n)−t
d−t ⇐⇒ q < n

d−t .

Since μ(P1(δ/10)) ∼C |P1|/|P |, we may compute

M · δn(d−n)
(
N · δ

n−d

C|P |

)q

· |P1|
|P |

(4.14)
�C,d

ˆ
‖μx‖qLq(G(d,n))dμ(x)
P1(δ/10)
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(4.18)
�

ˆ

G(d,n)

‖πV ⊥μ‖q+1
Lq+1(V ⊥)dγd,n(V )

Theorem 3.3
�d,q,t CF

for any q < n/(d − t). Recall from (4.3) and (4.5) that |ICδ(P,V)|
|V1| ≈ N and that M ≈

|ICδ(P,V)|
|P1| . Hence,

|ICδ(P,V)|
|P | ·δn(d−n) ·

(
|ICδ(P,V)|

|V1|
· δ

n−d

C|P |

)q

≈ M ·δn(d−n)
(
N · δ

n−d

C|P |

)q |P1|
|P | �C,d,q,t CF

for any q < n/(d − t). If we now rearrange the equation above, and use the obvious 
inequalities |V1| � |V| and C1/(q+1)

F � CF , we obtain

|ICδ(P,V)| � c(C, d, q, t) · CF · |P | · |V|q/(q+1) · δ(q−n)(d−n)/(q+1).

Recall that “�” hides a factor of the form Cd log(δ−1)Cd for some dimensional constant 
Cd. Choosing q close enough to n/(d − t), depending only on ε and Cd, we have

Cd log(δ−1)Cdδ(q−n)(d−n)/(q+1) �d,ε,t δ
n(t+1−d)(d−n)/(d+n−t)−ε.

Thus,

|ICδ(P,V)| �C,d,ε,t δ
−ε · CF · |P | · |V|q/(q+1) · δn(t+1−d)(d−n)/(d+n−t).

Finally, note that the factor |V|q/(q+1) is increasing in q, and so |V|q/(q+1) � |V|n/(d+n−t). 
Together with the estimate above, this gives (4.2). �
5. Sharpness of the incidence estimate

In this section we construct a family of examples showing that exponent in The-
orem 1.12 is sharp in the plane. More precisely, we consider the following family of 
problems, for each pair of parameters s ∈ [0, 1] and t ∈ [1, 2]: let P ⊂ [0, 1]2 be a 
(δ, t, C)-set with t > 1, and for some fixed constant C > 1. Assume that Ls,t ⊂ A(2, 1)
is a δ-separated family of lines with the property that every p ∈ P is δ-incident to at 
least δ−s lines in Ls,t: in other words the collections

L(p) := Lδ(p) := {� ∈ Ls,t : p ∈ �(δ)}, p ∈ P,

satisfy |L(p)| � δ−s for all p ∈ P . How many lines are there in Ls,t? Theorem 1.12 yields 
a lower bound, which (of course!) matches the numerology of Theorem 1.8:

|Ls,t| �C,ε,t δ
−ε · δ−2s−(1−s)(t−1). (5.1)
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Fig. 2. The construction in Proposition 5.2.

This is not surprising, since Theorem 1.8 is proven by applying Theorem 1.12, see the 
next section. While it is highly unlikely that Theorem 1.8 is sharp, the lower bound (5.1)
is sharp for every s ∈ [0, 1] and t ∈ [1, 2]:

Proposition 5.2. For every s ∈ [0, 1] and t ∈ [1, 2], there exists

(1) a δ-separated (δ, t)-set P ⊂ [0, 1]2, and
(2) a cδ-separated set Ls,t ⊂ A(2, 1), where c > 0 is an absolute constant, such that

|Ls,t| � δ−2s−(1−s)(t−1) and |L(p)| � δ−s for all p ∈ P.

All the implicit constants in Proposition 5.2 are absolute, and the (δ, t)-set P is, more 
precisely, a (δ, t, C)-set for an absolute constant C > 0.

Remark 5.3. How can (5.1) be sharp, while Theorem 1.8 is quite likely not? The reason is 
simple: in the context of Theorem 1.8, the line family Ls,t has better separation properties 
than the family Ls,t in Proposition 5.2. More precisely, Theorem 1.8 is roughly equivalent 
to the following discretised statement: if P ⊂ [0, 1]2 is a δ-separated (δ, t)-set, and every 
point p ∈ P is δ-incident to a (δ, s)-set of lines L(p) ⊂ Ls,t, then |Ls,t| � δ−2s−(1−s)(t−1).
Now, the assumption that L(p) is a (δ, s)-set implies that |L(p)| � δ−s (as we also assume 
in Proposition 5.2), but it contains more information on the separation of the lines in 
L(p). Proposition 5.2 shows that this information is needed to improve on the bound 
2s + (1 − s)(t − 1) in Theorem 1.8, for every s ∈ (0, 1) and t ∈ [1, 2).

We then begin the proof of Proposition 5.2. For brevity of notation, we write

η = η(s, t) = (1 − s)(t− 1), s ∈ [0, 1], t ∈ [1, 2].

Consider 12δ
−η horizontal tubes of width δ1−s and length 1, evenly distributed inside the 

unit cube (see Fig. 2). We will denote the family of these tubes by C. Note that the sum 
of widths of tubes in C is equal to
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Fig. 3. In the definition of LC , we choose for every e ∈ Σ ⊂ B(e1, δ1−s) a δ-net of lines LC intersecting C, 
with direction e. For e ∈ Σ fixed, there are ∼ δ−s lines in LC with direction e. This is trivial if e = e1 (first 
picture), and takes some easy trigonometry for general e ∈ Σ (second picture).

1
2 · δ1−s−η = 1

2 · δ(2−t)(1−s) � 1
2 .

Thus, the separation between the tubes is bounded from below by |C|−1/2 = δη/2. It is
also worth pointing out that this separation is at least as large as the width δ1−s of the 
tubes (up to a constant), since δη = δ(1−s)(t−1) � δ1−s.

Inside each C ∈ C we place ∼ δ−t+η points, distributed uniformly, see Fig. 2. We 
denote the sets so obtained PC , C ∈ C. With this definition, the points in PC are (at 
least) δ-separated, since

|PC | δ2 = δ−t+η+2 � H2(C) = δ1−s,

where the inequality follows from the fact that −t + η + 1 + s � 0.
Setting P :=

⋃
C∈C PC , we see that |P | ∼ δ−t+η ·|C| ∼ δ−t. This was just a preliminary 

observation to convince the reader that P might be a (δ, t)-set, as we will prove a little 
later. One useful property of PC , C ∈ C, is that given a ball B with radius δ � r � 1 we 
have

|PC ∩B| � H2(C ∩B)
H2(C) |PC | + 1 ∼ δ−t+η−1+s H2(C ∩B) + 1. (5.4)

Before proving that P is a (δ, t)-set, we define the family of lines Ls,t, and verify the 
properties stated in Proposition 5.2(2). First, we define an appropriate set of directions 
Σ ⊂ S1. Let e1 = (1, 0) ∈ S1 and let Σ ⊂ B(e1, δ1−s) ⊂ S1 be a δ-net, so that |Σ| ∼ δ−s. 
For every thick horizontal tube C ∈ C we define LC to be a cδ-net among those lines 
in A(2, 1) which have directions in Σ and which intersect C. It follows from elementary 
geometry that for each fixed direction e ∈ Σ there are ∼ δ−s lines in LC with direction 
e (see Fig. 3). Hence,

|LC | � δ−s|Σ| ∼ δ−2s.

We then set

Ls,t =
⋃

LC ,

C∈C
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so that

|Ls,t| � |C| · |LC | � δ−2s−η,

as claimed in Proposition 5.2(2).
Observe that for every fixed e ∈ Σ and p ∈ PC , some line in LC with direction e is 

δ-incident to p. Therefore, |L(p)| � δ−s for every p ∈ P , as claimed in Proposition 5.2(2).
To complete the proof of Proposition 5.2, it remains to verify that P is a (δ, t)-set.

Lemma 5.5. For any ball B with radius δα, 0 � α � 1, we have

|P ∩B| � δαt−t ∼ δαt |P |. (5.6)

Proof. Let 0 � α � 1, and let B be a ball of radius r(B) = δα that intersects P . There 
are three cases to consider.

Case 1 − s < α � 1. Note that the radius of B is smaller than the width of the tubes in 
C, so B intersects at most 3 tubes from C. Let C ∈ C be one of these tubes. Note that 
H2(C ∩B) � δ2α, and consequently

|PC ∩B|
(5.4)
� δ−t+η−1+s H2(C ∩B) + 1 � δ2α−t+η−1+s + 1.

We need to check if the right hand side is bounded by δαt−t. The bound 1 � δαt−t is 
trivial, since α � 1. So we only need to bound δ2α−t+η−1+s. This amounts to verifying 
that

2α + η − 1 + s− αt � 0 ⇐⇒ (1 − s− α)(t− 2) � 0.

This is true because we assume α � 1 − s and t � 2. This shows (5.6) for 1 − s < α � 1.

Case η � α � 1 −s. Note that η = (1 −s)(t −1) � 1 −s, so [η, 1 −s] �= ∅. Recall that the 
separation between the tubes in C was at least δη/2. Since r(B) � δη, it follows that B
intersects at most 3 tubes from C. Let C ∈ C be one of these tubes. Observe that, since 
the radius of B is larger than the width of C, we have

H2(C ∩B) � δαH2(C) = δα+1−s.

Hence,

|PC ∩B|
(5.4)
� δ−t+η−1+s H2(C ∩B) + 1 � δ−t+η+α + 1.

It is, again, clear that 1 � δαt−t. So we only need to check that

δ−t+η+α � δαt−t ⇐⇒ η + α− αt � 0 ⇐⇒ (1 − s− α)(t− 1) � 0.
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This is true because t � 1 and 1 − s � α.

Case 0 � α � η. Note that, in particular, α � 1 − s holds in this case. Observe that 
since the tubes in C are (δη/2)-separated, B intersects � δα−η tubes in C.

As in the previous case, for every tube C ∈ C we have H2(C ∩B) � δα+1−s. Thus,

|P ∩B| =
∑
C∈C

|PC ∩B|
(5.4)
�

∑
C∈C

δ−t+η−1+s H2(C ∩B) + |{C ∈ C : C ∩B �= ∅}|

� δα−η δ−t+η+α + δα−η = δ2α−t + δα−η. (5.7)

Clearly δ2α−t � δαt−t, since t � 2. It remains to show that δα−η � δαt−t. In fact, it 
even turns out that δα−η � δ2α−t, or equivalently α + η � t. Since α � η in the current 
case, we have α + η � 2η, so it suffices to show that 2η � t. Recalling once more that 
η = (1 − s)(t − 1), this is equivalent to

(2 − t) + 2s(t− 1) � 0.

This is true for every s ∈ [0, 1] and t ∈ [1, 2]. This completes the proof of (5.6), and 
hence that of Proposition 5.2. �
6. Application to Furstenberg sets

In this section we prove Theorem 1.8, which states that every (d −1, s, t)-Furstenberg 
set K ⊂ Rd, with 1 < t � d and 0 < s � d − 1 satisfies

dimH K � (2s + 2 − d) + (t− 1)(d− 1 − s)
d− 1 . (6.1)

First, we define δ-discretised Furstenberg sets.

Definition 6.2. We say that F ⊂ B(2) ⊂ Rd is a δ-discretised (n, s, t)-Furstenberg set if

• there exists a δ-separated (δ, t)-set of n-planes V ⊂ A(d, n),
• F =

⋃
V ∈V FV , where each FV is a union of δ-balls,

• FV is a (δ, s)-set contained in V (2δ).

We will use the following lemma due to Héra, Shmerkin, and Yavicoli [15, Lemma 
3.3].

Lemma 6.3. Suppose that every δ-discretised (n, s, t)-Furstenberg set, δ ∈ (0, 1], has 
Lebesgue measure � δd−α. Then every (n, s, t)-Furstenberg set has Hausdorff dimension 
at least α.



D. Dąbrowski et al. / Advances in Mathematics 407 (2022) 108567 29
The lemma above was proved in [15] only for n = 1, but the proof for 1 < n < d is 
virtually the same. Now, to prove Theorem 1.8 it suffices to show that every δ-discretised 
(d − 1, s, t)-Furstenberg set F , with 1 < t � d and 0 < s � d − 1, satisfies

Hd(F ) � δd−α

for any α < α0 := (2s + 2 − d) + (t−1)(d−1−s)
d−1 . Actually, we will prove a slightly stronger 

result.

Proposition 6.4. Assume that t ∈ (1, d], s ∈ (0, d − 1], and c > 0. Let V ⊂ A(d, d − 1)
be a δ-separated (δ, t)-set, with δ ∈ (0, 1]. For each V ∈ V let FV ⊂ V (2δ) ∩ B(2) be a 
union of at least cδ−s disjoint δ-balls. If F =

⋃
V ∈V FV , then for any α < α0

Hd (F ) � δd−α, (6.5)

with implicit constant depending on α, c, d, t.

Note that compared to the definition of δ-discretised (d − 1, s, t)-Furstenberg sets, we 
do not need to assume that FV is a (δ, s)-set; the cardinality estimate for the number of 
δ-balls is sufficient. Of course, every δ-discretised (d −1, s, t)-Furstenberg set satisfies the 
assumptions of Proposition 6.4 because our definition of (δ, s)-sets implies the desired 
cardinality lower bound.

The proof of Proposition 6.4 can be summarized as follows: use point-plane duality 
and apply Theorem 1.12. We provide the details below.

6.1. Duality

Consider a map D : Rd → A(d, d − 1) given by

(x1, . . . , xd) �→
{

(y1, . . . , yd−1,
d−1∑
i=1

xiyi + xd) : (y1, . . . , yd−1) ∈ Rd−1

}
.

The image of D consists of all the (d −1)-planes that do not contain a translate of the ver-
tical line {(0, . . . , 0, yd) : yd ∈ R}, or equivalently, the (d − 1)-planes whose orthogonal 
projection to the horizontal plane D(0) = Rd−1 × {0} is the whole plane.

A direct computation shows that

dA(D(x),D(y)) =
∣∣∣∣ (x1, . . . , xd−1,−1)
|(x1, . . . , xd−1,−1)| −

(y1, . . . , yd−1,−1)
|(y1, . . . , yd−1,−1)|

∣∣∣∣
+

∣∣∣∣ xd

|(x1, . . . , xd−1,−1)| −
yd

|(y1, . . . , yd−1,−1)|

∣∣∣∣ .
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Hence, for any given 0 < R < ∞ the restriction of D to B(R) is bilipschitz onto its 
image, with bilipschitz constant depending only on R and d. In particular, D is injective. 
Write D(0) = Rd−1 × {0} =: V0, and observe that there exists a dimensional constant 
0 < rd < 1 such that B(V0, rd) ⊂ D(B(1)).

Consider now the map D∗ : im D → Rd defined by

V = D(x1, . . . , xd) �→ (−x1, . . . ,−xd−1, xd).

In other words, D∗ is the inverse of D composed with reflection over the vertical line. 
The map D∗ was defined this way in order to preserve the incidence relation: for x ∈ Rd

and V ∈ im D, it holds

x ∈ V ⇐⇒ D∗(V ) ∈ D(x). (6.6)

Indeed, x ∈ V = D(y1, . . . , yd) is equivalent to xd =
∑d−1

i=1 xiyi + yd, which is equivalent 
to yd =

∑d−1
i=1 (−yi)xi+xd, which is equivalent to D∗(V ) = (−y1, . . . , −yd−1, yd) ∈ D(x). 

Note that the restriction of D∗ to B(V0, rd) ⊂ D(B(1)) is bilipschitz onto its image, by 
our earlier remarks, and that D∗(B(V0, rd)) ⊂ D∗(D(B(1))) = B(1). We will also need 
the following quantitative version of (6.6).

Lemma 6.7. For x ∈ B(2) and V ∈ B(V0, rd) we have

dist(D∗(V ),D(x))
3 � dist(x, V ) � 3 dist(D∗(V ),D(x)). (6.8)

Proof. Let p = (p1, . . . , pd) ∈ B(1) be the unique point such that V = D(p). A direct 
computation yields

dist(x,D(p)) =

∣∣∣pd − xd +
∑d−1

i=1 xipi

∣∣∣
|(p1, . . . , pd−1,−1)| ,

and

dist(D∗(V ),D(x)) =

∣∣∣pd − xd +
∑d−1

i=1 xipi

∣∣∣
|(x1, . . . , xd−1,−1)| .

Since 1 � |(p1, . . . , pd−1, −1)| � 2 and 1 � |(x1, . . . , xd−1, −1)| � 3, (6.8) follows. �
Let F ⊂ B(2) and V ⊂ A(d, d − 1) be as in Proposition 6.4, and let P ⊂ F be 

a maximal δ-separated subset of F . Evidently each plane V ∈ V intersects B(3), so 
V ⊂ B(V0, 7). After this observation, a few standard steps allow us to reduce to the case 
V ⊂ B(V0, rd) ⊂ D(B(1)). In particular D∗ is Cd-bilipschitz on V.
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We now define

VD := D(P ) := {D(p) : p ∈ P} ⊂ A(d, d− 1) and PD := D∗(V) ⊂ B(1). (6.9)

Observe that since P is δ-separated, and P ⊂ B(2), the collection VD is cδ-separated for 
some c = cd > 0, by the local bilipschitz property of D. Also, since V was assumed to be 
a δ-separated (δ, t)-set, PD ⊂ B(1) is a cδ-separated (δ, t)-set (with explicit and implicit 
constants depending on “d” only).

6.2. Applying the incidence bound

We wish to apply Theorem 1.12 with VD and PD as above. Recall that

• VD is cδ separated,
• PD ⊂ B(1) is a cδ-separated (δ, t)-set.

Moreover, by (6.8) and the assumptions on V and F , for each p ∈ PD there exists a 
cδ-separated set VD(p) ⊂ VD such that |VD(p)| � cδ−s, and for each V ∈ VD(p) we 
have dist(p, V ) � 6δ = (6/c) · cδ. This numerology places us in a position to apply 
Theorem 1.12 at scale δ′ := cδ, with “thickening” constant C := 6/c ∼d 1. To simplify 
notation, we omit the apostrophe, and write “δ” in place of “δ′”.

Proof of Proposition 6.4. Applying Theorem 1.12 to VD, PD, and some small ε > 0, we 
arrive at

|ICδ(PD,VD)| �d,ε,t δ
−ε · |PD| · |VD|(d−1)/(2d−t−1) · δ(d−1)(t+1−d)/(2d−t−1).

Noting that each p ∈ PD is Cδ-incident to the � cδ−s planes VD(p) ⊂ VD, we get that

cδ−s|PD| �d,ε,t δ
−ε · |PD| · |VD|(d−1)/(2d−t−1) · δ(d−1)(t+1−d)/(2d−t−1).

Setting ε0 := ε(2d − t − 1)/(d − 1) we arrive at

|VD| �c,d,ε,t δ
−t−1+d−s(2d−t−1)/(d−1)+ε0 .

Recall from (6.9) that |P | � |VD|, where P is a maximal δ-separated subset of F , and 
F is a union of δ-balls. Hence,

Hd (F ) � |P | · δd �c,d,ε,t δ
d−t−1+d−s(2d−t−1)/(d−1)+ε0 .

A simple computation shows that

t + 1 − d + s(2d− t− 1) = (2s + 2 − d) + (t− 1)(d− 1 − s) = α0,

d− 1 d− 1
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and since we may choose ε arbitratrily small, we get (6.5). �
6.3. Application to the sum-product problem

In this short section, we derive Corollary 1.13 from Proposition 6.4. Recall that Corol-
lary 1.13 claims the following: if A ⊂ [1, 2] is a δ-separated set with |A| = δ−s, B ⊂ [1, 2]
is a δ-separated (δ, t, c)-set, C ⊂ [1, 2] is a δ-separated (δ, t′, c′)-set, and t + t′ > 1, then 
for any ε > 0

max{|A + B|δ, |A · C|δ} �ε,s,t,t′c,c′ δ
−(t+t′−1)(1−s)/2+ε|A|. (6.10)

Given Proposition 6.4, this follows from a well-known argument of Elekes [6], repeated 
below. Consider the δ-neighbourhood

F := [(A + B) × (A · C)](δ) ⊂ R2.

Consider also the family of planar lines

L := {y = cx− bc : b ∈ B, c ∈ C}.

Thus L contains |B| lines for every fixed slope c ∈ C, and in total |L| = |B| · |C|. It is not 
hard to check that L is a c0δ-separated (δ, t + t′, c1)-set of lines, where c0 > 0 is absolute, 
and c1 > 0 only depends on c, c′. To give a few more details, if (a, b) �→ D(a, b) := {y =
ax + b : x ∈ R} is the duality map R2 → A(2, 1), then L = D({(c, −bc) : b ∈ B, c ∈ C}). 
Here {(c, −bc) : b ∈ B, c ∈ C} ⊂ R2 is a (δ, t + t′, c′1)-set, since it is the image of the 
(δ, t + t′, c′′1)-set C × B ⊂ [1, 2]2 under (x, y) �→ R(x, y) = (x, −xy), which is bilipschitz 
on [1, 2]2.

Now observe that if � = {(x, cx − bc) : x ∈ R} ∈ L, then � contains the set

F
 := {(a + b, ac) : a ∈ A} ⊂ (A + B) × (A · C) ⊂ F.

The set F
 is an affine copy of A, and it is easy to see that it is δ-separated and satisfies 
|F
| = |A| = δ−s, for every � ∈ L. Since F contains the union of (the δ-neighbourhoods 
of) the sets F
 for � ∈ L, it follows from Proposition 6.4 that

δ2 · |A + B|δ · |A · C|δ ∼ L2(F ) �α,s,t,t′,c,c′ δ
2−α, α < 2s + (t + t′ − 1)(1 − s).

This yields (6.10), and therefore Corollary 1.13.
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