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Abstract

This work deals with two important factors of the element transport in geological
materials. Firstly, element diffusion is an important migration process in geological
materials, especially when considering transport next to water conducting fractures
and shear zones. Secondly, the structure of the pore network forms an environment
for migration of elements to take place. These two factors are important when consid-
ering radionuclide transport in geological materials in which all affecting processes are
not fully understood yet. Therefore further information and development of analysis
methods are needed.

First of all, a semi-analytical solution for advection-matrix diffusion equations in the
case of a well-mixed flow past a porous matrix was developed. Solution is based on a
Laplace transform of the equation and on using appropriate dimensionless variables.
The matrix-diffusion models considered here include the effects of a finite depth of
the matrix, varying aperture of the flow channel, the shape of the input pulse, and
longitudinal diffusion and Taylor dispersion of the element in the flow channel as well
as a non-zero initial element concentration in the matrix.

In order to validate the developed solutions, a measuring system was constructed.
Matrix diffusion was illustrated by observing the migration of KCl-tracer in the water
flowing through a channel facing a porous matrix. Migration of K+ and Cl− ions was
monitored by measuring the electrical conductivity of the solution. The experimental
system allowed also measurement of the concentration profile inside the porous matrix,
but the focus was here on the input and output (breakthrough) curves. The effects
of a finite depth of the matrix and non-zero initial concentration of tracer, predicted
by semi-analytical solutions, were successfully validated by the experiments.

Secondly, a method to characterize pore network and mineral distribution of geo-
logical materials was developed using X-ray micro computed tomography (X-µCT),
14C-labeled-polymethylmethacrylate (14C-PMMA) method, and scanning electron mi-
croscopy (SEM). As an example a sample of altered Sievi tonalite was used. X-µCT
was used to create 3D density maps of the samples from which different minerals and
pores were segmented. From these density maps mineral abundances, porosity, con-
nectivity, porosity distribution and pore size distribution were determined, together
with qualitative information about the structure of minerals and pores.

X-µCT offers information only of structures whose size is above the detection limit.
In order to get information below this limit, the 14C-PMMA method and SEM were
applied. Different minerals in the sample were identified by SEM, after which these
minerals were linked to different components observed in the X-µCT images. The
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14C-PMMA method gives a 2D porosity map of imaged rock surface in which porosity
of each pixel represents the averaged porosity over its area, and thus it offers informa-
tion even from nanometer scale. Further, this information was used to determine the
intragranular porosities by superimposing the 2D porosity map with stained and seg-
mented image of the corresponding rock surface and then averaging the pixel porosi-
ties over each mineral. Finally, 3D porosity maps of the samples were constructed by
combining intragranular porosities and segmented tomographic images.

Thirdly, these research issues above were combined by modeling diffusion in tomo-
graphic images using time domain diffusion (TDD) simulations. The TDD method is
a fast particle tracking method which allows to model diffusion in 3D heterogeneous
media when local porosities and diffusion coefficients are known. The method was
first validated in various cases including comparison to analytical and numerical solu-
tion of the diffusion equation. In addition, the results produced by the method were
compared to ones by discrete-time random-walk simulations.

TDD simulations were first applied to analyzing a diffusion experiment of tritiated
water (HTO) in altered Sievi tonalite and to determine the apparent diffusion coeffi-
cient. Then the TDD method was applied to study the effect of material heterogeneity
on diffusion processes using a sample of altered Sievi tonalite. This study was done by
comparing simulated in-diffusion profiles in samples with heterogeneous and homoge-
neous distribution of porosity and known diffusion coefficients. In the case of altered
Sievi tonalite, inclusion of heterogeneity in the porosity increased the apparent diffu-
sion coefficient by 16%. The method was also found to be suitable when considering
the effects of different mineral components and diffusion direction.
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Chapter 1

Introduction

Many countries are building or planning to build underground repositories for disposal
of the highly radioactive spent nuclear fuel [1, 2, 3]. Crystalline rock has been chosen
to be the host medium for the repository in, e.g., Finland and Sweden [4, 5, 6].
The rods of spent nuclear fuel to be placed in the repository will be isolated from
the geosphere by several engineered barriers, but as man-made constructions may
eventually break, radioactive elements may then be released from canisters into the
surrounding geosphere. This may cause migration of radioactive elements, first into
the geosphere and eventually to the biosphere, which may pose a threat to water
resources and nature. Therefore, it is essential to estimate the sphere of influence
for migration of radionuclides in the geosphere. The time perspective of the safety
assessments of nuclear waste repositories spans up to several hundreds of thousands
of years including at least one glaciation, which makes the durability estimation of
repository systems even more complicated [7, 8, 9, 10].

Matrix diffusion and sorption are believed to be the most significant processes that re-
tard the migration of radionuclides in the geosphere [11, 12, 13]. The main migration
pathways of radionuclides in the bedrock are formed by water conducting fractures,
and the zones composed of them, in which advective transport dominates the migra-
tion of radionuclides. However, molecular diffusion allows radionuclides to migrate
from the flow into microscopically small pores of the crystalline rock matrix filled by
stagnant pore water. The volume of water in the matrix is orders of magnitude larger
than the water flowing in the open fractures [14]. Therefore, the concentration of
radionuclides will be diluted and migration retarded in the open fractures. In this
sense it is essential to know the characteristics of the surrounding rock matrix and
analyze carefully its effect on the migration process.

Matrix diffusion has already received notable research interest over the past three
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2 CHAPTER 1. INTRODUCTION

decades [15, 16, 11, 17, 18], and matrix diffusion in crystalline and sedimentary rocks
in particular [19, 18, 20, 21]. Also in-situ experiments are being planned and carried
out in underground rock laboratories under realistic conditions [22, 23, 24, 25, 26,
27]. However, in situ experiments are rather difficult to interpret because all the
factors in the actual migration environment are not known. From this point of view
it is essential to determine parameters for in situ experiments and validate transport
models under well-controlled laboratory conditions [28, 29, 30, 31, 32]. Typically
matrix diffusion problems have been solved by different types of numerical methods
with a varying number of possible factors included [33, 34, 35, 36, 37, 38, 39, 40, 41].
However, analytical solutions for simple advection-diffusion systems have only been
found in some simplified cases [11]. In practical situations more general solutions
are often needed, since they may be applied more effectively, e.g., in safety analysis
or performance assessment of nuclear waste repositories. Generally, it would also
be advantageous to have an option to include in a single model various different
phenomena that may occur in realistic conditions.

The pore structure and structure related properties, e.g. porosity, tortuosity, constric-
tivity, and specific surface area, of materials strongly affect the diffusion of solutes
in them. Earlier studies have shown that higher connectivity and lower tortuosity
increase the diffusive migration of elements [42, 43, 44], while lower constrictivity de-
creases the diffusion coefficient [45, 46, 47]. Small constrictivity applies to the case
where the size of pore throats is small compared to that of pores. During the past
decades various attempts have been made to find a relationship between structural
properties and diffusion coefficients [48, 47, 49]. However, these relationships are usu-
ally strongly material and case dependent, and unambiguous relationships have not
been found yet. In addition, often in practically relevant cases it is difficult to deter-
mine or measure exact values for these parameters [50]. X-ray tomography together
with other imaging methods, e.g. scanning electron microscopy (SEM), confocal mi-
croscopy, and the 14C-labeled-polymethylmethacrylate (14C-PMMA) method, offer
new and valuable tools to study inter-dependence on structural and transport proper-
ties. Recent developments of these techniques have made it possible to study smaller
structures in larger scale.

First X-ray tomographic devices were developed for medical imaging [51, 52]. In spite
of that, it was clear that X-ray tomography had also great potential in materials re-
search. In the research of geological materials X-ray tomography has already proven
its applicability [53, 54, 55]. It has been applied in paleontology [56, 57], sedimentology
[58, 59], petrology [60, 54], soil science [61, 62], petroleum engineering [63, 64, 65], and
fluid flow research [66], for instance, when the 3D structure of the geological material
has been of interest. Recent studies have used X-ray micro-computed-tomographic
(X-µCT) reconstructions to determine various parameters, such as porosity, pore size
distribution, grain size distribution, connectivity, tortuosity, and specific surface area,
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which characterize the structure of porous materials [67, 68, 69, 70, 71]. When analyz-
ing submicrometer features of geological samples of reasonable size (up to centimeter
scale), the resolution achievable by X-µCT does not, however, allow for a detailed
enough analysis. So as to be able to analyze such features, X-µCT could be com-
bined with more accurate 2-D methods of analysis, such as SEM and the 14C-PMMA
method. Simultaneous combination of these different techniques has not been at-
tempted very often, although such combinations would be advantageous as a wider
range of length scales in the structural features of rock would thus be covered. Previ-
ously, SEM has been used in combination with either X-µCT [72] or the 14C-PMMA
method [73]. The 14C-PMMA method has been developed to study the porosity,
pore structure, and diffusion pathways of granitic rock in centimeter scale samples
[74, 75, 76]. Even though the pixel size of the 14C-PMMA method is tens of microm-
eters, it, nevertheless, offers information at a submicrometer level by averaging the
porosity over the pixel area. In the past two decades the 14C-PMMA method has been
applied in various studies concerning the pore structure of and diffusion in geological
materials [32, 77, 78, 73, 79, 80]. Also SEM has been found to be a valuable tool in
geosciences when characterizing the pore structure or identifying different minerals
[81, 82, 83, 84].

As stated above, the microscopic structure of materials has a strong effect on the
migration of solutes in them. From the point view of nuclear waste management, lack
of knowledge of the effect of microscopic heterogeneity on diffusion makes it difficult
to extract parameters relevant for the matrix diffusion concepts used in performance
assessments. Generally, the effect of heterogeneity on diffusive migration processes
is not straightforward. In a microscopic scale heterogeneity of geological materials
typically consists of mineral grains and boundaries around them, fractures and pores
formed e.g. by hydrothermal alteration. In some cases these fractures and pores may
create particular open networks that make migration faster and increase diffusion co-
efficient [48, 85, 86]. Often these networks compose the majority of the connected
porosity of the medium, and dominate diffusive migration in them [49, 87, 32]. How-
ever, additional connected porosity in the mineral grains (intragranular or solution
porosity) next to grain boundaries, fissures and micro fractures, may also have an
important effect on diffusion [17, 88]. Intragranular porosity may increase the diffu-
sion by providing increased connectivity, or decrease it, which is seen especially in the
late time behaviour in diffusion experiments. Heterogeneity may also slow down the
diffusion if the material contains for example impermeable zones [89, 90].

Previously diffusion problems involving heterogeneous distribution of diffusion coef-
ficient and/or porosity have been simulated using a continuous-time random walker
(CTRW) [91, 92], lattice-Boltzmann simulations [93, 94], or more traditional methods
[95, 96]. In addition, CTWR methods have been widely used for solving advection-
dispersion problems [97] in which matrix diffusion may also be included [98], as well
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as when studying anomalous transport including advection in heterogeneous porous
materials [99, 100]. In addition, the time domain diffusion (TDD) method has been
developed for simulating diffusion in heterogeneous media [101, 102]. Construction of
the TDD method has been inspired by and it has been modified from a CTRW method
developed to study the permeability and conductivity of heterogeneous materials [103].
The time-domain realization of the random walker is a rapid particle-tracking method
that gives an opportunity to simulate diffusion in heterogeneous materials when the
local porosities and diffusion coefficients are known. In this method a particle is forced
to jump to a neighbouring point during a certain random transition time, which makes
it faster than the traditional particle-tracking methods [104]. Transition probabilities
and times are proportional to the local porosities and diffusion coefficients [101]. This
method has been used before in two-dimensional (2D) systems [104, 105, 79], but in-
creased computing power and advances in tomographic imaging have recently made it
possible to introduce the TDD method also for larger samples and in three dimensions
(3D) [106].

The main objectives of this Thesis were to develop characterization methods for the
pore space of crystalline rock, and analysis methods for tracer diffusion in such mate-
rials. In the end motivation was to combine these objectives so as to find a procedure
to model diffusion in a realistic description of tight crystalline rock. To this end: 1.
A semi-analytical solution for the advection-matrix-diffusion model was derived. One
of the solutions was validated by experiments in the case of matrix of finite depth and
non-zero initial concentration of the tracer in the porous matrix. 2. Pore structures
of geological samples were characterized combining results of X-µCT, the 14C-PMMA
method and SEM analyses. As the main outcome a method was developed for cre-
ating 3D porosity maps of geological samples. 3. Diffusion in one of the constructed
porosity maps was simulated applying the TDD method. In addition, this method was
validated in 3D using various situations and a diffusion measurement was performed in
order to find the diffusion coefficient for simulations with heterogeneous distribution
of porosity. The simulations performed in a sample of heterogeneous rock unite, in
some sense, previous research interests. In the structure characterization and diffusion
simulations studies altered Sievi tonalite was used as sample material. This choice was
motivated by the fact that geology, mineralogy, structure, and diffusive properties of
Sievi tonalite have been subjects of various earlier studies [107, 108, 31, 32, 109, 110],
and that alteration has rendered its structure well suited for tomographic analysis
with the resolution available at present.



Chapter 2

Experimental validation of the

matrix diffusion model

In this chapter a model for the transport system in which a pulse of solution including
tracer molecules is advected along a flow channel with porous walls is validated. Here
an analytical solution in the form of series expansion in the case of a finite depth of
the porous wall (matrix) is first presented. The model is then validated using this
solution by measuring breakthrough curves by specific laboratory experiments and
comparing the measured curves with the ones that follow from the above solution.
Other solutions including a matrix of infinite depth, a radioactive tracer, varying
aperture of the flow channel, and longitudinal diffusion and Taylor dispersion of the
tracer in the flow channel, are found in the article enclosed in Appendix III.

2.1 Mathematical model for matrix diffusion in the

case of matrix of finite depth

A situation considered here consists of system in which fluid flows past a porous
matrix (porosity ǫ) of finite depth Lz in a channel of length L, height of the aperture
2b, and width of the aperture h. A schematic layout of the migration system including
the flow channel and the porous matrix is shown in Fig. 2.1. Our goal was to
determine an analytical expression for the breakthrough curve in the case when the
input concentration and the initial concentrations of the tracer in the flow channel
and in the porous matrix were all known (but arbitrary). A mathematic model is
presented here for this case using a non-radioactive and non-sorbing tracer.
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6 CHAPTER 2. THE MATRIX DIFFUSION MODEL

Figure 2.1. Dimensions and coordinate axes in the model used here for a fracture in a
porous medium. Coordinate x is parallel to the flow channel and coordinate z is perpendicular
to it, indicating the distance of a point in the porous matrix from the fracture.

Tracer is assumed to migrate in the flow channel (in the x direction) only by advection
and only by diffusion in the porous matrix (in the z direction). In the present case
tracer concentrations in the flow channel (C) and porous matrix (Cm) are governed
by the equations [11]:

∂C

∂t
(x, t) + v

∂C

∂x
(x, t) =

ǫ Da

b

∂Cm

∂z
(x, 0, t)

∂Cm

∂t
(x, z, t) − Da

∂2Cm

∂z2
(x, z, t) = 0,

(2.1)

where v is the flow velocity in the channel and Da is the apparent diffusion coefficient
of the tracer in the porous matrix. When a conservative tracer is used, Da is equivalent
to the pore diffusion coefficient (Dp) [11]. In the present case the boundary and initial
conditions can be expressed in the form:

Cm(x, z, 0) = C0(x, z) C(x, 0) = C0(x, 0)

Cm(x, 0, t) = C(x, t) C(0, t) = C1(t)

∂Cm

∂z
(x, Lz, t) = 0.

(2.2)

Here C0 is the initial concentration of tracer in the matrix, and C1 its input concentra-
tion. The subject of interest here is concentration at the end of the channel, C(L, t),
i.e. the breakthrough curve.
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The diffusion equation for Cm(x, z, t), the second line in Eq. 2.1, can be solved by
separation of variables, and the solution is a sum of contributions from the tracer
coming to the matrix from the flow channel (C(1)

m ) and from the tracer that is already
initially in the matrix (C(2)

m ):

Cm = C(1)
m + C(2)

m . (2.3)

The boundary and initial conditions for C(1)
m and C(2)

m are given by

C(1)
m (x, z, 0) = C(x, 0) C(2)

m (x, z, 0) = C0(x, z) − C0(x, 0)

C(1)
m (x, 0, t) = C(x, t) C(2)

m (x, 0, t) = 0

∂C(1)
m

∂z
(x, Lz, t) = 0

∂C(2)
m

∂z
(x, Lz, t) = 0.

(2.4)

The solutions for C(1)
m and C(2)

m can be expressed in the form [111]

C(1)
m (x, z, t) =C(x, t) − 2

Lz

∫ t

0

(

∞
∑

n=0

1

λn

e−Da λ2
n(t−s) sin λnz

)

∂C

∂s
(x, s) ds

C(2)
m (x, z, t) =

2

Lz

∞
∑

n=0

(

∫ Lz

0
(C0(x, y) − C0(x, 0)) sin λny dy

)

e−Daλ2
n t sin λnz,

(2.5)

where

λn =
(2n + 1)π

2Lz

. (2.6)

Substitution of Cm(x, z, t) to the first partial differential equation in Eq. (2.1) leads
to an expression for C,

∂C

∂t
(x, t) + v

∂C

∂x
(x, t) = −2ǫ Da

Lz b

∫ t

0

(

∞
∑

n=0

e−Da λ2
n(t−s)

)

∂C

∂s
(x, s) ds

+
2ǫ Da

Lz b

∫ Lz

0
(C0(x, y) − C0(x, 0))

(

∞
∑

n=0

λn e−Daλ2
n t sin λny

)

dy.

(2.7)

Introducing dimensionless variables

ξ =
x

L
, τ =

t v

L
, ζ =

y

Lz

, (2.8)

Eq. (2.7) can be expressed in the form

∂C

∂τ
(ξ, τ) +

∂C

∂ξ
(ξ, τ) = −2λ

κ

∫ τ

0

(

∞
∑

n=0

e−(γ2
n/κ2) (τ−σ)

)

∂C

∂σ
(ξ, σ) dσ

+
2λ

κ

∫ 1

0
(F (ξ, ζ) − F (ξ, 0))

(

∞
∑

n=0

γn e−(γn/κ)2 τ sin γnζ

)

dζ,

(2.9)



8 CHAPTER 2. THE MATRIX DIFFUSION MODEL

and the initial and boundary conditions in the form

C(ξ, 0) = F (ξ, 0), C(0, τ) = f(τ). (2.10)

Here we have also used dimensionless parameters:

λ = ǫ
L

b

√

Da

Lv
, κ =

Lz

L

√

Lv

D a
, γn = (n + 1

2
)π, (2.11)

and expressions
F (ξ, ζ) = C0(x, y), f(τ) = C1(t) (2.12)

for the initial and input concentrations of the tracer.

Laplace transformation of Eq. (2.9) with respect to variable τ gives

∂Ĉ

∂ξ
(ξ, s) + (s + λ

√
s tanh(κ

√
s))Ĉ(ξ, s) =

2λ

κ

∫ 1

0
F (ξ, ζ)

(

∞
∑

n=0

γn sin γnζ

s + (γn/κ)2

)

dζ + F (ξ, 0),

(2.13)

and Laplace transformation of the boundary condition (Eq. (2.10)) gives

f(τ) = f̂(s). (2.14)

The solution to Eq. (2.13) is given by

Ĉ(ξ, s) = f̂(s) c(s, ξ) +
∫ ξ

0
c(s, ξ − η) F (η, 0) dη

+
2λ

κ

∫ ξ

0

{

∫ 1

0
F (η, ζ)

(

∞
∑

n=0

γn c(s, ξ − η)

s + (γn/κ)2
sin γnζ

)

dζ

}

dη,
(2.15)

where
c(s, ξ) = e−(s+λ

√
s tanh(κ

√
s)) ξ. (2.16)

The inverse Laplace transform of c(s, ξ) is calculated explicitly in Appendix III, and
it was found that

L−1(c(s, ξ)) = Φ(ξ, τ) =











4

(λξ)2
Ψ ((τ − ξ)/(λξ)2, κ/λξ) ; τ > ξ,

0; 0 ≤ τ ≤ ξ.
(2.17)

Function Ψ can be given as a series expansion in terms of two functions,

f(x) =
1√
π x3

e− 1

x , g(x) =
1√
π x

e− 1

x , (2.18)
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in the form

Ψ (α, β) = f (4α) +
4

z3
1

g′

(

4α

z2
1

)

+
∞
∑

N=2

(−1)N

z2
N







[ N
2 ]
∑

k=1

1

(2k)!

(

N − 1

N − 2k

)

(

4

zN

)2k

f (k)

(

4α

z2
N

)

−
[ N+1

2 ]
∑

k=1

1

(2k − 1)!

(

N − 1

N − 2k + 1

)

(

4

zN

)2k−1

g(k)

(

4α

z2
N

)





 ,

(2.19)

where
zN = 2Nβ + 1. (2.20)

Using function Φ the solution to the problem Eq. (2.9) with the boundary and initial
conditions of Eq. (2.10) can be expressed in the form

C(ξ, τ) =
∫ τ

0
Φ(ξ, τ − σ) f(σ) dσ +

∫ ξ

0
Φ(ξ − η, τ) F (η, 0) dη

+
2λ

κ

∫ ξ

0

{∫ 1

0
F (η, ζ)

×
(

∞
∑

n=0

γn

∫ τ

0
e−(γn/κ)2(τ−σ)Φ(ξ − η, σ) dσ sin γnζ

)

dζ

}

dη.

(2.21)

In practical cases evaluation of the integrals in Eq. (2.21) may be done simply as
Riemannian sums. After their numerical solution, transformation can be done back to
physical variables and parameters. Notice that Eq. (2.21) allows the determination of
tracer concentration anywhere in the porous matrix or in the flow channel. However, in
order to compare the numerical results with the measured ones, only determination of
C(L, t) is needed. Notice also that the measured initial tracer concentration (C0(x, z))
as well as the input tracer concentrations (C1(t)) may be used as boundary and initial
conditions (Eq. 2.2) when determining the breakthrough curve.

Function Φ is also a solution for a similar diffusion problem in the case of zero con-
centration initially in the flow channel and in the porous matrix, and for a delta-pulse
input. Derivation of the solution is included in the enclosed Appendix III. In terms
of physical parameters, the breakthrough curve can be expressed in the form

Cf (L, t) =















4M0

Q T
Ψ

(

t − t0

T
,

Lz√
Da T

)

, t > t0,

0, 0 ≤ t ≤ t0,

(2.22)

where

T =
4ǫ2 h2 L2 Da

Q2
, t0 =

V

Q
. (2.23)
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Here M0 is the mass of the input tracer, Q = 2 h b v is the volumetric flow rate in the
channel and V = 2 h b L is its volume. Notice that parameter t0 does not affect the
shape of the breakthrough curve, it only defines the time of breakthrough.

2.2 Experimental set-up for measuring breakthrough

curves

In order to demonstrate different features of matrix diffusion and to validate the
matrix diffusion modeling described above, an experimental system was constructed.
The schematic layout of the system is shown in Fig. 2.2. This equipment consists of
a water supply, peristaltic pump, injection system for the tracer, flow channel, porous
matrix, precision scale, and PC-based control of the measurement system. Peristaltic
pump was used to create water flow from the supply to the flow channel through
an injection system. From the injection system the tracer, potassium chloride, was
injected into the flow, and this system also stabilized the flow. A porous matrix made
of synthetic dacron fibers lined to the flow channel is shown in Fig. 2.3. The porosity
of compressed (h = 2.5 mm) dacron felt was measured by X-µCT, and was about
96 %. From the flow channel water was led to the precision scale which was used to
measure the flow rate. In order to prevent evaporation, a thin layer of oil was placed
on top of the collected water. Measurements were controlled, and the produced data
were stored, by a PC-based control system.

Figure 2.2. Experimental equipment used for advection-matrix diffusion measurements.
The system consists of water supply, peristaltic pump, tracer injector, flow channel, porous
matrix, precision scale (to measure the flow rate), and a computerized operation and data
collection system.
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Salinity of water strongly affects its conductivity, and tracer concentration can thus
be measured by measuring the local conductivity of water. In order to measure the
local conductivities, 128 electrode pairs were placed in the flow channel and in the
porous matrix that lined one wall of the channel (see Fig. 2.3). In order to get infor-
mation of the local conductivity, the voltages were measured over resistors of constant
resistance placed in series with each pair of electrodes. Since conductivity is inversely
proportional to resistance, voltage data contained information about the local con-
ductivities. With this procedure voltage data were received, and later transformed
into concentration data through a calibration curve. Conductivity measurements were
done with a 50 Hz alternating current to prevent electrochemical processes [112].

Figure 2.3. Structure of the advection - matrix diffusion system showing the flow channel,
porous matrix and arrangement of electrodes. The input electrodes were the first three pairs
on the left before the beginning of the porous matrix, and the output electrodes, respectively,
on the right. Thickness of the flow channel and matrix was h = 2.5 mm.

Before measurements all electrode pairs were calibrated separately since they had
unique voltage responses to varying salinity. Calibration was done by exposing all
electrode pairs to an initially pure ion changed water (100 ml) whose salinity was then
increased slowly by small controlled increments. Saline solution was mixed carefully
so that a uniform salinity distribution was achieved before reading the voltages. The
resulting calibration data for one input and output electrode pairs together with
polynomial fits done to these data are shown in Fig. 2.4. Polynoms of rather high
order had to be used as the second derivative of the curves typically had a negative
sign at low salinities while it became positive for increasing salinity. Notice that in
the output data only the low-salinity end of the calibration curve is usually needed.
In Fig. 2.5a example curves of uncalibrated data are shown for electrodes located in
the input, output, flow channel and porous matrix.

Flow rate fluctuated slightly during the measurements as shown in Fig. 2.5b. Changes
for example in the temperature or resistance of flow may have caused such fluctuations.
Also, the peristaltic pump affects the shape of the tube, which may cause drifting of
the flow. Drift was typically higher for higher flow rates, but as will be seen below
the effect of drift on the breakthrough curve (output) was negligible.
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Figure 2.4. Calibration curves for an input and output electrode showing the whole calibra-
tion range (a) and the typically needed calibration range (b). Note that volume concentration
is used here.
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Figure 2.5. a) Uncalibrated response to salinity pulse of conduction electrodes in the input
(black), output (red), flow channel (green) and porous matrix (blue). b) Fluctuation of the
flow rate (2 µl/min) during a typical measurement.
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2.3 Validation of the matrix diffusion model

For modeling the results of advection-matrix diffusion measurements, the solutions in-
troduced in Sec. 2.1 were used. Two kinds of measurements were performed: 1. Mea-
surements with a delta-function input and initially zero concentration in the porous
matrix and in the flow channel. 2. Measurements with a delta-function input and an
initially non-zero concentration in the porous matrix and in the flow channel. The
first set of measurements was modeled by solving numerically Eq. (2.22), and the
second set by solving Eq. (2.21), with appropriate boundary and initial conditions.

The first set of measurements was performed using various flow rates in order to see
the effect of a matrix of a finite depth. In these measurements a 0.1 ml pulse of
potassium chloride of given conductivity (this conductivity was taken to represent
the maximum concentration in the analysis) was injected in fresh water flowing in
the channel. In all measurements the input electrodes responded with a sharp peak
to the injected pulse, which verified that the delta-function approximation could be
used in the mathematical model, C1(t) = M0 (2h v b)−1δ(t). Flow rates of 1, 2, 4,
and 8 µl/min were used, and otherwise the conditions were kept as constant. The
measured breakthrough curves were then fitted by Eq. (2.22) using T and Lz/

√
D T

as the fitting parameters. The effects of longitudinal diffusion and Taylor dispersion
were found to be vanishing in these measurements since parameter µ that indicated
the magnitude of longitudinal diffusion and Taylor dispersion compared to advection
in the flow channel, was found to be of the order of 10−2 (see Appendix III).

Experimental breakthrough curves fitted by the relevant model for the used flow
rates are show in Fig. 2.6. The values Da = 2.0 · 10−9m2/s, Da = 1.9 · 10−9m2/s,
Da = 2.1·10−9m2/s , and Da = 2.0·10−9m2/s were obtained for the apparent diffusion
coefficient in these four independent experiments. Excellent agreement between the
measured and modeled breakthrough curves was found, which indicates that this
model predicts all the relevant effects in the system in the used flow rate scale. In
addition, the apparent diffusion coefficient determined is within the error bars the
same as the result measured previously by completely different means [113], D =
2.0 · 10−9m2/s. Note that in this case porosity is so high that it does not notably
affect to diffusion coefficient.

For the fastest flow rate used (8 µl/min), the shape of the breakthrough curve was
similar to the one for an infinite matrix (see Appendix III), which indicates that
the effect of finite depth of the matrix was then negligible. When the flow rate was
decreased, first a small hump appeared next to the primary peak (4 µl/min) and then
the hump grew bigger (2 µl/min). When the flow rate was decreased even further,
these two peaks were merged and formed one wider peak (1 µl/min). The observed
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Figure 2.6. Measured and fitted breakthrough curves for flow rates of 1, 2, 4, and 8 µl/min,
used for validating the effects of a finite depth of the matrix. The measured breakthrough
curves were fitted by Eq. (2.22).
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behaviour of the breakthrough curve is typical of diffusion in a matrix of finite depth.
For fast flow rates the primary peak in the breakthrough curve was formed by tracer
molecules that were migrating only by advection in the flow channel, and the tail
of the peak was formed by the molecules that had diffused in the matrix and then
returned back to the channel, but the average penetration depth of the molecules
was not significant compared to the depth of the matrix. The appearing hump arises
from tracer molecules that have reflected from the back wall of the porous matrix.
When the flow rate is decreased further, the amount of molecules undergoing reflection
becomes more significant compared to the ones migrating only by advection. In the
case of an infinite matrix reflection does not occur, and such a hump does not appear.

In the case of an infinite matrix, the late time asymptotic tail that builds up in
the breakthrough curve is a power law and decays as t−3/2 [114]. For a matrix of
finite depth, reflection of tracer molecules from the back wall changes the asymptotic
behaviour, and such a pure power law is never formed. In the enclosed article of
Appendix III it is shown that, in this case, the late time asymptotic behaviour of the
breakthrough curve takes a rather different form,

C(L, t) ∼ 1
t3/4 eb

√
t−at, (2.24)

where a and b are constants depending on the parameters of the system.

The second set of two different measurements were performed using initially contam-
inated matrices, and non-zero initial concentrations C0(x, z) 6= 0. As in the first
measurement set, a sharp input pulse was used. However, when solving the problem
mathematically, the actual measured input concentration, C1(t), was used instead of
its delta function approximation. Also, the measured initial concentrations were used
in the fitted function as C0(x, z). In the first measurement, a homogeneous initial
potassium chloride concentration (C0(x, z) = C0) was used. As in the first measure-
ment set, a 0.1 ml pulse of potassium chloride was then injected into the flow, after
which flow of fresh water was introduced in to the system (see Fig. 2.7, input curve
on the left panel). In the second measurement, an inhomogeneous initial potassium
chloride concentration profile (C0(x, z)) was added, otherwise the measurement was
similar. In both measurements the flow rate was set to 4 µl/min in order to have
some influence of the finite depth of the matrix on the breakthrough curve, observed
in the first set of measurements (see Fig. 2.6).

Measured input and breakthrough curves together with fits by Eq. (2.21) are shown
in Fig. 2.7. In both measurements the input curves (the upper panels in Fig. 2.7)
show a sharp pulse of tracer followed by a rapid drop of concentration due to incoming
fresh water. Here a small background concentration of potassium chloride was used
in order to have a clear difference between the two contributions (see below). The
dimensionless parameters λ and κ (Eq. (2.11)) were used as the fitting parameters
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Figure 2.7. Measured and fitted breakthrough curves (lower panels) together with input
curves (upper panels) in the case of initially contaminated matrices. In two different mea-
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matrix was used. Fittings were done by the related theoretical expressions (Eq. (2.21), and
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the input concentration.
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when determining the theoretical breakthrough curves. From the fitted values of λ
and κ, the values Da = 1.8 · 10−9m2/s and Da = 1.9 · 10−9m2/s for the apparent
diffusion coefficient were determined. Again, the determined values of the diffusion
coefficient are similar to previously measured ones [113].

Excellent agreement between the measured and modeled breakthrough curves indi-
cates that the model used predicts all the relevant migration processes occurring in
the measurement system. The resulting breakthrough curves can also be divided into
two components that arise from: 1. The tracer coming along the flow (black curve
in Fig. 2.7), and 2. The tracer existing initially in the porous matrix and in the
flow channel (green curve in Fig. 2.7). In Eq. (2.21) the first term corresponds to
the input concentration and the second and third terms to the contaminated matrix.
Once again, the humps appeared next to the primary peaks (black curves in Fig. 2.7)
indicating effects arising from the finite depth of the matrix. As for tracer initially in
the matrix, the obvious slow decay of concentration can be observed (green curves in
Fig. 2.7).



Chapter 3

Structure characterization of

geological materials

In this chapter, special attention is paid to introducing a method which combines
results of structure, pore space and mineral composition as obtained by using X-ray
micro computed tomography (X-µCT) and the 14C-labeled-polymethylmethacrylate
(14C-PMMA) method. As a result we get a 3D porosity map together with infor-
mation of porosity distribution, pore size distribution and mineral abundances. The
characterization procedure is presented here by using altered Sievi tonalite as an ex-
ample. However, the procedure introduced here can also be implemented for various
porous materials. In the enclosed articles in Appendices I and IV, a closer overview
is given to altered Sievi tonalite, its minerals, and sample characteristics.

3.1 X-µCT imaging and image analysis

In general, X-ray tomography is used to obtain a 3D digital representation of a sample
under examination. The method is based on detecting differences in the X-ray atten-
uation inside the sample using 2D X-ray projection images. These projection images,
taken from different directions are then converted to a 3D representation of the sample
using computational reconstruction. Typically the projection images are obtained by
exposing the sample to X-rays while stepwise rotating it with small (constant) incre-
ments around its axis. A few hundred to 2000 projection images are usually taken for
reconstruction, using either a 180 or 360 degree rotation. [115, 116, 117]

In other words X-ray tomography produces a 3D matrix of local X-ray attenuation co-

19
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efficients. Generally the attenuation coefficient is proportional to the material density
and elemental composition of the sample [118, 119, 53]. Hence the above data matrix
may be considered as a 3D density map of the sample. In geological materials various
properties, e.g., purity of minerals and their state of alteration influences their density
and further the X-ray attenuation [120, 53]. However, occasionally it is possible to
bind minerals with similar attenuation into one mineral group as e.g. in the enclosed
article of Appendix IV.

In this work reconstructions of rock samples for their structural analysis were obtained
using a table-top X-µCT scanner (SkyScan 1172) based on a conventional X-ray tube
with a spot size less than 5 µm (see Fig. 3.1). First the scanner converts X-rays coming
through the sample to visible light by applying a scintillator plate and then detects
them with a 2D CCD chip. The projection images were filtered by averaging over
10 images taken in the same position. The inversion problem in the reconstruction
was solved using the Feldkamp algorithm which is often applied when a conical-beam
table-top scanner is used [121]. Conical beam has the advantage of continuously
varying the voxel resolution with varying sample size. The voxel size of the scanner
can be varied from 0.9 to 30 µm, while the maximum diameter of the sample varies
from 2 to 68 mm, respectively.

Figure 3.1. A table-top X-µCT scanner, SkyScan 1172, used in this work.

Here X-µCT images were taken with various voxel sizes: 3.5, 6.9, 14.4, and 21.1 µm.
Voxel sizes from 6.9 µm to 21.1 µm were used to scan samples (B1, B2, and B3) with
a maximum horizontal dimension of 25 mm (see Fig. 3.2a), and a voxel size of 3.5 µm
for 9 mm sized subsamples (B21 and B22). The aim in using different scanning reso-
lutions was to study the influence of scanning resolution on the detected abundances
of different components and determined pore connectivity. In 3D reconstruction of
sample B1, shown in Fig. 3.2b, pores appear as dark areas, feldspar and its alteration
products as dark gray, mica and its alteration products as light gray, and dense acces-
sory or secondary minerals, such as hematite, goethite, zircon, titanite, apatite and
monazite, as small-sized white spots. The minerals in each group were first identified
using scanning electron microscope (SEM) and energy dispersive X-ray analyses and
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then linked to tomographic reconstructions. In order to conserve simplicity altered
feldspar refers to feldspar and its alteration products, and altered mica to mica and
its alteration products, respectively, from here on.

Figure 3.2. Sample B1 of altered Sievi tonalite (a) together with a corresponding 3D
tomographic reconstruction (b). Lighter shade of gray corresponds to higher attenuation of
X-rays and, typically, higher density.

Typically analysis of tomographic images requires various tools to enhance the im-
age quality and detectability of details, as well as segmentation tools. Here, before
quantitative structural analysis, noise in the original 3D gray scale images (see Fig.
3.3a) were reduced by applying a nonlinear variance-based filter [122]. The air sur-
rounding the sample was segmented with a surface detection algorithm based on a
discrete and quenched version of the Edwards-Wilkinson equation [123]. For segmen-
tation of different components in the samples, a method was used based on finding
the thresholding values by fitting normal and log-normal distributions to each peak
in the grayscale histogram, and selecting the best possible combination. In Figure
3.3b an example is shown of the resulting images, which contains different mineral
groups listed above. After the image treatment, connectivity of pores was determined
from the tomographic reconstructions using a region-growth algorithm [122]. Pore
size distributions of the tomographic reconstructions were determined using the wa-
tershed algorithm [124, 122, 125, 126, 59]. More detailed descriptions of these tools
and algorithms are found in the references of Appendix IV.
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Figure 3.3. Shadowgram images by a X-µCT-scanner are first reconstructed to 2D cross
section images (a), after which noise may be filtered from the images and different compo-
nents segmented (b). In the images lighter shade of gray corresponds to higher attenuation
of X-rays and, usually, higher density.

3.2 Implementation of 14C-PMMA method

The 14C-PMMA method can be used to study the porosity and pore structure of rock
samples in centimeter scale. The method provides a 2D porosity distribution of the
connected pores. Together with a petrographic mineral characterization, these images
provide information of the intra- and intergranular porosity. [75, 78]

The 14C-PMMA method involves impregnation of the rock sample with 14C-labeled
MMA in vacuum, polymerization of MMA by irradiation or heating, film or digital
autoradiography, determination of optical densities by digital image processing tech-
niques, and determination of porosities by image analysis. The low molecular weight
and low viscosity of the carrier monomer MMA provides direct information about the
accessible pore space in the rock. Applied to rocks of low porosity, autoradiography
provides the spatial distribution of the porosity, in contrast to commonly used bulk
porosity measuring methods.

Before impregnation by MMA, sample is dried to remove water from pore space, which
could prevent the intrusion of the monomer. Drying of the sample is done in vacuum
using a temperature of 50 ◦C to 120 ◦C, for a few days to a month depending on the
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sample. During drying, the weight loss (i.e. evaporated water) of the sample may also
be monitored. When the weight of the sample does not change significantly any more,
most water has been evaporated from the pore space and it is ready for impregnation.

Impregnation of 14C-MMA is performed in the same vacuum chamber as drying. First
the chamber is filled with 14C-labeled MMA gas and then it is filled with 14C-labeled
MMA liquid. The monomer intrudes first large pores due to capillary forces, and
subsequently also small pores. The time needed for impregnation highly depends on
the total porosity, sample size, connectivity, and structure of pore space (tortuosity
and constrictivity). Typically impregnation times vary from a few days to a month.

MMA is polymerized (to PMMA) using radiation by a 60Co source. Typically, a total
dose of 50-80 kGy is suitable for centimeter scale rock samples [78]. Polymerization
could also be done using heat or chemical initiation [127, 128, 129].

Film or digital autoradiography is used to detect the amount of β-particles emitted
by the 14C-PMMA in the sample. A polished sample surface is placed next to an
autoradiographic X-ray film which contains silver halogenide crystals for detection of
the β-particles. Radiation reduces silver ions to metallic silver on the film. When
the autoradiographic films are developed, the region of the rock which contains more
14C-PMMA reduces more silver halogenide grains, and the corresponding area on the
film appears darker than the areas with less radiation (see Fig. 3.4b). Since the 14C-
particles are located only in the pore space, the blackening of the film is proportional
to porosity. For typical available autoradiographic films, the best possible resolution
of the 14C-PMMA method is about 20 µm. [78]

Autoradiographs are converted to digital format using a CCD camera or a table scan-
ner, both of which provide gray scale images. The resolution used in this conversion
defines the final size of the pixel and thus the final resolution of the autoradiographic
image. In the case of 14C, a better resolution than 1200 dots per inch (dpi, 21.2 µ) is
not beneficial due to the resolution of the method. Typically a resolution of 600 dpi
(42.5 µ) is used.

In the following the mathematical and physical background of the 14C-PMMA method
is explained following the references [75, 78]. In principle, from blackening of the film
caused by radiation emitted by the rock surface, the amount of tracer in the sample
can be determined, and it is proportional to porosity. If the pore sizes are well below
the resolution of the autoradiography (42.5 µm in the present case), a major fraction
of the emitted β-radiation is attenuated by the rock matrix, and the determination of
porosity is more reliable. In such a case the tracer can be considered to be virtually
diluted by the rock matrix. The error is also small when the sizes of fissures are
below a micrometer scale (dimensions of pores and fissures are small relative to the
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Figure 3.4. a) Stained rock surface showing altered mica (dark areas) and altered feldspar
(light areas). b) A 14C-PMMA autoradiograph of the same rock surface in which light shades
of gray correspond to low porosity and dark shades to high porosity. c) A segmented binary
image of the same rock surface showing areas of altered mica (white) and altered feldspar
(black).

range of β-absorption). However, when zones of fissures and cracks of a micrometer
or millimeter scale are present in rock, the dilution assumption is not valid. These
fissures and cracks increase the uncertainty of the porosity determination, and thus it
is better to exclude these areas from the quantitative porosity determination. On the
other hand, the porosities determined by the 14C-PMMA method for clays are valid
using since in clays most of the pores are in a nanometers scale [130].

The gray values of the digitized autoradiographs may be considered as intensities
(I) and may therefore be converted to optical densities (OD) according to the Beer-
Lambert law:

OD = −log(
I

I0

), (3.1)

where I0 is the background intensity. Furthermore, a calibration function is needed
from activities to optical densities. Calibration is done by measuring the optical den-
sities of 14C-PMMA standards with known activities (A), and fitting an exponential
calibration function

OD = ODmax − OD0e
−kA, (3.2)

where ODmax, OD0, and k are fitting parameters to the measured optical densities.
Solving for the activity it is found that

A = −1

k
ln
(

ODmax − OD

OD0

)

, (3.3)

which can be used for converting the intensities of individual pixels in an autoradio-
graph to activities.
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β-particles emitted by 14C may be absorbed by the material they are traversing, and
the absorption rate depends on the material. A β-correction factor is needed since
the absorption rate in rock differs from the absorption rate in PMMA. In this case the
material consists of rock and the pore space is filled by PMMA. A rough approximation
is that absorption of radiation depends linearly on density, and thus the β-correction
factor can be considered to be a ratio of the density of the sample (ρs) to that of pure
PMMA (ρ0). On the other hand, in a two component system, the sample density
depends on porosity (ǫ), density of rock (ρr) and density of pure PMMA. On these
bases (density corrected) β-correction factor can be expressed in the form

β =
ρs

ρ0

=
ǫρ0 + (1 − ǫ)ρr

ρ0

. (3.4)

Next the activities can be converted to porosities. It can be assumed that 14C-PMMA
is diluted by porous rock and the majority of β-radiation is absorbed by the rock. The
local porosity can be considered to be a ratio of the β-corrected local activity (A) and
to that of pure 14C-PMMA (A0), so that

ǫ = β
A

A0

=
ρr/ρ0

1 + (ρr/ρ0 − 1)A/A0

A

A0

, (3.5)

Notice that equations (3.1)-(3.5) are used for determination of local variables in each
pixel of the autoradiograph. When determining the total porosity or the porosity of
a specific area, an average of local porosities is used, and the former quantity e.g. is
given by

ǫtot =

N
∑

n=0
Anǫn

N
∑

n=0
An

=

N
∑

n=0
ǫn

N
, (3.6)

where N is the number of pixels, An the area of pixel n and ǫn the porosity of pixel n.

In this work samples were dried at 100 ◦C in vacuum for one week, followed by im-
pregnation by 14C-labeled MMA (activity 925 kBq/ml). Then MMA was polymerized
with a 60Co-source (total dose 68 kGy). After irradiation the sample was sawed into
pieces, and the studied surfaces were polished and autoradiographs were taken by ex-
posing Kodak MR autoradiographic films with them. The exposure time varied from
5 to 7 days. The 2D autoradiography films were then digitized to 8-bit gray value
images using a table-top scanner (CanoScan 9900F, maximum optical resolution 2400
dpi) with a resolution of 600 dpi (pixel size 42.5 µm). The gray scale values of the
autoradiographs were then converted first to optical densities and then to porosities
using Eqs. (3.1)-(3.5) and the procedure described above.

For the porosity determination of an individual mineral phase one has to examine an
area of the autoradiograph which corresponds to that mineral. To this end, chemical
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staining of minerals may be used to assist the segmentation of different minerals at the
rock surface [131, 73]. Staining chemicals depend on the mineral composition [132],
and typically a precise mineral identification is needed before staining. A stained
surface can be segmented into different mineral phases using, e.g., the k-mean cluster
algorithm [133, 134, 135, 136]. This algorithm is based on three steps:

1. Selection of means of clusters (seed pixels).

2. Assignment to a cluster of each point based on the shortest distance to the mean
of the cluster.

3. Determination of new means as the average position of the points in each cluster.

The last two steps are repeated until the means of the clusters do not change any
more or no point changes its cluster. Various procedures have been developed to
handle problems related to selection of the location and number of the seed pixels
[137, 138, 139]. The segmented image has to be superimposed with the corresponding
autoradiograph in order to have information about the intragranular porosity. The
intragranular porosity of each mineral phase can be determined using Eq. (3.6).

In Fig. 3.4a a stained rock surface is shown. In this case the surface was first held
in HCl solution for a minute to clean its surface. Then it was etched in a 40% HF
solution for another minute to whiten the altered feldspar. Finally, the sample surface
was put in contact with K-ferrocyanide, in order to make the altered mica blue. After
this the surface was optically scanned in 24-bit RGB (red-green-blue) format using
600 dpi resolution, and then segmented using the k-mean cluster algorithm (see Fig.
3.4c). In the present case a usual problem related to the selection of seed pixels
was avoided since the amount of components (k=2) was known and thus could be
selected manually at the surface. Distances from the cluster centers were determined
as Euclidian distances in the RGB space, and the algorithm was iterated until no pixel
changed its cluster. Here the areas which were fully saturated in the autoradiograph
(ǫ = 100%) were excluded from the analysis of intragranular porosities.

3.3 Results and outcome of combination of analy-

sis methods

After noise reduction, surface detection and component segmentation, using the meth-
ods introduced in Appendix IV, the detected porosity, abundances of different minerals
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Table 3.1. Porosities, abundances of different minerals, and pore connectivities of altered
Sievi tonalite determined from tomographic reconstructions for varying voxel size.

Voxel Porosity Altered Altered Accessories Pore
size [%] felspar mica [%] connectivity

(µm) [%] [%] [%]

3.5 6.3 ± 0.4 71 ± 2 22 ± 1 0.9 ± 0.1 -
6.9 5.8 ± 0.4 72 ± 2 22 ± 2 0.10 ± 0.02 81 ± 6
14.4 5.0 ± 0.4 73 ± 2 22 ± 2 0.20 ± 0.03 52 ± 5
21.1 4.5 ± 0.4 78 ± 2 17 ± 2 0.10 ± 0.02 50 ± 5

and connectivities of detected pores were determined from the tomographic recon-
structions for each voxel size (see Table 3.1). It was evident that the number of pores
and the content of accessory minerals increased with decreasing voxel size indicating
that a detectable amount of pores and grains of accessory minerals had a size close
to the voxel sizes used. As for altered feldspar and altered mica, their abundances
did not change significantly for voxel sizes smaller than 14.4 µm indicating that their
typical grain size was larger than the resolution. In addition, these observations were
verified by SEM analysis as well as visual comparison of tomographic reconstructions.

The pore connectivities shown in Table 3.1 were defined by the part of the pores that
were connected through the pore space to sample surface. As presumed, connectivity
increases with decreasing voxel size. Connectivity has a faster rise somewhere in
between voxel sizes of 14.4 and 6.9 µm indicating that an important amount of pore
throats had a size close to these voxel sizes. Connectivity was not determined for a
voxel size of 3.5 µm since, due to the smaller sample size of these subsamples, the
results would not have been comparable to the ones determined for larger samples, but
it was expected to increase further with decreasing voxel size. Generally, a significant
amount of the pores detected by X-µCT was connected, which was likely caused by
alteration since this kind of pore network rarely exists in fresh rock.

Evidently pores smaller than the used voxel size could not be detected by X-µCT,
and thus the resulting porosity values obviously underestimated the true porosity. To
this end the total porosity was also measured using argon pycnometry (see Appendix
IV), and a total porosity of 10.6% was determined. Hence, from 41 to 58% of the
pores remained undetected by X-µCT depending on the voxel size. These pores were
expected to be located inside the mineral grains as intragranular porosity. The 14C-
PMMA method did not have a similar restriction and thus it was used to analyze the
intragranular porosity (for results, see below).
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In order to have a conception of how porosity of the rock as detected by X-µCT varies
over small volumes, the porosities of 4×4×0.4 mm3 -sized volumes of samples B21

and B22 (voxel size 3.5 µm) were determined. The chosen control volume exceeds the
typical grain size of the minerals, and thus its size was found sufficient. Porosities of
these control volumes ranged from 0 to 20%, and the resulting porosity distribution
had a maximum at 4-5% (see Fig. 3.5). The determined porosity distribution was also
fitted by a log-normal distribution and rather nice correspondence was found between
the fitted and measured distributions. Log-normal distributions of similar quantities
are found quite often in nature [140].
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Figure 3.5. Distribution of the porosities of 4x4x0.4 mm3 volumes of a tomographic re-
construction with a 3.5 µm voxel resolution of two samples of Sievi tonalite. Using this
resolution, the porosity of the entire sample was 6.3%. A fit by a log-normal distribution is
also shown.

The pore spaces segmented from tomographic reconstructions may be used to de-
termine a pore size distribution. To this end, first the pores were segmented using
the watershed algorithm and then their diameters were determined using equivalent
spheres. This treatment was done for samples B21 and B22 which were scanned with
a resolution of 3.5 µm. In the resulting pore size distribution shown in Fig. 3.6, each
column shows the amount of pores with a diameter in a 3.5-µm-wide interval. The
analysis revealed that pore sizes from 3.5 µm to 700 µm were found from these sam-
ples. However, pores having a larger diameter than 100 µm were excluded from the
graph due to their poor statistics. Here a log-normal distribution fitted to the whole
distribution did not lead to a best possible agreement. However, a sum of separate fits
to small and large pore sizes gave an excellent agreement with the data over the whole
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size range (see Fig. 3.6). This kind of behaviour indicates that small and large pores
may be created by different processes. Similar analyses done of other reconstructions
for larger voxel sizes (6.9, 14.4, and 21.1 µm) lead to similar results. Pore sizes of up
to 1.1 mm were found.
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Figure 3.6. Pore size distribution of a sample scanned with a 3.5 µm voxel size. A log-
normal distribution was fitted to small (blue) and large (red) pore sizes of the distribution.
The sum of the fitted distributions is also shown (green). The bar width used in the distri-
bution was 3.5 µm.

The 14C-PMMA method was applied for 20 altered Sievi tonalite surfaces (see Fig.
3.4b) in order to get information about the pore space and intragranular porosities that
had remained undetected by X-µCT. Analysis of autoradiographs shows that altered
feldspar and altered mica are both porous, which was also confirmed by SEM analysis.
Analysis of autoradiographs gave 9.3% for the average porosity of 20 surfaces, while
the porosities of individual pixels varied from 0% to 100% with a median between 2%
and 3%. The value determined for the total connected porosity is in good agreement
with the result of argon pycnometry (ǫ = 10.6%), especially when considering the
limitations of the 14C-PMMA method. Intragranular porosities of altered feldspar and
altered mica were determined by staining the minerals and segmenting them using
the k-mean cluster algorithm. The resulting average porosities of altered feldspar and
altered mica were 4.5% and 8.6%, respectively.

The intragranular porosities were determined above by the 14C-PMMA method for
altered feldspar and altered mica, while the 3D distributions of these minerals were
determined by X-µCT. These two results were combined such that the average porosity
of each mineral was assigned to that mineral phase in the tomographic reconstruction.
Large pores, detectable by X-µCT, were treated separately, and appear as such in the
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porosity distribution. Using such a procedure, 3D porosity maps for samples of Sievi
tonalite were constructed. An example of a 3D porosity map is shown in Fig. 3.7.

Figure 3.7. Three dimensional porosity map of a sample of Sievi tonalite. Altered feldspar
appears blue (porosity 4.5%), altered mica light blue (8.6%), large pores red (100%), and
accessory minerals are dark blue (0%). The diameter of the sample is 25.1 mm, and the
voxel size is 21.1 µm.



Chapter 4

3D diffusion with time domain

simulations

In this chapter rock structure characterization and diffusion processes are combined
by simulating diffusion in 3D samples. Simulations are carried out by the time domain
diffusion (TDD) method which is a rapid particle tracking method. The objective was
to validate the TDD method in 3D, and to show that this method can be used to
simulate diffusion in heterogeneous porous rock. Here Sievi tonalite was used as a
test case, for which the 3D porosity map was constructed earlier (see Fig. 3.7).

4.1 The time domain diffusion model

The time domain diffusion (TDD) method was used to simulate diffusion in various
cases ranging from validation of the method to studying the effect of heterogeneous
distribution of porosity in Sievi tonalite. The TDD method was originally developed
to simulate diffusion in 2D porosity maps generated by the 14C-PMMA method [101,
104]. It is especially convenient when dealing with large systems since computation
times do not considerably depend on sample size, and it is faster than more traditional
simulation methods [104]. In the TDD method a particle is forced to jump at each
simulation step to one of its neighbouring voxels. As for traditional methods, a particle
may do numerous tries before a successful jump.

As mentioned earlier, construction of the method was inspired by and modified from
a continuous time random walk method developed to study the permeability and
conductivity of heterogeneous materials [103]. The physical background behind the

31
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TDD method is explained and the relevant equations are derived here following the
references [101, 102, 104]. In a heterogeneous porous medium, the diffusion equation
can be written in the form

∂(ǫC)

∂t
= ∇ · (ǫ Da · ∇C), (4.1)

where ǫ is the porosity of the medium, C the volumetric concentration of the diffusing
tracer and Da apparent diffusion coefficient. Using the divergence theorem and a
finite volume formalism, this equation can be expressed in the form

ǫiVi
∂Ci

∂t
=
∑

j

Aij(ǫDa)ij
Cj − Ci

Lij

, (4.2)

where subscript i refers to a particle’s initial position, subscript j refers to all the
possible positions next to position i (see Fig. 4.1), Vi is the volume of position i, Cα

the mean concentration of tracer at position α (α = i, j), Lij the distance between the
centers of positions i and j, Aij the area of the interface between these positions, (ǫDa)ij

the harmonic mean of the product of porosity (ǫ) and apparent diffusion coefficient
(Da) at positions i and j. The harmonic mean is required in order to conserve the
mass balance between the positions. Denoting

bij =
Aij(ǫDa)ij

Lij

, (4.3)

and since in the Lagrangian framework partial derivative respect to time is equivalent
to material derivative, Eq. 4.2 may be written in the form

ǫiVi
dCi

dt
= −Ci

∑

j

bij +
∑

j

bijCj. (4.4)

And further, by reordering terms, it can be expressed in the form

ǫiVi
∑

j bij

d(log Ci) = −dt +

∑

j bijCj/Ci
∑

j bij

dt. (4.5)

Dimensional analysis of Eq. (4.2) shows that dimension of bij is [L3T −1], which is
proportional to volumetric flux by diffusion between positions i and j, and, therefore,

Pij =
bij

∑

j bij

, (4.6)

is nothing but the transition probability from position i to position j. Note that for
an impermeable voxel (ǫ = 0 of Dj = 0) bij becomes to zero, which leads to vanishing
transition probability. Furthermore, for single particle initially at point i, last term
in Eq. (4.5) vanishes [106], and we find that

dt = − ǫiVi
∑

j bij

d(log Ci). (4.7)
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Hence, a particle at position i will jump to position j with a transition probability Pij,
and the time of diffusive transition from i to j is given by [106]

ti→j = − ǫiVi
∑

j bij

log(u01), (4.8)

where u01 is a random number from a uniform distribution between 0 and 1.

In an actual simulation, an initial position for each particle was first chosen randomly
in the reservoir (depending on the set up of the system). In practice a TDD simula-
tion presumes that information about the local porosities and the apparent diffusion
coefficients are available. With such information the transition probability for each
jump can be determined using Eq. (4.6). After that a random number was selected to
determine the jump direction based on these transition probabilities. Another random
number was used for setting the transition time given by Eq (4.8). This procedure
was repeated for each particle until a preset total diffusion time was elapsed.

Figure 4.1. Possible jumps in a 3D cubic lattice of a particle in voxel i. At each simulation
step the particle is forced to jump to one of the neighbouring voxels. The transition time
and transition probability of the jump were defined by Eq. (4.8) and Eq. (4.6), respectively.

In the simulations 3D grayscale images were used as the simulation geometries, in
which voxels formed a cubic simulation grid. For a particle at voxel i all the possible
jumps are illustrated in Fig. 4.1 in the case of a cubic lattice. In a cubic lattice
calculation of parameters Lij, Aij, and Vi becomes trivial along with the known voxel
size. In practice, a 3D grayscale image was provided for the simulation program. In
the image each component was coloured with a unique gray-scale value which was
linked to its porosity and diffusion coefficient.
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4.2 Validation of the TDD method

The TDD method was validated in 3D using three different systems: 1. Diffusion
in a homogeneous slab was simulated, and compared the result with an analytical
solution of the corresponding diffusion equation. 2. Diffusion through a homoge-
neous wall of infinitely long hollow cylinder was simulated, and compared the result
with a numerical solution of the related diffusion equation. 3. Diffusion was simu-
lated in a homogeneous sample constructed according to a measurement set up (see
Fig. 4.4), and the results were compared with experimental data of a corresponding
measurement.

Validation simulations in the homogeneous slab were performed as in-diffusion simu-
lations in which there was a constant particle concentration, C0, of the tracer at one
face of the sample, and the tracer was let to diffuse through that face into the sam-
ple. Concentration profiles were determined as particle distributions as a function of
intrusion depth. The total simulation time was chosen so that tracer particles did not
appreciably reach the opposite face of the sample, which allowed fitting of the tracer
distributions by a semi-infinite approximation of the solution to the corresponding
diffusion equation [111]:

C = C0 − C0erf
x√

4Da t
, (4.9)

where C0 is the particle concentration on the entrance face, x the distance from the
entrance surface, and t the diffusion time.

These validation simulations were performed in sample of 200×200×200 voxels with
a voxel size of 90 µm. In the simulations various values, from 9.0 · 10−13 to 2.0 · 10−9

m2/s, for the apparent diffusion coefficient (Da) of the sample were used, and the
simulated curves were fitted by Eq. (4.9) with Da as the fitting parameter. These
results indicated that the value of the apparent diffusion coefficient was accurately
reproduced by the simulations. In Fig. 4.2 an in-diffusion profile is shown for an
apparent diffusion coefficient of 2.5 · 10−10 m2/s and diffusion time of 0.5 d.

In the second validation case diffusion through the homogeneous wall of an infinitely
long hollow cylinder was simulated. The diffusion process was initiated by placing an
initial tracer concentration (C0) in the central hole, and the tracer was then let to
diffuse through the porous wall to the space surrounding the cylinder. The simulated
breakthrough curve was compared with that of a numerically solved partial differential
equation that describes the same diffusion problem. In the mathematical treatment it
was assumed that the tracer migrates radially through the wall only by diffusion, and
that the tracer concentrations in the central hole and around the cylinder were well
mixed. In the present case it is beneficial to use the diffusion equation in cylindrical
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Figure 4.2. Validation of the TDD method by an in-diffusion simulation in a homogeneous
slab. A curve fitted (solid line) to simulated in-diffusion profile (markers) reproduces exactly
the set value of the diffusion coefficient. Here the apparent diffusion coefficient is 2.5 · 10−10

m2/s.

coordinates [111],
∂2C(r, t)

∂r2
+

1

r

∂C(r, t)

∂r
) =

1

Da

∂C(r, t)

∂t
, (4.10)

where C(r, t) is the concentration of the tracer inside the wall as a function of radius
(r) and time (t). The boundary and initial conditions can now be expressed in the
form

Da
∂C(r1, t)

∂r
=

V1

ǫA1

∂C(r1, t)

∂t

Da
∂C(r2, t)

∂r
= − V2

ǫA2

∂C(r2, t)

∂t

C(r, 0) =















C0, r = r1

0, r1 < r ≤ r2

,

(4.11)

where V is the volume of the chamber per unit length, ǫ the porosity of the wall, and A
the area of the surface per unit length through which diffusion takes place. Subscript
1 refers to the central hole and 2 to the surrounding space. Here the cross-sectional
dimensions of the cylinder were comparable to the ones in the measurement system
described below (see Fig. 4.4).

Simulations were performed in a sample of 190×190×10 voxels with a voxel size
of 0.5 mm and a total diffusion time of 80 d. Periodic boundary conditions at the
edges were imposed, which allowed simulation of diffusion in an infinitely long sample.
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This was also assumed in the diffusion equation, Eq. (4.10), when making there the
approximation of 1D radial diffusion. Tracer particles were placed randomly in the
central cavity in the beginning of the simulation, and the tracer concentration in
the surrounding chamber was measured continuously. The porosity and diffusion
coefficient in the central hole and surrounding space was set to 100% and 2.2 · 10−9

m2/s, respectively. Various porosities and apparent diffusion coefficients were used
for the sample in order to compare the simulated through diffusion curves with the
numerically solved ones. It was found that TDD simulations exactly produce the
through diffusion curve given by a numerical solution of the diffusion equation. In
Fig. 4.3 a through diffusion curve is shown in the case when the porosity and apparent
diffusion coefficient of the sample were set to 11% and 2.9 · 10−10 m2/s, respectively.
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Figure 4.3. The breakthrough curve of a TDD simulation and a numerical solution of
the diffusion equation for diffusion through a homogeneous wall of an infinitely long hollow
cylindrical sample. The simulated (red) curve agrees exactly with the one determined by a
numerical solution of the diffusion equation (blue curve). Here the porosity was set to 11%
and the apparent diffusion coefficient to 2.9 · 10−10 m2/s.

Finally, for further validation, a relatively simple through diffusion type of measure-
ment system was constructed (see Fig. 4.4). It consisted of a hollow cylindrical rock
sample of Sievi altered tonalite with a bored central cavity. This sample was placed
in a chamber. Experiment was carried out in water phase such that tritiated water
(HTO) was used as the tracer and was inserted into the central cavity. HTO concen-
tration was then monitored in the surrounding the chamber until a near equilibrium
was reached after 76 days. A more detailed description of the measurement is found
in Appendix V.

Corresponding simulations were performed in a sample of 166×166×108 voxels with
a voxel size of 0.5 mm and a total diffusion time of 80 d. In the simulations the
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Figure 4.4. A schematic layout of a measurement setup for validation of the used simula-
tion method. The setup consists of a hollow rock cylinder with inner radius r1 (15.1 mm),
outer radius r2 (28.0 mm), height of the central cavity h1 (33.1 mm), height of the sample h2

(53.1 mm), volume of the central cavity V1 (25 ml), and volume of the surrounding chamber
V2 (150 ml). Initial input concentration (C1(t = 0) = C0) of the tracer was known and its
concentration (C2) in the surrounding chamber was continuously measured.
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Figure 4.5. Validation of the TDD method by a through diffusion measurement of HTO.
Best agreement between the measured data points and TDD simulations (solid line) was
found for an apparent diffusion coefficient of 2.5 · 10−10 m2/s.
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porosity and diffusion coefficient in the central cavity and surrounding chamber were
set to 100% and 2.236 · 10−9 m2/s, respectively, the latter of which is the diffusion
coefficient of HTO in water at 25 ◦C [141]. As for the porosity of rock matrix, a
previously measured porosity of 11% was used (see Sec. 3.3) and the apparent diffusion
coefficient was varied in order to find the best possible agreement with measured data
using least-square fitting. Otherwise, simulations were prepared as in the case of
the infinite hollow cylinder. The best possible agreement between measurement and
simulations was found when an apparent diffusion coefficient of 2.5 · 10−10 m2/s was
used (see Fig. 4.5). It is evident from these results that the sample cannot very
accurately be described as one with homogeneous porosity, and that heterogeneity
of rock plays a role in the migration of the tracer. The determined value is about
an order of magnitude higher than the values previously reported for altered Sievi
tonalite [32]. This is due to the fact that the sample used in the present analysis
was more altered and had about twice as high a porosity as in the samples used in
the earlier studies. Nevertheless, as the apparent diffusion coefficient determined was
about an order of magnitude lower than that for HTO in water, it is probably quite
a reasonable estimate for the true value.

In addition, the results of TDD simulations and discrete-time random-walk simula-
tions [142] were compared in an artificial 3D porous medium formed by randomly
placed impermeable spheres. The results of these simulations were identical and are
found in Appendix V. Previously a similar comparison of the TDD method with a
classical random walker has also been done for 2D porous samples [104].

4.3 The effect of heterogeneous porosity to diffu-

sion coefficient

Validation of the TDD model was followed by analysis of the effect of heterogeneous
porosity on the diffusion coefficient in the Sievi sample of altered tonalite, for which
the heterogeneous (3D) distribution of porosity was determined in Sec. 3.3. In the
simulations, a sample of Sievi tonalite comprising 200×200×200 voxels sized sample
of Sievi tonalite was used (see Fig. 4.6). The original voxel size was increased from
14.4 to 90 µm, since, according the discretization study, it did not affect the results
in the present case and the simulation times were reduced significantly.

A secondary aim for validating the TDD method by the diffusion experiment of the
previous Section was to provide a global value for the apparent diffusion coefficient in
Sievi tonalite of HTO molecules. The determined value was used in this analysis as
the apparent diffusion coefficient (Da = 2.5 · 10−10 m2/s) for the rock matrix. As for
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Figure 4.6. The sample of Sievi tonalite (16×16×16 mm3) used to study the effect of
heterogeneous porosity using the TDD method. This sample consists of pores (black), altered
feldspar (dark gray), altered mica (light gray) and accessory minerals (white).
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Figure 4.7. In-diffusion profiles for Sievi tonalite assuming a heterogeneous (blue) and
homogeneous (red) porosity in the rock matrix. Markers denote the simulated in-diffusion
profiles and continuous lines show least-squares fits to them by Eq. (4.9).
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porosity, the previously determined values for the different mineral components were
used (4.5% altered feldspar, 8.6% altered mica and 0% accessory minerals, see Sec.
3.3) so as to model the heterogeneous distribution of porosity in altered Sievi tonalite.
For the pore space the diffusion coefficient and porosity were set to 2.2 ·10−9 m2/s and
100%, respectively. Otherwise the simulations were performed similarly to the first
validation simulation, as in-diffusion simulations in order to compare the resulting
in-diffusion profiles with the one produced by a homogeneous distribution of porosity
(see Fig. 4.2).

Results of these simulations and the effect of heterogeneous porosity in Sievi tonalite
is shown in Fig. 4.7. It was found that the apparent diffusion coefficient increased
from 2.5 · 10−10 to 2.9 · 10−10 m2/s when the heterogeneity of porosity was taken into
account. In other words, in the case of Sievi tonalite the diffusivity is increased by 16%
because of heterogeneous porosity. Heterogeneity seems thus to be fairly relevant.

Finally, the relative contributions of different components (pores and minerals) of
Sievi tonalite to the apparent diffusion coefficient were estimated. These simulations
were done for the same sample of Sievi tonalite (see Fig. 4.6) as when studying the
effect of heterogeneous porosity, except that now the apparent diffusion coefficient of
one or two components at a time was set to zero. Hence, the sensitivity of diffusion
to these components was estimated. The results of these simulations are shown in
Fig. 4.8. For comparison, the case when all components are present is also shown. As
expected, the dominant component (altered feldspar) also dominates the bulk diffusion
behaviour. Removal of diffusivity in altered feldspar reduced the apparent diffusion
coefficient by 76%, and removal of diffusivity in large pores and mica simultaneously
reduced the apparent diffusion coefficient by 48%. As for large pores and altered mica,
their contributions to the global diffusion coefficient were found to be very similar and
smaller than the contribution of feldspar. It was also found that these results are not
only related to the connectivities of different phases, but also to their porosities.

A possible presence of diffusion anisotropy was investigated by changing the intrusion
face of the tracer. No diffusion anisotropy was found for this sample. This result is
in agreement with the visual observation that there is no mineral orientation in the
sample.
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Figure 4.8. Contributions of different components in Sievi tonalite to the in-diffusion
profile of the tracer. Setting the apparent diffusion coefficient of one or two components to
zero decreased the original penetration profile (red). Removal of the diffusivity of feldspar
(green) had the largest contribution to the penetration profile, while removal of the diffusivity
of open pores (black) and mica (blue) both made a smaller contribution. The dominant
component (feldspar) explained alone 52% of the global diffusion coefficient (magenta).



Chapter 5

Conclusions and outlook

The objectives of this Thesis were to construct characterization methods for porous
rock and analysis methods for molecular diffusion in such materials with respect to
long term safety of nuclear waste disposal. The final goal was to combine these
two objectives and to model diffusion in a realistic presentation of tight crystalline
rock. To this end the pore structures were characterized by X-µCT and the 14C-
PMMA method, and analytical and simulation techniques were developed for matrix
diffusion. Diffusion measurements were done to validate modeling and to determine
the diffusion coefficients needed in the simulations. Mathematical methods were also
used to illustrate effects of matrix diffusion in varying situations.

A semi-analytic solution of the advection-matrix diffusion model was successfully val-
idated by laboratory scale measurements in which a tracer input was advected past
a porous matrix. First of all the measurement system was used to validate the solu-
tion for a delta-pulse input in the case of matrix of finite depth. The effect of finite
matrix was demonstrated by varying advection in the flow channel, and was observed
clearly in the late time behaviour of the breakthrough curve. For decreased advection
the amount of tracer molecules that were reflected from the back wall of the porous
matrix was increased, and a hump appeared in the tail of the breakthrough curve.
Such measurements were also used to validate the solution in a situation in which
the tracer undergoing matrix diffusion already appears in the porous matrix. From
the nuclear waste disposal point of view this kind of situation may occur when an ice
age is drawing back and fresh melting water is getting in touch with the repository
system. In our measurements the resulting breakthrough curves were divided into two
components, one from input and another from the tracer initially in the system. The
main advantage of this approach is that an arbitrary input and initial conditions can
be applied when analyzing, e.g., in situ bedrock experiments in which these conditions
may be difficult to control. In both validation cases the apparent diffusion coefficients
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determined by fitting corresponded exactly to the ones determined by other means
[113]. Furthermore, the advection-matrix diffusion models considered included longi-
tudinal diffusion and Taylor dispersion of the tracer in the flow channel, as well as a
varying aperture of the flow channel. However, in the present measurement system
the effect of the former phenomena were found to be negligible. It was demonstrated
that the effect of varying aperture can be accounted for by simply using its average
value in the expression for the breakthrough curve (details are shown in Appendix
III). In general, the experimental system introduced was found to be a versatile tool
for demonstrating the effects of relevant diffusion processes that appear in these kinds
of system.

The characterization methods combining X-µCT and the 14C-PMMA method were
found to be applicable when studying the structure of geological materials. First of
all, abundances of different minerals, large-aperture porosities and pore connectivities
were determined from X-µCT reconstructions of varying voxel size. In the case of
altered Sievi tonalite, it was found that porosity, abundance of accessory minerals
and connectivity increased with decreasing voxel size, and we could conclude that a
significant amount of pores, accessory mineral grains and pore throats has a size within
the used range of voxel sizes. The abundances of altered feldspar and mica did not
change significantly with changing voxel size. In addition, X-µCT reconstructions were
used to determine the pore size and porosity distributions for detected pores. These
distributions were found to be similar to log-normal distributions which are often
observed in nature. If needed, similar analysis could also be done of mineral grains.
The 14C-PMMA method, followed by mineral staining and segmentation, was applied
to resolve the porosity distributions of 2D rock surfaces and intragranular porosities of
different mineral groups. Finally, 3D porosity maps were constructed by replacing the
minerals of tomographic reconstructions by the intragranular porosities evaluated by
the 14C-PMMA method. In addition, SEM and argon pycnometry were found to offer
valuable additional information about the pore structure and mineralogy, and more
importantly with these methods we could verify results of X-µCT and the 14C-PMMA
method with regard to porosity and pore sizes.

It was demonstrated above that the TDD method can be used to model diffusion
processes in rock. First of all we successfully validated the method in three different
cases. The results of TDD simulations were: 1. They could exactly reproduce the
results found by solving the corresponding diffusion equation in the case of a cubic
sample and an infinitely long hollow cylinder. 2. They were found to compare well
with those of a through diffusion laboratory experiment. 3. They were found to
be equivalent to those of DTRW simulations for porous samples made of randomly
placed overlapping spheres (results shown in Appendix V). More importantly, TDD
simulations were used to study the effect of heterogeneous distribution of porosity
on the diffusion process in rock by applying one of the porosity maps constructed
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by combination of X-µCT and the 14C-PMMA method. In the case considered a
clear influence on the diffusion coefficient of heterogeneous porosity was indeed found.
Comparison with simulations on a homogeneous sample revealed that heterogeneity
increased the apparent diffusion coefficient by 16%. TDD simulations were also used
to estimate the contribution of different components to the diffusion coefficient. As
expected, contribution of the main component (altered feldspar) was dominating.
However, the large pores (pores resolved by X-µCT) played a significant role in the
diffusion process. In addition, TDD simulations were used test directional dependence
which was not, however, found in the present case. Nevertheless, in rock with clear
foliation anisotropic diffusion will certainly appear.

In conclusion, the developed analysis methods offer an effective combination of tools
for detailed characterization of the structure of porous rock and for studying diffusive
transport in it. It was shown that effects seen in the performed matrix diffusion mea-
surements can fully be explained by semi-analytical solutions of the advection-matrix
diffusion model. Furthermore, such solutions can be used to analyze, interpret, and
predict the results of a wide range of matrix diffusion measurements. It was demon-
strated that combinations of different analysis methods can be used to infer novel
structural information about geological materials, which can be used to improve,
e.g., our understanding of alteration processes and their outcomes. The 3D porosity
map introduced here could be constructed even more realistically using the porosity
distribution data of each separate mineral found by the 14C-PMMA method, and gen-
erating equivalent porosity distributions in the 3D representation of porosity. This
further improvement would make the diffusion environment even more realistic for
e.g. TDD simulations. It was shown that TDD simulations can be used to estimate
the effect of heterogeneity and to analyze results of diffusion measurements. Espe-
cially when analytic solutions are not available, simulations offer a valuable tool for
studying diffusion. The TDD method could be developed further by implementing in
it adsorption-desorption processes and the possibility of advection. These improve-
ments would significantly increase applications of the method since in many diffusion
processes adsorption plays an important role, and part of the solute transport may
be advective, as in the measurements of Sec. 2.2. Here, in this Thesis, altered Sievi
tonalite was used in the structure characterization and TDD simulation studies. How-
ever, the methods introduced here could also be used in a larger-scale research of other
porous rocks and materials.
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