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Abstract

Laulainen, Joni
A Monte Carlo simulation of neutral-current deep inelastic scattering in parton model
Masters thesis
Department of Physics, University of Jyväskylä, 2022, 54 pages.

With the aim to simulate the neutral-current deep inelastic electron-proton scattering
using Monte Carlo methods, the differential cross section is derived in the leading
order of perturbative quantum chromodynamics. Making use of Monte Carlo sampling
from a distribution, the Lorentz-invariant quantities x and Q2 are drawn from the
cross section, and the kinematics of the scattering process built. The final state
particles are used to gather distributions of invariant mass W , inelasticity y and
transverse momentum pT. The results are compared to distributions from PYTHIA
event generator for a similar collision event setup. Distributions with massless quarks
agree, but adding masses to the quarks results in greater differences between the
distributions.

Keywords: Deep inelastic scattering, Monte Carlo, simulation
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Tiivistelmä

Laulainen, Joni
Syvästi epäelastisen sironnan neutraalin virran Monte Carlo -simulaatio partoni-
mallissa
Pro gradu -tutkielma
Fysiikan laitos, Jyväskylän yliopisto, 2022, 54 sivua

Työn tavoitteena on simuloida syvästi epäelastista elektroni-protoni -sirontaa hyö-
dyntäen Monte Carlo -menetelmiä. Prosessin differentiaalinen vaikutusala johde-
taan häiriöteoreettisen kvanttiväridynamiikan ensimmäisessä kertaluvussa. Lorentz-
invariantit suureet x ja Q2 poimitaan vaikutusalasta käyttäen Monte Carlo -valintaa
jakaumasta, ja sirontaprosessin kinematiikka rakennetaan. Lopputilan hiukkasia
käyttämällä kerätään jakaumat invariantista massasta W , epäelastisuudesta y ja
poikittaisliikemäärästä pT. Tulokset vastaavat samanlaisen törmäysasetelman jakau-
mia PYTHIA-eventtigeneraattorista massattomien kvarkkien tapauksessa, mutta
massojen lisääminen aiheuttaa eroavaisuuksia jakaumien välillä.

Avainsanat: Syvästi epäelastinen sironta, Monte Carlo, simulaatio
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1 Introduction

The study of deep inelastic scattering (DIS) is a field of high-energy physics, which has
proved successful in making advancements to the Standard Model. Electron-proton
collision experiments have contributed to the discovery of quarks and the field theory
of quantum chromodynamics (QCD) which describes their strong interactions. In
these experiments, high-energy beams of leptons and hadrons are collided to reach a
high resolution, which allows the lepton to interact with the constituent parts inside
the hadron. These constituents, called partons, are described by parton distribution
functions (PDFs) which are one of the main interests of the experiments. The theory
which portrays the structure of the proton as a collection of these partons is the
parton model.

The experiments of electron-proton DIS have been carried out in DESY-HERA
collider collaborations H1 and ZEUS [1]. The experiments handled collisions in a
wide range of four-momentum transfer squared, Q2, and Bjorken x, which in the
parton model is the fraction of nucleons momentum carried by the quark. Their
work set the ep DIS as a crucial part of modern high-energy physics, with noteworthy
impact on the physics of parton distributions, confirmation on quark charge fractions
and the electroweak theory as a viable description of cross sections up to Q2 ∼ M2

Z .
[2, 3]

As the scattering processes have a quantum mechanical nature, an element of
randomness is evident. This makes it feasible to simulate the processes with the
use of Monte Carlo (MC) techniques, which rely on probabilistic measures and
pseudorandom numbers. Monte Carlo event generators aim to produce events,
interactions of two initial state particles resulting in a set of outgoing particles, which
imitate the behaviour of real scattering experiment data [4]. The generators provide
physicists with better understanding of the events, and can be of help in designing
the experimental setups of scattering experiments. One such event generator is
PYTHIA. It is a general purpose Monte Carlo event generator, capable of describing
high-energy collisions of various processes [5, 6, version 8.307].

A simulation of unpolarized neutral-current ep DIS is carried out with the use
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of MC methods. The neutral-current (NC) cross section σ, which is proportional
to reaction frequency and that way analogous to scattering probability, is used as
the basis of the MC sampling. The NC interactions involve electrons and protons
interacting via a photon or a Z boson propagator. It can be derived in the leading
order of perturbative QCD and presented in terms of structure functions, which are
proportional to PDFs. In the parton level, the electron is depicted to interact with a
parton, a quark or an antiquark. The scattering sub-process of elastic electron-quark
scattering can be constructed with two independent variables, x and Q2. These
variables are picked from the cross section with MC sampling methods, and the final-
state electron and quark are produced. Outside of parton level, as the proton breaks
down, it emits new particles in the process of hadronization. The simulation used
is focused only on the hard parton level process and doesn’t involve hadronization.
However, the scattered electron carries enough information to give access to many
quantities of interest and which can be compared to results from the PYTHIA event
generator.
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2 Theoretical background

In the scattering process, the highly energetic electron has a wavelength of λ = 1/q,
where q is its four-momentum. This is de Broglie wavelength in natural units, which
we are using. As the proton’s effective radius is about 1 femtometer, or 10−15 m,
the wavelength has to be smaller than that to resolve the internal structure. This
is achieved with a propagator 4-momentum q larger1 than 0.197 GeV. Since the
wavelength is significantly smaller than the apparent size of the proton, the electron
can interact with the constituents of the proton. Some concepts, physical quantities
and calculation methods are needed to build the simulation of this process. An
important quantity, in both the theory and the experiments, is the cross section σ. It
is related to the scattering probability and is often given in terms of scattering angles,
particle energies, propagator virtuality Q2 or momentum fraction of the parton x.
Many of the quantities are frame-dependent, but are more easily calculated in the
target rest frame (TRF), where the proton is stationary. The expression for σ is
built with the use of relativistic kinematics, Lorentz-invariant quantities and the
Feynman rules.

1The conversion is h̄c = 1.97 × 10−16 m from natural units to SI units. From GeV−1 to fm the
conversion is then 1 GeV−1 = 0.197 fm.
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e−

e−

p X

γ/Z0

Figure 1. Feynman diagram of neutral-current ep deep inelastic scattering. The
electron e− interacts with the proton p via a photon γ or a Z boson. The proton
breaks down into particles denoted by X.

2.1 Definition of cross section

Considering a scattering process with initial state particles a and b and final state
particles c and i ∈ [1, n], the cross section is experimentally defined as

σ = W

JaNb

= 1
2Ea

V
~va

2Eb

V
V

Nscatt

∆T
, (1)

where W = Nscatt/∆T is reaction frequency, Ja
T RF= na|~va| = 2Ea|~va|/V flux of

incoming beam particles and Nb = nbV
T RF= 2Eb the number of target particles2.

Using transition amplitude and the density of states to write the scattering
number as Nscatt = |Tfi|2 × (number of possible final states) with

|Tfi|2 = 1
V (n+1)+2 ∆TV (2π)4δ(4)(pa + pb − pc −

∑
pi)|M|2 (2)

leads to differential cross section

dσ = 1
2Ea

V
~va

2Eb

V

1
V (n+1)+2 (2π)4δ(4)(pa + pb − pc −

∑
pi)|M|2 V d3pc

2Ec(2π)3

n∏
i=1

V d3pi

2Ei(2π)3 .

(3)
The differential cross section can be written as

dσ = |M|2
F

d(PS)n+1, (4)

where F is the flux factor and d(PS)n+1 the differential phase space element of n + 1

22E particles in volume V is a standard normalization in particle physics.
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particles. We can identify this form in equation (3) by denoting

F = nanbvab = 4EaEb|~va − ~vb|
T RF= 4EaEb|~va| = 4MEa = 4(k · p) (5)

d(PS)n+1 = (2π)4δ(4)(pa + pb − pc −
n∑

j=1
pj)

d3pc

2Ec(2π)3

n∏
i=1

d3pi

2Ei(2π)3 . (6)

Considering unpolarized scattering, which allows all different final state polarizations
and spins, the amplitude has to be averaged over initial state spins sn and summed
over final state spins sm as

|M|2 = 1
2n

∑
sn

∑
sm

|M|2 so that

dσ = |M|2
4(k · p)(2π)4δ(4)(pa + pb − pc −

n∑
j=1

pj)
d3pc

2Ec(2π)3

n∏
i=1

d3pi

2Ei(2π)3 . (7)
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k

k′

p̂′

p X

q

p̂

Figure 2. Feynman diagram of deep inelastic scattering in the parton model.
Incident lepton has four-momentum k and energy E, the nucleon p and Ep, the
struck quark p̂ and Ê. Lepton and quark interact via a virtual particle with
four-momentum q, resulting in outgoing lepton with k′ and energy E ′ and the
proton remnants X, including the quark p̂′.

2.2 Parton level cross section

In the parton model, the proton is considered to consist of point-like particles,
partons. These particles are quarks, antiquarks and gluons. In the lowest order (LO)
in perturbative quantum chromodynamics (pQCD), the only contributing processes
in DIS are electroweak interactions with photon, Z0 or W ± exchange. Since the
electron doesn’t experience strong interaction directly, it scatters off a quark or an
antiquark. The gluon-initiated scattering can take place only in higher orders in
pQCD. Here we only consider LO scattering where the struck parton is a quark.
The antiquark contributions are included in the final form of the cross section, but
not explicitly considered in the calculation. In this notation, the 4-vectors pa, pb, pc

are k, p, k′ and energies Ec to E ′ and so on. The incoming parton has momentum
p̂ = ξp, where ξ is the fraction of proton’s momentum carried by the quark. Some
useful Lorentz-invariant quantities are

x = −q2

2(p · q) Bjorken x, equal to ξ in the parton model,

Q2 = −q2 = (k − k′)2 propagator virtuality,

y = q · p

k · p
inelasticity, the lepton energy loss fraction in proton rest frame, (8)

W 2 = (p + q)2 invariant mass of the hadronic system X.
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The three-momenta |~p| is given by the dispersion relation

|~p| =
√

E2 − m2. (9)

The parton level cross section for a lepton scattering off a quark is given by equation
(7) as

dσ̂(l + q → l + q) = |M|2
4(k · p̂)(2π)4δ(4)(k + p̂ − k′ − p̂′) d3k′

2E ′(2π)3
d3p̂′

2Ê ′(2π)3
(10)

The delta function can be partly integrated out by inserting a unit operator in the
following form:

1 =
∫

dÊ2Ê ′θ(Ê ′) δ(|p̂′|2)︸ ︷︷ ︸
δ(g(Ê′))

, (11)

where δ(g(x)) =
∑

i

δ(x − xi)
|g′(xi)|

⇒ δ(g(Ê ′)) =
∑

i

δ(Ê ′ − Ê ′
i)

|2Ê ′
i|

. (12)

Here the roots of g are g(Ê ′
i) = (Ê ′)2 − |~̂p′|2 = 0 ⇔ Ê ′

i = ±|~̂p′|, and the step function
θ(Ê ′) ensures we pick only the positive value in the integrand. The integral is then

∫
dÊ ′ 2Ê ′

2|~̂p′|
δ(Ê ′ − |~̂p′|) = 1

and so the differential phase space element can be made into a 4-dimensional integral,
reducing the dimension of the delta function

1︸︷︷︸
↓

=
∫

dÊ ′2Ê ′θ(Ê ′)δ(|p̂′|2)

∫ d3~̂p′

2Ê ′
δ(4)(q + p̂ − p̂′) =

∫
d4p̂′θ(Ê ′)δ(|p̂′|2)δ(4)(q + p̂ − p̂′)

= δ((q + p̂)2) = δ( q2︸︷︷︸
=−Q2

+�
�7

0
p̂2 + 2(q · p̂))

= δ(−x2(p · q) + ξ2(p · q)) = 1
2(p · q)δ(ξ − x)



16

k k′

qZ0/γ

p̂ p̂′

Figure 3. Electron and quark interaction via exchanged photon γ or Z boson.

resulting in

dσ̂ = |M|2
8(k · p̂)(p · q)

d3k′

(2π)22E ′ δ(ξ − x) = |M|2
64π2

d3k′

E ′ξ(k · p)(p · q)δ(ξ − x). (13)

Using spherical coordinates d3~k′ = |~k′|2d|~k′|dΩ = E ′2dE ′dΩ leads to parton level
cross section for lepton scattering of a single quark flavor

d2σ̂

dE ′dΩ = |M|2
64π2

E ′

ξ(k · p)(p · q)δ(ξ − x). (14)

2.3 Parton level invariant amplitude |M|2

The invariant amplitude can be calculated using Feynman rules from appendix A
for the leading order graph 3. The neutral-current invariant amplitude takes into
account both photon and Z boson interaction,

|M|2 = |Mγ + MZ |2 = |Mγ|2 + |MZ |2 + 2Re(Mγ†MZ),

which leads to an interference term as well. The amplitude for the photon exchange
is

−iMγ = ū(k′,s′)iQeeγµu(k,s)igµν

q2 ū(p̂′,r′)iQqeγνu(p̂,r) (15)

|Mγ|2 = Mγ†Mγ =
(

iQeQqe
2

q2 ūk′γµukgµν ūp̂′γνup̂

)†
× iQeQqe

2

q2 ūk′γµukgµν ūp̂′γνup̂.
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Taking the conjugate transpose, raising and lowering indices, reordering the spinors,
averaging over initial states and summing over final states gives the averaged ampli-
tude squared

|Mγ|2 = 1
2

∑
r

1
2

∑
s

∑
r′

∑
s′

|Mγ|2 = e4

q4
1
2

∑
s,s′

ukūkγµuk′ūk′γν

︸ ︷︷ ︸
Lµν

γ

1
2Q2

q

∑
r,r′

up̂ūp̂γµup̂′ūp̂′γν︸ ︷︷ ︸
Qγ

µν

.

(16)

The defined leptonic tensor Lµν
γ and quark tensor Qγ

µν can be calculated using
projection operators

∑
s

u(p,s)ū(p,s) = (/p +��*m) ≈0= pµγµ = pµγµ (17)

and traces
TR(γaγbγcγd) = 4[gabgcd − gacgbd + gadgcb], (18)

since the Lorentz-indices (i, j, k...) go around after the re-ordering:

Lµν
γ = 1

2
∑
s,s′

uk(l)ūk(i)γ
µ
(ij)uk′(j)ūk′(k)γ

ν
(kl) = 1

2
/k(li)γ

µ
(ij) /k′

(jk)γ
ν
(kl)

= 1
2kαk′

βTR(γαγµγβγν)

= 2[k′µkν + k′νkµ − (k · k′)gµν ] (19)

Qγ
µν = 2Q2

q[p̂′
µp̂ν + p̂′

ν p̂µ − (p̂ · p̂′)gµν ] (20)

|Mγ|2 = e4

q4 Lµν
γ Qγ

µν . (21)

The amplitude for Z boson exchange, figure 3, can be written with appendix A
Feynman rules as

− iMZ = ū(k′,s′)igZγµ
[
Lf (1 − γ5) + Rf (1 + γ5)

]
u(k,s)

×
[

igµν

q2 − M2
Z

− iqµqν

M2
Z(q2 − M2

Z)

]
ū(p̂′,r′)igZγν

[
Lf (1 − γ5) + Rf (1 + γ5)

]
u(p̂,r). (22)
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This can already be simplified. The qµqν term in the propagator cancels with the
spinors u and anti-spinors ū after using Dirac equation (neglecting lepton masses)

(/p − m)u(p, s) = 0 ū(p, s)(/p − m) = 0 (23)

and moving the gamma matrices to form /k using their anti-commutativity {γµ, γ5} =
0

ūk′γµ[Lf (1 − γ5) + Rf (1 + γ5)]ukqµ

=ūk′(/k − /k′)[Lf (1 − γ5) + Rf (1 + γ5)]uk

=ūk′ [Lf (1 + γ5) + Rf (1 − γ5)]/kuk − ūk′ /k′[Lf (1 + γ5) + Rf (1 − γ5)]uk = 0.

Squaring the amplitude, summing and averaging over states and using the metric
gµν to lower one index gives

|MZ |2 =1
2

∑
r

1
2

∑
s

∑
r′

∑
s′

|MZ |2 = g4
Z

(q2 − M2
Z)2

1
2

∑
s,s′

ukūkγµ[Le(1 − γ5) + Re(1 + γ5)]uk′ūk′γν [Le(1 − γ5) + Re(1 + γ5)]
︸ ︷︷ ︸

Lµν
Z

1
2

∑
r,r′

up̂ūp̂γµ[Lq(1 − γ5) + Rq(1 + γ5)]up̂′ūp̂′γν [Lq(1 − γ5) + Rq(1 + γ5)]
︸ ︷︷ ︸

QZ
µν

.
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The traces can be calculated similarly as before, but now using (γ5)2 = 1 and
TR(γαγµγβγνγ5) = −4iεαµβν as well

Lµν
Z = 1

2
/kγµ[Le(1 − γ5) + Re(1 + γ5)] /k′γν [Le(1 − γ5) + Re(1 + γ5)]

= 1
2{L2

eTR[/kγµ(1 − γ5) /k′γν(1 − γ5)]

+ LeReTR[/kγµ(1 − γ5) /k′γν(1 + γ5)]

+ ReLeTR[/kγµ(1 + γ5) /k′γν(1 − γ5)]

+ R2
eTR[/kγµ(1 + γ5) /k′γν(1 + γ5)]}

= 4L2
e[kµk′ν + kνk′µ − (k · k′)gµν + iεαµβνkαk′

β]

+ 4R2
e[kµk′ν + kνk′µ − (k · k′)gµν − iεαµβνkαk′

β]

Lµν
Z = 4(L2

e + R2
e)[kµk′ν + kνk′µ − (k · k′)gµν ] + 4(L2

e − R2
e)iεαµβνkαk′

β

QZ
µν = 4(L2

q + R2
q)[p̂µp̂′

ν + p̂ν p̂′
µ − (p̂ · p̂′)gµν ] + 4(L2

q − R2
q)iεαµβν p̂αp̂′β.

For the interference term we get

M†
γMZ = − e2g2

Z

q2(q2 − M2
Z)Lµν

γZQγZ
µν

Lµν
γZ = 2(Le + Re)[kµk′ν + kνk′µ − (k · k′)gµν ] + 2(Le − Re)iεαµβνkαk′

β

QγZ
µν = 2Qq(Lq + Rq)[p̂′

µp̂ν + p̂′
ν p̂µ − (p̂ · p̂′)gµν ] + 2Qq(Lq − Rq)iεαµβν p̂αp̂′β.

The full amplitude is then

|M|2 = |Mγ|2 + |MZ |2 + 2Re(M†
γMZ) (24)

= e4

q4 Lµν
γ Qγ

µν + g4
Z

(q2 − M2
Z)2 Lµν

Z QZ
µν − 2e2g2

Z

q2(q2 − M2
Z)(Lµν

γZQγZ
µν ). (25)

After substituting this into equation (14) and multiplying by E/E the parton level
cross section for one quark flavor is

d2σ̂

dE ′dΩ = |M|2
64π2

E ′

ξ(k · p)(p · q)δ(ξ − x) = E ′

16π2E

Eδ(ξ − x)
4ξ(k · p)(p · q) |M|2. (26)



20

2.4 DIS with proton target

Deriving the full cross section with no prior knowledge of the proton’s structure
leads to unknown hadronic tensors. The parton model cross section enables the
identification of these hadronic tensors and the structure functions. In this calculation
there are no assumptions made about the structure of the proton. The contribution
of the proton in the interactions is given by a hadronic matrix element

〈X(pX ,σX)|ΛJν |h(p,σ)〉 , (27)

where Jν is the hadronic part of the operator between initial state h(p,σ) and final
state X, and Λ is the vertex factor of the interaction.

Considering both photon and Z boson interaction in the scattering process shown
in figure 1 gives invariant amplitude

−iM = −iMγ − iMZ

= ūk′iQeeγµuk

[
igµν

q2

]
〈X|iQpeJν

γ |h〉 + ūk′gzγµ[Le(1 − γ5)

+ Re(1 + γ5)]uk

[ −igµν

q2 − M2
Z

+ qµqν

M2
Z(q2 − M2)

]
〈X|igzJν

Z |h〉

= −ie2

q2 ūk′γµuk 〈X|eJγ
µ |h〉 + ig2

z

q2 − M2
Z

ūk′γµ [Le(1 − γ5) + Re(1 + γ5)]︸ ︷︷ ︸
V

uk 〈X|JZ
µ |h〉 ,

which is then squared and sum-averaged. A shorthand V is used for the fermion-Z
boson vertex factor.

|M|2 = |Mγ|2 + |MZ |2 + 2Re(|M†
γMZ |)

= e4

q4
1
2

∑
s,s′

ūkγµuk′ūk′γνuk︸ ︷︷ ︸
Lµν

γ

1
2

∑
σ,σX

〈h|Jγ†
µ |X〉 〈X|Jγ

ν |h〉

+ g4
Z

(q2 − M2
Z)2

1
2

∑
s,s′

ūkγµVuk′ūk′γνVuk︸ ︷︷ ︸
Lµν

Z

1
2

∑
σ,σX

〈h|JZ†
µ |X〉 〈X|JZ

ν |h〉

+ 2Re
(−e2

q2
g2

Z

(q2 − M2
Z)

1
2

∑
s,s′

ūkγµuk′ūk′γνVuk︸ ︷︷ ︸
Lµν

γZ

1
2

∑
σ,σX

〈h|Jγ†
µ |X〉 〈X|JZ

ν |h〉
)

.
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The leptonic tensors are defined similarly as above, and in order to define the hadronic
tensors the cross section (3) is needed

dσ = |M|2
4(k · p)(2π)4δ(4)(k + p − k′ −

n∑
j=1

pj)
d3~k′

2E ′(2π)3

n∏
i=1

d3~pi

2Ei(2π)3

= 4πM

4(p · k)
d3~k′

2E ′(2π)3

[
e4

q4 Lµν
γ W γ

µν + g4
Z

(q2 − M2
Z)2 Lµν

Z W Z
µν

− 2e2g2
Z

q2(q2 − M2
Z)Re(Lµν

γZW γZ
µν )

]
.

Here the hadronic tensors are defined by absorbing the delta-function, π factors,
product of phase-space differentials and the conventional factor of 1/4πM with the
braket terms

1
4πM

(2π)4δ(4)(k + p − k′ −
n∑

j=1
pj)

n∏
i=1

d3~pi

2Ei(2π)3
1
2

∑
σ,σX

〈h|J†
µ|X〉 〈X|Jν |h〉

︸ ︷︷ ︸
Define hadronic tensors Wµν

. (28)

Using spherical coordinates to get the differentials in target rest frame

(p · k) = ME, d3~k′ = E ′2dE ′dΩ,

the differential cross section is then formed as

d2σ

dE ′dΩ = E ′

16π2E

[
e4

q4 Lµν
γ W γ

µν + g4
Z

(q2 − M2
Z)2 Lµν

Z W Z
µν − 2e2g2

Z

q2(q2 − M2
Z)(Lµν

γZW γZ
µν )

]
. (29)

Taking the parton level cross section and summing over quark flavors and integrating
over momentum fraction distributions ξ the full cross section

dσ =
∑

q

∫
dξq(ξ)dσ̂ (30)

where the universal, process-independent parton distribution function q(ξ) is in-
troduced. It gives the probability of finding a parton q with momentum fraction
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ξ.

d2σ

dE ′dΩ = E ′

16π2E

[
e4

q4 Lµν
γ

∑
q

∫
dξq(ξ) Eδ(ξ − x)

4ξ(k · p)(p · q)Qγ
µν

+ g4
Z

(q2 − M2
Z)Lµν

Z

∑
q

∫
dξq(ξ) Eδ(ξ − x)

4ξ(k · p)(p · q)QZ
µν

− 2e2g2
Z

q2(q2 − M2
Z)Lµν

γZ

∑
q

∫
dξq(ξ) Eδ(ξ − x)

4ξ(k · p)(p · q)QγZ
µν

]
. (31)

The form of the hadronic tensors can be identified by comparing equations (29) and
(31).

2.5 Structure functions

The DIS cross sections are often given in terms of structure functions. These describe
the structure of the target hadron relevant for a given scattering. The proton
structure functions can be read by first writing the hadronic and quark tensors in a
general Lorentz-structure form.

2.5.1 Hadronic tensor Lorentz-structure

The hadronic tensor has a Lorentz-structure which can depend only on pµ and qµ. It
can thus be written in a general form using four-vectors with unknown coefficients
Ai as

Wµν = A1gµν + A2pµpν + A3(pµqν + pνqµ) + A5qµqν (32)

+ A4(pµqν − pνqµ) + iA6εµνγδp
γqδ (33)

= W S
µν + W A

µν . (34)

The symmetric part W S
µν consists of A1, A2 and A3. Contracting symmetric and

anti-symmetric tensors gives zero. The number of coefficients can be reduced using
the continuity equation

qµW S
µν = 0 = A1qν + A2(q · p)pν + A3[(q · p)qν + q2pν ] + A5q

2qν (35)
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which leads to a pair of equations for linearly independent pν and qν (A1 + A3(q · p) + A5q
2)qν = 0, A5 = −A1

q2 + (p·q)2

q4 A2

(A2(q · p) + A3q
2)pν = 0, A3 = − (q·p)

q2 A2
. (36)

This makes the symmetric part of hadronic tensor

W S
µν = A1(gµν − qµqν

q2 ) + A2(pµ − (q · p)
q2 qµ)(pν − (q · p)

q2 qν). (37)

Further defining structure factors W1 = −A1 and W2 = A2M
2 leads to

W S
µν = −W1(gµν − qµqν

q2 ) + W2

M2 (pµ − (q · p)
q2 qµ)(pν − (q · p)

q2 qν). (38)

The leptonic tensors may have antisymmetric parts as well. Using the continuity
equation for the antisymmetric part yields

qµW A
µν = qµA4(pµqν − pνqµ) + qµiA6εµναβpαqβ (39)

= A4[(p · q) − q2pν ] + iA6q
µεµναβpαqβ = 0. (40)

This equation must also hold for linearly independent qν and pν as
 A4(q · p)qν + A6q

µεµναβpαqβ = 0
A4q

2pν + A6q
µεµναβpαqβ = 0

. (41)

The Levi-Civita symbol ε is antisymmetric in exchange of two indices. By swapping
the indices µ and β we get qµεµναβpαqβ = −qβεβναµpαqµ = 0. This means that the
pair of equations is only satisfied if A4 = 0. The antisymmetric part of Wµν is then

W A
µν = iA6εµναβpαqβ. (42)

Defining the structure factor W3 = −2M2A6 gives the full hadronic tensor as

Wµν = −W1(gµν − qµqν

q2 )+ W2

M2 (pµ − (q · p)
q2 qµ)(pν − (q · p)

q2 qν)− W3

2M2 iεµναβpαqβ. (43)
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2.5.2 Quark tensor Lorentz-structure

The quark tensor Qγ
µν = Q2

q2[p̂′
µp̂ν + p̂′

ν p̂µ − (p̂ · p̂′)gµν ] can be modified to resemble
the general form of the hadronic tensor (38) by suitably adding and multiplying by

qµqν

q2 (p̂ · q) − qµqν

q2 (p̂ · q) = 0 (•)

−2ξ(p · q)
q2 = 1, since q2 = (p̂′ − p̂)2 = −2(p̂ · p̂′) = −2(p̂ · (p̂ + q)) = −2(p̂ · q) (∗)

and using p̂ = ξp, p̂′ = q + p̂ in the following way

p̂′
µp̂ν + p̂′

ν p̂
µ ↑︸︷︷︸

(•)

− (p̂ · p̂′)gµν︸ ︷︷ ︸
(p̂·q)gµν

=p̂µp̂ν + qµp̂
ν ↑︸︷︷︸

(∗)

+ p̂ν p̂µ + qν p̂
µ ↑︸︷︷︸

(∗)

+ qµqν

q2 (p̂ · q) − qµqν

q2 (p̂ · q) ↑︸︷︷︸
(∗)

− (p̂ · q)gµν

=2ξ2
(

pµpν − (p · q)
q2 (qµpν + qνpµ) + (p · q)2

q4

)
− ξ(p · q)

(
gµν − qµqν

q2

)
= − ξ(p · q)

(
gµν − qµqν

q2

)
+ 2ξ2

(
pµ − (q · p)

q2 qµ

)(
pν − (q · p)

q2 qν

)
.

Now we can compare the equations of the parton-model differential cross section (31)
and the leading order differential cross section of a hadron target (29) and see the
hadronic tensor and the terms of the quark tensor Qγ

µν

Qγ
µν = Q2

q

[
− 2ξ(p · q)

(
gµν − qµqν

q2

)
+ 4ξ2

(
pµ − (q · p)

q2 qµ

)(
pν − (q · p)

q2 qν

)]
W γ

µν =
∑

q

∫
dξq(ξ) Eδ(ξ − x)

4ξ(k · p)(q · p)Q2
q

[
− 2ξ(p · q)

(
gµν − qµqν

q2

)

+ 4ξ2
(

pµ − (q · p)
q2 qµ

)(
pν − (q · p)

q2 qν

)]

= −
∑

q

q(x)
Q2

q

2M︸ ︷︷ ︸
−W γ

1

(
gµν − qµqν

q2

)
+

∑
q

x
Q2

q

M(p · q)q(x)︸ ︷︷ ︸
W

γ
2

M2

(
pµ − (q · p)

q2 qµ

)(
pν − (q · p)

q2 qν

)

= −W γ
1

(
gµν − qµqν

q2

)
+ W γ

2
M2

(
pµ − (q · p)

q2 qµ

)(
pν − (q · p)

q2 qν

)
.
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For the whole electroweak interaction the anti-symmetric part has to be modified as
well. The epsilon-term can be written as

iεαµβν p̂αp̂′β = iεαµβνpαξ(p̂β + qβ) = iξ(ξ pαpβεαµβν︸ ︷︷ ︸
sym × antisym =0

+pαqβεαµβν) = iξpαqβεαµβν .

(44)
Looking at the quark tensors term by term and modifying as

Qγ
µν = Q2

q2[p̂′
µp̂ν + p̂′

ν p̂µ − (p̂ · p̂′)gµν ]

QZ
µν = 2(L2

q + R2
q)2[p̂′

µp̂ν + p̂′
ν p̂µ − (p̂ · p̂′)gµν ] + 4(L2

q − R2
q)iεαµβνpαp′β

=
2(L2

q + R2
q)

Q2
q

Qγ
µν + 4(L2

q − R2
q)ξiεαµβνpαqβ

QγZ
µν = Qq(Lq + Rq)2[p̂′

µp̂ν + p̂′
ν p̂µ − (p̂ · p̂′)gµν ] + 2Qq(Lq − Rq)iεαµβνpαp′β

= (Lq + Rq)
Qq

Qγ
µν + 2(Lq − Rq)ξiεαµβνpαqβ

gives a simple form to acquire the structure functions, as was done for pure photon
interaction. The Z term can be compared to the general Lorentz structure of the
hadronic tensor (43) after integration over momentum distribution,

W Z
µν =

∑
q

∫
dξq(ξ) Eδ(ξ − x)

4ξ(k · p)(p · q)

[
2(L2

q + R2
q)

Qγ
µν

Q2
q

+ 4(L2
q − R2

q)ξiεαµβνpαqβ
]

=
∑

q

∫
dξq(ξ) Eδ(ξ − x)

4ξ(k · p)(p · q)

{
2(L2

q + R2
q)

[
− 2ξ(p · q)

(
gµν − qµqν

q2

)
+

4ξ2
(

pµ − (p · q)
q2 qµ

)(
pν − (p · q)

q2 qν

)]
+ 4(L2

q − R2
q)ξiεαµβνpαqβ

}

= −
∑

q

(L2
q + R2

q)
M

q(x)︸ ︷︷ ︸
−W Z

1

(
gµν − qµqν

q2

)

+
∑

q

2x(L2
q + R2

q)
M(p · q) q(x)︸ ︷︷ ︸

W Z
2

M2

(
pµ − (p · q)

q2 qµ

)(
pν − (p · q)

q2 qν

)

+
∑

q

(L2
q − R2

q)
M(p · q) q(x)︸ ︷︷ ︸

W Z
3

2M2

iεαµβνpαqβ.
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It can be seen that the first two structure functions differ from W γ
1 and W γ

2 only by
a factor of 2(L2

q + R2
q)/Q2

q. The interference term can be done in the same manner,

W γZ
µν =

∑
q

∫
dξq(ξ) Eδ(ξ − x)

4ξ(k · p)(p · q)

[
(Lq + Rq)

Qγ
µν

Qq

+ 2Qq(Lq − Rq)ξiεαµβνpαqβ
]

= −
∑

q

Qq(Lq + Rq)
2M

q(x)︸ ︷︷ ︸
−W γZ

1

(
gµν − qµqν

q2

)

+
∑

q

Qqx(Lq + Rq)
M(p · q) q(x)︸ ︷︷ ︸

W
γZ
2

M2

(
pµ − (p · q)

q2 qµ

)(
pν − (p · q)

q2 qν

)

+
∑

q

Qq(Lq − Rq)
2M(p · q) q(x)︸ ︷︷ ︸

W
γZ
3

2M2

iεαµβνpαqβ

and the structure functions W1, W2 and W3 can be read

W γ
1 =

∑
q

Q2
q

2M
q(x) W γ

2 = x
∑

q

Q2
q

ν
q(x)

W Z
1 =

∑
q

(L2
q + R2

q)
M

q(x) W Z
2 = x

∑
q

2(L2
q + R2

q)
ν

q(x)

W Z
3 =

∑
q

2(L2
q − R2

q)
ν

q(x)

W γZ
1 =

∑
q

Qq(Lq + Rq)
2M

q(x) W γZ
2 = x

∑
q

Qq(Lq + Rq)
ν

q(x)

W γZ
3 =

∑
q

Qq(Lq − Rq)
ν

q(x).
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2.6 Cross section

In order to form the cross section, it is necessary to calculate the contractions of
equation (29). The differential cross section should then be written in a Lorentz-
invariant form using Q2, propagator virtuality, and Bjorken x, momentum fraction,
as differentials.

The differential cross section (29) can be written as

d2σ

dE ′dΩ = E ′

16π2E

e4

q4

[
Lµν

γ W γ
µν + η2

4 Lµν
Z W Z

µν − ηLµν
γZW γZ

µν

]
, (45)

where the factor
η = g2

Z

e2
2q2

q2 − M2
Z

(46)

depicts the ratio of each contraction in terms of its couplings and propagators.

The contractions with leptonic tensors LµνWµν are calculated in appendix B. The
result for the fully symmetric γ term is

Lµν
γ W γ

µν = 2
[
k′µkν + k′νkµ − (k · k′)gµν

]
(47)

×
[

− W γ
1 (gµν − qµqν

q2 ) + W γ
2

M2 (pµ − (q · p)
q2 qµ)(pν − (q · p)

q2 qν)
]

= 4
[
W γ

1 (k · k′) + W γ
2

M2

(
(k · p)(k′ · p) − (k · k′)p2

2

)]
. (48)

The contractions involving Z boson have antisymmetric parts as well. The resulting
forms are

Lµν
Z W Z

µν = 8(L2
e + R2

e)
[
W Z

1 (k · k′) + W Z
2

M2 ((k · p)(k′ · p) − (k · k′)p2

2 )
]

− 8(L2
e − R2

e) W Z
3

2M2
q2

2

[
(k · p) + (k′ · p)

]
(49)

Lµν
γZW γZ

µν = 4(Le + Re)
[
W γZ

1 (k · k′) + W γZ
2

M2 ((k · p)(k′ · p) − (k · k′)p2

2 )
]

− 4(Le − Re)
W γZ

3
2M2

q2

2

[
(k · p) + (k′ · p)

]
. (50)



28

Inserting the contractions to the cross section (45) and reordering the terms gives

d2σ

dE ′dΩ = E ′

16π2E

e4

q4

4
([

W γ
1 + η2 (L2

e + R2
e)

2 W Z
1 − η(Le + Re)W γZ

1︸ ︷︷ ︸
W1

]
(k · k′)

+
[

W γ
2

M2 + η2 (L2
e + R2

e)
2

W Z
2

M2 − η(Le + Re)
W γZ

2
M2︸ ︷︷ ︸

W2
M2

]
[(k · p)(k′ · p) − (k · k′)p2

2 ]

−
[

η2 (L2
e − R2

e)
2

W Z
3

2M2 − η(Le − Re)
W γZ

3
2M2︸ ︷︷ ︸

W3
2M2

]
q2

2 [(k · p) + (k′ · p)]
)

. (51)

Structure factors W1 and W2 now consist of 3 terms, and W3 only of 2 terms, the Z

and γZ contributions. The DIS cross section in target rest frame now reads

d2σ

dE ′dΩ = E ′

4π2E

e4

q4{
W1(k · k′) + W2

M2

[
(k · p)(k′ · p) − (k · k′)p2

2

]
+ W3

2M2
q2

2

[
(k · p) + (k′ · p)

]}
. (52)

2.6.1 Coordinate transformations

The differentials dE ′ and dΩ in cross section can be converted into DIS differentials
dQ2 and dx using the following equalities:

Q2 = −q2 = 4EE ′ sin2 θ

2 dΩ = 2π sin θdθ,

x = Q2

2(p · q) =
2EE ′ sin2 θ

2
M(E − E ′) y = p · q

p · k
= E − E ′

E
.

The coordinate transformation from base (E ′, Ω) to (x,y) is done by multiplying by
Jacobian determinant in the following way:

d2σ

dE ′dΩ = det[J(E ′, Ω)] d2σ

dxdy
⇔ d2σ

dxdy
= det[J(E ′, Ω)]−1 d2σ

dE ′dΩ

J(E ′, Ω) =


∂x

∂E ′
∂x

∂Ω
∂y

∂E ′
∂y

∂Ω

 ,
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where the partial derivatives are

∂x

∂E ′ =
2E sin2 θ

2
M

E

(E − E ′)2

∂x

∂Ω = ∂x

2π sin θ∂θ
= EE ′

M(E − E ′)π sin θ
sin θ

2 cos θ

2︸ ︷︷ ︸
1
2 sin θ

= EE ′

2πM(E − E ′)

∂y

∂E ′ = − 1
E

∂y

∂Ω = 0

and the Jacobian determinant for this transformation is

det[J(E ′, Ω)]−1 =
(

E ′

2πM(E − E ′)

)−1
= 2πM(E − E ′)

E ′ .

Doing this again for a transormation (x,y) ⇒ (x,Q2)

det[J(x,Q2)] =

∣∣∣∣∣∣∣∣∣∣

∂x

∂x

∂x

∂Q2

�
�
���

0
∂y

∂x

∂y

∂Q2

∣∣∣∣∣∣∣∣∣∣
= ∂y

∂Q2 = 1
2x(p · k) (53)

gives the full transformation as

d2σ

dxdQ2 = 1
2x(p · k)

d2σ

dxdy
= 2πM(E − E ′)

2x(p · k)E ′
d2σ

dE ′dΩ . (54)

The cross section in Lorentz-invariant DIS quantities is then

d2σ

dxdQ2 = (E − E ′)
4πE2x

e4

q4{
W1(k · k′) + W2

M2

[
(k · p)(k′ · p) − (k · k′)p2

2

]
+ W3

2M2
q2

2

[
(k · p) + (k′ · p)

]}
. (55)
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2.6.2 Neutral-current DIS cross section and structure functions

Defining dimensionless structure functions Fi and using some manipulations

F1(x,Q2) = MW1 F2(x,Q2) = νW2

−q2 = −2(k · k′) = 4EE ′ sin2 θ
2 = −2EE ′(1 − cos2 θ

2) = Q2 = 2MEyx

x = Q2

2MEy
y = ν

E

(p · k′) = ME ′ α = e2

4π

(56)
gives the first two terms of cross section as

(E − E ′)
4πxE2

e4

Q4

[
Q2

2 W1 + W2

M2 (M2EE ′ − M2EE ′ sin2 θ

2)
]

= νe4

4πxQ4
E ′

E

[
Q2

2MEE ′ F1 +
(

1 − Q2

4EE ′

)
F2

ν

]

= e4

4πxQ4

[
Q2ν

2ME2
ν

yE
F1 +

(
E ′

E
− Q2

E2

)
F2

]

=16π2α2

4πxQ4

[
Q2

2yME︸ ︷︷ ︸
x

ν2

E2︸︷︷︸
y2

F1 +
(

E ′

E ↑︸︷︷︸
1− E

E

− 2Mνx

4E2

)
F2

]

=4πα2

xQ4

[
xy2F1 +

(
1 − E − E ′

E︸ ︷︷ ︸
y

−M2yx

2ME

)
F2

]

= 1
2MEx

4πα2

xyQ2

[
xy2F1 +

(
1 − y − M2x2y2

Q2

)
F2

]
.

The W3 term is modified similarly by defining F3(x,Q2) = νW3

(E − E ′)e4

4πxQ4
E ′

E

(
W3

2M2
q2

2 [(k · p) + (k′ · p)]
)

= 4πα2ν

Q4xE2

(
W3

4M
Q2(E + E ′)

)

=4πα2

xQ4
Q2

4ME2 (E + E ′)F3 = −4πα2

xQ4
EQ2

4ME2 (1 + E ′

E
)F3

= − 4πα2

xQ4
2ME2yx

4ME2 (2 − y)F3 = −4πα2

xQ4 (1 − y

2)yxF3

= − 1
2MEx

4πα2

xyQ2 (y − y2

2 )xF3.
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The minus sign of W3 term cancels, and 2ME = s − M2 is Lorentz-invariant as well.
Putting the terms together gives the final neutral-current DIS cross section

d2σ

dxdQ2 = 1
x(s − M2)

4πα2

xyQ2

[
y2xF1 +

(
1 − y − M2x2y2

Q2

)
F2 +

(
y − y2

2

)
xF3

]
. (57)

The neutral-current structure functions can be read from equation (51). The equations
correspond to those of Particle Data Group [7] by making the substitutions

η′ = 2η, η′2 = 4η, W Z′
i = 1

4W Z
i , F Z′

i = 1
4F Z

i . (58)

The equality still holds, and the neutral-current structure functions are (omitting
the apostrophe)

F NC
2 = 2xF NC

1 = F γ
2 + η2 (L2

e + R2
e)

2 F Z
2 − η

(Le + Re)
2 F γZ

2

F NC
3 = η2 (L2

e − R2
e)

2 F Z
3 − η

(Le − Re)
2 F γZ

3 , (59)

where

F γ
2 (x, Q2) = x

∑
q

Q2
q(q + q) η = g2

Z

e2
4q2

q2 − M2
Z

(60)

F Z
2 (x, Q2) = x

∑
q

(L2
q + R2

q)
2 (q + q) F Z

3 (x, Q2) =
∑

q

(L2
q − R2

q)
2 (q − q)

F γZ
2 (x, Q2) = x

∑
q

Qq(Lq + Rq)(q + q) F γZ
3 (x, Q2) =

∑
q

Qq(Lq − Rq)(q − q),

and the sum goes over all quark flavors, q = d, u, s, c, b, t. Since this is the final
form for these equations, the contributions for antiquarks are added as well. In the
calculation for antiquarks, the only difference is in the invariant amplitude M. The
Feynman rules for external antifermions are given in appendix A, and results in
swapping the parton momentums p̂ and p̂′ in M. As the structure functions F1 and
F2 contain only symmetrical parts, this change has no effect on them. Ultimately,
the only differences are that the structure function F3 has a minus sign, so the PDFs
for antiquarks are denoted by q.
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2.7 Monte Carlo methods

The essential tool to build the simulation is Monte Carlo sampling from a distribution.
It uses known probability distribution functions and random numbers to draw samples
according to the probability dictated by the studied distribution. The distribution
in this case is the cross section (57), and the samples drawn are pairs of x and Q2.
The basic idea is to make a random guess from the domain which defines the phase
space Ω, and accept or reject it. The condition to accept the sample is proportional
to the distribution itself. The importance sampling method is used to make better
initial guesses. This technique picks the guesses from a limiting function g(x, Q2)
which covers the cross section from above, g(x, Q2) ≥ d2σ

dxdQ2 ∀ (x, Q2) ∈ Ω. In case
the limiting function can be separated as g(x, Q2) = g1(x)g2(Q2), the values can be
picked analytically from the functions gi if they are integrable and the primitive
function Gi is invertible in the domain of interest. The analytical method is given
by the equation ∫ x

xmin
g(x′)dx′ = R

∫ xmax

xmin
g(x′)dx′, (61)

where R ∈]0, 1[ is a random number generated from a flat distribution. The connection
of x and R is clear if we consider the left-hand side to be the integral from xmin

to some random value x. The right-hand side is then the fraction R of the whole
integral. Solving this for x gives

x = G−1
[
G(xmin) + R

(
G(xmax) − G(xmin)

)]
. (62)

Once both of the values are picked, the cross section is calculated. Then a new
random number R is generated, and the values are accepted if

d2σ

dxdQ2 > Rg(x, Q2). (63)

With a suitable limiting function g(x, Q2), this sampling algorithm produces pairs of
x and Q2 from the differential cross section.
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3 Simulation

Lepton-quark -scattering sub-process in the parton level is elastic 2-to-2 scattering,
so it only needs two independent variables to fix the kinematics, x and Q2 in this
case. With the initial-state particle 4-vectors chosen to move along the z direction,
the process can be simulated by constructing the final-state 4-vectors using the
sampled quantities, from which any other quantity can be derived. The scattering
angle is chosen to be between the z and x axes, and the transverse momentum is
set to point to x direction. This doesn’t change the physics, only the coordinates,
since the azimuthal angle is independent of the cross section. The implementation
handles the phase space, quark flavor sampling and kinematics as well. It also takes
the quark masses into account.

The necessary initial parameters are electron and proton beam energies E and Ep

and minimum propagator virtuality Q2
min. Some optional parameters are maximum

number of sampled events Ntarget and maximum propagator virtuality Q2
max. These

set initial conditions and the kinematic region.

3.1 Limiting function

The sampling starts by drawing values of x and Q2 from the limiting function g(x,Q2).
To achieve a sufficient efficiency, the function should imitate the behaviour of dσ. A
suitable limiting function for the studied cross section is found to be

g(x,Q2) = Ag1(x)g2(Q2) = Ax−a(Q2)−b, (64)

where the constant A = dσmaxxa(Q2)b sets the maximum value of the limiting
function equal to the maximum value of cross section. The exponents a and b are
picked with the use of a optimization algorithm.

The efficiency of the MC method can be evaluated from

∫
Ω

d2σ
dxdQ2∫

Ω g(x, Q2) , (65)
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which is the ratio of the 3-dimensional volumes in a (x, Q2, d2σ
dxdQ2 ) coordinate system.

To make use of this, the cross section was calculated in a logarithmic grid of x and
Q2 in the region Ω. Since ”most” of the cross section resides in small x and Q2 values,
a logarithmic spacing was used. The sum of the ratio of these values represents the
inverse of the efficiency: ∑

(x,Q2)∈Ω

d2σ
dxdQ2 (Ω)

g(Ω) . (66)

To maximize sampling efficiency, this sum can be minimized in terms of the exponents
a and b of the limiting function. However, the graphs of the functions should not
cross, so the ratio is set to infinity if g(x, Q2) − d2σ

dxdQ2 < 0. This way the minimum
of the sum function is found only when the functions do not cross.

A minimizing algorithm was used with the initial guesses a = 1.1 and b = 1.5.
The algorithm used is the Nelder-Mead simplex algorithm, implemented in the
Python library SciPy as scipy.optimize.fmin(). These initial values were selected
by hand, by studying the behaviour of the cross section. The resulting exponents
were a ≈ 1.1 and b ≈ 2.1. To ensure that the limiting function stays above the cross
section, an extra factor of 1.01 was added to g(x,Q2). The minimizing algorithm
doesn’t use information about the derivatives, so the result highly depends on the
initial guess. The MC method prohibits the use of a = 1, since the exponent would
have a division by zero, so the initial guesses cannot be exactly one. Also, since the
exponents are negative, the starting points of x and Q2 cannot be exactly zero.

3.2 Monte Carlo sampling

Using the analytic method (62) separately for the functions g1 and g2 gives

x =
[
x1−a

min + Rx(1 − x1−a
min )

] 1
1−a

Q2 =
[
(Q2

min)1−b + RQ2(1 − (Q2
min)1−b)

] 1
1−b

.

The kinematic limits are set by Q2
min = 1 GeV2 and xmin = Q2

min/(s − M2 − m2
e), and

the maximum value Q2
max = s − M2 − m2

e is dictated by the initial beam energies.
The propagator virtuality Q2 and the Bjorken x are drawn this way. The values are
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Figure 4. N = 100000 sampled values in the (x,Q2) domain with logarithmic
axes. The domain is set by Q2

min = 1 GeV2 and xmin = Q2/(s − M2 − m2
e).

rejected if they are outside the kinematically allowed region,

x ≤ Q2/(s − M2 − m2
e), (67)

or if the accept-condition (63) is not met. The limit for the phase space is derived
from the definition of inelasticity y ∈ [0,1] as follows:

y = q · p

k · p
, x = Q2

2(q · p) = Q2

2y(k · p)
y=1⇒ xmin = Q2

s − M2 − m2
e

. (68)

In order to obtain a separable function g(x,Q2) = g1(x)g2(Q2), the limits xmin and
Q2

max cannot depend on each other. Figure 4 presents the sampled points in the
phase space Ω. From the figure one can deduce that most of the events happen at
low x and Q2 values. These accepted points are then used to build the kinematics
and construct the particle four-vectors. The domain begins at the user-defined Q2

min,
and the hypotenuse of this triangle is given by equation (67).

Computation of the differential cross section is done with the use of PDFs
from PYTHIA libraries, namely the LHAGrid1 approach [5] which interpolates the
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Figure 5. The sampled values from an x interval of 0.2 ± 0.01 as a histogram.
The cross section is drawn in the sampled points and the limiting function in the
Q2 interval. The histogram is normalized so that its integral is equal to that of
dσ.

LHAPDF6 [8] set. The PDF used is the default option NNPDF2.3 [9]. The function
double PDF::xf(int id, double x, double Q2) of the PDF object returns x

times the PDF q(x, Q2) of the structure functions (60). The quark indices id in
PYTHIA are 1, 2, 3, 4, 5, 6 for quarks in the order d, u, s, c, b, t, and negative for
corresponding antiquark. The differential cross section (57) is computed with these
PDFs and physical constants which are presented in appendix A. By drawing a new
random number and comparing the values of R times the limiting function and
the cross section, the probability to accept the values is proportional to the cross
section itself. Figure 5 depicts a ”slice” of the cross section in a small interval of
x = 0.2 ± 0.01. The differential cross section and the limiting function are plotted
as well to illustrate the Monte Carlo method. The tries are done as a point below
g(x, Q2), and if this point is under the graph of dσ, it is accepted and added to the
histogram. The limiting function is larger than the cross section, and the sampling
algorithm reproduces the desired distribution.

Quark flavor sampling is the next step in the program. It can be done by
calculating the cross section as a sum of each quark flavor contribution, drawing
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once again a new random number Rq and comparing this to the ratio

∑
q

dσq

dσ
> Rq. (69)

The sum goes over all quarks and antiquarks in the order q = d, u, s, c, b, t, d̄, ū, ū, s̄, c̄, b̄, t̄.
The term which sets this ratio greater than Rq defines the quark type.

3.3 Kinematics

Although the parton has a momentum of p̂ = xp in the parton model, this is only
valid in the infinite momentum frame where masses are negligible. In order to get
the correct quark masses into the simulation, the vector p̂ has to be solved some
other way. Here we use the p+ momentum that allows to set the quark into its mass
shell and the definition of Lorentz-invariant x,

x = p̂+

p+
= |p̂z| + Ê

|pz| + E
(70)

⇔ Ê = x

2

(
(|pz| + Ep) + m̂2

x2(|pz| + Ep)

)
. (71)

The momentum is then given as usual, by the dispersion relation (9).

With the particles and quantities set, the kinematics are then built with the
initial state four-vectors

k = [0, 0, kz, E] and p̂ = [0, 0, p̂z, Ê]. (72)

The collision kinematics are easily calculated in the lepton-parton center of momentum
system (CMS). This is achieved by Lorentz-boosting the vectors

kCMS
z = −p̂CMS

z = γ(kz − vE) = −γ(p̂z − vÊ)

⇔ v = kz + p̂z

E + Ê
, where γ = 1√

1 − v2
.

Assuming that transverse momentum is along the x-axis, the final state four-vectors
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are obtained as

k′ = [pCMS sin θCMS, 0, pCMS cos θCMS, E
′CMS]

p̂′ = [−pCMS sin θCMS, 0, −pCMS cos θCMS, Ê
′CMS],

(73)

where the CMS quantities are

E
′CMS = ŝ+m2

e−m̂2

2
√

ŝ
Ê

′CMS = ŝ−m2
e+m̂2

2
√

ŝ

pCMS =
√

λ(s,m2
e,m̂2)

2
√

ŝ
cos θCMS = 1 + 2ŝt̂

λ(s,m2
e,m̂2)

ŝ = (k + p̂)2 t̂ = t = −Q2 λ(x,y,z) = x2 + y2 + z2 − 2xy − 2xz − 2yz

. (74)

Then the vectors are boosted back to the lab frame. The scattering event simulation
is completed, and any quantity that can be constructed from the four-momenta can be
considered, such as the quantities (8) and the transverse momentum pT =

√
p2

x + p2
y.

In the scattering, the proton is broken down and creates new particles. The mass
and energy of the proton and the struck quark are transformed to masses and energies
of new particles, which might not be detected in experiments. The invariant mass of
these particles is W . This has a maximum value at qmax = (k − k′)max = k, which
describes an event where the electron gives all of its momentum to the propagator.
Omitting the masses, the value can be computed as

W 2 =(p + q)2 = (Ep + Eq)2 − (~p + ~q)2

=E2
P + E2

q + 2EP Eq − (| ~P |2 + |~q|2 + 2 ~P · ~q)

W 2
max ≈︸ ︷︷ ︸

|~p|≈Ep,|~q|≈Eq=E

2EpE − 2EpE cos θ = 4EpE

⇒ Wmax =
√

4EpE = 318.119 GeV. (75)

The coordinates are chosen in a way that the transverse momentum pT of the particles
is along the x-axis. Getting the x and Q2 back from the final state vectors gives
some insight on the functionality of the simulation and kinematics. The program
has some measures to handle faulty events. Firstly, the four-momentum has to be
conserved. This might fail in cases where numerical precision is lost. Secondly, the
difference in sampled and reconstructed x must not exceed a given threshold, 0.001
as default. The event is marked as failed if either of these faults are present.

The program was ran with beam energies set to match DIS data measured in
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DESY-HERA collider [1]. The parameters were

E = 27.5 GeV Ep = 920 GeV Q2
min = 1 GeV2

a = 1.1 b = 2.1
.

The propagator virtuality limit sets the low end of phase space, and the exponents
were selected to efficiently sample in this region, with the use of optimizing algorithm
presented in section 3.1.
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Figure 6. The ratio of NC interaction cross section by photon interaction cross
section with different fixed x. Mass of the Z boson squared is pictured as a
straight line.
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4 Results

With the cross section implemented numerically, values of NC interaction and purely
photonic interaction were gathered. Figure 6 illustrates the effect of adding Z boson
interaction to the photon exchange process. The cross section is essentially the same
until Q2 ∼ M2

Z . Then the interactions are energetic enough to produce a Z boson,
and the cross section is less than 1% larger. The lines end at the maximum Q2 values,
determined by the fixed x. This result is important for the sampling method. As
the effects of Z boson interaction are minimal, there is no need to handle the large
Q2 region differently. The same limiting function is suitable for both NC interaction
as well as purely photonic interaction.

Simulations and the PYTHIA program were executed to gather N = 100000
sampled events, with results presented in figures 8 through 12. The quantities are
explained in equation (8). The results were gathered from the presented simulation
software with quark masses set equal to ones used by PYTHIA, with the command
pythia.particleData.m0(”quark index”). The masses that PYTHIA use for the
quarks are md = mu = 0.33 GeV, ms = 0.5 GeV, mc = 1.5 GeV and mb = 4.8 GeV.
The distributions are normalized to sampled total cross section. This means that the
heights of the lines indicate the value of cross section, differential in the quantity in
question. The total cross section is gathered by MC sampling, sort of as a by-product.
Approximation for the integral of d2σ

dxdQ2 in equation (65) is given by

σ =
∫ 1

xmin

∫ Q2
max

1

d2σ

dxdQ2 dx dQ2 ≈ V
Naccepted

N

=
∫ 1

xmin

∫ Q2
max

1
g(x,Q2) dx dQ2 Naccepted

N
, (76)

where Naccepted is the number of accepted tries and N the total number of tries and
V the volume of the sampled region, equal to the integral of g(x, Q2). Limits of
the phase space are given in section 3.2. Error of the approximation decreases as
∼ 1/

√
N with increasing number of tries. Gathered histograms are then normalized

by multiplying by total cross section and dividing by bin width and number of
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Figure 7. N = 100000 sampled values, with accepted and failed tries. The event
is set to fail if the difference in sampled and reconstructed x is over 0.001.

tries. As the simulation works in natural units, the conversion factor of GeV−2 to
millibarns (mb) is 2.568. Doing this for the presented simulation, and getting an
equivalent value calculated by PYTHIA resulted in total cross sections of 0.00141
mb and 0.00133 mb respectively. There is a slight difference in these, and it’s effect
can be seen in the following figures.

Adding the quark masses introduced a problem in the kinematics of the simulation.
The assumption p̂ = xp doesn’t hold in any other frame than the infinite momentum
frame of frame of the proton as this does not set the quark into it’s mass shell. To
address this problem, the parton vector was solved from another definition of x.
This however led to a problem in the calculated x when the sampled x was smaller
than m̂/Ep. These events are not energetic enough to produce a sampled quark
on its mass-shell, and led to different values when the x was constructed from the
four-vectors. This effect can be seen in figure 7, where the failed events produce
cutoffs for different quarks. The lowest x values failed, with the cutoff proportional
to up and down quark masses. The next cutoff is for the strange quark, and the last
visible one for the charm quark. It is also apparent that the resolution power has to
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Figure 8. Sampled x values from the simulation with and without quark masses,
and from PYTHIA. Logarithmic axes are used for both x and y direction. The
distributions are normalized to the sampled total cross section.

be more than Q2 = 1 GeV2 in order to have heavier quarks in the interaction, as
there is a horizontal cutoff in the phase space as well.

Sampled x values are presented in figure 8, with logarithmic axes to better visualize
the distribution. The result indicates that most of the events happen at small x

values, as was expected. Comparing the graphs of the simulation and PYTHIA event
generator, they agree at larger values but differ at very small values of x. These
events have proved to be the most problematic in a numerical implementation, and
the PYTHIA DIS program has large differences in the sampled x and reconstructed
x of the events at small x as well.

An important result can be seen in the Q2 distribution, figure 9. The PYTHIA
main program samples values lower than what was desired, with the parameter Q2min

set to 1 GeV2. The simulation, however, bypasses this problem entirely, and no events
with Q2 smaller than 1 GeV2 were sampled. The cross section seems to be somewhat
inversely proportional to the virtuality, which is evident in the expression (57) as
well. The presented simulation uses a fixed seed for random number generator, so
the sampled x and Q2 are identical for executions with massive and massless quarks.
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Figure 9. Sampled Q2 values ranging from 0 to 40 GeV2 from the presented
simulation as well as PYTHIA event generator, normalized to sampled total
cross section. A logarithmic y-axis is used.
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Figure 10. Values of invariant mass W of the remaining system of particles
X, obtained from the constructed 4-vectors of the simulation and PYTHIA.
Normalized to sampled total cross section.
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Figure 11. Inelasticity y calculated from the sampled values of the simulation,
and from the constructed four vectors of PYTHIA. Normalized to sampled total
cross section.

Since the invariant mass of the photon-proton system is proportional to the
virtuality, it follows that the distribution 10 has an inversely proportional behaviour
to the cross section. There is a cut off somewhere around 320 GeV, which is consistent
with equation (75). The results without quark masses are similar, but there is a clear
effect in this distribution when the quark masses are added to the simulation. There
seems to be more events with small W and less events with high W .

The inelasticity distributions of figure 11 are plotted on a logarithmic y-axis.
The simulation results are the same for massless and massive quarks, since these are
calculated from the sampled values. There is a clear difference at large-y region with
the values from PYTHIA.
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Figure 12. Transverse momentum p̂′
T of the scattered parton ranging from 0

to 15 GeV, from the constructed four-vectors of the simulation and PYTHIA.
Normalized to sampled total cross section.

As the quark is struck, it gains momentum perpendicular to the beam axis z.
This transverse momentum has the same magnitude but opposite direction for the
electron. The pT distribution of the electron is therefore identical to that of the
struck quark, figure 12. This distribution is also plotted in a logarithmic y-axis for
clarity. There is a clear peak at p̂′

T ∼ 2 GeV, and the distribution indicates that the
scattering favors events with small transverse momentum. The peak is dependent on
the limits of Q2. A difference can be seen in the lowest values of p̂′

T for the massive
and massless case. Adding the quark masses results in noticeably less events with p̂′

T

smaller than 2 GeV, but slightly more events with p̂′
T around 2.5 GeV.
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5 Conclusions

Monte Carlo event generators are beneficial for the research of high-energy physics,
as they can help in the planning of collider experiments, and predict what kind of
results are expected. The vision of making an event generator for PYTHIA, solely
focusing on lepton-nucleon DIS, led to the approach of Monte Carlo sampling of
Bjorken x and virtuality Q2 from the cross section of the process. The simulation
built handles only the parton level sub-process, where the lepton scatters off a quark.

The NC DIS cross section can be derived with the use of Feynman rules. The
parton model depicts the scattering process as interactions between the lepton and
a quark, and enables the identification of structure functions in terms of parton
distribution functions. The contribution of Z boson in the process is minimal
compared to the photon contribution, so the scattering events are highly dominated
by photon interaction. Using the derived expression as the distribution for Monte
Carlo sampling enables the selection of x and Q2 with a similar probability to emerge
as in scattering experiments. The importance sampling method proves to be a
successful option with a suitable limiting function, which was improved with an
optimizing algorithm, so it could handle different kinematic regions. It makes no
difference whether the Z contribution is included for this kind of MC sampling or
not. Taking care of the kinematic limits and quark sampling, the parton level process
is simulated successfully, and various variables of interest are obtained. With the
option to optimize the limiting function, the MC efficiency is great for a wide range
in the phase space, but the parameters need to be separately fitted.

Building the sampling and kinematics in the presented way conserves the x and Q2

completely for massless quarks. This is a desirable result, as the PYTHIA program
has the unwanted effect of getting different values for the quantities. However, adding
the masses to the quark four-vectors proved to be problematic. The propagator
q = k − k′ describes the physical propagating particle well in both cases, as its
negative square is the same as the sampled Q2. The parton four-vectors p̂ and
p̂′ on the other hand might not describe the quark well enough in the lower end
of the phase space, since the reconstructed x differs slightly from the sampled x.
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PYTHIA assumes initial state particles to be massless, and final state particles
massive. Inclusion of lepton mass has no effect in results of the presented simulation.

The effect of adding the quark masses is most noticeable in the missing mass
distribution of figure 10. The massless case somewhat agrees with the results from
PYTHIA, but adding quark masses results in a different shape for the W graph.
Differences in the inelasticity y and transverse momentum p̂′

T distributions (figures
11 and 12) are minor and more noticeable when plotted in a logarithmic y-axis. The
gathered results imply that the sampling of x and Q2 is working as intended, but
another way to build the kinematics may be beneficial to get better results with
massive quarks.

Overall, the gathered distributions with massless quarks seemed to agree better
with PYTHIA’s distributions. This is no surprise, as PYTHIA doesn’t handle all
masses in the events either. However, building the kinematics in a consistent way
to preserve the sampled quantities and four-momenta proved to be a difficult task
when the quark masses are added to the simulation.

The improvements to existing PYTHIA event generation were to include quark
masses and preserve the sampled quantities when calculated from the constructed
four-vectors. The created simulation program has these features, but building the
kinematics with massive quarks introduced some unwanted behaviour in the results.
The program only handles the parton level sub-process, with only the lepton and
quark present in the final state. Some effort is still needed to finalize a suitable
component for PYTHIA. Possible further improvements are the inclusion of charged-
current interactions via a W ± boson exchange, a different approach at building
the kinematics as to preserve all wanted quantities, and hadronization processes to
produce different final state particles.
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Fermion f e u, c, t d, s, b
Weak isospin z-component T 3 −1 1 −1

Electromagnetic charge Qf −1 2/3 −1/3
Lefthanded Z vertex factor Lf −1 + 2 sin2 θW 1 + −4

3 sin2 θW −1 + 2
3 sin2 θW

Righthanded Z vertex factor Rf 2 sin2 θW −4
3 sin2 θW

2
3 sin2 θW

Weinberg angle sin2 θW 0.22278 Proton mass M 0.93827 GeV
Z boson coupling constant gZ 0.017537 Electron mass me 0.000511 GeV

Fine-structure constant α 0.00729735 Z boson mass MZ 91.1876 GeV

Table 1. Coupling constants and other physical constants.

A Feynman rules and physical constants

Table 1 holds the relevant physical constants used in the simulation. The Z boson
vertex factors for fermion f are given by

Lf = T 3
f − 2Qf sin2 θW Rf = −2Qf sin2 θW . (77)
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A.1 Interaction vertices

µ

γ

= iQfeγµ µ

Z0

= −igzγµ[Lf (1 − γ5) + Rf (1 + γ5)]
(78)

A.2 Boson propagators

γµ ν = −igµν

q2+iε
Z0µ ν = −i

(q2−M2)+iε
[gµν − qµqν

M2 ] (79)

A.3 External legs

= us(p) Incoming fermion = us(p) Outgoing fermion
= vs(p) Incoming antifermion = vs(p) Outgoing antifermion

(80)

GitLab-page of the simulation project: https://gitlab.jyu.fi/joollaul/

dis-mc-simulation-pro-gradu/

https://gitlab.jyu.fi/joollaul/dis-mc-simulation-pro-gradu/
https://gitlab.jyu.fi/joollaul/dis-mc-simulation-pro-gradu/
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B Tensor contractions

The contraction Lµν
γ W γ

µν is calculated as follows. The leptonic tensor (19) is fully
symmetric, so the contraction is non-zero only for the symmetric part of W γ

µν . Using
the following equalities

q = k − k′ q2 = ���
0

k2 + �
�>

0
k′2 − 2(k · k′), (p · q) = (p · k) − (p · k′)

(k · q) = ���
0

k2−(k · k′), (k′ · q) = (k · k′) − �
�>

0
k′2

gives the contraction as

Lµν
γ W γ

µν = 2
[
k′µkν + k′νkµ − (k · k′)gµν

]
×

[
− W γ

1 (gµν − qµqν

q2 ) + W γ
2

M2 (pµ − (q · p)
q2 qµ)(pν − (q · p)

q2 qν)
]

= −2W γ
1 [−(k · k′) − 2−(k · q)(k′ · q)

q2 ] + W γ
2

M2

[
2(k · p)(k′ · p) − (k · k′)p2

− (p · q)
q2

(
2(k · p)(k′ · q) + 2(k · q)(k′ · p) − 2(k · k′)(p · q)

)

+ (p · q)2

q4

(
2(k · q)(k′ · q) − (k · k′)q2

)]

= 4W γ
1 (k · k′) + 4W γ

2
M2

[
(k · p)(k′ · p) − (k · k′)p2

2

+ (p · q)
q2 [(k · k′)(k′ · p) − (k · k′)(k · p) + (p · k)(k · k′) − (p · k′)(k · k′)]

+ (p · q)2

q4 [−(k · k′)2 + (k · k′)2]
]

= 4
[
W γ

1 (k · k′) + W γ
2

M2

(
(k · p)(k′ · p) − (k · k′)p2

2

)]
. (81)

The contractions of Lµν
Z W Z

µν and Lµν
γZW γZ

µν are done similarly. They can be separated
into symmetric and antisymmetric parts to ease the calculations, since contracting
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symmetric and antisymmetric parts gives zero.

(Lµν
Z )S(W Z

µν)S = 4(L2
e + R2

e)[kµk′ν + kνk′µ − (k · k′)gµν ]

× [−W Z
1 (gµν − qµqν

q2 ) + W Z
2

M2 (pµ − (q · p)
q2 qµ)(pν − (q · p)

q2 qν)]

= 8(L2
e + R2

e)[W Z
1 (k · k′) + W Z

2
M2 ((k · p)(k′ · p) − (k · k′)p2

2 )].

This is the same form as 2(L2
e + R2

e)Lµν
γ W γ

µν . For the antisymmetric part the result

εµναβεµνγδ = −2(δα
γ δβ

δ − δα
δ δβ

γ ) (82)

is used:

(Lµν
Z )A(W Z

µν)A = 4(L2
e − R2

e)iεαµβνkαk′
β × (− W Z

3
2M2 iεµνγδp

γqδ)

= −4(L2
e − R2

e) W Z
3

2M2 [−2(δα
γ δβ

δ − δα
δ δβ

γ )kαk′
βpγqδ]

= 4(L2
e − R2

e)W Z
3

M2 [(k · p)(k′ · q) − (k · q)(k′ · p)]

= 4(L2
e − R2

e)W Z
3

M2 (k · k′)[(k · p) + (k′ · p)]

= −8(L2
e − R2

e) W Z
3

2M2
q2

2 [(k · p) + (k′ · p)].

Similarly for the γZ part

(Lµν
γZ)S(W γZ

µν )S = 4(Le + Re)[W γZ
1 (k · k′) + W γZ

2
M2 ((k · p)(k′ · p) − (k · k′)p2

2 )]

(Lµν
γZ)A(W γZ

µν )A = −4(Le − Re)
W γZ

3
2M2

q2

2 [(k · p) + (k′ · p)].
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