This is a self-archived version of an original article. This version may differ from the original in pagination and typographic details.

Author(s): Siltakoski, Jarkko

Title: Hölder gradient regularity for the inhomogeneous normalized $p(x)$-Laplace equation

Year: 2022

Version: Published version

Copyright: © 2022 The Author(s). Published by Elsevier Inc.

Rights: CC BY 4.0

Rights url: https://creativecommons.org/licenses/by/4.0/

Please cite the original version:

Siltakoski, J. (2022). Hölder gradient regularity for the inhomogeneous normalized p(x)-Laplace equation. Journal of Mathematical Analysis and Applications, 513(1), Article 126187.
https://doi.org/10.1016/j.jmaa.2022.126187

Regular Articles

Hölder gradient regularity for the inhomogeneous normalized $p(x)$-Laplace equation

Jarkko Siltakoski

Department of Mathematics and Statistics, P.O.Box 35, FIN-40014, University of Jyväskylä, Finland

A R T I C L E I N F O

Article history:
Received 2 January 2022
Available online 23 March 2022
Submitted by A. Cianchi

Keywords:

Non-divergence form equation
Normalized equation
p-Laplace
Hölder gradient regularity
Viscosity solution
Inhomogeneous equation

A B S T R A C T

We prove the local gradient Hölder regularity of viscosity solutions to the inhomogeneous normalized $p(x)$-Laplace equation

$$
-\Delta_{p(x)}^{N} u=f(x)
$$

where p is Lipschitz continuous, inf $p>1$, and f is continuous and bounded.
© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

We study the inhomogeneous normalized $p(x)$-Laplace equation

$$
\begin{equation*}
-\Delta_{p(x)}^{N} u=f(x) \quad \text { in } B_{1} \tag{1.1}
\end{equation*}
$$

where

$$
-\Delta_{p(x)}^{N} u:=-\Delta u-(p(x)-2) \frac{\left\langle D^{2} u D u, D u\right\rangle}{|D u|^{2}}
$$

is the normalized $p(x)$-Laplacian, $p: B_{1} \rightarrow \mathbb{R}$ is Lipschitz continuous, $1<p_{\min }:=\inf _{B_{1}} p \leq \sup _{B_{1}} p=: p_{\max }$ and $f \in C\left(B_{1}\right)$ is bounded. Our main result is that viscosity solutions to (1.1) are locally $C^{1, \alpha}$-regular.

Normalized equations have attracted a significant amount of interest during the last 15 years. Their study is partially motivated by their connection to game theory. Roughly speaking, the value function of certain stochastic tug-of-war games converges uniformly up to a subsequence to a viscosity solution of a normalized equation as the step-size of the game approaches zero [32,30,31,9,11]. In particular, a game with

[^0]space-dependent probabilities leads to the normalized $p(x)$-Laplace equation [3] and games with running pay-offs lead to inhomogeneous equations [33]. In addition to game theory, normalized equations have been studied for example in the context of image processing [16,18].

The variable $p(x)$ in (1.1) has an effect that may not be immediately obvious: If we formally multiply the equation by $|D u|^{p(x)-2}$ and rewrite it in a divergence form, then a logarithm term appears and we arrive at the expression

$$
\begin{equation*}
-\operatorname{div}\left(|D u|^{p(x)-2} D u\right)+|D u|^{p(x)-2} \log (|D u|) D u \cdot D p=|D u|^{p(x)-2} f(x) . \tag{1.2}
\end{equation*}
$$

For $f \equiv 0$, this is the so called strong $p(x)$-Laplace equation introduced by Adamowicz and Hästö $[1,2]$ in connection with mappings of finite distortion. In the homogeneous case viscosity solutions to (1.1) actually coincide with weak solutions of (1.2) [35], yielding the $C^{1, \alpha}$-regularity of viscosity solutions as a consequence of a result by Zhang and Zhou [38].

In the present paper our objective is to prove $C^{1, \alpha}$-regularity of solutions to (1.1) directly using viscosity methods. The Hölder regularity of solutions already follows from existing general results, see [28,29,12,13]. More recently, Imbert and Silvestre [24] proved the gradient Hölder regularity of solutions to the elliptic equation

$$
|D u|^{\gamma} F\left(D^{2} u\right)=f
$$

where $\gamma>0$ and Imbert, Jin and Silvestre [25,22] obtained a similar result for the parabolic equation

$$
\partial_{t} u=|D u|^{\gamma} \Delta_{p}^{N} u
$$

where $p>1, \gamma>-1$. Furthermore, Attouchi and Parviainen [4] proved the $C^{1, \alpha}$-regularity of solutions to the inhomogeneous equation $\partial_{t} u-\Delta_{p}^{N} u=f(x, t)$. Our proof of Hölder gradient regularity for solutions of (1.1) is in particular inspired by the papers [25] and [4].

We point out that recently Fang and Zhang [19] proved the $C^{1, \alpha}$-regularity of solutions to the parabolic normalized $p(x, t)$-Laplace equation

$$
\begin{equation*}
\partial_{t} u=\Delta_{p(x, t)}^{N} u \tag{1.3}
\end{equation*}
$$

where $p \in C_{\text {loc }}^{1}$. The equation (1.3) naturally includes (1.1) if $f \equiv 0$. However, in this article we consider the inhomogeneous case and only suppose that p is Lipschitz continuous. More precisely, we have the following theorem.

Theorem 1.1. Suppose that p is Lipschitz continuous in $B_{1}, p_{\min }>1$ and $f \in C\left(B_{1}\right)$ is bounded. Let u be a viscosity solution to

$$
-\Delta_{p(x)}^{N} u=f(x) \quad \text { in } B_{1}
$$

Then there is $\alpha\left(N, p_{\min }, p_{\max }, p_{L}\right) \in(0,1)$ such that

$$
\|u\|_{C^{1, \alpha}\left(B_{1 / 2}\right)} \leq C\left(N, p_{\min }, p_{\max }, p_{L},\|f\|_{L^{\infty}\left(B_{1}\right)},\|u\|_{L^{\infty}\left(B_{1}\right)}\right),
$$

where p_{L} is the Lipschitz constant of p.
The proof of Theorem 1.1 is based on suitable uniform $C^{1, \alpha}$-regularity estimates for solutions of the regularized equation

$$
\begin{equation*}
-\Delta v-\left(p_{\varepsilon}(x)-2\right) \frac{\left\langle D^{2} v D v, D v\right\rangle}{|D v|^{2}+\varepsilon^{2}}=g(x), \tag{1.4}
\end{equation*}
$$

where it is assumed that g is continuous and p_{ε} is smooth. In particular, we show estimates that are independent of ε and only depend on $N, \sup p, \inf p,\left\|D p_{\varepsilon}\right\|_{L^{\infty}}$ and $\|g\|_{L^{\infty}}$. To prove such estimates, we first derive estimates for the perturbed homogeneous equation

$$
\begin{equation*}
-\Delta v-\left(p_{\varepsilon}(x)-2\right) \frac{\left\langle D^{2} v(D v+q), D v+q\right\rangle}{|D v+q|^{2}+\varepsilon^{2}}=0, \tag{1.5}
\end{equation*}
$$

where $q \in \mathbb{R}^{N}$. Roughly speaking, $C^{1, \alpha}$-estimates for solutions of (1.5) are based on "improvement of oscillation" which is obtained by differentiating the equation and observing that a function depending on the gradient of the solution is a supersolution to a linear equation. The uniform $C^{1, \alpha}$-estimates for solutions of (1.5) then yield uniform estimates for the inhomogeneous equation (1.4) by an adaption of the arguments in $[24,4]$.

With the a priori regularity estimates at hand, the plan is to let $\varepsilon \rightarrow 0$ and show that the estimates pass on to solutions of (1.1). A problem is caused by the fact that, to the best of our knowledge, uniqueness of solutions to (1.1) is an open problem for variable $p(x)$ and even for constant p if f is allowed to change signs. To deal with this, we fix a solution $u_{0} \in C\left(\bar{B}_{1}\right)$ to (1.1) and consider the Dirichlet problem

$$
\begin{equation*}
-\Delta_{p(x)}^{N} u=f(x)-u_{0}(x)-u \quad \text { in } B_{1} \tag{1.6}
\end{equation*}
$$

with boundary data $u=u_{0}$ on ∂B_{1}. For this equation the comparison principle holds and thus u_{0} is the unique solution. We then consider the approximate problem

$$
\begin{equation*}
-\Delta u_{\varepsilon}-\left(p_{\varepsilon}(x)-2\right) \frac{\left\langle D^{2} u_{\varepsilon} D u_{\varepsilon}, D u_{\varepsilon}\right\rangle}{\left|D u_{\varepsilon}\right|^{2}+\varepsilon^{2}}=f_{\varepsilon}(x)-u_{0, \varepsilon}(x)-u_{\varepsilon} \tag{1.7}
\end{equation*}
$$

with boundary data $u_{\varepsilon}=u_{0}$ on ∂B_{1} and where $p_{\varepsilon}, f_{\varepsilon}, u_{0, \varepsilon} \in C^{\infty}\left(B_{1}\right)$ are such that $p \rightarrow p_{\varepsilon}, f_{\varepsilon} \rightarrow f$ and $u_{0, \varepsilon} \rightarrow u_{0}$ uniformly in B_{1} and $\left\|D p_{\varepsilon}\right\|_{L^{\infty}\left(B_{1}\right)} \leq\|D p\|_{L^{\infty}\left(B_{1}\right)}$. As the equation (1.7) is uniformly elliptic quasilinear equation with smooth coefficients, the solution u_{ε} exists in the classical sense by standard theory. Since u_{ε} also solves (1.4) with $g(x)=f_{\varepsilon}(x)-u_{0, \varepsilon}(x)-u_{\varepsilon}(x)$, it satisfies the uniform $C^{1, \alpha}$-regularity estimate. We then let $\varepsilon \rightarrow 0$ and use stability and comparison principles to show that u_{0} inherits the regularity estimate.

For other related results, see for example the works of Attouchi, Parviainen and Ruosteenoja [5] on the normalized p-Poisson problem $-\Delta_{p}^{N} u=f$, Attouchi and Ruosteenoja [6-8] on the equation $-|D u|^{\gamma} \Delta_{p}^{N} u=$ f and its parabolic version, De Filippis [15] on the double phase problem $\left(|D u|^{q}+a(x)|D u|^{s}\right) F\left(D^{2} u\right)=f(x)$ and Fang and Zhang [20] on the parabolic double phase problem $\partial_{t} u=\left(|D u|^{q}+a(x, t)|D u|^{s}\right) \Delta_{p}^{N} u$. We also mention the paper by Bronzi, Pimentel, Rampasso and Teixeira [10] where they consider fully nonlinear variable exponent equations of the type $|D u|^{\theta(x)} F\left(D^{2} u\right)=0$.

The paper is organized as follows: Section 2 is dedicated to preliminaries, Sections 3 and 4 contain $C^{1, \alpha}$-regularity estimates for equations (1.5) and (1.7), and Section 5 contains the proof of Theorem (1.1). Finally, the Appendix contains an uniform Lipschitz estimate for the equations studied in this paper and a comparison principle for equation (1.6).

2. Preliminaries

2.1. Notation

We denote by $B_{R} \subset \mathbb{R}^{N}$ an open ball of radius $R>0$ that is centered at the origin in the N-dimensional Euclidean space, $N \geq 1$. The set of symmetric $N \times N$ matrices is denoted by S^{N}. For $X, Y \in S^{N}$, we write $X \leq Y$ if $X-Y$ is negative semidefinite. We also denote the smallest eigenvalue of X by $\lambda_{\min }(X)$ and the largest by $\lambda_{\max }(X)$ and set

$$
\|X\|:=\sup _{\xi \in B_{1}}|X \xi|=\sup \{|\lambda|: \lambda \text { is an eigenvalue of } X\} .
$$

We use the notation $C\left(a_{1}, \ldots, a_{k}\right)$ to denote a constant C that may change from line to line but depends only on a_{1}, \ldots, a_{k}. For convenience we often use $C(\hat{p})$ to mean that the constant may depend on $p_{\min }, p_{\max }$ and the Lipschitz constant p_{L} of p.

For $\alpha \in(0,1)$, we denote by $C^{\alpha}\left(B_{R}\right)$ the set of all functions $u: B_{R} \rightarrow \mathbb{R}$ with finite Hölder norm

$$
\|u\|_{C^{\alpha}\left(B_{R}\right)}:=\|u\|_{L^{\infty}\left(B_{R}\right)}+[u]_{C^{\alpha}\left(B_{R}\right)}, \quad \text { where }[u]_{C^{\alpha}\left(B_{R}\right)}:=\sup _{x, y \in B_{R}} \frac{|u(x)-u(y)|}{|x-y|^{\alpha}} .
$$

Similarly, we denote by $C^{1, \alpha}\left(B_{R}\right)$ the set of all functions for which the norm

$$
\|u\|_{C^{1, \alpha}\left(B_{R}\right)}:=\|u\|_{C^{\alpha}\left(B_{R}\right)}+\|D u\|_{C^{\alpha}\left(B_{R}\right)}
$$

is finite.

2.2. Viscosity solutions

Viscosity solutions are defined using smooth test functions that touch the solution from above or below. If $u, \varphi: \mathbb{R}^{N} \rightarrow \mathbb{R}$ and $x \in \mathbb{R}^{N}$ are such that $\varphi(x)=u(x)$ and $\varphi(y)<u(y)$ for $y \neq x_{0}$, then we say that φ touches u from below at x_{0}.

Definition 2.1. Let $\Omega \subset \mathbb{R}^{N}$ be a bounded domain. Suppose that $f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is continuous. A lower semicontinuous function $u: \Omega \rightarrow \mathbb{R}$ is a viscosity supersolution to

$$
-\Delta_{p(x)}^{N} u \geq f(x, u) \quad \text { in } \Omega
$$

if the following holds: Whenever $\varphi \in C^{2}(\Omega)$ touches u from below at $x \in \Omega$ and $D \varphi(x) \neq 0$, we have

$$
-\Delta \varphi(x)-(p(x)-2) \frac{\left\langle D^{2} \varphi(x) D \varphi(x), D \varphi(x)\right\rangle}{|D \varphi(x)|^{2}} \geq f(x, u(x))
$$

and if $D \varphi(x)=0$, then

$$
-\Delta \varphi(x)-(p(x)-2)\left\langle D^{2} \varphi(x) \eta, \eta\right\rangle \geq f(x, u(x)) \quad \text { for some } \eta \in \bar{B}_{1} .
$$

Analogously, a lower semicontinuous function $u: \Omega \rightarrow \mathbb{R}$ is a viscosity subsolution if the above inequalities hold reversed whenever φ touches u from above. Finally, we say that u is a viscosity solution if it is both viscosity sub- and supersolution.

Remark. The special treatment of the vanishing gradient in Definition 2.1 is needed because of the singularity of the equation. Definition 2.1 is essentially a relaxed version of the standard definition in [14] which is based on the so called semicontinuous envelopes. In the standard definition one would require that if φ touches a viscosity supersolution u from below at x, then

$$
\begin{cases}-\Delta_{p(x)}^{N} \varphi(x) \geq f(x, u(x)) & \text { if } D \varphi(x) \neq 0 \\ -\Delta \varphi(x)-(p(x)-2) \lambda_{\min }\left(D^{2} \varphi(x)\right) \geq f(x, u(x)) & \text { if } D \varphi(x)=0 \text { and } p(x) \geq 2 \\ -\Delta \varphi(x)-(p(x)-2) \lambda_{\max }\left(D^{2} \varphi(x)\right) \geq f(x, u(x)) & \text { if } D \varphi(x)=0 \text { and } p(x)<2\end{cases}
$$

Clearly, if u is a viscosity supersolution in this sense, then it is also a viscosity supersolution in the sense of Definition 2.1.

3. Hölder gradient estimates for the regularized homogeneous equation

In this section we prove $C^{1, \alpha}$-regularity estimates for solutions to the equation

$$
\begin{equation*}
-\Delta u-(p(x)-2) \frac{\left\langle D^{2} u(D u+q), D u+q\right\rangle}{|D u+q|^{2}+\varepsilon^{2}}=0 \quad \text { in } B_{1} \tag{3.1}
\end{equation*}
$$

where $p: B_{1} \rightarrow \mathbb{R}$ is Lipschitz, $p_{\min }>1, \varepsilon>0$ and $q \in \mathbb{R}^{N}$. Our objective is to obtain estimates that are independent of q and ε. Observe that (3.1) is a uniformly elliptic quasilinear equation with smooth coefficients. Viscosity solutions to (3.1) can be defined in the standard way and they are smooth if p is smooth.

Proposition 3.1. Suppose that p is smooth. Let u be a viscosity solution to (3.1) in B_{1}. Then $u \in C^{\infty}\left(B_{1}\right)$.

It follows from classical theory that the corresponding Dirichlet problem admits a smooth solution (see [21, Theorems 15.18 and 13.6] and the Schauder estimates [21, Theorem 6.17]). The viscosity solution u coincides with the smooth solution by a comparison principle [26, Theorem 3].

3.1. Improvement of oscillation

Our regularity estimates for solutions of (3.1) are based on improvement of oscillation. We first prove such a result for the linear equation

$$
\begin{equation*}
-\operatorname{tr}\left(G(x) D^{2} u\right)=f \quad \text { in } B_{1} \tag{3.2}
\end{equation*}
$$

where $f \in C^{1}\left(B_{1}\right)$ is bounded, $G(x) \in S^{N}$ and there are constants $0<\lambda<\Lambda<\infty$ such that the eigenvalues of $G(x)$ are in $[\lambda, \Lambda]$ for all $x \in B_{1}$. The result is based on the following rescaled version of the weak Harnack inequality found in [13, Theorem 4.8]. Such Harnack estimates for non-divergence form equations go back to at least Krylov and Safonov [28,29].

Lemma 3.2 (Weak Harnack inequality). Let $u \geq 0$ be a continuous viscosity supersolution to (3.2) in B_{1}. Then there are positive constants $C(\lambda, \Lambda, N)$ and $q(\lambda, \Lambda, N)$ such that for any $\tau<\frac{1}{4 \sqrt{N}}$ we have

$$
\begin{equation*}
\tau^{-\frac{N}{q}}\left(\int_{B_{\tau}}|u|^{q} d x\right)^{1 / q} \leq C\left(\inf _{B_{2 \tau}} u+\tau\left(\int_{B_{4 \sqrt{N} \tau}}|f|^{N} d x\right)^{1 / N}\right) \tag{3.3}
\end{equation*}
$$

Proof. Suppose that $\tau<\frac{1}{4 \sqrt{N}}$ and set $S:=8 \tau$. Define the function $v: B_{\sqrt{N} / 2} \rightarrow \mathbb{R}$ by

$$
v(x):=u(S x)
$$

and set

$$
\tilde{G}(x):=G(S x) \quad \text { and } \quad \tilde{f}(x):=S^{2} f(S x)
$$

Then, if $\varphi \in C^{2}$ touches v from below at $x \in B_{\sqrt{N} / 2}$, the function $\phi(x):=\varphi(x / S)$ touches u from below at $S x$. Therefore

$$
-\operatorname{tr}\left(G(S x) D^{2} \phi(S x)\right) \geq f(S x)
$$

Since $D^{2} \phi(S x)=S^{-2} D^{2} \varphi(x)$, this implies that

$$
-\operatorname{tr}\left(G(S x) D^{2} \varphi(x)\right) \geq S^{2} f(S x)
$$

Thus v is a viscosity supersolution to

$$
-\operatorname{tr}\left(\tilde{G}(x) D^{2} v\right) \geq \tilde{f}(x) \quad \text { in } B_{\sqrt{N} / 2}
$$

We denote by Q_{R} a cube with side-length $R / 2$. Since $Q_{1} \subset B_{\sqrt{N} / 2}$, it follows from [13, Theorem 4.8] that there are $q(\lambda, \Lambda, N)$ and $C(\lambda, \Lambda, N)$ such that

$$
\begin{aligned}
\left(\int_{B_{1 / 8}}|v|^{q} d x\right)^{1 / q} \leq\left(\int_{Q_{1 / 4}}|v|^{q} d x\right)^{1 / q} & \leq C\left(\inf _{Q_{1 / 2}} v+\left(\int_{Q_{1}}|\tilde{f}|^{N} d x\right)^{1 / N}\right) \\
& \leq C\left(\inf _{B_{1 / 4}} v+\left(\int_{B_{\sqrt{N} / 2}}|\tilde{f}|^{N} d x\right)^{1 / N}\right)
\end{aligned}
$$

By the change of variables formula we have

$$
\int_{B_{1 / 8}}|v|^{q} d x=\int_{B_{1 / 8}}|u(S x)|^{q} d x=S^{-N} \int_{B_{S / 8}}|u(x)|^{q} d x
$$

and

$$
\int_{B_{\sqrt{N} / 2}}|\tilde{f}|^{N} d x=S^{2 N} \int_{B_{\sqrt{N} / 2}}|f(S x)|^{N} d x=S^{N} \int_{B_{S \sqrt{N} / 2}}|f(x)|^{N} d x .
$$

Recalling that $S=8 \tau$, we get

$$
8^{-\frac{N}{q}} \tau^{-\frac{N}{q}}\left(\int_{B_{\tau}}|u(x)|^{q} d x\right)^{1 / q} \leq C\left(\inf _{B_{2 \tau}} u+8 \tau\left(\int_{B_{S \sqrt{N} / 2}}|f(x)|^{N} d x\right)^{1 / N}\right)
$$

Absorbing $8^{\frac{N}{q}}$ into the constant, we obtain the claim.

Lemma 3.3 (Improvement of oscillation for the linear equation). Let $u \geq 0$ be a continuous viscosity supersolution to (3.2) in B_{1} and $\mu, l>0$. Then there are positive constants $\tau\left(\lambda, \Lambda, N, \mu, l,\|f\|_{L^{\infty}\left(B_{1}\right)}\right)$ and $\theta(\lambda, \Lambda, N, \mu, l)$ such that if

$$
\begin{equation*}
\left|\left\{x \in B_{\tau}: u \geq l\right\}\right|>\mu\left|B_{\tau}\right|, \tag{3.4}
\end{equation*}
$$

then we have

$$
u \geq \theta \quad \text { in } B_{\tau} .
$$

Proof. By the weak Harnack inequality (Lemma 3.2) there exist constants $C_{1}(\lambda, \Lambda, N)$ and $q(\lambda, \Lambda, N)$ such that for any $\tau<1 /(4 \sqrt{N})$, we have

$$
\begin{equation*}
\inf _{B_{2 \tau}} u \geq C_{1} \tau^{\frac{-N}{q}}\left(\int_{B_{\tau}}|u|^{q} d x\right)^{1 / q}-\tau\left(\int_{B_{4 \sqrt{N} \tau}}|f|^{N} d x\right)^{1 / N} \tag{3.5}
\end{equation*}
$$

In particular, this holds for

$$
\tau:=\min \left(\frac{1}{4 \sqrt{N}}, \sqrt{\frac{C_{1}\left|B_{1}\right|^{\frac{1}{q}-\frac{1}{N}} \mu^{\frac{1}{q}} l}{2 \cdot 4 \sqrt{N}\left(\|f\|_{L^{\infty}\left(B_{1}\right)}+1\right)}}\right) .
$$

We continue the estimate (3.5) using the assumption (3.4) and obtain

$$
\begin{aligned}
\inf _{B_{\tau}} u \geq \inf _{B_{2 \tau}} u & \geq C_{1} \tau^{-\frac{N}{q}}\left(\left|\left\{x \in B_{\tau}: u \geq l\right\}\right| l^{q}\right)^{1 / q}-\tau\left(\int_{B_{4 \sqrt{N} \tau}}|f|^{N} d x\right)^{1 / N} \\
& \geq C_{1} \tau^{-\frac{N}{q}} \mu^{\frac{1}{q}}\left|B_{\tau}\right|^{\frac{1}{q}} l-\tau\left|B_{4 \sqrt{N} \tau}\right|^{\frac{1}{N}}\|f\|_{L^{\infty}\left(B_{1}\right)} \\
& =C_{1}\left|B_{1}\right|^{\frac{1}{q}} \mu^{\frac{1}{q}} \tau^{-\frac{N}{q}} \tau^{\frac{N}{q}}-4 \sqrt{N}\left|B_{1}\right|^{\frac{1}{N}}\|f\|_{L^{\infty}\left(B_{1}\right)} \tau^{2} \\
& =C_{1}\left|B_{1}\right|^{\frac{1}{q}} \mu^{\frac{1}{q}} l-4 \sqrt{N}\left|B_{1}\right|^{\frac{1}{N}}\|f\|_{L^{\infty}\left(B_{1}\right)} \tau^{2} . \\
& \geq \frac{1}{2} C_{1}\left|B_{1}\right|^{\frac{1}{q}} \mu^{\frac{1}{q}} l \\
& =: \theta
\end{aligned}
$$

where the last inequality follows from the choice of τ.
We are now ready to prove an improvement of oscillation for the gradient of a solution to (3.1). We first consider the following lemma, where the improvement is considered towards a fixed direction. We initially also restrict the range of $|q|$.

The idea is to differentiate the equation and observe that a suitable function of $D u$ is a supersolution to the linear equation (3.2). Lemma 3.3 is then applied to obtain information about $D u$.

Lemma 3.4 (Improvement of oscillation to direction). Suppose that p is smooth. Let u be a smooth solution to (3.1) in B_{1} with $|D u| \leq 1$ and either $q=0$ or $|q|>2$. Then for every $0<l<1$ and $\mu>0$ there exist positive constants $\tau(N, \hat{p}, l, \mu)<1$ and $\gamma(N, \hat{p}, l, \mu)<1$ such that

$$
\left|\left\{x \in B_{\tau}: D u \cdot d \leq l\right\}\right|>\mu\left|B_{\tau}\right| \quad \text { implies } \quad D u \cdot d \leq \gamma \text { in } B_{\tau}
$$

whenever $d \in \partial B_{1}$.
Proof. To simplify notation, we set

$$
A_{i j}(x, \eta):=\delta_{i j}+(p(x)-2) \frac{\left(\eta_{i}+q_{i}\right)\left(\eta_{j}+q_{j}\right)}{|\eta+q|^{2}+\varepsilon^{2}}
$$

We also denote the functions $\mathcal{A}_{i j}: x \mapsto A_{i j}(x, D u(x)), \mathcal{A}_{i j, x_{k}}: x \mapsto\left(\partial_{x_{k}} A_{i j}\right)(x, D u(x))$ and $\mathcal{A}_{i j, \eta_{k}}: x \mapsto$ $\left(\partial_{\eta_{k}} A_{i j}\right)(x, D u(x))$. Then, since u is a smooth solution to (3.1) in B_{1}, we have in Einstein's summation convention

$$
-\mathcal{A}_{i j} u_{i j}=0 \quad \text { pointwise in } B_{1} .
$$

Differentiating this yields

$$
\begin{align*}
0=\left(\mathcal{A}_{i j} u_{i j}\right)_{k} & =\mathcal{A}_{i j} u_{i j k}+\left(\mathcal{A}_{i j}\right)_{k} u_{i j} \\
& =\mathcal{A}_{i j} u_{i j k}+\mathcal{A}_{i j, \eta_{m}} u_{i j} u_{k m}+\mathcal{A}_{i j, x_{k}} u_{i j} \quad \text { for all } k=1, \ldots N . \tag{3.6}
\end{align*}
$$

Multiplying these identities by d_{k} and summing over k, we obtain

$$
\begin{align*}
0 & =\mathcal{A}_{i j} u_{i j k} d_{k}+\mathcal{A}_{i j, \eta_{m}} u_{i j} u_{k m} d_{k}+\mathcal{A}_{i j, x_{k}} u_{i j} d_{k} \\
& =\mathcal{A}_{i j}(D u \cdot d-l)_{i j}+\mathcal{A}_{i j, \eta_{m}} u_{i j}(D u \cdot d-l)_{m}+\mathcal{A}_{i j, x_{k}} u_{i j} d_{k} . \tag{3.7}
\end{align*}
$$

Moreover, multiplying (3.6) by $2 u_{k}$ and summing over k, we obtain

$$
\begin{align*}
0 & =2 \mathcal{A}_{i j} u_{i j k} u_{k}+2 \mathcal{A}_{i j, \eta_{m}} u_{i j} u_{k m} u_{k}+2 \mathcal{A}_{i j, x_{k}} u_{i j} u_{k} \\
& =\mathcal{A}_{i j}\left(2 u_{i j k} u_{k}+2 u_{k j} u_{k i}\right)-2 \mathcal{A}_{i j} u_{k j} u_{k i}+2 \mathcal{A}_{i j, \eta_{m}} u_{i j} u_{k m} u_{k}+2 \mathcal{A}_{i j, x_{k}} u_{i j} u_{k} \\
& =\mathcal{A}_{i j}\left(u_{k}^{2}\right)_{i j}-2 \mathcal{A}_{i j} u_{k j} u_{k i}+\mathcal{A}_{i j, \eta_{m}} u_{i j}\left(u_{k}^{2}\right)_{m}+2 \mathcal{A}_{i j, x_{k}} u_{i j} u_{k} \\
& =\mathcal{A}_{i j}\left(|D u|^{2}\right)_{i j}+\mathcal{A}_{i j, \eta_{m}} u_{i j}\left(|D u|^{2}\right)_{m}+2 \mathcal{A}_{i j, x_{k}} u_{i j} u_{k}-2 \mathcal{A}_{i j} u_{k j} u_{k i} . \tag{3.8}
\end{align*}
$$

We will now split the proof into the cases $q=0$ or $|q|>2$, and proceed in two steps: First we check that a suitable function of $D u$ is a supersolution to the linear equation (3.3) and then apply Lemma 3.3 to obtain the claim.

Case $q=0$, Step 1: We denote $\Omega_{+}:=\left\{x \in B_{1}: h(x)>0\right\}$, where

$$
h:=\left(D u \cdot d-l+\frac{l}{2}|D u|^{2}\right)^{+} .
$$

If $|D u| \leq l / 2$, we have

$$
D u \cdot d-l+\frac{l}{2}|D u|^{2} \leq-\frac{l}{2}+\frac{l^{3}}{8}<0 .
$$

This implies that $|D u|>l / 2$ in Ω_{+}. Therefore, since $q=0$, we have in Ω_{+}

$$
\begin{align*}
\left|\mathcal{A}_{i j, \eta_{m}}\right| & =|p(x)-2|\left|\frac{\delta_{i m}\left(u_{j}+q_{j}\right)+\delta_{j m}\left(u_{i}+q_{i}\right)}{|D u+q|^{2}+\varepsilon^{2}}-\frac{2\left(u_{m}+q_{m}\right)\left(u_{i}+q_{i}\right)\left(u_{j}+q_{j}\right)}{\left(|D u+q|^{2}+\varepsilon^{2}\right)^{2}}\right| \\
& \leq 8 l^{-1}\|p-2\|_{L^{\infty}\left(B_{1}\right)} \tag{3.9}\\
\left|\mathcal{A}_{i j, x_{k}}\right| & =|D p(x)|\left|\frac{\left(\eta_{i}+q_{i}\right)\left(\eta_{j}+q_{j}\right)}{|\eta+q|^{2}+\varepsilon^{2}}\right| \leq p_{L} . \tag{3.10}
\end{align*}
$$

Summing up the equations (3.7) and (3.8) multiplied by $2^{-1} l$, we obtain in Ω_{+}

$$
\begin{aligned}
0= & \mathcal{A}_{i j}(D u \cdot d-l)_{i j}+\mathcal{A}_{i j, \eta_{m}} u_{i j}(D u \cdot d-l)_{m}+\mathcal{A}_{i j, x_{k}} u_{i j} d_{k} \\
& +2^{-1} l\left(\mathcal{A}_{i j}\left(|D u|^{2}\right)_{i j}+\mathcal{A}_{i j, \eta_{m}} u_{i j}\left(|D u|^{2}\right)_{m}+2 \mathcal{A}_{i j, x_{k}} u_{i j} u_{k}-2 \mathcal{A}_{i j} u_{k j} u_{k i}\right) \\
= & \mathcal{A}_{i j} h_{i j}+\mathcal{A}_{i j, \eta_{m}} u_{i j} h_{m}+\mathcal{A}_{i j, x_{k}} u_{i j} d_{k}+l \mathcal{A}_{i j, x_{k}} u_{i j} u_{k}-l \mathcal{A}_{i j} u_{k j} u_{k i} \\
\leq & \mathcal{A}_{i j} h_{i j}+\left|\mathcal{A}_{i j, \eta_{m}} u_{i j}\right|\left|h_{m}\right|+\left|\mathcal{A}_{i j, x_{k}} u_{i j}\right|\left|d_{k}+l u_{k}\right|-l \mathcal{A}_{i j} u_{k j} u_{k i} .
\end{aligned}
$$

Since $|D u| \leq 1$, we have $\left|d_{k}+l u_{k}\right|^{2} \leq 4$ and by uniform ellipticity $\mathcal{A}_{i j} u_{k j} u_{k i} \geq \min \left(p_{\min }-1,1\right)\left|u_{i j}\right|^{2}$. Therefore, by applying Young's inequality with $\epsilon>0$, we obtain from the above display

$$
\begin{aligned}
0 & \leq \mathcal{A}_{i j} h_{i j}+N^{2} \epsilon^{-1}\left(\left|h_{m}\right|^{2}+\left|d_{k}+l u_{k}\right|^{2}\right)+\epsilon\left(\left|\mathcal{A}_{i j, \eta_{m}}\right|^{2}+\left|\mathcal{A}_{i j, x_{k}}\right|^{2}\right)\left|u_{i j}\right|^{2}-l \mathcal{A}_{i j} u_{k j} u_{k i} \\
& \leq \mathcal{A}_{i j} h_{i j}+N^{2} \epsilon^{-1}\left(|D h|^{2}+4\right)+\epsilon C(N, \hat{p})\left(l^{-2}+1\right)\left|u_{i j}\right|^{2}-l \min \left(p_{\min }-1,1\right)\left|u_{i j}\right|^{2},
\end{aligned}
$$

where in the second estimate we used (3.9) and (3.10). By taking ϵ small enough, we obtain

$$
\begin{equation*}
0 \leq \mathcal{A}_{i j} h_{i j}+C_{0}(N, \hat{p}) \frac{|D h|^{2}+1}{l^{3}} \quad \text { in } \Omega_{+} . \tag{3.11}
\end{equation*}
$$

Next we define

$$
\begin{equation*}
\bar{h}:=\frac{1}{\nu}\left(1-e^{\nu(h-H)}\right), \quad \text { where } \quad H:=1-\frac{l}{2} \quad \text { and } \quad \nu:=\frac{C_{0}}{l^{3} \min \left(p_{\min }-1,1\right)} . \tag{3.12}
\end{equation*}
$$

Then by (3.11) and uniform ellipticity we have in Ω_{+}

$$
\begin{aligned}
-\mathcal{A}_{i j} \bar{h}_{i j} & =\mathcal{A}_{i j}\left(h_{i j} e^{\nu(h-H)}+\nu h_{i} h_{j} e^{\nu(h-H)}\right) \\
& \geq e^{\nu(h-H)}\left(-C_{0} \frac{|D h|^{2}}{l^{3}}-\frac{C_{0}}{l^{3}}+\nu \min \left(p_{\min }-1,1\right)|D h|^{2}\right) \\
& \geq-\frac{C_{0}}{l^{3}}
\end{aligned}
$$

Since the minimum of two viscosity supersolutions is still a viscosity supersolution, it follows from the above estimate that \bar{h} is a non-negative viscosity supersolution to

$$
\begin{equation*}
-\mathcal{A}_{i j} \bar{h}_{i j} \geq \frac{-C_{0}}{l^{3}} \quad \text { in } B_{1} \tag{3.13}
\end{equation*}
$$

Case $q=0$, Step 2: We set $l_{0}:=\frac{1}{\nu}\left(1-e^{\nu(l-1)}\right)$. Then, since \bar{h} solves (3.13), by Lemma 3.3 there are positive constants $\tau(N, p, l, \mu)$ and $\theta(N, p, l, \mu)$ such that

$$
\left|\left\{x \in B_{\tau}: \bar{h} \geq l_{0}\right\}\right|>\mu\left|B_{\tau}\right| \quad \text { implies } \quad \bar{h} \geq \theta \quad \text { in } B_{\tau} .
$$

If $D u \cdot d \leq l$, we have $\bar{h} \geq l_{0}$ and therefore

$$
\left|\left\{x \in B_{\tau}: \bar{h} \geq l_{0}\right\}\right| \geq\left|\left\{x \in B_{\tau}: D u \cdot d \leq l\right\}\right|>\mu\left|B_{\tau}\right|,
$$

where the last inequality follows from the assumptions. Consequently, we obtain

$$
\bar{h} \geq \theta \quad \text { in } B_{\tau} .
$$

Since $h-H \leq 0$, by convexity we have $H-h \geq \bar{h}$. This together with the above estimate yields

$$
1-2^{-1} l-\left(D u \cdot d-l+2^{-1} l|D u|^{2}\right) \geq \theta \quad \text { in } B_{\tau}
$$

and so

$$
D u \cdot d+2^{-1} l(D u \cdot d)^{2} \leq D u \cdot d+2^{-1} l|D u|^{2} \leq 1+2^{-1} l-\theta \quad \text { in } B_{\tau} .
$$

Using the quadratic formula, we thus obtain the desired estimate

$$
D u \cdot d \leq \frac{-1+\sqrt{1+2 l\left(1+2^{-1} l-\theta\right)}}{l}=\frac{-1+\sqrt{(1+l)^{2}-2 l \theta}}{l}=: \gamma<1 \quad \text { in } B_{\tau} .
$$

Case $|q|>2$: Computing like in (3.9) and (3.10), we obtain this time in B_{1}

$$
\left|\mathcal{A}_{i j, \eta_{m}}\right| \leq 4\|p-2\|_{L^{\infty}\left(B_{1}\right)} \quad \text { and } \quad\left|\mathcal{A}_{i j, x_{k}}\right| \leq p_{L}
$$

Moreover, this time we set simply

$$
h:=D u \cdot d-l+2^{-1} l|D u|^{2} .
$$

Summing up the identities (3.7) and (3.8) and using Young's inequality similarly as in the case $|q|=0$, we obtain in B_{1}

$$
\begin{aligned}
0 & \leq \mathcal{A}_{i j} h_{i j}+N^{2} \epsilon^{-1}\left(\left|h_{m}\right|^{2}+\left|d_{k}+l u_{k}\right|^{2}\right)+\epsilon\left(\left|\mathcal{A}_{i j, \eta_{m}}\right|^{2}+\left|\mathcal{A}_{i j, x_{k}}\right|^{2}\right)\left|u_{i j}\right|^{2}-l \mathcal{A}_{i j} u_{k j} u_{k i} \\
& \leq \mathcal{A}_{i j} h_{i j}+N^{2} \epsilon^{-1}\left(|D h|^{2}+4\right)+\epsilon C(\hat{p})\left|u_{i j}\right|^{2}-l C(\hat{p})\left|u_{i j}\right|^{2} .
\end{aligned}
$$

By taking small enough ϵ, we obtain

$$
0 \leq \mathcal{A}_{i j} h_{i j}+C_{0}(N, \hat{p}) \frac{|D h|^{2}+1}{l} \quad \text { in } B_{1}
$$

Next we define \bar{h} and H like in (3.12), but set instead $\nu:=C_{0} /\left(l \min \left(p_{\min }-1,1\right)\right)$. The rest of the proof then proceeds in the same way as in the case $q=0$.

Next we inductively apply the previous lemma to prove the improvement of oscillation.
Theorem 3.5 (Improvement of oscillation). Suppose that p is smooth. Let u be a smooth solution to (3.1) in B_{1} with $|D u| \leq 1$ and either $q=0$ or $|q|>2$. Then for every $0<l<1$ and $\mu>0$ there exist positive constants $\tau(N, \hat{p}, l, \mu)<1$ and $\gamma(N, \hat{p}, l, \mu)<1$ such that if

$$
\begin{equation*}
\left|\left\{x \in B_{\tau^{i+1}}: D u \cdot d \leq l \gamma^{i}\right\}\right|>\mu\left|B_{\tau^{i+1}}\right| \quad \text { for all } d \in \partial B_{1}, i=0, \ldots, k, \tag{3.14}
\end{equation*}
$$

then

$$
\begin{equation*}
|D u| \leq \gamma^{i+1} \quad \text { in } B_{\tau^{i+1}} \quad \text { for all } i=0, \ldots, k \tag{3.15}
\end{equation*}
$$

Proof. Let $k \geq 0$ be an integer and suppose that (3.14) holds. We proceed by induction.
Initial step: Since (3.14) holds for $i=0$, by Lemma 3.4 we have $D u \cdot d \leq \gamma$ in B_{τ} for all $d \in \partial B_{1}$. This implies (3.15) for $i=0$.

Induction step: Suppose that $0<i \leq k$ and that (3.15) holds for $i-1$. We define

$$
v(x):=\tau^{-i} \gamma^{-i} u\left(\tau^{i} x\right) .
$$

Then v solves

$$
-\Delta v-\left(p\left(\tau^{i} x\right)-2\right) \frac{\left\langle D^{2} v\left(D v+\gamma^{-i} q\right), D v+\gamma^{i} q\right\rangle}{\left|D v+\gamma^{-i} q\right|^{2}+\left(\gamma^{-i} \varepsilon\right)^{2}}=0 \quad \text { in } B_{1} .
$$

Moreover, by induction hypothesis $|D v(x)|=\gamma^{-i}\left|D u\left(\tau^{i} x\right)\right| \leq \gamma^{-i} \gamma^{i}=1$ in B_{1}. Therefore by Lemma 3.4 we have that

$$
\begin{equation*}
\left|\left\{x \in B_{\tau}: D v \cdot d \leq l\right\}\right|>\mu\left|B_{\tau}\right| \quad \text { implies } \quad D v \cdot d \leq \gamma \text { in } B_{\tau} \tag{3.16}
\end{equation*}
$$

whenever $d \in \partial B_{1}$. Since

$$
\left|\left\{x \in B_{\tau}: D v \cdot d \leq l\right\}\right|>\mu\left|B_{\tau}\right| \Longleftrightarrow\left|\left\{x \in B_{\tau^{i+1}}: D u \cdot d \leq l \gamma^{i}\right\}\right|>\mu\left|B_{\tau^{i+1}}\right|,
$$

we have by (3.14) and (3.16) that $D v \cdot d \leq \gamma$ in B_{τ}. This implies that $D u \cdot d \leq \gamma^{i+1}$ in $B_{\tau^{i+1}}$. Since $d \in \partial B_{1}$ was arbitrary, we obtain (3.15) for i.

3.2. Hölder gradient estimates

In this section we apply the improvement of oscillation to prove $C^{1, \alpha}$-estimates for solutions to (3.1). We need the following regularity result by Savin [34].

Lemma 3.6. Suppose that p is smooth. Let u be a smooth solution to (3.1) in B_{1} with $|D u| \leq 1$ and either $q=0$ or $|q|>2$. Then for any $\beta>0$ there exist positive constants $\eta(N, \hat{p}, \beta)$ and $C(N, \hat{p}, \beta)$ such that if

$$
|u-L| \leq \eta \quad \text { in } B_{1}
$$

for some affine function L satisfying $1 / 2 \leq|D L| \leq 1$, then we have

$$
|D u(x)-D u(0)| \leq C|x|^{\beta} \quad \text { for all } x \in B_{1 / 2} .
$$

Proof. Set $v:=u-L$. Then v solves

$$
\begin{equation*}
-\Delta u-\frac{(p(x)-2)\left\langle D^{2} u(D u+q+D L), D u+q+D L\right\rangle}{|D u+q+D L|^{2}+\varepsilon^{2}}=0 \quad \text { in } B_{1} . \tag{3.17}
\end{equation*}
$$

Observe that by the assumption $1 / 2 \leq|D L| \leq 1$ we have $|D u+q+D L| \geq 1 / 4$ if $|D u| \leq 1 / 4$. It therefore follows from [34, Theorem 1.3] (see also [37]) that $\|v\|_{C^{2, \beta}\left(B_{1 / 2}\right)} \leq C$ which implies the claim.

We also use the following simple consequence of Morrey's inequality.

Lemma 3.7. Let $u: B_{1} \rightarrow \mathbb{R}$ be a smooth function with $|D u| \leq 1$. For any $\theta>0$ there are constants $\varepsilon_{1}(N, \theta), \varepsilon_{0}(N, \theta)<1$ such that if the condition

$$
\left|\left\{x \in B_{1}:|D u-d|>\varepsilon_{0}\right\}\right| \leq \varepsilon_{1}
$$

is satisfied for some $d \in S^{N-1}$, then there is $a \in \mathbb{R}$ such that

$$
|u(x)-a-d \cdot x| \leq \theta \text { for all } x \in B_{1 / 2} .
$$

Proof. By Morrey's inequality (see for example [17, Theorem 4.10])

$$
\begin{aligned}
\underset{x \in B_{1 / 2}}{\operatorname{osc}}(u(x)-d \cdot x) & =\sup _{x, y \in B_{1 / 2}}|u(x)-d \cdot x-u(y)+d \cdot y| \\
& \leq C(N)\left(\int_{B_{1}}|D u-d|^{2 N} d x\right)^{\frac{1}{2 N}} \\
& \leq C(N)\left(\varepsilon_{1}^{\frac{1}{2 N}}+\varepsilon_{0}\right) .
\end{aligned}
$$

Therefore, denoting $a:=\inf _{x \in B_{1 / 2}}(u(x)-d \cdot x)$, we have for any $x \in B_{1 / 2}$

$$
|u(x)-a-d \cdot x| \leq \operatorname{osc}_{B_{1 / 2}}(u(x)-d \cdot x) \leq C(N)\left(\varepsilon_{1}^{\frac{1}{2 N}}+\varepsilon_{0}\right) \leq \theta,
$$

where the last inequality follows by taking small enough ε_{0} and ε_{1}.
We are now ready to prove a Hölder estimate for the gradient of solutions to (3.1). We first restrict the range of $|q|$.

Lemma 3.8. Suppose that p is smooth. Let u be a smooth solution to (3.1) in B_{1} with $|D u| \leq 1$ and either $q=0$ or $|q|>2$. Then there exists a constant $\alpha(N, \hat{p}) \in(0,1)$ such that

$$
\|D u\|_{C^{\alpha}\left(B_{1 / 2}\right)} \leq C(N, \hat{p}) .
$$

Proof. For $\beta=1 / 2$, let $\eta>0$ be as in Lemma 3.6. For $\theta=\eta / 2$, let $\varepsilon_{0}, \varepsilon_{1}$ be as in Lemma 3.7. Set

$$
l:=1-\frac{\varepsilon_{0}^{2}}{2} \quad \text { and } \quad \mu:=\frac{\varepsilon_{1}}{\left|B_{1}\right|} .
$$

For these l and μ, let $\tau, \gamma \in(0,1)$ be as in Theorem 3.5. Let $k \geq 0$ be the minimum integer such that the condition (3.14) does not hold.

Case $k=\infty$: Theorem 3.5 implies that

$$
|D u| \leq \gamma^{i+1} \quad \text { in } B_{\tau^{i+1}} \text { for all } i \geq 0 .
$$

Let $x \in B_{\tau} \backslash\{0\}$. Then $\tau^{i+1} \leq|x| \leq \tau^{i}$ for some $i \geq 0$ and therefore

$$
i \leq \frac{\log |x|}{\log \tau} \leq i+1
$$

We obtain

$$
\begin{equation*}
|D u(x)| \leq \gamma^{i}=\frac{1}{\gamma} \gamma^{i+1} \leq \frac{1}{\gamma} \gamma^{\frac{\log |x|}{\log \tau}}=\frac{1}{\gamma} \gamma^{\frac{\log |x|}{\log \gamma \cdot \frac{\log \gamma}{\log \tau}}=: C|x|^{\alpha}, ~} \tag{3.18}
\end{equation*}
$$

where $C=1 / \gamma$ and $\alpha=\log \gamma / \log \tau$.
Case $k<\infty$: There is $d \in \partial B_{1}$ such that

$$
\begin{equation*}
\left|\left\{x \in B_{\tau^{k+1}}: D u \cdot d \leq l \gamma^{k}\right\}\right| \leq \mu\left|B_{\tau^{k+1}}\right| . \tag{3.19}
\end{equation*}
$$

We set

$$
v(x):=\tau^{-k-1} \gamma^{-k} u\left(\tau^{k+1} x\right)
$$

Then v solves

$$
-\Delta v-\left(p\left(\tau^{k+1} x\right)-2\right) \frac{\left\langle D^{2} v\left(D v+\gamma^{-k} q\right), D v+\gamma^{-k} q\right\rangle}{\left|D v+\gamma^{-k} q\right|^{2}+\gamma^{-2 k} \varepsilon^{2}}=0 \quad \text { in } B_{1}
$$

and by (3.19) we have

$$
\begin{align*}
\left|\left\{x \in B_{1}: D v \cdot d \leq l\right\}\right| & =\left|\left\{x \in B_{1}: D u\left(\tau^{k+1} x\right) \cdot d \leq l \gamma^{k}\right\}\right| \\
& =\tau^{-N(k+1)}\left|\left\{x \in B_{\tau^{k+1}}: D u(x) \cdot d \leq l \gamma^{k}\right\}\right| \\
& \leq \tau^{-N(k+1)} \mu\left|B_{\tau^{k+1}}\right|=\mu\left|B_{1}\right|=\varepsilon_{1} . \tag{3.20}
\end{align*}
$$

Since either $k=0$ or (3.14) holds for $k-1$, it follows from Theorem 3.5 that $|D u| \leq \gamma^{k}$ in $B_{\tau^{k}}$. Thus

$$
\begin{equation*}
|D v(x)|=\gamma^{-k}\left|D u\left(\tau^{k+1} x\right)\right| \leq 1 \quad \text { in } B_{1} \tag{3.21}
\end{equation*}
$$

For vectors $\xi, d \in B_{1}$, it is easy to verify the following fact

$$
|\xi-d|>\varepsilon_{0} \Longrightarrow \xi \cdot d \leq 1-\varepsilon_{0}^{2} / 2=l
$$

Therefore, in view of (3.20) and (3.21), we obtain

$$
\left|\left\{x \in B_{1}:|D v-d|>\varepsilon_{0}\right\}\right| \leq \varepsilon_{1}
$$

Thus by Lemma 3.7 there is $a \in \mathbb{R}$ such that

$$
|v(x)-a-d \cdot x| \leq \theta=\eta / 2 \quad \text { for all } x \in B_{1 / 2} .
$$

Consequently, by applying Lemma 3.6 on the function $2 v\left(2^{-1} x\right)$, we find a positive constant $C(N, \hat{p})$ and $e \in \partial B_{1}$ such that

$$
|D v(x)-e| \leq C|x| \quad \text { in } B_{1 / 4} .
$$

Since $|D v| \leq 1$, we have also

$$
|D v(x)-e| \leq C|x| \quad \text { in } B_{1} .
$$

Recalling the definition of v and taking $\alpha^{\prime} \in(0,1)$ so small that $\gamma / \tau^{\alpha^{\prime}}<1$ we obtain

$$
\begin{equation*}
\left|D u(x)-\gamma^{k} e\right| \leq C \gamma^{k} \tau^{-k-1}|x| \leq \frac{C}{\tau^{\alpha^{\prime}}}\left(\frac{\gamma}{\tau^{\alpha^{\prime}}}\right)^{k}|x|^{\alpha^{\prime}} \leq C|x|^{\alpha^{\prime}} \quad \text { in } B_{\tau^{k+1}} \tag{3.22}
\end{equation*}
$$

where we absorbed $\tau^{\alpha^{\prime}}$ into the constant. On the other hand, we have

$$
|D u| \leq \gamma^{i+1} \quad \text { in } B_{\tau^{i+1}} \text { for all } i=0, \ldots, k-1
$$

so that, if $\tau^{i+2} \leq|x| \leq \tau^{i+1}$ for some $i \in\{0, \ldots, k-1\}$, it holds that

$$
\left|D u(x)-\gamma^{k} e\right| \leq 2 \gamma^{i+1} \frac{|x|^{\alpha^{\prime}}}{|x|^{\alpha^{\prime}}} \leq \frac{2}{\tau^{\alpha^{\prime}}}\left(\frac{\gamma}{\tau^{\alpha^{\prime}}}\right)^{i+1}|x|^{\alpha^{\prime}} \leq C|x|^{\alpha^{\prime}} .
$$

Combining this with (3.22) we obtain

$$
\begin{equation*}
\left|D u(x)-\gamma^{k} e\right| \leq C|x|^{\alpha^{\prime}} \quad \text { in } B_{\tau} . \tag{3.23}
\end{equation*}
$$

The claim now follows from (3.18) and (3.23) by standard translation arguments.
Theorem 3.9. Let u be a bounded viscosity solution to (3.1) in B_{1} with $q \in \mathbb{R}^{N}$. Then

$$
\begin{equation*}
\|u\|_{C^{1, \alpha}\left(B_{1 / 2}\right)} \leq C\left(N, \hat{p},\|u\|_{L^{\infty}\left(B_{1}\right)}\right) \tag{3.24}
\end{equation*}
$$

for some $\alpha(N, \hat{p}) \in(0,1)$.
Proof. Suppose first that p is smooth. Let $\nu_{0}\left(N, \hat{p},\|u\|_{L^{\infty}\left(B_{1}\right)}\right)$ and $C_{0}\left(N, \hat{p},\|u\|_{L^{\infty}\left(B_{1}\right)}\right)$ be as in the Lipschitz estimate (Theorem A. 2 in the Appendix) and set

$$
M:=2 \max \left(\nu_{0}, C_{0}\right) .
$$

If $|q|>M$, then by Theorem A. 2 we have

$$
|D u| \leq C_{0} \quad \text { in } B_{1 / 2} .
$$

We set $\tilde{u}(x):=2 u(x / 2) / C_{0}$. Then $|D \tilde{u}| \leq 1$ in B_{1} and \tilde{u} solves

$$
-\Delta \tilde{u}-(p(x / 2)-2) \frac{\left\langle D^{2} \tilde{u}\left(D \tilde{u}+q / C_{0}\right), D \tilde{u}+q / C_{0}\right\rangle}{\left|D \tilde{u}+q / C_{0}\right|^{2}+\left(\varepsilon / C_{0}\right)^{2}}=0 \quad \text { in } B_{1} \text {, }
$$

where $q / C_{0}>2$. Thus by Theorem 3.8 we have

$$
\|D \tilde{u}\|_{C^{\alpha}\left(B_{1 / 2}\right)} \leq C(N, \hat{p}),
$$

which implies (3.24) by standard translation arguments.
If $|q| \leq M$, we define

$$
w:=u-q \cdot x .
$$

Then by Theorem A. 2 we have

$$
|D w| \leq C\left(N, \hat{p},\|w\|_{L^{\infty}\left(B_{1}\right)}\right)=: C^{\prime}\left(N, \hat{p},\|u\|_{L^{\infty}\left(B_{1}\right)}\right) \quad \text { in } B_{1 / 2} .
$$

We set $\tilde{w}(x):=2 w(x / 2) / C^{\prime}$. Then $|D \tilde{w}| \leq 1$ and so by Theorem 3.6 we have

$$
\|D \tilde{w}\|_{C^{\alpha}\left(B_{1 / 2}\right)} \leq C(N, \hat{p}),
$$

which again implies (3.24).
Suppose then that p is merely Lipschitz continuous. Take a sequence $p_{j} \in C^{\infty}\left(B_{1}\right)$ such that $p_{j} \rightarrow p$ uniformly in B_{1} and $\left\|D p_{j}\right\|_{L^{\infty}\left(B_{1}\right)} \leq\|D p\|_{L^{\infty}\left(B_{1}\right)}$. For $r<1$, let u_{j} be a solution to the Dirichlet problem

$$
\begin{cases}-\Delta u_{j}-\left(p_{j}(x)-2\right) \frac{\left\langle D^{2} u\left(D u_{j}+q\right), D u_{j}+q\right\rangle}{\left|D u_{j}+q\right|^{2}+\varepsilon^{2}}=0 & \text { in } B_{r}, \\ u_{j}=u & \text { on } B_{r} .\end{cases}
$$

As observed in Proposition 3.1, the solution exists and we have $u_{j} \in C^{\infty}\left(B_{r}\right)$. By comparison principle $\left\|u_{j}\right\|_{L^{\infty}\left(B_{r}\right)} \leq\|u\|_{L^{\infty}\left(B_{1}\right)}$. Then by the first part of the proof we have the estimate

$$
\left\|u_{j}\right\|_{C^{1, \beta}\left(B_{r / 2}\right)} \leq C\left(N, \hat{p},\|u\|_{L^{\infty}\left(B_{1}\right)}\right) .
$$

By [13, Theorem 4.14] the functions u_{j} are equicontinuous in B_{1} and so by the Ascoli-Arzela theorem we have $u_{j} \rightarrow v$ uniformly in B_{1} up to a subsequence. Moreover, by the stability principle v is a solution to (3.1) in B_{r} and thus by comparison principle [27, Theorem 2.6] we have $v \equiv u$. By extracting a further subsequence, we may ensure that also $D u_{j} \rightarrow D u$ uniformly in $B_{r / 2}$ and so the estimate $\|D u\|_{C^{1, \beta}\left(B_{r / 2}\right)} \leq C\left(N, \hat{p},\|u\|_{L^{\infty}\left(B_{1}\right)}\right)$ follows.

4. Hölder gradient estimates for the regularized inhomogeneous equation

In this section we consider the inhomogeneous equation

$$
\begin{equation*}
-\Delta u-(p(x)-2) \frac{\left\langle D^{2} u(D u+q), D u+q\right\rangle}{|D u+q|^{2}+\varepsilon^{2}}=f(x) \quad \text { in } B_{1}, \tag{4.1}
\end{equation*}
$$

where $p: B_{1} \rightarrow \mathbb{R}$ is Lipschitz continuous, $p_{\min }>1, \varepsilon>0, q \in \mathbb{R}^{N}$ and $f \in C\left(B_{1}\right)$ is bounded. We apply the $C^{1, \alpha}$-estimates obtained in Theorem 3.9 to prove regularity estimates for solutions of (4.1) with $q=0$. Our arguments are similar to those in [4, Section 3], see also [24]. The idea is to use the well known characterization of $C^{1, \alpha}$-regularity via affine approximates. The following lemma plays a key role: It states that if f is small, then a solution to (4.1) can be approximated by an affine function. This combined with scaling properties of the equation essentially yields the desired affine functions.

Lemma 4.1. There exist constants $\epsilon(N, \hat{p}), \tau(N, \hat{p}) \in(0,1)$ such that the following holds: If $\|f\|_{L^{\infty}\left(B_{1}\right)} \leq \epsilon$ and w is a viscosity solution to (4.1) in B_{1} with $q \in \mathbb{R}^{N}, w(0)=0$ and $\operatorname{osc}_{B_{1}} w \leq 1$, then there exists $q^{\prime} \in \mathbb{R}^{N}$ such that

$$
\operatorname{osc}_{B_{\tau}}\left(w(x)-q^{\prime} \cdot x\right) \leq \frac{1}{2} \tau .
$$

Moreover, we have $\left|q^{\prime}\right| \leq C(N, \hat{p})$.
Proof. Suppose on the contrary that the claim does not hold. Then, for a fixed $\tau(N, \hat{p})$ that we will specify later, there exists a sequence of Lipschitz continuous functions $p_{j}: B_{1} \rightarrow \mathbb{R}$ such that

$$
p_{\min } \leq \inf _{B_{1}} p_{j} \leq \sup _{B_{1}} p_{j} \leq p_{\max } \quad \text { and } \quad\left(p_{j}\right)_{L} \leq p_{L}
$$

functions $f_{j} \in C\left(B_{1}\right)$ such that $f_{j} \rightarrow 0$ uniformly in B_{1}, vectors $q_{j} \in \mathbb{R}^{N}$ and viscosity solutions w_{j} to

$$
-\Delta w_{j}-\left(p_{j}(x)-2\right) \frac{\left\langle D^{2} w_{j}\left(D w_{j}+q_{j}\right), D w_{j}+q_{j}\right\rangle}{\left|D w_{j}+q_{j}\right|^{2}+\varepsilon^{2}}=f_{j}(x) \quad \text { in } B_{1}
$$

such that $w_{j}(0)=0, \operatorname{osc}_{B_{1}} w_{j} \leq 1$ and

$$
\begin{equation*}
\operatorname{osc}_{B_{\tau}}\left(w_{j}(x)-q^{\prime} \cdot x\right)>\frac{\tau}{2} \quad \text { for all } q^{\prime} \in \mathbb{R}^{N} \tag{4.2}
\end{equation*}
$$

By [13, Proposition 4.10], the functions w_{j} are uniformly Hölder continuous in B_{r} for any $r \in(0,1)$. Therefore by the Ascoli-Arzela theorem, we may extract a subsequence such that $w_{j} \rightarrow w_{\infty}$ and $p_{j} \rightarrow p_{\infty}$ uniformly in B_{r} for any $r \in(0,1)$. Moreover, p_{∞} is p_{L}-Lipschitz continuous and $p_{\min } \leq p_{\infty} \leq p_{\max }$. It then follows from (4.2) that

$$
\begin{equation*}
\operatorname{osc}_{B_{\tau}}\left(w_{\infty}(x)-q^{\prime} \cdot x\right)>\frac{\tau}{2} \quad \text { for all } q^{\prime} \in \mathbb{R}^{N} \tag{4.3}
\end{equation*}
$$

We have two cases: either q_{j} is bounded or unbounded.
Case q_{j} is bounded: In this case $q_{j} \rightarrow q_{\infty} \in \mathbb{R}^{N}$ up to a subsequence. It follows from the stability principle that w_{∞} is a viscosity solution to

$$
\begin{equation*}
-\Delta w_{\infty}-\left(p_{\infty}(x)-2\right) \frac{\left\langle D^{2} w_{\infty}\left(D w_{\infty}+q_{\infty}\right), D w_{\infty}+q_{\infty}\right\rangle}{\left|D w_{\infty}+q_{\infty}\right|^{2}+\varepsilon^{2}}=0 \quad \text { in } B_{1} . \tag{4.4}
\end{equation*}
$$

Hence by Theorem 3.9 we have $\left\|D w_{\infty}\right\|_{C^{\beta_{1}\left(B_{1 / 2}\right)}} \leq C(N, \hat{p})$ for some $\beta_{1}(N, \hat{p})$. The mean value theorem then implies the existence of $q^{\prime} \in \mathbb{R}^{N}$ such that

$$
\operatorname{osc}_{B_{r}}\left(u-q^{\prime} \cdot x\right) \leq C_{1}(N, \hat{p}) r^{1+\beta_{1}} \quad \text { for all } r \leq \frac{1}{2}
$$

Case q_{j} is unbounded: In this case we take a subsequence such that $\left|q_{j}\right| \rightarrow \infty$ and the sequence $d_{j}:=$ $d_{j} /\left|d_{j}\right|$ converges to $d_{\infty} \in \partial B_{1}$. Then w_{j} is a viscosity solution to

$$
-\Delta w_{j}-\left(p_{j}(x)-2\right) \frac{\left.\left.\left\langle D^{2} w_{j}\left(\left|q_{j}\right|^{-1} D w_{j}+d_{j}\right),\right| q_{j}\right|^{-1} D w_{j}+d_{j}\right\rangle}{\left.| | q_{j}\right|^{-1} D w_{j}+\left.d_{j}\right|^{2}+\left|q_{j}\right|^{-2} \varepsilon^{2}}=f_{j}(x) \quad \text { in } B_{1}
$$

It follows from the stability principle that w_{∞} is a viscosity solution to

$$
-\Delta w_{j}-\left(p_{\infty}(x)-2\right)\left\langle D^{2} w_{\infty} d_{\infty}, d_{\infty}\right\rangle=0 \quad \text { in } B_{1}
$$

By [13, Theorem 8.3] there exist positive constants $\beta_{2}(N, \hat{p}), C_{2}(N, \hat{p}), r_{2}(N, \hat{p})$ and a vector $q^{\prime} \in \mathbb{R}^{N}$ such that

$$
\operatorname{osc}_{B_{r}}\left(w_{\infty}-q^{\prime} \cdot x\right) \leq C_{2} r^{1+\beta_{2}} \quad \text { for all } r \leq r_{2}
$$

We set $C_{0}:=\max \left(C_{1}, C_{2}\right)$ and $\beta_{0}:=\min \left(\beta_{1}, \beta_{2}\right)$. Then by the two different cases there always exists a vector $q^{\prime} \in \mathbb{R}^{N}$ such that

$$
\operatorname{osc}_{B_{r}}\left(w_{\infty}-q^{\prime} \cdot x\right) \leq C_{0} r^{1+\beta_{0}} \quad \text { for all } r \leq \min \left(\frac{1}{2}, r_{2}\right)
$$

We take τ so small that $C_{0} \tau^{\beta_{0}} \leq \frac{1}{4}$ and $\tau \leq \min \left(\frac{1}{2}, r_{2}\right)$. Then, by substituting $r=\tau$ in the above display, we obtain

$$
\begin{equation*}
\operatorname{osc}_{B_{\tau}}\left(w_{\infty}-q^{\prime} \cdot x\right) \leq C_{0} \tau^{\beta_{0}} \tau \leq \frac{1}{4} \tau \tag{4.5}
\end{equation*}
$$

which contradicts (4.3).
The bound $\left|q^{\prime}\right| \leq C(N, \hat{p})$ follows by observing that (4.5) together with the assumption $\operatorname{osc}_{B_{1}} w \leq 1$ yields $\left|q^{\prime}\right| \leq C$. Thus the contradiction is still there even if (4.3) is weakened by requiring additionally that $\left|q^{\prime}\right| \leq C$.

Lemma 4.2. Let $\tau(N, \hat{p})$ and $\epsilon(N, \hat{p})$ be as in Lemma 4.1. If $\|f\|_{L^{\infty}\left(B_{1}\right)} \leq \epsilon$ and u is a viscosity solution to (4.1) in B_{1} with $q=0, u(0)=0$ and $\operatorname{osc}_{B_{1}} u \leq 1$, then there exists $\alpha \in(0,1)$ and $q_{\infty} \in \mathbb{R}^{N}$ such that

$$
\sup _{B_{\tau^{k}}}\left|u(x)-q_{\infty} \cdot x\right| \leq C(N, \hat{p}) \tau^{k(1+\alpha)} \quad \text { for all } k \in \mathbb{N} .
$$

Proof. Step 1: We show that there exists a sequence $\left(q_{k}\right)_{k=0}^{\infty} \subset \mathbb{R}^{N}$ such that

$$
\begin{equation*}
\operatorname{osc}_{B_{\tau^{k}}}\left(u(x)-q_{k} \cdot x\right) \leq \tau^{k(1+\alpha)} . \tag{4.6}
\end{equation*}
$$

When $k=0$, this estimate holds by setting $q_{0}=0$ since $u(0)=0$ and $\operatorname{osc}_{B_{1}} \leq 1$. Next we take $\alpha \in(0,1)$ such that $\tau^{\alpha}>\frac{1}{2}$. We assume that $k \geq 0$ and that we have already constructed q_{k} for which (4.6) holds. We set

$$
w_{k}(x):=\tau^{-k(1+\alpha)}\left(u\left(\tau^{k} x\right)-q_{k} \cdot\left(\tau^{k} x\right)\right)
$$

and

$$
f_{k}(x):=\tau^{k(1-\alpha)} f\left(\tau^{k} x\right) .
$$

Then by induction assumption $\operatorname{osc}_{B_{1}}\left(w_{k}\right) \leq 1$ and w_{k} is a viscosity solution to

$$
-\Delta w_{k}-\frac{\left(p\left(\tau^{k} x\right)-2\right)\left\langle D^{2} w_{k}\left(D w_{k}+\tau^{-k \alpha} q_{k}\right), D w_{k}+\tau^{-k \alpha} q_{k}\right\rangle}{\left|D w_{k}+\tau^{-k \alpha} q_{k}\right|^{2}+\left(\tau^{-k \alpha} \varepsilon\right)^{2}}=f_{k}(x) \quad \text { in } B_{1} .
$$

By Lemma 4.1 there exists $q_{k}^{\prime} \in \mathbb{R}^{N}$ with $\left|q_{k}^{\prime}\right| \leq C(N, \hat{p})$ such that

$$
\operatorname{osc}_{B_{\tau}}\left(w_{k}(x)-q_{k}^{\prime} \cdot x\right) \leq \frac{1}{2} \tau .
$$

Using the definition of w_{k}, scaling to $B_{\tau^{k+1}}$ and dividing by $\tau^{-k(\alpha+1)}$, we obtain from the above

$$
\operatorname{osc}_{B_{\tau^{k+1}}}\left(u(x)-\left(q_{k}+\tau^{k \alpha} q_{k}^{\prime}\right) \cdot x\right) \leq \frac{1}{2} \tau^{1+k(1+\alpha)} \leq \tau^{(k+1)(1+\alpha)} .
$$

Denoting $q_{k+1}:=q_{k}+\tau^{k \alpha} q_{k}^{\prime}$, the above estimate is condition (4.6) for $k+1$ and the induction step is complete.

Step 2: Observe that whenever $m>k$, we have

$$
\left|q_{m}-q_{k}\right| \leq \sum_{i=k}^{m-1} \tau^{i \alpha}\left|q_{i}^{\prime}\right| \leq C(N, \hat{p}) \sum_{i=k}^{m-1} \tau^{i \alpha} .
$$

Therefore q_{k} is a Cauchy sequence and converges to some $q_{\infty} \in \mathbb{R}^{N}$. Thus

$$
\sup _{x \in B_{\tau^{k}}}\left(q_{k} \cdot x-q_{\infty} \cdot x\right) \leq \tau^{k}\left|q_{k}-q_{\infty}\right| \leq \tau^{k} \sum_{i=k}^{\infty} \tau^{i \alpha} q_{i}^{\prime} \leq C(N, \hat{p}) \tau^{k(1+\alpha)} .
$$

This with (4.6) implies that

$$
\sup _{x \in B_{\tau^{k}}}\left|u(x)-q_{\infty} \cdot x\right| \leq C(N, \hat{p}) \tau^{k(1+\alpha)} .
$$

Theorem 4.3. Suppose that u is a viscosity solution to (4.1) in B_{1} with $q=0$ and $\operatorname{osc}_{B_{1}} \leq 1$. Then there are constants $\alpha(N, \hat{p})$ and $C\left(N, \hat{p},\|f\|_{L^{\infty}\left(B_{1}\right)}\right)$ such that

$$
\|u\|_{C^{1, \alpha}\left(B_{1 / 2}\right)} \leq C
$$

Proof. Let $\epsilon(N, \hat{p})$ and $\tau(N, \hat{p})$ be as in Lemma 4.2. Set

$$
v(x):=\kappa u(x / 4)
$$

where $\kappa:=\epsilon\left(1+\|f\|_{L^{\infty}\left(B_{1}\right)}\right)^{-1}$. For $x_{0} \in B_{1}$, set

$$
w(x):=v\left(x+x_{0}\right)-v\left(x_{0}\right) .
$$

Then $\operatorname{osc}_{B_{1}} w \leq 1, w(0)=0$ and w is a viscosity solution to

$$
-\Delta w-\frac{\left(p\left(x / 4+x_{0} / 4\right)-2\right)\left\langle D^{2} w D w, D w\right\rangle}{|D w|^{2}+\varepsilon^{2} \kappa^{2} / 4^{2}}=g(x) \quad \text { in } B_{1},
$$

where $g(x):=\kappa f\left(x / 4+x_{0} / 4\right) / 4^{2}$. Now $\|g\|_{L^{\infty}\left(B_{1}\right)} \leq \epsilon$ so by Lemma 4.2 there exists $q_{\infty}\left(x_{0}\right) \in \mathbb{R}^{N}$ such that

$$
\sup _{x \in B_{\tau^{k}}}\left|w(x)-q_{\infty}\left(x_{0}\right) \cdot x\right| \leq C(N, \hat{p}) \tau^{k(1+\alpha)} \quad \text { for all } k \in \mathbb{N} .
$$

Thus we have shown that for any $x_{0} \in B_{1}$ there exists a vector $q_{\infty}\left(x_{0}\right)$ such that

$$
\sup _{x \in B_{r}\left(x_{0}\right)}\left|v(x)-v\left(x_{0}\right)-q_{\infty}\left(x_{0}\right) \cdot\left(x-x_{0}\right)\right| \leq C(N, \hat{p}) r^{1+\alpha} \quad \text { for all } r \in(0,1] .
$$

This together with a standard argument (see for example [4, Lemma A.1]) implies that $[D v]_{C^{\alpha}\left(B_{1}\right)} \leq C(N, \hat{p})$ and so by definition of v, also $[D u]_{C^{\alpha}\left(B_{1 / 4}\right)} \leq C\left(N, \hat{p},\|f\|_{L^{\infty}\left(B_{1}\right)}\right)$. The conclusion of the theorem then follows by a standard translation argument.

5. Proof of the main theorem

In this section we finish the proof our main theorem.
Proof of Theorem 1.1. We may assume that $u \in C\left(\bar{B}_{1}\right)$. By Comparison Principle (Lemma B. 2 in the Appendix) u is the unique viscosity solution to

$$
\begin{cases}-\Delta v-\frac{(p(x)-2)\left\langle D^{2} v D v, D v\right\rangle}{|D v|^{2}}=f(x)+u-v & \text { in } B_{1} \tag{5.1}\\ v=u & \text { on } \partial B_{1} .\end{cases}
$$

By [21, Theorem 15.18] there exists a classical solution u_{ε} to the approximate problem

$$
\begin{cases}-\Delta u_{\varepsilon}-\frac{\left(p_{\varepsilon}(x)-2\right)\left\langle D^{2} u_{\varepsilon} D u_{\varepsilon}, D u_{\varepsilon}\right\rangle}{\left|D u_{\varepsilon}\right|^{2}+\varepsilon^{2}}=f_{\varepsilon}(x)+u-u_{\varepsilon} & \text { in } B_{1}, \\ u_{\varepsilon}=u & \text { on } \partial B_{1},\end{cases}
$$

where $p_{\varepsilon}, f_{\varepsilon}, u_{\varepsilon} \in C^{\infty}\left(B_{1}\right)$ are such that $p_{\varepsilon} \rightarrow p, f_{\varepsilon} \rightarrow f$ and $u_{\varepsilon} \rightarrow u_{0}$ uniformly in B_{1} as $\varepsilon \rightarrow 0$ and $\left\|D p_{\varepsilon}\right\|_{L^{\infty}\left(B_{1}\right)} \leq\|D p\|_{L^{\infty}\left(B_{1}\right)}$. The maximum principle implies that $\left\|u_{\varepsilon}\right\|_{L^{\infty}\left(B_{1}\right)} \leq 2\|f\|_{L^{\infty}\left(B_{1}\right)}+2\|u\|_{L^{\infty}\left(B_{1}\right)}$. By [13, Proposition 4.14] the solutions u_{ε} are equicontinuous in \bar{B}_{1} (their modulus of continuity depends only on $N, p,\|f\|_{L^{\infty}\left(B_{1}\right)},\|u\|_{L^{\infty}\left(B_{1}\right)}$ and modulus of continuity of $\left.u\right)$. Therefore by the Ascoli-Arzela theorem we have $u_{\varepsilon} \rightarrow v \in C\left(\bar{B}_{1}\right)$ uniformly in \bar{B}_{1} up to a subsequence. By the stability principle, v is a viscosity solution to (5.1) and thus by uniqueness $v \equiv u$.

By Corollary 4.3 we have $\alpha(N, \hat{p})$ such that

$$
\begin{equation*}
\left\|D u_{\varepsilon}\right\|_{C^{\alpha}\left(B_{1 / 2}\right)} \leq C\left(N, \hat{p},\|f\|_{L^{\infty}\left(B_{1}\right)},\|u\|_{L^{\infty}\left(B_{1}\right)}\right) \tag{5.2}
\end{equation*}
$$

and by the Lipschitz estimate A. 2 also

$$
\left\|D u_{\varepsilon}\right\|_{L^{\infty}\left(B_{1 / 2}\right)} \leq C\left(N, \hat{p},\|f\|_{L^{\infty}\left(B_{1}\right)},\|u\|_{L^{\infty}\left(B_{1}\right)}\right) .
$$

Therefore by the Ascoli-Arzela theorem there exists a subsequence such that $D u_{\varepsilon} \rightarrow \eta$ uniformly in $B_{1 / 2}$, where the function $\eta: B_{1 / 2} \rightarrow \mathbb{R}^{N}$ satisfies

$$
\|\eta\|_{C^{\alpha}\left(B_{1 / 2}\right)} \leq C\left(N, \hat{p},\|f\|_{L^{\infty}\left(B_{1}\right)},\|u\|_{L^{\infty}\left(B_{1}\right)}\right) .
$$

Using the mean value theorem and the estimate (5.2), we deduce for all $x, y \in B_{1 / 2}$

$$
\begin{aligned}
& |u(y)-u(x)-(y-x) \cdot \eta(x)| \\
& \leq\left|u_{\varepsilon}(x)-u_{\varepsilon}(y)-(y-x) \cdot D u_{\varepsilon}(x)\right| \\
& \quad+\left|u(y)-u_{\varepsilon}(y)-u(x)+u_{\varepsilon}(x)\right|+|x-y|\left|\eta(x)-D u_{\varepsilon}(x)\right| \\
& \leq C\left(N, \hat{p},\|u\|_{L^{\infty}\left(B_{1}\right)}\right)|x-y|^{1+\alpha}+o(\varepsilon) / \varepsilon .
\end{aligned}
$$

Letting $\varepsilon \rightarrow 0$, this implies that $D u(x)=\eta(x)$ for all $x \in B_{1 / 2}$.

Appendix A. Lipschitz estimate

In this section we apply the method of Ishii and Lions [23] to prove a Lipschitz estimate for solutions to the inhomogeneous normalized $p(x)$-Laplace equation and its regularized or perturbed versions. We need the following vector inequality.

Lemma A.1. Let $a, b \in \mathbb{R}^{N} \backslash\{0\}$ with $a \neq b$ and $\varepsilon \geq 0$. Then

$$
\left|\frac{a}{\sqrt{|a|^{2}+\varepsilon^{2}}}-\frac{b}{\sqrt{|b|^{2}+\varepsilon^{2}}}\right| \leq \frac{2}{\max (|a|,|b|)}|a-b| .
$$

Proof. We may suppose that $|a|=\max (|a|,|b|)$. Let $s_{1}:=\sqrt{|a|^{2}+\varepsilon^{2}}$ and $s_{2}:=\sqrt{|b|^{2}+\varepsilon^{2}}$. Then

$$
\begin{aligned}
\left|\frac{a}{s_{1}}-\frac{b}{s_{2}}\right|=\frac{1}{s_{1}}\left|a-b+\frac{b}{s_{2}}\left(s_{2}-s_{1}\right)\right| & \leq \frac{1}{s_{1}}\left(|a-b|+\frac{|b|}{s_{2}}\left|s_{2}-s_{1}\right|\right) \\
& \leq \frac{1}{|a|}\left(|a-b|+\left|s_{2}-s_{1}\right|\right)
\end{aligned}
$$

Moreover

$$
\begin{aligned}
\left|s_{2}-s_{1}\right| & =\left|\sqrt{|a|^{2}+\varepsilon^{2}}-\sqrt{|b|^{2}+\varepsilon^{2}}\right|=\frac{\left||a|^{2}-|b|^{2}\right|}{\sqrt{|a|^{2}+\varepsilon^{2}}+\sqrt{|b|^{2}+\varepsilon^{2}}} \\
& \leq \frac{(|a|+|b|)| | a|-|b||}{|a|+|b|} \leq|a-b| .
\end{aligned}
$$

Theorem A. 2 (Lipschitz estimate). Suppose that $p: B_{1} \rightarrow \mathbb{R}$ is Lipschitz continuous, $p_{\min }>1$ and that $f \in C\left(B_{1}\right)$ is bounded. Let u be a viscosity solution to

$$
-\Delta u-(p(x)-2) \frac{\left\langle D^{2} u(D u+q), D u+q\right\rangle}{|D u+q|^{2}+\varepsilon^{2}}=f(x) \quad \text { in } B_{1},
$$

where $\varepsilon \geq 0$ and $q \in \mathbb{R}^{N}$. Then there are constants $C_{0}\left(N, \hat{p},\|u\|_{L^{\infty}\left(B_{1}\right)},\|f\|_{L^{\infty}\left(B_{1}\right)}\right)$ and $\nu_{0}(N, \hat{p})$ such that if $|q|>\nu_{0}$ or $|q|=0$, then we have

$$
|u(x)-u(y)| \leq C_{0}|x-y| \quad \text { for all } x, y \in B_{1 / 2}
$$

Proof. We let $r(N, \hat{p}) \in(0,1 / 2)$ denote a small constant that will be specified later. Let $x_{0}, y_{0} \in B_{r / 2}$ and define the function

$$
\Psi(x, y):=u(x)-u(y)-L \varphi(|x-y|)-\frac{M}{2}\left|x-x_{0}\right|^{2}-\frac{M}{2}\left|y-y_{0}\right|^{2},
$$

where $\varphi:[0,2] \rightarrow \mathbb{R}$ is given by

$$
\varphi(s):=s-s^{\gamma} \kappa_{0}, \quad \kappa_{0}:=\frac{1}{\gamma 2^{\gamma+1}},
$$

and the constants $L\left(N, \hat{p},\|u\|_{L^{\infty}\left(B_{1}\right)}\right), M\left(N, \hat{p},\|u\|_{L^{\infty}\left(B_{1}\right)}\right)>0$ and $\gamma(N, \hat{p}) \in(1,2)$ are also specified later. Our objective is to show that for a suitable choice of these constants, the function Ψ is non-positive in $\overline{B_{r}} \times \overline{B_{r}}$. By the definition of φ, this yields $u\left(x_{0}\right)-u\left(y_{0}\right) \leq L\left|x_{0}-y_{0}\right|$ which implies that u is L-Lipschitz in B_{r}. The claim of the theorem then follows by standard translation arguments.

Suppose on contrary that Ψ has a positive maximum at some point $(\hat{x}, \hat{y}) \in \overline{B_{r}} \times \overline{B_{r}}$. Then $\hat{x} \neq \hat{y}$ since otherwise the maximum would be non-positive. We have

$$
\begin{align*}
0 & <u(\hat{x})-u(\hat{y})-L \varphi(|\hat{x}-\hat{y}|)-\frac{M}{2}\left|\hat{x}-x_{0}\right|^{2}-\frac{M}{2}\left|\hat{y}-y_{0}\right|^{2} \\
& \leq|u(\hat{x})-u(\hat{y})|-\frac{M}{2}\left|\hat{x}-x_{0}\right|^{2} . \tag{A.1}
\end{align*}
$$

Therefore, by taking

$$
\begin{equation*}
M:=\frac{8 \operatorname{osc}_{B_{1}} u}{r^{2}} \tag{A.2}
\end{equation*}
$$

we get

$$
\left|\hat{x}-x_{0}\right| \leq \sqrt{\frac{2}{M}|u(\hat{x})-u(\hat{y})|} \leq r / 2
$$

and similarly $\left|\hat{y}-y_{0}\right| \leq r / 2$. Since $x_{0}, y_{0} \in B_{r / 2}$, this implies that $\hat{x}, \hat{y} \in B_{r}$.
By [13, Proposition 4.10] there exist constants $C^{\prime}\left(N, \hat{p},\|u\|_{L^{\infty}\left(B_{1}\right)},\|f\|_{L^{\infty}\left(B_{1}\right)}\right)$ and $\beta(N, \hat{p}) \in(0,1)$ such that

$$
\begin{equation*}
|u(x)-u(y)| \leq C^{\prime}|x-y|^{\beta} \quad \text { for all } x, y \in B_{r} . \tag{A.3}
\end{equation*}
$$

It follows from (A.1) and (A.3) that for $C_{0}:=\sqrt{2 C^{\prime}} \sqrt{M}$ we have

$$
\begin{align*}
M\left|\hat{x}-x_{0}\right| & \leq C_{0}|\hat{x}-\hat{y}|^{\beta / 2} \\
M\left|\hat{y}-y_{0}\right| & \leq C_{0}|\hat{x}-\hat{y}|^{\beta / 2} \tag{A.4}
\end{align*}
$$

Since $\hat{x} \neq \hat{y}$, the function $(x, y) \mapsto \varphi(|x-y|)$ is C^{2} in a neighborhood of (\hat{x}, \hat{y}) and we may invoke the Theorem of sums [14, Theorem 3.2]. For any $\mu>0$ there exist matrices $X, Y \in S^{N}$ such that

$$
\begin{aligned}
\left(D_{x}(L \varphi(|x-y|))(\hat{x}, \hat{y}), X\right) & \in \bar{J}^{2,+}\left(u-\frac{M}{2}\left|x-x_{0}\right|^{2}\right)(\hat{x}), \\
\left(-D_{y}(L \varphi(|x-y|))(\hat{x}, \hat{y}), Y\right) & \in \bar{J}^{2,-}\left(u+\frac{M}{2}\left|y-y_{0}\right|^{2}\right)(\hat{y}),
\end{aligned}
$$

which by denoting $z:=\hat{x}-\hat{y}$ and

$$
\begin{aligned}
& a:=L \varphi^{\prime}(|z|) \frac{z}{|z|}+M\left(\hat{x}-x_{0}\right), \\
& b:=L \varphi^{\prime}(|z|) \frac{z}{|z|}-M\left(\hat{y}-y_{0}\right)
\end{aligned}
$$

can be written as

$$
\begin{equation*}
(a, X+M I) \in \bar{J}^{2,+} u(\hat{x}), \quad(b, Y-M I) \in \bar{J}^{2,-} u(\hat{y}) \tag{A.5}
\end{equation*}
$$

By assuming that L is large enough depending on C_{0}, we have by (A.4) and the fact $\varphi^{\prime} \in\left[\frac{3}{4}, 1\right]$

$$
\begin{align*}
& |a|,|b| \leq L\left|\varphi^{\prime}(|\hat{x}-\hat{y}|)\right|+C_{0}|\hat{x}-\hat{y}|^{\beta / 2} \leq 2 L \tag{A.6}\\
& |a|,|b| \geq L\left|\varphi^{\prime}(|\hat{x}-\hat{y}|)\right|-C_{0}|\hat{x}-\hat{y}|^{\beta / 2} \geq \frac{1}{2} L \tag{A.7}
\end{align*}
$$

Moreover, we have

$$
\begin{align*}
-(\mu+2\|B\|)\left(\begin{array}{cc}
I & 0 \\
0 & I
\end{array}\right) & \leq\left(\begin{array}{cc}
X & 0 \\
0 & -Y
\end{array}\right) \\
& \leq\left(\begin{array}{cc}
B & -B \\
-B & B
\end{array}\right)+\frac{2}{\mu}\left(\begin{array}{cc}
B^{2} & -B^{2} \\
-B^{2} & B^{2}
\end{array}\right) \tag{A.8}
\end{align*}
$$

where

$$
\begin{aligned}
B & =L \varphi^{\prime \prime}(|z|) \frac{z}{|z|} \otimes \frac{z}{|z|}+\frac{L \varphi^{\prime}(|z|)}{|z|}\left(I-\frac{z}{|z|} \otimes \frac{z}{|z|}\right), \\
B^{2} & =B B=L^{2}\left(\varphi^{\prime \prime}(|z|)\right)^{2} \frac{z}{|z|} \otimes \frac{z}{|z|}+\frac{L^{2}\left(\varphi^{\prime}(|z|)\right)^{2}}{|z|^{2}}\left(I-\frac{z}{|z|} \otimes \frac{z}{|z|}\right) .
\end{aligned}
$$

Using that $\varphi^{\prime \prime}(|z|)<0<\varphi^{\prime}(|z|)$ and $\left|\varphi^{\prime \prime}(|z|)\right| \leq \varphi^{\prime}(|z|) /|z|$, we deduce that

$$
\begin{equation*}
\|B\| \leq \frac{L \varphi^{\prime}(|z|)}{|z|} \quad \text { and } \quad\left\|B^{2}\right\| \leq \frac{L^{2}\left(\varphi^{\prime}(|z|)\right)^{2}}{|z|^{2}} \tag{A.9}
\end{equation*}
$$

Moreover, choosing

$$
\mu:=4 L\left(\left|\varphi^{\prime \prime}(|z|)\right|+\frac{\left|\varphi^{\prime}(|z|)\right|}{|z|}\right)
$$

and using that $\varphi^{\prime \prime}(|z|)<0$, we have

$$
\begin{equation*}
\left\langle B \frac{z}{|z|}, \frac{z}{|z|}\right\rangle+\frac{2}{\mu}\left\langle B^{2} \frac{z}{|z|}, \frac{z}{|z|}\right\rangle=L \varphi^{\prime \prime}(|z|)+\frac{2}{\mu} L^{2}\left|\varphi^{\prime \prime}(|z|)\right| \leq \frac{L}{2} \varphi^{\prime \prime}(|z|) . \tag{A.10}
\end{equation*}
$$

We set $\eta_{1}:=a+q$ and $\eta_{2}:=b+q$. By (A.6) and (A.7) there is a constant $\nu_{0}(L)$ such that if $|q|=0$ or $|q|>\nu_{0}$, then

$$
\begin{equation*}
\left|\eta_{1}\right|,\left|\eta_{2}\right| \geq \frac{L}{2} \tag{A.11}
\end{equation*}
$$

We denote $A(x, \eta):=I+(p(x)-2) \eta \otimes \eta$ and $\bar{\eta}:=\frac{\eta}{\sqrt{|\eta|^{2}+\varepsilon^{2}}}$. Since u is a viscosity solution, we obtain from (A.5)

$$
\begin{align*}
0 \leq & \operatorname{tr}\left(A\left(\hat{x}, \bar{\eta}_{1}\right)(X+M I)\right)-\operatorname{tr}\left(A\left(\hat{y}, \bar{\eta}_{2}\right)(Y-M I)\right)+f(\hat{x})-f(\hat{y}) \\
= & \operatorname{tr}\left(A\left(\hat{y}, \bar{\eta}_{2}\right)(X-Y)\right)+\operatorname{tr}\left(\left(A\left(\hat{x}, \bar{\eta}_{2}\right)-A\left(\hat{y}, \bar{\eta}_{2}\right)\right) X\right) \\
& +\operatorname{tr}\left(\left(A\left(\hat{x}, \bar{\eta}_{1}\right)-A\left(\hat{x}, \bar{\eta}_{2}\right)\right) X\right)+M \operatorname{tr}\left(A\left(\hat{x}, \bar{\eta}_{1}\right)+A\left(\hat{y}, \bar{\eta}_{2}\right)\right) \\
& +f(\hat{x})-f(\hat{y}) \\
= & T_{1}+T_{2}+T_{3}+T_{4}+T_{5} . \tag{A.12}
\end{align*}
$$

We will now proceed to estimate these terms. The plan is to obtain a contradiction by absorbing the other terms into T_{1} which is negative by concavity of φ.

Estimate of T_{1} : Multiplying (A.8) by the vector $\left(\frac{z}{|z|},-\frac{z}{|z|}\right)$ and using (A.10), we obtain an estimate for the smallest eigenvalue of $X-Y$

$$
\begin{aligned}
\lambda_{\min }(X-Y) & \leq\left\langle(X-Y) \frac{z}{|z|}, \frac{z}{|z|}\right\rangle \\
& \leq 4\left\langle B \frac{z}{|z|}, \frac{z}{|z|}\right\rangle+\frac{8}{\mu}\left\langle B^{2} \frac{z}{|z|}, \frac{z}{|z|}\right\rangle \leq 2 L \varphi^{\prime \prime}(|z|) .
\end{aligned}
$$

The eigenvalues of $A\left(\hat{y}, \bar{\eta}_{2}\right)$ are between $\min \left(1, p_{\min }-1\right)$ and $\max \left(1, p_{\max }-1\right)$. Therefore by [36]

$$
\begin{aligned}
T_{1}=\operatorname{tr}\left(A\left(\hat{y}, \bar{\eta}_{2}\right)(X-Y)\right) & \leq \sum_{i} \lambda_{i}\left(A\left(\hat{y}, \bar{\eta}_{2}\right)\right) \lambda_{i}(X-Y) \\
& \leq \min \left(1, p_{\min }-1\right) \lambda_{\min }(X-Y)
\end{aligned}
$$

$$
\leq C(\hat{p}) L \varphi^{\prime \prime}(|z|) .
$$

Estimate of T_{2} : We have

$$
T_{2}=\operatorname{tr}\left(\left(A\left(\hat{x}, \bar{\eta}_{2}\right)-A\left(\hat{y}, \bar{\eta}_{2}\right)\right) X\right) \leq|p(\hat{x})-p(\hat{y})|\left|\left\langle X \bar{\eta}_{2}, \bar{\eta}_{2}\right\rangle\right| \leq C(\hat{p})|z|\|X\|,
$$

where by (A.8) and (A.9)

$$
\begin{align*}
\|X\| \leq\|B\|+\frac{2}{\mu}\|B\|^{2} & \leq \frac{L\left|\varphi^{\prime}(|z|)\right|}{|z|}+\frac{2 L^{2}\left(\varphi^{\prime}(|z|)\right)^{2}}{4 L\left(\left|\varphi^{\prime \prime}(|z|)\right|+\frac{\left|\varphi^{\prime}(|z|)\right|}{|z|}\right)|z|^{2}} \\
& \leq \frac{2 L \varphi^{\prime}(|z|)}{|z|} . \tag{A.13}
\end{align*}
$$

Estimate of T_{3} : From Lemma A. 1 and the estimate (A.11) it follows that

$$
\begin{align*}
\left|\bar{\eta}_{1}-\bar{\eta}_{2}\right| & \leq \frac{2\left|\eta_{1}-\eta_{2}\right|}{\max \left(\left|\eta_{1}\right|,\left|\eta_{2}\right|\right)} \leq \frac{4}{L}\left|\eta_{1}-\eta_{2}\right|=\frac{4}{L}|a-b| \\
& \leq \frac{4}{L}\left(M\left|\hat{x}-x_{0}\right|+M\left|\hat{y}-y_{0}\right|\right) \leq \frac{8 C_{0}}{L}|z|^{\beta / 2} \tag{A.14}
\end{align*}
$$

where in the last inequality we used (A.4). Observe that

$$
\left\|\bar{\eta}_{1} \otimes \bar{\eta}_{1}-\bar{\eta}_{2} \otimes \bar{\eta}_{2}\right\|=\left\|\left(\bar{\eta}_{1}-\bar{\eta}_{2}\right) \otimes \bar{\eta}_{1}-\bar{\eta}_{2} \otimes\left(\bar{\eta}_{2}-\bar{\eta}_{1}\right)\right\| \leq\left(\left|\bar{\eta}_{1}\right|+\left|\bar{\eta}_{2}\right|\right)\left|\bar{\eta}_{1}-\bar{\eta}_{2}\right| .
$$

Using the last two displays, we obtain by [36] and (A.13)

$$
\begin{aligned}
T_{3}=\operatorname{tr}\left(\left(A\left(\hat{x}, \bar{\eta}_{1}\right)-A\left(\hat{x}, \bar{\eta}_{2}\right)\right) X\right) & \leq N\left\|A\left(x_{1}, \bar{\eta}_{1}\right)-A\left(x_{1}, \bar{\eta}_{2}\right)\right\|\|X\| \\
& \leq N\left|p\left(x_{1}\right)-2\right|\left(\left|\bar{\eta}_{1}\right|+\left|\bar{\eta}_{2}\right|\right)\left|\bar{\eta}_{1}-\bar{\eta}_{2}\right|\|X\| \\
& \leq \frac{C(N, \hat{p}) C_{0}}{L}|z|^{\beta / 2}\|X\| \\
& \leq C\left(N, \hat{p},\|u\|_{L^{\infty}},\|f\|_{L^{\infty}}\right) \sqrt{M} \varphi^{\prime}(|z|)|z|^{\beta / 2-1} .
\end{aligned}
$$

Estimate of T_{4} and T_{5} : By Lipschitz continuity of p we have

$$
T_{4}=M \operatorname{tr}\left(A\left(\hat{x}, \bar{\eta}_{1}\right)+A\left(\hat{y}, \bar{\eta}_{2}\right)\right) \leq 2 M C(N, \hat{p}) .
$$

We have also

$$
T_{5}=f(\hat{x})-f(\hat{y}) \leq 2\|f\|_{L^{\infty}\left(B_{1}\right)} .
$$

Combining the estimates, we deduce the existence of positive constants $C_{1}(N, \hat{p})$ and $C_{2}\left(N, \hat{p},\|u\|_{L^{\infty}\left(B_{1}\right)}\right.$, $\left.\|f\|_{L^{\infty}\left(B_{1}\right)}\right)$ such that

$$
\begin{align*}
0 & \leq C_{1} L \varphi^{\prime \prime}(|z|)+C_{2}\left(L \varphi^{\prime}(|z|)+\sqrt{M} \varphi^{\prime}(|z|)|z|^{\frac{\beta}{2}-1}+M+1\right) \\
& \leq C_{1} L \varphi^{\prime \prime}(|z|)+C_{2}\left(L+\sqrt{M}|z|^{\frac{\beta}{2}-1}+M+1\right) \tag{A.15}
\end{align*}
$$

where we used that $\varphi^{\prime}(|z|) \in\left[\frac{3}{4}, 1\right]$. We take $\gamma:=\frac{\beta}{2}+1$ so that we have

$$
\varphi^{\prime \prime}(|z|)=\frac{1-\gamma}{2^{\gamma+1}}|z|^{\gamma-2}=\frac{-\beta}{2^{\frac{\beta}{2}+3}}|z|^{\frac{\beta}{2}-1}=:-C_{3}|z|^{\frac{\beta}{2}-1}
$$

We apply this to (A.15) and obtain

$$
\begin{equation*}
0 \leq\left(C_{2} \sqrt{M}-C_{1} C_{3} L\right)|z|^{\frac{\beta}{2}-1}+C_{2}(L+M+1) \tag{A.16}
\end{equation*}
$$

We fix $r:=\frac{1}{2}\left(\frac{6 C_{2}}{C_{1} C_{3}}\right)^{\frac{1}{\frac{\beta}{2}-1}}$. By (A.2) this will also fix $M=\left(N, \hat{p},\|u\|_{L^{\infty}\left(B_{1}\right)}\right)$. We take L so large that

$$
L>\max \left(\frac{2 C_{2} \sqrt{M}}{C_{1} C_{3}}, M+1\right) .
$$

Then by (A.16) we have

$$
\begin{aligned}
0<-\frac{1}{2} C_{1} C_{3} L|z|^{\frac{\beta}{2}-1}+2 C_{2} L & \leq L\left(-\frac{1}{2} C_{1} C_{3}(2 r)^{\frac{\beta}{2}-1}+2 C_{2}\right) \\
& =-L C_{2} \leq 0,
\end{aligned}
$$

which is a contradiction.

Appendix B. Stability and comparison principles

Lemma B.1. Suppose that $p \in C\left(B_{1}\right), p_{\min }>1$ and that $f: B_{1} \times \mathbb{R} \rightarrow \mathbb{R}$ is continuous. Let u_{ε} be a viscosity solution to

$$
-\Delta u_{\varepsilon}-\left(p_{\varepsilon}(x)-2\right) \frac{\left\langle D^{2} u_{\varepsilon} D u_{\varepsilon}, D u_{\varepsilon}\right\rangle}{\left|D u_{\varepsilon}\right|^{2}+\varepsilon^{2}}=f_{\varepsilon}(x, u(x)) \quad \text { in } B_{1}
$$

and assume that $u_{\varepsilon} \rightarrow u \in C\left(B_{1}\right), p_{\varepsilon} \rightarrow p$ and $f_{\varepsilon} \rightarrow f$ locally uniformly as $\varepsilon \rightarrow 0$. Then u is a viscosity solution to

$$
-\Delta u-(p(x)-2) \frac{\left\langle D^{2} u D u, D u\right\rangle}{|D u|^{2}}=f(x, u(x)) \quad \text { in } B_{1} .
$$

Proof. It is enough to consider supersolutions. Suppose that $\varphi \in C^{2}$ touches u from below at x. Since $u_{\varepsilon} \rightarrow u$ locally uniformly, there exists a sequence $x_{\varepsilon} \rightarrow x$ such that $u_{\varepsilon}-\varphi$ has a local minimum at x_{ε}. We denote $\eta_{\varepsilon}:=D \varphi\left(x_{\varepsilon}\right) / \sqrt{\left|D \varphi\left(x_{\varepsilon}\right)\right|^{2}+\varepsilon^{2}}$. Then $\eta_{\varepsilon} \rightarrow \eta \in \bar{B}_{1}$ up to a subsequence. Therefore we have

$$
\begin{align*}
0 & \leq-\Delta \varphi\left(x_{\varepsilon}\right)-\left(p_{\varepsilon}\left(x_{\varepsilon}\right)-2\right)\left\langle D^{2} \varphi\left(x_{\varepsilon}\right) \eta_{\varepsilon}, \eta_{\varepsilon}\right\rangle-f_{\varepsilon}\left(x_{\varepsilon}, u_{\varepsilon}\left(x_{\varepsilon}\right)\right) \\
& \rightarrow-\Delta \varphi(x)-(p(x)-2)\left\langle D^{2} \varphi\left(x_{\varepsilon}\right) \eta, \eta\right\rangle-f(x, u(x)), \tag{B.1}
\end{align*}
$$

which is what is required in Definition 2.1 in the case $D \varphi(x)=0$. If $D \varphi(x) \neq 0$, then $D \varphi\left(x_{\varepsilon}\right) \neq 0$ when ε is small and thus $\eta=D \varphi(x) /|D \varphi(x)|$. Therefore B. 1 again implies the desired inequality.

Lemma B.2. Suppose that $p: B_{1} \rightarrow \mathbb{R}$ is Lipschitz continuous, $p_{\min }>1$ and that $f \in C\left(B_{1}\right)$ is bounded. Assume that $u \in C\left(\bar{B}_{1}\right)$ is a viscosity subsolution to $-\Delta_{p(x)}^{N} u \leq f-u$ in B_{1} and that $v \in C\left(\bar{B}_{1}\right)$ is a viscosity supersolution to $-\Delta_{p(x)}^{N} v \geq f-v$ in B_{1}. Then

$$
u \leq v \quad \text { on } \partial B_{1}
$$

implies

$$
u \leq v \quad \text { in } B_{1}
$$

Proof. Step 1: Assume on the contrary that the maximum of $u-v$ in \bar{B}_{1} is positive. For $x, y \in \bar{B}_{1}$, set

$$
\Psi_{j}(x, y):=u(x)-v(y)-\varphi_{j}(x, y)
$$

where $\varphi_{j}(x, y):=\frac{j}{4}|x-y|^{4}$. Let $\left(x_{j}, y_{j}\right)$ be a global maximum point of Ψ_{j} in $\bar{B}_{1} \times \bar{B}_{1}$. Then

$$
u\left(x_{j}\right)-v\left(y_{j}\right)-\frac{j}{4}\left|x_{j}-y_{j}\right|^{4} \geq u(0)-v(0)
$$

so that

$$
\frac{j}{4}\left|x_{j}-y_{j}\right|^{4} \leq 2\|u\|_{L^{\infty}\left(B_{1}\right)}+2\|v\|_{L^{\infty}\left(B_{1}\right)}<\infty .
$$

By compactness and the assumption $u \leq v$ on ∂B_{1} there exists a subsequence such that $x_{j}, y_{j} \rightarrow \hat{x} \in B_{1}$ and $u(\hat{x})-v(\hat{x})>0$. Finally, since $\left(x_{j}, y_{j}\right)$ is a maximum point of Ψ_{j}, we have

$$
u\left(x_{j}\right)-v\left(x_{j}\right) \leq u\left(x_{j}\right)-v\left(y_{j}\right)-\frac{j}{4}\left|x_{j}-y_{j}\right|^{4}
$$

and hence by continuity

$$
\begin{equation*}
\frac{j}{4}\left|x_{j}-y_{j}\right|^{4} \leq v\left(x_{j}\right)-v\left(y_{j}\right) \rightarrow 0 \tag{B.2}
\end{equation*}
$$

as $j \rightarrow \infty$.
Step 2: If $x_{j}=y_{j}$, then $D_{x}^{2} \varphi_{j}\left(x_{j}, y_{j}\right)=D_{y}^{2} \varphi_{j}\left(x_{j}, y_{j}\right)=0$. Therefore, since the function $x \mapsto u(x)-$ $\varphi_{j}\left(x, y_{j}\right)$ reaches its maximum at x_{j} and $y \mapsto v(y)-\left(-\varphi_{j}\left(x_{j}, y\right)\right)$ reaches its minimum at y_{j}, we obtain from the definition of viscosity sub- and supersolutions that

$$
0 \leq f\left(x_{j}\right)-u\left(x_{j}\right) \quad \text { and } \quad 0 \geq f\left(y_{j}\right)-v\left(y_{j}\right) .
$$

That is $0 \leq f\left(x_{j}\right)-f\left(y_{j}\right)+v\left(y_{j}\right)-u\left(x_{j}\right)$, which leads to a contradiction since $x_{j}, y_{j} \rightarrow \hat{x}$ and $v(\hat{x})-u(\hat{x})<0$. We conclude that $x_{j} \neq y_{j}$ for all large j. Next we apply the Theorem of sums [14, Theorem 3.2] to obtain matrices $X, Y \in S^{N}$ such that

$$
\left(D_{x} \varphi\left(x_{j}, y_{j}\right), X\right) \in \bar{J}^{2,+} u\left(x_{j}\right), \quad\left(-D_{y} \varphi\left(x_{j}, y_{j}\right), Y\right) \in \bar{J}^{2,-} v\left(y_{j}\right)
$$

and

$$
\left(\begin{array}{cc}
X & 0 \tag{B.3}\\
0 & -Y
\end{array}\right) \leq D^{2} \varphi\left(x_{j}, y_{j}\right)+\frac{1}{j}\left(D^{2}\left(x_{j}, y_{j}\right)\right)^{2}
$$

where

$$
D^{2}\left(x_{j}, y_{j}\right)=\left(\begin{array}{cc}
M & -M \\
-M & M
\end{array}\right)
$$

with $M=j\left(2\left(x_{j}-y_{j}\right) \otimes\left(x_{j}-y_{j}\right)+\left|x_{j}-y_{j}\right|^{2} I\right)$. Multiplying the matrix inequality (B.3) by the $\mathbb{R}^{2 N}$ vector $\left(\xi_{1}, \xi_{2}\right)$ yields

$$
\begin{aligned}
\left\langle X \xi_{1}, \xi_{1}\right\rangle-\left\langle Y \xi_{2}, \xi_{2}\right\rangle & \leq\left\langle\left(M+2 j^{-1} M^{2}\right)\left(\xi_{1}-\xi_{2}\right), \xi_{1}-\xi_{2}\right\rangle \\
& \leq\left(\|M\|+2 j^{-1}\|M\|^{2}\right)\left|\xi_{1}-\xi_{2}\right|^{2}
\end{aligned}
$$

Observe also that $\eta:=D_{x} \varphi\left(x_{j}, y_{j}\right)=-D_{y}\left(x_{j}, y_{j}\right)=j\left|x_{j}-y_{j}\right|^{2}\left(x_{j}-y_{j}\right) \neq 0$ for all large j. Since u is a subsolution and v is a supersolution, we thus obtain

$$
\begin{aligned}
& f\left(y_{j}\right)-f\left(x_{j}\right)+u\left(x_{j}\right)-v\left(y_{j}\right) \\
& \leq \operatorname{tr}(X-Y)+\left(p\left(x_{j}\right)-2\right)\left\langle X \frac{\eta}{|\eta|}, \frac{\eta}{|\eta|}\right\rangle-\left(p\left(y_{j}\right)-2\right)\left\langle Y \frac{\eta}{|\eta|}, \frac{\eta}{|\eta|}\right\rangle \\
& \leq\left(p\left(x_{j}\right)-1\right)\left\langle X \frac{\eta}{|\eta|}, \frac{\eta}{|\eta|}\right\rangle-\left(p\left(y_{j}\right)-1\right)\left\langle Y \frac{\eta}{|\eta|}, \frac{\eta}{|\eta|}\right\rangle \\
& \leq\left(\|M\|+2 j^{-1}\|M\|^{2}\right)\left|\sqrt{p\left(x_{j}\right)-1}-\sqrt{p\left(y_{j}\right)-1}\right|^{2} \\
& \leq C j\left|x_{j}-y_{j}\right|^{2} \frac{\left|p\left(x_{j}\right)-p\left(y_{j}\right)\right|^{2}}{\left(\sqrt{p\left(x_{j}\right)-1}+\sqrt{p\left(y_{j}\right)-1}\right)^{2}} \\
& \leq C(\hat{p}) j\left|x_{j}-y_{j}\right|^{4}
\end{aligned}
$$

This leads to a contradiction since the left-hand side tends to $u(\hat{x})-v(\hat{y})>0$ and the right-hand side tends to zero by (B.2).

References

[1] T. Adamowicz, P. Hästö, Mappings of finite distortion and PDE with nonstandard growth, Int. Math. Res. Not. 10 (2010) 1940-1965.
[2] T. Adamowicz, P. Hästö, Harnack's inequality and the strong $p(\cdot)$-Laplacian, J. Differ. Equ. 250 (3) (2011) 1631-1649.
[3] Á. Arroyo, J. Heino, M. Parviainen, Tug-of-war games with varying probabilities and the normalized $p(x)$-Laplacian, Commun. Pure Appl. Anal. 16 (3) (2017) 915-944.
[4] A. Attouchi, M. Parviainen, Hölder regularity for the gradient of the inhomogeneous parabolic normalized p-Laplacian, Commun. Contemp. Math. 20 (4) (2018) 1750035.
[5] A. Attouchi, M. Parviainen, E. Ruosteenoja, $C^{1, \alpha}$ regularity for the normalized p-Poisson problem, J. Math. Pures Appl. 108 (4) (2017) 553-591.
[6] A. Attouchi, E. Ruosteenoja, Remarks on regularity for p-Laplacian type equations in non-divergence form, J. Differ. Equ. 265 (5) (2018) 1922-1961.
[7] A. Attouchi, E. Ruosteenoja, Gradient regularity for a singular parabolic equation in non-divergence form, Discrete Contin. Dyn. Syst. 40 (10) (2020) 5955-5972.
[8] A. Attouchi, Local regularity for quasi-linear parabolic equations in non-divergence form, Nonlinear Anal. 199 (2020) 112051.
[9] A. Banerjee, N. Garofalo, Modica type gradient estimates for an inhomogeneous variant of the normalized p-Laplacian evolution, Nonlinear Anal. 121 (2015) 458-468.
[10] A.C. Bronzi, E.A. Pimentel, G.C. Rampasso, E.V. Teixeira, Regularity of solutions to a class of variable-exponent fully nonlinear elliptic equations, J. Funct. Anal. 279 (12) (2020) 108781.
[11] P. Blanc, J. Rossi, Game Theory and Partial Differential Equations, De Gruyter Series in Nonlinear Analysis and Applications, De Gruyter, Berlin, Boston, 2019.
[12] L.A. Caffarelli, Interior a priori estimates for solutions of fully nonlinear equations, Ann. Math. (2) 130 (1) (1989) 189-213.
[13] L.A. Caffarelli, X. Cabré, Fully Nonlinear Elliptic Equations, American Mathematical Society Colloquium Publications, vol. 43, 1995.
[14] M.G. Crandall, H. Ishii, P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Am. Math. Soc. 27 (1) (1992) 1-67.
[15] C. De Filippis, Regularity for solutions of fully nonlinear elliptic equations with nonhomogeneous degeneracy, Proc. R. Soc. Edinb. A 151 (1) (2021) 110-132.
[16] K. Does, An evolution equation involving the normalized p-Laplacian, Commun. Pure Appl. Anal. 10 (1) (2011) 361-396.
[17] L.C. Evans, R.F. Gariepy, Measure Theory and Fine Properties of Functions, revised edition, CRC Press, 2015.
[18] A. Elmoataz, M. Toutain, D. Tenbrinck, On the p-Laplacian and ∞-Laplacian on graphs with applications in image and data processing, SIAM J. Imaging Sci. 8 (4) (2015) 2412-2451.
[19] Y. Fang, C. Zhang, Gradient Hölder regularity for parabolic normalized $p(x, t)$-Laplace equation, J. Differ. Equ. 295 (2021) 211-232.
[20] Y. Fang, C. Zhang, Regularity for quasi-linear parabolic equations with nonhomogeneous degeneracy or singularity, https:// arxiv.org/abs/2105.04743, 2021.
[21] D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Classics in Mathematics, SpringerVerlag, Berlin, 2001, Reprint of the 1998 edition.
[22] C. Imbert, T. Jin, L. Silvestre, Hölder gradient estimates for a class of singular or degenerate parabolic equations, Adv. Nonlinear Anal. 8 (1) (2019) 845-867.
[23] H. Ishii, P.-L. Lions, Viscosity solutions of fully nonlinear second-order elliptic partial differential equations, J. Differ. Equ. 83 (1) (1990) 26-78.
[24] C. Imbert, L. Silvestre, $C^{1, \alpha}$ regularity of solutions of degenerate fully non-linear elliptic equations, Adv. Math. 233 (2012) 196-206.
[25] T. Jin, L. Silvestre, Hölder gradient estimates for parabolic homogeneous p-Laplacian equations, J. Math. Pures Appl. 108 (3) (2017) 63-87.
[26] B. Kawohl, N. Kutev, Strong maximum principle for semicontinuous viscosity solutions of nonlinear partial differential equations, Arch. Math. (Basel) 70 (6) (1998) 470-478.
[27] B. Kawohl, N. Kutev, Comparison principle for viscosity solutions of fully nonlinear, degenerate elliptic equations, Commun. Partial Differ. Equ. 32 (7-9) (2007) 1209-1224.
[28] N.V. Krylov, M.V. Safonov, An estimate for the probability of a diffusion process hitting a set of positive measure, Dokl. Akad. Nauk SSSR 245 (1) (1979) 18-20.
[29] N.V. Krylov, M.V. Safonov, A certain property of solutions of parabolic equations with measurable coefficients, Izv. Akad. Nauk SSSR, Ser. Mat. 44 (1) (1980) 161-175.
[30] J.J. Manfredi, M. Parviainen, J.D. Rossi, An asymptotic mean value characterization for a class of nonlinear parabolic equations related to tug-of-war games, SIAM J. Math. Anal. 42 (5) (2010) 2058-2081.
[31] J.J. Manfredi, M. Parviainen, J.D. Rossi, On the definition and properties of p-harmonous functions, Ann. Sc. Norm. Super. Pisa, Cl. Sci. 11 (2) (2012) 215-241.
[32] Y. Peres, S. Sheffield, Tug-of-war with noise: a game-theoretic view of the p-Laplacian, Duke Math. J. 145 (1) (2008) 91-120.
[33] E. Ruosteenoja, Local regularity results for value functions of tug-of-war with noise and running payoff, Adv. Calc. Var. 9 (1) (2016) 1-17.
[34] O. Savin, Small perturbation solutions for elliptic equations, Commun. Partial Differ. Equ. 32 (4-6) (2007) 557-578.
[35] J. Siltakoski, Equivalence of viscosity and weak solutions for the normalized $p(x)$-Laplacian, Calc. Var. Partial Differ. Equ. 57 (95) (2018).
[36] C.M. Theobald, An inequality for the trace of the product of two symmetric matrices, Math. Proc. Camb. Philos. Soc. 77 (1975) 265-267.
[37] Y. Wang, Small perturbation solutions for parabolic equations, Indiana Univ. Math. J. 62 (2) (2013) $671-697$.
[38] C. Zhang, S. Zhou, Hölder regularity for the gradients of solutions of the strong $p(x)$-Laplacian, J. Math. Anal. Appl. 389 (2) (2012) 1066-1077.

[^0]: E-mail address: jarkko.siltakoski@jyu.fi.
 https://doi.org/10.1016/j.jmaa.2022.126187
 0022-247X/© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

