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We prove the local gradient Hölder regularity of viscosity solutions to the 
inhomogeneous normalized p(x)-Laplace equation

−ΔN
p(x)u = f(x),

where p is Lipschitz continuous, inf p > 1, and f is continuous and bounded.
© 2022 The Author(s). Published by Elsevier Inc. This is an open access article 

under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

We study the inhomogeneous normalized p(x)-Laplace equation

−ΔN
p(x)u = f(x) in B1, (1.1)

where

−ΔN
p(x)u := −Δu− (p(x) − 2)

〈
D2uDu,Du

〉
|Du|2

is the normalized p(x)-Laplacian, p : B1 → R is Lipschitz continuous, 1 < pmin := infB1 p ≤ supB1
p =: pmax

and f ∈ C(B1) is bounded. Our main result is that viscosity solutions to (1.1) are locally C1,α-regular.
Normalized equations have attracted a significant amount of interest during the last 15 years. Their 

study is partially motivated by their connection to game theory. Roughly speaking, the value function of 
certain stochastic tug-of-war games converges uniformly up to a subsequence to a viscosity solution of a 
normalized equation as the step-size of the game approaches zero [32,30,31,9,11]. In particular, a game with 
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space-dependent probabilities leads to the normalized p(x)-Laplace equation [3] and games with running 
pay-offs lead to inhomogeneous equations [33]. In addition to game theory, normalized equations have been 
studied for example in the context of image processing [16,18].

The variable p(x) in (1.1) has an effect that may not be immediately obvious: If we formally multiply the 
equation by |Du|p(x)−2 and rewrite it in a divergence form, then a logarithm term appears and we arrive at 
the expression

− div(|Du|p(x)−2
Du) + |Du|p(x)−2 log(|Du|)Du ·Dp = |Du|p(x)−2

f(x). (1.2)

For f ≡ 0, this is the so called strong p(x)-Laplace equation introduced by Adamowicz and Hästö [1,2] in 
connection with mappings of finite distortion. In the homogeneous case viscosity solutions to (1.1) actually 
coincide with weak solutions of (1.2) [35], yielding the C1,α-regularity of viscosity solutions as a consequence 
of a result by Zhang and Zhou [38].

In the present paper our objective is to prove C1,α-regularity of solutions to (1.1) directly using viscosity 
methods. The Hölder regularity of solutions already follows from existing general results, see [28,29,12,13]. 
More recently, Imbert and Silvestre [24] proved the gradient Hölder regularity of solutions to the elliptic 
equation

|Du|γ F (D2u) = f,

where γ > 0 and Imbert, Jin and Silvestre [25,22] obtained a similar result for the parabolic equation

∂tu = |Du|γ ΔN
p u,

where p > 1, γ > −1. Furthermore, Attouchi and Parviainen [4] proved the C1,α-regularity of solutions to 
the inhomogeneous equation ∂tu − ΔN

p u = f(x, t). Our proof of Hölder gradient regularity for solutions of 
(1.1) is in particular inspired by the papers [25] and [4].

We point out that recently Fang and Zhang [19] proved the C1,α-regularity of solutions to the parabolic 
normalized p(x, t)-Laplace equation

∂tu = ΔN
p(x,t)u, (1.3)

where p ∈ C1
loc. The equation (1.3) naturally includes (1.1) if f ≡ 0. However, in this article we consider the 

inhomogeneous case and only suppose that p is Lipschitz continuous. More precisely, we have the following 
theorem.

Theorem 1.1. Suppose that p is Lipschitz continuous in B1, pmin > 1 and f ∈ C(B1) is bounded. Let u be a 
viscosity solution to

−ΔN
p(x)u = f(x) in B1.

Then there is α(N, pmin, pmax, pL) ∈ (0, 1) such that

‖u‖C1,α(B1/2) ≤ C(N, pmin, pmax, pL, ‖f‖L∞(B1) , ‖u‖L∞(B1)),

where pL is the Lipschitz constant of p.

The proof of Theorem 1.1 is based on suitable uniform C1,α-regularity estimates for solutions of the 
regularized equation
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−Δv − (pε(x) − 2)
〈
D2vDv,Dv

〉
|Dv|2 + ε2

= g(x), (1.4)

where it is assumed that g is continuous and pε is smooth. In particular, we show estimates that are 
independent of ε and only depend on N , sup p, inf p, ‖Dpε‖L∞ and ‖g‖L∞ . To prove such estimates, we 
first derive estimates for the perturbed homogeneous equation

−Δv − (pε(x) − 2)
〈
D2v(Dv + q), Dv + q

〉
|Dv + q|2 + ε2

= 0, (1.5)

where q ∈ RN . Roughly speaking, C1,α-estimates for solutions of (1.5) are based on “improvement of 
oscillation” which is obtained by differentiating the equation and observing that a function depending on 
the gradient of the solution is a supersolution to a linear equation. The uniform C1,α-estimates for solutions 
of (1.5) then yield uniform estimates for the inhomogeneous equation (1.4) by an adaption of the arguments 
in [24,4].

With the a priori regularity estimates at hand, the plan is to let ε → 0 and show that the estimates pass 
on to solutions of (1.1). A problem is caused by the fact that, to the best of our knowledge, uniqueness of 
solutions to (1.1) is an open problem for variable p(x) and even for constant p if f is allowed to change 
signs. To deal with this, we fix a solution u0 ∈ C(B1) to (1.1) and consider the Dirichlet problem

−ΔN
p(x)u = f(x) − u0(x) − u in B1 (1.6)

with boundary data u = u0 on ∂B1. For this equation the comparison principle holds and thus u0 is the 
unique solution. We then consider the approximate problem

−Δuε − (pε(x) − 2)
〈
D2uεDuε, Duε

〉
|Duε|2 + ε2

= fε(x) − u0,ε(x) − uε (1.7)

with boundary data uε = u0 on ∂B1 and where pε, fε, u0,ε ∈ C∞(B1) are such that p → pε, fε → f and 
u0,ε → u0 uniformly in B1 and ‖Dpε‖L∞(B1) ≤ ‖Dp‖L∞(B1). As the equation (1.7) is uniformly elliptic 
quasilinear equation with smooth coefficients, the solution uε exists in the classical sense by standard 
theory. Since uε also solves (1.4) with g(x) = fε(x) −u0,ε(x) −uε(x), it satisfies the uniform C1,α-regularity 
estimate. We then let ε → 0 and use stability and comparison principles to show that u0 inherits the 
regularity estimate.

For other related results, see for example the works of Attouchi, Parviainen and Ruosteenoja [5] on the 
normalized p-Poisson problem −ΔN

p u = f , Attouchi and Ruosteenoja [6–8] on the equation − |Du|γ ΔN
p u =

f and its parabolic version, De Filippis [15] on the double phase problem (|Du|q+a(x) |Du|s)F (D2u) = f(x)
and Fang and Zhang [20] on the parabolic double phase problem ∂tu = (|Du|q +a(x, t) |Du|s)ΔN

p u. We also 
mention the paper by Bronzi, Pimentel, Rampasso and Teixeira [10] where they consider fully nonlinear 
variable exponent equations of the type |Du|θ(x)

F (D2u) = 0.
The paper is organized as follows: Section 2 is dedicated to preliminaries, Sections 3 and 4 contain 

C1,α-regularity estimates for equations (1.5) and (1.7), and Section 5 contains the proof of Theorem (1.1). 
Finally, the Appendix contains an uniform Lipschitz estimate for the equations studied in this paper and a 
comparison principle for equation (1.6).
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2. Preliminaries

2.1. Notation

We denote by BR ⊂ RN an open ball of radius R > 0 that is centered at the origin in the N -dimensional 
Euclidean space, N ≥ 1. The set of symmetric N ×N matrices is denoted by SN . For X, Y ∈ SN , we write 
X ≤ Y if X − Y is negative semidefinite. We also denote the smallest eigenvalue of X by λmin(X) and the 
largest by λmax(X) and set

‖X‖ := sup
ξ∈B1

|Xξ| = sup {|λ| : λ is an eigenvalue of X} .

We use the notation C(a1, . . . , ak) to denote a constant C that may change from line to line but depends 
only on a1, . . . , ak. For convenience we often use C(p̂) to mean that the constant may depend on pmin, pmax
and the Lipschitz constant pL of p.

For α ∈ (0, 1), we denote by Cα(BR) the set of all functions u : BR → R with finite Hölder norm

‖u‖Cα(BR) := ‖u‖L∞(BR) + [u]Cα(BR) , where [u]Cα(BR) := sup
x,y∈BR

|u(x) − u(y)|
|x− y|α .

Similarly, we denote by C1,α(BR) the set of all functions for which the norm

‖u‖C1,α(BR) := ‖u‖Cα(BR) + ‖Du‖Cα(BR)

is finite.

2.2. Viscosity solutions

Viscosity solutions are defined using smooth test functions that touch the solution from above or below. 
If u, ϕ : RN → R and x ∈ RN are such that ϕ(x) = u(x) and ϕ(y) < u(y) for y 	= x0, then we say that ϕ
touches u from below at x0.

Definition 2.1. Let Ω ⊂ RN be a bounded domain. Suppose that f : Ω × R → R is continuous. A lower 
semicontinuous function u : Ω → R is a viscosity supersolution to

−ΔN
p(x)u ≥ f(x, u) in Ω

if the following holds: Whenever ϕ ∈ C2(Ω) touches u from below at x ∈ Ω and Dϕ(x) 	= 0, we have

−Δϕ(x) − (p(x) − 2)
〈
D2ϕ(x)Dϕ(x), Dϕ(x)

〉
|Dϕ(x)|2

≥ f(x, u(x))

and if Dϕ(x) = 0, then

−Δϕ(x) − (p(x) − 2)
〈
D2ϕ(x)η, η

〉
≥ f(x, u(x)) for some η ∈ B1.

Analogously, a lower semicontinuous function u : Ω → R is a viscosity subsolution if the above inequalities 
hold reversed whenever ϕ touches u from above. Finally, we say that u is a viscosity solution if it is both 
viscosity sub- and supersolution.
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Remark. The special treatment of the vanishing gradient in Definition 2.1 is needed because of the singularity 
of the equation. Definition 2.1 is essentially a relaxed version of the standard definition in [14] which is based 
on the so called semicontinuous envelopes. In the standard definition one would require that if ϕ touches a 
viscosity supersolution u from below at x, then

⎧⎪⎪⎨
⎪⎪⎩
−ΔN

p(x)ϕ(x) ≥ f(x, u(x)) if Dϕ(x) 	= 0,
−Δϕ(x) − (p(x) − 2)λmin(D2ϕ(x)) ≥ f(x, u(x)) if Dϕ(x) = 0 and p(x) ≥ 2,
−Δϕ(x) − (p(x) − 2)λmax(D2ϕ(x)) ≥ f(x, u(x)) if Dϕ(x) = 0 and p(x) < 2.

Clearly, if u is a viscosity supersolution in this sense, then it is also a viscosity supersolution in the sense of 
Definition 2.1.

3. Hölder gradient estimates for the regularized homogeneous equation

In this section we prove C1,α-regularity estimates for solutions to the equation

−Δu− (p(x) − 2)
〈
D2u(Du + q), Du + q

〉
|Du + q|2 + ε2

= 0 in B1, (3.1)

where p : B1 → R is Lipschitz, pmin > 1, ε > 0 and q ∈ RN . Our objective is to obtain estimates that 
are independent of q and ε. Observe that (3.1) is a uniformly elliptic quasilinear equation with smooth 
coefficients. Viscosity solutions to (3.1) can be defined in the standard way and they are smooth if p is 
smooth.

Proposition 3.1. Suppose that p is smooth. Let u be a viscosity solution to (3.1) in B1. Then u ∈ C∞(B1).

It follows from classical theory that the corresponding Dirichlet problem admits a smooth solution (see 
[21, Theorems 15.18 and 13.6] and the Schauder estimates [21, Theorem 6.17]). The viscosity solution u
coincides with the smooth solution by a comparison principle [26, Theorem 3].

3.1. Improvement of oscillation

Our regularity estimates for solutions of (3.1) are based on improvement of oscillation. We first prove 
such a result for the linear equation

−tr(G(x)D2u) = f in B1, (3.2)

where f ∈ C1(B1) is bounded, G(x) ∈ SN and there are constants 0 < λ < Λ < ∞ such that the eigenvalues 
of G(x) are in [λ, Λ] for all x ∈ B1. The result is based on the following rescaled version of the weak Harnack 
inequality found in [13, Theorem 4.8]. Such Harnack estimates for non-divergence form equations go back 
to at least Krylov and Safonov [28,29].

Lemma 3.2 (Weak Harnack inequality). Let u ≥ 0 be a continuous viscosity supersolution to (3.2) in B1. 
Then there are positive constants C(λ, Λ, N) and q(λ, Λ, N) such that for any τ < 1

4
√
N

we have

τ−
N
q

⎛
⎝∫
Bτ

|u|q dx

⎞
⎠

1/q

≤ C

⎛
⎜⎜⎝ inf

B2τ
u + τ

⎛
⎜⎝

∫
B4

√
Nτ

|f |N dx

⎞
⎟⎠

1/N
⎞
⎟⎟⎠ . (3.3)
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Proof. Suppose that τ < 1
4
√
N

and set S := 8τ . Define the function v : B√
N/2 → R by

v(x) := u(Sx)

and set

G̃(x) := G(Sx) and f̃(x) := S2f(Sx).

Then, if ϕ ∈ C2 touches v from below at x ∈ B√
N/2, the function φ(x) := ϕ(x/S) touches u from below at 

Sx. Therefore

−tr(G(Sx)D2φ(Sx)) ≥ f(Sx).

Since D2φ(Sx) = S−2D2ϕ(x), this implies that

−tr(G(Sx)D2ϕ(x)) ≥ S2f(Sx).

Thus v is a viscosity supersolution to

−tr(G̃(x)D2v) ≥ f̃(x) in B√
N/2.

We denote by QR a cube with side-length R/2. Since Q1 ⊂ B√
N/2, it follows from [13, Theorem 4.8] that 

there are q(λ, Λ, N) and C(λ, Λ, N) such that

⎛
⎜⎝
∫

B1/8

|v|q dx

⎞
⎟⎠

1/q

≤

⎛
⎜⎝
∫

Q1/4

|v|q dx

⎞
⎟⎠

1/q

≤ C

⎛
⎜⎝ inf

Q1/2
v +

⎛
⎝∫
Q1

|f̃ |N dx

⎞
⎠

1/N
⎞
⎟⎠

≤ C

⎛
⎜⎜⎝ inf

B1/4
v +

⎛
⎜⎝

∫
B√

N/2

|f̃ |N dx

⎞
⎟⎠

1/N
⎞
⎟⎟⎠ .

By the change of variables formula we have
∫

B1/8

|v|q dx =
∫

B1/8

|u(Sx)|q dx = S−N

∫
BS/8

|u(x)|q dx

and ∫
B√

N/2

|f̃ |N dx = S2N
∫

B√
N/2

|f(Sx)|N dx = SN

∫
BS

√
N/2

|f(x)|N dx.

Recalling that S = 8τ , we get

8−
N
q τ−

N
q

⎛
⎝∫
Bτ

|u(x)|q dx

⎞
⎠

1/q

≤ C

⎛
⎜⎜⎝ inf

B2τ
u + 8τ

⎛
⎜⎝

∫
BS

√
N/2

|f(x)|N dx

⎞
⎟⎠

1/N
⎞
⎟⎟⎠ .

Absorbing 8
N
q into the constant, we obtain the claim. �
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Lemma 3.3 (Improvement of oscillation for the linear equation). Let u ≥ 0 be a continuous viscosity su-
persolution to (3.2) in B1 and μ, l > 0. Then there are positive constants τ(λ, Λ, N, μ, l, ‖f‖L∞(B1)) and 
θ(λ, Λ, N, μ, l) such that if

|{x ∈ Bτ : u ≥ l}| > μ |Bτ | , (3.4)

then we have

u ≥ θ in Bτ .

Proof. By the weak Harnack inequality (Lemma 3.2) there exist constants C1(λ, Λ, N) and q(λ, Λ, N) such 
that for any τ < 1/(4

√
N), we have

inf
B2τ

u ≥ C1τ
−N
q

⎛
⎝∫
Bτ

|u|q dx

⎞
⎠

1/q

− τ

⎛
⎜⎝

∫
B4

√
Nτ

|f |N dx

⎞
⎟⎠

1/N

. (3.5)

In particular, this holds for

τ := min

⎛
⎝ 1

4
√
N

,

√√√√ C1 |B1|
1
q− 1

N μ
1
q l

2 · 4
√
N(‖f‖L∞(B1) + 1)

⎞
⎠ .

We continue the estimate (3.5) using the assumption (3.4) and obtain

inf
Bτ

u ≥ inf
B2τ

u ≥ C1τ
−N

q (|{x ∈ Bτ : u ≥ l}| lq)1/q − τ

⎛
⎜⎝

∫
B4

√
Nτ

|f |N dx

⎞
⎟⎠

1/N

≥ C1τ
−N

q μ
1
q |Bτ |

1
q l − τ

∣∣B4
√
Nτ

∣∣ 1
N ‖f‖L∞(B1)

= C1 |B1|
1
q μ

1
q lτ−

N
q τ

N
q − 4

√
N |B1|

1
N ‖f‖L∞(B1) τ

2

= C1 |B1|
1
q μ

1
q l − 4

√
N |B1|

1
N ‖f‖L∞(B1) τ

2.

≥ 1
2C1 |B1|

1
q μ

1
q l,

=: θ,

where the last inequality follows from the choice of τ . �
We are now ready to prove an improvement of oscillation for the gradient of a solution to (3.1). We first 

consider the following lemma, where the improvement is considered towards a fixed direction. We initially 
also restrict the range of |q|.

The idea is to differentiate the equation and observe that a suitable function of Du is a supersolution to 
the linear equation (3.2). Lemma 3.3 is then applied to obtain information about Du.

Lemma 3.4 (Improvement of oscillation to direction). Suppose that p is smooth. Let u be a smooth solution 
to (3.1) in B1 with |Du| ≤ 1 and either q = 0 or |q| > 2. Then for every 0 < l < 1 and μ > 0 there exist 
positive constants τ(N, p̂, l, μ) < 1 and γ(N, p̂, l, μ) < 1 such that
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|{x ∈ Bτ : Du · d ≤ l}| > μ |Bτ | implies Du · d ≤ γ in Bτ

whenever d ∈ ∂B1.

Proof. To simplify notation, we set

Aij(x, η) := δij + (p(x) − 2)(ηi + qi)(ηj + qj)
|η + q|2 + ε2

.

We also denote the functions Aij : x �→ Aij(x, Du(x)), Aij,xk
: x �→ (∂xk

Aij)(x, Du(x)) and Aij,ηk
: x �→

(∂ηk
Aij)(x, Du(x)). Then, since u is a smooth solution to (3.1) in B1, we have in Einstein’s summation 

convention

−Aijuij = 0 pointwise in B1.

Differentiating this yields

0 = (Aijuij)k = Aijuijk + (Aij)kuij

= Aijuijk + Aij,ηm
uijukm + Aij,xk

uij for all k = 1, . . . N. (3.6)

Multiplying these identities by dk and summing over k, we obtain

0 = Aijuijkdk + Aij,ηm
uijukmdk + Aij,xk

uijdk

= Aij(Du · d− l)ij + Aij,ηm
uij(Du · d− l)m + Aij,xk

uijdk. (3.7)

Moreover, multiplying (3.6) by 2uk and summing over k, we obtain

0 = 2Aijuijkuk + 2Aij,ηm
uijukmuk + 2Aij,xk

uijuk

= Aij(2uijkuk + 2ukjuki) − 2Aijukjuki + 2Aij,ηm
uijukmuk + 2Aij,xk

uijuk

= Aij(u2
k)ij − 2Aijukjuki + Aij,ηm

uij(u2
k)m + 2Aij,xk

uijuk

= Aij(|Du|2)ij + Aij,ηm
uij(|Du|2)m + 2Aij,xk

uijuk − 2Aijukjuki. (3.8)

We will now split the proof into the cases q = 0 or |q| > 2, and proceed in two steps: First we check that a 
suitable function of Du is a supersolution to the linear equation (3.3) and then apply Lemma 3.3 to obtain 
the claim.

Case q = 0, Step 1: We denote Ω+ := {x ∈ B1 : h(x) > 0}, where

h := (Du · d− l + l

2 |Du|2)+.

If |Du| ≤ l/2, we have

Du · d− l + l

2 |Du|2 ≤ − l

2 + l3

8 < 0.

This implies that |Du| > l/2 in Ω+. Therefore, since q = 0, we have in Ω+
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|Aij,ηm
| = |p(x) − 2|

∣∣∣∣∣
δim(uj + qj) + δjm(ui + qi)

|Du + q|2 + ε2
− 2(um + qm)(ui + qi)(uj + qj)

(|Du + q|2 + ε2)2

∣∣∣∣∣
≤ 8l−1 ‖p− 2‖L∞(B1) , (3.9)

|Aij,xk
| = |Dp(x)|

∣∣∣∣∣
(ηi + qi)(ηj + qj)

|η + q|2 + ε2

∣∣∣∣∣ ≤ pL. (3.10)

Summing up the equations (3.7) and (3.8) multiplied by 2−1l, we obtain in Ω+

0 = Aij(Du · d− l)ij + Aij,ηm
uij(Du · d− l)m + Aij,xk

uijdk

+ 2−1l
(
Aij(|Du|2)ij + Aij,ηm

uij(|Du|2)m + 2Aij,xk
uijuk − 2Aijukjuki

)
= Aijhij + Aij,ηm

uijhm + Aij,xk
uijdk + lAij,xk

uijuk − lAijukjuki

≤ Aijhij + |Aij,ηm
uij | |hm| + |Aij,xk

uij | |dk + luk| − lAijukjuki.

Since |Du| ≤ 1, we have |dk + luk|2 ≤ 4 and by uniform ellipticity Aijukjuki ≥ min(pmin − 1, 1) |uij |2. 
Therefore, by applying Young’s inequality with ε > 0, we obtain from the above display

0 ≤ Aijhij + N2ε−1(|hm|2 + |dk + luk|2) + ε(|Aij,ηm
|2 + |Aij,xk

|2) |uij |2 − lAijukjuki

≤ Aijhij + N2ε−1(|Dh|2 + 4) + εC(N, p̂)(l−2 + 1) |uij |2 − lmin(pmin − 1, 1) |uij |2 ,

where in the second estimate we used (3.9) and (3.10). By taking ε small enough, we obtain

0 ≤ Aijhij + C0(N, p̂) |Dh|2 + 1
l3

in Ω+. (3.11)

Next we define

h := 1
ν

(1 − eν(h−H)), where H := 1 − l

2 and ν := C0

l3 min(pmin − 1, 1) . (3.12)

Then by (3.11) and uniform ellipticity we have in Ω+

−Aijhij = Aij(hije
ν(h−H) + νhihje

ν(h−H))

≥ eν(h−H)(−C0
|Dh|2

l3
− C0

l3
+ ν min(pmin − 1, 1) |Dh|2)

≥ −C0

l3
.

Since the minimum of two viscosity supersolutions is still a viscosity supersolution, it follows from the above 
estimate that h is a non-negative viscosity supersolution to

−Aijhij ≥
−C0

l3
in B1. (3.13)

Case q = 0, Step 2: We set l0 := 1
ν (1 − eν(l−1)). Then, since h solves (3.13), by Lemma 3.3 there are 

positive constants τ(N, p, l, μ) and θ(N, p, l, μ) such that
∣∣{x ∈ Bτ : h ≥ l0

}∣∣ > μ |Bτ | implies h ≥ θ in Bτ .

If Du · d ≤ l, we have h ≥ l0 and therefore
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∣∣{x ∈ Bτ : h ≥ l0
}∣∣ ≥ |{x ∈ Bτ : Du · d ≤ l}| > μ |Bτ | ,

where the last inequality follows from the assumptions. Consequently, we obtain

h ≥ θ in Bτ .

Since h −H ≤ 0, by convexity we have H − h ≥ h. This together with the above estimate yields

1 − 2−1l − (Du · d− l + 2−1l |Du|2) ≥ θ in Bτ

and so

Du · d + 2−1l(Du · d)2 ≤ Du · d + 2−1l |Du|2 ≤ 1 + 2−1l − θ in Bτ .

Using the quadratic formula, we thus obtain the desired estimate

Du · d ≤ −1 +
√

1 + 2l(1 + 2−1l − θ)
l

=
−1 +

√
(1 + l)2 − 2lθ
l

=: γ < 1 in Bτ .

Case |q| > 2: Computing like in (3.9) and (3.10), we obtain this time in B1

|Aij,ηm
| ≤ 4 ‖p− 2‖L∞(B1) and |Aij,xk

| ≤ pL

Moreover, this time we set simply

h := Du · d− l + 2−1l |Du|2 .

Summing up the identities (3.7) and (3.8) and using Young’s inequality similarly as in the case |q| = 0, we 
obtain in B1

0 ≤ Aijhij + N2ε−1(|hm|2 + |dk + luk|2) + ε(|Aij,ηm
|2 + |Aij,xk

|2) |uij |2 − lAijukjuki

≤ Aijhij + N2ε−1(|Dh|2 + 4) + εC(p̂) |uij |2 − lC(p̂) |uij |2 .

By taking small enough ε, we obtain

0 ≤ Aijhij + C0(N, p̂) |Dh|2 + 1
l

in B1.

Next we define h and H like in (3.12), but set instead ν := C0/(lmin(pmin − 1, 1)). The rest of the proof 
then proceeds in the same way as in the case q = 0. �

Next we inductively apply the previous lemma to prove the improvement of oscillation.

Theorem 3.5 (Improvement of oscillation). Suppose that p is smooth. Let u be a smooth solution to (3.1)
in B1 with |Du| ≤ 1 and either q = 0 or |q| > 2. Then for every 0 < l < 1 and μ > 0 there exist positive 
constants τ(N, p̂, l, μ) < 1 and γ(N, p̂, l, μ) < 1 such that if

∣∣{x ∈ Bτ i+1 : Du · d ≤ lγi
}∣∣ > μ |Bτ i+1 | for all d ∈ ∂B1, i = 0, . . . , k, (3.14)

then

|Du| ≤ γi+1 in Bτ i+1 for all i = 0, . . . , k. (3.15)
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Proof. Let k ≥ 0 be an integer and suppose that (3.14) holds. We proceed by induction.

Initial step: Since (3.14) holds for i = 0, by Lemma 3.4 we have Du · d ≤ γ in Bτ for all d ∈ ∂B1. This 
implies (3.15) for i = 0.

Induction step: Suppose that 0 < i ≤ k and that (3.15) holds for i − 1. We define

v(x) := τ−iγ−iu(τ ix).

Then v solves

−Δv − (p(τ ix) − 2)
〈
D2v(Dv + γ−iq), Dv + γiq

〉
|Dv + γ−iq|2 + (γ−iε)2

= 0 in B1.

Moreover, by induction hypothesis |Dv(x)| = γ−i
∣∣Du(τ ix)

∣∣ ≤ γ−iγi = 1 in B1. Therefore by Lemma 3.4
we have that

|{x ∈ Bτ : Dv · d ≤ l}| > μ |Bτ | implies Dv · d ≤ γ in Bτ (3.16)

whenever d ∈ ∂B1. Since

|{x ∈ Bτ : Dv · d ≤ l}| > μ |Bτ | ⇐⇒
∣∣{x ∈ Bτ i+1 : Du · d ≤ lγi

}∣∣ > μ |Bτ i+1 | ,

we have by (3.14) and (3.16) that Dv · d ≤ γ in Bτ . This implies that Du · d ≤ γi+1 in Bτ i+1 . Since d ∈ ∂B1

was arbitrary, we obtain (3.15) for i. �
3.2. Hölder gradient estimates

In this section we apply the improvement of oscillation to prove C1,α-estimates for solutions to (3.1). We 
need the following regularity result by Savin [34].

Lemma 3.6. Suppose that p is smooth. Let u be a smooth solution to (3.1) in B1 with |Du| ≤ 1 and either 
q = 0 or |q| > 2. Then for any β > 0 there exist positive constants η(N, p̂, β) and C(N, p̂, β) such that if

|u− L| ≤ η in B1

for some affine function L satisfying 1/2 ≤ |DL| ≤ 1, then we have

|Du(x) −Du(0)| ≤ C |x|β for all x ∈ B1/2.

Proof. Set v := u − L. Then v solves

−Δu−
(p(x) − 2)

〈
D2u(Du + q + DL), Du + q + DL

〉
|Du + q + DL|2 + ε2

= 0 in B1. (3.17)

Observe that by the assumption 1/2 ≤ |DL| ≤ 1 we have |Du + q + DL| ≥ 1/4 if |Du| ≤ 1/4. It therefore 
follows from [34, Theorem 1.3] (see also [37]) that ‖v‖C2,β(B1/2) ≤ C which implies the claim. �

We also use the following simple consequence of Morrey’s inequality.
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Lemma 3.7. Let u : B1 → R be a smooth function with |Du| ≤ 1. For any θ > 0 there are constants 
ε1(N, θ), ε0(N, θ) < 1 such that if the condition

|{x ∈ B1 : |Du− d| > ε0}| ≤ ε1

is satisfied for some d ∈ SN−1, then there is a ∈ R such that

|u(x) − a− d · x| ≤ θ for all x ∈ B1/2.

Proof. By Morrey’s inequality (see for example [17, Theorem 4.10])

osc
x∈B1/2

(u(x) − d · x) = sup
x,y∈B1/2

|u(x) − d · x− u(y) + d · y|

≤ C(N)
(∫
B1

|Du− d|2N dx
) 1

2N

≤ C(N)(ε
1

2N
1 + ε0).

Therefore, denoting a := infx∈B1/2(u(x) − d · x), we have for any x ∈ B1/2

|u(x) − a− d · x| ≤ oscB1/2(u(x) − d · x) ≤ C(N)(ε
1

2N
1 + ε0) ≤ θ,

where the last inequality follows by taking small enough ε0 and ε1. �
We are now ready to prove a Hölder estimate for the gradient of solutions to (3.1). We first restrict the 

range of |q|.

Lemma 3.8. Suppose that p is smooth. Let u be a smooth solution to (3.1) in B1 with |Du| ≤ 1 and either 
q = 0 or |q| > 2. Then there exists a constant α(N, p̂) ∈ (0, 1) such that

‖Du‖Cα(B1/2) ≤ C(N, p̂).

Proof. For β = 1/2, let η > 0 be as in Lemma 3.6. For θ = η/2, let ε0, ε1 be as in Lemma 3.7. Set

l := 1 − ε2
0
2 and μ := ε1

|B1|
.

For these l and μ, let τ, γ ∈ (0, 1) be as in Theorem 3.5. Let k ≥ 0 be the minimum integer such that the 
condition (3.14) does not hold.

Case k = ∞: Theorem 3.5 implies that

|Du| ≤ γi+1 in Bτ i+1 for all i ≥ 0.

Let x ∈ Bτ \ {0}. Then τ i+1 ≤ |x| ≤ τ i for some i ≥ 0 and therefore

i ≤ log |x|
log τ ≤ i + 1.

We obtain
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|Du(x)| ≤ γi = 1
γ
γi+1 ≤ 1

γ
γ

log|x|
log τ = 1

γ
γ

log|x|
log γ · log γ

log τ =: C |x|α , (3.18)

where C = 1/γ and α = log γ/ log τ .
Case k < ∞: There is d ∈ ∂B1 such that

∣∣{x ∈ Bτk+1 : Du · d ≤ lγk
}∣∣ ≤ μ |Bτk+1 | . (3.19)

We set

v(x) := τ−k−1γ−ku(τk+1x).

Then v solves

−Δv − (p(τk+1x) − 2)
〈
D2v(Dv + γ−kq), Dv + γ−kq

〉
|Dv + γ−kq|2 + γ−2kε2

= 0 in B1

and by (3.19) we have

|{x ∈ B1 : Dv · d ≤ l}| =
∣∣{x ∈ B1 : Du(τk+1x) · d ≤ lγk

}∣∣
= τ−N(k+1) ∣∣{x ∈ Bτk+1 : Du(x) · d ≤ lγk

}∣∣
≤ τ−N(k+1)μ |Bτk+1 | = μ |B1| = ε1. (3.20)

Since either k = 0 or (3.14) holds for k − 1, it follows from Theorem 3.5 that |Du| ≤ γk in Bτk . Thus

|Dv(x)| = γ−k
∣∣Du(τk+1x)

∣∣ ≤ 1 in B1. (3.21)

For vectors ξ, d ∈ B1, it is easy to verify the following fact

|ξ − d| > ε0 =⇒ ξ · d ≤ 1 − ε2
0/2 = l.

Therefore, in view of (3.20) and (3.21), we obtain

|{x ∈ B1 : |Dv − d| > ε0}| ≤ ε1.

Thus by Lemma 3.7 there is a ∈ R such that

|v(x) − a− d · x| ≤ θ = η/2 for all x ∈ B1/2.

Consequently, by applying Lemma 3.6 on the function 2v(2−1x), we find a positive constant C(N, p̂) and 
e ∈ ∂B1 such that

|Dv(x) − e| ≤ C |x| in B1/4.

Since |Dv| ≤ 1, we have also

|Dv(x) − e| ≤ C |x| in B1.

Recalling the definition of v and taking α′ ∈ (0, 1) so small that γ/τα′
< 1 we obtain
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∣∣Du(x) − γke
∣∣ ≤ Cγkτ−k−1 |x| ≤ C

τα′

( γ

τα′

)k
|x|α

′
≤ C |x|α

′
in Bτk+1 , (3.22)

where we absorbed τα
′ into the constant. On the other hand, we have

|Du| ≤ γi+1 in Bτ i+1 for all i = 0, . . . , k − 1

so that, if τ i+2 ≤ |x| ≤ τ i+1 for some i ∈ {0, . . . , k − 1}, it holds that

∣∣Du(x) − γke
∣∣ ≤ 2γi+1 |x|

α′

|x|α′ ≤ 2
τα′

( γ

τα′

)i+1
|x|α

′
≤ C |x|α

′
.

Combining this with (3.22) we obtain

∣∣Du(x) − γke
∣∣ ≤ C |x|α

′
in Bτ . (3.23)

The claim now follows from (3.18) and (3.23) by standard translation arguments. �
Theorem 3.9. Let u be a bounded viscosity solution to (3.1) in B1 with q ∈ RN . Then

‖u‖C1,α(B1/2) ≤ C(N, p̂, ‖u‖L∞(B1)) (3.24)

for some α(N, p̂) ∈ (0, 1).

Proof. Suppose first that p is smooth. Let ν0(N, p̂, ‖u‖L∞(B1)) and C0(N, p̂, ‖u‖L∞(B1)) be as in the Lipschitz 
estimate (Theorem A.2 in the Appendix) and set

M := 2 max(ν0, C0).

If |q| > M , then by Theorem A.2 we have

|Du| ≤ C0 in B1/2.

We set ũ(x) := 2u(x/2)/C0. Then |Dũ| ≤ 1 in B1 and ũ solves

−Δũ− (p(x/2) − 2)
〈
D2ũ(Dũ + q/C0), Dũ + q/C0

〉
|Dũ + q/C0|2 + (ε/C0)2

= 0 in B1,

where q/C0 > 2. Thus by Theorem 3.8 we have

‖Dũ‖Cα(B1/2) ≤ C(N, p̂),

which implies (3.24) by standard translation arguments.
If |q| ≤ M , we define

w := u− q · x.

Then by Theorem A.2 we have

|Dw| ≤ C(N, p̂, ‖w‖ ∞ ) =: C ′(N, p̂, ‖u‖ ∞ ) in B1/2.
L (B1) L (B1)
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We set w̃(x) := 2w(x/2)/C ′. Then |Dw̃| ≤ 1 and so by Theorem 3.6 we have

‖Dw̃‖Cα(B1/2) ≤ C(N, p̂),

which again implies (3.24).
Suppose then that p is merely Lipschitz continuous. Take a sequence pj ∈ C∞(B1) such that pj → p

uniformly in B1 and ‖Dpj‖L∞(B1) ≤ ‖Dp‖L∞(B1). For r < 1, let uj be a solution to the Dirichlet problem

⎧⎨
⎩
−Δuj − (pj(x) − 2)

〈
D2u(Duj+q),Duj+q

〉
|Duj+q|2+ε2

= 0 in Br,

uj = u on Br.

As observed in Proposition 3.1, the solution exists and we have uj ∈ C∞(Br). By comparison principle 
‖uj‖L∞(Br) ≤ ‖u‖L∞(B1). Then by the first part of the proof we have the estimate

‖uj‖C1,β(Br/2) ≤ C(N, p̂, ‖u‖L∞(B1)).

By [13, Theorem 4.14] the functions uj are equicontinuous in B1 and so by the Ascoli-Arzela theorem we have 
uj → v uniformly in B1 up to a subsequence. Moreover, by the stability principle v is a solution to (3.1) in Br

and thus by comparison principle [27, Theorem 2.6] we have v ≡ u. By extracting a further subsequence, we 
may ensure that also Duj → Du uniformly in Br/2 and so the estimate ‖Du‖C1,β(Br/2) ≤ C(N, p̂, ‖u‖L∞(B1))
follows. �
4. Hölder gradient estimates for the regularized inhomogeneous equation

In this section we consider the inhomogeneous equation

−Δu− (p(x) − 2)
〈
D2u(Du + q), Du + q

〉
|Du + q|2 + ε2

= f(x) in B1, (4.1)

where p : B1 → R is Lipschitz continuous, pmin > 1, ε > 0, q ∈ RN and f ∈ C(B1) is bounded. We 
apply the C1,α-estimates obtained in Theorem 3.9 to prove regularity estimates for solutions of (4.1) with 
q = 0. Our arguments are similar to those in [4, Section 3], see also [24]. The idea is to use the well known 
characterization of C1,α-regularity via affine approximates. The following lemma plays a key role: It states 
that if f is small, then a solution to (4.1) can be approximated by an affine function. This combined with 
scaling properties of the equation essentially yields the desired affine functions.

Lemma 4.1. There exist constants ε(N, p̂), τ(N, p̂) ∈ (0, 1) such that the following holds: If ‖f‖L∞(B1) ≤ ε

and w is a viscosity solution to (4.1) in B1 with q ∈ RN , w(0) = 0 and oscB1 w ≤ 1, then there exists 
q′ ∈ RN such that

oscBτ
(w(x) − q′ · x) ≤ 1

2τ.

Moreover, we have |q′| ≤ C(N, p̂).

Proof. Suppose on the contrary that the claim does not hold. Then, for a fixed τ(N, p̂) that we will specify 
later, there exists a sequence of Lipschitz continuous functions pj : B1 → R such that

pmin ≤ inf
B

pj ≤ sup pj ≤ pmax and (pj)L ≤ pL,

1 B1
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functions fj ∈ C(B1) such that fj → 0 uniformly in B1, vectors qj ∈ RN and viscosity solutions wj to

−Δwj − (pj(x) − 2)
〈
D2wj(Dwj + qj), Dwj + qj

〉
|Dwj + qj |2 + ε2

= fj(x) in B1

such that wj(0) = 0, oscB1 wj ≤ 1 and

oscBτ
(wj(x) − q′ · x) > τ

2 for all q′ ∈ RN . (4.2)

By [13, Proposition 4.10], the functions wj are uniformly Hölder continuous in Br for any r ∈ (0, 1). 
Therefore by the Ascoli-Arzela theorem, we may extract a subsequence such that wj → w∞ and pj → p∞
uniformly in Br for any r ∈ (0, 1). Moreover, p∞ is pL-Lipschitz continuous and pmin ≤ p∞ ≤ pmax. It then 
follows from (4.2) that

oscBτ
(w∞(x) − q′ · x) > τ

2 for all q′ ∈ RN . (4.3)

We have two cases: either qj is bounded or unbounded.
Case qj is bounded: In this case qj → q∞ ∈ RN up to a subsequence. It follows from the stability principle 

that w∞ is a viscosity solution to

−Δw∞ − (p∞(x) − 2)
〈
D2w∞(Dw∞ + q∞), Dw∞ + q∞

〉
|Dw∞ + q∞|2 + ε2

= 0 in B1. (4.4)

Hence by Theorem 3.9 we have ‖Dw∞‖Cβ1 (B1/2) ≤ C(N, p̂) for some β1(N, p̂). The mean value theorem 

then implies the existence of q′ ∈ RN such that

oscBr
(u− q′ · x) ≤ C1(N, p̂)r1+β1 for all r ≤ 1

2 .

Case qj is unbounded: In this case we take a subsequence such that |qj | → ∞ and the sequence dj :=
dj/ |dj | converges to d∞ ∈ ∂B1. Then wj is a viscosity solution to

−Δwj − (pj(x) − 2)
〈
D2wj(|qj |−1Dwj + dj), |qj |−1Dwj + dj

〉
∣∣∣|qj |−1

Dwj + dj

∣∣∣2 + |qj |−2
ε2

= fj(x) in B1.

It follows from the stability principle that w∞ is a viscosity solution to

−Δwj − (p∞(x) − 2)
〈
D2w∞d∞, d∞

〉
= 0 in B1.

By [13, Theorem 8.3] there exist positive constants β2(N, p̂), C2(N, p̂), r2(N, p̂) and a vector q′ ∈ RN such 
that

oscBr
(w∞ − q′ · x) ≤ C2r

1+β2 for all r ≤ r2.

We set C0 := max(C1, C2) and β0 := min(β1, β2). Then by the two different cases there always exists a 
vector q′ ∈ RN such that

oscBr
(w∞ − q′ · x) ≤ C0r

1+β0 for all r ≤ min(1
, r2).
2
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We take τ so small that C0τ
β0 ≤ 1

4 and τ ≤ min(1
2 , r2). Then, by substituting r = τ in the above display, 

we obtain

oscBτ
(w∞ − q′ · x) ≤ C0τ

β0τ ≤ 1
4τ, (4.5)

which contradicts (4.3).
The bound |q′| ≤ C(N, p̂) follows by observing that (4.5) together with the assumption oscB1 w ≤ 1

yields |q′| ≤ C. Thus the contradiction is still there even if (4.3) is weakened by requiring additionally that 
|q′| ≤ C. �
Lemma 4.2. Let τ(N, p̂) and ε(N, p̂) be as in Lemma 4.1. If ‖f‖L∞(B1) ≤ ε and u is a viscosity solution to 
(4.1) in B1 with q = 0, u(0) = 0 and oscB1 u ≤ 1, then there exists α ∈ (0, 1) and q∞ ∈ RN such that

sup
B

τk

|u(x) − q∞ · x| ≤ C(N, p̂)τk(1+α) for all k ∈ N.

Proof. Step 1: We show that there exists a sequence (qk)∞k=0 ⊂ RN such that

oscB
τk

(u(x) − qk · x) ≤ τk(1+α). (4.6)

When k = 0, this estimate holds by setting q0 = 0 since u(0) = 0 and oscB1 ≤ 1. Next we take α ∈ (0, 1)
such that τα > 1

2 . We assume that k ≥ 0 and that we have already constructed qk for which (4.6) holds. 
We set

wk(x) := τ−k(1+α)(u(τkx) − qk · (τkx))

and

fk(x) := τk(1−α)f(τkx).

Then by induction assumption oscB1(wk) ≤ 1 and wk is a viscosity solution to

−Δwk −
(p(τkx) − 2)

〈
D2wk(Dwk + τ−kαqk), Dwk + τ−kαqk

〉
|Dwk + τ−kαqk|2 + (τ−kαε)2

= fk(x) in B1.

By Lemma 4.1 there exists q′k ∈ RN with |q′k| ≤ C(N, p̂) such that

oscBτ
(wk(x) − q′k · x) ≤ 1

2τ.

Using the definition of wk, scaling to Bτk+1 and dividing by τ−k(α+1), we obtain from the above

oscB
τk+1 (u(x) − (qk + τkαq′k) · x) ≤ 1

2τ
1+k(1+α) ≤ τ (k+1)(1+α).

Denoting qk+1 := qk + τkαq′k, the above estimate is condition (4.6) for k + 1 and the induction step is 
complete.

Step 2: Observe that whenever m > k, we have

|qm − qk| ≤
m−1∑

τ iα |q′i| ≤ C(N, p̂)
m−1∑

τ iα.

i=k i=k
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Therefore qk is a Cauchy sequence and converges to some q∞ ∈ RN . Thus

sup
x∈B

τk

(qk · x− q∞ · x) ≤ τk |qk − q∞| ≤ τk
∞∑
i=k

τ iαq′i ≤ C(N, p̂)τk(1+α).

This with (4.6) implies that

sup
x∈B

τk

|u(x) − q∞ · x| ≤ C(N, p̂)τk(1+α). �

Theorem 4.3. Suppose that u is a viscosity solution to (4.1) in B1 with q = 0 and oscB1 ≤ 1. Then there 
are constants α(N, p̂) and C(N, p̂, ‖f‖L∞(B1)) such that

‖u‖C1,α(B1/2) ≤ C.

Proof. Let ε(N, p̂) and τ(N, p̂) be as in Lemma 4.2. Set

v(x) := κu(x/4)

where κ := ε(1 + ‖f‖L∞(B1))
−1. For x0 ∈ B1, set

w(x) := v(x + x0) − v(x0).

Then oscB1 w ≤ 1, w(0) = 0 and w is a viscosity solution to

−Δw −
(p(x/4 + x0/4) − 2)

〈
D2wDw,Dw

〉
|Dw|2 + ε2κ2/42

= g(x) in B1,

where g(x) := κf(x/4 +x0/4)/42. Now ‖g‖L∞(B1) ≤ ε so by Lemma 4.2 there exists q∞(x0) ∈ RN such that

sup
x∈B

τk

|w(x) − q∞(x0) · x| ≤ C(N, p̂)τk(1+α) for all k ∈ N.

Thus we have shown that for any x0 ∈ B1 there exists a vector q∞(x0) such that

sup
x∈Br(x0)

|v(x) − v(x0) − q∞(x0) · (x− x0)| ≤ C(N, p̂)r1+α for all r ∈ (0, 1].

This together with a standard argument (see for example [4, Lemma A.1]) implies that [Dv]Cα(B1) ≤ C(N, p̂)
and so by definition of v, also [Du]Cα(B1/4) ≤ C(N, p̂, ‖f‖L∞(B1)). The conclusion of the theorem then follows 
by a standard translation argument. �
5. Proof of the main theorem

In this section we finish the proof our main theorem.

Proof of Theorem 1.1. We may assume that u ∈ C(B1). By Comparison Principle (Lemma B.2 in the 
Appendix) u is the unique viscosity solution to

⎧⎨
⎩
−Δv − (p(x)−2)

〈
D2vDv,Dv

〉
|Dv|2 = f(x) + u− v in B1,

v = u on ∂B1.
(5.1)
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By [21, Theorem 15.18] there exists a classical solution uε to the approximate problem

⎧⎨
⎩
−Δuε − (pε(x)−2)

〈
D2uεDuε,Duε

〉
|Duε|2+ε2

= fε(x) + u− uε in B1,

uε = u on ∂B1,

where pε, fε, uε ∈ C∞(B1) are such that pε → p, fε → f and uε → u0 uniformly in B1 as ε → 0 and 
‖Dpε‖L∞(B1) ≤ ‖Dp‖L∞(B1). The maximum principle implies that ‖uε‖L∞(B1) ≤ 2 ‖f‖L∞(B1)+2 ‖u‖L∞(B1). 
By [13, Proposition 4.14] the solutions uε are equicontinuous in B1 (their modulus of continuity depends 
only on N , p, ‖f‖L∞(B1), ‖u‖L∞(B1) and modulus of continuity of u). Therefore by the Ascoli-Arzela theorem 

we have uε → v ∈ C(B1) uniformly in B1 up to a subsequence. By the stability principle, v is a viscosity 
solution to (5.1) and thus by uniqueness v ≡ u.

By Corollary 4.3 we have α(N, p̂) such that

‖Duε‖Cα(B1/2) ≤ C(N, p̂, ‖f‖L∞(B1) , ‖u‖L∞(B1)) (5.2)

and by the Lipschitz estimate A.2 also

‖Duε‖L∞(B1/2) ≤ C(N, p̂, ‖f‖L∞(B1) , ‖u‖L∞(B1)).

Therefore by the Ascoli-Arzela theorem there exists a subsequence such that Duε → η uniformly in B1/2, 
where the function η : B1/2 → RN satisfies

‖η‖Cα(B1/2) ≤ C(N, p̂, ‖f‖L∞(B1) , ‖u‖L∞(B1)).

Using the mean value theorem and the estimate (5.2), we deduce for all x, y ∈ B1/2

|u(y) − u(x) − (y − x) · η(x)|

≤ |uε(x) − uε(y) − (y − x) ·Duε(x)|

+ |u(y) − uε(y) − u(x) + uε(x)| + |x− y| |η(x) −Duε(x)|

≤ C(N, p̂, ‖u‖L∞(B1)) |x− y|1+α + o(ε)/ε.

Letting ε → 0, this implies that Du(x) = η(x) for all x ∈ B1/2. �
Appendix A. Lipschitz estimate

In this section we apply the method of Ishii and Lions [23] to prove a Lipschitz estimate for solutions to 
the inhomogeneous normalized p(x)-Laplace equation and its regularized or perturbed versions. We need 
the following vector inequality.

Lemma A.1. Let a, b ∈ RN \ {0} with a 	= b and ε ≥ 0. Then

∣∣∣∣∣∣
a√

|a|2 + ε2
− b√

|b|2 + ε2

∣∣∣∣∣∣ ≤
2

max (|a| , |b|) |a− b| .
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Proof. We may suppose that |a| = max(|a| , |b|). Let s1 :=
√
|a|2 + ε2 and s2 :=

√
|b|2 + ε2. Then

∣∣∣∣ as1
− b

s2

∣∣∣∣ = 1
s1

∣∣∣∣a− b + b

s2
(s2 − s1)

∣∣∣∣ ≤ 1
s1

(|a− b| + |b|
s2

|s2 − s1|)

≤ 1
|a| (|a− b| + |s2 − s1|).

Moreover

|s2 − s1| =
∣∣∣∣
√
|a|2 + ε2 −

√
|b|2 + ε2

∣∣∣∣ =

∣∣∣|a|2 − |b|2
∣∣∣√

|a|2 + ε2 +
√

|b|2 + ε2

≤ (|a| + |b|) ||a| − |b||
|a| + |b| ≤ |a− b| . �

Theorem A.2 (Lipschitz estimate). Suppose that p : B1 → R is Lipschitz continuous, pmin > 1 and that 
f ∈ C(B1) is bounded. Let u be a viscosity solution to

−Δu− (p(x) − 2)
〈
D2u(Du + q), Du + q

〉
|Du + q|2 + ε2

= f(x) in B1,

where ε ≥ 0 and q ∈ RN . Then there are constants C0(N, p̂, ‖u‖L∞(B1) , ‖f‖L∞(B1)) and ν0(N, p̂) such that 
if |q| > ν0 or |q| = 0, then we have

|u(x) − u(y)| ≤ C0 |x− y| for all x, y ∈ B1/2.

Proof. We let r(N, p̂) ∈ (0, 1/2) denote a small constant that will be specified later. Let x0, y0 ∈ Br/2 and 
define the function

Ψ(x, y) := u(x) − u(y) − Lϕ(|x− y|) − M

2 |x− x0|2 −
M

2 |y − y0|2 ,

where ϕ : [0, 2] → R is given by

ϕ(s) := s− sγκ0, κ0 := 1
γ2γ+1 ,

and the constants L(N, p̂, ‖u‖L∞(B1)), M(N, p̂, ‖u‖L∞(B1)) > 0 and γ(N, p̂) ∈ (1, 2) are also specified later. 
Our objective is to show that for a suitable choice of these constants, the function Ψ is non-positive in 
Br ×Br. By the definition of ϕ, this yields u(x0) − u(y0) ≤ L |x0 − y0| which implies that u is L-Lipschitz 
in Br. The claim of the theorem then follows by standard translation arguments.

Suppose on contrary that Ψ has a positive maximum at some point (x̂, ŷ) ∈ Br × Br. Then x̂ 	= ŷ since 
otherwise the maximum would be non-positive. We have

0 < u(x̂) − u(ŷ) − Lϕ(|x̂− ŷ|) − M

2 |x̂− x0|2 −
M

2 |ŷ − y0|2

≤ |u(x̂) − u(ŷ)| − M

2 |x̂− x0|2 . (A.1)

Therefore, by taking

M := 8 oscB1 u, (A.2)

r2
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we get

|x̂− x0| ≤
√

2
M

|u(x̂) − u(ŷ)| ≤ r/2

and similarly |ŷ − y0| ≤ r/2. Since x0, y0 ∈ Br/2, this implies that x̂, ŷ ∈ Br.
By [13, Proposition 4.10] there exist constants C ′(N, p̂, ‖u‖L∞(B1) , ‖f‖L∞(B1)) and β(N, p̂) ∈ (0, 1) such 

that

|u(x) − u(y)| ≤ C ′ |x− y|β for all x, y ∈ Br. (A.3)

It follows from (A.1) and (A.3) that for C0 :=
√

2C ′
√
M we have

M |x̂− x0| ≤ C0 |x̂− ŷ|β/2 ,

M |ŷ − y0| ≤ C0 |x̂− ŷ|β/2 . (A.4)

Since x̂ 	= ŷ, the function (x, y) �→ ϕ(|x− y|) is C2 in a neighborhood of (x̂, ŷ) and we may invoke the 
Theorem of sums [14, Theorem 3.2]. For any μ > 0 there exist matrices X, Y ∈ SN such that

(Dx(Lϕ(|x− y|))(x̂, ŷ), X) ∈ J
2,+(u− M

2 |x− x0|2)(x̂),

(−Dy(Lϕ(|x− y|))(x̂, ŷ), Y ) ∈ J
2,−(u + M

2 |y − y0|2)(ŷ),

which by denoting z := x̂− ŷ and

a := Lϕ′(|z|) z

|z| + M(x̂− x0),

b := Lϕ′(|z|) z

|z| −M(ŷ − y0),

can be written as

(a,X + MI) ∈ J
2,+

u(x̂), (b, Y −MI) ∈ J
2,−

u(ŷ). (A.5)

By assuming that L is large enough depending on C0, we have by (A.4) and the fact ϕ′ ∈
[3

4 , 1
]

|a| , |b| ≤ L |ϕ′(|x̂− ŷ|)| + C0 |x̂− ŷ|β/2 ≤ 2L, (A.6)

|a| , |b| ≥ L |ϕ′(|x̂− ŷ|)| − C0 |x̂− ŷ|β/2 ≥ 1
2L. (A.7)

Moreover, we have

−(μ + 2 ‖B‖)
(
I 0
0 I

)
≤
(
X 0
0 −Y

)

≤
(

B −B
−B B

)
+ 2

μ

(
B2 −B2

−B2 B2

)
, (A.8)

where
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B = Lϕ′′(|z|) z

|z| ⊗
z

|z| + Lϕ′(|z|)
|z|

(
I − z

|z| ⊗
z

|z|

)
,

B2 = BB = L2(ϕ′′(|z|))2 z

|z| ⊗
z

|z| + L2(ϕ′(|z|))2

|z|2
(
I − z

|z| ⊗
z

|z|

)
.

Using that ϕ′′(|z|) < 0 < ϕ′(|z|) and |ϕ′′(|z|)| ≤ ϕ′(|z|)/ |z|, we deduce that

‖B‖ ≤ Lϕ′(|z|)
|z| and

∥∥B2∥∥ ≤ L2(ϕ′(|z|))2

|z|2
. (A.9)

Moreover, choosing

μ := 4L
(
|ϕ′′(|z|)| + |ϕ′(|z|)|

|z|

)
,

and using that ϕ′′(|z|) < 0, we have
〈
B

z

|z| ,
z

|z|

〉
+ 2

μ

〈
B2 z

|z| ,
z

|z|

〉
= Lϕ′′(|z|) + 2

μ
L2 |ϕ′′(|z|)| ≤ L

2 ϕ
′′(|z|). (A.10)

We set η1 := a + q and η2 := b + q. By (A.6) and (A.7) there is a constant ν0(L) such that if |q| = 0 or 
|q| > ν0, then

|η1| , |η2| ≥
L

2 . (A.11)

We denote A(x, η) := I + (p(x) − 2)η ⊗ η and η := η√
|η|2+ε2

. Since u is a viscosity solution, we obtain from 

(A.5)

0 ≤ tr(A(x̂, η1)(X + MI)) − tr(A(ŷ, η2)(Y −MI)) + f(x̂) − f(ŷ)

= tr(A(ŷ, η2)(X − Y )) + tr((A(x̂, η2) −A(ŷ, η2))X)

+ tr((A(x̂, η1) −A(x̂, η2))X) + Mtr(A(x̂, η1) + A(ŷ, η2))

+ f(x̂) − f(ŷ)

=: T1 + T2 + T3 + T4 + T5. (A.12)

We will now proceed to estimate these terms. The plan is to obtain a contradiction by absorbing the other 
terms into T1 which is negative by concavity of ϕ.

Estimate of T1: Multiplying (A.8) by the vector ( z
|z| , −

z
|z| ) and using (A.10), we obtain an estimate for 

the smallest eigenvalue of X − Y

λmin(X − Y ) ≤
〈

(X − Y ) z

|z| ,
z

|z|

〉

≤ 4
〈
B

z

|z| ,
z

|z|

〉
+ 8

μ

〈
B2 z

|z| ,
z

|z|

〉
≤ 2Lϕ′′(|z|).

The eigenvalues of A(ŷ, η2) are between min(1, pmin − 1) and max(1, pmax − 1). Therefore by [36]

T1 = tr(A(ŷ, η2)(X − Y )) ≤
∑
i

λi(A(ŷ, η2))λi(X − Y )

≤ min(1, pmin − 1)λmin(X − Y )
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≤ C(p̂)Lϕ′′(|z|).

Estimate of T2: We have

T2 = tr((A(x̂, η2) −A(ŷ, η2))X) ≤ |p(x̂) − p(ŷ)| |〈Xη2, η2〉| ≤ C(p̂) |z| ‖X‖ ,

where by (A.8) and (A.9)

‖X‖ ≤ ‖B‖ + 2
μ
‖B‖2 ≤ L |ϕ′(|z|)|

|z| + 2L2(ϕ′(|z|))2

4L(|ϕ′′(|z|)| + |ϕ′(|z|)|
|z| ) |z|2

≤ 2Lϕ′(|z|)
|z| . (A.13)

Estimate of T3: From Lemma A.1 and the estimate (A.11) it follows that

|η1 − η2| ≤
2 |η1 − η2|

max(|η1| , |η2|)
≤ 4

L
|η1 − η2| = 4

L
|a− b|

≤ 4
L

(M |x̂− x0| + M |ŷ − y0|) ≤
8C0

L
|z|β/2 , (A.14)

where in the last inequality we used (A.4). Observe that

‖η1 ⊗ η1 − η2 ⊗ η2‖ = ‖(η1 − η2) ⊗ η1 − η2 ⊗ (η2 − η1)‖ ≤ (|η1| + |η2|) |η1 − η2| .

Using the last two displays, we obtain by [36] and (A.13)

T3 = tr((A(x̂, η1) −A(x̂, η2))X) ≤ N ‖A(x1, η1) −A(x1, η2)‖ ‖X‖
≤ N |p(x1) − 2| (|η1| + |η2|) |η1 − η2| ‖X‖

≤ C(N, p̂)C0

L
|z|β/2 ‖X‖

≤ C(N, p̂, ‖u‖L∞ , ‖f‖L∞)
√
Mϕ′(|z|) |z|β/2−1

.

Estimate of T4 and T5: By Lipschitz continuity of p we have

T4 = Mtr(A(x̂, η1) + A(ŷ, η2)) ≤ 2MC(N, p̂).

We have also

T5 = f(x̂) − f(ŷ) ≤ 2 ‖f‖L∞(B1) .

Combining the estimates, we deduce the existence of positive constants C1(N, p̂) and C2(N, p̂, ‖u‖L∞(B1) ,

‖f‖L∞(B1)) such that

0 ≤ C1Lϕ
′′(|z|) + C2

(
Lϕ′(|z|) +

√
Mϕ′(|z|) |z|

β
2 −1 + M + 1

)
≤ C1Lϕ

′′(|z|) + C2(L +
√
M |z|

β
2 −1 + M + 1) (A.15)

where we used that ϕ′(|z|) ∈ [ 3 , 1]. We take γ := β + 1 so that we have
4 2
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ϕ′′(|z|) = 1 − γ

2γ+1 |z|γ−2 = −β

2 β
2 +3

|z|
β
2 −1 =: −C3 |z|

β
2 −1

.

We apply this to (A.15) and obtain

0 ≤ (C2
√
M − C1C3L) |z|

β
2 −1 + C2(L + M + 1) (A.16)

We fix r := 1
2

(
6C2
C1C3

) 1
β
2 −1 . By (A.2) this will also fix M = (N, p̂, ‖u‖L∞(B1)). We take L so large that

L > max(2C2
√
M

C1C3
,M + 1).

Then by (A.16) we have

0 < −1
2C1C3L |z|

β
2 −1 + 2C2L ≤ L(−1

2C1C3(2r)
β
2 −1 + 2C2)

= −LC2 ≤ 0,

which is a contradiction. �
Appendix B. Stability and comparison principles

Lemma B.1. Suppose that p ∈ C(B1), pmin > 1 and that f : B1 ×R → R is continuous. Let uε be a viscosity 
solution to

−Δuε − (pε(x) − 2)
〈
D2uεDuε, Duε

〉
|Duε|2 + ε2

= fε(x, u(x)) in B1

and assume that uε → u ∈ C(B1), pε → p and fε → f locally uniformly as ε → 0. Then u is a viscosity 
solution to

−Δu− (p(x) − 2)
〈
D2uDu,Du

〉
|Du|2

= f(x, u(x)) in B1.

Proof. It is enough to consider supersolutions. Suppose that ϕ ∈ C2 touches u from below at x. Since 
uε → u locally uniformly, there exists a sequence xε → x such that uε − ϕ has a local minimum at xε. We 

denote ηε := Dϕ(xε)/
√

|Dϕ(xε)|2 + ε2. Then ηε → η ∈ B1 up to a subsequence. Therefore we have

0 ≤ −Δϕ(xε) − (pε(xε) − 2)
〈
D2ϕ(xε)ηε, ηε

〉
− fε(xε, uε(xε))

→ −Δϕ(x) − (p(x) − 2)
〈
D2ϕ(xε)η, η

〉
− f(x, u(x)), (B.1)

which is what is required in Definition 2.1 in the case Dϕ(x) = 0. If Dϕ(x) 	= 0, then Dϕ(xε) 	= 0 when ε
is small and thus η = Dϕ(x)/ |Dϕ(x)|. Therefore B.1 again implies the desired inequality. �
Lemma B.2. Suppose that p : B1 → R is Lipschitz continuous, pmin > 1 and that f ∈ C(B1) is bounded. 
Assume that u ∈ C(B1) is a viscosity subsolution to −ΔN

p(x)u ≤ f − u in B1 and that v ∈ C(B1) is a 
viscosity supersolution to −ΔN

p(x)v ≥ f − v in B1. Then

u ≤ v on ∂B1
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implies

u ≤ v in B1.

Proof. Step 1: Assume on the contrary that the maximum of u − v in B1 is positive. For x, y ∈ B1, set

Ψj(x, y) := u(x) − v(y) − ϕj(x, y),

where ϕj(x, y) := j
4 |x− y|4. Let (xj , yj) be a global maximum point of Ψj in B1 ×B1. Then

u(xj) − v(yj) −
j

4 |xj − yj |4 ≥ u(0) − v(0)

so that

j

4 |xj − yj |4 ≤ 2 ‖u‖L∞(B1) + 2 ‖v‖L∞(B1) < ∞.

By compactness and the assumption u ≤ v on ∂B1 there exists a subsequence such that xj , yj → x̂ ∈ B1
and u(x̂) − v(x̂) > 0. Finally, since (xj , yj) is a maximum point of Ψj , we have

u(xj) − v(xj) ≤ u(xj) − v(yj) −
j

4 |xj − yj |4 ,

and hence by continuity

j

4 |xj − yj |4 ≤ v(xj) − v(yj) → 0 (B.2)

as j → ∞.
Step 2: If xj = yj , then D2

xϕj(xj , yj) = D2
yϕj(xj , yj) = 0. Therefore, since the function x �→ u(x) −

ϕj(x, yj) reaches its maximum at xj and y �→ v(y) − (−ϕj(xj , y)) reaches its minimum at yj , we obtain 
from the definition of viscosity sub- and supersolutions that

0 ≤ f(xj) − u(xj) and 0 ≥ f(yj) − v(yj).

That is 0 ≤ f(xj) −f(yj) +v(yj) −u(xj), which leads to a contradiction since xj , yj → x̂ and v(x̂) −u(x̂) < 0. 
We conclude that xj 	= yj for all large j. Next we apply the Theorem of sums [14, Theorem 3.2] to obtain 
matrices X, Y ∈ SN such that

(Dxϕ(xj , yj), X) ∈ J
2,+

u(xj), (−Dyϕ(xj , yj), Y ) ∈ J
2,−

v(yj)

and
(
X 0
0 −Y

)
≤ D2ϕ(xj , yj) + 1

j
(D2(xj , yj))2, (B.3)

where

D2(xj , yj) =
(

M −M
−M M

)

with M = j(2(xj −yj) ⊗ (xj −yj) + |xj − yj |2 I). Multiplying the matrix inequality (B.3) by the R2N vector 
(ξ1, ξ2) yields
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〈Xξ1, ξ1〉 − 〈Y ξ2, ξ2〉 ≤
〈
(M + 2j−1M2)(ξ1 − ξ2), ξ1 − ξ2

〉
≤ (‖M‖ + 2j−1 ‖M‖2) |ξ1 − ξ2|2 .

Observe also that η := Dxϕ(xj , yj) = −Dy(xj , yj) = j |xj − yj |2 (xj − yj) 	= 0 for all large j. Since u is a 
subsolution and v is a supersolution, we thus obtain

f(yj) − f(xj) + u(xj) − v(yj)

≤ tr(X − Y ) + (p(xj) − 2)
〈
X

η

|η| ,
η

|η|

〉
− (p(yj) − 2)

〈
Y

η

|η| ,
η

|η|

〉

≤ (p(xj) − 1)
〈
X

η

|η| ,
η

|η|

〉
− (p(yj) − 1)

〈
Y

η

|η| ,
η

|η|

〉

≤ (‖M‖ + 2j−1 ‖M‖2)
∣∣∣
√
p(xj) − 1 −

√
p(yj) − 1

∣∣∣2

≤ Cj |xj − yj |2
|p(xj) − p(yj)|2(√

p(xj) − 1 +
√
p(yj) − 1

)2

≤ C(p̂)j |xj − yj |4 .

This leads to a contradiction since the left-hand side tends to u(x̂) − v(ŷ) > 0 and the right-hand side tends 
to zero by (B.2). �
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