Hölder gradient regularity for the inhomogeneous normalized $p(x)$-Laplace equation

Regular Articles

Hölder gradient regularity for the inhomogeneous normalized $p(x)$-Laplace equation

Jarkko Siltakoski

Department of Mathematics and Statistics, P.O.Box 35, FIN-40014, University of Jyväskylä, Finland

Article history:
Received 2 January 2022
Available online 23 March 2022
Submitted by A. Cianchi

Keywords:
Non-divergence form equation
Normalized equation
p-Laplace
Hölder gradient regularity
Viscosity solution
Inhomogeneous equation

Abstract

We prove the local gradient Hölder regularity of viscosity solutions to the inhomogeneous normalized $p(x)$-Laplace equation

$$-\Delta^N_{p(x)} u = f(x),$$

where p is Lipschitz continuous, $\inf p > 1$, and f is continuous and bounded.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

We study the inhomogeneous normalized $p(x)$-Laplace equation

$$-\Delta^N_{p(x)} u = f(x) \quad \text{in } B_1, \quad (1.1)$$

where

$$-\Delta^N_{p(x)} u := -\Delta u - (p(x) - 2) \frac{\langle D^2 u Du, Du \rangle}{|Du|^2}$$

is the normalized $p(x)$-Laplacian, $p : B_1 \to \mathbb{R}$ is Lipschitz continuous, $1 < p_{\text{min}} := \inf_{B_1} p \leq \sup_{B_1} p =: p_{\text{max}}$ and $f \in C(B_1)$ is bounded. Our main result is that viscosity solutions to (1.1) are locally $C^{1,\alpha}$-regular.

Normalized equations have attracted a significant amount of interest during the last 15 years. Their study is partially motivated by their connection to game theory. Roughly speaking, the value function of certain stochastic tug-of-war games converges uniformly up to a subsequence to a viscosity solution of a normalized equation as the step-size of the game approaches zero [32,30,31,9,11]. In particular, a game with
space-dependent probabilities leads to the normalized \(p(x) \)-Laplace equation \([3]\) and games with running pay-offs lead to inhomogeneous equations \([33]\). In addition to game theory, normalized equations have been studied for example in the context of image processing \([16,18]\).

The variable \(p(x) \) in (1.1) has an effect that may not be immediately obvious: If we formally multiply the equation by \(|Du|^{p(x)-2}\) and rewrite it in a divergence form, then a logarithm term appears and we arrive at the expression

\[
- \text{div}(|Du|^{p(x)-2} Du) + |Du|^{p(x)-2} \log(|Du|) Du \cdot Dp = |Du|^{p(x)-2} f(x).
\]

(1.2)

For \(f \equiv 0 \), this is the so-called \textit{strong} \(p(x) \)-\textit{Laplace equation} introduced by Adamowicz and Hästö \([1,2]\) in connection with mappings of finite distortion. In the homogeneous case viscosity solutions to (1.1) actually coincide with weak solutions of (1.2) \([35]\), yielding the \(C^{1,\alpha} \)-regularity of viscosity solutions as a consequence of a result by Zhang and Zhou \([38]\).

In the present paper our objective is to prove \(C^{1,\alpha} \)-regularity of solutions to (1.1) directly using viscosity methods. The Hölder regularity of solutions already follows from existing general results, see \([28,29,12,13]\). More recently, Imbert and Silvestre \([24]\) proved the gradient Hölder regularity of solutions to the elliptic equation

\[
|Du|^\gamma F(D^2 u) = f,
\]

where \(\gamma > 0 \) and Imbert, Jin and Silvestre \([25,22]\) obtained a similar result for the parabolic equation

\[
\partial_t u = |Du|^\gamma \Delta_p^N u,
\]

where \(p > 1, \gamma > -1 \). Furthermore, Attouchi and Parviainen \([4]\) proved the \(C^{1,\alpha} \)-regularity of solutions to the inhomogeneous equation \(\partial_t u - \Delta_p^N u = f(x,t) \). Our proof of Hölder gradient regularity for solutions of (1.1) is in particular inspired by the papers \([25]\) and \([4]\).

We point out that recently Fang and Zhang \([19]\) proved the \(C^{1,\alpha} \)-regularity of solutions to the parabolic normalized \(p(x,t) \)-Laplace equation

\[
\partial_t u = \Delta_{p(x,t)}^N u,
\]

(1.3)

where \(p \in C^1_{\text{loc}} \). The equation (1.3) naturally includes (1.1) if \(f \equiv 0 \). However, in this article we consider the inhomogeneous case and only suppose that \(p \) is Lipschitz continuous. More precisely, we have the following theorem.

Theorem 1.1. Suppose that \(p \) is Lipschitz continuous in \(B_1, \) \(p_{\text{min}} > 1 \) and \(f \in C(B_1) \) is bounded. Let \(u \) be a viscosity solution to

\[
-\Delta_{p(x)}^N u = f(x) \quad \text{in } B_1.
\]

Then there is \(\alpha(N, p_{\text{min}}, p_{\text{max}}, p_L) \in (0,1) \) such that

\[
\|u\|_{C^{1,\alpha}(B_1/2)} \leq C(N, p_{\text{min}}, p_{\text{max}}, p_L, \|f\|_{L^\infty(B_1)}, \|u\|_{L^\infty(B_1)}),
\]

where \(p_L \) is the Lipschitz constant of \(p \).

The proof of Theorem 1.1 is based on suitable uniform \(C^{1,\alpha} \)-regularity estimates for solutions of the regularized equation.
\[-\Delta v - (p_\varepsilon(x) - 2) \frac{\langle D^2vDv, Dv \rangle}{|Dv|^2 + \varepsilon^2} = g(x), \quad (1.4)\]

where it is assumed that g is continuous and p_ε is smooth. In particular, we show estimates that are independent of ε and only depend on N, sup p, inf p, $\|Dp_\varepsilon\|_{L^\infty}$ and $\|g\|_{L^\infty}$. To prove such estimates, we first derive estimates for the perturbed homogeneous equation

\[-\Delta v - (p_\varepsilon(x) - 2) \frac{\langle D^2v(Dv + q), Dv + q \rangle}{|Dv + q|^2 + \varepsilon^2} = 0, \quad (1.5)\]

where $q \in \mathbb{R}^N$. Roughly speaking, $C^{1,\alpha}$-estimates for solutions of (1.5) are based on “improvement of oscillation” which is obtained by differentiating the equation and observing that a function depending on the gradient of the solution is a supersolution to a linear equation. The uniform $C^{1,\alpha}$-estimates for solutions of (1.5) then yield uniform estimates for the inhomogeneous equation (1.4) by an adaption of the arguments in [24,4].

With the a priori regularity estimates at hand, the plan is to let $\varepsilon \to 0$ and show that the estimates pass on to solutions of (1.1). A problem is caused by the fact that, to the best of our knowledge, uniqueness of solutions to (1.1) is an open problem for variable $p(x)$ and even for constant p if f is allowed to change signs. To deal with this, we fix a solution $u_0 \in C(\overline{B}_1)$ to (1.1) and consider the Dirichlet problem

\[-\Delta_{p(x)}^N u = f(x) - u_0(x) - u \quad \text{in } B_1 \quad (1.6)\]

with boundary data $u = u_0$ on ∂B_1. For this equation the comparison principle holds and thus u_0 is the unique solution. We then consider the approximate problem

\[-\Delta u_\varepsilon - (p_\varepsilon(x) - 2) \frac{\langle D^2u_\varepsilon Du_\varepsilon, Du_\varepsilon \rangle}{|Du_\varepsilon|^2 + \varepsilon^2} = f_\varepsilon(x) - u_{0,\varepsilon}(x) - u_\varepsilon \quad (1.7)\]

with boundary data $u_\varepsilon = u_0$ on ∂B_1 and where $p_\varepsilon, f_\varepsilon, u_{0,\varepsilon} \in C^\infty(B_1)$ are such that $p \to p_\varepsilon$, $f_\varepsilon \to f$ and $u_{0,\varepsilon} \to u_0$ uniformly in B_1 and $\|Dp_\varepsilon\|_{L^\infty(B_1)} \leq \|p\|_{L^\infty(B_1)}$. As the equation (1.7) is uniformly elliptic quasilinear equation with smooth coefficients, the solution u_ε exists in the classical sense by standard theory. Since u_ε also solves (1.4) with $g(x) = f_\varepsilon(x) - u_{0,\varepsilon}(x) - u_\varepsilon(x)$, it satisfies the uniform $C^{1,\alpha}$-regularity estimate. We then let $\varepsilon \to 0$ and use stability and comparison principles to show that u_0 inherits the regularity estimate.

For other related results, see for example the works of Attouchi, Parviainen and Ruostekoski [5] on the normalized p-Poisson problem $-\Delta_p^N u = f$, Attouchi and Ruostekoski [6–8] on the equation $-|Du|^q \Delta_p^N u = f$ and its parabolic version, De Filippis [15] on the double phase problem $\|D(|Du|^q + a(x)|Du|^s)\|F(D^2u) = f(x)$ and Fang and Zhang [20] on the parabolic double phase problem $\partial_t u = (|Du|^q + a(x,t)|Du|^s)\Delta_p^N u$. We also mention the paper by Bronzi, Pimentel, Rampasso and Teixeira [10] where they consider fully nonlinear variable exponent equations of the type $|Du|^q(x) F(D^2u) = 0$.

The paper is organized as follows: Section 2 is dedicated to preliminaries, Sections 3 and 4 contain $C^{1,\alpha}$-regularity estimates for equations (1.5) and (1.7), and Section 5 contains the proof of Theorem (1.1). Finally, the Appendix contains an uniform Lipschitz estimate for the equations studied in this paper and a comparison principle for equation (1.6).
2. Preliminaries

2.1. Notation

We denote by $B_R \subset \mathbb{R}^N$ an open ball of radius $R > 0$ that is centered at the origin in the N-dimensional Euclidean space, $N \geq 1$. The set of symmetric $N \times N$ matrices is denoted by S^N. For $X, Y \in S^N$, we write $X \leq Y$ if $X - Y$ is negative semidefinite. We also denote the smallest eigenvalue of X by $\lambda_{\min}(X)$ and the largest by $\lambda_{\max}(X)$ and set

$$
\|X\| := \sup_{\xi \in B_1} |X\xi| = \sup \{ |\lambda| : \lambda \text{ is an eigenvalue of } X \} .
$$

We use the notation $C(a_1, \ldots, a_k)$ to denote a constant C that may change from line to line but depends only on a_1, \ldots, a_k. For convenience we often use $C(\hat{p})$ to mean that the constant may depend on p_{\min}, p_{\max} and the Lipschitz constant p_L of p.

For $\alpha \in (0, 1)$, we denote by $C^{\alpha}(B_R)$ the set of all functions $u : B_R \to \mathbb{R}$ with finite Hölder norm

$$
\|u\|_{C^\alpha(B_R)} := \|u\|_{L^\infty(B_R)} + [u]_{C^\alpha(B_R)}, \quad \text{where } [u]_{C^\alpha(B_R)} := \sup_{x,y \in B_R} \frac{|u(x) - u(y)|}{|x - y|^{\alpha}}.
$$

Similarly, we denote by $C^{1,\alpha}(B_R)$ the set of all functions for which the norm

$$
\|u\|_{C^{1,\alpha}(B_R)} := \|u\|_{C^\alpha(B_R)} + \|Du\|_{C^\alpha(B_R)}
$$

is finite.

2.2. Viscosity solutions

Viscosity solutions are defined using smooth test functions that touch the solution from above or below. If $u, \varphi : \mathbb{R}^N \to \mathbb{R}$ and $x \in \mathbb{R}^N$ are such that $\varphi(x) = u(x)$ and $\varphi(y) < u(y)$ for $y \neq x_0$, then we say that φ touches u from below at x_0.

Definition 2.1. Let $\Omega \subset \mathbb{R}^N$ be a bounded domain. Suppose that $f : \Omega \times \mathbb{R} \to \mathbb{R}$ is continuous. A lower semicontinuous function $u : \Omega \to \mathbb{R}$ is a viscosity supersolution to

$$
-\Delta^N_{p(x)} u \geq f(x, u) \quad \text{in } \Omega
$$

if the following holds: Whenever $\varphi \in C^2(\Omega)$ touches u from below at $x \in \Omega$ and $D\varphi(x) \neq 0$, we have

$$
-\Delta \varphi(x) - (p(x) - 2) \frac{\langle D^2 \varphi(x) D\varphi(x), D\varphi(x) \rangle}{|D\varphi(x)|^2} \geq f(x, u(x))
$$

and if $D\varphi(x) = 0$, then

$$
-\Delta \varphi(x) - (p(x) - 2) \langle D^2 \varphi(x) \eta, \eta \rangle \geq f(x, u(x)) \quad \text{for some } \eta \in \overline{B_1}.
$$

Analogously, a lower semicontinuous function $u : \Omega \to \mathbb{R}$ is a viscosity subsolution if the above inequalities hold reversed whenever φ touches u from above. Finally, we say that u is a viscosity solution if it is both viscosity sub- and supersolution.
Remark. The special treatment of the vanishing gradient in Definition 2.1 is needed because of the singularity of the equation. Definition 2.1 is essentially a relaxed version of the standard definition in [14] which is based on the so-called semicontinuous envelopes. In the standard definition one would require that if φ touches a viscosity supersolution u from below at x, then

\[
\begin{cases}
-\Delta^N_{p(x)}\varphi(x) \geq f(x,u(x)) & \text{if } D\varphi(x) \neq 0, \\
-\Delta \varphi(x) - (p(x) - 2)\lambda_{\min}(D^2\varphi(x)) \geq f(x,u(x)) & \text{if } D\varphi(x) = 0 \text{ and } p(x) \geq 2, \\
-\Delta \varphi(x) - (p(x) - 2)\lambda_{\max}(D^2\varphi(x)) \geq f(x,u(x)) & \text{if } D\varphi(x) = 0 \text{ and } p(x) < 2.
\end{cases}
\]

Clearly, if u is a viscosity supersolution in this sense, then it is also a viscosity supersolution in the sense of Definition 2.1.

3. Hölder gradient estimates for the regularized homogeneous equation

In this section we prove $C^{1,\alpha}$-regularity estimates for solutions to the equation

\[
-\Delta u - (p(x) - 2)\frac{\langle D^2u(Du + q), Du + q \rangle}{|Du + q|^2 + \varepsilon^2} = 0 \quad \text{in } B_1, \tag{3.1}
\]

where $p : B_1 \to \mathbb{R}$ is Lipschitz, $p_{\min} > 1$, $\varepsilon > 0$ and $q \in \mathbb{R}^N$. Our objective is to obtain estimates that are independent of q and ε. Observe that (3.1) is a uniformly elliptic quasilinear equation with smooth coefficients. Viscosity solutions to (3.1) can be defined in the standard way and they are smooth if p is smooth.

Proposition 3.1. Suppose that p is smooth. Let u be a viscosity solution to (3.1) in B_1. Then $u \in C^\infty(B_1)$.

It follows from classical theory that the corresponding Dirichlet problem admits a smooth solution (see [21, Theorems 15.18 and 13.6] and the Schauder estimates [21, Theorem 6.17]). The viscosity solution u coincides with the smooth solution by a comparison principle [26, Theorem 3].

3.1. Improvement of oscillation

Our regularity estimates for solutions of (3.1) are based on improvement of oscillation. We first prove such a result for the linear equation

\[
-\text{tr}(G(x)D^2u) = f \quad \text{in } B_1, \tag{3.2}
\]

where $f \in C^1(B_1)$ is bounded, $G(x) \in S^N$ and there are constants $0 < \lambda < \Lambda < \infty$ such that the eigenvalues of $G(x)$ are in $[\lambda, \Lambda]$ for all $x \in B_1$. The result is based on the following rescaled version of the weak Harnack inequality found in [13, Theorem 4.8]. Such Harnack estimates for non-divergence form equations go back to at least Krylov and Safonov [28,29].

Lemma 3.2 (Weak Harnack inequality). Let $u \geq 0$ be a continuous viscosity supersolution to (3.2) in B_1. Then there are positive constants $C(\lambda, \Lambda, N)$ and $q(\lambda, \Lambda, N)$ such that for any $\tau < \frac{1}{4\sqrt{N}}$ we have

\[
\tau^{-\frac{N}{q}} \left(\int_{B_\tau} |u|^q \, dx \right)^{1/q} \leq C \left(\inf_{B_{2\tau}} u + \tau \left(\int_{B_{4\sqrt{N} \tau}} |f|^N \, dx \right)^{1/N} \right). \tag{3.3}
\]
Proof. Suppose that \(\tau < \frac{1}{4 \sqrt{N}} \) and set \(S := 8\tau \). Define the function \(v : B_{\sqrt{N}/2} \to \mathbb{R} \) by

\[
v(x) := u(Sx)
\]

and set

\[
\tilde{G}(x) := G(Sx) \quad \text{and} \quad \tilde{f}(x) := S^2f(Sx).
\]

Then, if \(\varphi \in C^2 \) touches \(v \) from below at \(x \in B_{\sqrt{N}/2} \), the function \(\phi(x) := \varphi(x/S) \) touches \(u \) from below at \(Sx \). Therefore

\[
-\text{tr}(G(Sx)D^2\phi(Sx)) \geq f(Sx).
\]

Since \(D^2\phi(Sx) = S^{-2}D^2\varphi(x) \), this implies that

\[
-\text{tr}(G(Sx)D^2\varphi(x)) \geq S^2f(Sx).
\]

Thus \(v \) is a viscosity supersolution to

\[
-\text{tr}(\tilde{G}(x)D^2v) \geq \tilde{f}(x) \quad \text{in} \quad B_{\sqrt{N}/2}.
\]

We denote by \(Q_R \) a cube with side-length \(R/2 \). Since \(Q_1 \subset B_{\sqrt{N}/2} \), it follows from [13, Theorem 4.8] that there are \(q(\lambda,\Lambda,N) \) and \(C(\lambda,\Lambda,N) \) such that

\[
\left(\int_{B_{1/8}} |v|^q \, dx \right)^{1/q} \leq \left(\int_{Q_{1/4}} |v|^q \, dx \right)^{1/q} \leq C \left(\inf_{Q_{1/2}} v + \left(\int_{Q_1} |\tilde{f}|^N \, dx \right)^{1/N} \right)
\]

\[
\leq C \left(\inf_{B_{1/4}} v + \left(\int_{B_{\sqrt{N}/2}} |\tilde{f}|^N \, dx \right)^{1/N} \right).
\]

By the change of variables formula we have

\[
\int_{B_{1/8}} |v|^q \, dx = \int_{B_{1/8}} |u(Sx)|^q \, dx = S^{-N} \int_{B_{S/8}} |u(x)|^q \, dx
\]

and

\[
\int_{B_{\sqrt{N}/2}} |\tilde{f}|^N \, dx = S^{2N} \int_{B_{\sqrt{N}/2}} |f(Sx)|^N \, dx = S^N \int_{B_{S\sqrt{N}/2}} |f(x)|^N \, dx.
\]

Recalling that \(S = 8\tau \), we get

\[
8^{-\frac{N}{4}} \tau^{-\frac{N}{4}} \left(\int_{B_{\tau}} |u(x)|^q \, dx \right)^{1/q} \leq C \left(\inf_{B_{2\tau}} u + 8\tau \left(\int_{B_{S\sqrt{N}/2}} |f(x)|^N \, dx \right)^{1/N} \right).
\]

Absorbing \(8^{\frac{N}{4}} \) into the constant, we obtain the claim. \(\square \)
Lemma 3.3 (Improvement of oscillation for the linear equation). Let \(u \geq 0 \) be a continuous viscosity supersolution to (3.2) in \(B_1 \) and \(\mu, l > 0 \). Then there are positive constants \(\tau(\lambda, A, N, \mu, l, \| f \|_{L^\infty(B_1)}) \) and \(\theta(\lambda, A, N, \mu, l) \) such that if

\[
|\{ x \in B_\tau : u \geq l \}| > \mu |B_\tau|, \tag{3.4}
\]

then we have

\[
u \geq \theta \quad \text{in } B_\tau.
\]

Proof. By the weak Harnack inequality (Lemma 3.2) there exist constants \(C_1(\lambda, A, N) \) and \(q(\lambda, A, N) \) such that for any \(\tau < 1/(4\sqrt{N}) \), we have

\[
\inf_{\overline{B}_2} u \geq C_1 \tau^{-\frac{N}{p}} \left(\int_{B_\tau} |u|^q \, dx \right)^{1/q} - \tau \left(\int_{B_4 \setminus \overline{B}_\tau} |f|^N \, dx \right)^{1/N}. \tag{3.5}
\]

In particular, this holds for

\[
\tau := \min \left(\frac{1}{4\sqrt{N}}, \frac{C_1 |B_1|^\frac{1}{q} \frac{1}{2^{\frac{1}{2}}} \mu^\frac{1}{2} l}{2 \cdot 4\sqrt{N} (\| f \|_{L^\infty(B_1)} + 1)} \right).
\]

We continue the estimate (3.5) using the assumption (3.4) and obtain

\[
\inf_{\overline{B}_2} u \geq \inf_{\overline{B}_2} u \geq C_1 \tau^{-\frac{N}{p}} \left(|\{ x \in B_\tau : u \geq l \}| l^q \right)^{1/q} - \tau \left(\int_{B_4 \setminus \overline{B}_\tau} |f|^N \, dx \right)^{1/N}
\]

\[
\geq C_1 \tau^{-\frac{N}{p}} \mu^\frac{1}{2} |B_\tau|^\frac{1}{2} l - \tau |B_4 \setminus \overline{B}_\tau| \frac{1}{\sqrt{N}} \| f \|_{L^\infty(B_1)}
\]

\[
= C_1 |B_1|^\frac{1}{q} \mu^\frac{1}{2} l \tau^{-\frac{N}{p}} \tau^\frac{q}{2} - 4\sqrt{N} |B_1|^\frac{1}{q} \| f \|_{L^\infty(B_1)} \tau^2
\]

\[
= C_1 |B_1|^\frac{1}{q} \mu^\frac{1}{2} l - 4\sqrt{N} |B_1|^\frac{1}{q} \| f \|_{L^\infty(B_1)} \tau^2.
\]

\[
\geq \frac{1}{2} C_1 |B_1|^\frac{1}{q} \mu^\frac{1}{2} l, \quad \therefore \theta,
\]

where the last inequality follows from the choice of \(\tau \). \(\square \)

We are now ready to prove an improvement of oscillation for the gradient of a solution to (3.1). We first consider the following lemma, where the improvement is considered towards a fixed direction. We initially also restrict the range of \(|q| \).

The idea is to differentiate the equation and observe that a suitable function of \(Du \) is a supersolution to the linear equation (3.2). Lemma 3.3 is then applied to obtain information about \(Du \).

Lemma 3.4 (Improvement of oscillation to direction). Suppose that \(p \) is smooth. Let \(u \) be a smooth solution to (3.1) in \(B_1 \) with \(|Du| \leq 1 \) and either \(q = 0 \) or \(|q| > 2 \). Then for every \(0 < l < 1 \) and \(\mu > 0 \) there exist positive constants \(\tau(N, \tilde{p}, l, \mu) < 1 \) and \(\gamma(N, \tilde{p}, l, \mu) < 1 \) such that
\[\left| \{ x \in B_r : Du \cdot d \leq l \} \right| > \mu |B_r| \quad \text{implies} \quad Du \cdot d \leq \gamma \text{ in } B_r \]

whenever \(d \in \partial B_1 \).

Proof. To simplify notation, we set

\[A_{ij}(x, \eta) := \delta_{ij} + (p(x) - 2) \frac{(\eta_i + q_i)(\eta_j + q_j)}{|\eta|^2 + \varepsilon^2}. \]

We also denote the functions \(A_{ij} : x \mapsto A_{ij}(x, Du(x)) \), \(A_{ij,x_k} : x \mapsto (\partial_{x_k} A_{ij})(x, Du(x)) \) and \(A_{ij,\eta_k} : x \mapsto (\partial_{\eta_k} A_{ij})(x, Du(x)) \). Then, since \(u \) is a smooth solution to (3.1) in \(B_1 \), we have in Einstein’s summation convention

\[-A_{ij}u_{ij} = 0 \quad \text{pointwise in } B_1. \]

Differentiating this yields

\[0 = (A_{ij}u_{ij})_k = A_{ij}u_{ijk} + (A_{ij})_k u_{ij} = A_{ij}u_{ijk} + A_{ij,\eta_m}u_{ij}u_{km} + A_{ij,x_k}u_{ij} \quad \text{for all } k = 1, \ldots, N. \quad (3.6) \]

Multiplying these identities by \(d_k \) and summing over \(k \), we obtain

\[0 = A_{ij}u_{ijk}d_k + A_{ij,\eta_m}u_{ij}u_{km}d_k + A_{ij,x_k}u_{ij}d_k \]

\[= A_{ij}(Du \cdot d - l)_{ij} + A_{ij,\eta_m}u_{ij}(Du \cdot d - l)_m + A_{ij,x_k}u_{ij}d_k. \quad (3.7) \]

Moreover, multiplying (3.6) by \(2u_k \) and summing over \(k \), we obtain

\[0 = 2A_{ij}u_{ijk}u_k + 2A_{ij,\eta_m}u_{ij}u_{km}u_k + 2A_{ij,x_k}u_{ij}u_k \]

\[= A_{ij}(2u_{ijk}u_k + 2u_{ki}u_{kj}) - 2A_{ij}u_{kj}u_{ki} + 2A_{ij,\eta_m}u_{ij}u_{km}u_k + 2A_{ij,x_k}u_{ij}u_k \]

\[= A_{ij}(u_{jk}^2)_{ij} - 2A_{ij}u_{kj}u_{ki} + A_{ij,\eta_m}u_{ij}(u_{jk}^2)_m + 2A_{ij,x_k}u_{ij}u_k \]

\[= A_{ij}(|Du|^2)_{ij} + A_{ij,\eta_m}u_{ij}(|Du|^2)_m + 2A_{ij,x_k}u_{ij}u_k - 2A_{ij}u_{kj}u_{ki}. \quad (3.8) \]

We will now split the proof into the cases \(q = 0 \) or \(|q| > 2 \), and proceed in two steps: First we check that a suitable function of \(Du \) is a supersolution to the linear equation (3.3) and then apply Lemma 3.3 to obtain the claim.

Case q = 0, Step 1: We denote \(\Omega_+ := \{ x \in B_1 : h(x) > 0 \} \), where

\[h := (Du \cdot d - l + \frac{l}{2} |Du|^2)^+. \]

If \(|Du| \leq l/2 \), we have

\[Du \cdot d - l + \frac{l}{2} |Du|^2 \leq -\frac{l}{2} + \frac{l^3}{8} < 0. \]

This implies that \(|Du| > l/2 \) in \(\Omega_+ \). Therefore, since \(q = 0 \), we have in \(\Omega_+ \)
\[|\mathcal{A}_{ij,\eta_m}| = |p(x) - 2| \frac{\delta_{im}(u_j + q_j) + \delta_{jm}(u_i + q_i)}{|Du + q|^2 + \varepsilon^2} - \frac{2(u_m + q_m)(u_i + q_i)(u_j + q_j)}{|Du + q|^2 + \varepsilon^2}^2 \]
\[\leq 8l^{-1} \|p - 2\|_{L^\infty(B_1)}, \quad \text{(3.9)} \]
\[|\mathcal{A}_{ij,x_k}| = |Dp(x)| \frac{(|\eta + q_i|(|\eta + q_j)|}{|\eta + q|^2 + \varepsilon^2} \leq p_L. \quad \text{(3.10)} \]

Summing up the equations (3.7) and (3.8) multiplied by \(2^{-1}l\), we obtain in \(\Omega_+\)

\[0 = A_{ij}(Du \cdot d - l)_{ij} + A_{ij,\eta_m}u_{ij}(Du \cdot d - l)_m + A_{ij,x_k}u_{ij}d_k \]
\[+ 2^{-1}l(A_{ij}(|Du|^2)_{ij} + A_{ij,\eta_m}u_{ij}(|Du|^2)_m + 2A_{ij,x_k}u_{ij}u_k - 2A_{ij}u_ku_{ij}k_i) \]
\[= A_{ij}h_{ij} + A_{ij,\eta_m}u_{ij}h_m + A_{ij,x_k}u_{ij}d_k + lA_{ij,x_k}u_{ij}u_k - lA_{ij}u_ku_{ij}k_i \]
\[\leq A_{ij}h_{ij} + |A_{ij,\eta_m}u_{ij}||h_m| + |A_{ij,x_k}u_{ij}||d_k + lu_k| - lA_{ij}u_ku_{ij}k_i. \]

Since \(|Du| \leq 1\), we have \(|d_k + lu_k|^2 \leq 4\) and by uniform ellipticity \(A_{ij}u_ku_{ij}k_i \geq \min(p_{\min} - 1, 1) |u_{ij}|^2\).

Therefore, by applying Young’s inequality with \(\varepsilon > 0\), we obtain from the above display

\[0 \leq A_{ij}h_{ij} + N^2\varepsilon^{-1}(|h_m|^2 + |d_k + lu_k|^2) + \varepsilon(|A_{ij,\eta_m}|^2 + |A_{ij,x_k}|^2)|u_{ij}|^2 - lA_{ij}u_ku_{ij}k_i \]
\[\leq A_{ij}h_{ij} + N^2\varepsilon^{-1}(|Dh|^2 + 4) + \varepsilon C(N, \hat{p})(l^{-2} + 1) |u_{ij}|^2 - l\min(p_{\min} - 1, 1) |u_{ij}|^2, \]

where in the second estimate we used (3.9) and (3.10). By taking \(\varepsilon\) small enough, we obtain

\[0 \leq A_{ij}h_{ij} + C_0(N, \hat{p}) \frac{|Dh|^2 + 1}{l^3} \quad \text{in } \Omega_. \quad \text{(3.11)} \]

Next we define

\[\overline{h} := \frac{1}{\nu} (1 - e^{\nu(h-H)}), \quad \text{where } H := 1 - \frac{l}{2}, \quad \text{and } \nu := \frac{C_0}{l^3 \min(p_{\min} - 1, 1)}. \quad \text{(3.12)} \]

Then by (3.11) and uniform ellipticity we have in \(\Omega_+\)

\[-A_{ij}\overline{h}_{ij} = A_{ij}(h_{ij}e^{\nu(h-H)} + \nu h_{ij}e^{\nu(h-H)}) \]
\[\geq e^{\nu(h-H)} (-C_0 \frac{|Dh|^2}{l^3} - \frac{C_0}{l^3} + \nu \min(p_{\min} - 1, 1) |Dh|^2) \]
\[\geq - \frac{C_0}{l^3}. \]

Since the minimum of two viscosity supersolutions is still a viscosity supersolution, it follows from the above estimate that \(\overline{h}\) is a non-negative viscosity supersolution to

\[-A_{ij}\overline{h}_{ij} \geq - \frac{C_0}{l^3} \quad \text{in } B_1. \quad \text{(3.13)} \]

Case q = 0, Step 2: We set \(l_0 := \frac{1}{\nu}(1 - e^{\nu(l-1)})\). Then, since \(\overline{h}\) solves (3.13), by Lemma 3.3 there are positive constants \(\tau(N, p, l, \mu)\) and \(\theta(N, p, l, \mu)\) such that

\[|\{x \in B_\tau : \overline{h} \geq l_0\}| > \mu |B_\tau| \quad \text{imply } \overline{h} \geq \theta \quad \text{in } B_\tau. \]

If \(Du \cdot d \leq l\), we have \(\overline{h} \geq l_0\) and therefore
\[\left| \{ x \in B_\tau : h \geq l_0 \} \right| \geq \left| \{ x \in B_\tau : Du \cdot d \leq l \} \right| > \mu |B_\tau| , \]

where the last inequality follows from the assumptions. Consequently, we obtain
\[h \geq \theta \quad \text{in } B_\tau. \]

Since \(h - H \leq 0 \), by convexity we have \(H - h \geq \bar{h} \). This together with the above estimate yields
\[1 - 2^{-1}l - (Du \cdot d - l + 2^{-1}l|Du|^2) \geq \theta \quad \text{in } B_\tau \]

and so
\[Du \cdot d + 2^{-1}l(Du \cdot d)^2 \leq Du \cdot d + 2^{-1}l|Du|^2 \leq 1 + 2^{-1}l - \theta \quad \text{in } B_\tau. \]

Using the quadratic formula, we thus obtain the desired estimate
\[Du \cdot d \leq \frac{-1 + \sqrt{1 + 2l(1 + 2^{-1}l - \theta)}}{l} = \frac{-1 + \sqrt{(1 + l)^2 - 2l\theta}}{l} = : \gamma < 1 \quad \text{in } B_\tau. \]

Case \(|q| > 2\): Computing like in (3.9) and (3.10), we obtain this time in \(B_1 \)
\[|A_{ij,\eta_m}| \leq 4 \| p - 2 \|_{L^\infty(B_1)} \quad \text{and} \quad |A_{ij,x}| \leq p_L \]

Moreover, this time we set simply
\[h := Du \cdot d - l + 2^{-1}l|Du|^2. \]

Summing up the identities (3.7) and (3.8) and using Young’s inequality similarly as in the case \(|q| = 0\), we obtain in \(B_1 \)
\[0 \leq A_{ij}h_{ij} + N^2\epsilon^{-1}(|h_m|^2 + |d_k + l\eta_k|^2) + \epsilon(|A_{ij,\eta_m}|^2 + |A_{ij,x}|^2) |u_{ij}|^2 - lA_{ij}u_{kj}u_{ki} \]
\[\leq A_{ij}h_{ij} + N^2\epsilon^{-1}(|Dh|^2 + 4) + \epsilon C(\hat{p}) |u_{ij}|^2 - lC(\hat{p}) |u_{ij}|^2. \]

By taking small enough \(\epsilon \), we obtain
\[0 \leq A_{ij}h_{ij} + C_0(N,\hat{p}) \frac{|Dh|^2 + 1}{l} \quad \text{in } B_1. \]

Next we define \(\bar{h} \) and \(H \) like in (3.12), but set instead \(\nu := C_0/(l \min(p_{\min} - 1, 1)) \). The rest of the proof then proceeds in the same way as in the case \(q = 0 \). \(\square \)

Next we inductively apply the previous lemma to prove the improvement of oscillation.

Theorem 3.5 (Improvement of oscillation). Suppose that \(p \) is smooth. Let \(u \) be a smooth solution to (3.1) in \(B_1 \) with \(|Du| \leq 1 \) and either \(q = 0 \) or \(|q| > 2\). Then for every \(0 < l < 1 \) and \(\mu > 0 \) there exist positive constants \(\tau(N,\hat{p},l,\mu) < 1 \) and \(\gamma(N,\hat{p},l,\mu) < 1 \) such that if
\[\left| \{ x \in B_{\tau_{i+1}} : Du \cdot d \leq l\gamma^i \} \right| > \mu |B_{\tau_{i+1}}| \quad \text{for all } d \in \partial B_1, \; i = 0, \ldots, k, \quad (3.14) \]

then
\[|Du| \leq \gamma^{i+1} \quad \text{in } B_{\tau_{i+1}} \quad \text{for all } i = 0, \ldots, k. \quad (3.15) \]
Proof. Let \(k \geq 0 \) be an integer and suppose that (3.14) holds. We proceed by induction.

Initial step: Since (3.14) holds for \(i = 0 \), by Lemma 3.4 we have \(Du \cdot d \leq \gamma \) in \(B_{\tau} \) for all \(d \in \partial B_1 \). This implies (3.15) for \(i = 0 \).

Induction step: Suppose that \(0 < i \leq k \) and that (3.15) holds for \(i - 1 \). We define

\[
v(x) := \tau^{-i} \gamma^{-i} u(\tau^{i} x).
\]

Then \(v \) solves

\[
-\Delta v - (p(\tau^{i} x) - 2) \frac{\langle D^2 v(Dv + \gamma^{-i} q), Dv + \gamma^i q \rangle}{|Dv + \gamma^{-i} q|^2 + (\gamma^{-i} \varepsilon)^2} = 0 \quad \text{in } B_1.
\]

Moreover, by induction hypothesis \(|Dv(x)| = \gamma^{-i} |Dv(\tau^{i} x)| \leq \gamma^{-i} \gamma^i = 1 \) in \(B_1 \). Therefore by Lemma 3.4 we have that

\[
|\{x \in B_{\tau} : Dv \cdot d \leq l\}| > \mu |B_{\tau}| \quad \text{implies} \quad Dv \cdot d \leq \gamma \quad \text{in } B_{\tau}
\]

whenever \(d \in \partial B_1 \). Since

\[
|\{x \in B_{\tau} : Dv \cdot d \leq l\}| > \mu |B_{\tau}| \iff |\{x \in B_{\tau} : Dv \cdot d \leq l \gamma^i\}| > \mu |B_{\tau}^{i+1}|,
\]

we have by (3.14) and (3.16) that \(Dv \cdot d \leq \gamma \) in \(B_{\tau} \). This implies that \(Du \cdot d \leq \gamma^{i+1} \) in \(B_{\tau}^{i+1} \). Since \(d \in \partial B_1 \) was arbitrary, we obtain (3.15) for \(i \).

3.2. Hölder gradient estimates

In this section we apply the improvement of oscillation to prove \(C^{1,\alpha} \)-estimates for solutions to (3.1). We need the following regularity result by Savin [34].

Lemma 3.6. Suppose that \(p \) is smooth. Let \(u \) be a smooth solution to (3.1) in \(B_1 \) with \(|Du| \leq 1 \) and either \(q = 0 \) or \(|q| > 2 \). Then for any \(\beta > 0 \) there exist positive constants \(\eta(N, \tilde{p}, \beta) \) and \(C(N, \hat{p}, \beta) \) such that if

\[
|u - L| \leq \eta \quad \text{in } B_1
\]

for some affine function \(L \) satisfying \(1/2 \leq |DL| \leq 1 \), then we have

\[
|Du(x) - Du(0)| \leq C |x|^\beta \quad \text{for all } x \in B_{1/2}.
\]

Proof. Set \(v := u - L \). Then \(v \) solves

\[
-\Delta u - \frac{(p(x) - 2) \langle D^2 u(Du + q + DL), Du + q + DL \rangle}{|Du + q + DL|^2 + \varepsilon^2} = 0 \quad \text{in } B_1.
\]

Observe that by the assumption \(1/2 \leq |DL| \leq 1 \) we have \(|Du + q + DL| \geq 1/4\) if \(|Du| \leq 1/4\). It therefore follows from [34, Theorem 1.3] (see also [37]) that \(\|v\|_{C^{2,\beta}(B_{1/2})} \leq C \) which implies the claim.

We also use the following simple consequence of Morrey’s inequality.
Lemma 3.7. Let $u : B_1 \to \mathbb{R}$ be a smooth function with $|Du| \leq 1$. For any $\theta > 0$ there are constants $\varepsilon_1(N,\theta), \varepsilon_0(N,\theta) < 1$ such that if the condition

$$\{|x \in B_1 : |Du(d) - d| > \varepsilon_0\} \leq \varepsilon_1$$

is satisfied for some $d \in S^{N-1}$, then there is $a \in \mathbb{R}$ such that

$$|u(x) - a - d \cdot x| \leq \theta$$

for all $x \in B_{1/2}$.

Proof. By Morrey’s inequality (see for example [17, Theorem 4.10])

$$\text{osc}_{x \in B_{1/2}} (u(x) - d \cdot x) = \sup_{x,y \in B_{1/2}} |u(x) - d \cdot x - u(y) + d \cdot y|$$

$$\leq C(N) \left(\int_{B_1} |Du(d) - d|^{2N} \, dx \right)^{\frac{1}{2N}}$$

$$\leq C(N)(\varepsilon_1^{\frac{1}{2N}} + \varepsilon_0).$$

Therefore, denoting $a := \inf_{x \in B_{1/2}} (u(x) - d \cdot x)$, we have for any $x \in B_{1/2}$

$$|u(x) - a - d \cdot x| \leq \text{osc}_{B_{1/2}} (u(x) - d \cdot x) \leq C(N)(\varepsilon_1^{\frac{1}{2N}} + \varepsilon_0) \leq \theta,$$

where the last inequality follows by taking small enough ε_0 and ε_1. \square

We are now ready to prove a H"older estimate for the gradient of solutions to (3.1). We first restrict the range of $|q|$.

Lemma 3.8. Suppose that p is smooth. Let u be a smooth solution to (3.1) in B_1 with $|Du| \leq 1$ and either $q = 0$ or $|q| > 2$. Then there exists a constant $\alpha(N, \hat{p}) \in (0,1)$ such that

$$\|Du\|_{C^\alpha(B_{1/2})} \leq C(N, \hat{p}).$$

Proof. For $\beta = 1/2$, let $\eta > 0$ be as in Lemma 3.6. For $\theta = \eta/2$, let $\varepsilon_0, \varepsilon_1$ be as in Lemma 3.7. Set

$$l := 1 - \frac{\varepsilon_0^2}{2} \quad \text{and} \quad \mu := \frac{\varepsilon_1}{|B_1|}.$$

For these l and μ, let $\tau, \gamma \in (0,1)$ be as in Theorem 3.5. Let $k \geq 0$ be the minimum integer such that the condition (3.14) does not hold.

Case $k = \infty$: Theorem 3.5 implies that

$$|Du| \leq \gamma^{i+1}$$

in $B_{\tau i+1}$ for all $i \geq 0$.

Let $x \in B_\tau \setminus \{0\}$. Then $\tau^{i+1} \leq |x| \leq \tau^i$ for some $i \geq 0$ and therefore

$$i \leq \frac{\log |x|}{\log \tau} \leq i + 1.$$

We obtain
\[|Du(x)| \leq \gamma^i = 1 - \frac{1}{\gamma} \gamma^{i+1} \leq \frac{1}{\gamma} \gamma^{\log_{\gamma} \gamma} = \frac{1}{\gamma} \gamma^{\log_{\gamma} \gamma} = C \ |x|^\alpha, \tag{3.18} \]

where \(C = 1/\gamma \) and \(\alpha = \log \gamma / \log \tau \).

Case \(k < \infty \): There is \(d \in \partial B_1 \) such that
\[\left| \{ x \in B_{\tau^{k+1}} : Du \cdot d \leq l \gamma^k \} \right| \leq \mu |B_{\tau^{k+1}}|. \tag{3.19} \]

We set
\[v(x) := \tau^{-k-1} \gamma^{-k} u(\tau^{k+1} x). \]

Then \(v \) solves
\[-\Delta v - (p(\tau^{k+1} x) - 2) \left< \frac{D^2 v(Dv + \gamma^{-k} q), Dv + \gamma^{-k} q}{|Dv + \gamma^{-k} q|^2 + \gamma^{-2k} \varepsilon^2} \right> = 0 \quad \text{in } B_1 \]

and by (3.19) we have
\[\left| \{ x \in B_1 : Dv \cdot d \leq l \} \right| = \left| \{ x \in B_1 : Du(\tau^{k+1} x) \cdot d \leq l \gamma^k \} \right| = \tau^{-N(k+1)} \left| \{ x \in B_{\tau^{k+1}} : Du(x) \cdot d \leq l \gamma^k \} \right| \leq \tau^{-N(k+1)} \mu |B_{\tau^{k+1}}| = \mu |B_1| = \varepsilon_1. \tag{3.20} \]

Since either \(k = 0 \) or (3.14) holds for \(k - 1 \), it follows from Theorem 3.5 that \(|Du| \leq \gamma^k \) in \(B_{\tau^k} \). Thus
\[|Dv(x)| = \gamma^{-k} |Du(\tau^{k+1} x)| \leq 1 \quad \text{in } B_1. \tag{3.21} \]

For vectors \(\xi, d \in B_1 \), it is easy to verify the following fact
\[|\xi - d| > \varepsilon_0 \implies \xi \cdot d \leq 1 - \varepsilon_0^2/2 = l. \]

Therefore, in view of (3.20) and (3.21), we obtain
\[\left| \{ x \in B_1 : |Dv - d| > \varepsilon_0 \} \right| \leq \varepsilon_1. \]

Thus by Lemma 3.7 there is \(a \in \mathbb{R} \) such that
\[|v(x) - a - d \cdot x| \leq \theta = \eta/2 \quad \text{for all } x \in B_{1/2}. \]

Consequently, by applying Lemma 3.6 on the function \(2v(2^{-1} x) \), we find a positive constant \(C(N, \hat{p}) \) and \(e \in \partial B_1 \) such that
\[|Dv(x) - e| \leq C \ |x| \quad \text{in } B_{1/4}. \]

Since \(|Dv| \leq 1 \), we have also
\[|Dv(x) - e| \leq C \ |x| \quad \text{in } B_1. \]

Recalling the definition of \(v \) and taking \(\alpha' \in (0, 1) \) so small that \(\gamma/\tau^{\alpha'} < 1 \) we obtain
\[|Du(x) - \gamma^k e| \leq C \gamma^k r^{-\alpha' - 1} |x| \leq \frac{C}{\tau^{\alpha'}} \left(\frac{\gamma}{\tau^{\alpha'}} \right)^k |x|^\alpha' \leq C |x|^\alpha' \quad \text{in } B_{r^{k+1}}, \tag{3.22} \]

where we absorbed \(\tau^{\alpha'} \) into the constant. On the other hand, we have

\[|Du| \leq \gamma^{i+1} \quad \text{in } B_{r^{i+1}} \text{ for all } i = 0, \ldots, k-1 \]

so that, if \(\tau^{i+2} \leq |x| \leq \tau^{i+1} \) for some \(i \in \{0, \ldots, k-1\} \), it holds that

\[|Du(x) - \gamma^k e| \leq 2 \gamma^{i+1} |x|^\alpha' \leq \frac{2}{\tau^{\alpha'}} \left(\frac{\gamma}{\tau^{\alpha'}} \right)^{i+1} |x|^\alpha' \leq C |x|^\alpha'. \]

Combining this with (3.22) we obtain

\[|Du(x) - \gamma^k e| \leq C |x|^\alpha' \quad \text{in } B_r. \tag{3.23} \]

The claim now follows from (3.18) and (3.23) by standard translation arguments. \(\square \)

Theorem 3.9. Let \(u \) be a bounded viscosity solution to (3.1) in \(B_1 \) with \(q \in \mathbb{R}^N \). Then

\[\|u\|_{C^{1,\alpha}(B_{1/2})} \leq C(N, \hat{p}, \|u\|_{L^\infty(B_1)}) \tag{3.24} \]

for some \(\alpha(N, \hat{p}) \in (0,1) \).

Proof. Suppose first that \(p \) is smooth. Let \(\nu_0(N, \hat{p}, \|u\|_{L^\infty(B_1)}) \) and \(C_0(N, \hat{p}, \|u\|_{L^\infty(B_1)}) \) be as in the Lipschitz estimate (Theorem A.2 in the Appendix) and set

\[M := 2 \max(\nu_0, C_0). \]

If \(|q| > M \), then by Theorem A.2 we have

\[|Du| \leq C_0 \quad \text{in } B_{1/2}. \]

We set \(\tilde{u}(x) := 2u(x/2)/C_0 \). Then \(|D\tilde{u}| \leq 1 \) in \(B_1 \) and \(\tilde{u} \) solves

\[-\Delta \tilde{u} - (p/2 - 2) \frac{D^2 \tilde{u}(D\tilde{u} + q/C_0), D\tilde{u} + q/C_0}{|D\tilde{u} + q/C_0|^2 + (\epsilon/C_0)^2} = 0 \quad \text{in } B_1,\]

where \(q/C_0 > 2 \). Thus by Theorem 3.8 we have

\[\|D\tilde{u}\|_{C^{\alpha}(B_{1/2})} \leq C(N, \hat{p}), \]

which implies (3.24) by standard translation arguments.

If \(|q| \leq M \), we define

\[w := u - q \cdot x. \]

Then by Theorem A.2 we have

\[|Dw| \leq C(N, \hat{p}, \|w\|_{L^\infty(B_1)}) =: C'(N, \hat{p}, \|u\|_{L^\infty(B_1)}) \quad \text{in } B_{1/2}. \]
We set \(\bar{w}(x) := 2w(x/2)/C' \). Then \(|D\bar{w}| \leq 1 \) and so by Theorem 3.6 we have

\[
\|D\bar{w}\|_{C^\infty(B_{1/2})} \leq C(N, \hat{\rho}),
\]

which again implies (3.24).

Suppose then that \(p \) is merely Lipschitz continuous. Take a sequence \(p_j \in C^\infty(B_1) \) such that \(p_j \to p \) uniformly in \(B_1 \) and \(\|Dp_j\|_{L^\infty(B_1)} \leq \|Dp\|_{L^\infty(B_1)} \). For \(r < 1 \), let \(u_j \) be a solution to the Dirichlet problem

\[
\begin{aligned}
\Delta u_j - (p_j(x) - 2) \frac{\langle D^2u(Du + q), Du + q \rangle}{|Du + q|^2 + \varepsilon^2} &= 0 \quad \text{in } B_r, \\
u_j &= u \quad \text{on } B_r.
\end{aligned}
\]

As observed in Proposition 3.1, the solution exists and we have \(u_j \in C^\infty(B_r) \). By comparison principle \(\|u_j\|_{L^\infty(B_r)} \leq \|u\|_{L^\infty(B_1)} \), then by the first part of the proof we have the estimate

\[
\|u_j\|_{C^{1,\gamma}(B_{r/2})} \leq C(N, \hat{\rho}, \|u\|_{L^\infty(B_1)}).
\]

By [13, Theorem 4.14] the functions \(u_j \) are equicontinuous in \(B_1 \) and so by the Ascoli-Arzelà theorem we have \(u_j \to v \) uniformly in \(B_1 \) up to a subsequence. Moreover, by the stability principle \(v \) is a solution to (3.1) in \(B_r \) and thus by comparison principle [27, Theorem 2.6] we have \(v \equiv u \). By extracting a further subsequence, we may ensure that also \(Du_j \to Du \) uniformly in \(B_{r/2} \) and so the estimate \(\|Du\|_{C^{1,\gamma}(B_{r/2})} \leq C(N, \hat{\rho}, \|u\|_{L^\infty(B_1)}) \) follows. \(\square \)

4. Hölder gradient estimates for the regularized inhomogeneous equation

In this section we consider the inhomogeneous equation

\[
-\Delta u - (p(x) - 2) \frac{\langle D^2u(Du + q), Du + q \rangle}{|Du + q|^2 + \varepsilon^2} = f(x) \quad \text{in } B_1,
\]

(4.1)

where \(p : B_1 \to \mathbb{R} \) is Lipschitz continuous, \(p_{\min} > 1, \varepsilon > 0, q \in \mathbb{R}^N \) and \(f \in C(B_1) \) is bounded. We apply the \(C^{1,\alpha} \)-estimates obtained in Theorem 3.9 to prove regularity estimates for solutions of (4.1) with \(q = 0 \). Our arguments are similar to those in [4, Section 3], see also [24]. The idea is to use the well known characterization of \(C^{1,\alpha} \)-regularity via affine approximates. The following lemma plays a key role: It states that if \(f \) is small, then a solution to (4.1) can be approximated by an affine function. This combined with scaling properties of the equation essentially yields the desired affine functions.

Lemma 4.1. There exist constants \(\epsilon(N, \hat{\rho}), \tau(N, \hat{\rho}) \in (0, 1) \) such that the following holds: If \(\|f\|_{L^\infty(B_1)} \leq \epsilon \) and \(w \) is a viscosity solution to (4.1) in \(B_1 \) with \(q \in \mathbb{R}^N, w(0) = 0, \text{osc}_{B_1} w \leq 1 \), then there exists \(q' \in \mathbb{R}^N \) such that

\[
\text{osc}_{B_r}(w(x) - q' \cdot x) \leq \frac{1}{2} \tau.
\]

Moreover, we have \(|q'| \leq C(N, \hat{\rho}) \).

Proof. Suppose on the contrary that the claim does not hold. Then, for a fixed \(\tau(N, \hat{\rho}) \) that we will specify later, there exists a sequence of Lipschitz continuous functions \(p_j : B_1 \to \mathbb{R} \) such that

\[
p_{\min} \leq \inf_{B_1} p_j \leq \sup_{B_1} p_j \leq p_{\max} \quad \text{and} \quad (p_j)_{L} \leq p_L,
\]
functions \(f_j \in C(B_1)\) such that \(f_j \to 0\) uniformly in \(B_1\), vectors \(q_j \in \mathbb{R}^N\) and viscosity solutions \(w_j\) to

\[-\Delta w_j - (p_j(x) - 2) \frac{\langle D^2 w_j(Dw_j + q_j), Dw_j + q_j \rangle}{|Dw_j + q_j|^2 + \varepsilon^2} = f_j(x)\quad \text{in } B_1\]

such that \(w_j(0) = 0\), \(\text{osc}_{B_1} w_j \leq 1\) and

\[\text{osc}_{B_1}(w_j(x) - q' \cdot x) > \frac{\tau}{2}\quad \text{for all } q' \in \mathbb{R}^N. \tag{4.2}\]

By [13, Proposition 4.10], the functions \(w_j\) are uniformly Hölder continuous in \(B_r\) for any \(r \in (0, 1)\). Therefore by the Ascoli-Arzela theorem, we may extract a subsequence such that \(w_j \to w_\infty\) and \(p_j \to p_\infty\) uniformly in \(B_r\) for any \(r \in (0, 1)\). Moreover, \(p_\infty\) is \(p_L\)-Lipschitz continuous and \(p_{\text{min}} \leq p_\infty \leq p_{\text{max}}\). It then follows from (4.2) that

\[\text{osc}_{B_r}(w_\infty(x) - q' \cdot x) > \frac{\tau}{2}\quad \text{for all } q' \in \mathbb{R}^N. \tag{4.3}\]

We have two cases: either \(q_j\) is bounded or unbounded.

Case \(q_j\) is bounded: In this case \(q_j \to q_\infty \in \mathbb{R}^N\) up to a subsequence. It follows from the stability principle that \(w_\infty\) is a viscosity solution to

\[-\Delta w_\infty - (p_\infty(x) - 2) \frac{\langle D^2 w_\infty(Dw_\infty + q_\infty), Dw_\infty + q_\infty \rangle}{|Dw_\infty + q_\infty|^2 + \varepsilon^2} = 0\quad \text{in } B_1. \tag{4.4}\]

Hence by Theorem 3.9 we have \(\|Dw_\infty\|_{C^{1/2}(B_{1/2})} \leq C(N, \hat{\beta})\) for some \(\beta_1(N, \hat{\beta})\). The mean value theorem then implies the existence of \(q' \in \mathbb{R}^N\) such that

\[\text{osc}_{B_r}(u - q' \cdot x) \leq C_1(N, \hat{\beta})r^{1+\beta_1}\quad \text{for all } r \leq 1.\]

Case \(q_j\) is unbounded: In this case we take a subsequence such that \(|q_j| \to \infty\) and the sequence \(d_j := d_j/|d_j|\) converges to \(d_\infty \in \partial B_1\). Then \(w_j\) is a viscosity solution to

\[-\Delta w_j - (p_j(x) - 2) \frac{\langle D^2 w_j(|q_j|^{-1}Dw_j + d_j), |q_j|^{-1}Dw_j + d_j \rangle}{|q_j|^{-1}Dw_j + d_j|^2 + |q_j|^{-2}\varepsilon^2} = f_j(x)\quad \text{in } B_1.\]

It follows from the stability principle that \(w_\infty\) is a viscosity solution to

\[-\Delta w_j - (p_\infty(x) - 2) \langle D^2 w_\infty d_\infty, d_\infty \rangle = 0\quad \text{in } B_1.\]

By [13, Theorem 8.3] there exist positive constants \(\beta_2(N, \hat{\beta}), C_2(N, \hat{\beta}), r_2(N, \hat{\beta})\) and a vector \(q' \in \mathbb{R}^N\) such that

\[\text{osc}_{B_r}(w_\infty - q' \cdot x) \leq C_2r^{1+\beta_2}\quad \text{for all } r \leq r_2.\]

We set \(C_0 := \max(C_1, C_2)\) and \(\beta_0 := \min(\beta_1, \beta_2)\). Then by the two different cases there always exists a vector \(q' \in \mathbb{R}^N\) such that

\[\text{osc}_{B_r}(w_\infty - q' \cdot x) \leq C_0r^{1+\beta_0}\quad \text{for all } r \leq \min\left(\frac{1}{2}, r_2\right).\]
We take \(\tau \) so small that \(C_0 \tau^{\beta_0} \leq \frac{1}{4} \) and \(\tau \leq \min(\frac{1}{2}, r_2) \). Then, by substituting \(r = \tau \) in the above display, we obtain
\[
\operatorname{osc}_{B_r}(w_\infty - q' \cdot x) \leq C_0 \tau^{\beta_0} \tau \leq \frac{1}{4} \tau,
\] (4.5)
which contradicts (4.3).

The bound \(|q'| \leq C(N, \hat{p}) \) follows by observing that (4.5) together with the assumption \(\operatorname{osc}_{B_1} w \leq 1 \) yields \(|q'| \leq C \). Thus the contradiction is still there even if (4.3) is weakened by requiring additionally that \(|q'| \leq C \). \(\square \)

Lemma 4.2. Let \(\tau(N, \hat{p}) \) and \(\epsilon(N, \hat{p}) \) be as in Lemma 4.1. If \(\|f\|_{L^\infty(B_1)} \leq \epsilon \) and \(u \) is a viscosity solution to (4.1) in \(B_1 \) with \(q = 0 \), \(u(0) = 0 \) and \(\operatorname{osc}_{B_1} u \leq 1 \), then there exists \(\alpha \in (0, 1) \) and \(q_\infty \in \mathbb{R}^N \) such that
\[
\sup_{B_{\frac{1}{2}}} |u(x) - q_\infty \cdot x| \leq C(N, \hat{p}) \tau^{k(1+\alpha)} \quad \text{for all } k \in \mathbb{N}.
\]

Proof. Step 1: We show that there exists a sequence \((q_k)_{k=0}^\infty \subset \mathbb{R}^N \) such that
\[
\operatorname{osc}_{B_{\frac{1}{2}}} (u(x) - q_k \cdot x) \leq \tau^{k(1+\alpha)}. \quad (4.6)
\]
When \(k = 0 \), this estimate holds by setting \(q_0 = 0 \) since \(u(0) = 0 \) and \(\operatorname{osc}_{B_1} u \leq 1 \). Next we take \(\alpha \in (0, 1) \) such that \(\tau^\alpha > \frac{1}{2} \). We assume that \(k \geq 0 \) and that we have already constructed \(q_k \) for which (4.6) holds. We set
\[
w_k(x) := \tau^{-k(1+\alpha)}(u(\tau^k x) - q_k \cdot (\tau^k x))
\]
and
\[
f_k(x) := \tau^{k(1-\alpha)}f(\tau^k x).
\]
Then by induction assumption \(\operatorname{osc}_{B_1}(w_k) \leq 1 \) and \(w_k \) is a viscosity solution to
\[
-\Delta w_k - \frac{(p(\tau^k x) - 2) \langle D^2w_k(Dw_k + \tau^{-k\alpha}q_k), Dw_k + \tau^{-k\alpha}q_k \rangle}{|Dw_k + \tau^{-k\alpha}q_k|^2 + (\tau^{-k\alpha}x)^2} = f_k(x) \quad \text{in } B_1.
\]
By Lemma 4.1 there exists \(q_k' \in \mathbb{R}^N \) with \(|q_k'| \leq C(N, \hat{p}) \) such that
\[
\operatorname{osc}_{B_1} (w_k(x) - q'_k \cdot x) \leq \frac{1}{2} \tau.
\]
Using the definition of \(w_k \), scaling to \(B_{\frac{1}{2}+1} \) and dividing by \(\tau^{-k(\alpha+1)} \), we obtain from the above
\[
\operatorname{osc}_{B_{\frac{1}{2}+1}} (u(x) - (q_k + \tau^{k\alpha} q'_k) \cdot x) \leq \frac{1}{2} \tau^{1+k(1+\alpha)} \leq \tau^{(k+1)(1+\alpha)}.
\]
Denoting \(q_{k+1} := q_k + \tau^{k\alpha} q'_k \), the above estimate is condition (4.6) for \(k + 1 \) and the induction step is complete.

Step 2: Observe that whenever \(m > k \), we have
\[
|q_m - q_k| \leq \sum_{i=k}^{m-1} \tau^{i\alpha} |q'_i| \leq C(N, \hat{p}) \sum_{i=k}^{m-1} \tau^{i\alpha}.
\]
Therefore q_k is a Cauchy sequence and converges to some $q_\infty \in \mathbb{R}^N$. Thus

$$\sup_{x \in B_{r,k}} (q_k \cdot x - q_\infty \cdot x) \leq \tau^k |q_k - q_\infty| \leq \tau^k \sum_{i=k}^{\infty} \tau^\alpha q_i' \leq C(N, \hat{p}) \tau^{k(1+\alpha)}.$$

This with (4.6) implies that

$$\sup_{x \in B_{r,k}} |u(x) - q_\infty \cdot x| \leq C(N, \hat{p}) \tau^{k(1+\alpha)}.$$

\[\square \]

Theorem 4.3. Suppose that u is a viscosity solution to (4.1) in B_1 with $q = 0$ and $\text{osc}_{B_1} \leq 1$. Then there are constants $\alpha(N, \hat{p})$ and $C(N, \hat{p}, \|f\|_{L^\infty(B_1)})$ such that

$$\|u\|_{C^{1,\alpha}(B_{1/2})} \leq C.$$

Proof. Let $\epsilon(N, \hat{p})$ and $\tau(N, \hat{p})$ be as in Lemma 4.2. Set

$$v(x) := \kappa u(x/4)$$

where $\kappa := \epsilon(1 + \|f\|_{L^\infty(B_1)})^{-1}$. For $x_0 \in B_1$, set

$$w(x) := v(x + x_0) - v(x_0).$$

Then $\text{osc}_{B_1} w \leq 1$, $w(0) = 0$ and w is a viscosity solution to

$$-\Delta w - \frac{(p(x/4 + x_0/4) - 2)(D^2wDw, Dw)}{|Dw|^2 + \epsilon^2 \kappa^2} = g(x) \quad \text{in } B_1,$$

where $g(x) := \kappa f(x/4 + x_0/4)/4^2$. Now $\|g\|_{L^\infty(B_1)} \leq \epsilon$ so by Lemma 4.2 there exists $q_\infty(x_0) \in \mathbb{R}^N$ such that

$$\sup_{x \in B_{r,k}} |w(x) - q_\infty(x_0) \cdot x| \leq C(N, \hat{p}) \tau^{k(1+\alpha)}$$

for all $k \in \mathbb{N}$.

Thus we have shown that for any $x_0 \in B_1$ there exists a vector $q_\infty(x_0)$ such that

$$\sup_{x \in B_{r,(x_0)}} |v(x) - v(x_0) - q_\infty(x_0) \cdot (x - x_0)| \leq C(N, \hat{p}) r^{1+\alpha}$$

for all $r \in (0, 1]$.

This together with a standard argument (see for example [4, Lemma A.1]) implies that $[Du]_{C^{1}(B_1)} \leq C(N, \hat{p})$ and so by definition of v, also $[Du]_{C^{1}(B_{1/4})} \leq C(N, \hat{p}, \|f\|_{L^\infty(B_1)})$. The conclusion of the theorem then follows by a standard translation argument. \[\square \]

5. **Proof of the main theorem**

In this section we finish the proof our main theorem.

Proof of Theorem 1.1. We may assume that $u \in C(\overline{B_1})$. By Comparison Principle (Lemma B.2 in the Appendix) u is the unique viscosity solution to

$$\begin{cases}
-\Delta v - \frac{(p(x) - 2)(D^2vDv, Dv)}{|Dv|^2} = f(x) + u - v \quad \text{in } B_1, \\
v = u \quad \text{on } \partial B_1.
\end{cases} \quad (5.1)$$
By [21, Theorem 15.18] there exists a classical solution u_ε to the approximate problem

$$
\begin{cases}
-\Delta u_\varepsilon - \frac{(p_\varepsilon(x) - 2)\langle D^2 u_\varepsilon, Du_\varepsilon \rangle}{|Du_\varepsilon|^2 + \varepsilon^2} = f_\varepsilon(x) + u_\varepsilon - u & \text{in } B_1, \\
u_\varepsilon = u & \text{on } \partial B_1,
\end{cases}
$$

where $p_\varepsilon, f_\varepsilon, u_\varepsilon \in C^\infty(B_1)$ are such that $p_\varepsilon \to p, f_\varepsilon \to f$ and $u_\varepsilon \to u_0$ uniformly in B_1 as $\varepsilon \to 0$ and $\|Dp_\varepsilon\|_{L^\infty(B_1)} \leq \|Dp\|_{L^\infty(B_1)}$. The maximum principle implies that $\|u_\varepsilon\|_{L^\infty(B_1)} \leq 2 \|f\|_{L^\infty(B_1)} + 2 \|u\|_{L^\infty(B_1)}$. By [13, Proposition 4.14] the solutions u_ε are equicontinuous in \overline{B}_1 (their modulus of continuity depends only on $N, p, \|f\|_{L^\infty(B_1)}, \|u\|_{L^\infty(B_1)}$, and modulus of continuity of u). Therefore by the Ascoli-Arzela theorem we have $u_\varepsilon \to v \in C(\overline{B}_1)$ uniformly in \overline{B}_1 up to a subsequence. By the stability principle, v is a viscosity solution to (5.1) and thus by uniqueness $v \equiv u$.

By Corollary 4.3 we have $\alpha(N, \hat{p})$ such that

$$
\|Du_\varepsilon\|_{C^0(B_{1/2})} \leq C(N, \hat{p}, \|f\|_{L^\infty(B_1)}, \|u\|_{L^\infty(B_1)}),
$$

and by the Lipschitz estimate A.2 also

$$
\|Du_\varepsilon\|_{L^\infty(B_{1/2})} \leq C(N, \hat{p}, \|f\|_{L^\infty(B_1)}, \|u\|_{L^\infty(B_1)}).
$$

Therefore by the Ascoli-Arzela theorem there exists a subsequence such that $Du_\varepsilon \to \eta$ uniformly in $B_{1/2}$, where the function $\eta : B_{1/2} \to \mathbb{R}^N$ satisfies

$$
\|\eta\|_{C^0(B_{1/2})} \leq C(N, \hat{p}, \|f\|_{L^\infty(B_1)}, \|u\|_{L^\infty(B_1)}).
$$

Using the mean value theorem and the estimate (5.2), we deduce for all $x, y \in B_{1/2}$

$$
\begin{align*}
|u(y) - u(x) - (y - x) \cdot \eta(x)| & \leq |u_\varepsilon(x) - u_\varepsilon(y) - (y - x) \cdot Du_\varepsilon(x)| \\
& \quad + |u(y) - u_\varepsilon(y) - u(x) + u_\varepsilon(x)| + |x - y| |\eta(x) - Du_\varepsilon(x)| \\
& \leq C(N, \hat{p}, \|u\|_{L^\infty(B_1)}) |x - y|^{1 + \alpha} + o(\varepsilon)/\varepsilon.
\end{align*}
$$

Letting $\varepsilon \to 0$, this implies that $Du(x) = \eta(x)$ for all $x \in B_{1/2}$. □

Appendix A. Lipschitz estimate

In this section we apply the method of Ishii and Lions [23] to prove a Lipschitz estimate for solutions to the inhomogeneous normalized $p(x)$-Laplace equation and its regularized or perturbed versions. We need the following vector inequality.

Lemma A.1. Let $a, b \in \mathbb{R}^N \setminus \{0\}$ with $a \neq b$ and $\varepsilon \geq 0$. Then

$$
\left| \frac{a}{\sqrt{|a|^2 + \varepsilon^2}} - \frac{b}{\sqrt{|b|^2 + \varepsilon^2}} \right| \leq \frac{2}{\max \{|a|, |b|\}} |a - b|.
$$
Therefore, in Our and where

Proof. We may suppose that \(|a| = \max(|a|, |b|)\). Let \(s_1 := \sqrt{|a|^2 + \varepsilon^2}\) and \(s_2 := \sqrt{|b|^2 + \varepsilon^2}\). Then

\[
\frac{|a - b|}{s_1} = \frac{1}{s_1} |a - b| \leq \frac{1}{s_1} (|a| + \varepsilon^2 + |b|) \\
\frac{|a - b|}{s_2} = \frac{1}{s_2} |a - b| \leq \frac{1}{s_2} (|a| + \varepsilon^2 + |b|).
\]

Moreover,

\[
|s_2 - s_1| = \left| \sqrt{|a|^2 + \varepsilon^2} - \sqrt{|b|^2 + \varepsilon^2} \right| \leq \frac{|a| - |b|}{|a|} \leq |a - b|. \quad \Box
\]

Theorem A.2 (Lipschitz estimate). Suppose that \(p : B_1 \to \mathbb{R}\) is Lipschitz continuous, \(p_{\min} > 1\) and that \(f \in C(B_1)\) is bounded. Let \(u\) be a viscosity solution to

\[
-\Delta u - (p(x) - 2) \frac{\langle D^2 u(Du + q), Du + q \rangle}{|Du + q|^2 + \varepsilon^2} = f(x) \quad \text{in } B_1,
\]

where \(\varepsilon \geq 0\) and \(q \in \mathbb{R}^N\). Then there are constants \(C_0(N, \hat{p}, \|u\|_{L^\infty(B_1)}, \|f\|_{L^\infty(B_1)})\) and \(v_0(N, \hat{p})\) such that if \(|q| > v_0\) or \(|q| = 0\), then we have

\[
|u(x) - u(y)| \leq C_0 |x - y| \quad \text{for all } x, y \in B_{1/2}.
\]

Proof. We let \(r(N, \hat{p}) \in (0, 1/2)\) denote a small constant that will be specified later. Let \(x_0, y_0 \in B_{r/2}\) and define the function

\[
\Psi(x, y) := u(x) - u(y) - L \varphi(|x - y|) - \frac{M}{2} |x - x_0|^2 - \frac{M}{2} |y - y_0|^2,
\]

where \(\varphi : [0, 2] \to \mathbb{R}\) is given by

\[
\varphi(s) := s - s^\gamma \kappa_0, \quad \kappa_0 := \frac{1}{\gamma 2^{-\gamma + 1}},
\]

and the constants \(L(N, \hat{p}, \|u\|_{L^\infty(B_1)}), M(N, \hat{p}, \|u\|_{L^\infty(B_1)}) > 0\) and \(\gamma(N, \hat{p}) \in (1, 2)\) are also specified later. Our objective is to show that for a suitable choice of these constants, the function \(\Psi\) is non-positive in \(\overline{B_r} \times \overline{B_r}\). By the definition of \(\varphi\), this yields \(u(x_0) - u(y_0) \leq L |x_0 - y_0|\) which implies that \(u\) is \(L\)-Lipschitz in \(B_r\). The claim of the theorem then follows by standard translation arguments.

Suppose on contrary that \(\Psi\) has a positive maximum at some point \((\hat{x}, \hat{y}) \in \overline{B_r} \times \overline{B_r}\). Then \(\hat{x} \neq \hat{y}\) since otherwise the maximum would be non-positive. We have

\[
0 < u(\hat{x}) - u(\hat{y}) - L \varphi(|\hat{x} - \hat{y}|) - \frac{M}{2} |\hat{x} - x_0|^2 - \frac{M}{2} |\hat{y} - y_0|^2
\]

\[
\leq |u(\hat{x}) - u(\hat{y})| - \frac{M}{2} |\hat{x} - x_0|^2. \quad (A.1)
\]

Therefore, by taking

\[
M := \frac{8 \text{osc}_{B_1} u}{r^2}, \quad (A.2)
\]
we get

\[|\hat{x} - x_0| \leq \sqrt{\frac{2}{M}} |u(\hat{x}) - u(\hat{y})| \leq r/2 \]

and similarly \(|\hat{y} - y_0| \leq r/2\). Since \(x_0, y_0 \in B_{r/2}\), this implies that \(\hat{x}, \hat{y} \in B_r\).

By [13, Proposition 4.10] there exist constants \(C'(N, \hat{\mu}, \|u\|_{L^\infty(B_1)}, \|f\|_{L^\infty(B_1)})\) and \(\beta(N, \hat{\mu}) \in (0, 1)\) such that

\[|u(x) - u(y)| \leq C'|x - y|^\beta \text{ for all } x, y \in B_r. \tag{A.3} \]

It follows from (A.1) and (A.3) that for \(C_0 := \sqrt{2C}M\) we have

\[M |\hat{x} - x_0| \leq C_0 |\hat{x} - \hat{y}|^{\beta/2}, \]

\[M |\hat{y} - y_0| \leq C_0 |\hat{x} - \hat{y}|^{\beta/2}. \tag{A.4} \]

Since \(\hat{x} \neq \hat{y}\), the function \((x, y) \mapsto \varphi(|x - y|)\) is \(C^2\) in a neighborhood of \((\hat{x}, \hat{y})\) and we may invoke the Theorem of sums [14, Theorem 3.2]. For any \(\mu > 0\) there exist matrices \(X, Y \in \mathcal{S}^N\) such that

\[
(D_x(L\varphi(|x - y|))(\hat{x}, \hat{y}), X) \in \mathcal{J}^{2,+}(u - \frac{M}{2}|x - x_0|^2)(\hat{x}),
\]

\[
(-D_y(L\varphi(|x - y|))(\hat{x}, \hat{y}), Y) \in \mathcal{J}^{2,-}(u + \frac{M}{2}|y - y_0|^2)(\hat{y}),
\]

which by denoting \(z := \hat{x} - \hat{y}\) and

\[
a := L\varphi'(|z|) \frac{z}{|z|} + M(\hat{x} - x_0),
\]

\[
b := L\varphi'(|z|) \frac{z}{|z|} - M(\hat{y} - y_0),
\]

can be written as

\[
(a, X + MI) \in \mathcal{J}^{2,+}u(\hat{x}), \quad (b, Y - MI) \in \mathcal{J}^{2,-}u(\hat{y}). \tag{A.5}
\]

By assuming that \(L\) is large enough depending on \(C_0\), we have by (A.4) and the fact \(\varphi' \in [\frac{q}{4}, 1]\)

\[
|a|, |b| \leq L |\varphi'(|\hat{x} - \hat{y}|)| + C_0 |\hat{x} - \hat{y}|^{\beta/2} \leq 2L, \tag{A.6}
\]

\[
|a|, |b| \geq L |\varphi'(|\hat{x} - \hat{y}|)| - C_0 |\hat{x} - \hat{y}|^{\beta/2} \geq \frac{1}{2}L. \tag{A.7}
\]

Moreover, we have

\[
-(\mu + 2 \|B\|) \begin{pmatrix} I & 0 \\ 0 & I \end{pmatrix} \leq \begin{pmatrix} X & 0 \\ 0 & -Y \end{pmatrix} \leq \begin{pmatrix} B & -B \\ -B & B \end{pmatrix} + \frac{2}{\mu} \begin{pmatrix} B^2 & -B^2 \\ -B^2 & B^2 \end{pmatrix}, \tag{A.8}
\]

where
\[B = L\varphi''(|z|) \frac{z}{|z|} \otimes \frac{z}{|z|} + \frac{L\varphi'(|z|)}{|z|} \left(I - \frac{z}{|z|} \otimes \frac{z}{|z|} \right), \]
\[B^2 = BB = L^2(\varphi''(|z|))^2 \frac{z}{|z|} \otimes \frac{z}{|z|} + \frac{L^2(\varphi'(|z|))^2}{|z|^2} \left(I - \frac{z}{|z|} \otimes \frac{z}{|z|} \right). \]

Using that \(\varphi''(|z|) < 0 < \varphi'(|z|) \) and \(|\varphi''(|z|)| \leq \varphi'(|z|)/|z| \), we deduce that
\[\|B\| \leq \frac{L\varphi'(|z|)}{|z|} \quad \text{and} \quad \|B^2\| \leq \frac{L^2(\varphi'(|z|))^2}{|z|^2}. \]

Moreover, choosing
\[\mu := 4L \left(|\varphi''(|z|)| + \frac{|\varphi'(|z|)|}{|z|} \right), \]
and using that \(\varphi''(|z|) < 0 \), we have
\[\left\langle B \frac{z}{|z|}, \frac{z}{|z|} \right\rangle + \frac{2}{\mu} \left\langle B^2 \frac{z}{|z|}, \frac{z}{|z|} \right\rangle = L\varphi''(|z|) + \frac{2}{\mu} L^2 |\varphi''(|z|)| \leq \frac{L}{2} \varphi''(|z|). \]

We set \(\eta_1 := a + q \) and \(\eta_2 := b + q \). By (A.6) and (A.7) there is a constant \(\nu_0(L) \) such that if \(|q| = 0 \) or \(|q| > \nu_0 \), then
\[|\eta_1|, |\eta_2| \geq \frac{L}{2}. \]

We denote \(A(x, \eta) := I + (p(x) - 2)\eta \otimes \eta \) and \(\bar{\eta} := \frac{\eta}{\sqrt{|\eta|^2 + x_2^2}} \). Since \(u \) is a viscosity solution, we obtain from (A.5)
\[0 \leq \text{tr}(A(\hat{x}, \eta_1)(X + MI)) - \text{tr}(A(\hat{y}, \eta_2)(Y - MI)) + f(\hat{x}) - f(\hat{y}) \]
\[= \text{tr}(A(\hat{y}, \bar{\eta}_2)(X - Y)) + \text{tr}((A(\hat{x}, \bar{\eta}_2) - A(\hat{y}, \bar{\eta}_2))X) \]
\[+ \text{tr}((A(\hat{x}, \eta_1) - A(\hat{x}, \bar{\eta}_2))X) + M\text{tr}(A(\hat{x}, \eta_1) + A(\hat{y}, \bar{\eta}_2)) \]
\[+ f(\hat{x}) - f(\hat{y}) \]
\[=: T_1 + T_2 + T_3 + T_4 + T_5. \]

We will now proceed to estimate these terms. The plan is to obtain a contradiction by absorbing the other terms into \(T_1 \) which is negative by concavity of \(\varphi \).

Estimate of \(T_1 \): Multiplying (A.8) by the vector \(\left(\frac{z}{|z|}, -\frac{z}{|z|} \right) \) and using (A.10), we obtain an estimate for the smallest eigenvalue of \(X - Y \)
\[\lambda_{\min}(X - Y) \leq \left\langle (X - Y) \frac{z}{|z|}, \frac{z}{|z|} \right\rangle \]
\[\leq 4 \left\langle B \frac{z}{|z|}, \frac{z}{|z|} \right\rangle + \frac{8}{\mu} \left\langle B^2 \frac{z}{|z|}, \frac{z}{|z|} \right\rangle \leq 2L\varphi''(|z|). \]

The eigenvalues of \(A(\hat{y}, \bar{\eta}_2) \) are between \(\min(1, p_{\min} - 1) \) and \(\max(1, p_{\max} - 1) \). Therefore by [36]
\[T_1 = \text{tr}(A(\hat{y}, \bar{\eta}_2)(X - Y)) \leq \sum_i \lambda_i(A(\hat{y}, \bar{\eta}_2))\lambda_i(X - Y) \]
\[\leq \min(1, p_{\min} - 1)\lambda_{\min}(X - Y) \]
\[\leq C(\hat{p})L\varphi''(|z|). \]

Estimate of \(T_2\): We have

\[T_2 = \text{tr}((A(\hat{x}, \hat{\eta}_2) - A(\hat{y}, \hat{\eta}_2))X) \leq |p(\hat{x}) - p(\hat{y})| |X\hat{\eta}_2, \hat{\eta}_2| \leq C(\hat{p})|z| \|X\|, \]

where by (A.8) and (A.9)

\[\|X\| \leq \|B\| + \frac{2}{\mu} \|B\|^2 \leq \frac{L|\varphi'(|z|)|}{|z|} + \frac{2L^2(\varphi'(|z|))^2}{4L(|\varphi''(|z|)| + |\varphi'(|z|)| |z|^2)} \]

\[\leq \frac{2L\varphi'(|z|)}{|z|}. \quad (A.13) \]

Estimate of \(T_3\): From Lemma A.1 and the estimate (A.11) it follows that

\[|\eta_1 - \eta_2| \leq \frac{2|\eta_1 - \eta_2|}{\max(|\eta_1|, |\eta_2|)} \leq \frac{4}{L} |\eta_1 - \eta_2| = \frac{4L}{L} |a - b| \]

\[\leq \frac{4}{L} (M|\hat{x} - x_0| + M|\hat{y} - y_0|) \leq \frac{8C_0}{L} |z|^\beta/2, \quad (A.14) \]

where in the last inequality we used (A.4). Observe that

\[\|\eta_1 \otimes \eta_1 - \eta_2 \otimes \eta_2\| = \|\overline{\eta}_1 - \overline{\eta}_2\| \leq \|\eta_1 + |\eta_2\| \leq (|\eta_1| + |\eta_2|) |\eta_1 - \eta_2|. \]

Using the last two displays, we obtain by [36] and (A.13)

\[T_3 = \text{tr}((A(\hat{x}, \eta_1) - A(\hat{x}, \eta_2))X) \leq N \|A(x_1, \overline{\eta}_1) - A(x_1, \overline{\eta}_2)\| \|X\| \]

\[\leq N |p(x_1) - 2|(|\eta_1| + |\eta_2|)|\eta_1 - \eta_2| \|X\| \]

\[\leq \frac{C(N, \hat{p})C_0}{L} |z|^\beta/2 \|X\| \]

\[\leq C(N, \hat{p}, \|u\|_{L^\infty}, \|f\|_{L^\infty}) \sqrt{M\varphi'(|z|)} |z|^\beta/2 - 1. \]

Estimate of \(T_4\) and \(T_5\): By Lipschitz continuity of \(p\) we have

\[T_4 = M\text{tr}(A(\hat{x}, \eta_1) + A(\hat{y}, \overline{\eta}_2)) \leq 2MC(N, \hat{p}). \]

We have also

\[T_5 = f(\hat{x}) - f(\hat{y}) \leq 2 \|f\|_{L^\infty(B_1)}. \]

Combining the estimates, we deduce the existence of positive constants \(C_1(N, \hat{p})\) and \(C_2(N, \hat{p}, \|u\|_{L^\infty(B_1)}), \|f\|_{L^\infty(B_1)}\) such that

\[0 \leq C_1L\varphi''(|z|) + C_2(L\varphi'(|z|) + \sqrt{M\varphi'}(|z|)) |z|^\beta - 1 + M + 1 \]

\[\leq C_1L\varphi''(|z|) + C_2(L + \sqrt{M}) |z|^\beta - 1 + M + 1 \quad (A.15) \]

where we used that \(\varphi'(|z|) \in [\frac{3}{4}, 1]\). We take \(\gamma := \frac{\beta}{2} + 1\) so that we have
\[
\varphi''(|z|) = \frac{1 - \gamma}{2^{\gamma+1}} |z|^{-2} = \frac{-\beta}{2^{\frac{\beta}{2}+3}} |z|^\frac{\beta-1}{2} = -C_3 |z|^\frac{\beta-1}{2}.
\]

We apply this to (A.15) and obtain
\[
0 \leq (C_2 \sqrt{M} - C_1 C_3 L) |z|^\frac{\beta}{2} - C_2 (L + M + 1)
\] (A.16)

We fix \(r := \frac{1}{2} \left(\frac{6C_2}{C_1 C_3} \right)^{\frac{2}{\beta-1}} \). By (A.2) this will also fix \(M = (N, \hat{p}, \|u\|_{L^\infty(B_1)}) \). We take \(L \) so large that

\[
L > \max \left(\frac{2C_2 \sqrt{M}}{C_1 C_3}, M + 1 \right).
\]

Then by (A.16) we have

\[
0 < -\frac{1}{2} C_1 C_3 L |z|^\frac{\beta}{2} - 2C_2 L \leq L (-\frac{1}{2} C_1 C_3 (2r)^\frac{\beta-1}{2} + 2C_2)
\]

\[
= -LC_2 \leq 0,
\]

which is a contradiction. \(\square \)

Appendix B. Stability and comparison principles

Lemma B.1. Suppose that \(p \in C(B_1) \), \(p_{\min} > 1 \) and that \(f : B_1 \times \mathbb{R} \rightarrow \mathbb{R} \) is continuous. Let \(u_\varepsilon \) be a viscosity solution to

\[
-\Delta u_\varepsilon - (p_\varepsilon(x) - 2) \frac{\langle D^2 u_\varepsilon D u_\varepsilon, D u_\varepsilon \rangle}{|D u_\varepsilon|^2 + \varepsilon^2} = f_\varepsilon(x, u(x)) \quad \text{in } B_1
\]

and assume that \(u_\varepsilon \rightarrow u \in C(B_1) \), \(p_\varepsilon \rightarrow p \) and \(f_\varepsilon \rightarrow f \) locally uniformly as \(\varepsilon \rightarrow 0 \). Then \(u \) is a viscosity solution to

\[
-\Delta u - (p(x) - 2) \frac{\langle D^2 u D u, D u \rangle}{|D u|^2} = f(x, u(x)) \quad \text{in } B_1.
\]

Proof. It is enough to consider supersolutions. Suppose that \(\varphi \in C^2 \) touches \(u \) from below at \(x \). Since \(u_\varepsilon \rightarrow u \) locally uniformly, there exists a sequence \(x_\varepsilon \rightarrow x \) such that \(u_\varepsilon - \varphi \) has a local minimum at \(x_\varepsilon \). We denote \(\eta_\varepsilon := D\varphi(x_\varepsilon) / \sqrt{|D\varphi(x_\varepsilon)|^2 + \varepsilon^2} \). Then \(\eta_\varepsilon \rightarrow \eta \in \overline{B}_1 \) up to a subsequence. Therefore we have

\[
0 \leq -\Delta \varphi(x_\varepsilon) - (p_\varepsilon(x_\varepsilon) - 2) \langle D^2 \varphi(x_\varepsilon) \eta_\varepsilon, \eta_\varepsilon \rangle - f_\varepsilon(x_\varepsilon, u_\varepsilon(x_\varepsilon))
\]

\[
\rightarrow -\Delta \varphi(x) - (p(x) - 2) \langle D^2 \varphi(x) \eta, \eta \rangle - f(x, u(x)),
\]

(B.1)

which is what is required in Definition 2.1 in the case \(D\varphi(x) = 0 \). If \(D\varphi(x) \neq 0 \), then \(D\varphi(x_\varepsilon) \neq 0 \) when \(\varepsilon \) is small and thus \(\eta = D\varphi(x) / |D\varphi(x)| \). Therefore B.1 again implies the desired inequality. \(\square \)

Lemma B.2. Suppose that \(p : B_1 \rightarrow \mathbb{R} \) is Lipschitz continuous, \(p_{\min} > 1 \) and that \(f \in C(B_1) \) is bounded. Assume that \(u \in C(\overline{B}_1) \) is a viscosity subsolution to \(-\Delta_{p(x)}^N u \leq f - u \) in \(B_1 \) and that \(v \in C(\overline{B}_1) \) is a viscosity supersolution to \(-\Delta_{p(x)}^N v \geq f - v \) in \(B_1 \). Then

\[
u \leq u \quad \text{on } \partial B_1
\]
implies
\[u \leq v \quad \text{in } B_1. \]

Proof. Step 1: Assume on the contrary that the maximum of \(u - v \) in \(B_1 \) is positive. For \(x, y \in \overline{B}_1 \), set

\[\Psi_j(x, y) := u(x) - v(y) - \varphi_j(x, y), \]

where \(\varphi_j(x, y) := \frac{j}{4} |x - y|^4 \). Let \((x_j, y_j) \) be a global maximum point of \(\Psi_j \) in \(\overline{B}_1 \times \overline{B}_1 \). Then

\[u(x_j) - v(y_j) - \frac{j}{4} |x_j - y_j|^4 \geq u(0) - v(0) \]

so that

\[\frac{j}{4} |x_j - y_j|^4 \leq 2 \| u \|_{L^\infty(B_1)} + 2 \| v \|_{L^\infty(B_1)} < \infty. \]

By compactness and the assumption \(u \leq v \) on \(\partial B_1 \) there exists a subsequence such that \(x_j, y_j \to \hat{x} \in B_1 \) and \(u(\hat{x}) - v(\hat{x}) > 0 \). Finally, since \((x_j, y_j) \) is a maximum point of \(\Psi_j \), we have

\[u(x_j) - v(x_j) \leq u(x_j) - v(y_j) - \frac{j}{4} |x_j - y_j|^4, \]

and hence by continuity

\[\frac{j}{4} |x_j - y_j|^4 \leq v(x_j) - v(y_j) \to 0 \quad \text{as } j \to \infty. \]

Step 2: If \(x_j = y_j \), then \(D_x^2 \varphi_j(x_j, y_j) = D_y^2 \varphi_j(x_j, y_j) = 0 \). Therefore, since the function \(x \mapsto u(x) - \varphi_j(x, y_j) \) reaches its maximum at \(x_j \) and \(y \mapsto v(y) - (-\varphi_j(x, y)) \) reaches its minimum at \(y_j \), we obtain from the definition of viscosity sub- and supersolutions that

\[0 \leq f(x_j) - u(x_j) \quad \text{and} \quad 0 \geq f(y_j) - v(y_j). \]

That is \(0 \leq f(x_j) - f(y_j) + v(y_j) - u(x_j) \), which leads to a contradiction since \(x_j, y_j \to \hat{x} \) and \(v(\hat{x}) - u(\hat{x}) < 0 \). We conclude that \(x_j \neq y_j \) for all large \(j \). Next we apply the Theorem of sums [14, Theorem 3.2] to obtain matrices \(X, Y \in S^N \) such that

\[(D_x \varphi(x_j, y_j), X) \in T^{2,+} u(x_j), \quad (-D_y \varphi(x_j, y_j), Y) \in T^{2,-} v(y_j) \]

and

\[\left(\begin{array}{cc} X & 0 \\ 0 & -Y \end{array} \right) \leq D^2 \varphi(x_j, y_j) + \frac{1}{2} (D^2(x_j, y_j))^2, \quad \text{(B.3)} \]

where

\[D^2(x_j, y_j) = \left(\begin{array}{cc} M & -M \\ -M & M \end{array} \right) \]

with \(M = j(2(x_j - y_j) \odot (x_j - y_j) + |x_j - y_j|^2 I) \). Multiplying the matrix inequality (B.3) by the \(\mathbb{R}^{2N} \) vector \((\xi_1, \xi_2)\) yields
\[
\langle X\xi_1,\xi_1 \rangle - \langle Y\xi_2,\xi_2 \rangle \leq \langle (M + 2j^{-1}M^2)(\xi_1 - \xi_2),\xi_1 - \xi_2 \rangle \\
\leq (\|M\| + 2j^{-1}\|M\|^2)\|\xi_1 - \xi_2\|^2.
\]

Observe also that \(\eta := D_x\varphi(x_j, y_j) = -D_y(x_j, y_j) = j|x_j - y_j|^2(x_j - y_j) \neq 0 \) for all large \(j \). Since \(u \) is a subsolution and \(v \) is a supersolution, we thus obtain

\[
f(y_j) - f(x_j) + u(x_j) - v(y_j) \\
\leq \text{tr}(X - Y) + (p(x_j) - 2)\left\langle X\frac{\eta}{|\eta|},\frac{\eta}{|\eta|}\right\rangle - (p(y_j) - 2)\left\langle Y\frac{\eta}{|\eta|},\frac{\eta}{|\eta|}\right\rangle \\
\leq (p(x_j) - 1)\left\langle X\frac{\eta}{|\eta|},\frac{\eta}{|\eta|}\right\rangle - (p(y_j) - 1)\left\langle Y\frac{\eta}{|\eta|},\frac{\eta}{|\eta|}\right\rangle \\
\leq (\|M\| + 2j^{-1}\|M\|^2)\sqrt{p(x_j) - 1 - \sqrt{p(y_j) - 1}}^2 \\
\leq Cj|x_j - y_j|^2 \frac{|p(x_j) - p(y_j)|^2}{(\sqrt{p(x_j)} - 1 + \sqrt{p(y_j)} - 1)^2} \\
\leq C(\tilde{p})j|x_j - y_j|^4.
\]

This leads to a contradiction since the left-hand side tends to \(u(\tilde{x}) - v(\tilde{y}) > 0 \) and the right-hand side tends to zero by (B.2). □

References