
Newton update based independent vector analysis
with various source density models

Master’s thesis of statistics

May 27, 2022
Mika Sipilä

Department of Mathematics and Statistics
University of Jyväskylä

UNIVERSITY OF JYVÄSKYLÄ
Department of Mathematics and Statistics
Mika Sipilä: Newton update based independent vector analysis with various source
density models
Master’s thesis of statistics, 48 pages + 21 pages (Appendix)
May 27, 2022

Abstract
Blind source separation methods (BSS) are used to estimate latent source signals from their
mixed observations when the mixing environment is unknown. Independent component
analysis (ICA) is a BSS method, which aims to recover the sources by maximizing
the independence between the estimated sources. A more recently developed method,
independent vector analysis (IVA), is an extension of ICA to analyse multivariate source
signals or multiple datasets jointly. IVA assumes that the source components are dependent
on each other between the datasets, which is used to achieve better results than by applying
ICA to each dataset separately. IVA uses the Kullback-Leibler divergence as an objective
function, which is minimized to achieve as independent source estimates as possible.

To minimize the objective function, the source density models and the optimization
method need to be selected. In this thesis, four different algorithms are investigated, each
of which is using a Newton update based optimization method. The source density models
of the algorithms are the multivariate Gaussian (IVA-G), the multivariate Laplace with any
covariance structure (IVA-L), the multivariate Laplace with diagonal covariance structure
(IVA-L-diag) and the multivariate Cauchy (IVA-C) distributions.

The algorithms are compared under different situations using simulation studies.
IVA-L, IVA-L-diag and IVA-C tend to converge often to local optima, which is avoided
by initializing IVA-L, IVA-L-diag and IVA-C with the estimated unmixing matrices of
IVA-G and fastIVA. FastIVA is the original IVA algorithm, which restricts the unmixing
matrices to be orthogonal. After the initialization, IVA-L becomes the most flexible and
consistent algorithm in all setups. IVA-G performs well when the sources are mostly
second-order dependent, and is superior in terms of computation time. IVA-L-diag and
IVA-C improve the results of fastIVA only marginally, and perform well when the sources
are purely higher-order dependent and the number of datasets is significantly higher than
the number of sources.

The algorithms are applied to mixed image separation task, where five random mixtures
of five colored images are separated. In this application IVA-L and IVA-G algorithms
provide sufficient results, but the separated images of IVA-L-diag and IVA-C are not
recognizable. The IVA algorithms and their performance indices are implemented in R
package ivaBSS as a part of the thesis.

Keywords: Independent vector analysis, independent component analysis, blind source
separation, Newton update

JYVÄSKYLÄN YLIOPISTO
Matematiikan ja tilastotieteen laitos
Mika Sipilä: Newton update based independent vector analysis with various source
density models
Tilastotieteen pro gradu -tutkielma, 48 sivua + 21 sivua (Liite)
Toukokuu 27, 2022

Tiivistelmä
Sokea signaalin käsittely tarkoittaa latenttien lähdesignaalien estimointia havaittujen
sekoitesignaalien avulla, kun sekoitusympäristö on tuntematon. Riippumattomien
komponenttien analyysi (ICA) on sokean signaalin käsittelyn menetelmä, jolla pyritään
estimoimaan todellisia lähdesignaaleja maksimoimalla niiden välinen riippumattomuus.
Riippumattomien vektoreiden analyysi (IVA) on ICA:n laajennos, jolla estimoidaan
moniulotteisia lähdesignaalivektoreita olettaen, että jokaisen lähdesignaalivektorin
komponentit ovat riippuvia toisistaan.

IVA:n tavoitefunktiona käytetään Kullback-Leibler divergenssiä, jota minimoimalla
lähdesignaaliestimaattien välinen riippumattomuus maksimoidaan. Minimointia varten
täytyy valita optimointimenetelmä sekä lähdesignaaleille sopiva lähdejakaumamalli, jotka
määrittävät yhdessä IVA algoritmin suorituskyvyn. Tässä tutkielmassa tarkastellaan
neljää algoritmia, joista jokainen perustuu Newtonin menetelmään. Algoritmien
lähdejakaumamallit ovat moniulotteinen normaalijakauma (IVA-G), moniulotteinen
Laplace-jakauma (IVA-L), moniulotteinen Laplace-jakauma diagonaalisella
kovarianssirakenteella (IVA-L-diag) ja moniulotteinen Cauchy-jakauma (IVA-C).

Algoritmeja vertaillaan simulointien avulla useissa eri simulaatioasetelmissa. IVA-L,
IVA-L-diag ja IVA-C konvergoivat usein lokaaliin minimiin, mikä ratkaistaan alustamalla
IVA-L, IVA-L-diag ja IVA-C algoritmit IVA-G:n ja fastIVA:n tuloksilla. FastIVA on
alkuperäinen, ortogonaalisiin palautusmatriiseihin rajoittunut IVA-algoritmi. Alustuksen
jälkeen IVA-L on tulosten perusteella paras ja monikäyttöisin algoritmi kaikissa
tilanteissa. IVA-G on ylivoimaisesti nopein algoritmi, ja suoriutuu hyvin, kun
lähdesignaalit ovat riippuvia enimmäkseen toisen asteen momentista. IVA-L-diag
ja IVA-C algoritmit parantavat fastIVA:n tuloksia vain marginaalisesti, mutta ovat
varteenotettavia vaihtoehtoja, kun lähdesignaalit ovat riippuvia ainoastaan korkeamman
asteen momentista.

IVA algoritmeja sovelletaan sekoitettujen kuvien erotteluun, jossa viisi alkuperäistä
värillistä kuvaa pyritään erottelemaan niiden viidestä satunnaista sekoitteesta. Tässä
sovelluksessa IVA-L ja IVA-G algoritmit tuottivat kelvollisia tuloksia, mutta IVA-L-diag
ja IVA-C algoritmien tulokset eivät olleet tunnistettavissa. Tutkielmassa käytetyt IVA
algoritmit sekä niiden suorituskykyyn liittyvät indeksit ovat julkaistu R-paketissa ivaBSS
osana tutkielmaa.

Avainsanat: Riippumattomien vektorien analyysi, riippumattomien komponenttien
analyysi, sokea signaalin käsittely, Newtonin päivitys

Contents

1 Introduction 1

2 Independent Vector Analysis 6
2.1 Independent component analysis . 6
2.2 IVA problem formulation and assumptions 10
2.3 Objective function . 13

3 IVA Algorithms 18
3.1 The data preprocessing . 18
3.2 IVA with Newton update . 19
3.3 Source density models . 22

4 Simulation studies 28
4.1 Performance metrics . 28
4.2 Generation of the data . 30
4.3 Comparisions . 31

5 Application to mixed images 37

6 Conclusions and discussion 41

1 Introduction

Blind source separation (BSS) has interested many researchers in multiple fields in past few
decades (Comon and Jutten, 2010). BSS is used to estimate latent source signals from their
mixed observations, where the sources and the mixing environment are unknown (Hyvärinen
et al., 2001). The objective is to recover the original signals using only the mixtures of
the signals and some reasonable assumptions. A large amount of different algorithms have
been proposed to solve the BSS problem. There are many fields such as biomedical signal
processing, image processing and audio processing, where BSS is an useful tool (Kim et al.,
2006c).

One well-known example in the field of blind source separation is a cocktail party
problem (Haykin and Chen, 2005), which is a problem of separating individual acoustic
signals from conversations recorded with multiple microphones (Comon and Jutten, 2010).
Consider a meeting room where two people are talking simultaneously and two microphones
are recording the speeches on opposite sides of the room as illustrated in Figure 1. Each
microphone captures the combination of the speeches differently. Speech coming from near
the microphone is recorded more strongly than the speech coming from the other side of the
table. This results in two different mixtures of two original independent speech signals. The
recorded signals are denoted as 𝑥1(𝑡) and 𝑥2(𝑡) and the original speech signals as 𝑠1(𝑡) and
𝑠2(𝑡), where 𝑡 is time index. The recorded signals can be expressed as linear mixtures

𝑥1(𝑡) = 𝑎11𝑠1(𝑡) + 𝑎12𝑠2(𝑡),

𝑥2(𝑡) = 𝑎21𝑠1(𝑡) + 𝑎22𝑠2(𝑡),

where parameters 𝑎11, 𝑎12, 𝑎21 and 𝑎22 are unknown weights that depend on the distances
between the speakers and the microphones. The problem is, how to recover the original
speech signals 𝑠1(𝑡) and 𝑠2(𝑡) using only the recorded mixtures 𝑥1(𝑡) and 𝑥2(𝑡). One commonly
used BSS method is independent component analysis (ICA, Comon, 1994). ICA aims to
estimate latent independent components from the observed mixed signals by maximizing
independence between the estimated components. ICA is a commonly used approach for
solving the cocktail party problem. In previously introduced case, ICA uses the recorded
speech mixtures to estimate the original speech signals, i.e. independent components. Figure
2 shows the examples of the source signals, their observed mixtures and the signals estimated
by a Newton update based fast fixed-point IVA (fastIVA) algorithm with Laplace source

1

Person 1

Person 2

Microphone 1

Microphone 2

Figure 1: An illustration of the cocktail party problem. Two people are talking simultaniously
and two microphones record mixtures of the speeches.

density model (Lee et al., 2007). Even though fastIVA algorithm is built for the IVA, it solves
the ICA problem, if there is only one dataset. Source density models and IVA algorithm with
Newton update are discussed in Section 3.

Now, let us assume the same situation except that both recording spots have two different
microphones stacked on top of each other. One records only low frequency sounds and the
other records only high frequency sounds. This results in two sets of recorded mixtures, one
for low frequency sounds and one for high frequency sounds. Each speech’s low frequency
signal and high frequency signal can be assumed to be dependent as they are from the same
source. Now the recorded mixtures 𝑥1 and 𝑥2, are

𝑥[1]
1 (𝑡) = 𝑎[1]11 𝑠1(𝑡)

[1] + 𝑎[1]12 𝑠2(𝑡)
[1],

𝑥[1]
2 (𝑡) = 𝑎[1]21 𝑠1(𝑡)

[1] + 𝑎[1]22 𝑠2(𝑡)
[1],

𝑥[2]
1 (𝑡) = 𝑎[2]11 𝑠1(𝑡)

[2] + 𝑎[2]12 𝑠2(𝑡)
[2],

𝑥[2]
2 (𝑡) = 𝑎[2]21 𝑠1(𝑡)

[2] + 𝑎[2]22 𝑠2(𝑡)
[2],

where ⋅[1] refers to first dataset, i.e. low frequency signals and ⋅[2] refers to second data sets,
i.e. high frequency signals. The mixing weights 𝑎[𝑑]𝑖𝑗 can be different between the datasets.
The mixtures 𝐱𝑖(𝑡) = (𝑥[1]

𝑖 (𝑡), 𝑥[2]
𝑖 (𝑡))⊤ as well as original independent components 𝐬𝑖(𝑡) =

(𝑠[1]𝑖 (𝑡), 𝑠[2]𝑖 (𝑡))⊤ are now vectors. How would the original signals be estimated in this scenario?
One can still apply ICA to these datasets separately and obtain estimates for the original

signals. However, only a part of the available information will be used as the dependence of the
datasets will be neglected, and thus the ICA solution might not be optimal (Kim et al., 2006c).
The other problem is that the estimated signals can be in different order for each dataset
(Hyvärinen and Oja, 2000), which means that the ICA approach does not solve which low
frequency estimate and high frequency estimate belong together. For situations where a large

2

0 100 200 300 400 500

−
2

0
2

S
ou

rc
e

si
gn

al
s

0 100 200 300 400 500

−
3

−
1

1

0 100 200 300 400 500

−
1.

5
0.

5

O
bs

er
ve

d
si

gn
al

s

0 100 200 300 400 500

−
1.

5
0.

0
1.

5

0 100 200 300 400 500

−
4

−
1

1
3

E
st

im
at

ed
 s

ig
na

ls

0 100 200 300 400 500

−
3

0
2

Figure 2: Example of original source signals, observed mixtures and signals estimated by fast
fixed-point IVA algorithm with the multivariate diagonal Laplace source density model for
the original sources. The algorithm solves ICA problem, if there is only one dataset. The
source signals are artificially generated examples, not real acoustic signals.

number of datasets are used, the fact that the estimated signals may be ordered differently for
each dataset, causes a challenging clustering problem of solving which estimated components
belong together (Kim et al., 2006c).

Another approach to solve this problem is independent vector analysis (IVA, Kim et al.,
2006c). IVA is an extension of ICA, where the mixtures and the estimates are vectors. It
solves both problems of the ICA approach, the lack of using dependence information and
the clustering problem. IVA uses the dependence information to estimate the original signal
vectors, which results the components of the estimated signal vectors in same order for each
dataset. Figure 3 shows an example of two dependent datasets of independent source signals,
their mixtures and the source signals estimated by fastIVA algorithm with the multivariate
diagonal Laplace source density model.

IVA has numerous applications, where analyzing multiple dependent datasets jointly is
necessary (Adalı et al., 2014). For example, in the field of biomedical signal processing
there are already multiple use cases such as electroencephalography (EEG) and functional
magnetic resonance imaging (fMRI) collected from multiple subjects, among many others
(Adalı et al., 2014). EEG collects multisensor data of patient’s brain activity. When IVA is
applied to extract the original sources from the EEG data, the data collected from one patient is

3

0 100 200 300 400 500

−
2

0
2

0 100 200 300 400 500

−
2

1
3

0 100 200 300 400 500

−
2

0
2

S
ou

rc
e

si
gn

al
s

0 100 200 300 400 500

−
2

1
3

0 100 200 300 400 500

−
2

0
2

0 100 200 300 400 500

−
2

0
2

0 100 200 300 400 500

−
2

0
2

O
bs

er
ve

d
si

gn
al

s

0 100 200 300 400 500

−
2

0
2

0 100 200 300 400 500

−
3

0
2

4

0 100 200 300 400 500

−
4

0

0 100 200 300 400 500

−
2

2
E

st
im

at
ed

 s
ig

na
ls

0 100 200 300 400 500

−
2

2

Figure 3: Example of original source signals, observed mixtures and estimated source signals
when there are two dependent datasets. The signals of the first dataset are colored black and
the signals of the second one are colored blue. Signals are separated with fast fixed-point IVA
(fastIVA) algorithm using the multivariate diagonal Laplace source density model. Source
signals are artificially generated examples, not real acoustic signals.

4

considered as one dataset, and the signals from the different sensors are the observed mixtures.
IVA have been used for example to remove muscle artifacts from EEG data to perceive the
brain activity better (Chen et al., 2017).

In fMRI group studies, the same fMRI imaging is performed to multiple patients. Different
images of the brains of one patient compose one dataset, and the voxels of one image compose
one observed signal (Lee et al., 2008b; Ma et al., 2014). The images are composed of three
dimensional voxels rather than pixels, as the fMRI images are three dimensional slices of the
brain. The group fMRI studies using IVA have been used for example to find the differences
of the brain activity between patients with schizophrenia and the healthy controls (Ma et al.,
2014). Recently IVA has been adopted together with independent subspace analysis to more
complex data, where the number of datasets can be hundreds, allowing for example even larger
group studies of fMRI or EEG (Silva et al., 2021; Long et al., 2020).

IVA is a well studied method in the field of acoustic signal processing. In acoustic
signal applications, multiple acoustic signals have been recorded and transformed into
time-frequency domain, where acoustic signals are composed of different frequency bands for
each time frame. One frequency domain is considered as one dataset and the recorded acoustic
signals as the observed mixtures. IVA have been used a lot for acoustic signal separation tasks
when there are multiple interesting sources to recover (Lee et al., 2007; Scheibler and Ono,
2019; Ono, 2011), but also for acoustic signal enhancement, where the acoustic signal by is
enhanced by extracting any noise of it (Zhao et al., 2017).

This thesis focuses on Newton update based algorithms to solve the IVA problem. In
Section 2 the theory of ICA and IVA is introduced, and an objective function of IVA, i.e. a
function to minimize to solve the IVA problem, is defined. In Section 3 Newton update based
IVA algorithm and four possible source density models are introduced, and other possible
source density models are discussed shortly. The aim is to implement the methods in R
software (R Core Team, 2020) and verify and compare the algorithms with simulations in
Section 4. In Section 5 final comparisons of implemented algorithms are made with real data.

5

2 Independent Vector Analysis

This section covers the general idea of independent vector analysis. Independent component
analysis is first explained in Section 2.1, as IVA is a multidimensional extension of ICA (Kim
et al., 2006c). In Section 2.2 the main idea of IVA is formulated and the assumptions for IVA
are defined. Section 2.2 also explains the differences, similarities and a relationship between
independent component analysis and independent vector analysis, and the benefits of using
IVA model over several ICA models are considered. The objective function for IVA is defined
in Section 2.3.

2.1 Independent component analysis

Before introducing independent vector analysis it is necessary to understand independent
component analysis, because IVA is an extension of ICA to multivariate components that
has not one but several dependent datasets of observed signals (Kim et al., 2006c). ICA
is nowadays a well-known and commonly used approach to solve blind source separation
problems (Lee et al., 2007). The goal of ICA is to find linear transformation for the observed
signals so that it minimizes the statistical dependence between its components (Comon, 1994).
In this section ICA is defined and restrictions and ambiguities of ICA are stated (Hyvärinen
and Oja, 2000; Comon, 1994; Lee et al., 2007; Comon, 1992; Hyvärinen et al., 2001).

Let 𝑃 to be the number of independent source components and the number of different
observed signals. Each source component and each observed signal have the length of 𝑇 .
The 𝑡th observation of the observed mixture 𝑖 is denoted as 𝑥𝑖(𝑡), 𝑖 = 1, ..., 𝑃 , 𝑡 = 1, ..., 𝑇 .
One observation means one measurement of a specific signal. Observations are often
measurements over time, when 𝑡 is a time point of a measurement and 𝑇 is a total number of
time points. The observed signals can be denoted also as vectors 𝐱𝑖 = [𝑥𝑖(1), 𝑥𝑖(2), ..., 𝑥𝑖(𝑇)]⊤

containing all observations as components of the vector or as 𝑃 ×𝑇 matrix 𝑿, which contains
all observed signals 𝐱𝑖 as rows. The superscript ⊤ denotes the transpose. The matrices are
presented in a form typical to signal processing, when the signals 𝑖 = 1, ...𝑃 are presented
row wise and the observations 𝑡 = 1, ..., 𝑇 are in columns. The observed signals are assumed
to be linear mixtures of the independent source components 𝑠𝑗(𝑡), 𝑗 = 1, ..., 𝑃 , denoted as

𝑥𝑖(𝑡) = 𝑎𝑖1𝑠1(𝑡) + 𝑎𝑖2𝑠2(𝑡) + ... + 𝑎𝑖𝑃 𝑠𝑃 (𝑡), (1)

where weights 𝑎𝑖𝑗 indicate how strongly each independent source component 𝑠𝑗(𝑡) is

6

contributing in observed signal 𝑥𝑖(𝑡). Similarly as the observed signals, the independent
source components can be displayed as vectors 𝐬𝑗 = [𝑠𝑗(1), 𝑠𝑗(2), ..., 𝑠𝑗(𝑇)]⊤ containing all
observations or as 𝑃 × 𝑇 matrix 𝑺 containing the independent components as rows. In
this thesis the sources are assumed to be independently and identically distributed (iid).
The mixing environment is assumed to remain the same for each observation 𝑡. In other
words, parameters 𝑎𝑖𝑗 are fixed for each observation 𝑡. The observed mixtures (1) are usually
displayed in a matrix form

𝑿 =

⎡

⎢

⎢

⎢

⎣

𝑥1(1) … 𝑥1(𝑇)
⋮ ⋱ ⋮

𝑥𝑃 (1) … 𝑥𝑃 (𝑇)

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

𝑎11 … 𝑎1𝑃
⋮ ⋱ ⋮

𝑎𝑃 1 … 𝑎𝑃𝑃

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

𝑠1(1) … 𝑠1(𝑇)
⋮ ⋱ ⋮

𝑠𝑃 (1) … 𝑠𝑃 (𝑇)

⎤

⎥

⎥

⎥

⎦

= 𝑨𝑺,

where 𝑿 contains the observed signal vectors 𝐱𝑖 as rows, 𝑃 ×𝑃 matrix 𝑨 contains the weights
for each linear mixture 𝐱𝑖 as rows and 𝑺 contains the the independent component vectors as
rows. Matrix 𝑨 is called a mixing matrix, which is fixed for each observation, as stated earlier.

In ICA model the mixing matrix𝑨 and the latent independent components𝑺 are unknown.
The only observed variables are the observed mixtures 𝑿, which are used to estimate the
independent source components 𝑺. To achieve this, the following assumptions must hold:

A1. 𝐬𝑗 ⟂⟂ 𝐬𝑖 for all 𝑖, 𝑗 = 1, ..., 𝑃 , 𝑖 ≠ 𝑗.

A2. 𝐸(𝐬𝑗) = 0, 𝑗 = 1, ..., 𝑃 and 𝐸(𝐒𝐒⊤) = 𝑰𝑃 , where 𝑰𝑃 is a 𝑃 × 𝑃 identity matrix.

The assumption of source components being independent of each other (A1) is natural, as
ICA estimates the sources by maximizing the independence. The assumption of whiteness
(A2) simplifies the theory and algorithms a lot, which is discussed more in Section 2.3 and in
Section 3. If the assumption (A2) does not hold, the observed mixtures are whitened before
applying ICA. The whitening includes centering the rows of the observed data 𝑿 and finding
a whitening matrix 𝑽 , which transforms the data to be uncorrelated with unit variances, i.e.
that 𝐸(𝐒𝐒⊤) = 𝑰𝑃 (Hyvärinen et al., 2001). The whitening is explained more in Section 3.1.
With (A1) and (A2) assumed, ICA has the following identification condition:

Theorem 1 (ICA Nonidentifiability with iid samples). The sources cannot be identified if and
only if ∃ 𝑖 ≠ 𝑗 such that 𝒔𝑖 and 𝒔𝑗 follows Gaussian distribution.

In other words, to make the sources identifiable, at most one of the source components
can be Gaussian. For the proof of Theorem 1, see e.g. Hyvärinen et al. (2001).

7

In this thesis, the number of source components or vectors 𝑃 is assumed to be the same
as the number of observed mixtures in both ICA and IVA. This is because it makes the
mixing matrix 𝑨 square and invertible, and most of the ICA and IVA algorithms rely on
calculating inverse matrices during the optimization process. In addition, the number of
observed mixtures have to be larger or equal to the number of independent components to
make mixing matrix 𝑨 identifiable. If there are more observed mixtures than sources, one
way is to reduce dimension of observations with principal component analysis to achieve
square mixing matrices (Hyvärinen et al., 2001). If the number of sources is larger than the
number of observed mixtures, the mixing matrix 𝑨 becomes unidentifiable.

For recovering the original independent source components, one would have to solve the
mixing matrix 𝑨 and calculate its inverse 𝑨−1 to obtain

𝑺 = 𝑨−1𝑿.

It is not possible to solve the mixing matrix 𝑨 exactly, but it can be estimated using the
assumptions of independence and non-Gaussianity of source components. The objective is to
solve 𝑃 × 𝑃 unmixing matrix 𝑾 which estimates the inverse of the mixing matrix 𝑨. It is
estimated by solving an optimization problem so that the resulting components

𝑺̂ = 𝑾𝑿,

become as statistically independent as possible. Figure 4 illustrates the whole ICA structure
from original source signals to observations, and again, from observations to estimated
sources.

If the unmixing matrix 𝑾 and independent components 𝑺̂ were estimated for the centered
observations 𝑿 ′ , the estimates for non-centered independent components can be calculated as

𝑺̂ = 𝑾𝑿 ′ .

Because of the fact that both true mixing matrix 𝑨 and independent source components 𝑺
are unknown, the mixing matrix can be recovered only up to signs of the rows 𝒂𝑖 and arbitrary
permutation. This means that 𝑨 can be identified up to 𝑨𝑱𝑷 , where 𝑱 = 𝑑𝑖𝑎𝑔(±1, ...,±1)
and 𝑷 is any permutation matrix. ICA cannot determine the order of the source components,
because one can freely change the order the terms of summation (1) without affecting the
outcome 𝑥𝑖(𝑡).

8

Source 1

Source 2

Source P

Observed signal 1

Observed signal 2

Observed signal P

Estimated source 1

Estimated source 2

Estimated source P

In
de

pe
nd

en
t

Figure 4: A graph of ICA model with P sources and P observed signals. The graph illustrates
the mixing process from independent source components 𝑺 to observations 𝑿 and the
unmixing process from observations to source estimates. The matrix 𝑨 is a mixing matrix
and the matrix 𝑾 is an estimated unmixing matrix.

There are multiple different approaches to solve the ICA problem. One approach
is to maximize non-Gaussianity of estimated source components, which also maximizes
the independence of the components. Non-Gaussianity can be measured by kurtosis or
negentropy (Hyvärinen et al., 2001). Kurtosis is a classic measure of non-Gaussianity based
on fourth-order statistics. Kurtosis of a random variable 𝑥, denoted by 𝑘𝑢𝑟𝑡(𝑥), is defined as

𝑘𝑢𝑟𝑡(𝑥) = 𝐸(𝑥4) − 3(𝐸(𝑥2))2.

Negentropy 𝐽 is a normalized version of differential entropy, defined as

𝐽 (𝐱) = 𝐻(𝐱𝑔𝑎𝑢𝑠𝑠) −𝐻(𝐱),

where 𝐻(⋅) denotes entropy, 𝐱 is a random vector and 𝐱𝑔𝑎𝑢𝑠𝑠 is a Gaussian random vector with
same correlation matrix as vector 𝐱. The entropy is discussed more in Section 2.3. Another
approach is maximum likelihood estimation of the unmixing matrix 𝑾 , where the maximum
likelihood is solved for density function of observed mixture 𝑿 with respect to unmixing
matrix 𝑾 . Some of the other approaches are minimization of mutual information, tensorial
methods and nonlinear decorrelation and nonlinear PCA (Hyvärinen et al., 2001).

Dozens of different algorithms have been developed to solve the optimization problem
of ICA. For example, two types of algorithms that are well known, are gradient algorithms
and fast-fixed point algorithms (FastICA). The gradient algorithms updates the elements of

9

the unmixing matrix 𝑾 based on gradient descent. The fast-fixed point algorithms can be
described as an approximative Newton algorithms. For other approaches and algorithms,
based on minimization of mutual information, tensorial methods and nonlinear decorrelation
and nonlinear PCA, see Hyvärinen et al. (2001). The approaches and algorithms for ICA are
not discussed more deeply in this thesis as the main focus is on algorithms for IVA.

2.2 IVA problem formulation and assumptions

Independent vector analysis (IVA) is a multidimensional extension of ICA. In IVA multiple
dependent datasets of the same phenomenon are analysed jointly. In this section IVA problem
is formulated, and assumptions and identification condition for IVA model are stated (Kim
et al., 2006c; Lee et al., 2007; Na et al., 2013; Anderson, 2013; Anderson et al., 2014).

IVA aims to recover independent source components jointly for 𝐷 dependent datasets
using observations𝑿[𝑑]. Let𝑃 be the number of independent source vectors and the number of
observed mixtures, each containing 𝑇 observations. Each observation contains 𝐷 dependent
elements, one for each dataset 𝑑 = 1, ..., 𝐷. The 𝑡th observation of the observed mixture 𝑖
is denoted as 𝐱𝑖(𝑡) = (𝑥[1]

𝑖 (𝑡), 𝑥[2]
𝑖 (𝑡), ..., 𝑥[𝐷]

𝑖 (𝑡))⊤, where 𝑥[𝑑]
𝑖 (𝑡) is the observation of dataset 𝑑.

Observed signals can be displayed dataset-wise as vectors 𝐱[𝑑]𝑖 = (𝑥[𝑑]
𝑖 (1), 𝑥[𝑑]

𝑖 (2), ..., 𝑥[𝑑]
𝑖 (𝑇))⊤,

which contains all observations of the 𝑖th mixture signal for dataset 𝑑 or as matrices 𝑿[𝑑],
which contains observed signals 𝐱[𝑑]𝑖 as rows. Observed signals are assumed to be linear
mixtures of independent source vectors 𝐬𝑗(𝑡) = (𝑠𝑗(𝑡)[1], 𝑠𝑗(𝑡)[2], ..., 𝑠𝑗(𝑡)[𝐷])⊤, 𝑗 = 1, ..., 𝑃 ,
denoted as

𝐱𝑖(𝑡) =
⎡

⎢

⎢

⎢

⎣

𝑥𝑖(𝑡)[1]

⋮

𝑥𝑖(𝑡)[𝐷]

⎤

⎥

⎥

⎥

⎦

=
𝑃
∑

𝑗=1

⎡

⎢

⎢

⎢

⎣

𝑎[1]𝑖𝑗

⋮

𝑎[𝐷]
𝑖𝑗

⎤

⎥

⎥

⎥

⎦

[

𝑠𝑗(𝑡)[1] … 𝑠𝑗(𝑡)[𝐷]
]

=
𝑃
∑

𝑗=1
𝐚𝑖𝑗𝐬⊤𝑗 (𝑡)

where weights 𝑎[𝑑]𝑖𝑗 indicate how strongly independent component 𝑠[𝑑]𝑗 is contributing in
observed signal 𝑥[𝑑]

𝑖 . Independent source vectors 𝐬𝑗(𝑡) = (𝑠𝑗(𝑡)[1], ..., 𝑠𝑗(𝑡)[𝐷])⊤ contain 𝐷
dependent elements, one for each dataset. The mixing vector 𝒂𝑖𝑗 = (𝑎[1]𝑖𝑗 , ..., 𝑎

[𝐷]
𝑖𝑗)⊤ contains

weights for the whole source vector 𝐬𝑗(𝑡). IVA model is usually displayed in a matrix form for
each dataset 𝑑 separately, similarly as in the ICA model:

10

𝑿[𝑑] =

⎡

⎢

⎢

⎢

⎣

𝑥[𝑑]
1 (1) … 𝑥[𝑑]

1 (𝑇)
⋮ ⋱ ⋮

𝑥[𝑑]
𝑃 (1) … 𝑥[𝑑]

𝑃 (𝑇)

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

𝑎[𝑑]11 … 𝑎[𝑑]1𝑃

⋮ ⋱ ⋮

𝑎[𝑑]𝑃 1 … 𝑎[𝑑]𝑃𝑃

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

𝑠[𝑑]1 (1) … 𝑠[𝑑]1 (𝑇)
⋮ ⋱ ⋮

𝑠[𝑑]𝑃 (1) … 𝑠[𝑑]𝑃 (𝑇)

⎤

⎥

⎥

⎥

⎦

= 𝑨[𝑑]𝑺 [𝑑],

where 𝑿[𝑑] contains observed signal vectors as rows, 𝑨[𝑑] contains weights for each linear
mixture 𝐱[𝑑]𝑖 as rows and 𝑺 [𝑑] contains the source signal vectors as rows. The mixing matrices
𝑨[𝑑] are fixed for each observation 𝑥[𝑑]

𝑖 (𝑡), but can be different for each dataset 𝑑. The sources
can be presented also as 𝐷 × 𝑇 source vector matrices 𝑺𝑗 = [𝒔[1]𝑗 , ..., 𝒔[𝐷]

𝑗]⊤, 𝑗 = 1, ..., 𝑃 .
Mixing matrices 𝑨[𝑑] and sources 𝑺 [𝑑] are unknown quantities to be estimated with using
only the observed signals 𝑿[𝑑] and the following assumptions:

B1. 𝐬[𝑑]𝑗 ⟂⟂ 𝐬[𝑑]𝑖 for all 𝑖, 𝑗 = 1, ..., 𝑃 , 𝑑 = 1, ..., 𝐷, 𝑖 ≠ 𝑗.

B2. 𝐸(𝐬[𝑑]𝑗) = 0 and 𝐸(𝑺 [𝑑](𝑺 [𝑑])⊤) = 𝑰𝑃 , 𝑗 = 1, ..., 𝑃 , 𝑑 = 1, ..., 𝐷. 𝑰𝑃 is a 𝑃 × 𝑃 identity
matrix.

B3. The rows in 𝑺𝑗 , 𝑗 = 1, ...𝑃 , are dependent on each other.

The assumption (B1) is obvious, as IVA aims to recover the original source components by
maximizing independence between source components. The source components are assumed
to be white (B2) to simplify the algorithms and to solve the scaling ambiguity of IVA. To
make the assumption of whiteness hold, the observed data are whitened, which is explained
in Section 3.1. When the sources possess dependence across the datasets (B3), the source
estimates are expected to be in same order for each dataset. However, if (B3) does not hold,
the sources can still be separated, but not necessarily aligned. If the components within the
dataset are independent of each other, the IVA is not different from using ICA to each dataset
separately.

IVA aims to find 𝐷 𝑃 × 𝑃 unmixing matrices 𝑾 [𝑑] as well as the corresponding source
estimates 𝑺̂ [𝑑] for each dataset 𝑑, which is denoted as

𝑺̂ [𝑑] =

⎡

⎢

⎢

⎢

⎣

𝑠̂[𝑑]1 (1) … 𝑠̂[𝑑]1 (𝑇)
⋮ ⋱ ⋮

𝑠̂[𝑑]𝑃 (1) … 𝑠̂[𝑑]𝑃 (𝑇)

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

𝑤[𝑑]
11 … 𝑤[𝑑]

1𝑃

⋮ ⋱ ⋮

𝑤[𝑑]
𝑃 1 … 𝑤[𝑑]

𝑃𝑃

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

𝑥[𝑑]
1 (1) … 𝑥[𝑑]

1 (𝑇)
⋮ ⋱ ⋮

𝑥[𝑑]
𝑃 (1) … 𝑥[𝑑]

𝑃 (𝑇)

⎤

⎥

⎥

⎥

⎦

= 𝑾 [𝑑]𝑿[𝑑],

11

D
ep

en
de

nt

Ind
ep

en
de

nt

Mixing matrices Unmixing matricesSources Observed signals Estimated sources

Data
se

t 1

Data
se

t D

Figure 5: A graph of IVA model with𝑃 sources, 𝑃 observed signals and𝐷 datasets. The graph
illustrates the mixing process from independent source vectors 𝑺𝑗 to observed signals 𝑿𝑖 and
the unmixing process from observed signals to source estimates. Matrices 𝑨[𝑑] are mixing
matrices and matrices 𝑾 [𝑑] are estimated unmixing matrices. Source signals 𝑺𝑗 , observed
signals 𝑿𝑖 and estimated sources 𝑺̂𝑗 are denoted as matrices containing all observations for
each dataset.

where matrix 𝑺̂ [𝑑] contains estimated source vectors as rows and matrix 𝑾 [𝑑] contains the
unmixing weights. The column vector 𝒘[𝑑]

𝑗 contains the unmixing weights for 𝑗th component
of 𝑺̂ [𝑑]. Estimated source vectors can be displayed also as vectors for each observation 𝑡 =
1, ..., 𝑇 as

𝐬̂𝑗(𝑡) =
𝑃
∑

𝑗=1
𝐰𝑖𝑗𝐱⊤𝑖 (𝑡),

where 𝐬̂𝑗(𝑡) = (𝑠̂𝑗(𝑡)[1], ...𝑠̂𝑗(𝑡)[𝐷])⊤ is 𝑗th estimated source vector and 𝐰𝑖𝑗 = (𝑤[1]
𝑖𝑗 , ..., 𝑤

[𝐷]
𝑖𝑗)⊤

contains the corresponding unmixing weights. The unmixing matrices 𝑾 [𝑑] are estimates
of the inverse of true mixing matrices 𝑨[𝑑]. These are estimated by solving an optimization
problem so that the resulting components 𝑺̂ [𝑑] become as independent as possible. Figure 5
illustrates the whole structure of IVA model from real sources to observed mixtures, and from
observed mixtures to source estimates.

The IVA problem can be solved also as several ICA problems, one for each dataset 𝑑.
However, if one uses ICA separately for each dataset, the dependence information is neglected
and thus it is not an optimal solution. Also, the permutation of the source estimates might be
different for each dataset, as stated in ambiguities of ICA, causing a clustering problem of
solving which estimates belong together between the datasets.

As IVA is an multidimensional extension of ICA, IVA has the same ambiguities, but
dataset wise. The mixing matrices 𝑨[𝑑], 𝑑 = 1, ...𝐷, can be estimated only up to signs of rows
𝒂[𝑑]
𝑖 and arbitrary permutation. This means that the ordering and the signs of the estimated

12

sources might not be correct. Hence the sources 𝑺 [𝑑] are considered identified if the mixing
matrix 𝑨[𝑑] is identified up to 𝑨[𝑑]𝑱 [𝑑]𝑷 [𝑑], where 𝑱 [𝑑] = 𝑑𝑖𝑎𝑔(±1, ...,±1) and 𝑷 [𝑑] is any
permutation matrix.

In addition to previous ambiguities, the identification condition for IVA is presented in
Theorem 2. For Theorem 2, Definition 1 of 𝜶-Gaussian component is introduced. For
Theorem 2 and Definition 1, 𝒔𝑗 = [𝑠[1]𝑗 , ..., 𝑠[𝑑]𝑗]⊤ is considered as a population level random
variable, 𝜶 = [𝛼1, ..., 𝛼𝐷] is 1×𝐷 vector, where 𝛼𝑑 equals either 1 or 0, 𝜶𝒄 = [1−𝛼1, ..., 1−𝛼𝐷]
is 1 × 𝐷 complement vector of 𝜶. Then 1 × 𝐷𝛼 vector 𝜶⊤𝒔𝑗 contains the subset of 𝒔𝑗
and 1 × 𝐷 − 𝐷𝛼 complement vector 𝜶𝑐⊤𝒔𝑗 contains the complement subset of 𝒔𝑗 , where
𝐷𝛼 =

∑𝐷
𝑑=1 𝛼𝑑 .

Definition 1 (𝜶-Gaussian). The multivariate random variable 𝒔𝑗 has an 𝜶 − Gaussian
component when 𝜶⊤𝒔𝑗 ⟂⟂ 𝜶𝑐⊤𝒔𝑗 and 𝜶⊤𝒔𝑗 ∼  (𝟎,𝑹𝑗,𝛼), where the 𝐷𝛼 × 𝐷𝛼 covariance
matrix 𝑹𝑗,𝛼 = 𝐸(𝜶⊤𝒔𝑗(𝜶⊤𝒔𝑗)⊤) is nonsingular.

The 𝜶-Gaussian definition is used to identify that there exists a subset of components of
source vector that is independent of the other components in the same source vector and that
the source vector is multivariate Gaussian. The identification condition for IVA in case of iid
samples is following:

Theorem 2 (IVA Nonidentifiability with iid samples). The sources cannot be identified if
and only if ∃ 𝑖 ≠ 𝑗 such that 𝒔𝑖 and 𝒔𝑗 have 𝜶-Gaussian components and ∃ 𝜶 such that
0 <

∑𝐷
𝑑=1 𝛼𝑑 < 𝐷, and 𝑹𝑖,𝛼 = 𝑫𝑹𝑗,𝛼𝑫, where 𝑫 is any full-rank diagonal matrix.

See Anderson et al. (2014) or Anderson (2013) for proof and more about the IVA
identification condition.

2.3 Objective function

To solve the IVA optimization problem, an objective function has to be defined for measuring
how good the solution is. The mutual information 𝐼(⋅) is a measure of information obtained
about members in a set of random variables by observing the other random variables in the
set. This is often used as an objective function for ICA and IVA. Mutual information can be
defined with Kullback-Leibler divergence (Kullback and Leibler, 1951) 𝐷𝐾𝐿(⋅|⋅) as

𝐼(𝑥1, ..., 𝑥𝑃) = 𝐷𝐾𝐿

(

𝑝𝐱(𝑥1, ..., 𝑥𝑃)|
𝑃
∏

𝑗=1
𝑝𝑥𝑖(𝑥𝑖)

)

,

13

where 𝑝𝐱(𝑥1, ..., 𝑥𝑃) is a joint probability distribution of variables 𝑥1, ..., 𝑥𝑃 and
∏𝑃

𝑗=1 𝑝𝑥𝑖(𝑥𝑖)
is a product of marginal probability distributions of 𝑥1, ..., 𝑥𝑃 (Lee et al., 2007). The
variables 𝑥1, ..., 𝑥𝑃 can be either univariate or multivariate. In context of IVA, the
variables are multivariate. The first one is exact joint probability distribution of the source
estimates 𝑝𝐬(𝐬̂1, ..., 𝐬̂𝑃) and the other one is a product of the marginal probability distributions
∏𝑃

𝑗=1 𝑝𝑠𝑗 (𝐬̂𝑗), where true source distributions 𝑝𝐬 and 𝑝𝑠𝑗 are unknown. The estimation of the
unknown source distributions is discussed later. The mutual information can be considered as
a metric which measures the distance between a distribution and the product of its marginal
distributions. When the distance is zero, the joint distribution and the product of the marginal
distributions are the same, implying independence between the source estimates. In this thesis
the mutual information, measured with Kullback-Leibler divergence, is used as an objective
function (Kim et al., 2006c; Lee et al., 2007; Anderson, 2013; Na et al., 2013). In this section
source estimates 𝐬̂𝑗 = (𝑠̂[1]𝑗 , ..., 𝑠̂[𝐷]

𝑗)⊤ are considered as population level random variables, and
thus the index 𝑡 is dropped out of notations.

To understand the Kullback-Leibler divergence, it is essential to recall the formulas of
differential entropy (Kolmogorov, 1956), which is an extension of the original Shannon
entropy (Shannon, 1948) for continuous variables, defined as

𝐻(𝑝) = −∫𝑥∈𝐱
𝑝(𝑥)log(𝑝(𝑥))𝑑𝑥

and differential cross entropy, defined as

𝐻(𝑝, 𝑞) = −∫𝑥∈𝐱
𝑝(𝑥)log(𝑞(𝑥))𝑑𝑥,

where 𝑝 and 𝑞 are probability distributions. Entropy measures the average level of
information in the variable’s possible outcomes and cross entropy measures the average level
of information needed to identify variable under distribution 𝑝, when variable is estimated
with distribution 𝑞. The better the distribution 𝑞 estimates the true distribution 𝑝, the closer
the cross entropy gets to entropy. In case of IVA, the entropy is the average level of information
of source estimates 𝐬̂𝑗 under joint distribution 𝑝𝐬(𝐬̂1, ..., 𝐬̂𝑃). Cross entropy, on the other hand,
is the average level of information needed to identify the source estimates 𝐬̂𝑗 when they
are estimated with the product of the marginal probability distributions

∏𝑃
𝑗=1 𝑝𝑠𝑗 (𝐬̂𝑗). The

14

Kullback-Leibler divergence is defined as

𝐷𝐾𝐿(𝑝|𝑞) = ∫𝑥∈𝐱
𝑝(𝑥)log𝑝(𝑥)

𝑞(𝑥)
𝑑𝑥,

which can be written with the entropy functions as

𝐷𝐾𝐿(𝑝|𝑞) = ∫𝑥∈𝐱
𝑝(𝑥)log𝑝(𝑥)

𝑞(𝑥)
𝑑𝑥

= ∫𝑥∈𝐱
𝑝(𝑥)log(𝑝(𝑥)) − ∫𝑥∈𝐱

𝑝(𝑥)log(𝑞(𝑥))

= 𝐻(𝑝, 𝑞) −𝐻(𝑝).

When cross entropy 𝐻(𝑝, 𝑞) equals entropy 𝐻(𝑝), the distribution 𝑞 estimates the outcomes
of variable 𝐱 exactly correct, meaning that the distributions are the same. In case of IVA, this
means that the joint probability distribution 𝑝𝐬(𝐬̂1, ..., 𝐬̂𝑃) is equal to the product of the marginal
distributions

∏𝑃
𝑗=1 𝑝𝑠𝑗 (𝐬̂𝑗), implying independence of the source estimates 𝐬̂𝑗 by definition.

Thus, by minimizing Kullback-Leibler divergence, the independence of the source estimates
is maximized.

To simplify the task of minimizing Kullback-Leibler divergence, the source estimates are
assumed to be white. This is done by whitening the observed signals 𝑿[𝑑], meaning that

𝐸[𝑿[𝑑]] = 𝟎, (2)

𝐸[𝑿[𝑑](𝑿[𝑑])⊤] = 𝑰𝑃 , 𝑖 = 1, ..., 𝑃 , 𝑑 = 1, ..., 𝐷 (3)

where 𝑰𝑃 is 𝑃 × 𝑃 identity matrix. The whitening process is explained in Section 3.
The Kullback-Leibler divergence for the joint probability distribution 𝑝𝐬(𝐬̂1, ..., 𝐬̂𝑃) and the

15

product of the marginal probability distributions
∏𝑃

𝑗=1 𝑝𝑠𝑗 (𝐬̂𝑗) is

𝐷𝐾𝐿(𝑝𝐬(𝐬̂1, ..., 𝐬̂𝑃)|
𝑃
∏

𝑗=1
𝑝𝑠𝑗 (𝐬̂𝑗))

= 𝐻[𝑝𝐬(𝐬̂1, ..., 𝐬̂𝑃),
𝑃
∏

𝑗=1
𝑝𝑠𝑗 (𝐬̂𝑗)] −𝐻[𝑝𝐬(𝐬̂1, ..., 𝐬̂𝑃)]

=
𝑃
∑

𝑗=1
𝐻[𝑝𝐬(𝐬̂1, ..., 𝐬̂𝑃), 𝑝𝑠𝑗 (𝐬̂𝑗)] −𝐻[𝑝𝐬(𝐬̂1, ..., 𝐬̂𝑃)] (4)

=
𝑃
∑

𝑗=1
𝐻[𝑝𝐬(𝐬̂1, ..., 𝐬̂𝑃), 𝑝𝑠𝑗 (𝐬̂𝑗)] −𝐻[𝑝𝐬(𝑾 [1]𝐱[1], ...,𝑾 [𝐷]𝐱[𝐷])] (5)

=
𝑃
∑

𝑗=1
𝐻[𝑝𝐬(𝐬̂1, ..., 𝐬̂𝑃), 𝑝𝑠𝑗 (𝐬̂𝑗)] −

𝐷
∑

𝑑=1
log|det𝑾 [𝑑]

| −𝐻[𝑝𝐬(𝐱[1], ..., 𝐱[𝐷])]. (6)

In equation (4) the cross entropy 𝐻[𝑝𝐬(𝐬̂1, ..., 𝐬̂𝑃),
∏𝑃

𝑗=1 𝑝𝑠𝑗 (𝐬̂𝑗)] =
𝑝𝐬(𝐬̂1, ..., 𝐬̂𝑃)log[

∏𝑃
𝑗=1 𝑝𝑠𝑗 (𝐬̂𝑗)] is presented as summation

∑𝑃
𝑗=1 𝑝𝐬(𝐬̂1, ..., 𝐬̂𝑃)log[𝑝𝑠𝑗 (𝐬̂𝑗)] =

∑𝑃
𝑗=1𝐻[𝑝𝐬(𝐬̂1, ..., 𝐬̂𝑃), 𝑝𝑠𝑗 (𝐬̂𝑗)]. In equation (5) the estimated sources are presented

dataset-wise as a product of the unmixing matrices and the observed signals, 𝐬̂[𝑑] = 𝑾 [𝑑]𝐱[𝑑].
Finally in equation (6) the entropy identity for linear transformations is used to obtain
𝐻[𝑝𝐬(𝑾 [1]𝐱[𝐷], ...,𝑾 [1]𝐱[𝐷])] =

∑𝐷
𝑑=1 log|det𝑾 [𝑑]

| −𝐻[𝑝𝐬(𝐱[1], ..., 𝐱[𝐷])].
The entropy 𝐻[𝑝𝐬(𝐱[𝑑], ..., 𝐱[𝑑])] is constant and does not change over the optimization

process, as the values 𝐱[𝑑] are observed and fixed. The constant can be dropped as it does not
change the location of the minimum. Hence, the Kullback-Leibler divergence simplifies to

𝐷𝐾𝐿(𝑝𝐬(𝐬̂1, ..., 𝐬̂𝑃)|
𝑃
∏

𝑗=1
𝑝𝑠𝑗 (𝐬̂𝑗)) =

𝑃
∑

𝑗=1
𝐻[𝑝𝐬(𝐬̂1, ..., 𝐬̂𝑃), 𝑝𝑠𝑗 (𝐬̂𝑗)] −

𝐷
∑

𝑑=1
log|det𝑾 [𝑑]

|.

16

The entropy 𝐻[𝑝𝐬(𝐬̂1, ..., 𝐬̂𝑃), 𝑝𝑠𝑗 (𝐬̂𝑗)] can be expressed as an expected value of log(𝑝𝑠𝑗 (𝐬̂𝑗)):

𝐻[𝑝𝐬(𝐬̂1, ..., 𝐬̂𝑃), 𝑝𝑠𝑗 (𝐬̂𝑗)]

= −∫𝑍
𝑝𝐬(𝑧1, ..., 𝑧𝑃)log[𝑝𝑠𝑗 (𝑧𝑗)]𝑑𝑍

= −∫𝒛𝑗
𝑝𝑠𝑗 (𝑧𝑗)log[𝑝𝑠𝑗 (𝑧𝑗)]𝑑𝒛𝑗

= −𝐸[log(𝑝𝑠𝑗 (𝐬̂𝑗))],

where 𝑍 is a set of possible values of the sources and 𝒛𝒋 is a set of possible values of the 𝑗th
source.

The marginal distributions 𝑝𝑠𝑗 are multivariate, 𝑝𝑠𝑗 (𝐬̂𝑗) = 𝑝𝑠𝑗 (𝑠̂
[1]
𝑗 , ..., 𝑠̂[𝐷]

𝑗), where source
components 𝑠̂[𝑑]𝑗 are dependent. The expected value is estimated using a sample mean
𝐸[log(𝑝𝑠𝑗 (𝐬̂𝑗))] ≈ 1

𝑇

∑𝑇
𝑡=1 log(𝑝𝑠𝑗 (𝐬̂𝑗(𝑡))). Because the true distributions 𝑝𝑠𝑗 are unknown, a

proper source density models 𝑝̂𝑗 must be chosen. With source density models 𝑝𝑗 selected, the
objective function 𝑂𝐼𝑉 𝐴 is finally defined as

𝑂𝐼𝑉 𝐴 = −
𝑃
∑

𝑗=1
𝐸[log(𝑝𝑗(𝐬̂𝑗))] −

𝐷
∑

𝑑=1
log|det𝑾 [𝑑]

|. (7)

The objective function is then minimized with respect to unmixing matrices𝑾 [𝑑] to maximize
the independence of the source estimates 𝐬̂𝑗 . Possible options for the source density models
𝑝𝑗 and the Newton update based IVA algorithm for minimizing the objective function are
considered in Section 3.

17

3 IVA Algorithms

Most IVA algorithms consist of two main parts, choosing proper source density models 𝑝𝑗
and choosing an optimization method (Lee et al., 2007). In this thesis the optimization
method is chosen to be Newton update based because of its popularity and efficiency in
recent studies, see e.g. Anderson (2013). Other existing optimization methods for IVA
are for example gradient descent based algorithms (Kim et al., 2006b; Anderson, 2013),
expectation maximization (EM) based algorithm (Lee et al., 2008a; Hao et al., 2010) and
auxiliary function based algorithms (Ono, 2011; Ikeshita and Nakatani, 2022). To simplify
the optimization process, the data are preprocessed to be whitened, which is explained in
Section 3.1. In Section 3.2 the Newton update based IVA algorithm is introduced and in
Section 3.3 different source models are introduced and their use cases and differences are
discussed. In this thesis the multivariate values within each source 𝒔𝑗 are assumed to be real
valued and distributed independently and identically (iid), and hence the algorithms presented
here will not be optimal for data, which possess serial dependence.

3.1 The data preprocessing

As discussed earlier, the data must be whitened to satisfy constraints of zero mean (2) and
identity covariance matrix (3). There are multiple ways to whiten the data, but in this thesis
the data preprocessing is accomplished according to Hyvärinen et al. (2001). To make the
data zero mean, it is simply centered by subtracting the rows 𝒙

′[𝑑]
𝑖 of 𝑿 ′[𝑑] with their sample

mean. The rows 𝒙[𝑑]
𝑖 of the centered data 𝑿[𝑑] are obtained by

𝒙[𝑑]
𝑖 = (𝒙

′[𝑑]
𝑖) − 𝐸(𝒙

′[𝑑]
𝑖), 𝑖 = 1, ..., 𝑃 , 𝑑 = 1, ..., 𝐷,

where 𝒙[𝑑]
𝑖 is the 𝑖th row of the matrix 𝑿[𝑑]. By centering the observed signals, the source

estimates become zero mean:

𝐸[𝑺 [𝑑]] = 𝐸[(𝑨[𝑑])−1𝑿[𝑑]] = (𝑨[𝑑])−1𝐸[𝑿[𝑑]].

A zero-mean random vector 𝒚 = (𝑦1, ..., 𝑦𝑃)⊤ is white, if its elements 𝑦𝑖 are uncorrelated
and have unit variances, i.e. 𝐸[𝒚𝒚⊤] = 𝑰𝑃 , where 𝑰𝑃 is 𝑃 ×𝑃 identity matrix. Whiteness can

18

be obtained by finding a linear transformation 𝑽 into vector 𝒛 so that

𝒛 = 𝑽 𝒚

becomes white. The whitening matrix 𝑽 can be found in multiple ways (Ilmonen et al.,
2012), one of which is by calculating the eigenvectors and the eigenvalues of the covariance
matrix 𝑪 = 𝐸[𝒚𝒚⊤]. Let 𝑬 = (𝒆1, ..., 𝒆𝑃) be the matrix, whose columns are eigenvectors of
covariance matrix 𝑪 and let 𝚲 = 𝑑𝑖𝑎𝑔(𝜆1, ..., 𝜆𝑃) be the matrix, whose diagonal elements 𝜆𝑖
are the eigenvalues of the matrix 𝑪 . The whitening matrix 𝑽 is then given by

𝑽 = 𝚲−1∕2𝑬⊤,

where 𝚲−1∕2 = 𝑑𝑖𝑎𝑔(𝜆−1∕21 , ..., 𝜆−1∕2𝑃). The whitening matrix 𝑽 exists always, when the
eigenvalues 𝜆𝑖 are positive. In practice, the covariance matrix 𝑪 is positive definite for almost
any natural data, so its eigenvalues will be positive.

By recalling that the covariance matrix 𝑪 can be written in terms of its eigenvector and
eigenvalue matrices 𝑬 and 𝚲 as 𝑪 = 𝑬𝚲𝑬⊤, where 𝑬 is an orthogonal matrix satisfying
𝑬𝑬⊤ = 𝑬⊤𝑬 = 𝑰𝑃 , it is easy to show that 𝑽 is indeed a whitening matrix. When the random
vector 𝒛 is written as 𝒛 = 𝑽 𝒚, it holds that

𝐸[𝒛𝒛⊤] = 𝑽 𝐸[𝒚𝒚⊤]𝑽 ⊤ = 𝚲−1∕2𝑬⊤𝑬𝚲𝑬⊤𝑬𝚲−1∕2 = 𝑰𝑃 .

The random vector 𝒛 is now white, as its covariance matrix is the unit matrix.
The centered data 𝑿[𝑑] is whitened for each dataset separately with algorithm described

above. By calculating the covariance matrix 𝑪 [𝑑], its eigenvector matrix 𝑬[𝑑] and eigenvalue
matrix 𝚲[𝑑] for each 𝑑 = 1, ..., 𝐷, and set 𝑽 [𝑑] = (𝚲[𝑑])−1∕2(𝑬[𝑑])⊤, the whitened data 𝒁 [𝑑] is
obtained as

𝒁 [𝑑] = 𝑽 [𝑑]𝑿[𝑑].

3.2 IVA with Newton update

The non-orthogonal Newton’s method based IVA algorithm (Anderson et al., 2010), uses
Newton update together with decoupling trick to update the unmixing matrices. The update
is performed concurrently for each row 𝒘[𝑑]

𝑗 of the unmixing matrix 𝑾 [𝑑], after which the

19

rows are normalized to achieve unit variance of source estimates. The unmixing vector
𝒘[𝑑]

𝑗 corresponds to 𝑗th source estimate of dataset 𝑑, 𝑠̂[𝑑]𝑗 = 𝒘[𝑑]
𝑗 𝒙[𝑑], where 𝑠̂[𝑑]𝑗 and 𝒙[𝑑] =

(𝑥[𝑑]
1 , ..., 𝑥[𝑑]

𝑃)⊤ are considered as population level random variables.
Let 𝑝̂ be the selected source density model for all sources and function 𝐺 to be defined as

𝐺(𝒔̂𝑗) = −log𝑝̂(𝒔̂𝑗).

With the function 𝐺 the objective function 𝑂𝐼𝑉 𝐴 in (7) becomes

𝑂𝐼𝑉 𝐴 =
𝑃
∑

𝑗=1
𝐸[𝐺(𝐬̂𝑗))] −

𝐷
∑

𝑑=1
log|det𝑾 [𝑑]

|.

When solving the unmixing matrices, it is beneficial to update each row of the unmixing
matrix separately, i.e. decoupled, because using a single step size for each direction might be
undesirable depending of the shape of source density’s surface. Easiest way of decoupling is
to restrict the unmixing matrices to be orthogonal. However, an orthogonal solution might
not be optimal and hence, so called decoupling trick (Anderson, 2013) is used to achieve more
flexible algorithm.

The decoupling trick is to find any unit length 𝑃 × 1 vector 𝒉[𝑑]
𝑖 such that 𝑾̃ [𝑑]

𝑖 𝒉[𝑑]
𝑖 = 𝟎,

where 𝑾̃ [𝑑]
𝑖 is (𝑃 −1)×𝑃 matrix which contains all 𝑃 −1 rows of the matrix 𝑾 [𝑑] besides the

𝑖th row, meaning that 𝑾̃ [𝑑]
𝑖 = [𝒘[𝑑]

1 ...𝒘[𝑑]
𝑖−1𝒘

[𝑑]
𝑖+1...𝒘

[𝑑]
𝑃] (Anderson et al., 2012). By calculating

the vectors 𝒉[𝑑]
1 , ...,𝒉[𝑑]

𝑃 the derivative and the second derivative of log|det𝑾 [𝑑]
| with respect

of 𝒘[𝑑]
𝑗 are obtained as

𝜕log|det𝑾 [𝑑]
|

𝜕𝒘[𝑑]
𝑗

=
𝒉[𝑑]
𝑗

(𝒉[𝑑]
𝑗)⊤𝒘[𝑑]

𝑗

and
𝜕2log|det𝑾 [𝑑]

|

𝜕𝒘[𝑑]
𝑗 (𝒘[𝑑]

𝑗)⊤
=

−𝒉[𝑑]
𝑗 (𝒉[𝑑]

𝑗)⊤

((𝒉[𝑑]
𝑗)⊤𝒘[𝑑]

𝑗)2
.

The vectors 𝒉[𝑑]
𝑖 are calculated as according to Anderson (2013).

Now, if Newton’s method is applied to update each row 𝒘[𝑑]
𝑗 , the update rule becomes

𝒘[𝑑]
𝑗 ← 𝒘[𝑑]

𝑗,𝑜𝑙𝑑 −𝐻−1
𝑑,𝑗

𝜕𝑂𝐼𝑉 𝐴

𝜕𝒘[𝑑]
𝑗

,

20

where the first derivative of 𝑂𝐼𝑉 𝐴 is

𝜕𝑂𝐼𝑉 𝐴

𝜕𝒘[𝑑]
𝑗

= 𝐸

(

𝜕𝐺(𝐬̂𝑗)

𝜕𝒘[𝑑]
𝑗

)

−
𝒉[𝑑]
𝑗

(𝒉[𝑑]
𝑗)⊤𝒘[𝑑]

𝑗

= 𝐸

(

𝜕𝐺(𝐬̂𝑗)

𝜕𝑠̂[𝑑]𝑗

𝜕𝑠̂[𝑑]𝑗

𝜕𝒘[𝑑]
𝑗

)

−
𝒉[𝑑]
𝑗

(𝒉[𝑑]
𝑗)⊤𝒘[𝑑]

𝑗

= 𝐸

(

𝜕𝐺(𝐬̂𝑗)

𝜕𝑠̂[𝑑]𝑗

𝒙[𝑑]

)

−
𝒉[𝑑]
𝑗

(𝒉[𝑑]
𝑗)⊤𝒘[𝑑]

𝑗

and the inverse of 𝑃 × 𝑃 Hessian matrix

𝐻−1
𝑑,𝑗 =

𝜕2𝑂𝐼𝑉 𝐴

𝜕𝒘[𝑑]
𝑗 𝜕(𝒘[𝑑]

𝑗)⊤
= 𝐸

(

𝜕2𝐺(𝐬̂𝑗)

𝜕𝒘[𝑑]
𝑗 𝜕(𝒘[𝑑]

𝑗)⊤

)

+
𝒉[𝑑]
𝑗 (𝒉[𝑑]

𝑗)⊤

((𝒉[𝑑]
𝑗)⊤𝒘[𝑑]

𝑗)2

= 𝐸

(

𝜕2𝐺(𝐬̂𝑗)

𝜕𝑠̂[𝑑]𝑗 𝜕(𝑠̂[𝑑]𝑗)⊤
𝜕2𝑠̂[𝑑]𝑗]

𝜕𝒘[𝑑]
𝑗 𝜕(𝒘[𝑑]

𝑗)⊤

)

+
𝒉[𝑑]
𝑗 (𝒉[𝑑]

𝑗)⊤

((𝒉[𝑑]
𝑗)⊤𝒘[𝑑]

𝑗)2

= 𝐸

(

𝜕2𝐺(𝐬̂𝑗)

𝜕𝑠̂[𝑑]𝑗 𝜕(𝑠̂[𝑑]𝑗)⊤
𝒙[𝑑](𝒙[𝑑])⊤

)

+
𝒉[𝑑]
𝑗 (𝒉[𝑑]

𝑗)⊤

((𝒉[𝑑]
𝑗)⊤𝒘[𝑑]

𝑗)2
.

In practice, the expected values 𝐸(⋅) are usually estimated by sample means

𝐸

(

𝜕𝐺(𝐬̂𝑗)

𝜕𝑠̂[𝑑]𝑗

𝒙[𝑑]

)

≈ 1
𝑇

𝑇
∑

𝑡=1

𝜕𝐺(𝐬̂𝑗(𝑡))

𝜕𝑠̂[𝑑]𝑗

𝒙[𝑑](𝑡) and (8)

𝐸

(

𝜕2𝐺(𝐬̂𝑗)

𝜕𝑠̂[𝑑]𝑗 𝜕(𝑠̂[𝑑]𝑗)⊤
𝒙[𝑑](𝒙[𝑑])⊤

)

≈ 1
𝑇

𝑇
∑

𝑡=1

𝜕2𝐺(𝐬̂𝑗(𝑡))

𝜕𝑠̂[𝑑]𝑗 𝜕(𝑠̂[𝑑]𝑗)⊤
(𝒙[𝑑](𝑡))⊤𝒙[𝑑](𝑡), (9)

unless the expected values can be estimated using the estimated unmixing matrices and
covariance matrices of observed data, which is discussed more in Section 3.3. After updating
the row 𝒘[𝑑]

𝑗 of unmixing matrix, the row is normalized by

𝒘[𝑑]
𝑗 ←

𝒘[𝑑]
𝑗

‖𝒘[𝑑]
𝑗 ‖

.

If the source density model 𝑝̂ is a parametric distribution with parameter vector 𝜽, the
parameters 𝜽 are estimated before each iteration. Different possibilities for the source density
models are discussed in Section 3.4. It should be noted that Newton update based algorithm
does not guarantee the estimated sources to be uncorrelated, because the decoupling trick
is used instead of restricting the unmixing matrices to be orthogonal. However, when the

21

Input: Observed signals 𝑿[𝑑], 𝑑 = 1, ..., 𝐷;
Center and whiten observed signals 𝑿[𝑑];
Initialize: 𝑾 [𝑑] and 𝑺̂ [𝑑] = 𝑾 [𝑑]𝑿[𝑑], 𝑑 = 1, ..., 𝐷;
while not converged do

Estimate distribution parameters 𝜽 if needed;
for 𝑑 = 1, ...𝐷 do

for 𝑗 = 1, ...𝑁 do
Update the row 𝑗 of the unmixing matrix 𝑑: 𝒘[𝑑]

𝑗 ← 𝒘[𝑑]
𝑗,𝑜𝑙𝑑 −𝐻−1

𝑑,𝑗
𝜕𝑂𝐼𝑉 𝐴

𝜕𝒘[𝑑]
𝑗

;

Normalization: 𝒘[𝑑]
𝑗 ←

𝒘[𝑑]
𝑗

‖𝒘[𝑑]
𝑗 ‖

;

end
end
Calculate new estimates: 𝑺̂ [𝑑] = 𝑾 [𝑑]𝑿[𝑑];

end
Output: Estimated source signals 𝑺̂ [𝑑], 𝑑 = 1, ..., 𝐷 ;

Algorithm 1: IVA algorithm with Newton update

algorithm separates the sources successfully, the source estimates will be nearly uncorrelated.
The convergence of the algorithm is measured by

𝜖 = 1 − 𝑚𝑖𝑛𝑑(𝑑𝑖𝑎𝑔(𝑾
[𝑑]
𝑜𝑙𝑑 (𝑾

[𝑑])⊤)),

which measures the maximum change in the rows of the unmixing matrices. It holds that for
any unit length vectors 𝒂 and 𝒃, −1 ≤ 𝒂⊤𝒃 ≤ 1, where −1 is obtained when 𝒂 = −𝒃 and
1 is obtained when 𝒂 = 𝒃. Because the rows of the unmixing matrices are unit vectors, it
holds that 0 ≤ 𝜖 ≤ 2, where 𝜖 = 0 is obtained when 𝒘[𝑑]

𝑜𝑙𝑑,𝑗 = 𝒘[𝑑]
𝑗 for all 𝑖 = 1, ...𝑃 and

𝑑 = 1, ..., 𝐷, and 𝜖 = 2 is obtained when there exists such 𝑖 and 𝑑 that 𝒘[𝑑]
𝑜𝑙𝑑,𝑗 = −𝒘[𝑑]

𝑗 . The
unmixing matrices can be initialized for example as identity matrices, matrices with random
values or estimated unmixing matrices of another IVA algorithm. The complete algorithm is
summarized in Algorithm 1.

3.3 Source density models

As mentioned in Section 2.3, proper source density models 𝑝𝑗 must be chosen to model the
true sources. The effectiveness of IVA is determined by how well the selected density models
match the true source distributions and by the optimization algorithm chosen (Mowakeaa

22

et al., 2020). Many source density models with varying properties and use cases have been
proposed since the original IVA (Kim et al., 2006b,c) was first introduced.

In this thesis all source density models are symmetric and most likely will not be
optimal for asymmetrically distributed sources. For IVA, the elements within each source
are assumed to be dependent on each other. The dependence can be divided into two types,
second-order (linear) dependence and higher-order (non-linear) dependence. The elements
are second-order dependent, if they are correlated, i.e. 𝐶𝑜𝑣(𝑠[𝑑1]𝑗 , 𝑠[𝑑2]𝑗) ≠ 0, 𝑑1 ≠ 𝑑2, 𝑑1, 𝑑2 =
1, ..., 𝐷. If the elements are uncorrelated, but still not independent, they are dependent through
some higher-order moment.

The original IVA was proposed using multivariate Laplace distribution with diagonal
covariance structure as source density model. Although the original papers never mention
Laplace distribution, it has been later stated to be multivariate Laplace distribution indeed
(Lee et al., 2008b). The original IVA algorithm, called fastIVA in this thesis, is also a
Newton update based algorithm, but restricted only for orthogonal unmixing matrices. The
multivariate extension of univariate Laplace distribution can be defined in many ways, one of
which is

𝑝𝐿(𝐱|𝝁,𝚺) =
det(𝚺)−1∕2

2𝐷𝜋(𝐷−1)∕2Γ
(

𝐷+1
2

)exp
(

−
√

(𝐱 − 𝝁)⊤𝚺−1(𝐱 − 𝝁)
)

, (10)

where 𝐷 is the dimension of multivariate variable 𝒙, 𝝁 is a 1 × 𝐷 location parameter and 𝚺
is 𝐷 × 𝐷 dispersion parameter (Arslan, 2010). By setting 𝐷 = 1, 𝑝𝐿 simplifies to density
function of univariate Laplace distribution. The original IVA algorithm assumes the sources
𝒔𝑗 to be higher-order dependent and second-order uncorrelated with unit variance, i.e. the
covariance matrix 𝚺𝑗 = 𝐸[𝒔𝑗𝒔⊤𝑗] = 𝑰𝐷, where 𝑰𝐷 is a 𝐷 × 𝐷 identity matrix (Kim et al.,
2006b). When the zero mean constraint of source vectors is taken into account, the location
parameter 𝝁 = 𝟎. The assumed form of distribution of source estimates 𝒔̂𝑗 is thus

𝑝𝐿(𝐬̂𝑗) =
1

2𝐷𝜋(𝐷−1)∕2Γ
(

𝐷+1
2

)exp
(

−
√

𝐬̂⊤𝑖 𝐬̂𝑖
)

, (11)

where the distribution has no unknown parameters. By dropping the constant part in (11), it

23

is clear that

𝑝𝐿(𝐬̂𝑖) ∝ exp
(

−
√

𝐬̂⊤𝑖 𝐬̂𝑖
)

.

When using the multivariate Laplace distribution with diagonal covariance structure as source
density model, the 𝐺 function and its first and second derivatives are

𝐺(𝒔̂𝑗) =
√

𝒔̂⊤𝑗 𝒔̂𝑗 ,
𝜕𝐺(𝒔̂𝑗)

𝜕𝑠̂[𝑑]𝑗

=
𝑠̂[𝑑]𝑗

√

𝒔̂⊤𝑗 𝒔̂𝑗
and

𝜕2𝐺(𝒔̂𝑗)

𝜕𝑠̂[𝑑]𝑗 𝜕(𝑠̂[𝑑]𝑗)⊤
= (𝒔̂⊤𝑗 𝒔̂𝑗)

−1∕2 − (𝒔̂⊤𝑗 𝒔̂𝑗)
−3∕2(𝑠̂[𝑑]𝑗)2.

The Newton update based IVA algorithm with multivariate diagonal Laplace is called
IVA-L-diag in this thesis. The multivariate Laplace distribution is more heavy-tailed than
the multivariate Gaussian distribution, which makes it more suitable for sparsely distributed
data (Lee et al., 2008b). The second-order uncorrelated multivariate Laplace distribution,
as introduced in (11), assumes that elements in a source vector have only higher-order
dependence, and no second-order dependence. This makes the multivariate diagonal Laplace
distribution suitable for applications such as frequency domain blind source separation, where
second-order correlation is minimal (Kim et al., 2006a).

Another widely used source density model is multivariate Gaussian distribution, which
was introduced in context of IVA by Anderson et al. (2011). Newton update based IVA
algorithm with multivariate Gaussian source density model, called IVA-G, is suitable for
sources with second-order correlation within the source vectors. IVA-G assumes the source
estimates 𝒔̂𝑗 to be distributed in multivariate Gaussian distribution

𝑝𝐺(𝒔̂𝑗|𝚺𝑗) =
1

(2𝜋)𝐾∕2det(𝚺𝑗)1∕2
exp

(

−1
2
𝒔̂⊤𝑗 𝚺

−1
𝑗 𝒔̂𝑗

)

,

which models only second-order correlation and no higher-order dependence. The location
parameter 𝝁 is dropped, as the sources are zero mean and thus location is fixed to zero.
To satisfy the assumption of components being dependent in a source vector, 𝚺𝑗 cannot
be assumed identity matrix as in IVA-L-diag. Rather, it must be estimated during the
optimization process. In case of multivariate Gaussian distribution, the 𝐺 function and its

24

first and second derivatives are

𝐺(𝒔̂𝑗) =
1
2

log(det(𝚺𝑗)) +
1
2
𝒔̂⊤𝑗 𝚺

−1
𝑗 𝒔̂𝑗 ,

𝜕𝐺(𝒔̂𝑗)

𝜕𝑠̂[𝑑]𝑗

= 𝒔̂⊤𝒋 𝚺
−1
𝑗 𝒆𝑑 , and

𝜕2𝐺(𝒔̂𝑗)

𝜕𝑠̂[𝑑]𝑗 𝜕(𝑠̂[𝑑]𝑗)⊤
= 𝚺−1

𝑗 𝒆𝑑𝒆⊤𝑑 ,

where 𝒆𝑑 stands for 𝑑th standard basis vector of 𝐷-dimensional space. One of the major
advantages the multivariate Gaussian source model has, is that the expected values (8) and
(9) can be calculated using only the estimated covariance matrices 𝑹̂[𝑑1,𝑑2]

𝑥 , 𝑑1, 𝑑2 = 1, ..., 𝐷
of the observed signals and the estimated unmixing matrices. The calculation of the expected
values becomes invariant of sample size 𝑇 , which makes it much more viable than other source
density models in terms of computation time. The covariance matrix

𝑹[𝑑1,𝑑2]
𝑥 = 𝐸[𝒙[𝑑1](𝒙[𝑑2])⊤]

is estimated in practice using

𝑹̂[𝑑1,𝑑2]
𝑥 = 1

𝑇

𝑇
∑

𝑡=1
𝒙[𝑑1](𝑡)(𝒙[𝑑1](𝑡))⊤.

Then, by observing that

𝚺[𝑑1,𝑑2]
𝑗 = (𝒘[𝑑1]

𝑗)⊤𝑹[𝑑1,𝑑2]
𝑥 𝒘[𝑑2]

𝑗 and 𝐸[𝒙[𝑑]𝒔̂⊤𝑗] = [𝑹[𝑑,1]
𝑥 𝒘[1]

𝑗 , ...,𝑹[𝑑,𝐷]
𝑥 𝒘[𝐷]

𝑗],

the expected values (8) and (9) can be presented in forms of

𝐸

(

𝜕𝐺(𝐬̂𝑗)

𝜕𝒔̂[𝑑]𝑗

𝒙̂[𝑑]

)

= 𝐸

(

𝒙[𝑑]
𝜕𝐺(𝐬̂𝑗)

𝜕𝒔̂[𝑑]𝑗

)

= 𝐸
(

𝒙[𝑑]𝒔̂⊤𝑗 𝚺
−1
𝑗 𝒆𝑑

)

= [𝑹[𝑑,1]
𝑥 𝒘[1]

𝑗 , ...,𝑹[𝑑,𝐷]
𝑥 𝒘[𝐷]

𝑗]𝚺−1
𝑗 𝒆𝑑 ≈ [𝑹̂[𝑑,1]

𝑥 𝒘[1]
𝑗 , ..., 𝑹̂[𝑑,𝐷]

𝑥 𝒘[𝐷]
𝑗]𝚺̂−1

𝑗 𝒆𝑑 and

𝐸

(

𝜕2𝐺(𝐬̂𝑗)

𝜕𝒔̂[𝑑]𝑗 𝜕(𝒔̂[𝑑]𝑗)⊤
𝒙[𝑑](𝒙[𝑑])⊤

)

= 𝐸
(

𝚺−1
𝑗 𝒆𝑑𝒆⊤𝑑𝒙

[𝑑](𝒙[𝑑])⊤
)

= (𝚺[𝑑,𝑑]
𝑗)−1𝑹[𝑑,𝑑]

𝑥 ≈ (𝚺̂[𝑑,𝑑]
𝑗)−1𝑹̂[𝑑,𝑑]

𝑥 ,

where the elements of the matrix 𝚺̂𝑗 are calculated as

𝚺̂[𝑑1,𝑑2]
𝑗 = (𝒘[𝑑1]

𝑗)⊤𝑹̂[𝑑1,𝑑2]
𝑥 𝒘[𝑑2]

𝑗 , 𝑑1, 𝑑2 = 1, ..., 𝐷. (12)

Here the estimates of the expected values are invariant of the sample size 𝑇 . The parameter

25

estimates 𝚺̂𝑗 , 𝑗 = 1, ...𝑃 , are calculated before each iteration.
The multivariate Gaussian distribution is suitable source density model for sources with

higher second-order correlation such as group fMRI studies (Anderson et al., 2011). If
second-order correlation is not present or is minimal, the multivariate Gaussian distribution
is not suitable option for source density model.

Anderson et al. (2011) also proposed a method called IVA-GL, which is to initialize
fastIVA with the solution of IVA-G. Their results show that IVA-GL gives better and more
consistent solutions regardless of the amount of second-order correlation in source vectors.

Another possible source density model is multivariate Laplace distribution (11) without
the diagonal covariance matrix restriction. The advantage of this is that it captures both
second-order and higher-order dependence. Source density model is then

𝑝𝐿(𝐬̂𝑗|𝚺𝑗) ∝ exp
(

−
√

𝐬̂⊤𝑗 𝚺−1
𝑗 𝐬̂𝑗

)

,

where 𝚺𝑗 has to be estimated before each iteration as done in (12). The Newton update
based IVA algorithm with non-diagonal Laplace distribution as source density model is called
IVA-L in this thesis. For IVA-L, the 𝐺 function and its first and second derivatives are

𝐺(𝒔̂𝑗) =
√

𝒔̂⊤𝑗 𝚺−1
𝑗 𝒔̂𝑗 ,

𝜕𝐺(𝒔̂𝑗)

𝜕𝑠̂[𝑑]𝑗

=
𝒔̂𝑗𝚺−1

𝑗 𝒆𝑑
√

𝒔̂⊤𝑗 𝚺−1
𝑗 𝒔̂𝑗

and

𝜕2𝐺(𝒔̂𝑗)

𝜕𝑠̂[𝑑]𝑗 𝜕(𝑠̂[𝑑]𝑗)⊤
= (𝒔̂⊤𝑗 𝚺

−1
𝑗 𝒔̂𝑗)−1∕2𝚺−1

𝑗 𝒆𝑑𝒆⊤𝑑 − (𝒔̂⊤𝑗 𝚺
−1
𝑗 𝒔̂𝑗)−3∕2(𝒔̂𝑗𝚺−1

𝑗 𝒆𝑑)2.

The Student’s t source density model with identity covariance structure, proposed by Liang
et al. (2013), takes the form of

𝑝𝑆(𝒔̂𝑗) ∝

(

1 +
𝒔̂⊤𝑗 𝒔̂𝑗
𝑣

)−(𝑣+𝐷∕2)

,

where 𝑣 is the degree of freedom and 𝐷 is the total number of datasets. The logarithm of
𝑝𝑆(𝒔̂𝑗) is then divided by (𝑣 +𝐷∕2), so that 𝐺 function becomes 𝐺(𝒔̂𝑗) = log(1 +

𝒔̂⊤𝑗 𝒔̂𝑗
𝑣
). The

26

x

−4

−2

0

2

4

y

−4

−2

0

2

4

z

0.05

0.10

0.15

x

−4

−2

0

2

4

y

−4

−2

0

2

4

z

0.01

0.02

0.03

x

−4

−2

0

2

4

y

−4

−2

0

2

4

z

0.05

0.10

0.15

Figure 6: Density plots of bivariate Gaussian distribution (left), bivariate Laplace distribution
(center) and bivariate Cauchy distribution (right), when the covariance matrix is identity
matrix.

first and the second derivatives of 𝐺 are then

𝜕𝐺(𝒔̂𝑗)

𝜕𝑠̂[𝑑]𝑗

∝
𝑠̂[𝑑]𝑗

1 +
𝒔̂⊤𝑗 𝒔̂𝑗
𝑣

and
𝜕2𝐺(𝒔̂𝑗)

𝜕𝑠̂[𝑑]𝑗 𝜕(𝑠̂[𝑑]𝑗)⊤
∝ 1

1 +
𝒔̂⊤𝑗 𝒔̂𝑗
𝑣

+
2(𝑠̂[𝑑]𝑗)2

(

1 +
𝒔̂⊤𝑗 𝒔̂𝑗
𝑣

)2
𝑣
.

The Student’s t source density model presented here takes only higher-order dependence
into account as the covariance structure is fixed to be an identity matrix. With decreasing
parameter 𝑣, the distribution becomes more heavy-tailed. In this thesis only a single value
𝑣 = 1 is considered rather than estimating it during the optimization process. With 𝑣 = 1 the
distribution is actually a multivariate Cauchy distribution and hence in this thesis the Newton
update based IVA algorithm with the multivariate Cauchy distribution as source density model
is called IVA-C.

Figure 6 represents the difference between the shapes of the multivariate Gaussian
distribution, the multivariate Laplace distribution and the multivariate Cauchy distribution in
bivariate case. The multivariate Laplace distribution is more heavy tailed than the multivariate
Gaussian distribution and the multivariate Cauchy distribution has less probability mass near
the center, but the tails lower towards zero much slower.

Many other source density models have been also proposed since the original IVA, such
as mixture of Student’s t distribution and Laplace distribution (Rafique et al., 2016), Gaussian
mixture models (Hao et al., 2010) and multivariate generalized Gaussian distribution (Liang

27

et al., 2014). Xi-Lin (2020) proposed deep neural network (DNN) priors together with natural
gradient descent optimizer for speech separation task. They estimated the derivative of density
of speeches by recurrent neural networks and feed forward neural networks by training the
networks using artificially mixed speeches of books read in English. This thesis focuses
on studying the diagonal multivariate Laplace distribution, the non-diagonal multivariate
Laplace distribution, the multivariate Gaussian distribution and the multivariate Cauchy
distribution.

4 Simulation studies

Simulation studies are used to verify the performance of Newton based IVA algorithm with
different source density models as well as to compare the source density models under different
scenarios.

The multivariate Gaussian source density model captures only second-order dependence,
the multivariate diagonal Laplace and Cauchy source density models capture only
higher-order dependence, and the multivariate Laplace distribution with non-diagonal
covariance captures both second-order and higher-order dependence. The aim of the
simulations is to compare how well the source density models perform when the sources
are generated from different distributions and the number of datasets and the number of
observations change. The simulations are performed in R 4.1.1 (R Core Team, 2020) using the
packages doMPI (Weston, 2017) and LaplacesDemon (Statisticat and LLC., 2021). All IVA
algorithms and the performance indices used in the simulations are available in R package
ivaBSS (Sipilä et al., 2022) which is made as a part of this thesis. The manual of ivaBSS is
attached in the Appendix.

4.1 Performance metrics

Two different performance metrics are used for evaluating the performance of the algorithms.
Intersymbol inference (ISI), often also called Amari index (Amari et al., 1996), is a
performance measure commonly used in context of ICA. ISI is first introduced for blind source
separation by Moreau and Macchi (1994). It is a function of the gain matrix𝑮 = 𝑾𝑨, defined

28

as

𝐼𝑆𝐼(𝑮) =

∑𝑃
𝑗=1(

∑𝑃
𝑖=1

|𝑔𝑗,𝑖|

max𝑘|𝑔𝑗,𝑘|
− 1) +

∑𝑃
𝑖=1(

∑𝑃
𝑗=1

|𝑔𝑗,𝑖|

max𝑘|𝑔𝑘,𝑖|
− 1)

2𝑃 (𝑃 − 1)
,

where |𝑔𝑗,𝑖| is the absolute value of element in the 𝑗th row and the 𝑖th column of the gain
𝑮, max𝑘|𝑔𝑗,𝑘| is the maximum of the absolute values in the 𝑗th row of 𝑮 and max𝑘|𝑔𝑘,𝑖| is
the maximum of the absolute values of the 𝑖th column of 𝑮. The metric is normalized based
on the number of sources, 𝑃 , so that 0 ≤ 𝐼𝑆𝐼(𝑮) ≤ 1, where 0 is the optimal result. The
maximum ISI occurs when 𝑮 is a matrix of ones and the minimum ISI occurs when each row
and each column of the matrix 𝑮 has only one non-zero element. For any scalar 𝑘 ≠ 0 it holds
that 𝐼𝑆𝐼(𝑘𝑮) = 𝐼𝑆𝐼(𝑮).

For IVA, the extension of the intersymbol inference, joint intersymbol inference (joint
ISI), (Anderson, 2013), has to be used as there are multiple datasets of source mixtures to be
separated. Joint ISI calculates the average ISI over all gain matrices 𝑮[𝑑] = 𝑾 [𝑑]𝑨[𝑑] as well
as penalizes if the source estimates are not aligned in same order for each dataset. The joint
ISI is defined as

jISI(𝑮[1], ...,𝑮[𝐷]) = ISI

(

1
𝐷

𝐷
∑

𝑑=1
|𝑮[𝑑]

|

)

= ISI

(

𝐷
∑

𝑑=1
|𝑮[𝑑]

|

)

,

where |𝑮[𝑑]
| denotes the matrix whose elements are the absolute values of the corresponding

elements of 𝑮[𝑑]. A small value of joint ISI indicates that the sources are separated well and
the permutation of the source estimates is identical in each dataset. To measure the average
separation performance across all datasets without taking the permutation in account, the
average ISI can be used. The average ISI is calculated as

avgISI(𝑮[1], ...,𝑮[𝐷]) =
𝐷
∑

𝑑=1

1
𝐷

ISI
(

𝑮[𝑑]) .

If the joint ISI is close to zero, it indicates that the average ISI is also close to zero (Anderson,
2013). However, when the joint ISI is not close to zero, it is useful to calculate the average
ISI to identify if the separation is achieved for each dataset separately.

To ease the interpretation of the mean joint ISI, the mean joint ISI is calculated for 10000
gain matrices 𝑮, whose elements are generated from standard normal distribution, when the
number of sources 𝑃 = 4. The results are presented in Table 1. The values correspond

29

Table 1: The mean joint ISI of 10000 gain matrices, whose elements are generated from
standard normal distribution for different numbers of datasets. All trials are computed using
the number of sources 𝑃 = 4.

The number of datasets Mean jISI
2 0.530
5 0.660
10 0.740
20 0.805

to mean joint ISI of the case where the unmixing matrices 𝑾 [𝑑] are identity matrices, i.e.
𝑺̂ [𝑑] = 𝑿[𝑑] for 𝑑 = 1, ..., 𝐷. The mean joint ISI should be compared to this limit rather than
to the theoretical maximum value of 1.

Another metric that is used is the success ratio, which a proportion of the successful
trials. A trial is considered successful, if the location of maximum absolute values of each
row of 𝑮[𝑑] is unique within the dataset, but shared between the dataset 1, ..., 𝐷 (Anderson,
2013). The first indicates that the sources are separated within dataset and the second indicates
that the estimated sources are aligned in same order for each dataset. The success ratios are
investigated to identify how consistent the algorithms are in different setups.

4.2 Generation of the data

The performance of each source density model is measured under four different source
density distributions and multiple different simulation setups. The sources are generated
separately from multivariate Laplace distribution, multivariate diagonal Laplace distribution,
multivariate Gaussian distribution and multivariate power exponential distribution. In
addition to these, the fifth setup is generated where each source is from different distribution.
Each source density is investigated with number of datasets 𝐷 ∈ (2, 5, 10), the number of
sources 𝑃 = 4 and the number of observations 𝑇 ∈ (1000, 5000, 10000). Each setup is
repeated 1000 times.

The sources following the multivariate Gaussian distribution and the multivariate Laplace
distribution are generated with random covariance structures

𝚺𝑗 = 𝑼𝑗𝑼⊤
𝑗 , 𝑗 = 1, ..., 𝑃 , (13)

where 𝑼𝑗 is 𝐷 × 𝐷 matrix, whose elements are from standard normal distribution. For the

30

multivariate diagonal Laplace distribution, the identity covariance matrix is used, i.e. 𝚺𝑗 =
𝑰𝐷.

The multivariate Gaussian distributed sources are then generated from the multivariate
Gaussian distribution so that 𝒔𝑗 ∼  (𝟎,𝚺𝑗). The multivariate Laplace distributed sources are
generated using 𝒔𝑗 =

√

𝒉𝑗𝒛𝑗 (Anderson, 1992), where the elements of 𝒉𝑗 are from exponential
distribution with unity rate parameter and 𝒛𝑗 ∼  (𝟎,𝚺𝑗). Here 𝚺𝑗 is a random covariance
matrix (13) for non-diagonal Laplace and identity matrix for diagonal Laplace.

The multivariate power exponential distribution (Gómez et al., 1998), also called the
multivariate generalized Gaussian distribution, takes the form of

𝑝(𝒔𝑗|𝚺𝑗) =
𝐷∕2Γ(𝐷∕2)

√

𝜋𝐷det𝚺𝑗Γ(1 +𝐷∕(2𝜅))2𝐷∕(2𝜅)
exp

(

−1
2
(𝒔⊤𝑗 𝚺

−1
𝑗 𝒔𝑗)𝜅

)

,

when the expected value equals zero. Above 𝚺𝑗 is the 𝑗th covariance matrix and 𝜅 > 0 effects
on how heavy tailed the distribution is. The sources are generated with random 𝜅 ∈ [0.25, 3],
where smaller 𝜅 makes the distribution more heavy tailed. The multivariate Gaussian and
the multivariate Laplace distributions are special cases of the multivariate power exponential
distribution when 𝜅 = 1 and 𝜅 = 1

2
, respectively.

The fifth source density setup is with each source generated from different distribution.
The sources are generated so that 𝒔1 follows the multivariate Gaussian distribution, 𝒔2 follows
the multivariate Laplace distribution with random covariance structure 𝚺2, 𝒔3 follows the
multivariate Laplace distribution with diagonal covariance structure 𝚺3 = 𝑰𝐷 and 𝒔4 follows
the multivariate Student’s t distribution with degree of freedom 𝑣 = 4 and diagonal covariance
structure 𝚺4 = 𝑰𝐷. In this setup the components of 𝒔1 are only second-order dependent, the
components of 𝒔2 are both second-order and higher-order dependent and the components of
𝒔3 and 𝒔4 are only higher-order dependent.

The elements of the mixing matrices 𝑨[1], ...,𝑨[𝐷] are generated from the standard normal
distribution, and the mixtures 𝑿[1], ...,𝑿[𝐷] are then obtained by calculating 𝑿[𝑑] = 𝑨[𝑑]𝑺 [𝑑].

4.3 Comparisions

The performance of different algorithms are compared by joint intersymbol-inference, success
ratio and computation time in different simulation setups. Every simulation setup is repeated
1000 times and each generated data mixture is separated using each of the source density
models discussed in Section 3.3. The joint ISI is calculated for each separation. The mean

31

joint ISI and the success ratios are then compared for the different simulation setups and source
densities.

The initial simulations were performed using identity matrices as initial unmixing
matrices. It was discovered that IVA-L, IVA-L-diag and IVA-C algorithms provided
insufficient results by converging to local optima almost always, although they are the
algorithms which should be theoretically able to separate the higher-order dependent sources.
The main problem about these algorithms is that when the sources are higher-order dependent,
they do not solve the common permutation problem, meaning that the source estimates might
be aligned in different order in the datasets. Instead, they solve the BSS problem only
separately for each dataset. When the sources are second-order and higher-order dependent,
IVA-L solves the common permutation problem sufficiently exploiting the second-order
dependence, but for IVA-L-diag and IVA-C the problem persists. This issue was identified
by inspecting the joint ISI, which was usually large, and the average ISI, which was
usually close to zero implying that the sources were separated successfully, but the common
permutation was not discovered. To overcome this issue the goal is to initialize the unmixing
matrices so that the algorithms converge to global optima as often as possible. According
to Anderson (2013), whenever the sources possess any second-order dependence, it is
beneficial to initialize the algorithms with the result of IVA-G, as IVA-G solves the common
permutation problem reliably in most cases where the sources are second-order dependent.
It also decreases the computation time, as IVA-G is hundreds of times faster than the other
algorithms, which is discussed later this section. After initializing the algorithms with the
estimated unmixing matrices of IVA-G, much fewer iterations are needed till convergence.
According to previous simulation studies, when the sources are only higher-order dependent,
the original IVA algorithm, fastIVA, with unmixing matrices restricted to be orthogonal (Lee
et al., 2007) tend to converge to global optima more often. Finding the orthogonal unmixing
matrices is usually sufficient if the sources are purely higher-order dependent, because the
inverse mixing matrices are nearly orthogonal after whitening. FastIVA is most reliable when
the number of sources is significantly less than the number of datasets (Anderson, 2013).
When the number of sources increase or the number of datasets decrease, fastIVA converges
more often to local optima. It still solves the common permutation problem more often than
IVA-L, IVA-L-diag or IVA-C, which is why it is reasonable to initialize the algorithms with
the result of fastIVA when the sources are only higher-order dependent.

In following simulation studies, fastIVA is initialized with the estimated unmixing
matrices of IVA-G, and then IVA-L, IVA-L-diag and IVA-C are initialized with the estimated

32

unmixing matrices of fastIVA. With this procedure, IVA-G attempts to solve the permutation
in case the sources possess second-order dependence and then fastIVA is used as a backup
to obtain the best possible results when the sources are only higher-order dependent. The
algorithms are run for maximum of 400 iterations or until the algorithm converged with the
tolerance of 10−6. From the trials where the source density models were theoretically able to
capture the dependence between the datasets, less than 1% of the trials were not converged in
400 iterations. If the algorithm did not converge, the result of the last iteration was used.

The mean joint ISI of different setups are collected in Figure 7 and the success ratios in
Figure 8. When the sources are generated from the multivariate Laplace distribution with
random covariance structure, the sources are second-order dependent as well as higher-order
dependent. In this setup the best algorithm is IVA-L, which is not surprising as the Laplace
source density model matches the distribution of the true sources. When the number of
datasets is two, the success ratio of IVA-G is only approximately 0.5 and joint ISI is over 0.1,
but when the number of datasets grows, it performs nearly as well as the other algorithms.
FastIVA, IVA-L-diag and IVA-C perform almost as well as IVA-L, especially when the
number of datasets is small. IVA-L-diag achieves the smallest joint ISI of these three, and
the joint ISI of fastIVA and IVA-C are almost identical. The common permutation is solved
consistently for IVA-L, IVA-L-diag, IVA-C and fastIVA when using the previously introduced
initialization of the unmixing matrices.

When the sources are generated from diagonal Laplace distribution, IVA-G is not able to
separate the sources as the sources are purely higher-order dependent. The mean joint ISI
is larger than the mean joint ISI of random gain matrices presented in Table 1 in all setups.
IVA-L, IVA-L-diag, IVA-C and fastIVA provide similar results with decreasing joint ISI and
increasing success ratio when the number of datasets grows. The mean joint ISI of IVA-L
and IVA-L-diag are slightly smaller than the mean joint ISI of fastIVA and IVA-C, but the
differences are almost unnoticeable.

When the sources are generated from the multivariate Gaussian distribution or from
the multivariate power exponential distribution, the algorithms exploiting the second-order
dependence, IVA-G and IVA-L, perform the best. IVA-G is the best algorithm when the
number of datasets is small, although the success ratio is still only approximately 0.5.
When the number of datasets grow, IVA-L is the best option producing lower joint ISI and
higher success ratio. IVA-L-diag, IVA-C and fastIVA also provide reasonably good results,
especially when the number of datasets and the number of observations are large. However, it
should be noted that the performances of IVA-L-diag, IVA-C and fastIVA are mostly defined

33

0.001

0.010

0.100

1.000

2 5 10

Multivariate Laplace sources

T = 1000

0.001

0.010

0.100

1.000

2 5 10

T = 5000

0.001

0.010

0.100

1.000

2 5 10

T = 10000

0.001

0.010

0.100

1.000

2 5 10

Multivariate Diagonal Laplace sources

0.001

0.010

0.100

1.000

2 5 10
0.001

0.010

0.100

1.000

2 5 10

0.001

0.010

0.100

1.000

2 5 10

M
ea

n
jo

in
t I

S
I

Multivariate Gaussian sources

0.001

0.010

0.100

1.000

2 5 10
0.001

0.010

0.100

1.000

2 5 10

0.001

0.010

0.100

1.000

2 5 10

Multivariate power exponential sources

0.001

0.010

0.100

1.000

2 5 10
0.001

0.010

0.100

1.000

2 5 10

0.001

0.010

0.100

1.000

2 5 10

The sources from different distributions

0.001

0.010

0.100

1.000

2 5 10

The number of datasets

0.001

0.010

0.100

1.000

2 5 10

fastIVA IVA−G IVA−L IVA−L−diag IVA−C

Figure 7: Mean joint intersymbol-inferences (log scale) of 1000 trials of each simulation
setup. Different numbers of observations 𝑇 are presented in columns and the number of
datasets in horizontal axis. The true source density varies between the rows. Each generated
data mixture is separated using fastIVA, IVA-G, IVA-L, IVA-L-diag and IVA-C algorithms.

34

by the initialization with the estimates of IVA-G in this setup.
In the fifth setup where the sources are from different distributions, IVA-L performs the

best capturing both second-order and higher-order dependence. IVA-L-diag, IVA-C and
fastIVA provide almost identical results losing only very little to IVA-L. IVA-G provides
insufficient results, because there are two sources which are purely higher-order dependent in
this setup. The success ratios of IVA-L, IVA-L-diag, IVA-C and fastIVA are almost identical,
and growing when the number of datasets grows. The success ratio of IVA-G decreases close
to zero when the number of datasets grows.

In general, the results get better when the number of datasets increases and when the
number of observations increase. However, the effect of the number of datasets growing is
much larger. The initialization of the unmixing matrices with the results of IVA-G and fastIVA
solves the common permutation problem reasonably well, and increases the performances of
IVA-L, IVA-L-diag and IVA-C. Especially IVA-L becomes very flexible and well performing
algorithm in almost all setups. When the sources are purely higher-order dependent, the
performances of IVA-L, IVA-L-diag and IVA-C are defined mostly by the performance of
fastIVA, as it is used to initialize the algorithms. Even though the estimated unmixing matrices
of fastIVA are restricted to be orthogonal, IVA-L, IVA-L-diag and IVA-C improve the results
of fastIVA only marginally. This is most likely because of the fact that the mixing matrices
of purely higher-order dependent sources become nearly orthogonal after the whitening.

The mean computation times per iteration are presented in Figure 9. The most important
result in terms of computation time is that IVA-G algorithm is by far fastest of the algorithms.
It is over 100 times faster than the IVA-L, IVA-L-diag and IVA-C when 𝑇 = 1000, 400-550
times faster when 𝑇 = 5000 and 600-800 times faster when 𝑇 = 10000. FastIVA algorithm
is approximately twice as fast as IVA-L, IVA-L-diag and IVA-C. The computation times
of IVA-L, IVA-L-diag and IVA-C are close to each other, IVA-L being the slowest one.
The number of iterations are higher when the source density model is a mismatch to true
sources, otherwise there are no meaningful differences between the number of iterations.
By initializing IVA-L, IVA-L-diag and IVA-C algorithms using the initialization procedure
introduced previously usually lowers significantly the number of iterations required till
convergence, which makes the overall computation time usually much lower.

In conclusion, IVA-L with the unmixing matrix initialization performs best in most cases
and should be used especially when there are no prior knowledge about the true source
densities. If the computation resources are limited and the sources possess at least some
second-order dependence, IVA-G is the best choice as it is the fastest by far and performs

35

0.00

0.25

0.50

0.75

1.00

2 5 10

Multivariate Laplace sources

T = 1000

0.00

0.25

0.50

0.75

1.00

2 5 10

T = 5000

0.00

0.25

0.50

0.75

1.00

2 5 10

T = 10000

0.00

0.25

0.50

0.75

1.00

2 5 10

Multivariate diagonal Laplace sources

0.00

0.25

0.50

0.75

1.00

2 5 10
0.00

0.25

0.50

0.75

1.00

2 5 10

0.00

0.25

0.50

0.75

1.00

2 5 10

S
uc

ce
ss

 r
at

io

Multivariate Gaussian sources

0.00

0.25

0.50

0.75

1.00

2 5 10
0.00

0.25

0.50

0.75

1.00

2 5 10

0.00

0.25

0.50

0.75

1.00

2 5 10

Multivariate power exponential sources

0.00

0.25

0.50

0.75

1.00

2 5 10
0.00

0.25

0.50

0.75

1.00

2 5 10

0.00

0.25

0.50

0.75

1.00

2 5 10

The sources from different distributions

0.00

0.25

0.50

0.75

1.00

2 5 10

The number of datasets

0.00

0.25

0.50

0.75

1.00

2 5 10

fastIVA IVA−G IVA−L IVA−L−diag IVA−C

Figure 8: The success ratios of each simulation setup. Different numbers of observations 𝑇
are presented in columns and the density of the true sources vary between the rows. Each
simulation setup is repeated 1000 times and each generated data mixture is separated using
fastIVA, IVA-G, IVA-L, IVA-L-diag and IVA-C algorithms.

36

1e−03

1e−02

1e−01

1e+00

1e+01

2 5 10

M
ea

n
co

m
pu

ta
tio

n
tim

e
T = 1000

1e−03

1e−02

1e−01

1e+00

1e+01

2 5 10

The number of datasets

T = 5000

1e−03

1e−02

1e−01

1e+00

1e+01

2 5 10

T = 10000

fastIVA IVA−G IVA−L IVA−L−diag IVA−C

Figure 9: The mean computation times per iteration, when the sources are generated from
multivariate power exponential distribution. Different number of observations 𝑇 are presented
in columns. Each simulation setup is repeated 1000 times and each generated data mixture is
separated with each one of the algorithms.

nearly as well as IVA-L with the initialization. IVA-L-diag, IVA-C and fastIVA can be
considered when the sources are mostly higher-order dependent. They perform best when
the number of sources 𝑃 is significantly less than the number of datasets 𝐷. For IVA-L,
IVA-L-diag and IVA-C, the unmixing matrices should always be initialized with IVA-G
when the sources possess second-order dependence, with fastIVA when the sources are only
higher-order dependent, or with both IVA-G and fastIVA as done in these simulations when
there are no prior knowledge about the true source densities.

5 Application to mixed images

Color images are often represented as RGB images, which consist of pixels with three
channels, red (R), green (G) and blue (B). Each channel of a pixel has a brightness value
between 0 and 255, where larger value means brighter color. In natural images the red, green
and blue channels tend to be highly correlated, meaning that values of one channel are good
predictors of the values of the other channels (Dufaux et al., 2016). The illustration of different
channels presented in gray scale and the correlation between the channels is presented in
Figure 10. When the gray scale representation of a single channel has a bright color, it means

37

that the image has the corresponding color stronger. For example the yellow car has red and
green channels stronger than the blue channel, and the ceiling of the car has blue channel
stronger than the other channels. It can be also seen that for example the white, black and
brown areas of the original image tend to have similar values of red, green and blue channels.

In this section IVA-G, IVA-L-diag, IVA-L and IVA-C algorithms are used to separate
five original images from five randomly mixed images. In this application, the source signals
are composed of the 𝑃 = 5 independent 100 × 100 pixel images. The rows of the images
are stacked in a vector making the sample size 𝑇 = 10000. As each pixel consists of three
dependent elements, red, green and blue, the number of datasets equals 𝐷 = 3. The mixed
images are then obtained by generating the mixing matrices𝑨[1],𝑨[2] and𝑨[3] whose elements
follow the standard normal distribution. The mixtures are then preprocessed by normalizing
each channel of each mixture to range [0, 255] to represent the values of the RGB channels.
The normalization is done by calculating

𝒙[𝑑]
𝑖 (𝑡) = 255 ⋅

𝒙[𝑑]
𝑖 (𝑡) − min𝑡(𝒙

[𝑑]
𝑖 (𝑡))

max𝑡(𝒙
[𝑑]
𝑖 (𝑡)) − min𝑡(𝒙

[𝑑]
𝑖 (𝑡))

, 𝑖 = 1, ..., 𝑃 , 𝑑 = 1, ..., 𝐷, 𝑡 = 1, ..., 𝑇 . (14)

The original images and the observed mixtures are presented in Figure 11.

RGB image Red channel Green channel Blue channel

Figure 10: RGB image of a yellow car and its red, green and blue channels represented in
grayscale. The original picture is owned by Mika Sipilä.

Table 2: Joint intersymbol inferences of estimated unmixing matrices and true mixing
matrices, when different algorithms are applied to mixed image separation task.

Algorithm Joint ISI
IVA-L-diag 0.376

IVA-G 0.103
IVA-L 0.118
IVA-C 0.340

38

Figure 11: The original source images are presented in the first row and the mixtures of the
source images in the second row. The original pictures are owned by Mika Sipilä.

The observed mixtures are separated using each of the algorithms, IVA-G, IVA-L-diag,
IVA-L and IVA-C. IVA-L, IVA-L-diag and IVA-C algorithms are initialized with the
estimated unmixing matrices of IVA-G to speed up the separation process. The initial values
are obtained using the convergence tolerance of 10−6. Then the convergence tolerance is set
to 10−8 to obtain sufficient results. The results are postprocessed again by normalizing each
channel of each recovered image to range [0, 255], similarly as in (14). The received images
are presented in Figure 12. As the algorithms are not capable of identifying the sign of the
source signals, the images are having some of the channels in negative colors. The colors can
be corrected manually by searching which channels should be multiplied by−1. By inspecting
the results, it seems that the images are mostly second-order dependent as the IVA-G and
IVA-L algorithms produced sufficient results, but the results of IVA-L-diag and IVA-C are
not satisfying even though they are initialized with the results of IVA-G. This implies that
there are no higher-order dependence structures to capture in these images. The joint ISI for
the separations are presented in Table 2. In terms of joint ISI, IVA-G provided the best results
and IVA-L the second best results. It should be noted that the joint ISI is higher than 0.1 for
each result, which means that the algorithms are not optimal.

Finally, the manually corrected images separated by IVA-L and IVA-G are presented in
Figure 13. The results look reasonably good taking into consideration that the algorithms are
suboptimal for the image separation task. The algorithms introduced in this thesis do not take
serial dependence into account, which is why the spatial correlation structures of the images
are ignored. In addition, the probability distributions of the natural images are very complex
and highly non-random (Ruderman, 1994), so the simple symmetric source density models

39

IV
A

−
L−

di
ag

IV
A

−
G

IV
A

−
L

IV
A

−
C

Figure 12: The separated images received by IVA-L-diag, IVA-G, IVA-L and IVA-C. Because
the algorithms are not capable of identifing the sign of the true source signals, some color
channels of the images are negative.

IV
A

−
G

IV
A

−
L

Figure 13: The separated images by IVA-G (top) and IVA-L (bottom), when the colors are
manually corrected by multiplying certain channels of the source estimates by −1.

40

used in these algorithms do not have the best possible performance. In simulation studies it
was also discovered that for mostly second-order dependent sources, the performances of the
IVA-G and IVA-L are worse when the number of datasets is small, which is why the mixed
image separation, with the number of datasets 𝐷 = 3, is not the easiest task for the algorithms.

6 Conclusions and discussion

In this thesis the theory of ICA and IVA are presented, several IVA algorithms are compared
using simulation studies and the algorithms are applied to mixed image separation task. The
algorithms are implemented to R software as a part of the thesis and the documentation of the
R package ivaBSS is attached in Appendix.

IVA has several advantages over ICA when multiple dependent datasets are studied
jointly. If the observed mixtures are dependent across the datasets, IVA takes the dependence
information into account yielding more accurate results as well as solves the permutation
problem, meaning that the components of the estimated source vectors are aligned in same
order for each vector. IVA has also more flexible identification condition allowing also
Gaussian sources as long as there do not exist two or more 𝜶-Gaussian source vectors with
proportional covariance matrices (Theorem 2).

The objective function was defined for iid data, and four Newton update based IVA
algorithms with varying source density models were introduced. The algorithms, IVA-L,
IVA-L-diag, IVA-G and IVA-C, were compared in multiple different simulation setups. Based
on the initial simulations, IVA-L-diag, IVA-L and IVA-C algorithms converge usually to local
optima and do not solve the common permutation problem between the datasets, meaning
that the source estimates might be aligned in different order in each dataset. To overcome this
issue and to decrease the computation time, the algorithms were initialized with the estimated
unmixing matrices of IVA-G and the original IVA algorithm called fastIVA. The IVA-G was
used to initialize fastIVA, which was then used to initialize the rest of the algorithms.

When the initialization is used, IVA-L algorithm is the most flexible and the most
consistent algorithm in all setups. IVA-L takes both second-order and higher-order
dependence into account, making it superior when the sources possess second-order and
higher-order dependence, but still well performing when the sources are either second-order
or higher-order dependent. The downside of IVA-L is that it is the slowest one of these
algorithms, although the differences between IVA-L, IVA-L-diag and IVA-C are small. IVA-L
and IVA-G algorithms are the best options when the higher-order dependence is minimal.

41

Because of the fact that using multivariate Gaussian source density model allows the Newton
update to be done by calculating the gradient and the inverse of Hessian matrix using only the
estimated mixing matrices and the observed mixtures rather than calculating sample means
over the whole data, IVA-G stands out by its computation time. IVA-G was 400-800 times
faster than the other algorithms in these simulation setups. This makes IVA-G much more
viable when the sample size or the number of datasets is large. However, IVA-G is not able
to recover sources when the datasets are only higher-order dependent, and thus it should
not be considered when the second-order dependence is minimal. IVA-L-diag and IVA-C
algorithms, capturing only the higher-order dependence, are viable options only when the
source components are higher-order dependent. In general IVA-L is safer option and should
work better whenever there are any second-order dependence between the sources. Even
though fastIVA restricts the unmixing matrices to be orthogonal, IVA-L-diag and IVA-C
improved the results of fastIVA only marginally in these simulations, which implies that
searching only orthogonal unmixing matrices is sufficient for purely higher-order dependent
sources.

Initializing IVA-L, IVA-L-diag and IVA-C algorithms with the estimated unmixing
matrices of IVA-G and fastIVA solves the problem of converging to local optima in most
cases, especially when the number of datasets is large. It also decreases the computation time
and increases the performance, which is why the proper initialization should be done always.
In general, whenever the algorithm is theoretically able to recover the sources, meaning
that the algorithm is able to capture some dependence of the sources, the results get better
when the number of datasets grows. The number of observations has smaller impact on the
performances of the algorithms. The algorithms are more inconsistent when the number of
datasets is small. Especially when the sources are purely higher-order dependent, the number
of datasets should be significantly higher than the number of datasets to obtain consistent
results.

In the thesis, the introduced IVA algorithms were also compared with mixed image
separation task. Five real life colored natural images were mixed using random mixing
matrices and then separated using each of the algorithms. In this application the algorithms
accounting the second-order dependence, IVA-L and IVA-G, performed reasonably well,
but the algorithms based on higher-order statistics, IVA-L-diag and IVA-C, did not provide
recognizable images as results. The algorithms presented in this thesis are optimal for iid data
only which is why the spatial correlation structures of the images are neglected making the
results suboptimal.

42

Although the simulation studies of this thesis showed that the results are usually getting
better with increasing number of datasets, this not the case in all situations. When the number
of datasets or the number of sources grows large enough, the standard IVA algorithms, as
presented here, suffer from a performance drop (Bhinge et al., 2019). To reduce the effect of
high dimensionality, different methods have been developed such as various constrained IVA
methods (Bhinge et al., 2020, 2019) and IVA methods together with independent subspace
analysis (Silva et al., 2021).

Previously, there have been very few simulation studies comparing the performance of
the IVA algorithms with different source density models under various setups. Anderson
(2013) have compared fastIVA and IVA-G in a few different setups where the sources were
either multivariate Laplace distributed or multivariate power exponentially distributed with 𝜅
randomly between [0.5,75] or [1.25,1.5]. In their study, IVA-G was outperforming fastIVA in
every setup except for the ones where the number of datasets was two. They also compared
IVA-G and fastIVA with IVA-G initialization when the sources were multivariate Laplace
distributed, which is done also in this thesis. Their results showed that fastIVA with IVA-G
initialization obtains more consistent results and outperforms IVA-G or the regular fastIVA
almost always. These results are in line with the results of the simulation studies presented
here.

The most of the other simulation studies that have been done previously concern some
specific application, such as speech separation (Liang et al., 2014; Rafique et al., 2016; Liang
et al., 2013) or EEG separation (Acharjee et al., 2015; Chen et al., 2017). In future more
simulation studies are needed to investigate the properties and performance of IVA algorithms
in various setups, such as when the sources are from asymmetric distribution or when the
sources possess serial dependence. One interesting topic to investigate would be, how the
amount of serial dependence affects the performance of the algorithms in different setups. It
would be also important to derive the statistical properties, such as consistency and limiting
distributions of the IVA algorithms presented here.

In general, currently existing algorithms are mostly developed for symmetric iid data.
Algorithms for asymmetric data and data with serial dependence are limited. Currently
only one BSS algorithm, that accounts serial dependence for multiple datasets, exists (Li
et al., 2011). The algorithm is however limited to only orthogonal unmixing matrices
and is thus suboptimal for many applications. For ICA, multiple algorithms accounting
serial dependence exist, such as variants of second-order blind identification methods (Pan
et al., 2021) or weight-adjusted second-order blind identification (Yeredor, 2000). These

43

are potential candidates to be extended to IVA. Extending IVA to account serial dependence
would be highly beneficial, because in most of the applications the data is not iid.

The main contributions of this thesis was to use the simulation studies to provide
new information of the performance of the IVA algorithms under different setups, and to
implement IVA algorithms to R software for public use.

References

Acharjee, P. P., Phlypo, R., Wu, L., Calhoun, V. D., and Adalı, T. (2015). Independent vector
analysis for gradient artifact removal in concurrent EEG-fMRI data. IEEE Transactions on
Biomedical Engineering, 62:1750–1758.

Adalı, T., Anderson, M., and Fu, G. (2014). Diversity in independent component and vector
analyses: Identifiability, algorithms, and applications in medical imaging. IEEE Signal
Processing Magazine, 31:18–33.

Amari, S.-i., Cichocki, A., and Yang, H. (1996). A new learning algorithm for blind signal
separation. Advances in Neural Information Processing Systems, 8.

Anderson, D. N. (1992). A multivariate Linnik distribution. Statistics & Probability Letters,
14:333–336.

Anderson, M. (2013). Independent vector analysis: Theory, algorithms, and applications.
PhD thesis, University of Maryland, Baltimore County.

Anderson, M., Adalı, T., and Li, X.-L. (2011). Joint blind source separation with multivariate
Gaussian model: Algorithms and performance analysis. IEEE Transactions on Signal
Processing, 60:1672–1683.

Anderson, M., Fu, G.-S., Phlypo, R., and Adalı, T. (2014). Independent vector analysis:
Identification conditions and performance bounds. IEEE Transactions on Signal
Processing, 62:4399–4410.

Anderson, M., Li, X.-L., and Adalı, T. (2010). Nonorthogonal independent vector analysis
using multivariate Gaussian model. In International Conference on Latent Variable
Analysis and Signal Separation, pages 354–361. Springer.

Anderson, M., Li, X.-L., Rodriguez, P., and Adalı, T. (2012). An effective decoupling
method for matrix optimization and its application to the ICA problem. In 2012 IEEE

44

International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
1885–1888. IEEE.

Arslan, O. (2010). An alternative multivariate skew Laplace distribution: Properties and
estimation. Statistical Papers, 51:865–887.

Bhinge, S., Long, Q., Calhoun, V. D., and Adalı, T. (2020). Adaptive constrained independent
vector analysis: An effective solution for analysis of large-scale medical imaging data. IEEE
Journal of Selected Topics in Signal Processing, 14:1255–1264.

Bhinge, S., Mowakeaa, R., Calhoun, V. D., and Adalı, T. (2019). Extraction of time-varying
spatiotemporal networks using parameter-tuned constrained IVA. IEEE Transactions on
Medical Imaging, 38:1715–1725.

Chen, X., Peng, H., Yu, F., and Wang, K. (2017). Independent vector analysis applied
to remove muscle artifacts in EEG data. IEEE Transactions on Instrumentation and
Measurement, 66.

Comon, P. (1992). Independent component analysis. Higher-Order Statistics, pages 29–38.

Comon, P. (1994). Independent component analysis, a new concept? Signal Processing,
36:287–314.

Comon, P. and Jutten, C. (2010). Handbook of Blind Source Separation: Independent
Component Analysis and Applications. Academic Press.

Dufaux, F., Le Callet, P., Mantiuk, R. K., and Mrak, M. (2016). Color management in HDR
imaging. In High Dynamic Range Video, pages 237–272. Academic Press.

Gómez, E., Gomez-Viilegas, M., and Marín, J. M. (1998). A multivariate generalization of
the power exponential family of distributions. Communications in Statistics-Theory and
Methods, 27:589–600.

Hao, J., Lee, I., Lee, T.-W., and Sejnowski, T. J. (2010). Independent vector analysis for
source separation using a mixture of Gaussians prior. Neural Computation, 22:1646–73.

Haykin, S. and Chen, Z. (2005). The cocktail party problem. Neural Computation,
17:1875–1902.

Hyvärinen, A., Karhunen, J., and Oja, E. (2001). Independent Component Analysis. Adaptive
and Cognitive Dynamic Systems: Signal Processing, Learning, Communications and
Control. Wiley.

45

Hyvärinen, A. and Oja, E. (2000). Independent component analysis: Algorithms and
applications. Neural Networks, 13:411–430.

Ikeshita, R. and Nakatani, T. (2022). ISS2: An extension of iterative source steering
algorithm for majorization-minimization-based independent vector analysis. arXiv preprint
arXiv:2202.00875.

Ilmonen, P., Oja, H., and Serfling, R. (2012). On invariant coordinate system (ICS)
functionals. International Statistical Review, 80:93–110.

Kim, T., Attias, H. T., Lee, S.-Y., and Lee, T.-W. (2006a). Blind source separation exploiting
higher-order frequency dependencies. IEEE Transactions on Audio, Speech, and Language
Processing, 15:70–79.

Kim, T., Eltoft, T., and Lee, T.-W. (2006b). Independent Vector Analysis: An Extension of
ICA to Multivariate Components. In Rosca, J., Erdogmus, D., Príncipe, J. C., and Haykin,
S., editors, Independent Component Analysis and Blind Signal Separation, pages 165–172.
Springer.

Kim, T., Lee, I., and Lee, T.-W. (2006c). Independent vector analysis: Definition and
algorithms. In 2006 Fortieth Asilomar Conference on Signals, Systems and Computers,
pages 1393–1396.

Kolmogorov, A. (1956). On the Shannon theory of information transmission in the case of
continuous signals. IRE Transactions on Information Theory, 2:102–108.

Kullback, S. and Leibler, R. A. (1951). On information and sufficiency. The Annals of
Mathematical Statistics, 22:79–86.

Lee, I., Hao, J., and Lee, T.-W. (2008a). Adaptive independent vector analysis for the
separation of convoluted mixtures using EM algorithm. In 2008 IEEE International
Conference on Acoustics, Speech and Signal Processing, pages 145–148. IEEE.

Lee, I., Kim, T., and Lee, T.-W. (2007). Fast fixed-point independent vector analysis
algorithms for convolutive blind source separation. Signal Processing, 87:1859–1871.

Lee, J.-H., Lee, T.-W., Jolesz, F. A., and Yoo, S.-S. (2008b). Independent vector analysis
(IVA): Multivariate approach for fMRI group study. NeuroImage, 40:86–109.

Li, X.-L., Adalı, T., and Anderson, M. (2011). Joint blind source separation by generalized
joint diagonalization of cumulant matrices. Signal Processing, 91:2314–2322.

46

Liang, Y., Chen, G., Naqvi, S., and Chambers, J. A. (2013). Independent vector analysis with
multivariate Student’s t-distribution source prior for speech separation. Electronics Letters,
49:1035–1036.

Liang, Y., Harris, J., Naqvi, S. M., Chen, G., and Chambers, J. A. (2014). Independent vector
analysis with a generalized multivariate Gaussian source prior for frequency domain blind
source separation. Signal Processing, 105:175–184.

Long, Q., Bhinge, S., Calhoun, V. D., and Adalı, T. (2020). Independent vector analysis
for common subspace analysis: Application to multi-subject fMRI data yields meaningful
subgroups of schizophrenia. NeuroImage, 216:116872.

Ma, S., Calhoun, V. D., Phlypo, R., and Adalı, T. (2014). Dynamic changes of spatial
functional network connectivity in healthy individuals and schizophrenia patients using
independent vector analysis. NeuroImage, 90:196–206.

Moreau, E. and Macchi, O. (1994). A one stage self-adaptive algorithm for source separation.
In IEEE International Conference on Acoustics, Speech and Signal Processing, pages 3–49.
IEEE.

Mowakeaa, R., Boukouvalas, Z., Long, Q., and Adalı, T. (2020). IVA using complex
multivariate GGD: application to fMRI analysis. Multidimensional Systems and Signal
Processing, 31:725–744.

Na, Y., Yu, J., and Chai, B. (2013). Independent vector analysis using subband and subspace
nonlinearity. EURASIP Journal on Advances in Signal Processing, 2013:1–16.

Ono, N. (2011). Stable and fast update rules for independent vector analysis based on auxiliary
function technique. In 2011 IEEE Workshop on Applications of Signal Processing to Audio
and Acoustics, pages 189–192. IEEE.

Pan, Y., Matilainen, M., Taskinen, S., and Nordhausen, K. (2021). A review of second-order
blind identification methods. Wiley Interdisciplinary Reviews: Computational Statistics,
page e1550.

R Core Team (2020). R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria.

Rafique, W., Erateb, S., Naqvi, S. M., Dlay, S. S., and Chambers, J. A. (2016). Independent
vector analysis for source separation using an energy driven mixed Student’s t and super

47

Gaussian source prior. In 2016 24th European Signal Processing Conference, pages
858–862. IEEE.

Ruderman, D. L. (1994). The statistics of natural images. Network: Computation in Neural
Systems, 5:517–548.

Scheibler, R. and Ono, N. (2019). Independent vector analysis with more microphones than
sources. In 2019 IEEE Workshop on Applications of Signal Processing to Audio and
Acoustics, pages 185–189. IEEE.

Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical
Journal, 27:379–423.

Silva, R., Plis, S., Adalı, T., Pattichis, M., and Calhoun, V. (2021). Multidataset independent
subspace analysis with application to multimodal fusion. IEEE Transactions on Image
Processing, 30:588–602.

Sipilä, M., Nordhausen, K., and Taskinen, S. (2022). ivaBSS: Tools for Independent Vector
Analysis. R package version 1.0.0.

Statisticat and LLC. (2021). LaplacesDemon: Complete Environment for Bayesian Inference.
R package version 16.1.6.

Weston, S. (2017). doMPI: Foreach Parallel Adaptor for the Rmpi Package. R package
version 0.2.2.

Xi-Lin, L. (2020). Independent vector analysis with deep neural network source priors. arXiv:
Audio and Speech Processing.

Yeredor, A. (2000). Blind separation of Gaussian sources via second-order statistics with
asymptotically optimal weighting. IEEE Signal Processing Letters, 7:197–200.

Zhao, Q., Guo, F., Zu, X., Chang, Y., Li, B., and Yuan, X. (2017). An acoustic signal
enhancement method based on independent vector analysis for moving target classification
in the wild. Sensors, 17.

48

Package ‘ivaBSS’
May 20, 2022

Type Package

Title Tools for Independent Vector Analysis

Version 1.0.0

Date 2022-05-03

Imports stats, graphics, BSSprep

Suggests LaplacesDemon

Encoding UTF-8

Maintainer Mika Sipilä <mika.e.sipila@student.jyu.fi>

Description Independent vector analysis (IVA) is a blind source separation (BSS) model where sev-
eral datasets are jointly unmixed. This package provides several methods for the unmixing to-
gether with some performance measures. For details, see Ander-
son et al. (2011) <doi:10.1109/TSP.2011.2181836> and Lee et al. (2007) <doi:10.1016/j.sigpro.2007.01.010>.

License GPL (>= 3)

LazyData true

RoxygenNote 7.1.2

R topics documented:

ivaBSS-package . 2
avg_ISI . 2
coef.iva . 4
components.iva . 5
fastIVA . 6
jbss_achieved . 9
joint_ISI . 10
NewtonIVA . 11
plot.iva . 15
predict.iva . 16
print.iva . 18
summary.iva . 19

Index 21

1

Appendix

49

2 avg_ISI

ivaBSS-package Tools for Independent Vector Analysis

Description

Independent vector analysis (IVA) is a blind source separation (BSS) model where several datasets
are jointly unmixed. This package provides several methods for the unmixing together with some
performance measures. For details, see Anderson et al. (2011) <doi:10.1109/TSP.2011.2181836>
and Lee et al. (2007) <doi:10.1016/j.sigpro.2007.01.010>.

Details

The package contains tools for independent vector analysis. The main functions to perform IVA are
"IVANewton" and "fastIVA". "NewtonIVA" performs Newton update based IVA and "fastIVA"
performs fixed-point iteration based IVA. Both of the algorithms have multiple options for source
density models.

Author(s)

Authors: Mika Sipilä, Klaus Nordhausen, Sara Taskinen

Maintainer: Mika Sipilä

References

Anderson, M., Adalı, T., & Li, X.-L. (2011). Joint blind source separation with multivariate Gaus-
sian model: Algorithms and performance analysis. IEEE Transactions on Signal Processing, 60,
1672–1683. <doi:10.1109/TSP.2011.2181836>

Anderson, M. (2013). Independent vector analysis: Theory, algorithms, and applications. PhD
dissertation, University of Maryland, Baltimore County.

avg_ISI Average Intersymbol Inference

Description

Calculates the average intersymbol inference for two sets of matrices.

Usage

avg_ISI(W, A)

Arguments

W Array of unmixing matrices with dimension [P, P, D].

A Array of true mixing matrices with dimension [P, P, D].

50

avg_ISI 3

Details

The function returns the average intersymbol inference for the set of estimated unmixing matrices
and the set of true mixing matrices. The average ISI gets the value between 0 and 1, where 0 is
the optimal result. The average ISI is calculated as the mean ISI over each dataset separately. The
average ISI does not take the permutation of the estimated sources into account.

Value

Numeric value between 0 and 1, where 0 is the optimal result indicating that the sources are sepa-
rated perfectly in each dataset.

Author(s)

Mika Sipilä

References

Anderson, M. (2013). Independent vector analysis: Theory, algorithms, and applications. PhD
dissertation, University of Maryland, Baltimore County.

See Also

joint_ISI, jbss_achieved

Examples

Mixing matrices and unmixing matrices generated
from standard normal distribution
P <- 4; D <- 4;
W <- array(rnorm(P * P * D), c(P, P, D))
A <- array(rnorm(P * P * D), c(P, P, D))

avg_ISI(W, A)

if (require("LaplacesDemon")) {
Generate sources from multivariate Laplace distribution
P <- 4; N <- 1000; D <- 4;
S <- array(NA, c(P, N, D))

for (i in 1:P) {
U <- array(rnorm(D * D), c(D, D))
Sigma <- crossprod(U)
S[i, ,] <- rmvl(N, rep(0, D), Sigma)

}

Generate mixing matrices from standard normal distribution
A <- array(rnorm(P * P * D), c(P, P, D))

Generate mixtures
X <- array(NaN, c(P, N, D))
for (d in 1:D) {

X[, , d] <- A[, , d] %*% S[, , d]
}

Estimate sources and unmixing matrices

51

4 coef.iva

res_G <- NewtonIVA(X, source_density = "gaussian")
avg_ISI(coef(res_G), A)

}

coef.iva Coefficient of the Object of Class iva

Description

coef method for class "iva".

Usage

S3 method for class 'iva'
coef(object, which.dataset = NA, ...)

Arguments

object an object of class "iva", usually the result of a call to NewtonIVA or fastIVA.

which.dataset positive integer. Provides the index in case the unmixing matrix only for a spe-
cific data set is desired. Default is to return all unmixing matrices.

... further arguments are not used.

Details

Returns the unmixing matrices for all datasets or only for the requested dataset.

Value

Unmixing matrix or all unmixing matrices of the object of class "iva". If a single unmixing matrix
is requested, it is an array with dimension [P, P] and if all unmixing matrices are requested, it is
an array with dimension [P, P, D].

Author(s)

Mika Sipilä

See Also

NewtonIVA, fastIVA

Examples

if (require("LaplacesDemon")) {
Generate sources from multivariate Laplace distribution
P <- 4; N <- 1000; D <- 4;
S <- array(NA, c(P, N, D))

for (i in 1:P) {
U <- array(rnorm(D * D), c(D, D))
Sigma <- crossprod(U)
S[i, ,] <- rmvl(N, rep(0, D), Sigma)

}

52

components.iva 5

Generate mixing matrices from standard normal distribution
A <- array(rnorm(P * P * D), c(P, P, D))

Generate mixtures
X <- array(NaN, c(P, N, D))
for (d in 1:D) {

X[, , d] <- A[, , d] %*% S[, , d]
}

Estimate sources and unmixing matrices
res_G <- NewtonIVA(X, source_density = "gaussian")

All D unmixing matrices
coef(res_G)

The unmixing matrix for the second dataset
coef(res_G, 2)

}

components.iva Components of the Object of Class iva

Description

Returns the estimated source components of object of class "iva".

Usage

components.iva(object, which.dataset = NA, ...)

Arguments

object an object of class "iva", usually the result of a call to NewtonIVA or fastIVA.

which.dataset positive integer. Provides the index in case the unmixing matrix only for a spe-
cific data set is desired. Default is to return all unmixing matrices.

... further arguments are not used.

Details

Returns the estimated source components for all datasets or only for the requested dataset.

Value

Estimated source components for requested dataset or for all datasets of the object of class "iva".
If a single dataset is requested, it is an array with dimension [P, N] and if all datasets are requested,
it is an array with dimension [P, N, D].

Author(s)

Mika Sipilä

53

6 fastIVA

See Also

NewtonIVA, fastIVA

Examples

if (require("LaplacesDemon")) {
Generate sources from multivariate Laplace distribution
P <- 4; N <- 1000; D <- 4;
S <- array(NA, c(P, N, D))

for (i in 1:P) {
U <- array(rnorm(D * D), c(D, D))
Sigma <- crossprod(U)
S[i, ,] <- rmvl(N, rep(0, D), Sigma)

}

Generate mixing matrices from standard normal distribution
A <- array(rnorm(P * P * D), c(P, P, D))

Generate mixtures
X <- array(NaN, c(P, N, D))
for (d in 1:D) {

X[, , d] <- A[, , d] %*% S[, , d]
}

Estimate sources and unmixing matrices
res_G <- NewtonIVA(X, source_density = "gaussian")

Source estimates for all D datasets
components.iva(res_G)

Source estimates for the second dataset
components.iva(res_G, 2)

}

fastIVA Fast Fixed-point IVA Algorithm

Description

The algorithm estimates the sources from multiple dependent datasets jointly using their observed
mixtures. The estimation is done by maximizing the independence between the sources, when
the estimated unmixing matrices are restricted to be orthogonal. The options for different source
densities are provided.

Usage

fastIVA(X, source_density="laplace_diag", student_df=1,
max_iter = 1024, eps = 1e-6, W_init = NA, verbose = FALSE)

54

fastIVA 7

Arguments

X numeric data array containing the observed mixtures with dimension [P, N,
D], where P is the dimension of the observed dataset, N is the number of the
observations and D is the number of the datasets. The number of datasets D
should be at least 2. Missing values are not allowed.

source_density string to determine which source density model should be used. The options
are "laplace_diag", "student" or "entropic". For more information see the
details section.

student_df integer. The degree of freedom for multivariate Student’s distribution. Used
only if source_denisty = "student".

max_iter positive integer, used to define the maximum number of iterations for algorithm
to run. If max_iter is reached, the unmixing matrices of the last iteration are
used.

eps convergence tolerance, when the convergence measure is smaller than eps, the
algorithm stops.

W_init numeric array of dimension [P, P, D] containing initial unmixing matrices. If
not set, initialized with identity matrices.

verbose logical. If TRUE the convergence measure is printed during the learning process.

Details

The algorithm uses fixed-point iteration to estimate to estimate the multivariate source signals from
their observed mixtures. The elements of the source signals, or the datasets, should be dependent
of each other to achieve the estimates where the sources are aligned in same order for each dataset.
If the datasets are not dependent, the sources can still be separated but not necessarily aligned.
This algorithm restricts the estimates unmixing matrices to be orthogonal. For more of the fast
fixed-point IVA algorithm, see Lee, I. et al (2007).

The source density model should be selected to match the density of the true source signals. When
source_density = "laplace_diag", the multivariate Laplace source density model with diagonal
covariance structure is used. When source_density = "entropic", the approximated entropy
based source density model is used. For more about multivariate Laplace and entropic source
density models, see Lee, I. et al (2007). When source_density = "student" the multivariate
Student’s source density model is used, for more see Liang, Y. et al (2013).

The algorithm assumes that observed signals are multivariate, i.e. the number of datasets D >= 2.
The estimated signals are zero mean and scaled to unit variance.

Value

An object of class "iva".

S The estimated source signals with dimension [P, N, D]. The estimated source
signals are zero mean with unit variance.

W The estimated unmixing matrices with dimension [P, P, D].

W_whitened The estimated unmixing matrices with dimension [P, P, D] for whitened data.

V The whitening matrices with dimension [P, P, D].

X_means The means for each observed mixture with dimension [P, D].

niter The number of iterations that the algorithm did run.

converged Logical value which tells if the algorithm converged.

55

8 fastIVA

source_density The source density model used.

N The number of observations.

D The number of datasets.

P The number of sources.

student_df The degree of freedom for Student’s source density model.

call The function call.

DNAME The name of the variable containing the observed mixtures.

Author(s)

Mika Sipilä

References

Lee, I., Kim, T., & Lee, T.-W. (2007). Fast fixed-point independent vector analysis algorithms for
convolutive blind source separation. Signal Processing, 87, 1859–1871. <doi:10.1016/j.sigpro.2007.01.010>

Liang, Y., Chen, G., Naqvi, S., & Chambers, J. A. (2013). Independent vector analysis with
multivariate Student’s t-distribution source prior for speech separation. Electronics Letters, 49,
1035–1036. <doi:10.1049/el.2013.1999>

See Also

NewtonIVA

Examples

if (require("LaplacesDemon")) {
Generate sources from multivariate Laplace distribution
P <- 2; N <- 1000; D <- 5;
S <- array(NA, c(P, N, D))

for (i in 1:P) {
S[i, ,] <- rmvl(N, rep(0, D), diag(D))

}

Generate mixing matrices from standard normal distribution
A <- array(rnorm(P * P * D), c(P, P, D))

Generate mixtures
X <- array(NaN, c(P, N, D))
for (d in 1:D) {

X[, , d] <- A[, , d] %*% S[, , d]
}

Estimate sources and unmixing matrices
res <- fastIVA(X)

}

56

jbss_achieved 9

jbss_achieved JBSS Achieved

Description

The function calculates if the joint blind source separation (JBSS) is achieved.

Usage

jbss_achieved(W, A)

Arguments

W Array of unmixing matrices with dimension [P, P, D].

A Array of true mixing matrices with dimension [P, P, D].

Details

The function calculates if the joint blind source separation is achieved. JBSS is considered achieved
when the the location of maximum absolute values of each row of gain matrix G[,,d] = W[,,d] %*%
A[,,d] is unique within the dataset, but shared between the datasets 1, ...,D. The first indicates
that the sources are separated within dataset and the second indicates that the estimated sources are
aligned in same order for each dataset.

Value

Logical. If TRUE the JBSS is considered achieved.

Author(s)

Mika Sipilä

References

Anderson, M. (2013). Independent vector analysis: Theory, algorithms, and applications. PhD
dissertation, University of Maryland, Baltimore County.

See Also

joint_ISI, avg_ISI

Examples

Mixing matrices and unmixing matrices generated
from standard normal distribution
P <- 4; D <- 4;
W <- array(rnorm(P * P * D), c(P, P, D))
A <- array(rnorm(P * P * D), c(P, P, D))

jbss_achieved(W, A)

if (require("LaplacesDemon")) {
Generate sources from multivariate Laplace distribution

57

10 joint_ISI

P <- 4; N <- 1000; D <- 4;
S <- array(NA, c(P, N, D))

for (i in 1:P) {
U <- array(rnorm(D * D), c(D, D))
Sigma <- crossprod(U)
S[i, ,] <- rmvl(N, rep(0, D), Sigma)

}

Generate mixing matrices from standard normal distribution
A <- array(rnorm(P * P * D), c(P, P, D))

Generate mixtures
X <- array(NaN, c(P, N, D))
for (d in 1:D) {

X[, , d] <- A[, , d] %*% S[, , d]
}

Estimate sources and unmixing matrices
res_G <- NewtonIVA(X, source_density = "gaussian")
jbss_achieved(coef(res_G), A)

}

joint_ISI Joint Intersymbol Inference

Description

Calculates the joint intersymbol inference for two sets of matrices.

Usage

joint_ISI(W, A)

Arguments

W Array of unmixing matrices with dimension [P, P, D].

A Array of true mixing matrices with dimension [P, P, D].

Details

The function returns the joint intersymbol inference for the set of estimated unmixing matrices
and the set of true mixing matrices. The joint ISI gets the value between 0 and 1, where 0 is the
optimal result. The joint ISI calculates the average intersymbol inference over each dataset as well
as penalizes if the sources are not aligned in same order for each dataset.

Value

Numeric value between 0 and 1, where 0 is the optimal result indicating that the sources are sepa-
rated perfectly and aligned in same order in each dataset.

Author(s)

Mika Sipilä

58

NewtonIVA 11

References

Anderson, M. (2013). Independent vector analysis: Theory, algorithms, and applications. PhD
dissertation, University of Maryland, Baltimore County.

See Also

avg_ISI, jbss_achieved

Examples

Mixing matrices and unmixing matrices generated
from standard normal distribution
P <- 4; D <- 4;
W <- array(rnorm(P * P * D), c(P, P, D))
A <- array(rnorm(P * P * D), c(P, P, D))

joint_ISI(W, A)

if (require("LaplacesDemon")) {
Generate sources from multivariate Laplace distribution
P <- 4; N <- 1000; D <- 4;
S <- array(NA, c(P, N, D))

for (i in 1:P) {
U <- array(rnorm(D * D), c(D, D))
Sigma <- crossprod(U)
S[i, ,] <- rmvl(N, rep(0, D), Sigma)

}

Generate mixing matrices from standard normal distribution
A <- array(rnorm(P * P * D), c(P, P, D))

Generate mixtures
X <- array(NaN, c(P, N, D))
for (d in 1:D) {

X[, , d] <- A[, , d] %*% S[, , d]
}

Estimate sources and unmixing matrices
res_G <- NewtonIVA(X, source_density = "gaussian")
joint_ISI(coef(res_G), A)

}

NewtonIVA Newton Update Based IVA Algorithm

Description

The algorithm estimates the sources from multiple dependent datasets jointly using their observed
mixtures. The estimation is done by maximizing the independence between the sources. The op-
tions for different source densities are provided.

59

12 NewtonIVA

Usage

NewtonIVA(X, source_density="laplace", student_df=1,
init = "default", max_iter = 1024, eps = 1e-6, W_init = NA,
step_size=1, step_size_min = 0.1, alpha = 0.9, verbose = FALSE)

Arguments

X numeric data array containing the observed mixtures with dimension [P, N,
D], where P is the dimension of the observed dataset, N is the number of the
observations and D is the number of the datasets. The number of datasets D
should be at least 2. Missing values are not allowed.

source_density string to determine which source density model should be used. The options are
"laplace", "laplace_diag", "gaussian" or "student". For more informa-
tion see the details section.

student_df integer. The degree of freedom for multivariate Student’s distribution. Used
only if source_denisty = "student".

init string, to determine how to initialize the algorithm. The options are "default",
"IVA-G+fastIVA", "IVA-G", "fastIVA" or "none". For more information see
the details section.

max_iter positive integer, used to define the maximum number of iterations for algorithm
to run. If max_iter is reached, the unmixing matrices of the last iteration are
used.

eps convergence tolerance, when the convergence measure is smaller than eps, the
algorithm stops.

W_init numeric array of dimension [P, P, D] containing initial unmixing matrices. If
not set, initialized with identity matrices.

step_size initial step size for Newton step, should be between 0 and 1, default is 1.

step_size_min the minimum step size.

alpha multiplier for how much to decrease step size when convergence is not getting
smaller.

verbose logical. If TRUE the convergence measure is printed during the learning process.

Details

The algorithm uses Newton update together with decoupling trick to estimate the multivariate source
signals from their observed mixtures. The elements of the source signals, or the datasets, should be
dependent of each other to achieve the estimates where the sources are aligned in same order for
each dataset. If the datasets are not dependent, the sources can still be separated but not necessarily
aligned. The algorithm does not assume the unmixing matrices to be orthogonal. For more of the
nonorthogonal Newton update based IVA algorithm, see Anderson, M. et al (2011) and Anderson,
M. (2013).

The source density model should be selected to match the density of the true source signals. When
source_density = "laplace", the multivariate Laplace source density model is used. This is the
most flexible choice as it takes both second-order and higher-order dependence into account.

When source_density = "laplace_diag", the multivariate Laplace source density model with
diagonal covariance structure is used. Multivariate diagonal Laplace source density model should
be considered only when the sources are mainly higher-order dependent. It works best when the
number of sources is significantly less than the number of datasets.

60

NewtonIVA 13

When source_density = "gaussian" the multivariate Gaussian source density model is used.
This is the superior choice in terms of computation power and should be used when the sources
are mostly second-order dependent.

When source_density = "student" the multivariate Student’s source density model is used. Mul-
tivariate Student’s source density model should be considered only when the sources are mainly
higher-order dependent. It works best when the number of sources is significantly less than the
number of datasets.

The init parameter defines how the algorithm is initialized. When init = "default", the default
initialization is used. As default the algorithm is initialized using init = "IVA-G+fastIVA" when
source_density is "laplace", "laplace_diag" or "student", and using init = "none" when
source_density = "gaussian".

When init = "IVA-G+fastIVA", the algorithm is initialized using first the estimated unmixing
matrices of IVA-G, which is NewtonIVA with source_density = "gaussian", to initialize fastIVA
algorithm. Then the estimated unmixing matrices W of fastIVA are used as initial unmixing matrices
for NewtonIVA. IVA-G is used to solve the permutation problem of aligning the source estimates
when ever the true sources are second-order dependent. If the true sources are not second-order
dependent, fastIVA is used as backup as it solves the permutation problem more regularly than
NewtonIVA when the sources are purely higher-order dependent. When the sources possess any
second-order dependence, IVA-G also speeds the computation time up a lot. This option should
be used whenever there is no prior information about the sources and source_density is either
"laplace", "laplace_diag" or "student".

When init = "IVA-G", the estimated unmixing matrices of IVA-G are used to initialize this al-
gorithm. This option should be used if the true sources are expected to possess any second-order
dependence and source_density is not "gaussian".

When init = "fastIVA", the estimated unmixing matrices of fastIVA algorithm is used to ini-
tialize this algorithm. This option should be used if the true sources are expected to possess only
higher-order dependence. For more details, see fastIVA.

When init = "none", the unmixing matrices are initialized randomly from standard normal distri-
bution.

The algorithm assumes that observed signals are multivariate, i.e. the number of datasets D >= 2.
The estimated signals are zero mean and scaled to unit variance.

Value

An object of class "iva".

S The estimated source signals with dimension [P, N, D]. The estimated source
signals are zero mean with unit variance.

W The estimated unmixing matrices with dimension [P, P, D].

W_whitened The estimated unmixing matrices with dimension [P, P, D] for whitened data.

V The whitening matrices with dimension [P, P, D].

X_means The means for each observed mixture with dimension [P, D].

niter The number of iterations that the algorithm did run.

converged Logical value which tells if the algorithm converged.

source_density The source density model used.

N The number of observations.

D The number of datasets.

P The number of sources.

61

14 NewtonIVA

student_df The degree of freedom for Student’s source density model.

call The function call.

DNAME The name of the variable containing the observed mixtures.

Author(s)

Mika Sipilä

References

Anderson, M., Adalı, T., & Li, X.-L. (2011). Joint blind source separation with multivariate Gaus-
sian model: Algorithms and performance analysis. IEEE Transactions on Signal Processing, 60,
1672–1683. <doi:10.1109/TSP.2011.2181836>

Anderson, M. (2013). Independent vector analysis: Theory, algorithms, and applications. PhD
dissertation, University of Maryland, Baltimore County.

Liang, Y., Chen, G., Naqvi, S., & Chambers, J. A. (2013). Independent vector analysis with
multivariate Student’s t-distribution source prior for speech separation. Electronics Letters, 49,
1035–1036. <doi:10.1049/el.2013.1999>

See Also

fastIVA

Examples

if (require("LaplacesDemon")) {
Generate sources from multivariate Laplace distribution
P <- 4; N <- 1000; D <- 4;
S <- array(NA, c(P, N, D))

for (i in 1:P) {
U <- array(rnorm(D * D), c(D, D))
Sigma <- crossprod(U)
S[i, ,] <- rmvl(N, rep(0, D), Sigma)

}

Generate mixing matrices from standard normal distribution
A <- array(rnorm(P * P * D), c(P, P, D))

Generate mixtures
X <- array(NaN, c(P, N, D))
for (d in 1:D) {

X[, , d] <- A[, , d] %*% S[, , d]
}

Estimate sources and unmixing matrices
res_G <- NewtonIVA(X, source_density = "gaussian")

}

62

plot.iva 15

plot.iva Plotting an Object of Class iva

Description

plot method for the class "iva".

Usage

S3 method for class 'iva'
plot(x, which.dataset = NA, which.source = NA,
type = "l", xlabs = c(), ylabs = c(), colors = c(),
oma = c(1, 1, 0, 0), mar = c(2, 2, 1, 1), ...)

Arguments

x An object of class "iva", usually the result of a call to NewtonIVA or fastIVA.

which.dataset Positive integer to determine which dataset is returned. If not set, returns all
datasets.

which.source Positive integer to determine which dataset is returned. If not set, returns all
datasets.

type 1-character string giving the type of plot desired. For details, see plot.

xlabs Vector containing the labels for x-axis.

ylabs Vector containing the labels for y-axis.

colors Vector containing the colors for each plot.

oma A vector of the form c(bottom, left, top, right) giving the size of the outer
margins in lines of text. For more details, see par.

mar A numerical vector of the form c(bottom, left, top, right) which gives the num-
ber of lines of margin to be specified on the four sides of the plot. For more
details, see par.

... Further arguments passed to plot function.

Details

Plots either all estimated sources of the object of class "iva" or the estimates for specific dataset
and/or source.

Value

No return value, called for plotting the estimated sources of the object of class "iva".

Author(s)

Mika Sipilä

See Also

NewtonIVA, fastIVA

63

16 predict.iva

Examples

if (require("LaplacesDemon")) {
Generate sources from multivariate Laplace distribution
P <- 4; N <- 1000; D <- 4;
S <- array(NA, c(P, N, D))

for (i in 1:P) {
U <- array(rnorm(D * D), c(D, D))
Sigma <- crossprod(U)
S[i, ,] <- rmvl(N, rep(0, D), Sigma)

}

Generate mixing matrices from standard normal distribution
A <- array(rnorm(P * P * D), c(P, P, D))

Generate mixtures
X <- array(NaN, c(P, N, D))
for (d in 1:D) {

X[, , d] <- A[, , d] %*% S[, , d]
}

Estimate sources and unmixing matrices
res_G <- NewtonIVA(X, source_density = "gaussian")

Plot all estimated sources
plot(res_G)

Plot the source estimates for the first dataset only
plot(res_G, which.dataset = 1)

Plot the source estimates for the second source only
plot(res_G, which.source = 2)

Plot the source estimate of the second dataset and third source
plot(res_G, which.dataset = 2, which.source = 3, type = "p")

Plot all source estimates with custom colors and labels
plot(res_G, col=c(rep(1, 4), rep(2, 4), rep(3, 4), rep(4, 4)),

xlabs = c("Subject 1", "Subject 2", "Subject 3", "Subject 4"),
ylabs = c("Channel 1", "Channel 2", "Channel 3", "Channel 4"))

}

predict.iva Predict Method for Object of Class iva

Description

Predict the new source estimates best on fitted object of "iva" class.

Usage

S3 method for class 'iva'
predict(object, newdata, which.dataset = NA, ...)

64

predict.iva 17

Arguments

object An object of class "iva", usually the result of a call to NewtonIVA or fastIVA.

newdata A numeric data array containing new observed mixtures. Either with dimension
[P, N, D] (if which.dataset = NA) or [P, N], where P is the number of sources,
N is the number of observations and D is the number of datasets.

which.dataset Positive integer to determine which dataset is returned. If not set, returns all
datasets.

... further arguments are not used.

Details

The function calculates the source estimates for new observed mixtures based on the model fitted
originally. The estimates are zero mean and scaled to unit variance.

Value

Numeric array containing the estimated sources with dimension [P, N] if which.dataset is pro-
vided and with dimension [P, N, D] if which.dataset is not provided.

Author(s)

Mika Sipilä

See Also

NewtonIVA, fastIVA

Examples

if (require("LaplacesDemon")) {
Generate sources from multivariate Laplace distribution
P <- 4; N <- 1000; D <- 4;
S <- array(NA, c(P, N, D))
sigmas <- list()

for (i in 1:P) {
U <- array(rnorm(D * D), c(D, D))
sigmas[[i]] <- crossprod(U)
S[i, ,] <- rmvl(N, rep(0, D), sigmas[[i]])

}

Generate mixing matrices from standard normal distribution
A <- array(rnorm(P * P * D), c(P, P, D))

Generate mixtures
X <- array(NaN, c(P, N, D))
for (d in 1:D) {

X[, , d] <- A[, , d] %*% S[, , d]
}

Estimate sources and unmixing matrices
res_G <- NewtonIVA(X, source_density = "gaussian")

Generate new observarions

65

18 print.iva

N_new <- 10
S_new <- array(NA, c(P, N_new, D))
for (i in 1:P) {

S_new[i, ,] <- rmvl(N_new, rep(0, D), sigmas[[i]])
}
X_new <- array(NaN, c(P, N_new, D))
for (d in 1:D) {

X_new[, , d] <- A[, , d] %*% S_new[, , d]
}

Get source estimates for the new observations
pred <- predict(res_G, X_new)

Get source estimates for only the second dataset
pred2 <- predict(res_G, X_new[, , 2], which.dataset = 2)

}

print.iva Print an Object of Class iva

Description

print method for the class "iva".

Usage

S3 method for class 'iva'
print(x, ...)

Arguments

x An object of class "iva", usually the result of a call to NewtonIVA or fastIVA.

... Further arguments are not used.

Details

The function prints all information of "iva" object, except the estimated source signals.

Value

No return value, called for printing information of the object of class "iva".

Author(s)

Mika Sipilä

See Also

NewtonIVA, fastIVA

66

summary.iva 19

Examples

if (require("LaplacesDemon")) {
Generate sources from multivariate Laplace distribution
P <- 4; N <- 1000; D <- 4;
S <- array(NA, c(P, N, D))

for (i in 1:P) {
U <- array(rnorm(D * D), c(D, D))
Sigma <- crossprod(U)
S[i, ,] <- rmvl(N, rep(0, D), Sigma)

}

Generate mixing matrices from standard normal distribution
A <- array(rnorm(P * P * D), c(P, P, D))

Generate mixtures
X <- array(NaN, c(P, N, D))
for (d in 1:D) {

X[, , d] <- A[, , d] %*% S[, , d]
}

Estimate sources and unmixing matrices
res_G <- NewtonIVA(X, source_density = "gaussian")
print(res_G)

}

summary.iva Summarize an Object of Class iva

Description

summary method for the class "iva".

Usage

S3 method for class 'iva'
summary(object, ...)

Arguments

object An object of class "iva", usually the result of a call to NewtonIVA or fastIVA.

... Further arguments are not used.

Details

The function print all the information of the "iva" object except the estimated sources and the
estimated unmixing matrices.

Value

No return value, called for summarizing the object of class "iva".

67

20 summary.iva

Author(s)

Mika Sipilä

See Also

NewtonIVA, fastIVA

Examples

if (require("LaplacesDemon")) {
Generate sources from multivariate Laplace distribution
P <- 4; N <- 1000; D <- 4;
S <- array(NA, c(P, N, D))

for (i in 1:P) {
U <- array(rnorm(D * D), c(D, D))
Sigma <- crossprod(U)
S[i, ,] <- rmvl(N, rep(0, D), Sigma)

}

Generate mixing matrices from standard normal distribution
A <- array(rnorm(P * P * D), c(P, P, D))

Generate mixtures
X <- array(NaN, c(P, N, D))
for (d in 1:D) {

X[, , d] <- A[, , d] %*% S[, , d]
}

Estimate sources and unmixing matrices
res_G <- NewtonIVA(X, source_density = "gaussian")
summary(res_G)

}

68

Index

∗ methods
coef.iva, 4
components.iva, 5
plot.iva, 15
predict.iva, 16
print.iva, 18
summary.iva, 19

∗ multivariate
avg_ISI, 2
fastIVA, 6
jbss_achieved, 9
joint_ISI, 10
NewtonIVA, 11

∗ package
ivaBSS-package, 2

∗ print
print.iva, 18

avg_ISI, 2, 9, 11

coef.iva, 4
components.iva, 5

fastIVA, 4–6, 6, 13–15, 17–20

ivaBSS (ivaBSS-package), 2
ivaBSS-package, 2

jbss_achieved, 3, 9, 11
joint_ISI, 3, 9, 10

NewtonIVA, 4–6, 8, 11, 15, 17–20

par, 15
plot, 15
plot.iva, 15
predict.iva, 16
print.iva, 18

summary.iva, 19

21

69

