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Abstract: Breast cancer is the most common cancer worldwide in females apart from non-

melanoma skin cancer. Detecting breast cancer as early as possible could significantly reduce

its death rates. Histopathological analysis of the breast tissues is needed for determining the

malignancy of the tumor on a cellular level. Manual analysis of histopathological images is

time consuming and sensitive to human errors. Deep learning has introduced methods for

recognizing breast cancer to assist pathologists in their diagnostic workflow. The convolu-

tional neural networks have for long been the bandwagon deep learning model for breast

cancer classification, but they are mostly limited at focusing on local variations in image pat-

terns. The Vision Transformer, which originated from the dominant Transformer architecture

in natural language processing has shown to outperform convolutional neural networks on

several image classification benchmarks, due to its ability to focus on long range dependen-

cies in images. In this thesis we aim to evaluate the performance of Vision Transformer based

models by comparing them to the commonly used convolutional neural network ResNet-50

on the PCam-dataset. For training we utilize both the conventional transfer learning based

approach and also an pre-training approach based on domain adaptation. We demonstrate

the effectiveness of the implemented Vision Transformer models in the medical domain, by

obtaining better results than the ResNet-50 on the PCam-dataset, with the best model B/16

achieving the best AUC score of 0.97315. The use of domain-based pre-training shows a

performance gain for every model except the Ti/16-family models.
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Suomenkielinen tiivistelmä: Rintasyöpä on maailmanlaajuisesti naisten yleisin syöpä, sen

varhainen havaitseminen voi merkittävästi vähentää siihen liittyvää kuolleisuutta. Histopa-

tologista analyysiä tarvitaan kasvainten laadun määrittämiseksi solutasolla. Histopatologis-

ten kuvien manuaalinen analyysi vie kuitenkin aikaa ja on altis virheille. Syväoppimiseen

pohjautuvassa tutkimuksessa on esitetty menetelmiä rintasyövän tunnistamiseen, jotka voivat

auttaa patologeja diagnosoimisessa. Konvoluutioneuroverkot ovat pitkään olleet käytetyin

menetelmä rintasyövän luokitteluun syväoppimisessa, mutta ne ovat enimmäkseen rajoit-

tuneet keskittymään kuvien paikallisiin ominaisuuksiin. Vision Transformer on osoittau-

tunut suoriutumaan konvoluutioneuroverkkoja paremmin useissa kuvanluokittelutehtävissä,

koska se pystyy keskittymään kuvien pitkän matkan riippuvuuksiin. Tämän tutkielman

tavoitteena on arvioida Vision Transformer -pohjaisten mallien suorituskykyä vertaamalla

niitä yleisesti käytettyyn konvoluutioneuroverkkoon ResNet-50, kokeilut suoritetaan PCam-

aineistolla. Mallien koulutuksessa hyödynnämme sekä perinteistä siirto-oppimiseen perustu-

vaa lähestymistapaa että myös toimialuekohtaiseen esikoulutukseen perustuvaa lähestymistapaa.

Osoitamme, että implementoiduilla Vision Transformer -malleilla saadaan parempia tulok-

sia kuin ResNet-50 -mallilla. Parhaalla mallilla B/16 saavutettiin paras AUC-tulos arvolla

0.97315. Toimialuekohtaisen esikoulutuksen käyttö parantaa suorituskykyä kaikissa malleissa

paitsi Ti/16 malleissa.

Avainsanat: vision transformer, transformer, syväoppiminen, kuvan luokittelu, rintasyöpä,

konvoluutioneuroverkko
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Glossary

CNN Convolutional Neural Network

ViT Vision Transformer

MHSA Multi Head Self-Attention

PCam PatchCamelyon

CAD Computer-Aided Diagnosis

ROC Receiver Operating Characteristic curve

AUC Area Under the ROC Curve

NLP Natural Language Processing

CV Computer Vision

WSI Whole Slide Imaging

MLP Multi-Layer Perceptron

LayerNorm Layer normalization

SGD Stochastic Gradient Descent
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1 Introduction

Breast cancer is the most common cancer worldwide in the female population after non-

melanoma skin cancer (Waks and Winer 2019). Detecting breast cancer as early and as

accurately as possible can significantly lower its mortality rate. (Wang 2017). Mammo-

grams are one of the most commonly used techniques for detecting breast cancer (Smith,

Cokkinides, and Brawley 2008), however histopathological analysis is also needed for deter-

mining the malignancy of the tumor on a cellular level (Gurcan et al. 2009).

Manually analyzing the histopathological images takes a lot of time and may be sensitive to

human errors (Gurcan et al. 2009). Thus, a Computer-Aided Diagnosis system that can be

used as an aid for making decisions in numerous vision tasks, such as classification, segmen-

tation and detection can be highly helpful. Moreover the recent increase in computational

power led to the development of applications and algorithms for medical image analysis for

processing and analyzing histopathological images of breast cancer (Gurcan et al. 2009).

Deep learning has introduced several methods for recognizing breast cancer with high ap-

plicability in breast cancer diagnostics, and has basically inserted itself as a practical tool in

Computer-Aided Diagnosis systems to further aid pathologists in their diagnostics workflow

(Kwong and Mazaheri 2021). The advancements in deep learning had long been revolv-

ing around Convolutional Neural Networks (CNN). Since 2016 CNNs were by far the most

used deep learning models for breast cancer classification (Mridha et al. 2021; Kwong and

Mazaheri 2021). The CNN is widely used for its capabilities to extract useful features from

images and it has made a significant contribution to various tasks in medical imaging, includ-

ing classification, detection and segmentation (Litjens et al. 2017). Eventhough CNNs are

great at feature extraction tasks, the downsides are that they are mostly limited at focusing on

local variations in image patterns so they lose the global information of the features (Parvaiz

et al. 2022).

The big breakthrough in Natural Language Processing introduced the Transformer archi-

tecture (Vaswani et al. 2017), which inspired many researchers to leverage its architecture

for a variety of tasks in computer vision due to its attention mechanism, which focuses on
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extracting more global information (Parvaiz et al. 2022). The Vision Transformer (ViT)

(Dosovitskiy et al. 2021) was the first transformer-based architecture, which was applied

for image data. The Vision Transformer model swiftly demonstrated its effectiveness by

pushing the state-of-the-art results in various computer vision tasks, including image classi-

fication, detection and segmentation. Additionally, recent research shows that the prediction

errors of Vision Transformers are more human-like than the prediction errors of CNNs (Tuli

et al. 2021).

In this thesis we aim to use Vision Transformer models based on the recommended models

by, Steiner et al. 2021 to assess their performance on a histopathological image classification

task and compare the results on a conventionally used CNN. We also aim to demonstrate

whether domain-based pre-training can provide an increase in classification performance.

1.1 Research questions

For the following questions we wish to seek answers:

• How do the Vision Transformer based models perform in a breast cancer classification

task compared to the conventionally used CNNs?

• Can the Vision Transformer based models pre-trained on domain specific datasets per-

form better on task-specific image classification than Vision Transformer models, that

are pre-trained with ImageNet?

1.2 Structure

The structure of the thesis is laid out as follows: Chapter 2 introduces us to the concepts of

breast cancer, histopathological imaging and the previous work done on tumor classification

in deep learning, to get a glimpse of what kind of methods are more commonly represented.

Chapter 3 sets the base foundation on the theoretical background of the thesis, focused on

deep learning, convolutional neural networks and transformers. Chapter 4 gives us a de-

scription of the datasets that we are going to use for our experimental part. In chapter 5

we introduce our chosen methods and test environment used for the experiments. Chapter 6
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presents the results obtained from the chapter 5 experiments. Chapter 7 presents our findings

and discussion about the results obtained. Chapter 8 lays the final foundation and conclusion

from the work of this thesis.
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2 Deep Learning in Tumor Classification

In the first section, we briefly get an overview of breast cancer, its diagnosis and the situation

of breast cancer worldwide and in Finland. The second section is focused on histopatholog-

ical imaging, the importance of its analysis, the growing computing power, and the devel-

opment of computer-aided diagnosis tools, which can help pathologists in their diagnostic

workflow. In the third section we comprehensively review the applications of CNNs and

ViTs in tumor classification, with an emphasis on breast cancer, first the status of classifi-

cation methods for tumor classification is introduced. Next, we summarize findings on the

common CNN methods and finally, we focus on the findings of the ViT-based methods and

how they compare to the conventionally used CNNs.

2.1 Breast cancer

Breast cancer is a term used to describe the uncontrollable development and growth of the

cells in the breast tissue (Khuwaja and Abu-Rezq 2004). Several types of tumors can develop

in the breast tissues, but most of the tumors are the result of non-cancerous (benign) changes

within the breast (Sharma et al. 2010). The most common symptoms of breast cancer is a

lump, located either in the breast or armpit, but as breast cancer rarely causes pain, a painless

mass is much more worrisome for malignancy than one that is causing symptoms (Richie and

Swanson 2003).

Currently, breast cancer is the most common cancer worldwide among the female popula-

tion, apart from non-melanoma skin cancer (Waks and Winer 2019). 5136 new cases of

breast cancer was diagnosed in 2019, and approximately over 5000 new cases of breast can-

cer is diagnosed every year in the female population of Finland (Pitkäniemi et al. 2020).

Furthermore, worldwide in 2020, breast cancer had 2.3 million new cases in the female pop-

ulation, which makes it the highest number of new cases out of the 36 cancer types (Sung et

al. 2021). Also, the amount of new deaths caused by female breast cancer was over 684.000,

making it also the fourth highest compared to the other cancer types (Sung et al. 2021).

Breast cancer is usually diagnosed by biopsy of breast nodules, which was detected by mam-
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mogram or by palpation (Smith, Cokkinides, and Brawley 2008). The screening of the breast

is mostly performed in women who show no signs or symptoms of breast cancer for early

detection, but the elements for performing breast screening also vary on different factors

such as the age of the patient and the previous medical history (Bevers et al. 2009).

Previous studies have suggested that early and accurate breast cancer detection with fitting

treatment could long-term significantly reduce breast cancer death rates and improving the

prognosis (Wang 2017).

2.2 Histopathological imaging

Histopathology is the basis for cancer recognition and refers to the microscopic study of the

disease of tissues and its diagnosis (Gurcan et al. 2009).

The importance of quantitative analysis of pathological images has been acknowledged by

researchers in the domains of image analysis and pathology. Considering that the major-

ity of current pathology diagnoses are based on the actual pathologists subjective opinions,

quantitative image-based analysis of digital histopathology image slides is needed. It is crit-

ical not only for diagnosis, but also for understanding the underlying reasons behind a given

diagnosis (Gurcan et al. 2009).

Increased computing power and improved image analysis algorithms have made it possible

to develop powerful computer-aided diagnosis (CAD) methods for histopathological data.

Because of the digital whole-slide scanners, the slides from the histopathological images can

be digitized and saved as digital images (Gurcan et al. 2009). This opens digital histopathol-

ogy up for the applications of computational image analysis and different deep learning

techniques.

Pathologists can use the CAD tools to increase diagnosis accuracy and detection rates while

also lowering the total rate for misdiagnosis (Gurcan et al. 2009). Automating some tasks in

their diagnostic workflow could help increasing the total efficiency and objectivity (Bayra-

moglu, Kannala, and Heikkilä 2016).
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2.3 Classification methods

Since cancer is the second biggest cause of death, numerous machine learning studies have

been published to tackle this problem. Having a computer-based analysis tool for providing

second hand opinions and accurate medical image classifications, can certainly help medical

practitioners in treatments and clinical care.

Even though machine learning methods have achieved positive results analyzing histopatho-

logical images of breast cancer, their performance is greatly limited by being dependant on

the extracted features of the data and task they are trained for (J. Xie et al. 2019). Further-

more, they lack the understanding for extracting discriminative information from the data

(Bengio, Courville, and Vincent 2013).

Deep learning approaches are generally based on deep neural networks, especially the Con-

volutional Neural Networks (CNN). CNNs have been widely used in the field of medical

imaging, since they have the ability to automatically extract more useful feature representa-

tions from the images and the image labels (D. Wang et al. 2016), without requiring the man-

ual annotation of the features (Bengio, Courville, and Vincent 2013; Spanhol et al. 2016).

CNNs have been dominant in both computer vision and the field of medical image anal-

ysis before the emergence of Vision Tranformers. Mridha et al. 2021; Kwong and Maza-

heri 2021 found on their surveys that the CNN was by far the most commonly used deep

learning model for breast cancer classification since 2016. CNNs have been frequently em-

ployed in breast cancer classification because of its capability for extracting useful feature

representations from the images. A lot of effort has gone into improving the performance

of CNN-based classifiers. In recent years various new CNN architectures were developed:

AlexNet (Krizhevsky, Sutskever, and Hinton 2012), VGG (Simonyan and Zisserman 2014),

GoogleNet (Szegedy, Liu, et al. 2015), ResNet (Kaiming He et al. 2016), ResNeXt (S. Xie

et al. 2017), and EfficientNet (Tan and Le 2019).

Previous implemented methods on medical imaging, which are based on CNNs tend to focus

on local variations in image patterns. Vision Transformers (ViT) are more focused on mod-

elling long range dependencies and thus are able to extract more global information from

images (Parvaiz et al. 2022). ViTs have shown that pure transformers can also perform well
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on image classification tasks (Dosovitskiy et al. 2021; Khan et al. 2021) by being ranked on

top of several image classification benchmarks. This has inspired many researches to further

evaluate the performances between ViTs and CNNs. Vision transformer models not only

outperform CNNs based on image classification benchmarks, but also show that their error

is also more consistent with human errors (Tuli et al. 2021) (Kelei He et al. 2022).

In the next section, the relevant CNN-based models and ViT-based models to classify tumors

are summarized.

2.3.1 CNN-based methods

D. Wang et al. 2016 identified metastatic breast cancer on the Camelyon16 dataset. Their

method is based on comparing the performance of 4 different types of CNNs: GoogLeNet

(Szegedy, Liu, et al. 2015), AlexNet (Krizhevsky, Sutskever, and Hinton 2012), VGG16

(Simonyan and Zisserman 2014) and FaceNet (Schroff, Kalenichenko, and Philbin 2015).

GoogLeNet was selected by its performance to generate the tumor probability heatmaps,

and finally a random forest classifier was used to classify the cancerous whole-slide images

and the negative whole-slide images. The proposed method was the winning solution to the

Camelyon16 Grand Challenge (Ehteshami Bejnordi et al. December 2017), and the results

demonstrated the power of using deep learning by achieving classification performance of

nearly human-level on the test dataset.

Spanhol et al. 2016 first propose a dataset called BreakHis for classifying histopathological

images of breast cancer. They used a modified version of the AlexNet convolutional neural

network, which showed better results than the conventional machine learning models.

Bayramoglu, Kannala, and Heikkilä 2016 proposed to classify breast cancer histopatholog-

ical images on the BreaKHis dataset regardless of their magnification level, using convolu-

tional neural networks. The two different architectures proposed: one CNN to predict the

level of tumor malignancy, and the second CNN used for predicting both the tumor malig-

nancy and the image magnification levels at the same time. Their obtained results were also

competitive with the best results obtained from the traditional machine learning methods as
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above.

Gecer et al. 2018 use a CNN for detecting and classifying whole-slide-images and the region

of interest in breast cancer. Their classifier obtained comparable results, which were based

on the diagnosis of 45 different pathologists who were focused on diagnosing breast cancer.

Graham, Epstein, and Rajpoot 2020 propose a CNN called Dense Steerable Filter for his-

tological image analysis. Their model achieves state-of-the-art performance in breast tumor

classification on the PCam dataset (Veeling et al. 2018), while having fewer model parame-

ters than any of the previous implemented models.

R. Zhang et al. 2022 perform a large transfer learning evaluation for one ResNet architec-

ture for domain-adaptation across nine histopathological datasets. The results show that

knowledge is transferred between histopathological datasets and the datasets which shared

the same organ class had also shared knowledge more effectively.

2.3.2 Transformer based methods

Attention mechanisms, which utilize self-attention have for long been implemented as sup-

plementary modules of convolutional neural networks for the analysis of medical images,

before the implementation of Vision Transformers started to gain popularity in the computer

vision community. Attention modules have successfully shown to improve the performance

of deep learning models (Y. Liu et al. 2019; Han et al. 2021), which has inspired many re-

searchers to directly integrate the Transformer architecture into the field of computer vision.

Some of the methods directly focus on using pure transformers to replace CNNs altogether

(Dosovitskiy et al. 2021), while others use a hybrid framework of both CNN and transformer,

such as the Bottleneck Transformer (Srinivas et al. 2021).

This has also led to the recent rise of pure Transformer-based models in the field of medical

image analysis. The first published transformer based method for medical image classifica-

tion is TransMed (Dai, Gao, and Liu 2021), a hybrid transformer and CNN-based architec-

ture which focuses on the classification of parotid tumors in multi-modal magnetic resonance

medical images.
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GasHis-transformer (Chen, Li, et al. 2021) , a Vision Transformer model is proposed for

diagnosing gastric cancer in the stomach, where the microscopic images are classified into

abnormal and normal cases. GasHis-Transformer model consists of two modules for feature

extraction. The global information module (ViT-based) and the local information module

(CNN based). The proposed model achieved greater classification performance than its com-

pared CNN counterparts. The model also shows generalizability on other histopathological

image datasets, such as breast cancer classification on the BreakHis dataset.

TransMIL (Shao et al. 2021) is a transformer-based architecture for exploring morphological

and spatial information for classifying whole-slide images. The proposed model effectively

dealt with both binary and multiclass classification. TransMIL achieves state-of-the-art clas-

sification performance on three different cancer datasets: breast cancer (CAMELYON16)

(Veeling et al. 2018), lung cancer (TCGA-NSCLC) (Napel and Plevritis 2014), and kidney

cancer (TCGA-R) (National cancer institute 2022)

Gheflati and Rivaz 2021 use both hybrid and pure Vision Transformers for classifying breast

tissues in ultrasound images using different data augmentation strategies. The performance

of their used models are compared with some of the state-of-the-art CNNs. The results of the

performance were more in favor of the Vision Transformers than the CNNs for classification

of ultrasound breast images.

Stegmüller et al. 2022 propose ScoreNet, a Vision Transformer based architecture for histopatho-

logical breast cancer classification on the BRACS dataset (Pati et al. 2022). The results show

state-of-the-art performance but ScoreNet also demonstrated robustness and generalization

in other breast cancer datasets like Camelyon16 (Ehteshami Bejnordi et al. December 2017)

and BACH (Aresta et al. 2019).
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3 Theory

This chapter will present the theoretical background for the thesis. The first section contains

the key aspects of deep learning and the important contents and terms used in this thesis

focused on image classification and transfer learning. The second section gives an overview

of convolutional neural networks and the common layers in its architecture. In the third and

last section we focus on the Transformers, the attention mechanism behind it, and the Vision

Transformer with its training process.

3.1 Deep learning

Deep learning makes it possible for multi-layer computational models to learn representa-

tions of data with many feature levels (LeCun, Bengio, and Hinton 2015). The deep learning

models learn complicated concepts by building them from simpler concepts (Goodfellow,

Bengio, and Courville 2016). One example of a simple deep learning model is called feedfor-

ward neural networks, also known as Multi-Layer Perceptrons (MLP) (Goodfellow, Bengio,

and Courville 2016).

Let us describe the MLP through a function f ∗ that is to be approximated. When from

the input x a mapping y = f ∗(x) is done to its corresponding class of output y, the best

approximation is defined as y = f (x;σ) where σ is parameters that yields the best results

(Goodfellow, Bengio, and Courville 2016).

Deep learning methods have greatly improved the state-of-the-art results in various areas

such as object detection (Wu, Sahoo, and Hoi 2020), natural language processing (Brown

et al. 2020), speech recognition (Y. Zhang et al. 2020), drug discovery (Lavecchia 2019) and

autonomous vehicles (Kuutti et al. 2020).

Deep learning methods can generally be split into supervised and unsupervised learning

algorithms, which stem from machine learning (LeCun, Bengio, and Hinton 2015).

Supervised learning can be explained as presenting the model with a dataset Data= {xn,yn}N
n=1.

Where x represents our input features of the data, whereas y represents an set of fixed class
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labels. The objective of training in supervised learning usually translate into finding model

parameters σ , such that it is the most effective at predicting the data based on a certain loss

function Loss(y,yo). Where yo points at the models attained output of the obtained from the

inserted data point x in the function f (x;σ) which represents the model. (Litjens et al. 2017)

Compared to supervised learning, in unsupervised learning the model learns the data with

unlabeled examples, by distinguishing useful patterns in the images. The training for unsu-

pervised learning can be conducted with different loss functions, such as the reconstruction

loss Lossr(x,xo), in which the model learns to reconstruct its original input x through noisy

representation to obtain the reconstructed input xo (Litjens et al. 2017).

3.1.1 Image Classification

Image Classification is a subdomain of computer vision with the goal of associating one or

more labels to a given image. (Wang and Su 2019)

The ImageNet database (Fei-Fei, Deng, and Li 2009) is a visual dataset consisting of 1.3

million images in 1,000 different classes, created to aid in the computer vision research as

a classification benchmark. The contribution of Krizhevsky, Sutskever, and Hinton 2012

to the ImageNet challenge in December 2012 was a big breakthrough in image classifica-

tion (Litjens et al. 2017) with the introduction of AlexNet, a convolutional neural network

which placed first in the 2012 ImageNet challenge by a large margin. Since then, each year

newer and deeper deep learning models which have been shown to achieve near humanlike

performance have been proposed. (Szegedy, Liu, et al. 2015) (Kaiming He et al. 2016).

3.1.2 Transfer Learning

Transfer learning focuses on transferring latent knowledge between two domains: the source

domain, which is generally a large dataset on which the networks pre-training is performed

on for solving the issue of lack of data on the target domain where the networks fine-tuning

happens (Aneja et al. 2021).

The domain can be defined as D = {X ,P(X)}where X is the feature space and P(X) is the
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marginal probability distribution, where X = {x1, . . . ,xn} ∈X . Given a particular domain

D , a task T can be defined as T = {Y , f (·)}, which consists of the label space Y and the

task prediction function f (·) (Weiss, Khoshgoftaar, and Wang 2016). There exists training

data {xi,yi}, where xi ∈X and yi ∈ Y , from where the task T can be learned.

Following the presentation by Weiss, Khoshgoftaar, and Wang 2016 transfer learning can

thus be defined as: Given the source domain DS = {XS,P(XS)} and the source learning

task TS = {YS, fS(·)}, and the target domain DT = {XT ,P(XT )} and the target learning

task TT = {YT , fT (·)}, the purpose of transfer learning is to learn the prediction function of

target fT (·) by using the information from DS and TS in a way that DS 6= DT and TS 6= TT

(Weiss, Khoshgoftaar, and Wang 2016).

Transfer learning makes it possible to start a deep learning training process with a better

starting point where a more favorable local optimum for the training criterion is found. Being

in a more favorable region of the parameter space means that the optimization of the model

is easier, which means faster learning in the training process and can lead to better model

performance (Aneja et al. 2021).

Despite the fact that transfer learning offers many benefits in transferring the learned rep-

resentations of the features between the source domain and target domain, it can also be

disadvantageous for the performance if the source domain and the target domain lack the

same kind of features. This phenomenon can also be known as negative transfer (Weiss,

Khoshgoftaar, and Wang 2016).

3.2 Convolutional neural networks

Convolutional neural networks (CNN) are a deep-learning framework that is the cornerstone

of deep learning. CNNs take an input image for which it assigns certain weights and biases

to be able to recognize the different features located in the images (Goodfellow, Bengio, and

Courville 2016).

Pioneered by (LeCun et al. 1989), CNN were originally used for classifying digits and rec-

ognizing hand-written numbers, but as stated in chapter 3.1.1, a big breakthrough in the
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history of CNN was made in the 2012 ImageNet challenge (Krizhevsky, Sutskever, and Hin-

ton 2012). Since then, CNNs have shown state-of-the-art results in areas such as image

recognition and classification (Klang 2018).

CNNs are designed to handle a wide range of two-dimensional shapes, and thus are widely

used in different tasks of computer vision such as, image classification, semantic segmenta-

tion and medical image analysis. (Sarker 2021).

A convolutional neural network can be seen as a sequential order of layers (Figure 1), which

transform an input image into an output vector with the size of predefined classes, which

means that a vector with a size of 1000 indicates the probability for an input image to belong-

ing to one or several of the 1000 predetermined classes (Goodfellow, Bengio, and Courville

2016). A CNN architecture, consist of three main types of layers named: (1) convolutional

layer, (2) pooling layer, and the (3) fully-connected layer (FC) (D. Liu et al. 2018).

Figure 1: Example of a CNN architecture which contains the three main layer types, with

an example image from the ImageNet (Fei-Fei, Deng, and Li 2009). Adapted from (Hamid

and Walia 2021)

Convolutional layers are the main components of the CNN, they are in charge of feature

extraction from the images and the feature maps, which are formed by the previous layers to

form new feature maps (Rawat and Wang 2017).

In image classification, the input of a convolutional layer consists of one or more two-

dimensional matrices, and multiple two-dimensional matrices are formed as the output. The

process for computing a single output matrix can be defined as:

A j = fl(
N

∑
i=1

Ii ∗Ki, j +B j) (3.1)
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First for every input matrix Ii the convolution operation ∗ is applied with the corresponding

kernel matrix Ki, j, which represents the feature extractors that handle the extraction of lo-

calized features from the input matrices. Next the convoluted matrices are summed together,

the bias value B j is summed to every element of the resulted matrix. Lastly a non-linear

activation function fl is added for every element of the previous matrices to produce one

final output matrix (feature map) A j. The goal of the learning process is to find the kernel

matrices K for extracting useful features, which can be used for classification purposes (Li

et al. 2014).

Pooling layers are typically located between consecutive convolution layers to merge similar

features into one by performing downsampling on the spatial dimensions, which reduces the

amount of parameters and the amount of computation needed in the CNN (Rawat and Wang

2017).

All previous layers including convolution layers and pooling layers are concentrated on ex-

tracting and mapping the helpful features into lower-dimensional level representations; the

function of the FC-layer is to map these representations into the desired target space and thus

completes the classification. The output of the last fully-connected layer is then inserted into

a classifier, which handles computing the probabilities for the input image belonging to the

corresponding classes. (D. Liu et al. 2018)

3.3 Transformers

Transformers introduced by Vaswani et al. 2017 are a type of neural network architecture

originally proposed for the machine translation task but achieved state-of-the-art perfor-

mance in a large number of Natural Language Processing (NLP) tasks, after that it has also

recently been widely applied in various computer vision tasks, including object detection

(Carion et al. 2020), segmentation (Chen, Lu, et al. 2021), image enhancement (Yang et

al. 2020) and video processing (Zeng, Fu, and Chao 2020).

The Transformer is the first architecture that revolutionized the use of self-attention mech-

anisms for calculating the representations of its input and output without utilizing any con-

volution layers (Vaswani et al. 2017). The architecture of transformers are multi-layered,
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consisting of an encoder layer and a decoder layer, each formed by stacking multiple Trans-

former blocks on top of each other. Each Transformer block is characterized by a multi-head

self-attention mechanism (Tay et al. 2020; Dosovitskiy et al. 2021).

Self-Attention

Self-Attention (SA), is a type of attention mechanism that can be compared to convolutions

in CNNs. It helps with learning long range dependencies across image regions (Parvaiz et

al. 2022).

Figure 2: An overview of the Scaled Dot-Product Attention (Dai, Gao, and Liu 2021)

The Self-Attention layer transforms the input into three different embedding matrices : the

query matrix Q, which represents the input. The key matrix K represent what the query is

compared with. Finally the value matrix V, which tells how much each of the keys is relevant

to the query. The output of the SA-layer is the weighted sum between all of the value vectors.

The weights that are allocated to each value are determined by the scaled dot-product (Figure

2) between the query and its matching key (Vaswani et al. 2017), thus the function for the

SA-head between the query, key and value can be calculated as following:

SAi(QWQ
i ,KWK

i ,VWV
i ) = softmax

(
QWQ

i
(
KWK

i
)T

√
dk

)
︸ ︷︷ ︸

P

VWV
i , (3.2)

where i is the index of the SA-head, Q,K,V ∈ Rn×dm are the input embedding matrices, n

is the sequence length, dm is the embedding dimension, WQ
i ,W

K
i ∈ Rdm×dk ,WV

i ∈ Rdm×dv
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are the learned projection matrices and dk,dv are the hidden dimensions of the projection

subspaces. The projection matrices are responsible for calculating the attention weights from

the feature values which are projected from these matrices (S. Wang et al. 2020; Vaswani

et al. 2017). SA, which was defined in Equation 3.2 refers to a context mapping matrix

P ∈ Rn×n. The Transformer utilizes P for capturing the context of an input for a given patch

or token, based on the combination of every previous patch or token in the sequence (S.

Wang et al. 2020).

The Softmax is a function, which turns a input vector x̃, into a vector of probabilities which

sums to 1 (Goodfellow, Bengio, and Courville 2016). Softmax can be defined as following:

softmax(x̃)i =
exi

∑
Kn
j=1 ex j

xi ∈ R (3.3)

and where Kn equals to the number of classes in the classifier.

Multi-Head Self-Attention (MHSA) , the essential component of the Transformer (Figure

3) consists of many SA-heads which are concatenated together to model the dependencies

between the input sequence elements. If we denote each SA process as

headi = SAi(QWQ
i ,KWK

i ,VWV
i ), (3.4)

then MHSA is defined as :

MHSA(Q,K,V) = Concat (head1, head 2, . . . ,headh)WO, (3.5)

where h is the number of heads and WO ∈Rhdv×dm is the learned projection matrix (S. Wang

et al. 2020).

The benefits of MHSA is that it enables learning sequential and locational information in

different representational subspaces for the model, since each self-attention head has its own

internal representation of the inputs, thus sharing the information makes it possible for a

more complete understanding of the relationships between the image patches in a sequence.

(Dai, Gao, and Liu 2021; Dosovitskiy et al. 2021; Vaswani et al. 2017).
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Figure 3: An overview of the Multi-Head Self-Attention (Dai, Gao, and Liu 2021).

3.3.1 Vision Transformers

The Vision Transformer (ViT) proposed by Dosovitskiy et al. 2021 was the first notable at-

tempt for using a purely transformer-based architecture for computer vision related tasks,

replacing the standard convolution operations and achieving impressive performance com-

pared to the current state-of-the-art convolutional neural networks. However, training ViTs

require a large amount of data which comes with a computational cost. Thus, Dosovitskiy

et al. 2021 also proposed a hybrid ViT architecture, which conjugates the transformer with

a CNN. In the hybrid ViT architecture, the CNN functions mainly as a feature extractor,

while the transformer mainly focuses on global attention. The results of the hybrid ViT also

showed comparable performance with the pure ViT models, but with relatively less amount

of computational needs (Dosovitskiy et al. 2021).

An overview of the ViT model is shown in Figure 4, and following the presentation by

Dosovitskiy et al. 2021, the training process can be explained as following:

For the two-dimensional input images, we first reshape the image x ∈ RH×W×C into a se-

quence of flattened two-dimensional patches xp ∈ RN×(P2C), where (H, W) stand for resolu-

tion of the original image, C is the number of channels, (P,P) is the resolution of each image

patch, and N = HW/P2 is the total number of patches resulted (Dosovitskiy et al. 2021).

The Transformer uses a constant latent vector with the size D throughout all of its layers,

which means that the patches are flattened and projected to D dimensions with a trainable

linear projection layer (Equation 3.6), the output of this projection is called patch embed-
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Figure 4: An overview of the Vision Transformer model and its training process. Adapted

from (Dosovitskiy et al. 2021).

dings (Dosovitskiy et al. 2021).

A class token similar to the BERT-architecture (Devlin et al. 2018), is added to the begin-

ning of the sequence of the embedded patches as z0
0 = xclass . The class token serves as the

representation of an entire image
(
z0

L
)
, where L equals to the last layer, which is used for

classification purposes. During the pre-training and fine-tuning of the ViT, a classification

head is added to
(
z0

L
)

(Dosovitskiy et al. 2021).

One-dimensional position embeddings Epos are then linearly added to the patch embeddings

18



for providing the positional information of the images. This considers the inputs as a se-

quence of patches, such that the resulting sequence of embedding vectors act as an input to

the ViT encoder (Dosovitskiy et al. 2021).

z0 =
[
xclass ;x1

pE;x2
pE; · · · ;xN

p E
]
+Epos, E ∈ R(P2C)×D,Epos ∈ R(N+1)×D (3.6)

Figure 5: An overview of the Vision Transformer encoder layer. Adapted from (Dosovitskiy

et al. 2021).

The ViT encoder consists (Figure 5) of alternating layers ` of MHSA (Equation 3.8) and

Multi-Layer Perceptron (MLP) blocks (Equation 3.7). Layer normalization (LayerNorm)

(Ba, Kiros, and Hinton 2016) is also applied before every Transformer block, and residual

connections after every transformer block, Residual connection, also known as a type of skip

connection provide an alternative path for the data to reach deeper parts of the model by

skipping some layers (Kaiming He et al. 2016).
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z` = MLP
(
LayerNorm

(
z′`
))

+ z′`, `= 1 . . .L (3.7)

z′` = MHSA(LayerNorm(z`−1))+ z`−1, `= 1 . . .L (3.8)

LayerNorm is a technique for normalizing the distributions of the models previous layers,

which increases the models training speed and generalization accuracy (Xu et al. 2019). Fol-

lowing the presentation by Xu et al. 2019 LayerNorm can be defined as re-centering and

re-scaling input vector representation x = (x1,x2, . . . ,xH) of an input of size H to normaliza-

tion layers as:

h = g ·N(x)+b, N(x) =
x−µ

σ
, µ =

1
H

H

∑
i=1

xi, σ =

√
1
H

H

∑
i=1

(xi−µ)2 (3.9)

where h is the output from the LayerNorm-layer, b and g are defined as the bias and gain

parameters, which both have the same dimension as H, µ and σ represent the mean and

standard deviation of h (Xu et al. 2019).

Unlike the transformer blocks in vanilla Transformers, Vision Transformers have no decoder

layers and the outputs of the transformer encoder are instead sent into an MLP head to

classify the classes for the learned image representation from the last layers class token.

(Dosovitskiy et al. 2021).
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4 Data

For our experiments, we used the patched version of the Camelyon16 challenge dataset as

our target dataset (Veeling et al. 2018) and for the domain-based pre-training we use the

Grand Challenge on Breast Cancer Histology images (BACH) challenge dataset by (Aresta

et al. 2019) as the source dataset.

4.1 Camelyon16

Camelyon16 (Ehteshami Bejnordi et al. December 2017) based on the Camelyon16 grand

challenge, is a dataset suitable for the classification and detection of breast cancer in Whole

Slide Imaging. The data of Camelyon16 is originally from the Radboud University Medical

Center and the University of Utrecht Medical Center. Camelyon16 is made up of 170 phase

I lymph node WSIs, in which 100 are normal tissues and 70 are metastatic tissues, and 100

Phase II WSIs in which 60 are normal tissues and 40 metastatic tissues. The test dataset

includes 130 WSIs from both medical centers. Figure 6 shows an example of a lymph node.

Figure 6: A pathological image of a lymph node in Camelyon16 (Ehteshami Bejnordi et

al. December 2017). The left side referring to normal tissue while the right side has growth

of metastatic cancer cells
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4.1.1 PatchCamelyon

The PatchCamelyon benchmark (PCam) (Veeling et al. 2018) is a image classification dataset

extracted from the Camelyon16 whole-slide-images lymph node sections. it consists of

327.680 images with a fixed size of 96x96 pixels. The two classes present in this dataset:

normal and tumor tissues. Benchmark-wise PCam plays an important role in clinically rele-

vant task of metastasis detection.

In this thesis, a modified PatchCamelyon dataset is used based on the histopathologic can-

cer detection competition organized by Kaggle due to the original PCam dataset containing

duplicate images (Chandrasekhar et al. 2019).

With duplicate images removed the same data and splits as the PCam benchmark is main-

tained. The training set has 220,025 images, with 130,908 (60%) being benign images and

89,117 (40%) being images, where at the center of the 32×32 pixels image region exists at

least one pixel of tumor tissue (Chandrasekhar et al. 2019). Samples from the dataset are

shown in Figure 7.

Figure 7: Sample images from the PCam-dataset. Label 0 referring to patches with no tumor

tissue, and Label 1 referring to patches with at least one pixel of tumor tissue.

4.2 BACH

The Grand Challenge on BreAst Cancer Histology images (BACH) (Aresta et al. 2019) is

aimed at the classification and localization of breast cancer in both microscopical images
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and whole-slide images from a large annotated dataset. For that, 400 training and 100 test

samples, with equal class distribution, were given. The microscopical images are labeled as:

normal, benign, in situ carcinoma or invasive carcinoma. Each class contains 100 images

for the corresponding cancer. The annotation was done by two medical practicioners and if

disagreement happened regarding the annotation, then those images were discarded from the

data (Aresta et al. 2019). Samples from the dataset are shown in Figure 8.

Figure 8: Example of a image labeled normal and in-situ (Aresta et al. 2019)
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5 Methods

The following section of the chapter provides an overview of the test environment used for

the experimental setup, the necessary preprocessing with an insight to data augmentation

techniques and evaluation metrics used in our experiments. We present our model selections

for both the CNN and Vision Transformer-based models before we go over the training

and validation process for our experiments. Finally, we give an brief overview of how we

evaluated our experiments to implement robust and efficient models.

5.1 Test Environment

For all experiments, training, validation and testing was conducted using PyTorch (Paszke et

al. 2019) version 1.8.1 with CUDA 10.2 using a fixed seed number of 323 for reproducibility

purposes, utilizing 3x NVIDIA Tesla P100 GPUs at most for the larger models. For the pre-

trained models, we use the PyTorch Image Models (timm) library (Wightman 2019), which

includes the pre-trained ImageNet weights for every model used in our experiments. For

data augmentations the Albumentations library (Buslaev et al. 2020) is used.

5.2 Preprocessing and evaluation metrics

We split both datasets into training and validation sets respectively as shown in Table 1,

while the test set is already predetermined in the PCam benchmark. The training set refers

to the actual dataset, which the model is trained on to learn from the data. The validation set

refers to an sample of data, which is used for frequent evaluation of the models, so during

the validation the model sees the data but it never learns from it in this case. The test set is

a sample of data used only once to evaluate the models only when they are finished training

completely, the biggest difference from the validation set is that the test set is carefully

curated regarding the selection of data samples.

All the experiments are conducted on the fixed PCam dataset to determine the best models

for comparison purposes. The domain-based pre-training is done on the BACH dataset,
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which we modify for the purpose of maintaining a binary classification task. The original 4

labels normal, benign, in situ carcinoma and invasive carcinoma are now labeled as normal

(tissue), and tumor (tissue) in which we combine the samples from the latter three original

labels. Every image from both datasets is resized to 224x224 pixels to match the models

input dimensions.

Since the PCAM-dataset is slightly imbalanced, the performance metric we use for evalua-

tion purposes is a commonly used metrics also employed in the PCam-dataset classification

(Veeling et al. 2018), which is the area under the receiver operating characteristic curve

(AUC).

5.2.1 Evaluation Metrics

There are many metrics for evaluation purposes: the confusion matrix, cross validation,

the receiver operating characteristic curve (ROC) and the area under the ROC curve (AUC)

(Mridha et al. 2021).

ROC curve and AUC: The area under a receiver operating characteristic (ROC) curve,

known as AUC, measures the performance of a binary classifier (Hanley and McNeil 1982).

The value of AUC ranges mostly from 0.5 to 1, where the value of 0.5 represents that the

model has no capacity to distinguish between positive and negative classes and the value 1

would correspond to a perfect classifier. Overall, AUC is a robust metric for evaluating the

performance of classifiers since the calculations are based on the whole two-dimensional area

under the entire ROC curve, and therefore involves all the possible classification thresholds

(Melo 2013).

5.2.2 Data Augmentation

Data Augmentation is a technique for increasing the total amount of data by generating trans-

formed copies of the existing data or creating new synthetic data from the already existing

data. Examples of these transformations are such as horizontal flipping, vertical flipping, ro-

tation, reflection, blur, and color-space transformations like altering the contrast of an image.

(Shorten and Khoshgoftaar 2019).
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One sample of data augmentation applies each above listed transformation to an original im-

age to generate 6 new augmented images, this increases the amount of images in the dataset

with new unseen training examples which often improves the robustness and performance of

the model (Zheng et al. 2016).

Test-Time Augmentation

Typically, data augmentation is performed during a models training process. However, it

can also be applied to the test dataset to obtain stronger performance and improved accuracy

(Shorten and Khoshgoftaar 2019). Test-Time Augmentation (TTA) combines the models

predictions from several augmented versions of a given test input to obtain a more confident

prediction by averaging them (Shanmugam et al. 2021).

Since transformers require a larger amount of data. We rely on extensive data augmentation

to train our transformer-based models with more examples, transformers requiring strong

data augmentation was also noted by Touvron et al. 2021. Almost every data-augmentation

method excluding dropout layers proved to be useful.

In our experiment we use the following heavy type of data augmentations with the Albumen-

tations library (Buslaev et al. 2020):

• RandomRotate90, in which images are randomly rotated between +/- 90 degrees with

a probability of 0.5

• Transpose, where the rows and columns of an image is swapped with a probability of

0.5

• Flip, where images are reflected over the central vertical line with a probability of 0.5

• OneOf, where we randomly apply only one of the following transforms with a proba-

bility of 0.5

– CLAHE which limits the contrast amplification to reduce amplified noise

– Sharpen, where the input image is sharpened

– Emboss, where the input image is embossed

– RandomBrightnessContrast, randomly changing the brightness and contrast of

the image

– ImageCompression, where the quality of the image is decreased
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Table 1: Specifications of the target and source datasets after train-validation-test splitting

Dataset Train Val Test Classes

PCam 187021 33004 57458 2

BACH 359 41 - 2

– Blur, where the input image is blurred

– GaussNoise, where we apply gaussian noise to the input image

• HueSaturationValue, randomly changing the images hue, saturation, and value with

a probability of 0.5.

• ShiftScaleRotate, randomly applying affine transforms: shifting and scaling the im-

age with a rotation limit of +/- 45 degrees, shift and scale limit of 0.15 with a proba-

bility of 0.5.

the code of the whole augmentations for the training set can be seen in Appendix A.

We also apply test-time augmentation (TTA) for the test set, in which we include random

rotation and random flip as the augmentations.

5.3 Model Variants

In this section we discuss our model selection for both the CNN baseline and the Vision

Transformer-based models.

5.3.1 Baseline model

ResNet-50 (Kaiming He et al. 2016) pre-trained on ImageNet was chosen as the baseline

model due to its wide use throughout literature (Dosovitskiy et al. 2021; Touvron et al. 2021;

Gheflati and Rivaz 2021), as well as its relatively small number of parameters compared

to other commonly selected CNNs like VGG16 (Simonyan and Zisserman 2014) and In-

ceptionV3 (Szegedy, Vanhoucke, et al. 2015). We modify the last output layer modified to

handle binary classification for outputting two classes.
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5.3.2 Vision Transformer based models

The training process of the experiments in this thesis is mostly based on the recommenda-

tions provided by Steiner et al. 2021. Furthermore, the criteria for selecting the models for

our approach regarding the ViT-based models is done based on the recommended ViT ar-

chitectures provided by (Steiner et al. 2021), which includes various pure ViT models with

different sizes (Ti/16, S/32, S/16 and B/16) (Dosovitskiy et al. 2021), but also the hybrid ViT

models (R+Ti/16, R26+S/32). Regarding the size of the models: Ti meaning tiny, S meaning

small and B meaning base (Dosovitskiy et al. 2021). In the hybrid models R represents the

ResNet-architecture used for feature extraction, so the hybrid model is a combination of the

ViT and ResNet models. The numbers 16 or 32 at the end of the model refer to the models

patch size (16x16 or 32x32).

Every chosen ViT model is pre-trained on ImageNet, with the last output layer modified to

handle binary classification to output two classes.

5.4 Training, Fine-tuning & Validation

The first experiments are conducted by fine-tuning the chosen models on the PCam dataset

utilizing the conventional transfer learning approach. The second experiments are conducted

by first pre-training the chosen models on the BACH dataset by utilizing domain adaptation

in transfer learning. After that, fine-tuning is performed on the PCam dataset for the domain-

based pre-trained models.

For the fine-tuning and domain-based pre-training of the baseline model, we use Adam as

the optimizer (Kingma and Ba 2014) with an initial learning rate of 0.001 with all other

parameters left default. Optimizers are short for optimization algorithms, which are used to

train deep learning models, and learning rate controls how fast the optimizer can reach the

minima of a loss function (Bengio 2012).

For the ViT-based models, both the fine-tuning and domain-based pre-training is conducted

based on the results provided in (Steiner et al. 2021), so stochastic gradient descent (SGD)

is chosen as the optimizer with an initial learning rate of 0.001 but leaving the parameter
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momentum as default (0) instead of the proposed value of 0.9 in Steiner et al. 2021.

For both the fine-tuning and domain-based pre-training of the models, a batch size of 128 is

selected for the ViT-based models and 64 for the baseline respectively. Batch size refers to

the number of data samples being processed before the model is updated (Bengio 2012).

A learning rate scheduler with a cosine decay is selected for both models with the minimum

learning rate set as 1e−7, which means that we start at an initial learning rate and slowly

reduce it in accordance to the scheduler. The loss function we use for both models is a

Binary Cross-Entropy Loss with Logits from the torch library (Paszke et al. 2019), which

creates a criterion that measures the Binary Cross-Entropy (BCE) between the target and

the output, the logits referring to combining the loss inside a Sigmoid layer. BCE compares

the predicted probabilities to the original class output, which can either have the value 0 or

1. BCE penalizes the probabilities, which are further away from the actual value (PyTorch

2022).

While training happens the training loss and training AUC is calculated for every batch of

samples. Validation is set to happen every 100 batches, which is when we validate our models

performance on the samples of the validation set for which we calculate the validation loss

and validation AUC. We always save the best model based on the value of validation AUC.

Every model is set to be trained for 50 epochs (i.e. the number of times the models runs

through the whole training set) with early stopping happening to stop the training if no im-

provement after a given number of events (patience) is happening for validation AUC. For

early stopping, the value of 25 is selected for patience.

5.5 Evaluation

Evaluating deep learning models is an important step in implementing robust and efficient

models. After the initial training and validation phase, the trained model is evaluated on with

the test images to evaluate its performance. In this thesis the evaluation is done on the PCam

test set where we evaluate whether the images contain traces of breast cancer or not.

Each of the best model variants from the baseline ResNet-50 to the ViT-based models chosen

29



by the validation process previously mentioned from the both experiments are now further

evaluated on the unseen test examples for which the classification performance is measured

by the test AUC.
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6 Results

We present the classification results for the CNN and ViT models on the PCam-dataset in

two ways: first, using conventional transfer learning, and second, utilizing domain-based

pre-training.

6.1 Classification results for transfer learning (PCam)

Table 2 shows the classification results of the pre-trained ViT-based models and the ResNet50

on the PCam validation set. The classification results from the implemented ViT models

show a way better validation AUC score for S/16 and B/16 variation of the attention-based

models than the corresponding results for the ResNet-50 model. According to the table,

the best result of the ResNet-50 model is nearly comparable to the result of the smallest

ViT Ti/16 model while having almost 5 times less model parameters. Meanwhile the best

validation AUC is 0.9933 for the ViT B/16 model.

Table 3 shows the classification results of the pre-trained ViT-based models and the ResNet50

on the PCam test set. The results of the ViT models show a better test AUC score for every

variation of the attention-based models expect the S/32 and R+Ti/16 variations compared to

the corresponding results of the CNN model. According to the table, the best result of the

ResNet-50 CNN model is worse than the result of the ViT Ti/16 model, which has almost 5

times less model parameters. Meanwhile, the best performing model is still ViT B/16 model

with a test AUC of 0.97305.

6.2 Classification results for transfer learning with domain-based pre-

training (PCam + BACH)

Table 2 shows the results of the pre-trained ViT-based models and the ResNet-50 on the

PCam validation set after being pre-trained on the BACH-dataset. The results indicate a

performance boost for almost every model, except the R+Ti/16, which actually had a lower

validation AUC score compared to the conventional transfer learning method. ResNet-50
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Table 2: Performance comparison of the ViT and CNN models on the classification of PCam

validation set with and without domain-based pre-training on the BACH-dataset

Method Parameters Validation AUC (PCAM) Validation AUC (PCam+BACH)

ResNet-50 25.55 M 0.9892 0.9945

Ti/16 5.71 M 0.9885 0.9896

S/32 22.87 M 0.9879 0.9891

S/16 22.05 M 0.9924 0.9928

B/16 86.56 M 0.9933 0.9933

R+Ti/16 6.33 M 0.9888 0.9861

R26+S/32 36.43 M 0.9867 0.9890

Table 3: Performance comparison of the ViT and CNN models on the classification of PCam

test set with and without domain-based pre-training on the BACH-dataset

Method Parameters Test AUC (PCam) Test AUC (PCam+BACH)

ResNet-50 25.55 M 0.96565 0.96995

Ti/16 5.71 M 0.96645 0.96580

S/32 22.87 M 0.96435 0.96605

S/16 22.05 M 0.9717 0.9723

B/16 86.56 M 0.97305 0.97315

R+Ti/16 6.33 M 0.96505 0.96280

R26+S/32 36.43 M 0.96905 0.9717
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seemed to gain a huge increase in validation AUC compared to any of the ViT-based models.

The best validation AUC score is 0.9945 for ResNet-50.

Table 3 shows the results of the pre-trained ViT-based models and the ResNet50 on the

PCam test set after being pre-trained on the BACH-dataset. The results indicate a smallish

boost of performance depending on the size of the model. Smaller models belonging to

the Ti/16 -family actually suffer a performance loss compared to the conventional transfer

learning method, but we do see a boost in performance for the other models, especially for

the baseline ResNet50. The best AUC score is 0.97315 for the ViT B/16 model indicating a

small increase of performance in classification.
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7 Discussion

The previous chapter provided the results of this thesis. The results were shortly described,

and in this chapter we present discussion about the results and its possible limitations.

Large scale datasets have been said to be required for obtaining desirable results with the

Transformer architecture (Dosovitskiy et al. 2021). However, the availability of images and

annotations can be quite limited in the field of medical image analysis.

In regards to our second research question, we show that Vision Transformer models, which

we pre-trained on domain-specific datasets achieve better performance, than the ViT mod-

els, which are just fine-tuned for a task-specific classification for most variations of the ViT

models. The interesting observation we made from the results in the section 6.2, is that the

size of the BACH dataset, which we used for domain-based pre-training was only 359 train-

ing samples compared to the PCam dataset, where fine-tuning was performed with 187021

training samples. This demonstrates the possible effectiveness of utilizing domain associated

pre-training for more accurate results even without needing large amounts of data, which has

also been noted by Gheflati and Rivaz 2021 for ViTs and by Romero et al. 2019; R. Zhang et

al. 2022 for CNNs. From this we could also even say that if we had potentially used a larger

dataset for the domain-based pre-training, the results could have been even better, since as

mentione, Transformers need large amount of pre-training, but in this case we demonstrated

that even with a small amount of pre-training data, we can already achieve a increase in both

validation and test AUC.

Some observations on why the Ti/16-family models performed worse after being domain-

base pre-trained, which could be considered as their lack of parameters, which could trans-

late into retaining less diverse information between two different histopathological datasets.

Meanwhile, ResNet-50 had achieved the best validation AUC for domain-base pre-training,

but on the test AUC it only performed better than the Ti/16-family models and the S/32. This

could be because since CNNs are more focused in local variations in images and since the

test set could contain different samples than the training set, thus the CNN might encounter

difficulties understanding the unseen data. ViTs on the other hand, are able to extract more
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global information from images, which shows a steady performance for the ViT-based mod-

els. This answers our first research question, as four of the six of our implemented ViT mod-

els achieve better results than the ResNet-50 CNN on the PCam breast cancer classification

test dataset. Transformer-based models outperforming the conventionally used CNNs has

also been noted by numerous other studies (Chen, Li, et al. 2021; Gheflati and Rivaz 2021;

Dai, Gao, and Liu 2021) in their respective datasets. Our best model B/16 also achieves

comparable performance in terms of test AUC to the the current state-of-the-art result on the

PCam dataset by Graham, Epstein, and Rajpoot 2020.

Another important observation in the results is that different ViT architectures are actually

very close, in terms of both test and validation AUC for every ViT-model except the S/16 and

B/16. Same kind of results were also noted by Gheflati and Rivaz 2021 for their selection of

models. The similarities between the results in our ViT-based models shows that models with

smaller patch size works better in regards to model size (i.e S/16 vs S/32), which has been

noted in previous studies also (Steiner et al. 2021; Dai, Gao, and Liu 2021). Therefore, we

could argue by our results that, if we should choose one best architecture for this particular

classification task, then we should choose S/16, a small ViT architecture which achieved the

second best performance in terms of AUC in our results, but in terms of its computational

efficiency e.g. model parameter count, it is by far more convenient than the B/16.

The possible reasons why our implemented ViT-based models performed well on these types

of breast cancer datasets might be that, unlike in natural images such as the ImageNet dataset,

the relations and dependencies between the spatial information between the image patches

is more connected in these types of histopathological datasets.

These findings show that ViT-based models can have great performance in the area of histopatho-

logical image classification due to their attention mechanism, but there remains a need for

more implementations with ViT for breast cancer classification. ViTs achieve satisfactory

and even state-of-the-art results in a lot of computer vision tasks, but due to being a recent

discovery, overall more work is also needed with ViTs in the area of histopathological im-

age classification and the exploration of the effects of domain-based pre-training (Chen, Li,

et al. 2021).
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8 Conclusion

Vision Transformers are slowly becoming the new rising trend in computer vision due to

its outstanding performance and growing potential in utilizing self-attention mechanisms.

CNNs have for long been dominant in the field of medical image analysis but, they are

mostly limited at focusing on local variations in image patterns, in the field of medicine even

an imprecise classification result might jeopardize lives. The introduction of the attention

mechanism from the Transformer focuses on the global information of the image through

the attention module . ViTs quickly achieved numerous state-of-the-art results in many com-

puter vision tasks having surpassed the CNNs. The real potential of ViTs for medical image

analysis is still yet to be fully discovered.

The main goals of this thesis was to evaluate different ViT architectures based on the recom-

mended models and training strategy by Steiner et al. 2021 for breast cancer classification

on the PCam-dataset. We compared our results to a conventionally used CNN architecture

ResNet-50 in order to see how the ViT-based models perform. We also aimed to demonstrate

whether the use of domain-based pre-training on the BACH-dataset could provide an increase

in the classification performance. Our implemented ViT models obtained better results than

the CNN-baseline in breast cancer classification on the PCam-dataset, while also having less

model parameters. The use of domain-based pre-training showed an improvement in the

results for every model except the Ti/16-family models.

36



Bibliography

Aneja, Sandhya, Nagender Aneja, Pg Emeroylariffion Abas, and Abdul Ghani Naim. 2021.

“Transfer learning for cancer diagnosis in histopathological images”. arXiv preprint arXiv:2112.15523.

Aresta, Guilherme, Teresa Araújo, Scotty Kwok, Sai Saketh Chennamsetty, Mohammed

Safwan, Varghese Alex, Bahram Marami, Marcel Prastawa, Monica Chan, Michael Dono-

van, et al. 2019. “Bach: Grand challenge on breast cancer histology images”. Medical image

analysis 56:122–139.

Ba, Jimmy Lei, Jamie Ryan Kiros, and Geoffrey E Hinton. 2016. “Layer normalization”.

arXiv preprint arXiv:1607.06450.

Bayramoglu, Neslihan, Juho Kannala, and Janne Heikkilä. 2016. “Deep learning for magni-

fication independent breast cancer histopathology image classification”. In 2016 23rd Inter-

national conference on pattern recognition (ICPR), 2440–2445. IEEE.

Bengio, Yoshua. 2012. “Practical recommendations for gradient-based training of deep ar-

chitectures”. In Neural networks: Tricks of the trade, 437–478. Springer.

Bengio, Yoshua, Aaron Courville, and Pascal Vincent. 2013. “Representation learning: A re-

view and new perspectives”. IEEE transactions on pattern analysis and machine intelligence

35 (8): 1798–1828.

Bevers, Therese B, Benjamin O Anderson, Ermelinda Bonaccio, Sandra Buys, Mary B Daly,

Peter J Dempsey, William B Farrar, Irving Fleming, Judy E Garber, Randall E Harris, et

al. 2009. “Breast cancer screening and diagnosis”. Journal of the National Comprehensive

Cancer Network 7 (10): 1060–1096.

Brown, Tom, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla

Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. 2020.

“Language models are few-shot learners”. Advances in neural information processing sys-

tems 33:1877–1901.

37



Buslaev, Alexander, Vladimir I Iglovikov, Eugene Khvedchenya, Alex Parinov, Mikhail

Druzhinin, and Alexandr A Kalinin. 2020. “Albumentations: fast and flexible image aug-

mentations”. Information 11 (2): 125.

Carion, Nicolas, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov,

and Sergey Zagoruyko. 2020. “End-to-end object detection with transformers”. In European

conference on computer vision, 213–229. Springer.

Chandrasekhar, K, R Pavan, P Bharathi, and KV Triveni. 2019. “HISTOPATHOLOGIC

CANCER DETECTION”. IRJCS:: International Research Journal of Computer Science

6:102–124.

Chen, Haoyuan, Chen Li, Xiaoyan Li, Ge Wang, Weiming Hu, Yixin Li, Wanli Liu, Chang-

hao Sun, Yudong Yao, Yueyang Teng, et al. 2021. “GasHis-Transformer: A Multi-scale Vi-

sual Transformer Approach for Gastric Histopathology Image Classification”. arXiv preprint

arXiv:2104.14528.

Chen, Jieneng, Yongyi Lu, Qihang Yu, Xiangde Luo, Ehsan Adeli, Yan Wang, Le Lu, Alan L

Yuille, and Yuyin Zhou. 2021. “Transunet: Transformers make strong encoders for medical

image segmentation”. arXiv preprint arXiv:2102.04306.

Dai, Yin, Yifan Gao, and Fayu Liu. 2021. “Transmed: Transformers advance multi-modal

medical image classification”. Diagnostics 11 (8): 1384.

Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. “Bert: Pre-

training of deep bidirectional transformers for language understanding”. arXiv preprint arXiv:1810.04805.

Dosovitskiy, Alexey, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,

Thomas Unterthiner, Mostafa Dehghani, et al. 2021. An Image is Worth 16x16 Words: Trans-

formers for Image Recognition at Scale. arXiv: 2010.11929 [cs.CV].

Ehteshami Bejnordi, Babak, Mitko Veta, Johannes P, al, Francisco Beca, Shadi Albarqouni,

Rengul Cetin-Atalay, et al. December 2017. “Diagnostic Assessment of Deep Learning Al-

gorithms for Detection of Lymph Node Metastases in Women With Breast Cancer”. JAMA

318 (): 2199–2210. https://doi.org/10.1001/jama.2017.14585.

38

https://arxiv.org/abs/2010.11929
https://doi.org/10.1001/jama.2017.14585


Fei-Fei, Li, Jia Deng, and Kai Li. 2009. “ImageNet: Constructing a large-scale image database”.

Journal of vision 9 (8): 1037–1037.

Gecer, Baris, Selim Aksoy, Ezgi Mercan, Linda G Shapiro, Donald L Weaver, and Joann G

Elmore. 2018. “Detection and classification of cancer in whole slide breast histopathology

images using deep convolutional networks”. Pattern recognition 84:345–356.

Gheflati, Behnaz, and Hassan Rivaz. 2021. “Vision Transformer for Classification of Breast

Ultrasound Images”. arXiv preprint arXiv:2110.14731.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. 2016. Deep learning. MIT press.

https://www.deeplearningbook.org.

Graham, Simon, David Epstein, and Nasir Rajpoot. 2020. “Dense steerable filter cnns for

exploiting rotational symmetry in histology images”. IEEE Transactions on Medical Imaging

39 (12): 4124–4136.

Gurcan, Metin N, Laura E Boucheron, Ali Can, Anant Madabhushi, Nasir M Rajpoot, and

Bulent Yener. 2009. “Histopathological image analysis: A review”. IEEE reviews in biomed-

ical engineering 2:147–171.

Hamid, Sofia, and Mrigana Walia. 2021. “Convolution Neural Network Based Image Recog-

nition”. International Journal of Science and Research Volume 10 Issue 2.

Han, Changhee, Leonardo Rundo, Kohei Murao, Tomoyuki Noguchi, Yuki Shimahara, Zoltán

Ádám Milacski, Saori Koshino, Evis Sala, Hideki Nakayama, and Shin’ichi Satoh. 2021.

“MADGAN: unsupervised medical anomaly detection GAN using multiple adjacent brain

MRI slice reconstruction”. BMC bioinformatics 22 (2): 1–20.

Hanley, James A, and Barbara J McNeil. 1982. “The meaning and use of the area under a

receiver operating characteristic (ROC) curve.” Radiology 143 (1): 29–36.

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. “Deep residual learn-

ing for image recognition”. In Proceedings of the IEEE conference on computer vision and

pattern recognition, 770–778.

39

https://www.deeplearningbook.org


He, Kelei, Chen Gan, Zhuoyuan Li, Islem Rekik, Zihao Yin, Wen Ji, Yang Gao, Qian Wang,

Junfeng Zhang, and Dinggang Shen. 2022. “Transformers in medical image analysis: A re-

view”. arXiv preprint arXiv:2202.12165.

Khan, Salman, Muzammal Naseer, Munawar Hayat, Syed Waqas Zamir, Fahad Shahbaz

Khan, and Mubarak Shah. 2021. “Transformers in vision: A survey”. arXiv preprint arXiv:2101.01169.

Khuwaja, Gulzar A, and AN Abu-Rezq. 2004. “Bimodal breast cancer classification system”.

Pattern analysis and applications 7 (3): 235–242.

Kingma, Diederik P, and Jimmy Ba. 2014. “Adam: A method for stochastic optimization”.

arXiv preprint arXiv:1412.6980.

Klang, Eyal. 2018. “Deep learning and medical imaging”. Journal of thoracic disease 10 (3):

1325.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton. 2012. “Imagenet classification

with deep convolutional neural networks”. Advances in neural information processing sys-

tems 25:1097–1105.

Kuutti, Sampo, Richard Bowden, Yaochu Jin, Phil Barber, and Saber Fallah. 2020. “A sur-

vey of deep learning applications to autonomous vehicle control”. IEEE Transactions on

Intelligent Transportation Systems 22 (2): 712–733.

Kwong, Timothy, and Samaneh Mazaheri. 2021. “A survey on deep learning approaches for

breast cancer diagnosis”. arXiv preprint arXiv:2109.08853.

Lavecchia, Antonio. 2019. “Deep learning in drug discovery: opportunities, challenges and

future prospects”. Drug discovery today 24 (10): 2017–2032.

LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. 2015. “Deep learning”. nature 521

(7553): 436–444.

LeCun, Yann, Bernhard Boser, John Denker, Donnie Henderson, Richard Howard, Wayne

Hubbard, and Lawrence Jackel. 1989. “Handwritten digit recognition with a back-propagation

network”. Advances in neural information processing systems 2.

40



Li, Qing, Weidong Cai, Xiaogang Wang, Yun Zhou, David Dagan Feng, and Mei Chen.

2014. “Medical image classification with convolutional neural network”. In 2014 13th inter-

national conference on control automation robotics & vision (ICARCV), 844–848. IEEE.

Litjens, Geert, Thijs Kooi, Babak Ehteshami Bejnordi, Arnaud Arindra Adiyoso Setio, Francesco

Ciompi, Mohsen Ghafoorian, Jeroen Awm Van Der Laak, Bram Van Ginneken, and Clara I

Sánchez. 2017. “A survey on deep learning in medical image analysis”. Medical image anal-

ysis 42:60–88.

Liu, Dongyu, Weiwei Cui, Kai Jin, Yuxiao Guo, and Huamin Qu. 2018. “Deeptracker: Visu-

alizing the training process of convolutional neural networks”. ACM Transactions on Intelli-

gent Systems and Technology (TIST) 10 (1): 1–25.

Liu, Yongkai, Guang Yang, Sohrab Afshari Mirak, Melina Hosseiny, Afshin Azadikhah,

Xinran Zhong, Robert E Reiter, Yeejin Lee, Steven S Raman, and Kyunghyun Sung. 2019.

“Automatic prostate zonal segmentation using fully convolutional network with feature pyra-

mid attention”. IEEE Access 7:163626–163632.

Melo, Francisco. 2013. “Area under the ROC Curve”. Encyclopedia of systems biology, 38–

39.

Mridha, Muhammad Firoz, Md Hamid, Muhammad Mostafa Monowar, Ashfia Jannat Keya,

Abu Quwsar Ohi, Md Islam, Jong-Myon Kim, et al. 2021. “A Comprehensive Survey on

Deep-Learning-Based Breast Cancer Diagnosis”. Cancers 13 (23): 6116.

Napel, Sandy, and Sylvia K Plevritis. 2014. “NSCLC radiogenomics: initial Stanford study

of 26 cases”. Cancer Imaging Arch.

National cancer institute. 2022. “The cancer genome atlas program”. Visited on January 20,

2022. https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/

tcga.

Parvaiz, Arshi, Muhammad Anwaar Khalid, Rukhsana Zafar, Huma Ameer, Muhammad Ali,

and Muhammad Moazam Fraz. 2022. “Vision Transformers in Medical Computer Vision–A

Contemplative Retrospection”. arXiv preprint arXiv:2203.15269.

41

https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga


Paszke, Adam, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,

Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019. “Pytorch: An

imperative style, high-performance deep learning library”. Advances in neural information

processing systems 32.

Pati, Pushpak, Guillaume Jaume, Antonio Foncubierta-Rodrıguez, Florinda Feroce, Anna

Maria Anniciello, Giosue Scognamiglio, Nadia Brancati, Maryse Fiche, Estelle Dubruc,

Daniel Riccio, et al. 2022. “Hierarchical graph representations in digital pathology”. Medical

image analysis 75:102264.

Pitkäniemi, Janne, Nea Malila, A Virtanen, Henna Degerlund, Sanna Heikkinen, and Karri

Seppä. 2020. “Syöpä 2018”. Tilastoraportti Suomen syöpätilanteesta. Suomen Syöpäyhdis-

tyksen julkaisuja nro 93.

PyTorch. 2022. “BCELoss- loss function”. Visited on May 14, 2022. https://pytorch.org/

docs/stable/generated/torch.nn.BCELoss.html.

Rawat, Waseem, and Zenghui Wang. 2017. “Deep convolutional neural networks for image

classification: A comprehensive review”. Neural computation 29 (9): 2352–2449.

Richie, Rodney C, and John O Swanson. 2003. “Breast cancer: a review of the literature”.

JOURNAL OF INSURANCE MEDICINE-NEW YORK THEN DENVER– 35 (2): 85–101.

Romero, Miguel, Yannet Interian, Timothy Solberg, and Gilmer Valdes. 2019. “Training

deep learning models with small datasets”.

Sarker, Iqbal H. 2021. “Deep learning: a comprehensive overview on techniques, taxonomy,

applications and research directions”. SN Computer Science 2 (6): 1–20.

Schroff, Florian, Dmitry Kalenichenko, and James Philbin. 2015. “Facenet: A unified em-

bedding for face recognition and clustering”. In Proceedings of the IEEE conference on

computer vision and pattern recognition, 815–823.

Shanmugam, Divya, Davis Blalock, Guha Balakrishnan, and John Guttag. 2021. “Better ag-

gregation in test-time augmentation”. In Proceedings of the IEEE/CVF International Con-

ference on Computer Vision, 1214–1223.

42

https://pytorch.org/docs/stable/generated/torch.nn.BCELoss.html
https://pytorch.org/docs/stable/generated/torch.nn.BCELoss.html


Shao, Zhuchen, Hao Bian, Yang Chen, Yifeng Wang, Jian Zhang, Xiangyang Ji, and Yong-

bing Zhang. 2021. “TransMIL: Transformer based Correlated Multiple Instance Learning for

Whole Slide Image Classication”. arXiv preprint arXiv:2106.00908.

Sharma, Ganesh N, Rahul Dave, Jyotsana Sanadya, Piush Sharma, and KK3255438 Sharma.

2010. “Various types and management of breast cancer: an overview”. Journal of advanced

pharmaceutical technology & research 1 (2): 109.

Shorten, Connor, and Taghi M Khoshgoftaar. 2019. “A survey on image data augmentation

for deep learning”. Journal of big data 6 (1): 1–48.

Simonyan, Karen, and Andrew Zisserman. 2014. “Very deep convolutional networks for

large-scale image recognition”. arXiv preprint arXiv:1409.1556.

Smith, Robert A, Vilma Cokkinides, and Otis Webb Brawley. 2008. “Cancer screening in

the United States, 2008: a review of current American Cancer Society guidelines and cancer

screening issues”. CA: A Cancer Journal for Clinicians 58 (3): 161–179.

Spanhol, Fabio Alexandre, Luiz S Oliveira, Caroline Petitjean, and Laurent Heutte. 2016.

“Breast cancer histopathological image classification using convolutional neural networks”.

In 2016 international joint conference on neural networks (IJCNN), 2560–2567. IEEE.

Srinivas, Aravind, Tsung-Yi Lin, Niki Parmar, Jonathon Shlens, Pieter Abbeel, and Ashish

Vaswani. 2021. “Bottleneck transformers for visual recognition”. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, 16519–16529.

Stegmüller, Thomas, Antoine Spahr, Behzad Bozorgtabar, and Jean-Philippe Thiran. 2022.

“ScoreNet: Learning Non-Uniform Attention and Augmentation for Transformer-Based Histopatho-

logical Image Classification”. arXiv preprint arXiv:2202.07570.

Steiner, Andreas, Alexander Kolesnikov, Xiaohua Zhai, Ross Wightman, Jakob Uszkoreit,

and Lucas Beyer. 2021. “How to train your vit? data, augmentation, and regularization in

vision transformers”. arXiv preprint arXiv:2106.10270.

43



Sung, Hyuna, Jacques Ferlay, Rebecca L Siegel, Mathieu Laversanne, Isabelle Soerjomataram,

Ahmedin Jemal, and Freddie Bray. 2021. “Global cancer statistics 2020: GLOBOCAN esti-

mates of incidence and mortality worldwide for 36 cancers in 185 countries”. CA: a cancer

journal for clinicians 71 (3): 209–249.

Szegedy, Christian, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,

Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 2015. “Going deeper with

convolutions”. In Proceedings of the IEEE conference on computer vision and pattern recog-

nition, 1–9.

Szegedy, Christian, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wo-

jna. 2015. “Rethinking the inception architecture for computer vision. 2015”. arXiv preprint

arXiv:1512.00567.

Tan, Mingxing, and Quoc Le. 2019. “Efficientnet: Rethinking model scaling for convo-

lutional neural networks”. In International conference on machine learning, 6105–6114.

PMLR.

Tay, Yi, Mostafa Dehghani, Dara Bahri, and Donald Metzler. 2020. “Efficient transformers:

A survey”. arXiv preprint arXiv:2009.06732.

Touvron, Hugo, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles,

and Hervé Jégou. 2021. “Training data-efficient image transformers & distillation through

attention”. In International Conference on Machine Learning, 10347–10357. PMLR.

Tuli, Shikhar, Ishita Dasgupta, Erin Grant, and Thomas L Griffiths. 2021. “Are Convolu-

tional Neural Networks or Transformers more like human vision?” arXiv preprint arXiv:2105.07197.

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,

Łukasz Kaiser, and Illia Polosukhin. 2017. “Attention is all you need”. In Advances in neural

information processing systems, 5998–6008.

Veeling, Bastiaan S., Jasper Linmans, Jim Winkens, Taco Cohen, and Max Welling. 2018.

Rotation Equivariant CNNs for Digital Pathology. arXiv: 1806.03962 [cs.CV].

Waks, Adrienne G, and Eric P Winer. 2019. “Breast cancer treatment: a review”. Jama 321

(3): 288–300.

44

https://arxiv.org/abs/1806.03962


Wang, Dayong, Aditya Khosla, Rishab Gargeya, Humayun Irshad, and Andrew H Beck.

2016. “Deep learning for identifying metastatic breast cancer”. arXiv preprint arXiv:1606.05718.

Wang, Lulu. 2017. “Early diagnosis of breast cancer”. Sensors 17 (7): 1572.

Wang, Shuai, and Zhendong Su. 2019. “Metamorphic testing for object detection systems”.

arXiv preprint arXiv:1912.12162.

Wang, Sinong, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. 2020. “Linformer:

Self-attention with linear complexity”. arXiv preprint arXiv:2006.04768.

Weiss, Karl, Taghi M Khoshgoftaar, and DingDing Wang. 2016. “A survey of transfer learn-

ing”. Journal of Big data 3 (1): 1–40.

Wightman, Ross. 2019. PyTorch Image Models. https : / /github.com/rwightman/pytorch-

image-models. https://doi.org/10.5281/zenodo.4414861.

Wu, Xiongwei, Doyen Sahoo, and Steven CH Hoi. 2020. “Recent advances in deep learning

for object detection”. Neurocomputing 396:39–64.

Xie, Juanying, Ran Liu, Joseph Luttrell IV, and Chaoyang Zhang. 2019. “Deep learning

based analysis of histopathological images of breast cancer”. Frontiers in genetics 10:80.

Xie, Saining, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. 2017. “Aggregated

residual transformations for deep neural networks”. In Proceedings of the IEEE conference

on computer vision and pattern recognition, 1492–1500.

Xu, Jingjing, Xu Sun, Zhiyuan Zhang, Guangxiang Zhao, and Junyang Lin. 2019. “Under-

standing and improving layer normalization”. Advances in Neural Information Processing

Systems 32.

Yang, Fuzhi, Huan Yang, Jianlong Fu, Hongtao Lu, and Baining Guo. 2020. “Learning tex-

ture transformer network for image super-resolution”. In Proceedings of the IEEE/CVF con-

ference on computer vision and pattern recognition, 5791–5800.

Zeng, Yanhong, Jianlong Fu, and Hongyang Chao. 2020. “Learning joint spatial-temporal

transformations for video inpainting”. In European Conference on Computer Vision, 528–

543. Springer.

45

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models
https://doi.org/10.5281/zenodo.4414861


Zhang, Ryan, Jiadai Zhu, Stephen Yang, Mahdi S. Hosseini, Angelo Genovese, Lina Chen,

Corwyn Rowsell, Savvas Damaskinos, Sonal Varma, and Konstantinos N. Plataniotis. 2022.

HistoKT: Cross Knowledge Transfer in Computational Pathology. arXiv: 2201.11246 [eess.IV].

Zhang, Yu, James Qin, Daniel S Park, Wei Han, Chung-Cheng Chiu, Ruoming Pang, Quoc V

Le, and Yonghui Wu. 2020. “Pushing the limits of semi-supervised learning for automatic

speech recognition”. arXiv preprint arXiv:2010.10504.

Zheng, Stephan, Yang Song, Thomas Leung, and Ian Goodfellow. 2016. “Improving the ro-

bustness of deep neural networks via stability training”. In Proceedings of the ieee conference

on computer vision and pattern recognition, 4480–4488.

46

https://arxiv.org/abs/2201.11246


Appendices

A Data augmentations used for PCam training set

d a t a _ a u g m e n t a t i o n s = a l b u m e n t a t i o n s . Compose ( [

a l b u m e n t a t i o n s . R e s i z e ( 2 2 4 , 2 2 4 ) ,

a l b u m e n t a t i o n s . RandomRotate90 ( p = 0 . 5 ) ,

a l b u m e n t a t i o n s . T r a n s p o s e ( p = 0 . 5 ) ,

a l b u m e n t a t i o n s . F l i p ( p = 0 . 5 ) ,

a l b u m e n t a t i o n s . OneOf

( [

a l b u m e n t a t i o n s .CLAHE( c l i p _ l i m i t = 2 ) ,

a l b u m e n t a t i o n s . Sharpen ( ) ,

a l b u m e n t a t i o n s . Emboss ( ) ,

a l b u m e n t a t i o n s . R a n d o m B r i g h t n e s s C o n t r a s t ( ) ,

a l b u m e n t a t i o n s . ImageCompress ion ( ) ,

a l b u m e n t a t i o n s . B lu r ( ) ,

a l b u m e n t a t i o n s . GaussNoise ( )

] , p = 0 . 5 ) ,

a l b u m e n t a t i o n s . H u e S a t u r a t i o n V a l u e ( p = 0 . 5 ) ,

a l b u m e n t a t i o n s . S h i f t S c a l e R o t a t e ( s h i f t _ l i m i t = 0 . 1 5 , s c a l e _ l i m i t = 0 . 1 5 ,

r o t a t e _ l i m i t =45 , p = 0 . 5 ) ,

a l b u m e n t a t i o n s . Normal i ze ( ) ,

ToTensorV2 ( p = 1 . 0 )

] )
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