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ABSTRACT

Niemelä, Marko
Internal Cluster Validation for Data with Missing Values
Jyväskylä: University of Jyväskylä, 2022, 54 p. (+included articles)
(JYU Dissertations
ISSN 2489-9003; 536)
ISBN 978-951-39-9321-4 (PDF)

Clustering is an unsupervised data mining method used to label data into dis-
tinct groups. It has numerous applications in various fields, from bioinformatics
to object recognition and categorization. The prototype-based clustering meth-
ods summarize information in form of cluster centroids that are often called as
prototypes. Cluster validation methodology provides a means of assessing the
goodness of a clustering solution and identify the optimal number of clusters in
the data. Internal cluster validation methods evaluate the quality of clustering
by assessing the cluster compactness and separability on the same data set that is
input in the clustering phase. A common and sometimes complex issue for both
data clustering and cluster validation is the presence of missing values in data
that can occur for many different causes, such as non-respondents in question-
naire studies or device operation failures.

This dissertation focuses on extending cluster validation models for treat-
ing missing values on data. Since these models are not based on the values of the
data vectors but on the computed distances between these vectors, missing value
treatment is covered by direct distance estimation between data vectors. The the-
sis presents a toolbox that is used to demonstrate the usability of the developed
methods for research and development purposes. In addition, the background
theory of each element of the toolbox and use case examples are proposed. A real-
world application is provided where cluster validation is utilized for categorizing
learning game players into distinct profiles using a gameplay data in which a part
of data values are missing. As the main outcome of the thesis, the missing value
handling methods for data preprocessing, clustering, and cluster validation are
presented. The functionality and validity of the methods are demonstrated using
several numerical experiments and the results confirms the scalability of the tech-
niques and their capability of reliably solving knowledge discovery problems.

Keywords: knowledge discovery, data mining, log data, data preprocessing, miss-
ing values, distance computation, distance estimation, clustering, pro-
type-based clustering, number of clusters, cluster validation, internal
cluster validation, cluster validation indices
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Niemelä, Marko
Puutteellisen datan klusteroinnin validointi
Jyväskylä: University of Jyväskylä, 2022, 54 s. (+artikkelit)
(JYU Dissertations
ISSN 2489-9003; 536)
ISBN 978-951-39-9321-4 (PDF)

Klusterointi on ohjaamattoman tiedonlouhinnan menetelmä, jota käytetään da-
tan ryhmittelyyn toisistaan poikkeaviin ryhmiin. Klusteroinnilla on lukematon
määrä käytännön sovelluksia aina bioinformatiikasta objektien tunnistamiseen
ja kategorisointiin. Prototyyppipohjaiset klusterimenetelmät muodostavat anne-
tusta datasta ryhmiä ja kuvaavat tietoa hyödyntäen klusterikeskittymiä, joita kut-
sutaan myös klusteriprototyypeiksi. Klusterointituloksen sisäistä validointia käy-
tetään mittaamaan klusterirakenteen hyvyyttä hyödyntäen ainoastaan klusterei-
den muodostamisessa käytettyä dataa. Tavoitteena on pyrkiä löytämään opti-
maalinen lukumäärä toisistaan erottuvia, tiiviitä joukkoja eli klustereita, jotka
kuvaavat dataa parhaiten. Yleinen ongelma klusteroinnissa ja klusterointitulok-
sen validoinnissa ovat puuttuvat arvot. On olemassa useita syitä, joiden vuoksi
analysoitavassa datassa esiintyy puuttuvia arvoja. Hyviä esimerkkejä ovat vas-
taamattomat kysymykset kyselylomakkeissa tai hetkelliset ongelmat laitteistois-
sa mittausprosessien aikana.

Tässä väitöskirjassa keskitytään laajentamaan klusterivalidoinnin malleja
käytettäväksi puuttuvalle datalle. Mallien toiminta perustuu datavektoreiden vä-
lillä laskettuihin etäisyyksiin ja tämän vuoksi puuttuvien arvojen käsittely suo-
ritetaan etäisyyksien estimoinnin yhteydessä. Väitöskirjatyössä esitetään avoin
ohjelmistokokonaisuus, joka tukee kehitettyjen menetelmien käyttöä tutkimus-
ja kehitystoiminnassa. Lisäksi menetelmät kuvataan teoriatasolla ja niiden pe-
ruskäyttöä varten tarjotaan useita esimerkkejä. Työssä kuvataan reaalimaailman
sovellus, jossa klusterointivalidointia on hyödynnetty ryhmittelemään oppimis-
pelin pelaajia eri profiileihin pohjautuen puuttuvia arvoja sisältävään peliloki-
dataan. Väitöskirjatyön päätavoitteena oli esittää ja kuvata numeerisilla kokeilla
puuttuvien arvojen käsittelymenetelmiä datan esikäsittelyssä, klusteroinnissa ja
klusterivalidoinnissa. Tulokset vahvistavat menetelmien skaalautuvuutta kohti
luotettavampaa tietämyksen muodostamisprosessia.

Avainsanat: tietämyksen muodostaminen, tiedon louhinta, lokidata, esiproses-
sointi, puuttuvat arvot, etäisyyksien laskenta, etäisyyksien estimoin-
ti, klusterointi, prototyyppipohjainen klusterointi, klustereiden lu-
kumäärä, klusteroinnin validointi, klusteroinnin sisäinen validointi,
klusterivalidointi-indeksit
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1 INTRODUCTION

Caused by multiple types of powerful sensors, advanced digitalization techniques,
and significantly increased storage capabilities, big data in the sense of the size of
data sets, high dimensionality data, speed of data accumulation, heterogeneous
data format, or data quality create one of the significant challenges facing ma-
chine learning today [54]. It was estimated that the digital universe would con-
sume approximately 44 billion terabytes (zettabytes) at the end of 2021 [35]. Most
of the stored data is in electronic media, which have high potential for developing
automatic data analysis and retrieval techniques. In addition to increased data
volumes, the data availability in various forms (e.g., text, image, and video) has
also increased. Nowadays, mobile phones with video cameras and internet con-
nections have spurred a massive amount of internet traffic, images, and videos.
Millions of low-cost sensors measure a broad range of information from the en-
vironment and transmit data regularly. There are many domains to obtain data,
e.g., telecommunication, internet search, social network, finance, health care, etc.

In general, the databases are increasing in two ways: the number of obser-
vations in the database and the number of variables in each observation. Manual
data analysis is becoming slow, expensive, and utterly impractical in many do-
mains as data volumes grow dramatically. The knowledge discovery in databases
(KDD) process consists of mapping low-level data, which is typically too volumi-
nous to understand and digest easily, into other forms that might be more com-
pact, abstract, or useful [29]. The KDD process focuses on the overall process of
knowledge discovery from data sets, including how the data is stored and ac-
cessed, how methods scale to enormous volumes of data and still run efficiently,
how missing values and noisy data are handled, how resulting models can be
interpreted as useful or interesting knowledge, and how human-machine inter-
action can be supported.

The KDD process is illustrated in Figure 1. The process starts in the form of
understanding the application domain and identifying the potential goals. The
target data is selected by focusing on a subset of variables on which discovery is
performed. The data preprocessing is applied, which possibly includes removing
noise, scaling variables to the same range, and deciding strategies for handling
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FIGURE 1 Steps of the KDD process

missing values. In the data transformation step, valuable features are selected
with appropriate methods (e.g., using feature selection [8]), or data dimension
is reduced via a dimension reduction technique [46, 63]. Then, a particular data
mining model is selected and utilized, e.g., classification, regression, or clustering
model. The step includes tuning the essential parameters of the chosen model.
After that, the results will be interpreted or evaluated. There exists a possibility
to return previous actions for further iteration(s). Finally, the obtained knowledge
is discovered and checked against conflicts with previous beliefs.

Clustering is an essential component of various data analysis or machine
learning applications (e.g., regression, prediction, and data mining [37]). The pri-
mary purposes of clustering are to get data insights, generate hypotheses, detect
anomalies, identify salient features, identify the degree of similarity among data
vectors, and organize and summarize data through cluster prototypes [43]. For
instance, collecting and labeling a large set of observations can be surprisingly
costly. One might wish to train large amounts of unlabeled data, and then use
supervision to label the groupings found. Further, unsupervised methods can be
used for finding features that will be useful for categorization. This procedure
can be called smart preprocessing or smart feature extraction [38].

Clustering has numerous amount of applications from diverse fields. For
instance, applications can be related to bioinformatics, character recognition, in-
formation retrieval, image clustering, object recognition, learning analytics, etc.
In [91], the application of clustering algorithms in bioinformatics was described.
The central assumption was that functionally similar genes or proteins usually
share similar patterns or primary sequence structures. In character recognition
[15], clustering was used to identify lexemes in handwriting text for writer-inde-
pendent handwriting recognition. Information retrieval is concerned with the
automatic storage and retrieval of documents [74]. For instance, libraries can
use information retrieval systems to provide access to books, journals, and other
documents. A widespread clustering application is image clustering [33, 39]. Im-
age clustering of its colors is often referred to as image signal quantization or
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image compression, because it leads to a reduced number of colors and image
data. Image quantization can be used as a preprocessing method, e.g., in image
database mining or content-based image retrieval. Reduced size and simplified
color structure make knowledge mining and object searching from large image
databases easier as the most important information remains in the quantized im-
age. In [23], the use of clustering to group views of 3D objects for object recog-
nition was described. The system employed a viewpoint-dependent approach to
the object recognition problem. Each object to be recognized was presented in an
image library consisting of images of that object.

Learning analytics is defined as "the measurement, collection, analysis, and
reporting of data about learners and their contexts, for purposes of understand-
ing and optimizing learning and the environments in which it occurs" [16]. The
common data sources are learning management systems, questionnaires, student
information systems, and learning games. Clustering methods are commonly
used in learning analytics. For example, in [90], the learners were linked via clus-
tering for those with different individual and social behavior patterns. The results
consisted of different cluster profiles characterizing learners who were personally
participative but less communicative, collaboratively participating but shallow
learners, and less participative poor learners. In [55], the clustering model was
constructed to give valuable information on algebra-solving skills components.
In [6], multiple clustering methods at various stages of data analysis were uti-
lized to identify different patterns of the development of programming behavior
in an undergraduate programming course. In [89], clustering was used to analyze
the problem-solving patterns of learners for open-ended engineering tasks. The
features related to learners’ actions were extracted from hand-coded video data.
The results revealed that designed engineering practices were closely related to
learners’ experience level.

In PI, the learning analytics application for analyzing learners in a learning
game called GraphoLearn was proposed. The learners’ selections of letter-sound
tasks were gathered from 1632 players who were 6.5–8.75 years old. Clustering
and cluster validation were used to identify distinct player profiles. Validation
indices identified six different learner profiles for players who used lowercase
letters (1275 players). The erroneous selections and calculated statistics offered
valuable information about the cluster profiles. This information can be used, for
example, as support for tracking children with certain types of bottlenecks com-
promising reading skills and tailoring the learning environment for individual
needs.

When preparing data for modeling, several problems need to be addressed.
One of these is missing values in data. Many, if not most, modeling tools have
difficulty digesting missing values. For instance, standard clustering methods
like K-means clustering, can not be used for cluster analysis if missing values are
not ignored or imputed. In most situations, simple techniques (e.g., overall mean
imputation) for handling missing data lead to inefficient analyses and, more se-
riously, severely biased data models. During past decades, several preprocessing
methods have been developed for data sets with missing values.



2 DATA PREPARATION

In [72], it was suggested that more than half of the total time required to complete
a data mining project should be spent on data preparation since it is one of the
most vital parts of the project’s success. Selected and preprocessed data signifi-
cantly impacts the final models and, therefore, the quality of the knowledge. At
the same time, the modified data can either facilitate or complicate further the
KDD process. Hence, the data preparation must be done with care. The main
problems with real-world data are noise, missing values, and inconsistent data
due to mechanical or human errors. High-dimensional irrelevant data is also one
of the challenges.

Data characterization describes data in a meaningful way. In [26], data were
represented using: the number of classes, observations, attributes, and features.
In addition, parameters of location and dispersion can be measured to describe
the data set. Location parameters include measurements such as minimum, max-
imum, arithmetic mean, and median. Dispersion parameters include the range
and standard deviation of a single feature. The parameters which can deal with
extreme values or outliers are called robust parameters.

Data visualization before preprocessing can help understand data to iden-
tify missing values and outliers, and identify relationships among attributes. Fur-
ther, visualization can help in finding appropriate preprocessing methods for
data.

Data cleaning, data reduction, data transformation, and data integration are
common preprocessing methods in data mining [72]. Data cleaning consists of
imputing of missing values, smoothing noisy data with random errors, removing
outliers, and resolving inconsistent data. Data reduction aims to reduce the vol-
ume of data and produce similar analytical results by removing repeated observa-
tions, applying dimension reduction techniques to remove irrelevant and redun-
dant attributes, or discretizing continuous valued data. Data compression uses
encoding mechanisms to obtain a reduced representation of the original data.
Through data transformation, text or graphical data can be converted a format
that can be further processed. In addition, the transformation includes scaling or
normalization of numerical data. The method is essential in distance-based ap-
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plications since distance measurements taken by large-scale attributes outweigh
small-scale attributes. Data generalization is one part of transformation. The
goal is to replace data with higher lever concepts to aggregate the KDD process
by combining multiple attributes with the same categories to one attribute with
that category. Data integration combines data from several sources and corrects
differences in coding schemes. Attributes representing a given concept may have
different names in different databases. Therefore, extra care must be taken to
avoid inconsistencies and redundancies of data.

2.1 Data scaling

Data scaling or feature scaling is utilized during the data preprocessing step. A
method is used to normalize the range of independent variables of data. Hence,
the weights of different variables are equalized after scaling process. The scal-
ing is necessary for distance-based applications because if one of the variables
dominates, i.e., has a broad range of values, the distance is mainly governed by
this particular variable. Typically z-score or min-max normalization is used [66].
The z-score transforms variables to zero mean and unit variance, which can be
realized as follows:

x′ = x − μ

σ
=

1
σ

x − μ

σ
= αx − β, (1)

where x is the original variable, x′ is the scaled variable, μ is the sample mean, and
σ is the standard deviation. One can see that this is a linear transformation of the
variable. By determining the coefficients differently, other approaches, such as
min-max scaling to a specific range, are obtained. The selection of the target range
depends on the nature of the data. The most common choices are [−1, 1] and [0, 1].
To rescale a range between an arbitrary set of values [a, b], a < b, a, b ∈ R1, the
formula read as:

x′ = a +
(x − min(x))(b − a)

max(x)− min(x)
=

(b − a)
max(x)− min(x)

x +
a max(x)− b min(x)

max(x)− min(x)
. (2)

Hence, if we select the range of [0, 1] the coefficients becomes:

α =
1

max(x)− min(x)
and β = − min(x)

max(x)− min(x)
.

The potential problem in variable scaling methods is the existence of outliers.
For instance, in the range scaling approach, one outlier forces the rest of the data
to the other end of the range. It is also good to notice that, for the scaled data
set, binary variables contribute to the distance computation with the maximum
influence.
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2.2 Missing values

The performance of clustering for incomplete data depends on the types of miss-
ing values in a data set. The missing data refers to the relationship between
missigness and the underlying variable values in the data set [57]. There are
three types of missing data approaches. The missing values are called missing
completely at random (MCAR) if variable being missing is independent both
observed and unobserved variables. The missing values are denoted as miss-
ing at random (MAR) when the missingness is not random, but where miss-
ingness can be accounted by observed variables. If the missingness depends on
the missing values in the data set, the approach is called not missing at random
(NMAR). Even though, MCAR represents the general case of missingness, MAR
and MCAR are standard approaches in practice. For example, on questionnaires
the question for socioeconomic status often remains unanswered by young peo-
ple; thus, the socioeconomic status remains unanswered depending on age, and
the missing values in that feature are MAR. Further, high-income earners do not
often answer the question. Hence, missing values in the feature socioeconomic
status are NMAR because values depend on themselves. In many cases, missing
data approach is not known beforehand, but it can be validated with statistical
testing [58].

2.2.1 Imputation

In statistics, the approach to filling missing values with substituted values is
called imputation. When complete observation is substituted, it is known as unit
imputation, whereas substituting a variable of an observation is known as item
imputation. The missing values can introduce a high amount of bias, making
analysis of data more challenging and creating reduction in efficiency. Impu-
tation solves the problem related to listwise deletion by replacing missing data
based on the estimated value of other available information. There are several
methods for imputing missing values with machine learning methods [57]. Con-
ditional mean imputation uses estimators to predict the incomplete observations
in the data set. The method is optimal in terms of the mean squarred errors of
the imputed values but suffers biased derived statistics of data. For example, the
variance of data set is not consistently estimated. Randomly drawn imputation
substitutes values from different underlying distributions. However, the method
has too much variability in estimates of any single value to be sufficiently accu-
rate. Multiple imputations do not create a single but several or multiple imputed
data sets in which different imputations are based on a random draw from differ-
ent estimated underlying distributions. Each imputed data set can be analyzed
using standard analytical techniques. The estimates can be averaged to get a
pooled estimate of the associations. The mean of standard errors is a measure
of uncertainly in the estimated underlying distributions of the observations with
missing values. However, repeating the analysis several times can be impractical
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as training and analyzing a sophisticated model usually tends to be computation-
ally intensive.

A low-rank matrix completion method is an alternative way to impute miss-
ing values of a data set. The low rank matrix has a decreased number of freedom
and, therefore, it makes the estimation problem of missing values practical to
solve. The rank minimization can be addressed by using convex relaxation tech-
niques utilizing the nuclear norm. The algorithm substitutes missing values it-
eratively until the final convergence is reached, corresponding approximately to
the best estimates of the missing values [62, 61].

In [87] an extension of the complete case k-nearest neighbors imputation
(CCkNNI) method called incomplete case k-nearest neighbors imputation (ICk-
NNI) was presented. As the name suggests, the CCkNNI method imputes miss-
ing values from k-nearest’s complete observations. This restriction has severe
problems, especially when the amount of missing values is high or when there are
few or no complete observations. An alternative version (the ICkNNI method)
overcomes the restriction in presenting the case library, allowing some incom-
plete observations as alternatives for imputation. The case library consists of the
set of observations that depend on the observation value being imputed. The eli-
gible nearest neighbors are those which have the same subset of observed values
as imputed observation and the imputed value is available in the subset. The
missing value is imputed by the sample mean if there are insufficient neighbors.

All imputation mechanisms produce some bias to the estimates of substi-
tuted values. However, if the fraction of missing values is sufficiently small, it is
reasonable to select some imputation methods for filling missing values and pro-
ceed with further processing. Errors related to inaccurate imputation may be con-
sidered insignificant to the results through the whole KDD processing pipeline.
With a larger proportion of missing values, errors caused by the imputation can
be high. For example, in [28] an analysis on the effect of imputation on classifica-
tion error for discrete data was proposed.

2.2.2 Expectation maximization

The expectation maximization (EM) is an iterative relocation algorithm, which es-
timates the unknown parameters of statistical models when the models involve
latent variables in addition to known observations and unknown parameters.
The method is covered with a range of different distributions and used in cases
where unknown parameters cannot be solved directly. The missing values occur
in the data set or the model assumes the existence of unobserved latent variables.
For example, a mixture density model can be described by assuming each ob-
servation has corresponding latent variable that specifies the mixtute component
to which each observation belongs to [20, 5]. Typically, solving the equation for
parameters of distribution requires the values of latent variables and vice versa.
One can simply initialize one of the two sets of unknowns with arbitrary values
to get the first estimate of the second set and use these estimates to get better es-
timates for the first set. One can keep alternating between these two steps until
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the resulting values converge into fixed numbers. The EM method can identify
local optimums, but the global optimum is not guaranteed. The EM alternates
between two steps: expectation and maximization. The expectation step creates
the function of expected values for the latent variables using the current estimates
for the parameters. The maximization computes parameters that maximizes the
likelihood function found during the expectation step. The new estimates are
then used to determine the distribution of the latent variables in the next itera-
tion. The EM method is commonly used in the treatment of missing data (see,
e.g., [25, 81, 70, 68]) but also in learning Gaussian mixture models for labeling
data to different clusters (see, e.g., [20, 19, 5, 4]).

2.2.3 Distance computation strategies

In most pattern recognition applications, distances between data points is the
main interest. The commonly used distance measure is the Euclidean distance.
For all complete elements of both data vectors, this is a straightforward arithmetic
to compute. But if one or more of the elements are missing, the distance between
the vectors is not obvious.

Distance-based computation methods (e.g., traditional K-means clustering)
can be adapted for strategies, which can handle missing values. The partial dis-
tance strategy (PDS) is already used in the context of k-nearest neighbors search
[22]. The original version of PDS is given in [83]. The partial-based l2-distance
between two data vectors x1 and x2 in a n-dimensional space can be presented as
follows:

d(x1, x2) =

√
n
n∗

n

∑
i=1

((p1)i(x1)i − (p2)i(x2)i)2, (3)

where n∗ denotes pairwise-known values and

(pk)i =

{
1, if (xk)i exists,
0, otherwise.

The PDS method can be extended to other norms. For example, the partial-based
l1-distance is defined as:

d(x1, x2)1 =
n
n∗

n

∑
i=1

|(p1)i(x1)i − (p2)i(x2)i)| (4)

The scaling with the term (n/n∗) is performed during the computation. The
method without scaling (n∗ = n) is called an available data strategy (ADS). The
ADS has a long record and it was first presented in the context of building a com-
putationally efficient multigrid system for representing boundary value problems
[51]. Later on, the ADS method is used in K-spatialmedians clustering [77, 52].

2.2.4 Distance estimation strategies

Imputations and distance computations strategies are alternative ways to handle
missing values. However, the methods can lead to a suboptimal estimate of the
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distance. There are also methods to estimate all pairwise distances directly in a
data set, which enables the use of machine learning techniques without having to
consider any further tricks to deal with the missing values [25, 64].

The expected squared Euclidean distance (ESD) between two data vectors
can be divided into four parts depending missing and observed values of each
observation:

E
[
‖xi − xj‖2

]
= ∑

l∈Ai∩Aj

(
(xi)l − (xj)l

)2
+ ∑

l∈Ai∩Mj

E[((xi)l − (Xj)l)
2]

+ ∑
l∈Mi∩Aj

E[((Xi)l − (xj)l)
2] + ∑

l∈Mi∩Mj

E[((Xi)l − (Xj)l)
2],

where Ai and Aj denote the available values of data vectors xi and xj, respectively,
and Mi and Mj denote the missing values of the vectors. Note that the missing
value can be replaced with a random variable denoted by (Xi)l for every l ∈ Mi.
The equation can be expanded as follows:

E
[
‖xi − xj‖2

]
= ∑

l∈Ai∩Aj

(
(xi)l − (xj)l

)2

+ ∑
l∈Ai∩Mj

(
((xi)l − E[(Xj)l])

2 + Var[(Xj)l]
)

+ ∑
l∈Mi∩Aj

(
(E[(Xi)l]− (xj)l)

2 + Var[(Xi)l]
)

+ ∑
l∈Mi∩Mj

(
(E[(Xi)l]− E[(Xj)l])

2 + Var[(Xi)l] + Var[(Xj)l]
)

.

In more detail, the second summation can be written:

E
[
((xi)l − (Xj)l)

2
]
= E

[
(xi)

2
l − 2(xi)l(Xj)l + (Xj)

2
l

]
= (xi)

2
l − 2(xi)lE

[
(Xj)l

]
+ E

[
(Xj)

2
l

]
− E

[
(Xj)l

]2
+ E

[
(Xj)l

]2

= ((xi)l − E
[
(Xj)l

]
)2 + E

[
(Xj)

2
l − E

[
(Xj)l

]2
]

= ((xi)l − E
[
(Xj)l

]
)2 + Var

[
(Xj)l

]
Let us assume a Gaussian distributed data and random variables are MAR. The
estimates for missing values can obtained using mean and covariances of con-
ditional multivariate Gaussian distribution by conditioning missing values with
observed ones [25]. The final form of the equation is:

E
[
‖x1 − x2‖2

]
=

n

∑
i=1

(
((x′1)i − (x′2)i)

2 + (σσσ′
1)

2
i + (σσσ′

2)
2
i

)
, (5)
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where

(x′k)i =

{
(xk)i, if i ∈ Ak;
E[(xk)i | (xk)Ak ], if i ∈ Mk;

(σσσ′
k)

2
i =

{
0, if i ∈ Ak;
Var[(xk)i | (xk)Ak ], if i ∈ Mk.

The kth observation is a normally distributed with the mean vector and the co-
variance matrix:

(μk
′)Mk = (μ)Mk

+ ΣMk Ak Σ−1
Ak Ak

(
(xk)Ak − (μ)Ak

)
, (6)

Σ′
Mk Mk

= ΣMk Mk − ΣMk Ak Σ−1
Ak Ak

ΣAk Mk .

Missing values of x′k can be imputed from (μk
′)Mk vector and σσσ′2

k is a sum of
diagonal elements of Σ′

Mk Mk
matrix.

Estimating μ and Σ for incomplete data is not a trivial task. These parame-
ters can be updated iteratively using the EM algorithm with the maximum neg-
ative log-likelihood convergence criterion [25]. However, the convergence is not
guaranteed if the number of missing values is high compared to available values.

In [64], the idea of the ESD was extended to the expected Euclidean distance
(EED). The EED requires the same assumption of Gaussian distributed data as
the ESD. In addition, it is assumed that the squared Euclidean distances follow
a Gamma distribution. It is reasonable to choose the Nakagami distribution [69]
instead of the Gamma since a random variable from Nakagami can be obtained
from the square root of Gamma’s distributed value. The Nakagami distribution
is a function of shape (m) and spread (Ω) parameters. Hence, a random variable
of the EED can be computed as follows:

E

⎡
⎣(

n

∑
i=1

((x1)i − (x2)i)
2

) 1
2
⎤
⎦ = E

[
z

1
2

]
=

Γ(m + 1
2)

Γ(m)

(
Ω
m

) 1
2

,

m =
E [z]2

Var [z]
, Ω = E [z] ,

(7)

where Γ is the Gamma function. The variance can be expressed as

Var[z] =Var

[
n

∑
i=1

((x1)i − (x2)i)
2

]

=
n

∑
i=1

Var
[
((x1)i − (x2)i)

2
]

=
n

∑
i=1

E
[
((x1)i − (x2)i)

4
]
− E

[
((x1)i − (x2)i)

2
]2

=

(
n

∑
i=1

E
[
(x1)

4
i + (x2)

4
i − 4(x1)

3
i (x2)i − 4(x1)i(x2)

3
i + 6(x1)

2
i (x2)

2
i

])

−
n

∑
i=1

E
[
((x1)i − (x2)i)

2
]2

,
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where the expected values are obtainable using the non-central moments of nor-
mal distribution:

E[xk] = x̂k

E[x2
k ] = x̂2

k + σσσ2
k

E[x3
k ] = x̂3

k + 3x̂kσσσ
2
k

E[x4
k ] = x̂4

k + 6x̂2
kσσσ2

k + 3σσσ4
k.

Note that weighted moments are needed if the data are assumed to follow the
Gaussian mixture distribution (see e.g., [64]).



3 CLUSTERING

In clustering, a set of observations is decomposed into groups ("clusters") such
that the pairwise dissimilarities between those assigned to the same cluster tend
to be smaller than those in different clusters [39]. Cluster analysis is the for-
mal study of algorithms and methods for grouping or classifying observations
by their measured or perceived characteristics or similarities [43]. The absence of
category information, labels, distinguishes unsupervised clustering from super-
vised classification. The objective of cluster analysis is simply to find a convenient
and valid stutructure of the data and not to establish rules for separating future
data into distinct categories. Hence, clustering is explanative, predictive, and de-
scriptive in nature. In addition, it investigates multivariate data sets that contain
different data types. In general, clustering is more challenging compared to la-
beled classification. The measures of similarity and the evaluation criterion are
main components of clustering. The most common approach for defining simi-
larity is measuring the distance among the data patterns like squared Euclidean
distance.

The similarity of observations within a cluster has a significant role in the
clustering process. The clusters can differ in terms of their shape, size, variance,
density, and the presence of noise which makes the detection of the cluster even
more complex. However, clusters are ideally compact and isolated in a data
space. The similarity of a cluster is mainly measured through the summed dis-
tance between cluster centroid and the observations within a cluster. The valid
distance measure should be symmetric, i.e., d(xi, xj) = d(xj, xi), and obtain min-
imum value (ideally zero) in case of equal vectors [76]. In addition, the distance
measure is called a metric distance measure if it satisfies the following triangle
inequality (it is assumed that vectors are complete):

d(xi, xk) ≤ d(xi, xj) + d(xj, xk) ∀ xi, xj, xk ∈ Rn,

d(xi, xj) = 0 ⇒ xi = xj ∀ xi, xj ∈ Rn.
(8)

There are different methods for clustering: hierarchical [67], partitional [53], fuzzy
[24], grid based [37], graph based [93], density based [91, 92], and model based
[73, 40, 31]. However, in general, clustering algorithm can be divided into two
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main groups: hierarchical and partitional [43]. Hierarchical clustering recursively
identifies a nested sequence of partitions and visualizes the result as a dendo-
gram, which enables to see how observations are being merged into clusters or
split successive levels of similarity. Hierarchical clustering proceeds either from
bottom to up in agglomerative mode, starting with each observation in its own
cluster and merging most similar pair of clusters successively to form a cluster
hierarchy, or from up to bottom in divise mode, starting with all observations in
one cluster and recursively dividing each cluster into smaller clusters. One can
then select a clustering at some fixed level of similarity, which makes the most
sense for the given application. Partitional clustering algorithms simultaneously
partition of the data, attempting to recover natural groups present in the data.
Partitional clustering methods have advantages in applications that consist large
data sets for which constructing a dendogram is computationally expensive.

3.1 Partitional clustering

Partitional clustering attempts to determine the K partition of N observations in
n-dimensional space such that the observations in a cluster are more similar to
each other than the observations in different clusters. Solving the problem re-
quires determining the clustering error criterion (e.g., sum of the squared errors).
The local criterion forms clusters by applying the local structure of data. For ex-
ample, identifying high-density regions in the data space. The global clustering
criterion represents each cluster by a prototype and assigns the observations to
clusters according to the most similar prototypes [44].

The theoretical solution to this partitional problem is straightforward. Sim-
ply select a criterion, evaluate it for all possible partitions containing K clusters,
and pick the partition that optimizes the criterion. However, the task may not
be easy. First, the mathematical formula for transforming data partitions into
so called "clusters" may not be obvious. The formula is required to be simple
enough for computational reasons, but relatively complex to reflect anomalous
data structures. Only a small number of clustering criteria can be understood
both mathematically and intuitively. The single best clustering error criterion
does not exist, because the notion of cluster depends on the application, and it is
usually weakly defined [82, 76, 12]. It is also good to rememeber that clusters are,
in large part, on the eye of the beholder [27].

Secondly, the number of K various partitions for data is astronomical, even
for small numbers of observations, and evaluating even the simplest criterion can
be impractical. More specifically, grouping N observations into K groups forms
the equation, which is solved by Stirling numbers of the second kind [13]:

S(N, K) =
1
K!

K

∑
i=1

(−1)K−i
(

K
i

)
(i)N , (9)

which can be approximated by KN/K!. For example, an exhaustive search for
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the best set of K = 5 clusters in N = 100 observations would require computing
more than 1067 partitions, so most exhaustive searches are, therefore, infeasible.

A more practical approach than exhaustive search is iterative optimization.
The basic structure of iterative relocation methods is given in Algorithm 1. The
clustering via distribution-based models is possible through the EM method (as
described in Section 2.2.2). The expectation step computes the expectation of the
posterior of the latent variables (cluster labels). The maximization step optimizes
the model parameters (typically centroid locations and covariances) to fit the data
best. The steps are repeated iteratively until the convergence criterion (e.g., not
significant change in likelihood functions) is obtained.

The prototype-based clustering methods use centroids of clusters to repre-
sent the prototypes. The mean and median are common choices for the estimates.
The algorithm does not necessarily find the global optimum of the clustering er-
ror function, but the local optimum is guaranteed. Therefore, Algorithm 1 is ini-
tialized multiple times with different initial parameters for finding the clustering
results that correspond to the smallest clustering error [91]. The are two ways to
proceed with Steps 2 and 3. A batch version checks all N observations before pro-
totypes are updated, and an online version updates prototypes immediately after
a cluster change is encountered: one observation is moved from one cluster to an-
other [79]. The clustering error (summed variance around centroids) is decreased
for each iteration as far as convergence is reached (i.e., prototype locations do not
change).

Algorithm 1. Iterative relocation algorithm

1. Select K initial centers or distributions as the initial solution.
2. Generate a new partition by using current centers.
3. Recompute new cluster centers or distributions according to the member-

ship of clusters.
4. Repeat Steps 2 and 3 until the optimum value of the criterion function is

found.

3.2 Prototype-based clustering methods

K-means is probably the most commonly used partitional clustering method. It is
based on the squared Euclidean error criterion, which minimizes within-cluster
sum of squared Euclidean distances. The method is also referred to as a variance
minimization technique [48]. The K-means assumes continuous-valued Gaus-
sian distributed data and creates clusters with hyperspherical shapes. It is well-
known that K-means is sensitive to outliers and noise. If an observation is far
away from cluster prototype, it is still connected into a cluster and, therefore, dis-
torts the cluster shapes [91]. However, the method is simple, easy to implement,
and efficient. Therefore, it is extremely popular for many kinds of cluster analysis
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tasks. For instance, K-means is used in the initialization of more expensive meth-
ods (e.g., minimimal learning machine [41]). The two simplest robust estimates of
location are median and spatial median, whose spherical symmetric distributions
are uniform and Laplace distributions, respectively. The median is the best choice
as the centroid of the cluster when the type of data is discretely valued (e.g., for
questionnaired data). The spatial-median is more appropriate for continuos and
high dimensinal problems since its statistical efficiency improves as the number
of dimensions grows [10]. The spatial-median is the multivariate generalization
for the univariate median. Geometrically, the spatial median can be defined as
a point of Euclidean space from which the sum of absolute distances to a given
set of n points reached the minimum value. Finding the spatial median of data is
a non-smooth optimization problem [50], which means that it can not be solved
using classical differential calculus. However, the solution can be realized based
on sequential overrelaxation (SOR) algorithm [52], which is also generalized to
missing data. The spatial median is orthogonally equivalent location estimate,
which makes it insensitive to all orthogonal transformations such as the rotation
of a data set. The median and spatial median have the same breakdown point,
which is 50%. Nevertheless, the spatial median is independent from the number
of dimensions.

The general form of the clustering error function is given by

J q
p =

K

∑
k=1

J q
k,p = ∑

xi∈Ck

d(xi, ck)
q
p, (10)

where X = {xi}N
i=1 denotes data set, d(·, ·) is the distance computation or estima-

tion strategy in the lq
p data space, and {ck}K

k=1 is the set of cluster prototypes that
minimizes locally the error function and partitions the data into K disjoint sub-
sets. J q

k,p is the within-cluster error in cluster Ck, and lp-norm to the q-th power
is the distance measure corresponding to the different location estimates of the
error function. The sample mean, median, and spatial median are obtained by
choosing (p = q = 2), (p = q = 1), and (p = 2, q = 1), respectively. Note that if
p = 2 or q = 1, the term can be omitted from the notation. Figure 2 shows gra-
dient fields of the norms. The length of gradient vectors increases for the sample
mean. Therefore, the sample mean is very sensitive to outliers and not a robust
location estimate [50]. The median and spatial median are robust estimates be-
cause they depend only on the direction of data and give equal weights for all
observations.

3.3 Initialization of prototype-based clustering

The prototype-based clustering methods are sensitive to the initialization, be-
cause they are based on a local-search. The methods find one locally optimal
solution of an error function. The number of local optimal solutions can be large
even for small data sets [80]. To avoid a poor initialization that may cause various
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FIGURE 2 Gradient fields of ‖x‖2 (top left), ‖x‖1 (top right), and ‖x‖ (bottom) norms

undesired effects (e.g., sub-optimal solutions, empty clusters, and increased con-
vergence time) the local search algorithm should be initialized carefully. Hence,
the number of the repetitions of the clustering algorithm can be reduced. This
is an important improvement, especially for the large-scale data sets. The repeti-
tions are not needed at the all if there exists some deterministic heuristic to select
initial points (e.g., see Article PIV).

Cluster initialization methods can be divided into three categories: random,
distance optimization, and density estimation. The most used initialization in
K-means is MacQueen’s method [60], which selects initial prototypes at random
from the data points. Therefore, the most commonly selected data points are from
dense regions. This may cause initial prototypes that are selected close to each
other. Similarly, Forgy’s initialization method [30] is based on random selection.
The method assigns data points to randomly different clusters, and the centroids
of clusters are used as the initial cluster prototypes. The method lacks theoretical
basis, and the clusters generated randomly may have no internal homogeneity
[13]. These random methods often have poor performance [13].

The parameter-free KKZ [47] and maximin [34] initialization methods use
distance optimization. The KKZ selects the vector with the maximum norm as
the first prototype. Thereafter, the following prototypes are selected as the most
distant to the already selected ones. The method is not computationally complex,
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because only one computed distance is needed for each non-prototype point at
each iteration. The KKZ method is reported to be very sensitive to noise and
outliers [96]. The maximin algorithm attempts to isolate the cluster prototypes
that are farthest apart [34]. The algorithm randomly selects the first prototype
from data points. The second prototype is the farthest point from the first proto-
type. The following selected prototypes are computed using minimum distances
from the previously selected prototypes such as the selected point has maximum
of minimum distances. The same procedure is repeated until all prototypes are
selected. The algorithm works well in situations where clusters are circularly
shaped and do not overlap. However, the method is sensitive to the structure of
the data set and it is computationally expensive, because whenever the new pro-
totype is selected, the distances are required to be computed for every data point
from every cluster prototype.

In [7] the density initialization method for clustering was presented. The
method randomly partitions data into m sub-samples and clusters each sub-sample
into K clusters. The prototypes from each sub-sample are pooled into a new data
set. The obtained data set is initialized m times using the prototypes of each sub-
sample as initial points. The selected prototypes produce the smallest clustering
error on the refined data set. In addition, the method has a robust variant, which
is insensitive to erroneous data values [96].

Currently, the most popular algorithm for initialization is K-means++ [2]. It
uses probability distribution based on distances to already selected nearest cen-
troids. The computational complexity of K-means++ is equal to the complexity of
K-means, which is linear. The selection time of initial centroids is slightly higher
compared to K-means. However, on average, the overall algorithm is faster be-
cause it usually converges with fever iterations. In addition, the K-means++ is
proven to be more accurate than the K-means regarding clustering errors [2]. The
method is given in Algorithm 2. Note that the selected distance metric is required
to be defined beforehand.

Algorithm 2. K-means++ type of initialization

1. Choose center c1 uniformly random from X = {xi}N
i=1, xi ∈ Rn.

2. Choose the next center cj = xi ∈ X with probability

min
k=1,...,j−1

d(xi, ck)
q
p

∑
x∈Ck

min
k=1,...,j−1

d(x, ck)
q
p

.

3. Repeat Step 2 until K centers is chosen.
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3.4 Distance estimation in clustering

Let us follow the same assumptions as given in Section 2.2.4. Hence, data val-
ues are from the conditional multivariate normal distribution where the missing
values are conditioned with the observed ones (i.e., missing values are MAR).
Two-stage clustering algorithm based on the estimated and computed distances
is given in Algorithm 3.

Algorithm 3. Clustering based on distance estimation

1. Select initial prototypes using K-means++ algorithm (see Algorithm 2).
2. Compute the statistical parameters (μμμ and Σ) of the conditional multivariate

Gaussian distribution using the EM method with the maximum negative
log-likelihood convergence criterion.

3. Estimate distances using Equation (5) or (7) while performing the iterative
refinement phase of the clustering (Steps 2–4 in Algorithm 1).

4. Repeat the iterative refinement phase using the available data strategy in
the distance computation (see Equation (3)).

Note that Algorithm 3 convergences twice: the first time with the distance esti-
mation and the second time without the estimation. Based on the experiments
in PIII, the clustering with distance estimation produced prototypes closer to the
real centroids than the clustering without estimation. However, even more accu-
rate results were obtained by giving these estimation-based prototypes as initial
values to the clustering based on the available data strategy (Step 4 in Algorithm
3).



4 CLUSTER VALIDATION

Cluster validation, or clustering evaluation, is a challenging but important task
in cluster analysis. Finding the optimal number of clusters (K) given as an input
to the clustering algorithm, is essential because the number is rarely obvious.
Almost every clustering algorithm will find clusters in a data set even if the data
have no clustering tendency. In this situation, a validation measure is needed to
describe how good clustering is and what may be the optimal number of clusters.

The quality of the clustering results is commonly validated with cluster val-
idation indices (CVIs). In general, cluster validation indices have three different
criteria: internal, relative, and external [43]. Internal indices evaluate the quality
of the clustering result using the data alone. Relative indices compare multiple
clustering structures (generated by different parameters, for example) and decide
which of them is better in some sense. In [36], relative indices were categorized
to internal indices, because there is only a slight difference in the definitions of
these indices. External indices measure the performance by comparing the ob-
tained clustering structure to the correct structure (ground true) if the real cluster
labeling is available. Indices can be used for measuring cluster stability as an
amount of variation in the clustering solution over different sub-samples drawn
from input data.

The cluster validation indices plot the number of clusters against measured
index values. There are multiple ways to detect the optimal number of clusters.
The most straightforward way is to use the global minimum or maximum of the
index curve. However, some cluster validation indices (e.g., Calinki-Harabasz
[11] and Ray-Turi [75]) recommend to use the first local minimum or maximum.
The knee point is determined as the turning point of the curve (from optimal to
suboptimal direction). In addition, there are cluster validation measures, which
are only monotonily increasing or decreasing. In these cases, the most significant
local change could be observed on the curve, which is called knee or jump point.
There exist multiple ways to determine the knee point. The classical way is to
indicate the change in measured index values with every increase in the number
of clusters [85]. Ideally the change can be validated through significance testing,
which requires some assumptions like the normality of the distributions [85]. The
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are also more sophisticated heuristics to localized knee points. For example, in
[95], a reliable method to identify the knee points based on Bayesian information
criterion was proposed. The experiments supported the performance of the of-
fered approach over the performance of many conventional approaches. In [78],
a knee point method was proposed, which defined the curvature of continuous
and discrete data sets at any point as a function of the first and second deriva-
tives. The method is applicable to a wide range of systems, including online and
offline types of applications.

In determining the optimal number of clusters, the parameter K is opti-
mized and other parameters are fixed. This contains the definition of the fixed
range of clusters [Kmin, Kmax] and the basic procedure involves the steps given
in Algorithm 4. Note that there is no one best index that works with all kinds
of clustering methods and data sets. Hence, comparing the results of multiple
indices is highly recommended. For example, depending on the clustering algo-
rithm, the internal indices are applied to hard (crisp) or soft (fuzzy) clustering. In
addition, the data set may include noise, different densities, cluster overlap, sub-
clusters, and skewed distributions, etc. [59]. For this purpose, many comparisons
of indices have been made [1, 56, 65].

Algorithm 4. Determination of the optimal number of clusters

1. Select a data set X and repeat a clustering algorithm successively, ranging
the number of clusters from Kmin to Kmax.

2. Obtain prototype-based clustering results (labels of each observation and
cluster centroids) and compute internal index values for each.

3. Identify the best result using global minimum or maximum, or use knee
points to localize local minimums and maximums.

4. Test the validity goodness of the solution by using external indices if ground
true of the partition is known.

4.1 Internal quality measures

The optimal number of clusters can be determined using internal CVIs with dif-
ferent K values as an input parameter to the clustering algorithm. The compu-
tation of internal CVIs are commonly based on the compactness and separation
of the clusters. In a good clustering solution, the within-cluster similarity (Intra)
is low and the between-cluster separability (Inter) is high. Usually, the division
between Intra and Inter is applied and the measured value is at minimum or
maximum based on the order of the division.

Let us define the basic notations followed in the rest of this section. The
centroid of the whole data (mean, median, or spatial median) is m. The total
clustering error, the within-cluster error, and the number of observations in the
cluster Ck are denoted by J , Jk, and nk, respectively (see Eq. (10)). Note that
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it is assumed that J = J 1
2 and Jk = J 1

k,2 (i.e., the clustering error is the sum
of the Euclidean distances if otherwise is not specified). Since observations may
consist of missing values, distance computation or estimation strategy is always
needed for computing Intra and some indices for computing Inter (denoted by
d(·, ·)). Depending on the formula of CVI, the measure attempts to be minimized
(denoted by ⇓) or maximized (denoted by ⇑).

Calinki–Harabasz: Calinski-Harabasz (CH) index is also known as variance ra-
tio criterion, since the variance between prototypes is aimed to be maximized,
and between observations and their local prototypes are attempted to be mini-
mized [11]. The method is originally based on the squared Euclidean distance.
The index is defined as:

CH⇑ =

K
∑

k=1
nk‖ck − m‖2

(K − 1)
/

J 2

(N − K)
.

Davies–Bouldin: The Davies-Bouldin (DB) index is defined by the average of
cluster evaluation measures for all the clusters. In addition, the index attempts to
use as low Inter cluster separation as possible [18]. The index is defined as:

DB⇓ =
1
K

K

∑
k=1

max
k′ �=k
k∗ �=k

((Jk
nk

+
Jk′

nk′

)
/‖ck − ck∗‖

)
, k′, k∗ = 1, . . . , K.

Davies–Bouldin*: The Davies-Bouldin* (DB∗) is an extended version of the orig-
inal DB algorithm, which applies maximization and minimization separately [49].
Hence, the minimum Inter cluster separation is guaranteed in the solution. The
DB∗ is defined as:

DB∗⇓ =
1
K

K

∑
k=1

max
k′ �=k

(Jk
nk

+
Jk′

nk′

)
/ min

k∗ �=k
‖ck − ck∗‖, k′, k∗ = 1, . . . , K.

Generalized Dunn: The Generalized Dunn (GD) indices are improvements of
the Dunn index, which are less sensitive to noisy observations [3]. They include
three definitions for within-cluster distances and six definitions of the between
cluster distances, which leads to 18 definitions. The following definition uses the
maximum average within-cluster diameter as Intra. The Inter is defined as the
minimum distance between cluster centroids:

GD⇑ = min
k′ �=k

‖ck − ck′ ‖/ max
(

2 × Jk
nk

)
, k, k′ = 1, . . . , K.

Experimental results suggest that Inter cluster separation has a more important
effect in cluster validation than cluster diameter [3].
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kCE-index: The kCE-index (KCE) uses only the total sum of within-cluster er-
rors for determining the optimal number of clusters, and therefore, index is able
to recognize the case of one cluster or no clusters where other indices usually
suggest large numbers [45]. This is advantageous over other internal CVIs. The
number of cluster, K, is used as a weight of the squared clustering error. The KCE
is defined as follows:

KCE⇓ = K ×J 2.

Pakhira–Bandyopadhyay–Maulik: The Pakhira-Bandyopadhyay-Maulik (PBM)
index is a product of three factors [71]. The first factor indicates divisibility of a
K cluster system. The factor reduces with an increase in K. The second factor is a
measure of the compactness of a K cluster system, which is attempted to increase.
The third factor is maximum Inter cluster separation and this is attempted to in-
crease. So while the first factor is decreasing, the other two are increasing with an
increase in K. The PBM is defined as follows:

PBM⇑ =

(
1
K
×

(
N

∑
i=1

‖xi − m‖/J
)
× max

k′ �=k
‖ck − ck′ ‖

)2

, k, k′ = 1, . . . , K.

The PBM index works for both crisp and fuzzy clustering. The index ensures the
formation of a small number of compact clusters with a large separation between
at least two clusters.

Ray–Turi: The Ray-Turi (RT) index comes from image segmentation [75]. The
index was initially evaluated with synthetic images for which the number of clus-
ters was originally known. It was also implemented for natural images. The in-
dex was developed for K-means clustering and, therefore, follows the notation of
the squared norm. The RT takes the average value of distances from observations
to their local centroids and use the minimum distance between cluster centroids.
The definition is the following:

RT⇓ =
1
N

× J 2

min
k′ �=k

‖ck − ck′ ‖2 , k, k′ = 1, . . . , K.

Silhouette: The silhouette (SIL) measure for each observation describes how
similar an observation is to other observations in the same cluster, compared to
observations in other clusters [48]. The silhouette value is defined as:

SIL⇑ =
1
N

K

∑
k=1

∑
xi∈Ck

b(xi)− a(xi)

max(a(xi), b(xi))
,

where a(xi) is the average distance from ith observation to other observations in
the same cluster:

a(xi) =
1

nk − 1 ∑
xj∈Ck

d(xi, xj)2.
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and b(xi) is the minimum average distance between ith observation and observa-
tions in a different cluster minimized over the clusters:

b(xi) = min
k′ �=k

1
nk′

∑
xj∈Ck′

d(xi, xj)2, k′ = 1, . . . , K.

Note the d(·, ·) notation in equations. Distances are required to be computed
through distance computation (see Section 2.2.3) or distance estimation strategy
(see Section 2.2.4) because data vectors may consist of missing values.

The average silhouette value is in the range of [−1, 1]. A high index value in-
dicates that observations are well matched to their own clusters and not matched
to other clusters. A negative index value indicates that the clustering solution has
too many or too few clusters. If the silhouette value is equal to zero, the data set
may have overlapping clusters.

WB-index: The WB-index (WB) can be categorized with the sum-of-squares-
based indices and it has a similar trend as the inverse of the CH index [94]. How-
ever, the CH index may affect the data size N, because when N is very high the
weight factor M−1

N−M dominates over the quotient of the Inter cluster separation
and within cluster compactness. In addition, the CH index may not detect accu-
rately the highly overlapping clusters as separate clusters. Hence, the WB could
be a better choice in some specific data sets. The index is defined as:

WB⇓ =
K ×J 2

K
∑

k=1
nk‖ck − m‖2

.

Wemmert–Gançarski: The Wemmert-Gançarski (WG) forms measure for each
observation, which is the quotient between the distance of this observation to the
centroid the observation belongs to and the smallest distance of this observation
to the centroid of all the other clusters [21]:

WG⇓ =
1
N

K

∑
k=1

max

⎧⎨
⎩0, nk − ∑

xi∈Ck

d(xi, ck)2

min
k′ �=k

d(xi, ck′)2

⎫⎬
⎭ , k′ = 1, . . . , K.

Regarding the formula, if the quotient is greater than nk, it is ignored. Intra and
Inter require the use of distance computation or estimation strategy in case of
missing values in data.

Internal indices in general fashion: Table 1 shows internal cluster validation
indices in general forms based on lq

p-norm settings. All of the indices are aimed to
be minimized, because the ordering of division is Intra

Inter . In addition, the simplified
presentations of CVIs are given. Additional constant terms and extra functions
which do not affect to the functionality of indices are removed from the final
presentation.
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TABLE 1 Internal cluster validation indices in general fashion

Index Intra Inter Formula

CH J p
p

K
∑

k=1
nk‖ck − m‖p

p
K−1
N−K × Intra

Inter

DB
J q

k,p
nk

+
J q

k′ ,p
nk′

‖ck − ck∗‖q
p

1
K

K
∑

k=1
max
k �=k′

Intra(k,k′)
Inter(k,k′)

DB∗ J q
k,p

nk
+

J q
k′ ,p

nk′
‖ck − ck∗‖q

p
1
K

K
∑

k=1

max
k �=k′

Intra(k,k′)

min
k �=k∗

Inter(k,k∗)

GD max
J q

k,p
nk

min
k �=k′

‖ck − ck′ ‖q
p

Intra
Inter

KCE J p
p 1 K × Intra

PBM J q
p max

k �=k′
‖ck − ck′ ‖q

p
K×Intra

Inter

RT J q
p min

k �=k′
‖ck − ck′ ‖q

p
Intra
Inter

SIL 1
nk−1 ∑

xj∈Ck

d(xi, xj)
q
p min

k �=k′
1

nk′ ∑
xj∈Ck′

d(xi, xj)
q
p

K
∑

k=1

N
∑

i=1

Inter(xi)−Intra(xi)
max(Intra(xi),Inter(xi))

WB J p
p

K
∑

k=1
nk‖ck − m‖p

p K × Intra
Inter

WG d(xi, ck)
q
p min

k �=k′
d(xi, ck′)

q
p

K
∑

k=1
∑

xi∈Ck

Intra(xi)
Inter(xi)

4.2 External quality measures

External indices include different measures of variation, which can be used to
obtain different stability indicators.

Accuracy: Accuracy (ACC) is the simplest stability measure. The method com-
putes quotient of the total number of correctly predicted cluster labels and the
total number of cluster labels [86].

Adjusted Rand index: Adusted Rand index (ARI) is a pair-counting-based mea-
sure. The index counts pairs of labels on which two clusterings agree or disagree
[88]. Note that the minimum value of the index can yield negative values if the
index is less than the expected index. The maximum value is one, which indicates
the best solution of the clustering.

Given a set X of N observations, and two partitions of these elements, namely
U = {U1, U2, . . . , Ur} and V = {V1, V2, . . . , Vs}, the overlap between U and V can
be summarized as in Table 2, where each entry nij denotes the number of obser-
vations in common between Ui and Vj, nij = |Ui ∩ Vj|, Ui ∩ Uj = ∅, Vi ∩ Vj = ∅
for i �= j. The ARI using a permutations model is defined as:

ARI =
Σij(

nij
2 )− [Σi(

ai
2 )Σj(

bj
2
)]/( n

2 )

1
2 [Σi(

ai
2 ) + Σj(

bj
2
)]− [Σi(

ai
2 )Σj(

bj
2
)]/( n

2 )
,
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TABLE 2 Contingency table

U/V V1 V2 . . . Vs Sums
U1 n11 n12 . . . n1s a1
U2 n21 n22 . . . n2s a2
...

...
... . . . ...

...
Ur nr1 nr2 . . . nrs ar

Sums b1 b2 . . . bs ∑ij nij = N

where nij, ai, and bj are values from the contingency table.

Normalized mutual information: Mutual information computes amount of in-
formation obtained from random variable by observing the other random vari-
able. In telecommunications, the capacity of the channel is measured by using
mutual information [84]. Normalized mutual information (NMI) is an informa-
tion theoretic measure with normalization property, i.e., the measure lies within
a fixed range [0, 1] [88]. Mutual information is a symmetric measure and it deter-
mines the statistical information shared between two distributions. It character-
izes reduction in the entropy which is obtained knowing the actual cluster labels.
There are many variants of the index that use different normalization terms for
the mutual information. Joint entropy, minimum entropy, maximum entropy,
average entropy, and squared entropy are commonly used divisors. Entropy is a
fundamental notion in an information theory that computes the expected amount
of information held in a random variable. The mutual information normalized by
the average entropy is defined as:

NMI =
I(U, V)

(H(U) + H(V))/2
,

where I(·, ·) is mutual information of cluster labels and H(·) denotes entropy
of labeling. Many external CVIs assume identical number of clusters between
clustering solutions. However, NMI overcomes this assumption using the nor-
malization term. Hence, NMI is a promising external measure for determining
the quality of the clustering.



5 SUMMARY OF THE INCLUDED ARTICLES

5.1 PI: Game learning analytics for understanding reading skills
in transparent writing system

Article PI was published in the British Journal of Educational Technology, 51(6):2-
376–2390, 2020

Background: Digital serious games provide an alternative to traditional teach-
ing methods like classroom lessons. Serious games analytics are designed for
measuring, collecting, analyzing, and reporting data about serious games learn-
ers. The main objective is to improve learning and tailor learning environment
for various skilled learners. In the study, serious games analytics were applied to
the Finnish version of GraphoLearn. The game was designed to support the de-
coding skills of Finnish children with difficulties in reading by helping to connect
speech sounds to their written counterparts (i.e., letters). The study offered a pro-
filing tool that used missing values handling, clustering, and cluster validation
for identifying the distinct profiles based on players’ game log data, informing
which choices learners have made in the game.

Methods and data: The data was gathered from 1,632 players who were 6.5–
8.75 years old. In total, 1,275 learners played with lowercase letters and 357 learn-
ers used uppercase letters. The learners’ actions during the game were logged
into a database. The most interesting information to be logged were learners’ in-
puts, time spent with each task, playing times, and interval times between play-
ing sessions. The game presented 23 target letters and speech sounds each of
which was introduced only one time. The collected data included 4.66% missing
values, because of unanswered tasks.

The players were divided into two groups based on whether they used low-
ercase or uppercase letters. All combinations related to correct and incorrect re-
sponses obtained from all learners produced binary feature vectors, each consist-
ing of 529 elements. However, the computation cost was reduced by filtering
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out the features which did not include a noticeable number of erroneous selec-
tions. Clustering and cluster validation for lowercase and uppercase data sets
were performed using the PDS method in the distance computation. The cluster
validation was performed, applying the classical knee-point method to the curves
of indices. The speed of improvement of index values was the main interest. The
knee-points of the validation curves were statistically analyzed with Wilcoxon’s
rank-sum test.

Results and conclusions: The most common errors were related to confusing
phonetically and visually similar letters. For instance, the letter n was often
mixed to letters h and m, and the sound /g/ was mixed with the sounds /d/ and
/k/. The results revealed six profiles for lowercase letters, one "high" performing,
three "medium" performing, and two "low" performing profiles, and five profiles
for uppercase letters. The measured meta parameters in different profiles were
error rates, progressions, total playing times, and interval times. The learners in
the weakest performing profile mixed the most of the target letters. However,
the players in the two weakest profiles showed the best progression while play-
ing the game, which suggests that the combination of GraphoLearn and school-
provided reading instructions help children who have difficulties for mastering
letter-sound pairs. The learners achieved the better results with uppercase let-
ters, which may be because uppercase letters are visually less similar. In general,
the study offered the profiling tool for identifying different types of learners in
an alphabetical learning game. The tool was developed for letters but it can be
extended for larger units such as syllables or words. Further research is required
for repeating the clustering at regular time intervals to see players division into
varied skilled profiles and to monitor learner’s development in the game by de-
tecting their connections to the profiles.

5.2 PII: Comparison of cluster validation indices with missing data

Article PII was published in the proceedings of the 26th European Symposium on
Artificial Neural Networks, Computational Intelligence, and Machine Learning, pages
461–466, 2018.

Background: The aim of cluster analysis is to evaluate the data structures based
on the multiple clustering solutions. Different cluster validation indices have
been developed and compared for finding the optimal number of clusters. How-
ever, missing values are rarely considered in the evaluation process.

Methods and data: The study presented a prototype-based K-means and K-
medians clustering algorithms and provided the comparison of ten well-performing
internal CVIs. The clustering methods and all the indices were developed to be
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tolerant for missing values in data. The computation of the clustering and clus-
ter validation is mainly based on the computation of the distances between data
vectors. The results may not be accurate if distances are computed between in-
complete data. Therefore, the PDS for computing scaled pairwise distances was
adopted to the current study. The Euclidean distance based PDS and all the CVIs,
originally based on squared or non-squared Euclidean distances, were extended
to the City block distance. Eight synthetic data sets were selected from previous
studies and two new data sets were created for the current study. All data sets
were scaled at the range of [−1, 1]. The predefined percentages of missing values
were generated and data were MCAR. The initialization of clustering was per-
formed in an iterative manner, benefiting the previously selected centroids and
using the generalized version of K-means++ algorithm (see Algorithm 2).

Results and conclusions: Concerning the results, WG, SIL, and KCE were gen-
erally the best performing indices recommending 64/80, 63/80, and 58/80 total
correct solutions, respectively. All data sets were continuous valued, which may
explain the better results of the indices with the Euclidean distance that is mainly
based on the assumption of the Gaussian distributed data. The best performing
indices with the Euclidean distance were WG, KCE, and CH, suggesting 36/40,
33/40, and 33/40 correct solutions, respectively. Regarding the different degrees
of missing values, the stability of the indices was measured. The most stable in-
dices for the Euclidean distance were WG and DB∗, whereas CH was the most
stable for the City block distance. These indices always recommended the identi-
cal number of clusters with the Euclidean or City block distance even though the
number of missing values varied. In general, most of the indices decreased the
performance when the degrees of missing values were increased in the data sets.

5.3 PIII: Improving clustering and cluster validation with missing
data using distance estimation methods

Article PIII was published in the Computational Sciences and Artificial Intelligence
in Industry: New Digital Technologies for Solving Future Societal and Economical Chal-
lenges, pages 123–133, 2022.

Background: Missing values in data is a common problem in the real world
and it is rarely considered in clustering and cluster validation tasks. Very often,
observations with missing values are omitted. The kNNI imputation and the dis-
tance computation methods (ADS, PDS) are alternative treatments for missing
values in many machine learning tasks. Recently two promising distance estima-
tion methods, ESD and EED, were presented and utilized for incomplete data.
The methods assume that the missing values are random variables from a con-
ditional multivariate normal distribution where missing values are conditioned
with observed ones. The distance estimation methods have provided more accu-
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rate results compared to traditional methods in the experiments based on com-
putation of distances between observations within data sets consisting of a wide
range of missing values. However, the methods were not investigated in practical
machine learning problems. The current study applied the EED method for non-
squared clustering and the ESD or the EED was utilized to the indices depending
on the original squared or non-squared formulas of indices.

Methods and data: In the study, the robust K-spatialmedians clustering was
utilized. The clustering algorithm minimized the sum of the Euclidean distance
error function and was based on ADS distance computations. The ADS approach
omits missing values using binary projection matrix, which presents sparsity pat-
terns of each observations. The clustering method was compared to the tradi-
tional K-means clustering and distance estimated K-spatialmedians clustering.
The reference results of K-means clustering were obtained from the previous
study.

Results and conclusions: The results show that the root mean square errors
(RMSE) to the real centroids were lower with the K-spatialmedians and EED-
based distance estimation compared to the ADS-based estimation over 100 repeti-
tions of the replicated clustering (with 100 replicates) and generation of the miss-
ing values. In addition, the results were even more accurate when the obtained
distance-estimated prototypes were used as starting points for the K-spatialmedians
clustering with the ADS. Regarding the computational complexity, the EED-based
clustering showed almost equal computation times compared to the ADS-based
clustering with larger data sets, and it appeared to be faster with smaller data
sets.

Most of the CVIs improved the performance only by changing the clustering
method from K-means to more robust K-spatialmedians. Many indices did not
increase the performance based on the distance estimation and these results were
not reported. However, in general, the indices obtained the better performance
by using the novel two-stage clustering method based on the estimated distances
and the pipelined results to ADS-based clustering. Most especially, better results
were obtained with the maximum degrees of missing values in the synthetic data
sets.

5.4 PIV: Toolbox for distance estimation and cluster validation on
data with missing values

Article PIV was published in the IEEE Access, 10:352–367, 2021.

Background: The study provided the toolbox for data preprocessing, distance
estimation, clustering, and cluster validation in the presence of missing values
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in data sets. The methodological background of implemented methods was in-
troduced. In addition, the study proposed descriptions of the core functions and
offered the use case examples of the basic algorithms in the toolbox.

Methods and data: The experiments were divided into three parts. In the first
part, the missing values were generated to seven real-world data sets, selected
from the UCI repository, and the accuracies of the implemented missing values
computation or estimation methods were measured using the RMSE errors to the
real distances between observations in data sets. The mean values and standard
deviation were recorded in 250 repetitions. The implemented distance algorithms
were validated against the reference methods given in the previous studies. The
results suggest that the ESD distance estimation is better than the EED estimation,
because the relative differences in the accuracies between these methods were
small and the ESD method is computationally less complex.

The second part compared K-spatialmedians clustering algorithms with and
without distance estimation using ten internal CVIs. The quality of clustering re-
sults was validated using three external CVIs. In addition, the key point selection
method was utilized in the initialization of the clustering. The cluster validation
results were computed over eight synthetic and three real-world data sets, which
consisted of completely randomly generated missing values. The experiments
related to the initialization of clustering with the key point selection algorithm
assumed data sets were complete and in 2D. Hence, ICkNN (k =2) imputation
was applied to the incomplete data sets, and the real-world data were scaled to
2D using multidimensional scaling (MDS) algorithm. The reference results were
obtained from a previously published study. The achieved results with the key
point selection were competitive to the reference results.

In the third part, the performance of the indices was computed for mul-
tidimensional data. For this purpose, a total of 12 multidimensional data sets,
which consisted of 15 cluster centroids, various dimensions, different percentages
of missing values, and various degrees of cluster overlap were generated using
the data set generator, which was recently presented in the previous publication.
Based on the results, many of the indices were able to find the correct number of
clusters for the most of data sets in their original dimensions. The 2D projection
of data sets was also experimented. However, the overall results of the indices
were significantly worse in 2D. In the original multidimensional presentation,
three of the indices did not find any correct choices, including the KCE that uses
only Intra term for the computation of the index values. These findings suggest
that the Inter term separates clusters better in multidimensional space, and the
clustering errors between good and bad clustering results in a high-dimensional
space is small. The WG index performed the best with the multidimensional data.

Results and conclusion: Even though the paper presented a large amount of ex-
periments, the main objective of the study was to provide an easy-to-use toolbox
for researchers and practitioners to build various pipelines from missing values
handling and data preprocessing to cluster analysis and model validation. The
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versatile functionality of the toolbox allows its usability for other machine learn-
ing tasks as well like supervised learning. Future work is required for identifying
a correct heuristic to the key point selection algorithm, because clustering algo-
rithms are sensitive for accurate initialization.



6 CONCLUSIONS AND FUTURE WORK

This dissertation was composed of four peer-reviewed articles, which are focused
on prototype-based clustering and internal cluster validation on data with miss-
ing values. Contributions from each article are summarized in Table 3. These
data mining methods perform a central part in the KDD process. The missing
values are common in real-world applications and are often not considered in the
development work of new data mining algorithms. The worst-case scenario is
that the implemented methods do not work if the training data contains miss-
ing values. There were many reasons for selecting prototype-based clustering in
grouping the objects: the methods are usually well-defined, straightforward to
implement, computationally less complex, and produce interpretable geometri-
cally closed subsets as a clustering result. In addition, in cluster validation, in-
ternal validation indices follow a similar notation of clusters as prototype-based
methods with the appropriately selected clustering error criterion (i.e., clusters
need to be compact and separable).

Article PI provides a profiling tool based on clustering and cluster valida-
tion. The target application is GraphoLearn serious game, which is developed to
build connections between speech sounds and their written targets. The study fo-
cused on the smallest imaginable units in the Finnish language, namely phonemes
and their written equivalents, letters. The learners were first-grade students with
difficulties in learning to read. The learners’ responses during the game were
logged into a database. The data included missing values because of unanswered
tasks. The profiling tool identified six varied skilled profiles. The players in the
weakest profile mixed almost all target sounds with incorrect letters. However,
these players showed the best progression while playing the game, which sug-
gests that the combination of GraphoLearn and school-provided reading instruc-
tion helps children who have difficulties in reading. Articles PII and PIII present
distance estimation methods for treating missing values in clustering and clus-
ter validation indices. The best results were obtained by using two stages K-
spatialmedians clustering algorithm. The first phase estimated the distances be-
tween observations and cluster prototypes using the EED distance estimation
method. In the second phase, the obtained prototypes were given as an in-
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TABLE 3 Summary of contributions

Article Contribution

PI 1) Provided a profiling tool for serious games learners
2) Utilized internal CVIs in selecting the number of learners’ pro-

files in a GraphoLearn
3) Detected the knee-points of the internal CVI curves using visual-

izations of the CVI results and the Wilcoxon’s rank-sum test
4) Analyzed the obtained learners’ profiles
5) Proposed visualized presentations of confused letters in distinct

profiles

PII 1) Presented the PDS method and its extension to City block dis-
tance

2) Implemented ten well-performing internal CVIs and extended
them to the missing values and City block distance

3) Compared the City block and squared Euclidean distance based
cluster validation results using the synthetic data sets with pre-
defined percentages of missing values

PIII 1) Proposed a brief introduction to the ADS, ESD, and EED distance
computation or estimation strategies

2) Utilized the strategies to K-spatialmedians clustering and inter-
nal CVIs

3) Presented a novel two-stage distance-estimation based clustering
method and evaluated its performance against reference meth-
ods

PIV 1) Implemented a toolbox for missing values handling, data prepro-
cessing, clustering, and cluster validation

2) Provided the theoretical background of the implemented meth-
ods

3) Proposed use-case examples of the basic use of the toolbox
4) Validated the implemented methods against the reference meth-

ods in the previous studies
5) Evaluated the clustering solutions using the external validation

measures
6) Presented new experiments related to the initialization of the

clustering and to the cluster validation

put for initializing K-spatialmedians clustering with the ADS distance computa-
tion method. The computational complexity of two stages clustering was almost
equal to the complexity of traditional K-spatialmedians clustering without dis-
tance estimation when 2D synthetic data sets were used in the experiments. Arti-
cle PIV proposes a toolbox that consists of the functionality for handling missing
values in the data preprocessing, clustering, and cluster validation. The descrip-
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tions of all methods and use case examples are provided. An easy-to-use toolbox
is freely available for researchers and practitioners online1.

A limited number of data sets were used in the studies. Hence, future work
should develop new, more complex synthetic data sets with different dimension-
alities similar to [42] and [32]. In addition, the developed methods could be eval-
uated with a broader range of real-world data. Since the data volumes are in-
creasing every day, more scalable methods are required for analyzing big data.
Parallel computation and efficient use of memory capacity are important aspects
that should be noticed in future research considering missing values handling
and cluster analysis. Article PIV introduced a new initialization method based on
selecting key points associated as initial points to the clustering. The selected key
points included observations with relatively higher densities and density-based
distances than others (see Article PIV for more details). The key point method
introduced good solutions for most data sets with varying portions of missing
values. However, in some cases, the method could not to recognize lower density
clusters or key points located near the same cluster. Hence, future improvements
for the key-point-based initialization algorithm are required to support a higher
diversity of data.

The provided distance estimation strategies were capable of solving cluster-
ing problems. In addition, many other machine learning methods are based on
computed distances. Hence, the developed methods are applicable, for example,
supervised learning [14, 41, 17, 9].

1 https://github.com/markoniem/nanclustering_toolbox



YHTEENVETO (SUMMARY IN FINNISH)

Puutteellisen datan klusteroinnin validointi

Tämä neljän vertaisarvioidun artikkelin väitöskirja keskittyi prototyyppipohjai-
seen klusterointiin ja klusteroinnin sisäiseen validointiin datajoukoilla, jotka si-
sälsivät puuttuvia arvoja. Nämä tiedonlouhinnan menetelmät ovat keskeisessä
osassa tietämyksen muodostamisprosessissa. Reaalimaailman sovelluksissa puut-
tuvat arvot ovat yleisiä ja usein ne jätetään huomioimatta algoritmikehitykses-
sä. Pahimmassa tapauksessa toteutetut algoritmit eivät toimi ollenkaan, mikäli
data sisältää puuttuvia arvoja. Prototyyppipohjaiset klusterointimenetelmät ovat
usein hyvin määriteltyjä, suoraviivaisia toteuttaa, laskennallisesti tehokkaita ja
tuottavat havainnollisia, geometrisesti yhdenmukaisia osajoukkoja klusterointi-
tulokseksi. Tämän lisäksi klusteroinnin validoinnissa sisäiset indeksit noudatta-
vat samankaltaista notaatiota klustereista. Klusterien täytyy olla selkeästi määri-
teltyjä, tiiviitä ja toisistaan erottuvia.

Ensimmäisessä artikkelissa esitetään profilointisovellus, joka pohjautuu klus-
terointiin ja klusteroinnin validointiin. Sovelluskohteena on GraphoLearn-niminen
lukemaan opettelu -peli ja kohdejoukkona koulunsa vasta aloittaneet lapset, joil-
la on ollut vaikeuksia lukemaan opettelussa. Lapsien vastaukset kirjain-äänne-
tehtäviin tallennettiin tietokantaan ja kerätty data sisälsi myös puuttuvia arvo-
ja vastaamattomista tehtävistä. Profilointityökalulla pystyttiin tunnistamaan yh-
teensä kuusi eritasoista profiilia. Heikoimman profiilin lapsilla oli vaikeuksia tun-
nistaa lähes kaikkia kirjaimia äänteiden perusteella. Myöhäisemmässä vaihees-
sa profiilissa tapahtui kuitenkin eniten kehitystä, joka tukee pelin ja kouluope-
tuksen vaikuttavuutta lukemaan oppimisessa. Artikkelit kaksi ja kolme esittä-
vät etäisyyksien estimointeihin perustuvia puuttuvan datan käsittelymenetelmiä
klusteroinnissa ja klusteri-indekseissä. Parhaat tulokset saavutettiin käyttämällä
kaksiosaista K-spatialmedians-klusterointia. Ensimmäisessä vaiheessa etäisyydet
havaintojen ja klusteriprototyyppien välillä estimointiin EED-menetelmällä. Toi-
sessa vaiheessa saatuja prototyyppejä käytettiin klusteroinnin alustuksessa perin-
teisessä ADS-etäisyyslaskentaan perustuvassa K-spatialmedians-klusteroinnissa.
Kaksiosaisessa klusteroinnissa ei havaittu ylimääräistä laskennallista raskautta
kokeissa käytetyillä synteettisillä 2D-datoilla. Viimeisessä artikkelissa kaikki ke-
hitetyt menetelmät on koottu yhdeksi ohjelmistokokonaisuudeksi, jolla voi kä-
sitellä puuttuvia arvoja datan esiprosessoinnissa, klusteroinnissa ja klusteriva-
lidoinnissa. Artikkeli sisältää kaikkien menetelmien kuvaukset ja tarjoaa lisäksi
käyttöesimerkkejä. Ohjelmisto on avoimesti saatavilla2 ja se on suunniteltu eri-
tyisesti tutkimuskäyttöön, mutta myös aiheesta kiinnostuneille harrastelijoille.

Esitetyt puuttuvan datan etäisyysestimointimenetelmät osoittivat toimivuu-
tensa klusteroinnissa. Tämän lisäksi on olemassa suuri määrä muita koneoppi-
mismenetelmiä, jotka myös perustuvat laskettuihin etäisyyksiin. Kehityt mene-
telmät soveltuvat esimerkiksi ohjattuun oppimiseen [14, 41, 17, 9].

2 https://github.com/markoniem/nanclustering_toolbox
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Abstract 

Serious games are designed to improve learning instead of providing only entertainment. 
Serious games analytics can be used for understanding and enhancing the quality of 
learning with serious games. One challenge in developing computerized support for 
learning is that learning of skills varies between players. Appropriate algorithms are 
needed for analyzing the performance of individual players. This paper presents a novel 
clustering-based profiling method for analyzing serious games learners. GraphoLearn, a 
game for training connections between speech sounds and letters, serves as the game-
based learning environment. The proposed clustering method was designed to group the 
learners into profiles based on game log data. 

The obtained profiles were statistically analyzed. For instance, the results revealed 
one profile consisting of 136 players who had difficulties with connecting most of the 
target sounds and letters, whereas learners in the other profiles typically had difficulties 
with specific sound-letter pairs. The results suggest that this profiling method can be 
useful for identifying children with a risk of reading disability and the proposed 
approach is a promising new method for analyzing serious game log data. 

Keywords: learning analytics, serious game, letter knowledge, reading difficulties 
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Introduction  
Background and motivation  
Differentiated instruction is a framework supporting diverse needs and ability levels of 
students in classrooms by flexible use of time, space, materials, and strategies (Regan et 
al., 2014).  Computer-assisted instruction, including intelligent tutoring systems and 
serious games is one way to differentiate traditional teaching (Boone & Higgins, 2007). 
Intelligent tutoring systems usually focus on embodying learning principles and 
adapting for differences between students, where as serious games emphasize student’s 
motivation and engagement (Yanjin & Vincent, 2017). Serious games provide a 
considerable alternative for improving learning experience in comparison to traditional 
teaching methods such as classroom lessons (Wendel et al., 2012).  Many serious games 
share the features of intelligent tutoring systems by including individually adaptive 
learning content, and by logging game events and contextual information during the 
gameplay (Wendel et al., 2012). Adaptation usually includes automatic content creation 
and adaptation of difficulty level for individual users as well as adaptation rules for 
gameplay (Wendel et al., 2012). Therefore, serious games provide an excellent platform 
for collecting data about individual differences in learning, which can be analyzed and 
utilized in the development of differentiated instruction.   

 

Practitioner Notes 
 
What is already known about this topic 

 Serious games are used to improve learning and to tailor learning 
environments for people with various difficulties in learning. 

 Learning analytics and serious games analytics are growing research fields, 
applying and developing data analysis methods to analyze, profile, and 
understand learning using serious games. 

 GraphoLearn is a learning game for training reading skills. The game provides 
preventive support for learners with varying skill levels including individuals 
who are struggling with reading. 
 

What this paper adds 
 The paper develops and presents a novel approach for serious games analytics 

to analyze GraphoLearn players. 
 The proposed data analysis approach produces an interpretable set of error 

profiles, which characterize the learning difficulties in a unique way. 
 The profiling method can be used for longitudinal studies and applied to 

analyzing logs of other serious games. 
 

Implications for practice and/or policy 
 It is possible to reveal and understand profiles of serious game players. 
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 The proposed data analysis method can be used to identify players who have a 
potential risk for reading difficulties or disabilities. 

 Even though the proposed method provides only limited information about 
players’ future skills, it offers a good starting point for other studies 
in which players’ development can be monitored more accurately. 

 

Learning analytics focuses on the development and utilization of analysis methods 
for data from educational settings. The main ambition of learning analytics is to 
measure, collect, analyze, and report data about learners, for purposes of understanding 
and optimizing learning, teaching, and the environment in which it all occurs (Mor et al., 
2015). It aims for the discovery of meaningful patterns about learners in their learning 
environment by using methods originated from statistics, information visualization, data 
mining, and social network analysis (Chatti et al., 2012; Peña-Ayala, 2017). Learning 
analytics can respond to a wide range of different needs, including visualization of 
learning activities, assessing learning behavior, predicting student performance, learning 
personalization, profiling, evaluation of social learning, and improving learning materials 
and tools (Nguyen et al., 2017).  

In the present study serious games analytics is applied to the Finnish version of 
GraphoLearn. The game was originally developed during the Jyväskylä Longitudinal 
Study of Dyslexia (JLD) (Lyytinen et al., 2009). The aim was to support the basic 
decoding skills of Finnish children at risk for reading difficulties by helping the learner 
to connect spoken items (e.g. speech sounds) to their written counterparts (e.g. letters). 
Nowadays, the game has been adapted accordingly to a high variety of languages 
around the world. 

We combine the methods of clustering, missing values handling, and cluster 
validation to offer an approach for profiling GraphoLearn players. The proposed model 
categorizes learners into distinct profiles based on players’ game log data informing about 
the choices the players have made in the game. The number of profiles is selected by using 
cluster validation indices. We excluded other more complex clustering methods because 
we do not aim at discovering clusters with any specific or anomalous shapes, but rather 
partition the data into subsets of similar observations using a clustering model that is 
straightforward to interpret both with respect to input variables and players (Steinbach 
et al., 2004).  Further, the study presents statistics of the different profiles, which can be 
used for analyzing learners’ risk for a reading difficulty. The purpose of the research is to 
identify a distinct set of learner profiles, which are interpretable and applicable to 
practice.   

 
On serious games analytics  
Serious games analytics can be used to improve learning and to tailor learning 
environments for people with various difficulties in learning. Lameras et al. (2017) 
investigated how learning attributes (e.g., learning activities, learning outcomes, 
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assessment, and feedback) and game properties can be planned, designed, and 
implemented by university teachers interested in using games for teaching and learning in 
higher education. The study identified 165 papers providing empirical evidence and 
conceptual assumptions concerning specific learning activities that could be linked with 
game elements (e.g., leaderboard, virtual currencies, and in-game hints), feedback and 
progress indicators, and teacher’s roles designing and facilitating game play. Nguyen et 
al. (2018) provided a framework and a design tool for people with intellectual disabilities 
to address each learner’s individual needs. The proposed framework is valuable for the 
design, implementation, evaluation, and adaptation of serious games for more enhanced 
learning and teaching at the group or individual level  

Serious games analytics can also be successfully applied for analyzing the individual 
differences and behavioral patterns of serious game learners. For instance, Hicks, Eagle, 
et al. (2016) analyzed gameplay patterns of the Quantum Spectre physics game to 
understand player dropout in the game. By using survival analysis, interaction network 
analysis, and the results from player surveys they were able to identify particular problem 
spots where players dropped out of the game due to its complexity. Hicks, Liu, Eagle, 
and Barnes (2016) also compared three different level creation editors, which are helpful 
for players learning about the BOTS game’s core mechanic. Based on the results of a 
zero-inflation model, programming editor and building editor were more effective than 
drag-and-drop editor in the case of encouraging the creation of levels, which contained 
more game play affordances for players. Horn et al. (2016) explored player strategies in 
GrAZE, an educational puzzle-based game that is designed to support algorithmical 
thinking for middle school students. The aim was to understand by using hierarchical 
clustering how players learn and progress in the game. The study identified problem 
areas in the game design for further development of the game. Harpstead and Aleven 
(2015) utilized learning curve analysis from serious games analytics in BeanStalk 
physics game designed to teach the concept of balance beam system for young children. 
The aim was to find implications for the level design to better accomplish its educational 
goals. The results show that analytical methods can yield actionable design 
recommendations.    
 
Research questions  
The study uses learning analytics for analyzing the playing patterns of GraphoLearn 
players based on a group-level information extracted from cluster profiles. The variables 
of interest are error rates, contexts of the errors, progression information, total playing 
times, and interval times between playing sessions. The provided clustering method is a 
novel alternative for analyzing partially incomplete learning data and it is modifiable for 
a high volume of data. The developed method is aimed to help characterizing and 
monitoring players and their learning process.  In addition, the method can help 
researchers identify groups of individuals who have a risk of reading difficulty. A 
diverse set of profiles is expected to be found because of a relatively large sample of 
different learners. The research questions are following:  
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RQ1: Is it possible to identify a set of distinct and interpretable cluster profiles by using 
the proposed clustering method? 

RQ1.1: Can internal cluster validation indices be used for finding the number of 
clusters in the models that are well-separated, interpretable, and useful for practice. 

RQ2: What are the typical bottlenecks compromising the learning of letter-sound    
correspondences?  
 
We set the following hypotheses to the research questions:  
 
H1: Because of the variability in the starting skills of the learners, we expect to identify 
several distinct profiles which can be interpreted for further application.  

H1.1: We expect that the use of cluster validation indices lead to a number of 
clusters that are well-separated, interpretable and thereby useful as well (see e.g. 
Hämäläinen et al., 2018).     

H2: We anticipate children to confuse especially letters that either look or sound similar 
(see Lyytinen et al., 2009). 

 
Context of the study  
Reading skill development 
The basic reading skill is based on connection building between spoken and written 
language. Thus, learning the skill requires storing of those connections. GraphoLearn is 
designed as a training environment for this purpose (Richardson & Lyytinen, 2014). In 
alphabetic writing systems, such connection building is based on the smallest imaginable 
units, phonemes, and their written equivalents, that is, letters (or graphemes when more 
than one letters is used to represent one sound). Phonemes and graphemes are 
consistently connected in transparent orthographies. Thus, one has to learn only the 
sounds of letters and invent that assembling such sounds in the order of letters means 
reading. In less transparent writings systems such as English the same principle works 
but only by using larger units such as rimes (e.g. ing in English) to make the 
connections more "learnable", that is, true in all contexts of writing. Learning to 
differentiate phonetically similar sounds such as /g/ and /d/ and visually similar letters 
such as n and h can be considered as the most challenging part of storing the 
connections. The method described here helps to understand reading difficulties and 
disorders, which result from, for example, biological factors or inadequate education. 
This is made by showing how the difficulties appear during the learning (i.e., connection 
building) process. 
 
GraphoLearn  
GraphoLearn is a game proven to provide preventive support for learning to read (Saine 
et al., 2011).  The game was originally developed as a way to observe how the 
difficulties in learning appear and later to supplement for reading instruction provided 
by schools. There are dozens of different GraphoLearn versions built for helping the 
learner to master the connection building in different linguistic and orthographic 
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contexts. The present study used the version designed for Finnish students. 
In transparent orthographies the game starts by introducing speech sounds and 

corresponding letters. First, phonetically and visually distinct and easy to perceive letters 
(e.g., a, e, and i) are presented and then one moves on to present correspondences that are 
more similar and thus less distinguishable (e.g., b, d, and p). In the game, the player first 
hears speech sound and then identifies and selects the corresponding letter from the 
several alternatives shown on the screen. The player receives immediate visual and 
auditory (corrective) feedback after each response. When the player has learned to 
connect most of the sounds and letters flawlessly, the game proceeds to training larger 
units such as spoken and written syllables and then words, starting from two letter 
syllables and eventually moving on to long words consisting of several letters. The 
player is expected to grasp the idea that reading occurs by assembling the speech units 
represented by the letters of a word. 

An important feature of GraphoLearn is that the progression of the game adapts to 
the learner’s current level of performance. This is done, for example, by using the 
Bayesian principle to present new learning tasks (Kujala et al., 2010). The adaptation 
techniques aim for a mean success rate of at least 80%, offering both challenge and 
success, which together makes playing more rewarding. Important features are also a 
personalizable avatar and rewards. Such rewards and graphically different game levels 
are efficient ways to sustain the learners’ motivation in playing and to expose them 
repeatedly to strengthen the correct connections. The game also involves the static 
assessment levels of learners’ development in the tasks during playing. 

Figure 1 shows the user interface of an assessment task included in specific versions 
of GraphoLearn, and chosen for a closer inspection in the present study. The assessment 
task evaluates the player’s skill in identifying the letters corresponding to the 23 speech 
sounds of the Finnish language. In the assessment, the player hears each of the sounds, 
one by one, and selects the corresponding letter from the alternatives shown on the screen.  
The sound is repeated if player does not response within 5 seconds. If the player does not 
answer within 15 seconds, an option for skipping the trial becomes available. The 
assessment is first presented when the game is started and is then repeated at intervals of 
1 hour.  
 
Methods  
Participants 
Learners were recruited by sending an information letter about GraphoLearn and 
upcoming study to an email list of teachers registered as GraphoLearn users. The 
information letter was sent in September, about six weeks after the start of the school 
year. Teachers were asked to consider if they had a first grade student with risk factors 
for dyslexia (difficulties at learning to read, poor letter knowledge, family members 
with dyslexia) and who spoke Finnish as first language. GraphoLearn was 
recommended for such students. Teachers needed a written consent from the child’s 
guardian before registration. Before the game could be used, parents and teachers also  
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Figure 1: Appearance of the sound-letter assessment task included in GraphoLearn 

 
needed to accept the terms and conditions stating that the game log data would be saved 
in the secure GraphoLearn server and could be used for research purposes 

Although we were unable to control the type of children who started the use the 
game, we expect that the suggestions given in the information letter had an effect on the 
characteristics of the sample, and we expect it to consist mostly of Finnish-speaking 
first graders who had not yet acquired the level of letter-sound correspondence skills 
needed for learning to read and who may also have a risk of dyslexia. 

Eventually, data was gathered from 1632 players who were 6.5–8.75 years old 
(M=7.39, SD=0.46). The data from the sound-letter assessment task indicates that 
children could correctly identify 13.68 letters (SD=5.09) out of 23, suggesting they had 
not yet learnt to master all the associations between sounds and letters and would likely 
benefit from training with GraphoLearn.  

Majority of the players were boys (61.1%), which is probably because reading 
difficulties are more common among boys (e.g. Rutter et al., 2004). The players came 
from more than 200 municipalities with all regions of Finland being represented. 
Largest numbers of players came from the cities of Helsinki and Jyväskylä. The number 
of adults, who had registered the children as GrahoLearn players, was 669. These 
adults, 88.6% being teachers and 11.4% parents, were in charge of supervising the 
player. The number of registered players per adult ranged from 1 to 46, but only 3% 
were in charge of more than 10 players. The median number of registered players per 
adult was 1. 

 
Data collection 
The players can learn to use GraphoLearn within 1–2 minutes. They were advised to 
use headphones and play short (about 10 minutes) sessions at time, and several sessions 
per day in consecutive days. Teachers and parents were responsible of supervising the  
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playing and ensuring that children used the game in a quiet place to avoid distractions. 
Teachers and parents were advised not to help children with game tasks, so that the 
difficulty level determined by the adaptation would not increase too much relative to 
child’s skill level. 

The player’s actions during the game were logged into a database. The personal log 
files include, for example, starting times, ending times, number of playing sessions, 
target items, durations, correct/incorrect selections, and skipped tasks. For research 
purposes, the most important information to be logged were player’s inputs and time 
spent with each task (from perceiving the stimuli to the selection of the corresponding 
written unit), which is commonly referred as response time. The sample was divided into 
two groups based on the type of letters used in practice (lowercase or uppercase) that 
was chosen by user. In total 1275 players played with lowercase letters and 357 players 
used uppercase letters. The lowercase letters are used in the initial stages of formal 
reading instruction at schools, which is the likely reason for them being chosen more 
often. The main limitation of the data was that 4.66% of the responses were missing 
because some players stopped playing before all 23 targets had been presented. This was 
taken in account when algorithms were developed for the present analysis (see the next 
section). 

 
The realized profiling approach  
Clustering is an unsupervised technique for organizing empirical observations into 
different groups called clusters so that observations in the same cluster are more similar 
to each other than observations in the other clusters. K-means is probably the most 
common prototype-based partitional clustering approach, which has a long history (Jain, 
2010). The algorithm is broadly used due to its ability to solve general purpose 
problems. K-means finds a partition such that the squared Euclidean error between 
cluster prototype, and the observations in the cluster is minimized (see more details in 
Supplement S2).  

Many clustering algorithms require the number of clusters as an input parameter. 
However, this information is not often available and it can be a challenging task to 
determine the number, especially in the cases of multidimensional data. Even though 
there exist different tricks to illustrate multidimensional data, for example, using 
different multidimensional visualization techniques or dimension reduction techniques, 
perceiving the data structure may not be obvious. Cluster validity measures provide a 
way of validating the quality of results of clustering methods to find a partition that best 
fits the nature of data. Because of multidimensional data structures, cluster validation 
measures, for example, cluster validation indices, are very suitable, even essential 
methods, for determining the number of clusters (Arbelaitz et al., 2013). The internal 
cluster validity index is one of categories of cluster validity, which utilizes the results of 
a clustering algorithm in terms of quantities of the data set itself (see more details in 
Supplement S3). 

This study consisted of implementing K-means clustering, K-means++ initialization, 
and cluster validation indices algorithms. Since some observations in GraphoLearn data 
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included missing values, distance calculations in all of the implemented algorithms was 
needed to replace with the general similarity measure (Gower, 1971).  

The players were divided into two groups based on whether they used lowercase or 
uppercase letters. The game log data of both groups were transformed into two binary 
matrices. The number of rows corresponded to the number of players and the number of 
columns to the number of distinct target-letter pairs. Non-zeros in the matrices indicated 
selected erroneous selections. Matrix dimensionalities were reduced, because of the 
computational cost of clustering. This was applied by filtering out columns, which did 
not consisted noticeable number of erroneous selections.   

After the pre-processing step, the clustering was performed by gradually increasing 
the number of clusters, K, from 2 to 10. The maximum number was selected as 10, 
because a high number of clusters makes the interpretation and analysis of the results 
more challenging. In addition, a small number of K generalizes data the most. For 
instance, Saarela and Kärkkäinen (2015) used 11 as the maximum number of clusters in 
their study of the Finnish student population in PISA 2012. For each value of K, 
clustering was repeated 200 times and the best prototypes with the lowest clustering 
error were saved. These were also used as initial points for the next value of K, where 
the additional initial point was generated using K-means++ initialization algorithm.  

The quality of distinct data partitions and obtained cluster profiles were evaluated 
using internal cluster validation indices (CVIs). Eight CVIs were selected from our 
previous study (Niemelä et al., 2018) for calculating clustering index values. Multiple 
indices were selected to the current study since the previous studies revealed that there 
does not exist one superior index which overcomes others (see e.g. Hämäläinen et al., 
2017). Each CVI produced one quality measure of clustering for each value of K. These 
values were used when deciding the final number of clusters for lowercase and 
uppercase data sets. Index values from different indices were scaled to the same range 
of [0, 1] to easy up their comparison. 

The number of clusters was decided by analyzing the index curves of validation 
indices. First, the index values were grouped together and the speed of improvement 
(i.e., strength of decreasing trend based on group distributions) was analyzed using 
statistical testing. The aim was to reject weak candidates, that is, to eliminate regions 
where improvements were not statistically significant. The Wilcoxon statistical ranksum 
test was performed for each two-pair of successive groups. In the final stage, the 
number of clusters were decided benefiting the statistical measures and analyzing 
figures obtained from the CVIs. Regarding the source codes of algorithms, they are 
available online1.  

 
Results 
Interpretation of the learner profiles 
Figures S1.1, S1.2, and S1.3 in Supplement S1 show the learner profiles in a confusion  

                                                           
1 http://users.jyu.fi/~mapeniem/BJET/Kmeans/ 
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matrix format for the lowercase letter data set. The profiles were calculated also by 
using the uppercase letter data set but because of similar confusion patterns and low 
number of cases in certain profiles they are omitted here. Nevertheless, these results are 
available in Supplement S3.  

In Figures S1.1, S1.2, and S1.3 darker colors indicate higher average confusion 
percentages for the target-distractor pairs over the players in the profiles. The 
confusions in the matrix diagonals are zero because they indicate correct selections. 
Most of the observed confusion can be explained by phonetic and visual similarity of 
the sounds and letters. These two main categories of confusion are marked with "circle" 
and "square" symbols in the matrices. It is also possible that the errors are associated to 
both or neither categories, which are marked with "star" and "rectangle" symbols. 

 
Main errors in the profiles 
Confusion symbols are summarized in Table 1. Only confusion percentages exceeding 
10% are illustrated to clarify presentation. Further, noticeable confusions exceeding 
15% are underlined. Table 1 shows that many profiles have something in common, for 
example, the letter n is often mixed to letters h, m, and the letter f is mixed to letters s 
and v. Especially, n is strongly confused with m and this can be concluded to be the 
most challenging sound-letter pair for the players possibly, because both acoustic and 
visual similarity compromises building the connection. An interesting finding is that the 
confusion between commonly mixed letters f and v cannot be explained by concrete 
phonetic nor visual similarity of the letters. This may be related to f being a foreign 
letter in the Finnish language, and being pronounced as /v/ in certain dialects. 

Table 1 shows that all the profiles have some unique errors regarding target letters. 
Profile 1 players have difficulties in connection building due to the difficulties in 
separating both visually and phonetically similar items represented by the b and d 
letters, which is not as often appearing in other profiles. Profile 2 players mix sound /g/ 
to sounds /d/ and /k/, whereas profile 3 players mix sound /t/ to sound /s/. Profile 4 
players have difficulties with both of the two main confusion categories, that is, they 
often do not differentiate visually and phonetically similar letters. The main problems of 
profile 5 and profile 6 players are related to the visual similarity of the letters.      
 
Calculated statistics 
Table 2 provides information about the performances in the assessment tasks and 
playing patterns of the players in the different profiles. The error rate refers to the mean 
percentage of incorrect selections of players within a profile. The players' development 
in connecting speech sounds to letters from the first assessment to the second 
assessment (after about 60 minutes of playing) was calculated by subtracting the error 
rate in the second assessment from the error rate in the first assessment. Only players 
who completed both assessments were included and clustering was not repeated in the 
second assessment. The total playing time refers to the time the game was used within 
the first five months of usage. The interval time refers to the median time gap between 
play sessions during the first month of playing.    
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Table 1: Symbol table of similarities for different profiles 
 target | distractor 
 b|d b|p b|v d|b d|g f|h f|s f|v g|b g|d g|k i|l j|l m|n n|h n|m p|b p|d t|f t|s u|o y|ö ö|o ö|ä 
profile                         
p1                         
p2                         
p3                         
p4                         
p5                         
p6                         
total 1 2 1 2 1 1 3 5 2 5 1 5 1 2 5 5 4 1 3 1 1 3 1 1 
phonetic similarity= , visual similarity= , phonetic and visual similarity= , 
unknown category=   

 
According to Table 2, majority of players (34.8%) were grouped in the profile 3. In 

this profile, all the statistical values were near the average values of all profiles. The 
players in the profile 4 have average error rate of 55.3% and median total playing time 
of 130.1 minutes. These values are much higher than the values in the other profiles. 
The profile 4 players seem to have had difficulties with almost all target letters. The 
players have approximately 71% higher total playing time compared to the median 
value of all players, suggesting that they have needed more training than others. The 
average error rate in the profile 6 is also high but this is caused by players who skipped 
most of the target tasks. The high percentage of the skipped tasks may imply that the 
players of this profile (5.4% of all players) were not motivated to complete the 
assessment in the beginning of the training. Although the players in the profile 4 and 
profile 6 had the highest error rates in the beginning, they also showed more progress 
than the players in other profiles according to the calculated differences in error rates, 
25.1% and 23.9%, respectively. The players in profile 1 and profile 4 had the shortest 
time intervals between the playing sessions, suggesting more frequent playing. 

 
Determination of the number of profiles 
Using validation index curves obtained from different CVIs, minimums correspond to 
the best clustering structures. However, instead of the minimums, the speed of 
improvements of the index values was the main interest. Thus, because if the value of an 
individual CVI does not change much, it usually means that increasing the number of 
clusters does not notably improve the final solution. The results of CVIs are given in 
Figure 2. Numbers of clusters are in x-axes and y-axes show index values which were 
scaled to the range of [0, 1]. All indices except Pakhira-Bandyopadhyay-Maulik (PBM) 
and Silhouette obtain the minimum at the highest K value. Especially, Calinski-Harabasz, 
kCE, PBM, and WB indices provided the high speed of improvement of the cluster 
validation measures. 
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Table 2: Findings of profiles 
 p1 p2 p3 p4 p5 p6 p 

statistics        
size (in %) 14.3% 19.0% 34.8% 10.7% 15.8% 5.4% 100.0% 
error rate 35.7% 39.1% 40.1% 55.3% 30.7% 54.2% 40.2% 
progression* 14.3% 17.3% 17.6% 25.1% 11.5% 23.9% 17.8% 
playing time 67.2 min 89.7 min 75.4 min 130.1 min 59.8 min 75.7 min 76.0 min 
interval time 3.0 days 6.5 days 5.0 days 4.0 days 5.5 days 6.5 days 5.1 days 

*Only players who completed both assessments are included. 
 

Figure 3 shows a box plot presentation of all index values combined in the groups 
based on values of K. On each box the central mark indicates median of eight indices, 
and the bottom and the top edges of the box indicate 25th and 75th percentiles, 
respectively. The whiskers show to the most extreme data points and outliers are plotted 
using a '+' symbol. Table 3 presents statistical differences between each two pairs of 
groups, which were measured by Wilcoxon ranksum test so that only the successive 
groups which showed a decreasing trend in index values were compared. The bolded 
numbers indicate statistically significant differences between groups (p<0.05).  Using 
the measured index values for lowercase letter data, statistically significant differences 
were obtained in two comparisons of the distributions. The measured difference 
between the median values of groups 5 and 6 was the highest (0.464) and therefore K=6 
was the selected number of cluster profiles. Analogously, using the measured values for 
uppercase letter data, in total two comparisons were statistically different. The 
calculated difference between the median values of groups 2 and 5 was the highest 
(0.361) and therefore K=5 was the selected number. Nevertheless, our experiments 
showed that the fifth uppercase letter cluster profile included only few players and 
therefore four profiles were considered in the future analysis.  

 

 
Figure 2: Values of cluster validation indices for K=2,…,10  
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Figure 3: Box plot presentation of scaled index values 

Table 3: Statistical p values obtained by Wilcoxon ranksum test 
 compared pairs of distributions 
 g2, g3 g2, g5 g3, g5 g5, g6 g6, g7 g7, g8 g8, g9 g9, g10 
lowercase letters 0.088 – 0.850 0.002 0.054 0.140 0.162 0.003 
uppercase letters – 0.038 – 0.104 0.004 0.326 0.521 0.238 
 
 
Discussion 
This paper presents a new clustering based approach for identifying different profiles of 
serious game players. We applied this method to GraphoLearn game log data. Based 
on the results, a set of profiles with different error types and rates were found. Even 
though there were errors common to all profiles, there were also many specific errors, 
which differentiated the profiles. According to Table 2, there were one "high" 
performing, three "medium" performing, and two "low" performing profiles with the 
different sound-letter pair errors. The players in the two weakest profiles showed the 
best progression while playing the game, which suggest that the combination of 
GraphoLearn and school-provided reading instruction helps children who have 
difficulties in reading acquisition. These findings are applicable to the practice and, 
therefore, the first hypothesis H1 is supported. 

We found support to the hypothesis H2, because most of the errors were related to 
confusing phonetically and visually similar letters (see Table 1 for more details).  
Taking into account the confusions exceeding 10%, we realized that only 6 cases out of 
57 confusions were not explainable by phonetic or visual similarity of letters.  

Lyytinen et al. (2009) believed that children with familiar risk of dyslexia and/or 
low letter knowledge during the few months before school entry benefit from preventive 
playing in terms of avoiding unwanted failure experiences during the first months of 
school instructions. The study shows that the most challenging game tasks are related to 
visually and phonetically similar letters. In addition, uncommon letters in the Finnish 
language (e.g. d and b) showed to be challenging for the beginners.              
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The hypothesis H1.1 was supported. We used the Wilcoxon’s ranksum test and the 
real differences of combined groups of CVIs to identify the number of clusters for 
lowercase and uppercase letter data. The results revealed 6 profiles for lowercase data 
and 5 profiles for uppercase data and we consider them as the most appropriate number 
for the clustering models.  

Clustering methods are very commonly used in learning analytics. Saarela and 
Kärkkäinen (2017) have made a small survey of educational clustering methods. Three 
main approaches were hierarchical clustering, K-means clustering, and expectation 
maximization. These methods were used student modelling which included behavior 
and performance based models. The set of papers was identified scanning through 
relevant publication forums including the Journal of Learning Analytics and the 
Conference on Learning Analytics & Knowledge.          

The used K-means clustering method and provided data analysis differentiates the 
current study from the related work as described in the section On serious games 
analytics. Horn et al. (2016) used the hierarchical clustering method to analyze game 
progression of learners. The main difference between clustering approaches is that the 
K-means clustering produce a single-layer clustering structure whereas the hierarchical 
method generates a tree-type clustering structure. The computational complicity of the 
hierarchical method is much higher and, therefore, it is not recommended for large-sized 
data sets. Further, the hierarchical method produces arbitrary shaped clusters whereas 
K-means produces easily interpreted geometrically closed subsets (Jain, 2010).  

In the present study, the game data is limited only to the assessment tasks. To obtain 
more accurate and reliable clustering results, a larger sample size should be used. 
Further, other interesting variables could also be clustered, for example, larger units 
such as syllables or words, to achieve player profiles revealing differences in the types 
of errors children make in the actual reading. Further, more efficient clustering 
algorithms are required for a larger pool of samples. More specifically, a parallel 
implementation of algorithms into multiple machines with shared memory resources 
could be realized (Hämäläinen et al., 2018). Since GraphoLearn data contain missing 
values and outliers it is important to consider use of a robust clustering method in future 
algorithm design. For instance, spatial median is a statistically robust location estimate 
in clustering which can handle up to 50% of missing values or outliers (Hämäläinen et 
al., 2017) 

A possible direction for future research could be repeating the clustering at regular 
time intervals to see how players divide into profiles in the follow-up cluster models. 
The approach offers a way to monitor players' progression in the game by detecting 
their connections to varied skill profiles. This new framework can be beneficial for 
validating the design of the original game, for example, it might be advantageous to 
improve the adaptation mechanism of the GraphoLearn for learners from different 
profiles (Kujala et al., 2010). For instance, Cano et al. (2018) have previously used 
learning analytics for validating the design of a learning game for adults with 
intellectual disabilities. In the study, the data tracker sent out relevant information about 
the behavior of the users and their learning patterns while playing the game. Further, 
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statistical learning models, for example, neural networks, can be used for predicting 
players' game progression. Interesting variables to be predicted are, for example, 
player's inputs to different tasks and a particular time when the player will stop playing.    
 
Conclusions 
The growth of learning games and e-learning platforms imply that volumes of data on 
learning and learners are increasing rapidly. This means that special techniques are 
needed for analyzing learners with varying skills and their needs to enhance their 
learning process. We applied the clustering method from a branch of learning analytics 
to analyze performance of GraphoLearn players. The results indicated that it is possible 
to identify different types of learners using the given clustering method. The calculated 
statistics offered valuable information about the cluster profiles. This information can be 
used, for example, as a support for tracking children with a risk of reading disability due 
to certain types of bottlenecks compromising learning. Clustering was performed for 
data obtained at a very early stage in the game. Therefore, the used approach gives 
limited evidence about players' future skills. However, the future research direction is to 
extend the developed algorithms so that many other interesting learner patterns can be 
extracted from the data, for example, players' development in the game is one main 
interest. The present study offered the method, which is a considerable alternative for 
analyzing learners of alphabetical learning games and it is a good starting point for 
developing more effective analytical tools in different contexts of learning. 
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Supplement S1: Confusion matrices for lowercase letter data 
 
 
 

Figure S1.1: Profiles 1 and 2 for lowercase letter data 
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Figure S1.2: Profiles 3 and 4 for lowercase letter data 
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Figure S1.3: Profiles 5 and 6 for lowercase letter data 
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Supplement S2: K-means clustering and validation indices 
K-means clustering with missing data 
The objective function for K-means clustering can be defined as:    

 
where , refers to a set of N observations, and  are 
obtained cluster profiles.  denotes modified version of the -norm. Since partially 
incomplete data, the modified norm is needed for clustering. The main idea of the 
modified approach is to use pairwise available components and scale the result to the 
missing components (Gower, 1971) . 

K-means clustering method consists of two main steps: an initialization and local 
refinement steps (see Algorithm 1). These steps are usually performed using multiple 
restarts and the result with the smallest clustering error will be selected. In an 
initialization step a local partition of data is decided. The quality of clustering depends 
on the initialization step since clustering acts locally. A local refinement step perform 
local search which improve quality of initial partition. The aim of this step is to minimize 
clustering error, that is, summed distance of observations to the nearest prototypes. The 
step is performed in an iterative way assigning observations to the nearest prototypes and 
updating prototype locations. An advantage of K-means with K-means++ type of 
initializations is that it has only a linear time complexity and comparable fast 
convergence since K-means++ favors distinct prototypes in a data space (Arthur and 
Vassilvitskii, 2007). 

 
Internal cluster validation indices   
In K-means setting the number of clusters is essential to be determined. Internal cluster 
validation indices (CVIs) identify the number of clusters such that any external/prior 
information is not needed in the calculations. The most of the CVIs are defined by 
compactness and separability of the clustering result. The validity index provides a 
measure for each number of clusters. Depending on the used index formula, the lowest 
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or the highest measure is usually selected as the final number of clusters. Further, the 
number of clusters can be also selected using the speed of improvement of the cluster 
validation measures, for example, using a classical knee-point method (Thorndike, 
1953). 

Our previous study (Niemelä et al., 2018) presented the most commonly used 
validation indices. The reduced formulas were used since constant terms and monotone 
functions offered in the original formulas do not affect to the final solutions. In addition, 
the used formulas were extended for the general similarity measure. In the study, 
compactness was defined by Intra and separability by Inter. Compactness is usually 
defined by using summed variances of observations around prototypes in different 
clusters.  Separability indicates how well distinct clusters are for each other. Minimum 
or maximum values of distances of all prototypes or variance of prototypes are 
popularly used variables.  The study proposed formulas in the form where Intra was 
divided by Inter and thus they were attempted to be minimized.  

In general, the decision of the number of clusters by using CVIs involves the 
following procedure: 

 
1) Repeat clustering iteratively ranging K from Kmin to Kmax. Obtain calculated cluster 

profiles and data partitions for each value of K based on Algorithm 1. 
2) Calculate index measures using CVIs for each value of K. Form index curves based 

on the measured values.    
3) Select the optimal number of clusters according to some decision criteria, for 

example, minimum/maximum values of cluster validation index curves or using 
speed of improvements of index measures.       
 

Regarding to the described methods, the source codes are available online: 
http://users.jyu.fi/~mapeniem/BJET/Kmeans/  
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Supplement S3: Results for uppercase letter data  
Uppercase data 
The analyses of GraphoLearn game play data, which was originally performed for the 
lowercase data set were repeated by using uppercase letter data set. These results are 
given in Tables S3.1 – S3.2 and Figures S3.1 – S3.2, which can be shortly summarized.  

Table S3.1 shows symbols for confusions exceeding 10 % and confusions exceeding 
15 % are illustrated with underlined symbols. The most frequently mixed letters were G, 
D, N, and M similarly to the players who used lowercase letter data. Table S3.2 shows 
error rates from four profiles which were in the range of 34.5 % – 42.7 %.  The results 
are mostly better than the calculated error rates from six profiles of lowercase letter data 
(30.7 % – 55.3 %). This may be related to fact that uppercase letters are visually less 
similar than lowercase letters. The progression information was calculated based on 
only few players because many of players played less than one hour and did not 
complete the second assessment. Therefore, these numbers give only limited 
information about the players' progression. The players of this data set have not actively 
played the game because the total playing times were remarkably smaller and the 
interval times were higher compared to the times gained from the players who used the 
lowercase letter data set.  

 
Table S3.1: Symbol table of similarities for different uppercase data profiles 

 target | distractor 
 B|D B|P D|B D|G F|H F|S F|V G|B G|D K|F M|N N|M P|B U|O V|F Y|Ö Ä|H Ä|Ö 

profile                   
P1                   
P2                   
P3                   
P4                   

total 2 1 1 2 2 2 1 1 4 1 3 4 2 1 1 2 1 1 

phonetic similarity= ,  visual similarity= , phonetic and visual similarity= ,  
unknown category=  

 
 
 

Table S3.2:  Findings of uppercase data profiles 
 

 profile all 
 P1 P2 P3 P4 P 
statistics      
size (in %) 52.8% 21.9% 15.1% 10.2% 100.0% 
error rate 34.5% 38.7% 36.2% 42.7% 36.5% 
progression* 10.2% 23.0% 13.1% 11.9% 13.8% 
playing time 36.8 min 46.5 min 38.2 min 29.7 min 39.5 min 
interval time 7.0 days 8.1 days 7.0 days 9.5 days 7.5 days 
*Only players who completed both assessments are included. 

 



Game learning analytics for understanding reading skills 

 

 

Figure S3.1: Profiles 1 and 2 for uppercase letter data 
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Figure S3.2: Profiles 3 and 4 for uppercase letter data 
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Abstract.

Clustering is an unsupervised machine learning technique, which aims to
divide a given set of data into subsets. The number of hidden groups in
cluster analysis is not always obvious and, for this purpose, various cluster
validation indices have been suggested. Recently some studies reviewing
validation indices have been provided, but any experiments against missing
data are not yet available. In this paper, performance of ten well-known
indices on ten synthetic data sets with various ratios of missing values is
measured using squared euclidean and city block distances based cluster-
ing. The original indices are modified for a city block distance in a novel
way. Experiments illustrate the different degree of stability for the indices
with respect to the missing data.

1 Introduction

In clustering, a given set of data is divided into subsets, clusters, such that ob-
servations in a cluster are similar to each other and dissimilar to observations
in the other clusters. Even though the principle is simple, there exist multi-
ple clustering approaches [1] of which the main groups are prototype-based and
hierarchical clustering. Prototype-based algorithms, such as K-means [2], uti-
lize error functions based on within-cluster distances, which then provide data
partition with location estimates, e.g., the sample mean, as the cluster proto-
types. K-medians is a robust variant of K-means algorithm, which does not
assume spherically symmetric, normally distributed cluster shapes, but instead
the variables can consist of discrete values with uniform quantization error [3].
Further, another property of K-medians is robustness against outliers since the
breakdown point of the median is 50 %.

Prototype-based clustering typically requires the number of clusters, denoted
by K, as an input parameter. Determining the correct number of clusters is a
difficult task, because there are often more than one possible solutions to a clus-
tering problem. The existing methods to estimate the number of clusters are
based on, e.g., visual evaluation of clustering error [4], stability of the solution
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[5], and multiobjective evolutionary algorithms [6]. Cluster validation indices an-
alyze the quality of clustering models by assessing compactness and separability
of clusters with different values of K.

Internal cluster validation indices have been compared in recent studies. In
[7], kCE-index was found to be the best performing index over 43 indices, being
the only index able to validate successfully the single cluster data set, in which
the other indices recommended higher numbers. In [8], Wemmert-Gançarski out-
performed other indices when three distance measures and clustering approaches
with 56 synthetic and 6 real world data sets were used. The study summarized
different results for different indices. For some indices, the performances varied
between different distances. In [9], Silhouette index was generally the best of
30 indices through a large number of experiments, including demanding data
sets with high dimensionalities, noise, and overlapping clusters.

Despite the extensive comparisons of indices in the previous studies, none
of them considered data sets with missing values. However, missing values are
common in the real-world data. There could be a variety of reasons to explain
missingness of variables, including measurement error, device malfunction, unan-
swered question, etc. Many clustering approaches are based on the assumption
of complete data sets, therefore, such methods cannot be applied directly if some
of the data values are missing.

In this work, the previous work especially in [7, 8] was continued by selecting
the best performing indices to the comparison. The original indices based on
euclidean distance were extended also for city block distance. The selected clus-
tering methods and indices, presented in Section 2, were developed to be tolerant
for missing values. Numerical results demonstrating the quality of indices are
given and the main findings are discussed in Section 3.

2 Methods

The prototype-based clustering methods consist of an initialization step, in which
an initial partition of the data is decided, and a local refinement step, in which
the quality of the initial partition is improved by an iterative local search al-
gorithm. Hence, in a general case, the following clustering error is minimized
during the local search:

J ({ck}) =
N∑
i=1

min
k=1,...,K

‖xi − ck‖qp =

K∑
k=1

J q
p,k = J q

p , (1)

where {xi}Ni=1,xi ∈ R
n, is the given set of n-dimensional observations, N is

the number of observations, and {ck}Kk=1 are the obtained prototype vectors.
lp-norms to q-th power are utilized for different location estimates. The within-
cluster error in cluster Ck, is denoted by J q

p,k and the total residual error of a
local minimizer of Eq. 1 is denoted by J q

p . By choosing p = q = 1 or p = q = 2,
the error function for K-medians or K-means, respectively, are obtained. Note
that if q = 1 it can be omitted from the notation.
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In this study, a partial distance strategy for calculating distances is adopted
from [10] since the data vectors may consist missing values. The idea is that the
sum of differences of the known components are used and scaled to the missing
components. The original method was developed for the l2-norm, but a modified
version for the l1-norm is offered in the current study. Distances based on l1 and

l2 norms read as d̂1(x,y) = n
n̂

n̂∑
j=1

|(x)j − (y)j | and d̂2(x,y) =

√
n
n̂

n̂∑
j=1

((x)j − (y)j)2,

respectively. n̂ indicates the number of components that exist in both of the
compared vectors. We assume that n̂ > 0. The modified version of Eq. 1 is
required due to missing data. The new estimated clustering error, based on the
partial distance strategy, is defined as Ĵ q

p =
∑N

i=1 min
k=1,...,K

d̂qp(xi, ck).

Internal cluster validation indices prefer both high within clusters similarity
and between clusters separability. In this work, the measured within-cluster
similarity is referred to as Intra and between-cluster separability as Inter. Low
values are better for Intra and high values for Inter. The optimal solution is
obtained by minimizing or maximizing the ratio of Intra and Inter measures.

The eight best performing incides from [7] in addition to WB-index (WB) [8]
and Davies-Bouldin∗ [9] were compared in this study. All the indices, except
Silhouette, are defined in Table 1. We presented general forms of reduced
formulas, where constant terms or monotone functions have been omitted. The
formulas are attempted to be minimized since Intra is divided by Inter. The
clustering error is often used as Intra. Further, many indices tend to define Inter
as the minimum distance between cluster prototypes. Distances between cluster
prototypes and the whole data prototype are also commonly applied as Inter
value. In addition, WB, Calinski-Harabasz, and kCE-index utilize penalization
terms for a high number of clusters that were originally defined in the context
of the squared euclidean distance. Initial experiments showed that these terms
penalized too much while non-squared counterparts were used, therefore, square
roots over terms were taken in these cases.

In Silhouette index, Intra is the average dissimilarity of xi to all other points
in the same cluster and Inter is the minimum average dissimilarity of xi to all

points in a different cluster. Silhouette index is defined as
N∑
i=1

Inter(xi)−Intra(xi)
max(Intra(xi),Inter(xi))

.

Contrary to indices that use full prototypes for calculating an index value with
missing data, Silhouette calculates distances between observations that are
sometimes incomplete. Hence, the adopted distance calculation technique, pre-
sented in this study, is especially beneficial for Silhouette since there is always
a higher risk that at least one of pairwise components is missing.

Ten synthetic data sets were used in the study. Four S1 sets and two D1 sets
were selected from [11]. Sim2D22 and Sim5D22 data sets were selected from [7].
New similar O2002 and O20002 data sets with a different number of observations
were created for this study. Both O data sets consist of five clusters in total, one
Gaussian and four Laplace distributed clusters. In addition, 10 % of uniformly

1http://cs.uef.fi/sipu/datasets/
2http://users.jyu.fi/˜mapeniem/CVI/Data/
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distributed noise was added to new data sets. D sets are 32 and 256 dimensional
and the other presented data sets are two dimensional.

Table 1: Formulas of cluster validation indices.

Name Intra Inter Formula

Calinski-Harabasz (CH) Ĵ p
p

K∑

k=1

nk‖ck − m‖p
p ( K−1

N−K )
1

3−p × Intra
Inter

Davies-Bouldin (DB)
Ĵp,k
nk

+
Ĵ
p,k′
n
k′ ‖ck − ck∗‖p

1
K

K∑

k=1

max
k �=k′

Intra(k,k′)
Inter(k,k′)

Davies-Bouldin* (DB*)
Ĵp,k
nk

+
Ĵ
p,k′
n
k′ ‖ck − ck∗‖p

1
K

K∑

k=1

max
k �=k′ Intra(k,k′)

mink �=k∗ Inter(k,k∗)

Generalized Dunn (GD) max
Ĵp,k
nk

min
k �=k′ ‖ck − ck′‖p

Intra
Inter

kCE-index (KCE) Ĵ p
p 1 K

1
3−p × Intra

Pakhira-Bandyopadhyay-Maulik (PBM) Ĵp max
k �=k′ ‖ck − ck′‖p, K × Intra

Inter

Ray-Turi (RT) Ĵ p
p min

k �=k′ ‖ck − ck′‖p
p

Intra
Inter

WB-index (WB) Ĵ p
p

K∑

k=1

nk‖ck − m‖p
p K

1
3−p × Intra

Inter

Wemmert-Gançarski (WG) d̂p(xi, ck) min
k �=k′ d̂p(xi, ck′ )

K∑

k=1

∑

xi∈Ck

Intra(xi)

Inter(xi)

3 Experimental results and conclusion

Experiments were performed using MATLAB (R2015b, 64-bit). Data sets
were min-max scaled to a range of [-1, 1] before clustering and index value
calculations. Incomplete data sets with varying numbers of missing values were
created by removing data values completely at random from the existing test
data sets. The clustering was repeated 100 times from random initial conditions
of prototypes and the solution of the lowest local minima was selected as the
final solution. The initialization was performed in an iterative manner such
that K ranged from 2 to 20. More specifically, the obtained prototypes were
saved for each K and these previously saved prototypes were utilized during
the next initialization. The generalized version of K-means++ algorithm (see
[8] for details) was used and therefore the next prototype was selected based on
the calculated distances to the closest already selected prototypes such that the
most distant point had the highest probability of being selected.

Table 2 shows the obtained results. Clearly, WG and Silhouette were gen-
erally the two best performing indices suggesting 64 and 63 correct solutions
in total, respectively. Further, WG, KCE, and CH were the three best performing
indices for the euclidean distance, giving 36, 33, and 33 correct solutions, re-
spectively. In addition, Silhouette and WG were the two best ones for the city
block distance, proposing 31 and 28 correct solutions, respectively. Regarding
the stability of indices, WG showed to be the most stable, giving always nine cor-
rect solutions over ten data sets for the euclidean distance while the proportion
of missing data was gradually increased from 0 % to 20 %. CH was the stable
index for the city block. However, it only offered six correct solutions for each
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level of missing values. For the most of indices, especially for euclidean distance
based indices, the high number of missing values has negative impact on the
performance. As shown in Table 2, the whole clustering algorithm did not cause
instability to the index results since only in four cases the correct number of
clusters was not found after clustering with random initial prototypes, but only
after using the known centers, given by the authors of the data sets, as initial
prototypes in clustering.

This section provided results which were obtained when cluster validation
indices were compared. Previous studies [7, 8] were continued by extending
clustering methods and indices to city block distances and to handle missing
values. Similarly to the previous studies, WG, Silhouette, and KCE were nom-
inated to be the best performing indices in this study. All indices performed
better with the euclidean distance compared to the city block distance. The
used data sets are all continuous valued which may explain the better results
with the euclidean distance. Silhouette produced almost identical results for
these two distances and was the best index for the city block. Different stability
patterns for the indices were shown in the study. WG was the most stable index,
recommending nearly always the same numbers for clusters over the different
levels of missing values. Future research direction is to use real-world data in
experiments. Further testing is also needed with multidimensional data since all
the indices offered always correct answers for D32 and D256 data sets.
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Euc CH DB DB* GD KCE
Cit
S1 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
S2 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
S3 15 15 15 15 15 15 15 15 15 15 15 15 4 4 15 4 15 15 15 15

15 15 15 15 7 14 14 14 4 4 4 4 4 4 4 4 15 15 15 16
S4 15 15 15 15 14 14 14 17 13 13 13 13 4 4 4 4 15 15 15 15

15 15 15 15 17 17 17 17 4 4 4 4 4 4 4 4 15 15 15 16
D32 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16

16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
D256 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16

16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
Sim2D2 2 2 2 2 2 2 20 19 2 2 2 2 2 2 2 2 2 2 2 2

4 4 4 20 13 13 20 18 2 2 2 2 2 2 2 2 2 2 2 20
Sim5D2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 5 5 5 5

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
O200 5 20 20 20 5 5 5 20 5 5 5 5 4 4 4 4 20 20 20 20

20 20 20 20 8 8 20 20 8 5 4 5 5 5 5 5 20 20 20 20
O2000 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 6 7

6 12 13 20 6 6 6 5 4 4 4 5 4 4 4 5 1 6 6 14
Total 9 8 8 8 8 8 7 6 8 8 8 8 6 6 7 6 9 8 8 8

6 6 6 6 4 4 4 5 5 6 5 7 6 6 6 7 7 7 7 4
PBM RT SIL WB WG

S1 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

S2 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

S3 5 5 4 4 4 4 4 4 15 15 2 2 15 15 15 16 15 15 15 15
4 4 4 4 4 4 15 15 15 15 15 2 15 15 15 16 15 15 15 15

S4 4 4 4 4 13 13 10 10 15 15 15 3 15 15 15 20 15 15 15 15
5 5 5 5 17 17 4 14 15 15 14 14 15 15 15 16 16 16 16 16

D32 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16

D256 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16

Sim2D2 2 2 2 2 2 2 2 2 2 2 2 2 12 12 20 20 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 4 20 20 20 2 2 2 2

Sim5D2 5 5 5 5 3 3 3 3 3 3 3 3 5 5 5 5 3 3 3 3
5 5 4+ 4+ 3 3 3 3 3 3 3 3 4 7 7 17 3 3 3 3

O200 5 5 5 5 5 5 5 5 5 5 5 5 20 20 20 20 5 5 5 5
3 3 3 3 5 5 5 5 5 5 5 5 20 20 20 20 5 5 20 20

O2000 5 4 4 4 5 5 5 4 5 5 5 6 6 7 7 20 5 5 5 5
3 3 3 3 4 4 4 5 5 5 6+ 6+ 14 13 20 20 5 5 6 2

Total 8 7 7 7 7 7 7 6 9 9 8 6 7 7 7 5 9 9 9 9
6 6 5 5 6 6 7 8 9 9 7 6 6 6 6 4 8 8 6 6

+ Result can be corrected using the known centers as initial prototypes

Table 2: The determined number of clusters by cluster validation indices. The
correct numbers are bolded. The results are given in four columns, one column
for each percentage (0, 5, 10, and 20 %) of missing values.
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Improving Clustering and Cluster
Validation with Missing Data using
Distance Estimation Methods

Marko Niemelä and Tommi Kärkkäinen

Abstract Missing data introduces a challenge in the field of unsupervised
learning. In clustering, when the form and the number of clusters is to be
determined, one needs to deal with the missing values both in the clustering
process and in the cluster validation. In the previous research, the clustering
algorithm has been treated using robust clustering methods and available
data strategy, and the cluster validation indices have been computed with the
partial distance approximation. However, lately special methods for distance
estimation with missing values have been proposed and this work is the first
one where these methods are systematically applied and tested in clustering
and cluster validation. More precisely, we propose, implement, and analyze
the use of distance estimation methods to improve the discrimination power
of clustering and cluster validation indices. A novel, robust prototype-based
clustering process in two stages is suggested. Our results and conclusions
confirm the usefulness of the distance estimation methods in clustering but,
surprisingly, not in cluster validation.

1 Introduction

The two main approaches for prototype-based clustering with missing values
are imputation (Lin and Tsai [11]) and available data strategy. Combined
with a statistically robust (see Kärkkäinen and Heikkola [9]) cluster proto-
types like median or spatial median (Äyrämö [2]), the available data strategy
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University of Jyväskylä, Faculty of Information Technology, P.O. Box 35, FI-40014
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has proven to provide reliable results in a scalable fashion (Hämäläinen et al.
[8]). However, in many applications the unsupervised tasks that need to be
solved consist of estimation and determination of both the clusters and the
number of them. The latter is addressed using cluster validation indices,
which have been scarcely addressed with missing values although new tech-
niques constantly emerge (Fu and Perry [5]).

As depicted in Hämäläinen et al. [7], Niemelä et al. [13], the cluster val-
idation indices are composed of a quotient of estimates of Inter and Intra
of a clustering result, i.e., the variability of data within clusters divided by
the separation of clusters. Both of these measures are computed with a dis-
tance measure which is inhereted from the clustering problem formulation
(Hämäläinen et al. [8]). Therefore, a key to reliable cluster validation indices
with missing values is how to estimate the distances between the prototypes
and the observations. For this purpose, in Niemelä et al. [13], the classical
partial distance strategy (Gower [6]) was applied with promising results. How-
ever, more recently a set of papers have appeared (Eirola et al. [3, 4], Mesquita
et al. [12]), which have addressed the distance estimation with missing values
for both squared and euclidean (nonsquared) distances with better accuracy
than in Gower [6].

This work continues the work in Niemelä et al. [13] by offering similar com-
parisons of cluster validation indices when the clustering method is replaced
with the use of l2-norm, i.e., optimized values of cluster prototypes minimize
the Euclidean distance error with the target data instead using the squared
Euclidean distance based error function (Äyrämö [2], Hämäläinen et al. [7]).
Further, instead of the partial distance strategy, we utilize two previously
presented distance estimation strategies (Eirola et al. [3], Mesquita et al.
[12]) for calculating the distances between the possible incomplete data vec-
tors during the cluster evaluation process. A novel, robust prototype-based
clustering process in two stages is suggested when these strategies are ap-
plied in clustering. We then assess the usefulness of the distance estimation
in cluster validation. As a whole, the purpose of this paper is to realize and
test the distance estimation methods in an attempt to improve the reliability
of clustering and cluster validation indices with missing values.

2 Methods

Prototype-based clustering methods, such as K-means, solve an optimization
problem with K prototypes (Äyrämö [2], Hämäläinen et al. [7]). The objec-
tive function is defined to minimize the sum of the distances of the points to
their closest prototypes. The prototype-based algorithm is composed of ini-
tialization and local improvement of the initial prototypes. This refinement
is carried out in an iterative fashion by assigning individual observations to
the closest prototypes and recomputation of the prototype with the assigned
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observations. These steps are repeated until the final converge is reached
(Hämäläinen et al. [7]). The initial prototypes can be selected randomly but
a more effective method is to use the K-means++ type of initial selection
(Arthur and Vassilvitskii [1], Hämäläinen et al. [7]).

Spatial median is a statistically robust location estimate which can toler-
ate a large amount of missing values in data since it can handle up to 50 %
of erroneous or missing components (Äyrämö [2]). The available data strat-
egy (ADS) is a convenient way to omit the missing values during the cluster
refinement phase. It is based on projecting all computations to the avail-
able values using a projection matrix P, which represent the pattern of the
available values similarly to Kärkkäinen and Toivanen [10]. This is obtained
by setting (Pi)j = 1 if and only if the corresponding data component (xi)j
exists, and zero otherwise. Using the available data strategy, the objective
function for the spatial median based clustering can be written as follows:

J =

K∑
k=1

Jk = argmin
{ck}

∑
xi∈Ck

‖Pi (xi − ck)‖ , (1)

where {xi}Ni=1, xi ∈ R
n, is the set of N observations with n-dimensions and

{ck}Kk=1 are the prototype vectors which are local minimizers of (1) defining
the partition CK

k=1 of data into K disjoint subsets. We emphasize that the
base of ADS, realized through the projection, lies in avoiding to introduce
any additional assumptions on the data distribution.

In Eirola et al. [3], the expected squared Euclidean distance (ESD) esti-
mation method for missing data was presented. The method assumes mul-
tivariate normally distributed data, which may be valid in many real world
situations. Normality provides a rough approximation for nearly any contin-
uous data distribution with relevant sample size, e.g., due to the central limit
theorem (Rouaud [14]). In particular, it is assumed in Eirola et al. [3] that
missing values in data vectors are random variables from the conditional nor-
mal distribution in which random variables are conditioned with the observed
ones. In this case the incomplete parts of the vectors can be replaced with
the conditional mean. If the missing components of x are denoted by x(1) and
the available components are denoted by x(2) and n-dimensional incomplete
multivariate data is partitioned as follows:

x =

[
x(1)

x(2)

]
, (2)

then

μ =

[
μ(1)

μ(2)

]
, Σ =

[
Σ11 Σ12

Σ21 Σ22

]
,

where μ and Σ denotes mean and covariance of x. Further, conditional mean
and variance for missing values can be expressed as follows:
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x̂(1) = μ(1) +Σ12Σ
−1
22 (x(2) − μ(2)),

(σ2)(1) = Σ11 −Σ12Σ
−1
22 Σ21.

Notice that the multivariate normal parameters can be estimated for data sets
even data cannot pre-partitioned as in (2). Thus, for conditional parameters,
appropriate elements are required to be extracted from specific locations in
μ and Σ based on missingness pattern of individual observations.

It was proved in Eirola et al. [3] that the expected value for the squared
Euclidean distance is the sum of the distance between the two estimated data
vectors and the variances of the imputed components:

E[d2il] = E[||xi − xl||2] = ||x̂i − x̂l||2 + σ2
i + σ2

l , i �= l, i, l ∈ [1, N ].

A novel expected Euclidean distance (EED) method for estimating the
nonsquared l2-norm based distances with missing values was presented in a
more recent study Mesquita et al. [12]. It uses the same basic principles as
in Eirola et al. [3] for calculating the conditional distribution parameters.
However, the EED is based on the assumption that the squared variables fol-
low the Gamma distribution. This suggests use of the Nakagami distribution,
where a random variable is obtained by taking the square root of a Gamma
distributed variable. More precisely, the expected value of the Nakagami dis-
tribution can be written as

E[dil] =
Γ (m+ 1

2 )

Γ (m)

(
Ω

m

) 1
2

, (3)

where

m =
E[d2il]

2

V ar[d2il]
, Ω = E[d2il].

Since the Nakagami distribution requires variances of distances, some extra
calculations are needed. The variances can be calculated as follows (the details
are given in Mesquita et al. [12]):

Var[d2il] = E[x4
i + x4

l − 4x3
ixl − 4xix

3
l + 6x2

ix
2
l ]− E[(xi − xl)

2]2,

where the expected values can be obtained by using non-central moments of
the normal distribution:

E[xi] = x̂i,

E[x2
i ] = x̂i

2 + σ2
i ,

E[x3
i ] = x̂i

3 + 3x̂iσ
2
i ,

E[x4
i ] = x̂i

4 + 6x̂i
2σ2

i + 3σ4
i .
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Notice that we do not apply the weighted formulas in Mesquita et al. [12],
because we assume similarly to ESD that the distributions are multivariate
Gaussians instead of mixture of Gaussians.

Concerning cluster validation, we will apply the same cluster valida-
tion indices as in our previous study Niemelä et al. [13]. References to
the original suggestions of the indices are given in Hämäläinen et al. [7],
Niemelä et al. [13]. These read as follows (abbreviations given in parenthesis):
Calinski-Harabasz (CH), Davies-Bouldin (DB), Davies-Bouldin∗ (DB∗),
Generalized Dunn (GD), kCE-index (KCE), Pakhira-Bandyopadhyay-Maulik
(PBM), Ray-Turi (RT), Silhouette (SIL), WB-index (WB), and Wemmert-Gançarski
(WG). Since clustering here is performed using the Euclidean distances (1), the
indices were first implemented and preliminary tested by using the l2-norm.
We then noticed that Calinski-Harabasz, kCE-index, and WB-index ob-
tained better results with their original forms of using the squared distances
in the definitions of Intra and Inter. The reason might be that these indices
include a scaling factor which was originally derived for the squared distances.

The formulas for the used indices are given in Table 1. There, m denotes
the spatial median of the whole dataset. Moreover, the squared form (·)2 can
also denote a componentwise application, for instance, within each cluster for
Jk as in (1). We remind that the main focus of this work is that the distances
both in clustering and in the CVIs afterwards can be computed with ADS,
ESD, or EED, respectively.

In the Silhouette index, Intra(xi) is the average Euclidean distance of
the ith observation to all other points in the same cluster whereas Inter(xi) is
the average of the minimum distances of the ith point to points in a different
cluster:

Intra(xi) =
1

nk − 1

∑
xj∈Ck

d(xi,xj), Inter(xi) = min
k �=k′

1

nk′

∑
xj∈Ck′

d(xi,xj).

(4)
Contrary to other indices in Table 1, in Silhouette one needs to calculate
pairwise distances between the original, possible incomplete observations.
Hence, the distance estimation techniques as presented above could be es-
pecially beneficial for the Silhouette index. On the other hand, because of
the computations over each cluster and each observation within a cluster, the
computational complexity is of the order O(N2).

Notice that in Table 1 both Intra and Inter can be defined in three lev-
els of abstraction concerning the clustering result: globally as, e.g., with
kCE-index, clusterwise as, e.g., with Davies-Bouldin, and pointwise as,
e.g., in Silhouette. This division is reflected in the actual Formula where
no arguments is being given in the global case (Intra in kCE-index), ar-
guments related to clusters are given in the clusterwise case (Intra(k, k′) in
Davies-Bouldin), and index of an individual observation is given in the final
case (Intra(xi) in Silhouette), respectively.
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Table 1 Formulas of cluster validation indices

Abbr Intra Inter Formula

CH J 2
K∑

k=1

nkd(ck,m)2 K−1
N−K

× Intra
Inter

DB Jk

nk
+ Jk′

nk′ d(ck, ck∗) 1
K

K∑

k=1

max
k �=k′

Intra(k,k′)
Inter(k,k′)

DB∗ Jk

nk
+ Jk′

nk′ d(ck, ck∗) 1
K

K∑

k=1

max
k �=k′ Intra(k,k′)

min
k �=k∗ Inter(k,k∗)

GD max Jk

nk
min
k �=k′

d(ck, ck′) 2×Intra
Inter

KCE J 2 1 K × Intra

PBM J
N∑

i=1

d(xi,m)× max
k �=k′

d(ck, ck′)
(
K×Intra

Inter

)2

RT 1
N
J min

k �=k′
d(ck, ck′) Intra

Inter

SIL See text See text 1
N

N∑

i=1

Inter(xi)−Intra(xi)

max(Intra(xi),Inter(xi))

WB J 2
K∑

k=1

nkd(ck,m)2 K × Intra
Inter

WG d(xi, ck) min
k �=k′

d(xi, ck′)
K∑

k=1

∑

xi∈Ck

Intra(xi)

Inter(xi)

3 Experiments and Results

Eight synthetic two dimensional data sets coinciding with our previous study
were selected12. Experiment were performed using MATLAB (R2018b, 64-
bit) and the same algorithm settings were used in clustering as in Niemelä
et al. [13]: removing data components completely at random, discarding fully
incomplete observations, minmax-scaling data to a range [−1, 1], perform-
ing initialization in an iterative manner, using previously selected prototypes
with K-means++ initialization algorithm, ranging K from 2 to 20, using 100
replicates in each clustering, and selecting final solutions as the lowest clus-
tering error for the each value of K. Mean vectors and covariance matrices of
incomplete multivariate normal data were estimated using ecmnmle method
which was provided in MATLAB’s Financial Toolbox.

Table 2 presents median calculation times and root mean square errors
when clustering was performed with (EED, second row of results in each cell
of Table 2) and without (ADS, first row of results in each cell of Table 2)
distance estimation for all synthetic data sets. The clustering and missing

1 http://cs.uef.fi/sipu/datasets/
2 http://users.jyu.fi/~mapeniem/CVI/Data/
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Table 2 The median calculation times and the obtained root mean square errors
after repeated clustering. The numbers of observations are given in the brackets in
the second row of the table.

ADS S1 S2 S3 S4 S2D2 S5D2 O200 O2000
EED (5000) (5000) (5000) (5000) (2000) (2970) (200) (2000)

Time(s)∗+ 12.670 15.520 21.030 23.270 1.090 4.090 1.470 5.030
14.460 17.440 18.410 22.900 0.890 3.140 1.080 2.330

SD(s)∗+ 2.100 2.300 2.920 3.060 0.140 0.670 0.120 0.610
2.203 1.973 2.054 4.544 0.067 0.389 0.238 0.198

RMSE 0.005 0.006 0.013 0.013 0.049 0.073 0.054 0.034
0.002 0.002 0.004 0.004 0.024 0.017 0.028 0.006

∗ By Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60GHz processor
without parallelization
+ Times were measured through 100 replicates in clustering

values generation were repeated 100 times using 20 % of missing values in
the data. The correct numbers of clusters were used in every repetitions. The
root mean square errors were calculated between the real centroids and the
obtained clustering results. Regarding to the errors, the EED method pro-
vided better results with all data sets, especially with the S5D2 and O2000.
In addition, the EED showed almost the same computational complexity as
the traditional ADS with the largest S1–S4 data sets and to be faster with
the rest of data sets.

Figure 1 shows clustering results through 100 repetitions for O200 and
S5D2 data sets which consisted of 20 % re-generated missing values in each
repetition. The obtained cluster prototypes are illustrated with the black
circles. The original data centroids are visualized with the filled red circles.
It can be seen from the figure that the variances of the clustered prototypes
are smaller around the real prototypes when the EED distance estimation
strategy was used. Further, Figure 1(e) shows some of the prototypes which
were obtained with the ADS and should belong to the sparse bottom left
cluster. However, these prototypes appeared to move towards to the dense
cluster next to it. This is illustrated with an ellipse around prototypes.

The distance estimation strategy globally utilizes information on Gaussian
distributed data while it makes decision of prototype locations and thus it
appears to offer more stable results in the cases of sparse data sets. However,
since the method is based on approximated quantities of the normal distribu-
tions, it can lead to nonoptimal solution locally, whereas the traditional ADS
based clustering can be mathematically proofed to find a local minimum of
an error function (Äyrämö [2]). This is the reason why we ended up using a
two-stage clustering approach: distance estimation based clustering method
first offers a high-quality initialization for the robust traditional method.
The whole procedure is given in Algorithm 1. The new method was com-
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(a) O200 data set (b) ADS with O200 data (c) EED with O200 data

(d) S5D2 data set (e) ADS with S5D2 data (f) EED with S5D2 data

Fig. 1 Clustering results of repeated clustering for two synthetic data sets using
spatial median with and without distance estimation. The data sets consisted of 20
% missing values.

Algorithm 1 Spatial median clustering based on distance estimation
Input: Data set Xm with missing values and the number of clusters K

Select initial prototypes in an iterative manner by using previously
selected prototypes and K-means++ algorithm.

Calculate a mean vector and a covariance matrix of the Xm.
repeat

1. Estimate distances between observations and prototypes by Eq. (3).
2. Assign individual observation to the closest prototype.
3. Recompute prototypes with the assigned observations.

until The final convergence
Repeat steps 2 and 3 without distance estimation.

Output: K partitions and prototypes of the given data set

pared against spatial median without distance estimation in the experiments
related to the cluster validation.

Table 3 summarizes the results of the cluster validation indices. Accord-
ing to the table, the two-stage clustering approach notably improved the
performance of most of the indices. Especially, the results improved in the
cases of O200 and S5D2 data sets which were the most demanding for the
indices. Calinski-Harabasz was the best performing index which always
recommended the correct numbers of clusters with the new approach. The
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results of the Calinski-Harabasz were promising also without distance es-
timation since only in two out of 32 cases the index did not recommend the
correct solutions. Other well performing indices were kCE-index, Ray-Turi,
and Silhouette which recommended very often the correct numbers of clus-
ters over all test cases.

The indices were implemented to use the ESD or EED distance estimation
strategy. The strategy was selected based on the squared (ESD) or non-
squared (EED) index formula (see Table 1). However, the distance estimation
decreased the performance of most of the indices. Only Silhouette and
Wemmert-Gançarski benefited from the estimation. Against other indices,
Silhouette and Wemmert-Gançarski calculate Inter using distances between
observations and their neighboring centroids or clusters (see Table 1 and Eq.
(4)). Hence, distances were needed to be calculated more accurately for these
two indices which is a good reason why the performance gain was obtained.
Since distance estimation offered only marginal benefit with these two indices,
we do not report results here.

4 Discussion

Let us briefly reflect the obtained results to the results of our previous study
in Niemelä et al. [13]. The performance increased with most of the indices
only by changing the clustering method to use the robust spatial median.
The new estimation strategies yielded to performance gain. In eight over ten
cases the results were at least equal, and in most of those (seven cases) better
compared to the results of K-means with the partial distance strategy. How-
ever, Wemmert-Gançarski, which was the best performing index in Niemelä
et al. [13], benefited the least from the current changes. Also, the results
of Pakhira-Bandyopadhyay-Maulik were not improved, whereas especially
Calinski-Harabasz and Ray-Turi were improved to recommend more often
the correct number of clusters. The partial distance strategy was tested also
in the current study but we noticed that the ADS performed better with the
spatial median and, therefore, the results of the strategy were not reported
here.

The new clustering method did not increase the computational complex-
ity of the clustering. More specify, data vectors and variances were needed
to be estimated only once for each observation which consisted missing val-
ues. This was done before the local refinement step of the prototype-based
clustering (see Algorithm 1). Surprisingly, the calculation times were even
smaller compared to the traditional spatial median clustering in cases of
small data sets. However, all the data sets were only two dimensional and,
hence, provided minimal challenge for the EED. In comparison, we tested the
distance estimation through the whole clustering process such as estimations
were repeated every time when cluster partitions were changed, i.e., as many
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times as final convergence was reached for each replicate of the clustering.
As expected, this approach was computationally very intensive. Further, the
performance of the indices did not improve as much that the method could
be recommended to the clustering.

5 Conclusions

In this study, the internal cluster validation indices were compared to eval-
uate the number of clusters with data sets which included various ratios of
missing values. The study differentiated from Niemelä et al. [13] by using
similar experimental settings but extending the clustering method for more
robust spatial median and utilizing the recently presented EED distance es-
timation strategy for clustering. The ESD and EED strategies were tested to
implement to the actual indices. However, the most of the indices performed
better without estimation. Thus, these results were not reported.

The study presented the new approach which performed clustering by
using two stage clustering process where data sets were first clustered by
using EED and, thereafter, the results were given as a starting point to the
traditional ADS based spatial median clustering. On average, the new method
improved the performance of the tested indices compared to the traditional
ADS without distance estimation. Improved results were especially obtained
when the data sets included 20 % of missing values. The best performing
index was Calinski-Harabasz, which together distance estimation based
clustering approach proposed always the correct number of clusters. The
very promising results were also proposed by kCE-index, Silhouette, and
Ray-Turi indices.

As it is well known, characteristics of real world data is rarely obvious.
Therefore, it will be interesting to test the new method and the best indices
with multiple of real world data sets. The special interest would be to measure
the stability of indices against different ratios of missing values when the
correct number of clusters is not clear.
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Table 3 The determined number of clusters by internal cluster validation indices.
The bolded numbers indicate correct solutions. Each column correspond different
percentage (0, 5, 10, and 20 %) of missing values.

ADS CH DB DB∗ GD KCE
EED(∗∗)

S1 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

S2 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

S3 15 15 15 15 15 15 15 15 15 15 15 15 4 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 4 15 15 15 15 15 15 15

S4 15 15 15 15 17 17 17 15 13 13 13 13 4 3 3 4 15 15 15 15
15 15 15 15 17 15 15 15 13 13 14 13 4 3 3 4 15 15 15 15

S2D2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

S5D2 5 5 5 4(∗) 3 3 3 3 3 3 3 3 3 3 3 3 5 5 5 4(∗)

5 5 5 5 3 3 3 3 3 3 3 3 3 3 3 3 5 5 5 5

O200 5 5 5 20 5 5 5 20 5 5 5 20(∗) 4 4 5 5 5 5 20 20
5 5 5 5 5 5 5 5 5 5 5 5 4 5 4 5 5 5 17 5

O2000 5 5 5 5 5 5 5 5 5 5 5 5 4 4 4 5 5 5 6 5
5 5 5 5 5 5 5 5 5 5 5 5 4 4 5 4 5 5 6 6

Total 8 8 8 6 6 6 6 6 6 6 6 5 3 4 5 6 8 8 6 6
8 8 8 8 6 7 7 7 6 6 6 6 3 5 5 5 8 8 6 7

ADS PBM RT SIL WB WG
EED(∗∗)

S1 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

S2 15 15 15 15 15 15 15 14(∗) 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

S3 4 4 4 4 15 15 15 15 15 15 15 2 15 15 15 15 15 15 15 15
4 4 4 4 15 15 15 15 15 15 15 2 15 15 15 15 15 15 15 15

S4 5 5 4 4 15 15 15 13 15 14 15 14 15 15 15 15 17 16 17 16
5 5 5 4 15 15 15 14 15 15 15 15 15 15 15 15 17 16 16 15

S2D2 2 2 2 2 2 2 2 2 2 2 2 2 12 12 9 15 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 12 12 8 9 2 2 2 2

S5D2 5 5 5 4(∗) 3 3 3 3 3 3 3 3 5 5 5 6(∗) 3 3 3 3
5 5 5 5 3 3 3 3 3 3 3 3 5 5 5 5 3 3 3 3

O200 5 3 4 4 5 5 5 5 5 5 5 5 19 19 20 20 5 5 20 20
5 3 4 3 5 5 4 5 5 5 5 5 19 19 17 20 5 5 20 20

O2000 3 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
4 4 3 4 5 5 5 4 5 5 5 5 5 5 5 5 5 5 5 5

Total 5 4 4 3 7 7 7 5 7 6 7 5 6 6 6 5 6 6 5 5
5 4 4 4 7 7 6 5 7 7 7 6 6 6 6 6 6 6 5 6

(∗) Correct result was found using the known centers as initial prototypes
(∗∗) Uses EED distance estimation in the first stage of clustering
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ABSTRACT Missing data are unavoidable in the real-world application of unsupervised machine learning,
and their nonoptimal processing may decrease the quality of data-driven models. Imputation is a com-
mon remedy for missing values, but directly estimating expected distances have also emerged. Because
treatment of missing values is rarely considered in clustering related tasks and distance metrics have
a central role both in clustering and cluster validation, we developed a new toolbox that provides a
wide range of algorithms for data preprocessing, distance estimation, clustering, and cluster validation
in the presence of missing values. All these are core elements in any comprehensive cluster analysis
methodology. We describe the methodological background of the implemented algorithms and present
multiple illustrations of their use. The experiments include validating distance estimation methods against
selected reference methods and demonstrating the performance of internal cluster validation indices. The
experimental results demonstrate the general usability of the toolbox for the straightforward realization of
alternate data processing pipelines. Source code, data sets, results, and example macros are available on
GitHub. https://github.com/markoniem/nanclustering_toolbox

INDEX TERMS Missing values, distance estimation, clustering, cluster validation.

I. INTRODUCTION
In manymachine learning tasks, the volume of data is limited,
necessitating that all the available data values be utilized as
extensively as possible. The assumption that the data is com-
plete is often invalid in real-world applications [1]. A simple
strategy for avoiding the problem of missing data is to omit
incomplete observations. However, this is not an efficient
use of data because the important information may be lost.
A more sophisticated strategy is to impute missing values
as part of a data preprocessing step. Different imputation
mechanisms have been developed for various data types,
e.g., binary, ordinal, categorical, and string attributes [2]. The
nearest neighbors method is a common imputation approach
for numerical values, which uses an average (with or without
weights) of the k-nearest neighbors [2].

Estimating distances is an alternative way to address prob-
lems with missing values. A well-known distance estimation
method is the partial distance strategy (PDS) [3], which is

The associate editor coordinating the review of this manuscript and

approving it for publication was Xi Peng .

also known as a general similarity measure [4]. This approach
involves similar limitations as the nearest neighbors method
so that its accuracy is highly correlated to the number of
missing values in data. In [5] and in [6], the expected distance
estimations were reported to be more accurate than the data
imputation or the PDS for selected real-world data sets. How-
ever, the performance of these methods has not been tested in
unsupervised machine learning tasks such as data clustering.
Clustering can benefit from accurate distance estimation with
missing values because both currently popular initialization
methods like K-means++ [7] and the computation of cluster
centroids are based on distances and not on observations
themselves. In [5] and in [6], data values were assumed to be
missing at random (MAR), where missingness may depend
on the available data. MAR is a less restrictive mechanism
than missing completely at random (MCAR) in which the
values are missing independently of any other data values.

Many unsupervised and supervised techniques, and their
combinations, have been used for data imputation. Imputation
of missing sensor spatially and/or temporally dependent data
using autoencoder and alternation projection onto convex sets
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based training was proposed in [8]. Shallow neural networks
(bothmulti-layered perceptron and radial basis function) with
genetic algorithms were put forward in [9]. Fuzzy clustering
and support vector regression, also with a genetic algorithm-
based parameter estimation, were hybridized in [10]. Deci-
sion trees and their ensembles were applied in [11]. More
recently, deep learning methods, especially deep autoen-
coders, have been proposed and tested for mainly spatio-
temporal data, e.g., in [12]–[18]. We do not address these
more complex techniques here because of laborious tuning
of an extensive number of metalevel parameters (e.g., what
network architecture, how many layers, what kind of layers,
which loss function, what training method, how much and
what kind of data needed, etc., see [13], [19]).

Cluster analysis is often considered as one of the core
techniques in descriptive data mining and knowledge dis-
covery [20], statistics [21], and pattern recognition [22].
It is a stepwise process with at least nine elements to be
chosen/carried out before achieving the results [23]–[25]. The
elements are related to data selection, data preprocessing,
selection of distance measure, choice of clustering criterion,
selection missing data strategy, validation of the created
algorithms, selection of the number of clusters, and finally,
interpretation of results.

Clustering divides data into disjoint groups (clusters)
where an ideal cluster is compact and isolated [24]. Partitional
clustering methods use prototype points to represent clusters
and, therefore, are also referred to as prototype-based clus-
tering methods [26]. The methods are aimed to minimize the
variance around the prototype points based on an error (score)
function, and they are also called variance minimization
techniques [27]. The iterative relocation procedure decreases
the values of the error function until final convergence is
reached [28], [29].

Cluster validation is a crucial part of cluster analysis,
in which a clustering solution’s quality (ideality) is being
assessed. Cluster validation indices (CVIs) provide quality
measures that indicate the number of clusters. The three main
types of indices are relative, external, and internal [30]. The
relative index compares multiple clustering results obtained
with different initial settings of the clustering algorithm,
whereas an external index utilizes additional information or
metadata that can explain the number or form of the clus-
ter structures. The external indices can be used, e.g., for
comparing different clustering methods using the metadata
of the actual cluster labels. However, internal cluster valida-
tion indices are probably the most commonly used estimates
because they utilize only the information obtainable from
data and clustering results. Numerous different clustering
methods, including internal cluster validation indices, have
been developed because of the high diversity of data [24]; for
example, challenging data sets may include noise, overlapped
clusters, multiple dimensions, and/or different densities [31].

This paper introduces a toolbox that encapsulates many
methods and algorithms to perform cluster analysis in the
presence of missing data. The versatile functionality allows a

toolbox user to generate many forms of experimental settings
and to realize various forms of new experiments to better
understand and improve unsupervised learning with missing
values.

The methodological bases in Sections II–V explain back-
ground theory related to distance computation with missing
values, data preprocessing, clustering, and cluster valida-
tion. Section VI gives an overview of the toolbox, including
descriptions of the sample data sets and essential toolbox
functions. Section VII describes experiments that are divided
into three parts. In the first part, the performance of distance
estimation algorithms is measured in the direct estimation
of pairwise distances in data sets with missing values. The
second part compares clustering methods and cluster valida-
tion indices on two-dimensional (2D) data sets with missing
values. In addition, the validation results, which are based
on a key point selection function [32], are given. The results
are validated against the reference results given in previously
published research papers. In the third part, experiments are
conducted on multidimensional data sets that were created by
a recently published data generator [33]. Finally, the content
and the toolbox performance are discussed and summarized
in Sections VIII–IX.

II. COMPUTATION OF DISTANCES WITH MISSING
VALUES
Let X = {xi}Ni=1, where xi ∈ R

n for all i, denote the
observational data set with N observations of size n.

A. AVAILABLE DATA STRATEGY
The available data strategy (ADS) (see [34]) restricts dis-
tance computations to available values via binary projection
vectors, {pi}Ni=1, pi ∈ {0, 1}n, which represent the sparsity
pattern of each observation:

(pk )i =
{
1, if (xk )i exists,
0, otherwise.

(1)

The ADS is used in K-spatialmedians clustering (see,
e.g. [35]), and it generalizes easily for various distance
measures. For instance, the Euclidean distance between
two incomplete n-dimensional column vectors x1 and x2 is
defined as

d(x1, x2) =
√√√√ n∑

i=1

((p1)i(x1)i − (p2)i(x2)i)2. (2)

B. PARTIAL DISTANCE STRATEGY
The PDS computes the sum of pairwise available vector val-
ues and scales the sum by the ratio of the original dimension
of the vectors and the number of available pairwise values [4].
The Euclidean distance reads then as

d(x1, x2) =
√√√√ n
n∗

n∑
i=1

((p1)i(x1)i − (p2)i(x2)i)2, (3)
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where n∗ is the number of pairwise known values. Similarly
to the ADS, the PDS can be generalized to other distance
measures, such as the City block distance (see [36]).

C. EXPECTED SQUARED EUCLIDEAN DISTANCE
The framework for estimating the expected distance between
two data vectors is presented in [5]. The proposed framework
was designed for estimating squared Euclidean distances in
the presence of missing data values and under the assump-
tion of multivariate normal distribution. The assumption of
multivariate normally distributed data is used for estimating
expected values to replace the missing values in the data.
The central limit theorem states that normal distribution can
be used to approximate nearly any continuous distribution
with a sufficiently large sample (see, e.g., [37]). The basic
elements of the framework are given in Appendix A, and a
more detailed description is given in [5].

Let us define the index sets of missingMi and available Ai
values of observation xi as specified by pi, i.e., Mi = {1 ≤
j ≤ n|(pi)j = 0} and Ai = {1 ≤ j ≤ n|(pi)j = 1}. Following
the assumption that missing values are generated from condi-
tional multivariate normal distribution, in which data values
are independent, and missing values depend on the available
values under theMAR assumption on the sparsity pattern, the
expectation of the squared distance between two data vectors
reads as:

E
[
||x1 − x2||2

]
=

n∑
i=1

(
((x′

1)i − (x′
2)i)

2 + (σ ′
1)

2
i + (σ ′

2)
2
i

)
,

(x′
k )i =

{
(xk )i, if i ∈ Ak ;
E[(xk )i|(xk )Ak ], if i ∈ Mk ;

(σ ′
k )

2
i =

{
0, if i ∈ Ak ;
Var[(xk )i | (xk )Ak ], if i ∈ Mk .

(4)

With the complete derivation given in Appendix B, the
ith observation concerning the missing values is normally
distributed with the mean vector

(μ′
i)Mi = (μ)Mi + �MiAi�

−1
AiAi ((xi)Ai − (μ)Ai ), (5)

and covariance matrix

�′
MiMi

= �MiMi − �MiAi�
−1
AiAi�AiMi . (6)

Estimating μ and � for incomplete data is not a simple
task, especially if the number of missing values is large
compared to the number of available ones. A method based
on available data is a fast alternative for estimating the
covariance matrix [38]. However, the iterative expectation
maximization (EM) algorithm with the maximum negative
log-likelihood convergence criterion is more commonly used,
e.g., in [5], [39], and [6].

1) EXPECTATION MAXIMIZATION
The EM is an iterative method to find the best estimates
for the parameters in a statistical model [40], [41]. It con-
sists of two alternating steps: expectation and maximization.

The expectation step estimates the missing values in the data
set. The maximization step optimizes the model parameters
to fit the data best. The steps are repeated until the final
convergence is reached.

The EM algorithm for estimating the mean vector μ and
the covariance matrix � of a data set with missing val-
ues under the assumption of the conditional multivariate
normal distribution is given in Algorithm 1. The algorithm
includes a bias matrix B with the same size as the covariance
matrix �.

Algorithm 1 Expectation Maximization
Input: An incomplete data set X = {xi}Ni=1, xi ∈ R

n.
1. Compute mean vector μ of available values of the data set.
2. Impute missing values by μ to obtain the imputed matrix Ximp.
3. Recompute μ and compute covariance matrix � by using imputed data.
4. Create a zero matrix B which size is equal to �.
until final convergence do
for each xi for which Mi is nonempty do

5. Impute missing values by using the formula (5).
6. Use formula (6) and compute BMiMi = BMiMi + �′

MiMi
.

7. Recompute μ and update covariance as � = � + B/N .
8. Remove the imputed values from the X.
9. Restore zeros to the matrix B.

Output: Mean vector μ and covariance matrix �.

The termination criterion for Algorithm 1 is based on
the negative log-likelihood function that for the multivariate
normal distribution N (μ, �) reads as:
ln(L(μ, �))

=
N∑
i=1

1
2
[ln(det(�)) + (xi − μ)T�−1(xi − μ) + n ln(2π)]

= 1
2
N [ln(det(L)2) + n ln(2π )]

+ 1
2

N∑
i=1

(xi − μ)T�−1(xi − μ)

= 1
2
N [2

n∑
j=1

ln(Ljj) + n ln(2π)]

+ 1
2

N∑
i=1

(xi − μ)T�−1(xi − μ), (7)

where L is obtained from the Cholesky decomposition of the
covariance matrix �, i.e., � = LLT . Convergence is reached
when there is no significant change in the values of the log-
likelihood function between successive iterations.

2) FINAL ALGORITHM
The steps for computing ESDs for incomplete data are given
in Algorithm 2.

D. EXPECTED EUCLIDEAN DISTANCE
In [6], the work in [5] and [39] was continued by extending
the ESD distance for the expected Euclidean distance (EED).
It was shown that the EED distance could be modeled with a
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Algorithm 2 Expected Squared Euclidean Distances
Input: An incomplete data set {xi}Ni=1, xi ∈ R

n.
1. Compute the mean vector μ and covariance matrix � of incomplete

data set using Algorithm 1.
for each xi for which Mi is nonempty do
2. Compute the conditional mean (μi

′)Mi using formula (5) and the
conditional covariance matrix�′

MiMi
using formula (6), respectively.

3. Impute missing values of xi by values from (μi
′)Mi to obtain x′

i.
4. Impute conditional variance terms of σ ′2i from the diagonal of

�′
MiMi

.

for each pair of xi and xj in {xi}Ni=1 and in {xj}Nj=i+1 do
5. Compute the expected distance by utilizing the formula (4).

Output: Pairwise squared Euclidean distances d ij of data vectors.

Nakagami distribution if the distances are assumed to follow
the Gamma distribution. The expected Nakagami distributed
values can then be obtained as follows:

E
[
(
n∑
i=1

((x1)i − (x2)i)2)
1
2

]
= E[z

1
2 ] = �(m+ 1

2 )

�(m)

(�

m

) 1
2
,

m = E[z]2

Var[z]
, � = E[z], (8)

where m and � are the shape and spread parameters of the
Nakagami distribution, respectively, and � is the Gamma
function.

Under the independence assumption (as in [5], [39]), the
variance can be expressed as

Var[z] = Var
[ n∑
i=1

((x1)i − (x2)i)2
]

=
n∑
i=1

Var[((x1)i − (x2)i)2]

=
n∑
i=1

E[((x1)i − (x2)i)4] − E[((x1)i − (x2)i)2]2

=
( n∑
i=1

E[(x1)4i + (x2)4i − 4(x1)3i (x2)i

− 4(x1)i(x2)3i + 6(x1)2i (x2)
2
i ]

)
−

n∑
i=1

E[((x1)i − (x2)i)2]2, (9)

where the expected values are obtainable using non-central
moments. Table 1 presents moments of the normal distri-
bution that can be used directly in the case of multivari-
ate Gaussian distribution. However, weighted moments are
needed if the data are assumed to follow Gaussian mixture
distribution (see [6] for more details).
The computation of the EED distances is based on the same
framework as in Algorithm 2. However, additional steps are
required which are given in Algorithm 3.

TABLE 1. Non-central moments of normal distribution.

Algorithm 3 Expected Euclidean Distances
Input: An incomplete data set {xi}Ni=1, xi ∈ R

n.
1. Utilize Algorithm 2 to obtain the spread parameter � for each pair of

data vectors.
for each pair of xi and xj in {xi}Ni=1 and in {xj}Nj=i+1 do
2. Compute Var(z) by using formula (9) and non-central moments

(E[xk ], E[x2k ], E[x
3
k ], E[x

4
k ]) given in Table 1.

3. Use formula (8) to obtain the shape parameter m and the final
distance dij.

Output: Pairwise Euclidean distances d ij of data vectors.

III. DATA PREPROCESSING
A. FEATURE SCALING
Feature scaling is a typical preprocessing step in data analy-
sis. Various data types are often measured in different units,
which may lead to data types with large scales dominating the
other data types in data-driven models. Various feature scal-
ing approaches have been proposed, but the most commonly
used approaches are the z-score and min-max normalization.

The z-score method equalizes the data type weights by
transforming each one to a zero mean and unit variance. It is
obtained by a linear transformation, subtracting the mean and
by dividing the standard deviation:

x ′ = x − μ

σ
= 1

σ
x − μ

σ
= αx − β, (10)

where μ and σ are the sample mean and standard deviation
of the available values in the data set, respectively, and x ′ is
the scaled value.

Min-max normalization scales data to the selected range.
The range may depend on the performed task, but [−1, 1] and
[0, 1] are probably the most common choices. The min-max
formula for an arbitrary range [a, b] can be written as follows:

x ′ = a+ (x − min(x))(b− a)
max(x) − min(x)

, (11)

where min and max are computed for the available values.

B. K-NEAREST NEIGHBORS IMPUTATION
The k-nearest neighbors (kNN) method is a well-known and
popular approach for imputing numerical values [2]. This
method can be implemented by finding the closest complete
observation for an incomplete observation and imputing the
missing values or taking an average of k closest observations,
of which some can be partially incomplete. If the missing
values of the data vector are not available in the k clos-
est observations, the k should be increased until imputation
succeeds.
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In the literature, there exist many variants of kNN imputa-
tion, e.g., complete-case kNNI (CCkNNI), where a data vec-
tor with missing values is imputed by using the average value
of a set of k nearest complete observations, or incomplete-
case kNNI (ICkNNI), where data vectors are selected from
the case library in which the eligible nearest neighbors share
the same complete values as xi and a missing value is avail-
able. In [42], it was suggested that up to k = 5 neighbors
should be considered. If there are not enough neighbors, the
missing value is imputed by the sample mean of all the avail-
able values for that data type. Even though nearest neighbors
imputation is a straightforward approach for dealing with
missing values, it can be inefficient when the number of
missing values is relatively high [5].

C. LOW-RANK MATRIX COMPLETION
A low-rank solution for matrix completion is a common
technique for data imputation. The low-rank matrix has a
decreased number of degrees of freedom and, therefore,
it makes the estimation problem of missing values practical to
solve [43]. The rank minimization problem can be addressed
by using convex relaxation techniques utilizing the nuclear-
norm [43], [44], which yields to the minimization of the
following optimization problem:

min
X̃

||p · x − p · x̃||22 + λ||X̃||∗, (12)

where X̃ is the completed data matrix which will be esti-
mated, the data vectors x and x̃ are flattened versions of the
data matrices X and X̃, respectively, and · denotes the dot
product. Moreover, the vector p is the flattened version of
the projection matrix defined in (1), λ is the regularization
parameter, and ||·||∗ denotes the nuclear norm. The optimiza-
tion problem in (12) can be solved iteratively by using a soft-
thresholding technique to obtain the updated data vector x̃.
The initial guess of x̃ is given by the zero vector. Then, in the
kth iteration, x̃ is updated as follows:

x̃k = x̃k−1 + (p · x − p · x̃k−1). (13)

After that, x̃k is reshaped to a matrix form X̃k , the singular
value decomposition is applied to the reshaped matrix, the
singular values are soft-thresholded to obtain the updated �̂k .
The X̃k = U�̂kVT is flattened to obtain the final x̃k in the
kth iteration. The λ is reduced by a cooling algorithm such
that λ1 > λ2 > . . . > λ∞. The final result is obtained
when there is a sufficiently small relative change in the target
function ||p · x − p · x̃||2 or when λ reaches the predefined
tolerance.

D. TRANSFORMATION INTO SPHERICAL FORM
The prototype-based K-means and K-spatialmedians cluster-
ing methods are not intended to discover any shape clus-
ters because the used location estimates (mean and spatial
median) assume spherical symmetry. That is the difference
from kernel-based methods; see, e.g., [45]. Such assumption

is also inherent in the computation of Inter for cluster vali-
dation indices (see Table 2). However, the assumption that a
data set contains clusters with spherical shapes can be unre-
alistic, making the clustering and cluster validation problems
more challenging. In [32], a new approach for transforming
and normalizing an arbitrarily shaped subset of data to an
approximately spherical shape with a specified radius was
introduced. The method is based on the notation of chains
around high-density key points. The original method assumes
a 2D data space. Thus, multidimensional scaling (MDS) [46]
can be applied to project high-dimensional data sets
into the 2D.

1) DEFINITION OF KEY POINT
TheM points fromXwith relatively higher density and larger
density-based distances are associated with the key points
which can be determined by selectingM largest values based
on the following equation:

pi = ρiri,

ρi = (
4∑

k=1

d(xi, xi,k ))−1, ri = min
j:ρj>ρi

d(xi, xj), (14)

where ρ denotes the density of xi and xi,1 . . . xi,k are
k = 4 nearest neighbors of xi, the minimum distance from
xi to other points with a higher density is denoted as ri. The
method connects points in the data set using density-based
distance as the connection rule. Density-based connections
are created until the key points are visited. In [32], the number
of key pointsM was suggested to be selected as |√N |.

2) DEFINITION OF CHAIN
Points that are connected to a key point form a chain.Multiple
chains to one key point are allowed. Let us assume c chains.
Then the chain lengths can be defined as:

Tc =
nc−1∑
i=1

d(x(c)i , x(c)i+1), (15)

where nc is the total number of points in chain c. In data set
normalization, distances are transformed into a new one as
follows:

d∗(x(c)i , x(c)i+1) = d(x(c)i , x(c)i+1)/Tc. (16)

After normalization, the lengths of the longer chains are
shortened, whereas shorter chains are lengthened, i.e., longer
chains move closer to the key points, and shorter chains move
away from the key points. The normalized chains can be
optionally scaled to a fixed size.

IV. CLUSTERING
A. BASIC ALGORITHMS
Prototype-based clustering methods consist of two main
phases: selection of initial prototypes and iterative refine-
ment until final convergence is reached, i.e., the cluster par-
tition does not change (see Algorithm 4). In the classical
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K-means [47], MacQueen’s initialization phase is combined
with Lloyd’s search phase [48]. In general, the initialization
phase is based on the random selection of initial prototypes,
which most often causes the points to be selected from the
same dense region yielding a poor performance [48]. More-
over, due to the initial point selections, it is known that
the basic algorithm does not guarantee a unique solution to
the global minimum of the error function [24]. Finding the
global minimum is an NP-hard problem because there are
Stirling number of the second kind different partitions for N
observations intoK groups [49]. In practice, the commonway
to perform clustering is to repeat the algorithm with multiple
restarts and to use the smallest local clustering error as a
selection criterion for the final prototypes [50].

The mean of the cluster points is the statistical estimate
of the cluster prototype in K-means. The method assumes
that data are spherical Gaussian distributed with normally
distributed noise and equal variance in each cluster. The
median and the spatial median, the latter also referred to
as the Fermat-Weber or Weber point, are robust estimates
of location [51], whose spherical symmetric distributions
are uniform and Laplace distributions, respectively. The spa-
tial median is a multivariate generalization of the univariate
median. The median and the spatial median are robust proto-
types of a data distribution since they can tolerate up to 50%
of incorrect data values without being disturbed. The spatial
median is rotation invariant so that robustness improves as the
dimension of the continuous problem space grows [49].

Algorithm 4TheMain Phases of Prototype-Based Clustering
Input: Data set and the number of clusters K .
1. Select K observations as the initial prototypes.
until the partition does not change do

2. Assign each observation to the closest prototype.
3. Recompute the prototypes with the assigned observations.

Output: Partitions and prototypes corresponding K disjoint data subsets.

In the general case, the clustering error function can be writ-
ten as follows:

Jk =
∑
xi∈Ck

d(xi, ck )qp, J =
K∑
k=1

Jk , (17)

where d(·) is the distance computation strategy in the lqp space,
and {ck}Kk=1 is the set of cluster prototypes that minimizes
locally the error function (17) and partitions the data into
K disjoint subsets. Jk is the within-cluster error in cluster
Ck , and lp-norm to the q-th power is the distance mea-
sure corresponding to the different location estimates of the
error function (see [51], [52]). Specifically, the sample mean,
median, and spatial median are obtained by choosing (p =
q = 2), (p = q = 1), and (p = 2, q = 1), respectively.
The sample mean and the median are straightforward to com-
pute, whereas the spatial median requires minimization of
a non-smooth (i.e., nondifferentiable) optimization problem
(see [52]) that requires more complex iterative methods to
be computed [53]. For instance, the solution can be obtained

efficiently by using the successive over-relaxation (SOR)
method.

In the K-means++ initialization approach, the first pro-
totype is selected as the centroid of the data set. Then, the
following prototypes are selected iteratively fromX based on
the probability function obtained from previous prototype(s)
min d(xi, {c}K−1

k=1 )/
∑
xi∈Ck

min d(xi, {c}K−1
k=1 ). Thus, the initial

prototypes are very probably selected separately. The selec-
tion procedure can also be performed incrementally [54].
It means that previously obtained K − 1 cluster prototypes
are used as a fixed set of initial points where only one point
is sampled according to the K-means++ principle. In high-
dimensional problems, K-means++ may show deteriorating
behavior which can be compensated by using dimension
reduction techniques [33].

B. CLUSTERING BASED ON EXPECTED DISTANCES
Computing the expected distances rely on the assumption of
normally distributed data. The central limit theorem suggests
that the assumption is valid with many continuous data sets
with appropriate sample sizes [37], [55]. However, the sta-
tistical parameters of data distribution are usually unknown,
and missing values make estimating parameters more chal-
lenging. Usually, the EM algorithm can produce sufficiently
accurate estimators of the unknown parameters, making the
clustering task more approachable because the data charac-
teristics are better known.

A clustering algorithm based on estimated distances was
presented in [56]. The core steps of the method are shown
in Algorithm 5. The algorithm skeleton is identical to the
traditional clustering (see Algorithm 4) but consists of two
additional steps (steps 2 and 3) that utilize distance estima-
tion. Steps 4 and 5 are repeated with estimated distances
until final convergence is reached. We noticed in the previ-
ous study that, on average (over 100 repetitions), clustering
based on the distance estimation produced better initial proto-
types than the clustering based on the ADS. However, giving
the distance-estimated prototypes as the initial points to the
K-spatialmedians based on ADS produced even more accu-
rate solutions to the clustering tasks. Thus, step 6 was
included in the developed method in Algorithm 5.

V. CLUSTER VALIDATION INDICES
Many clustering algorithms require the number of clusters as
an input parameter. However, often this information is not
available, and deciding the number can be challenging, espe-
cially in the case of multidimensional data, which humans
cannot directly conceive. Even though there are many meth-
ods for illustrating multidimensional data, i.e., using different
multidimensional visualization techniques [57] or dimension
reduction techniques [58], [59], the data structure may not
be obvious. Cluster validity provides a way to validate the
quality of the clustering results by discovering the partition
that best fits the nature of the data. Thus, because of the high
diversity of data, cluster validation measures, e.g., CVIs, are
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Algorithm 5 Clustering Based on EED-ADS Distance
Computation

Input: Data set X with missing values and the number of clusters K .
1. Select the spatialmedian as the first prototype of the data set.
2. Iteratively select the initial prototypes by using

previously selected K − 1 prototypes and K-means++
initialization.

2. Compute the mean vector and covariance matrices of the data using
the EM method.

3. Compute the expected distances between the observations and
prototypes.

repeat
4. Assign individual observations to their closest prototypes.
5. Recompute the prototypes with the assigned observations.

until The final convergence
6. Repeat steps 4 and 5 without distance estimation.

Output: Partitions and prototypes corresponding K disjoint data subsets.

recommended, even essential, methods for determining the
final number of clusters [31].

A. INTERNAL CLUSTER VALIDATION INDICES
Internal cluster validation indices are commonly based on two
measures: 1) Compactness, also referred to as Intra, indicates
how close the observations are to each other within the same
cluster. A commonly used Intra is a clustering error itself,
e.g., in the Ray-Turi index. 2) Separability, also known
as Inter, indicates how distant a cluster is from the other
clusters. Typically, Inter is computed as the minimum ormax-
imum distance between all prototypes. Variability between
prototypes around the centroid of the data is also used by
many indices, e.g., in the Calinski-Harabasz index.
In general, the purpose of CVIs is to minimize Intra and to
maximize Inter, so that the argument minimum or maximum
of division indicates the number of clusters.

Table 2 specifies the Inters and Intras of the best inter-
nal cluster validation indices according to [56]. Indices are
presented in a general fashion for lqp -norm settings. Expla-
nation of abbreviations are given in Table 3. The whole data
prototype is denoted by m, whereas nk indicates the num-
ber of observations in the kth cluster. The special distance
computation strategies given in Section II, denoted by d(·),
are required if at least one data vector includes missing val-
ues. Note that theWB-index,Calinski-Harabasz, and
kCE-index include penalization terms for a high number
of clusters that were originally derived in the context of the
squared formulas. Therefore, l2p -norms were used for these
indices regardless of the clustering error criterion used. In the
Silhouette index, Intra is the average dissimilarity of xi to
all other points in the same cluster, and Inter is the minimum
average dissimilarity of xi to all points in a different cluster:

Intra(xi) = 1
nk − 1

∑
xj∈Ck

d(xi, xj),

Inter(xi) = min
k �=k ′

1
nk ′

∑
xj∈Ck′

d(xi, xj), (18)

where xi belongs to cluster Ck .

TABLE 2. Internal cluster validation indices in general fashion.

TABLE 3. Explanations of abbreviations.

B. EXTERNAL CLUSTER VALIDATION INDICES
External cluster validation indices can validate the quality
of the clustering result if the actual clustering labels are
known. The simple external index is Accuracy-index
(ACC) which computes the quotient of the correctly
predicted data labels and the total number of the
labels [60]. The normalized mutual information
index (NMI) origins from information theory. Themutual
information explains the reduction in the entropy between the
real and the predicted cluster labels [61]. The normalization
is used to scale the result to the range of [0, 1]. Many variants
exist to normalize the mutual information, e.g., min, max,
and square-root normalizations [61]. However, the arithmetic
method is often used, which divides the mutual information
by the average value of entropy terms as follows:

NMI = I (Lreal,Lpred )
(H (Lreal) + H (Lpred ))/2

, (19)

where I (·, ·) denotes the mutual information between the real
and predicted clusters and H (·) denotes the entropy function.
The adjusted Rand index (ARI) measures similar-
ity between two clusterings of the same data using the per-
mutation model [61]. The equation can be written as:

ARI = �ij(
nij
2 ) − [�i(

ai
2 )�j(

bj
2
)]/( n2 )

1
2 [�i(

ai
2 ) + �j(

bj
2
)] − [�i(

ai
2 )�j(

bj
2
)]/( n2 )

, (20)
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where nij is an intersection table between the real and pre-
dicted cluster labels, the row and column sums of the inter-
section table are denoted by ai and bj, respectively.

VI. OVERVIEW OF THE TOOLBOX
The toolbox was implemented by using MATLAB (R2018b,
64-bit), and it is freely available with the MIT License on
GitHub online1. The toolbox contains benchmark_data,
toolbox, test_macro, and results folders.
Eight real-world classification data sets were selected from

the University of California at Irvine (UCI)2 Machine Learn-
ing Repository [62]. Seven were used in the first part of
the experiments, and three were used in the second part.
Further, eight synthetic data sets, including the four S sets3

(15 centers and 5000 observations in each set), the Sim5D2
set4 (5 centers and 2970 observations), the Sim2D2 set4

(2 centers and 2000 observations), the O200 set4 (5 cen-
ters and 200 observations), and the O2000 set4 (5 cen-
ters and 2000 observations) were selected from a previous
study [56] for the second part of the experiments. These
synthetic data sets are two-dimensional. In addition, in total,
12 synthetic multidimensional data sets (10D, 50D, 100D)
with 15 centers and 6000 observations in each set were cre-
ated with the data set generator5 [33] for the third part.

The toolbox includes routines for handling missing values,
data preprocessing, clustering, and validating clusters. All the
developed methods generalize to missing values in the data.
The descriptions of the most vital MATLAB functions are
given in Table 4. Notice that more detailed descriptions of
functions are available using the help command in MAT-
LAB (see the next section for the use case examples). Fur-
ther, the help command shows the function calls, input and
output parameters, and default values of the input parameters
for each toolbox function. The toolbox supports computation
strategies based on available data (ADS), partial distance
(PDS), and expected distances (ESD, EED) that are used
by clustering methods, cluster validation indices, and data
preprocessing methods. In total, ten well-performing internal
cluster validation indices depicted in Section V are supported.
Further, as depicted in Sections II–III, the preprocessing
functionality includes routines for data imputation, distance
computation with a selected distance strategy, selecting key
points, and transforming data sets into spherical forms.

A. GENERAL USE OF THE TOOLBOX
General use of the toolbox is demonstrated in the
toolboxdemo macro (see the next section). The correct
functionalities of the toolbox functions can be evaluated
with test macros divided into three test case folders. The
first test case folder includes the Main macro that performs
comparisons of techniques for handling missing values. The

1https://github.com/markoniem/nanclustering_toolbox
2https://archive.ics.uci.edu/ml/index.php
3http://cs.uef.fi/sipu/datasets/
4http://users.jyu.fi/ mapeniem/CVI/Data/
5https://github.com/jookriha/M_Spheres_Dataset_Generator

macro selects the parameters used from the params file. The
cluster validation process can be divided into three tasks in
the second test case folder: data preparation, clustering, and
cluster validation. The Main macro pipelines these tasks to
one process and outputs an Excel file of the cluster validation
results. Further, the toolbox offers missing values generation,
clustering, and cluster validation as separate processes imple-
mented in the generatemissdata, clusterdata, and
validateclustdata macros, respectively. An option-
ally visualizeresults macro can be used to visualize
the final results of the clustering and cluster validation.

The third test case folder includes the same Main macro
functionalities as given in the second test case folder. How-
ever, the mechanism for generating missing values was mod-
ified to restore 0.5% of the original observations. It was
required because the initialization of clustering uses the com-
plete observations, and removing data values completely at
random from high-dimensional data causes all observations
to contain missing values.

TABLE 4. Core functions.

B. EXAMPLES OF BASIC USE
The basic use of the toolbox is given in the toolboxdemo
file. It includes function calls for data preprocessing, clus-
tering, and cluster validation. In the first example, 10% of
missing values are generated for the input data. The result
is min-max scaled to a range of [-1, 1], and the k-nearest
neighbors imputation with five neighbors is performed. Then,
the dimensionality of the imputed data set is reduced to 2D
and transformed into a spherical form (Section III-D). Finally,
the transformed data are visualized on a scatter plot.

load fisheriris;
X = meas;
addpath(‘../../../toolbox/preprocess’);
Xm = genmissdata(X, 0.1);
Xnorm = normalizedata(Xm, ‘min-max’, [−1, 1]);
Ximp = knnimpute(Xnorm, 5);
Xmapped = datasetmap(Ximp);
scatter_data(Xmapped);

In the second example, clustering is performed based
on available data in distance computation, i.e., using a
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K-spatialmedians clustering method. The toolbox also
supports clustering algorithms based on partial (kcen-
troids_partial) and expected (kcentroids_expected) distances.
The clustered data set, the number of clusters, the number of
replicates, the distance metric, the initialization criterion, and
the initial values of the centroids are given as input parameters
for the clustering function. The output parameters are cluster
labels for each observation, the cluster centroids, and the
within-cluster sums of points-to-centroid distances:
addpath(‘../../../toolbox/kcentroids’);
[ L, C, sumd] = kcentroids(Xnorm, 5, 100, ‘euc’,
‘kmeans++’, [ ] );

In the final example, clustering is performed itera-
tively, with K ranging from 2 to 10. The default val-
ues of the parameters are used in clustering (see help
iterative_kcentroids). The centroids and labels are
used as input parameters for the cluster validation function.
There are two ways to specify the indices (see the exam-
ple). Finally, the results of the cluster validation indices are
visualized:
addpath(‘../../../toolbox/cluster_indices’);
% help iterative_kcentroids;
[ centers, labels] = iterative_kcentroids(Xnorm, 10);
% Select the cluster validation indices. The ‘dist’ parameter
% defines the selected distance metric used by inidices.
dist = ‘euc’;
indices = {@CalinskiHarabasz; @DaviesBouldin; @kCE;};
% An optional way to define indices. This overrides the ‘dist’ option.
indices = [@CalinskiHarabasz, ‘sqe’; @DaviesBouldin, ‘euc’; @kCE,
‘sqe’; ] ;
indices_values = cluster_validation(Xnorm, centers, labels, dist,
indices);
%
% In default, indices use available data strategy based computation.
% However, expected distances or partial distances are supported as well.
% indices_values =
% cluster_validation(Xnorm, centers, labels, dist, indices, ‘exp’);
%
plot_indices(indices, indices_values);

VII. EXPERIMENTAL RESULTS
Experiments were divided into three parts which are dis-
cussed in the following sections.

A. VALIDATION OF DISTANCE ESTIMATION METHODS
In the first case, the experimental settings and the reference
results were obtained from [5]. The real-world data sets were
selected from the UCI repository. The experiments consisted
of the z-score scaling of the data to the zero mean and unit
variance. Then, the fixed probabilities (5, 15, 30, and 60%)
of the data values were removed completely at random from
each data set. The estimated distances were compared to the
real distances, which were computed beforehand. The root
mean square error (RMSE) between the real distances and
the estimated distances was used. The RMSE included only
the cases where estimations were needed, i.e., distances over
complete observations were omitted. Further, in the cases

of empty data vectors, the average distances over the data
samples were used in error computing. The mean values
and standard deviations of the results were recorded utilizing
measurements over 250 repetitions.

We validated the functionalities of the implemented dis-
tance estimation algorithms against the reference methods
given in [5]. An extension of the reference paper was the
self-made implementation of the EM algorithm so that the
ecmnmle function was not required (available only in MAT-
LAB’s commercial Financial Toolbox). Further, in addition to
the ESD, PDS, and ICkNNI (k = 5) methods, the EED, ADS,
kNNI (k = 5), and iterative soft-thresholding methods were
added to the comparisons. Table 5 shows the results, which
are in line with the reference results in the six cases over seven
data sets. The exception is the wine data set, in which all
distance computation mechanisms produced different results.
In [5], a Monte Carlo simulation was used to remove data val-
ues in each repetition, whereas in our experiments, data val-
ues were removed completely at random. That may explain
the differences in the results. In general, the results indicate
that the EED is the best-performing algorithm. However,
the ESD results are only slightly worse, and the method is
computationally less expensive. Thus, the ESD method is
highly recommended for computing pairwise distances.

B. PERFORMANCE EVALUATION OF CLUSTERING AND
CLUSTER VALIDATION
In the second part, the data clustering and cluster validation
indices methods were evaluated. The initial settings were
selected from [56]. These settings included removing data
values completely at random from data sets (see the toolbox
overview section for detailed descriptions of the data sets),
min-max scaling that results in a range of [−1, 1], repeat-
ing the K-spatialmedians clustering with 100 replicates, and
selecting the lowest local minima as the best clustering par-
tition. The prototypes were initialized incrementally, ben-
efiting the previous prototypes (see the last paragraph in
Section IV-A). In [56], the clustering method based on
the expected distances and giving the obtained prototypes
as inputs in the K-spatialmedians with ADS algorithm was
suggested. The clustering and cluster validation indices were
revealed to be slightly more accurate based on the two-stage
clustering approach. Thus, the same procedure was repeated
in this study among the K-spatialmedians clustering.

The results given in [56] were reproduced to validate
the functionality of the cluster validation. Note that the
results/params folder includes the parameter files used
in different experiments related to cluster validation. The
experiments showed that the best cluster validation results
are obtained using K-spatialmedians clustering based on
EED-ADS distance estimation. The new approach improved
the performance, especially when compared to the results,
which were available using the real centers of the synthetic
data sets as the initial points to K-spatialmedians based on the
ADS (see results folder). The best-performing index was
Calinski-Harabasz (CH) that always recommended
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TABLE 5. The average RMSEs and standard deviations (over 250 repetitions) of distance computation algorithms in the direct estimation of pairwise
distances with data sets consisting (5, 15, 30, and 60%) of missing values. The best results for each test set are underlined, and the results that are not
statistically significantly different (two-tailed paired t-test, α = 0.01) are in bold.

the correct numbers of clusters even if the data sets and
degrees of missing values varied. The other well-performing
indices were kCE-index (KCE), Silhouette, and
Ray-Turi.

Three external cluster validation indices were selected
to measure the quality of the K-spatialmedians cluster-
ing results based on ADS and EED-ADS distance estima-
tions strategies. The selected indices were: Accuracy (ACC),
adjusted Rand index (ARI), and normalized mutual informa-
tion (NMI). Table 6 shows the comparison results. Clearly, the
EED-ADS-based estimation produces better solutions for the
synthetic data sets. Especially, the better results were obtained
with theS2 data set andwith the challengingS4 andSim5D2
data sets. These results are in line with the results obtained by
the internal indices, which especially recommended the better
solutions with the EED-ADS estimation for the Sim5D2 data
set.

We applied the expected distance estimation to the
actual cluster validation indices. It appeared that only
Silhouette, Wemmert-Gançarski (WG), and
Davies-Bouldin (DB) benefited from the distance esti-
mation, and the other indices decreased the performance
for finding the correct number of clusters in the data sets.
Compared to the other indices, which compute the pair-
wise distances between observations and complete centroids,
Silhouette computes the pairwise distances between
observations, which may be incomplete (see eq. (18)). Thus,

it was expected that Silhouette performed better using
the expected distances.

Key point selection (presented in Section III-D1) was used
in the cluster validation. The number of key points can be
fixed to ||√N ||, as recommended in [32]. However, we pro-
vided two modified versions of the original algorithm based
on key point pruning, i.e., the algorithms started from the
given maximum for the key points and then removed irrel-
evant points one by one. This was performed iteratively until
the value of K of the chosen number of clusters was reached.
The selected points were then used in the initialization of the
selected clustering algorithm in each iteration. The experi-
ments were performed for 2D data sets. For this purpose,
Ecoli, Iris, and Seeds real-world data were transformed
to 2D using multidimensional scaling. The selection assumed
that the data sets were complete, therefore, the ICkNN
(k = 2) imputation strategy was applied to the data sets with
missing values. The figures for the key point selection result
are given in results/key_point_selection/img
folder in toolbox. The results for the cluster validation indices
are given in Table 7. The reference results for the synthetic
data sets were obtained from [56]. On average, the validation
results for the key point selection were almost the same as the
reference results, which were based on available data strategy
and replicated clustering. The most challenging synthetic
data set was Sim5D2. None of the indices was able to get
all correct recommendations with the different degrees of
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TABLE 6. The quality of clustering results determined with external cluster validation indices. The K-spatialmedians clusterings with available data
strategy (ADS) and using both expected distance and available data computations (EED-ADS) were compared. The highest scores are bolded only if they
differ between the two clustering methods.

missing values. The high-density clusters in Sim5D2 caused
many incorrect validation results. The sparse clusters were
connected to higher-density ones after clustering, and there-
fore, many indices supported three as the correct number.
Especially, the sparse clusters almost disappeared based on
the ICkNN imputed data with 20% of missing values (see
images from results folder). The validation results with
real-world data were improved using the key point selection
with all data sets. It appeared that CH, KCE, and WB indices
recommended a very high number of clusters for Ecoli and
Iris data sets without the key point selection.

C. CLUSTER VALIDATION WITH MULTIDIMENSIONAL DATA
In the third part of the experiments, the cluster validation
indices were applied to multidimensional data sets that were
created by the data set generator presented in [33]. The gen-
erator draws a random point on the M-dimensional sphere
centered on c with radius d . The distance between centers is
defined as dc = ||ci − cj||, ci, cj ∈ C , where i �= j, and C is
a set of centers. The radius d is uniformly selected from the
range of (0, 1] for each data point. It means the clusters do not
overlap in the multidimensional space when the distance of
the centers is dc ≥ 2, and the cluster overlap is approximately
50% if the distance is dc = 1.

Table 8 shows the results of the cluster validation indices
with the predefined number of missing values (0, 5, 10, and
20%) and different degrees of cluster overlap (dc = [0.9, 0.8,
0.7, 0.6]). The best performing index was WG which recom-
mended the correct number of clusters in almost all test cases
(45/48 correct recommendations). Interestingly, the CH, KCE,
and WB-index, which included the squared penalization
term, always recommended the incorrect number of clusters.
We also tested the non-squared penalizations but were not
able to improve the results. The KCE uses only Intra which
explains that the better separation in the multidimensional
space depends on the quality of Inter. It supports the find-
ing given in [33] that the difference between the clustering

errors of good and bad clustering results in high-dimensional
spaces is small. The curse of dimensionality can explain
the findings, which causes relative differences between the
distances to vanish in high dimensional spaces [63]. The
other well-performing indices were GD, RT, and DB∗, which
recommended 37, 33, and 30 correct solutions, respectively.
The highest overlapping clusters (dc = 0.6) were chal-
lenging for the indices because only WG (11/12 times), RT
(3/12 times), andGD (3/12 times) were able to find the correct
numbers.

The experiments were also conducted with 2D-scaled
M-Sphere data sets. However, the performance of all
indices was poor in 2D data space (only a few correct recom-
mendations), and therefore, these results were not reported.
The generated clusters were compact and isolated in the high-
dimensional space, which explains the far better validation
results with these data sets in their original dimensions [63].
Further, the dimension reduction leads to a loss of infor-
mation which also supports the findings. Nevertheless, the
developed key point selection algorithms with ICkNN
(k = 2) imputed data possess multidimensional functionality.
The results of cluster validation indices with the key point
selection and multidimensional M-Sphere data sets are
given in the results folder in the toolbox. The indices can
be concluded to perform better when the key point selection
procedure was used to initialize the K-spatialmedians cluster-
ing with 0%, 5%, and 10% of missing values in the data sets.
However, a decreased performance was observed with 20%
of missing values in data.

VIII. DISCUSSION
The results indicate that the ESD distance estimation could
be a better choice than EED in the general case due to the
lower computational complexity. The overall best clustering
models with synthetic 2D data sets seem to be obtained using
expected distances in clustering and giving the prototypes
as inputs to the K-spatialmedians originally based on the

362 VOLUME 10, 2022



M. Niemelä et al.: Toolbox for Distance Estimation and Cluster Validation on Data With Missing Values

TABLE 7. The number of clusters determined with internal cluster validation indices based on key point selection (every second row). The data sets
consisted of predefined numbers of missing values, and experiments were performed using the K-spatialmedians clustering algorithm. Reference results
were obtained using K-spatialmedians clustering with available data strategy.

available data distance strategy. In the case of multidimen-
sional data, we noticed that the quality of the clustering mod-
els highly depends on the form of the Inter term. In addition,
significantly better validation results were achieved when
the data sets resided in their original dimensions than in 2D
presentation. The WG index clearly overperformed the other
indices on the multidimensional sets.

The experiments to demonstrate the performance of the
cluster validation indices were performed both on synthetic
and real-world data sets. One challenge for testing indices
with real-world data sets is that the correct number of clusters
is not obvious. For instance, a clustering model may produce
a useful presentation about the inherent structure of a data set
while it does not necessarily agree with the given class distri-
bution for the same data. In data mining, the goal of cluster

analysis is, however, to discover new knowledge instead of
training a prediction model in a supervised manner. In this
scenario, one approach for validating a cluster model and
estimating the number of clusters is to apply multiple indices
that have previously performed well on several data sets.

We provided two modified versions of the original key
point selection algorithm based on key point pruning. The
developed algorithms included a mechanism for removing
irrelevant key points. The algorithms resulted in good solu-
tions for most of the data sets with a varying portion of
missing values. However, there is still room for improvement
in the heuristics to identify appropriate locations of the key
points for diverse data sets. The development of clustering
heuristics is not a trivial task because the notion of a cluster
itself can be weakly defined [64]. It is also good to remember
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TABLE 8. The number of clusters determined with internal cluster validation indices using K-spatialmedians clustering. The data sets consisted of
predefined number of missing values, and different degrees of cluster overlap.

that clustering is often in the eye of the beholder [65]. Before
a clustering algorithm is applied to the data, one may also
want to determine whether the data even has a clustering
tendency [66]. The most central properties of clusters are
density, variance, dimension, shape, and separation [67]. Fur-
ther, what type of clustering model is the most useful always
depends on the target application.

IX. CONCLUSION
Even though the basic idea behind cluster analysis is simple,
the process presumes many decisions and choices with mul-
tiple options in different parts of the analysis. This study pro-
posed a toolbox that enables researchers and practitioners to
achieve reliable and consistent clustering results regardless of
missing values in their data. The priorities of the present work
were on data preprocessing, clustering, and cluster validation.

The toolbox supports missing values and enables its user to
build automated data clustering pipelines from preprocessing
to cluster analysis and model validation. The validity and
performance of the algorithms were demonstrated using mul-
tiple test cases and several data sets. One should note that
the aim of the presented experiments was not to perform a
systematic method comparison since most of the underlying
development work has already been accomplished in the
previous studies cited in this paper.

We remind that some of the implemented functions
can also be useful in other machine learning tasks. For
instance, the distance computation methods for missing
data cases provided in the preprocessing folder are readily
applicable in supervised learning with the distance-based
methods [68], [69].

The functionality of the toolbox was verified against the
reference results from the previous publications. In the study,
the two expected distances measuring metrics’ performance
were thoroughly demonstrated in handling missing values.
Further, a recently published key point selection mechanism,
which associates the data points with relatively higher den-
sity and larger density-based distances to the so-called key
points, was applied to improve the cluster validation process.
The cluster validation was experimented with challenging
multidimensional data sets with various cluster overlap and
numbers of missing values.

Even though the key point selection strategy seems to
improve the performance of many cluster validation indices,
further investigations are recommended, especially related
to the key point selection procedure and the initialization
of clustering algorithms. The initialization is an important
part of the clustering process, and several studies are already
available on the topic [33], [70]–[72]. The purpose of this
toolbox is to facilitate and promote this research further. The
UCI Repository provides a multitude of data sets, of which
some are particularly proposed for clustering experiments.
This toolbox enhances the testing of its methods with a wider
range of sets.

APPENDIX A
EXPECTED SQUARED EUCLIDEAN DISTANCE
Let us assume the data are missing at random (MAR),
i.e., missingness may depend on the value of available data:

P(M |xavail, xmiss) = P(M |xavail). (21)
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The expected squared Euclidean distance between two data
vectors can be partitioned into four parts depending on the
missing and available values of each data vector:

E
[
||xi − xj||2

]
=

∑
l∈Ai∩Aj

((xi)l − (xj)l)2 +
∑

l∈Ai∩Mj

E[((xi)l − (Xj)l)2]

+
∑

l∈Mi∩Aj
E[((Xi)l − (xj)l)2]

+
∑

l∈Mi∩Mj

E[((Xi)l − (Xj)l)2], (22)

where Ai and Aj denote the available values of data vectors xi
and xj, respectively, andMi andMj denote the missing values
of the vectors. The first term (l ∈ Ai ∩ Aj) represents pairwise
known values of both vectors, and they can be computed
directly. The rest of the sum contains terms where at least one
part contains only missing values. The missing value can be
replacedwith a random value, i.e., (xi)l is denoted by (Xi)l for
every l ∈ Mi. Thus, the equation can be expanded as follows:

E
[
||xi − xj||2

]
=

∑
l∈Ai∩Aj

(
(xi)l − (xj)l

)2
+

∑
l∈Ai∩Mj

(
((xi)l − E[(Xj)l])2 + Var[(Xj)l]

)

+
∑

l∈Mi∩Aj

(
(E[(Xi)l] − (xj)l)2 + Var[(Xi)l]

)

+
∑

l∈Mi∩Mj

(
(E[(Xi)l] − E[(Xj)l])2

+Var[(Xi)l] + Var[(Xj)l]
)
. (23)

In more detail, the third summation (l ∈ Mi ∩ Mj) can be
written as:

E[((Xi)l − (Xj)l)2]

= E[((Xi)l)2 − 2((Xi)l)((Xj)l) + ((Xj)l)2]

= E[((Xi)l)2] − 2E[((Xi)l)]E[((Xj)l)] + E[((Xj)l)2]

+E[((Xi)l)]2 − E[((Xi)l)]2 + E[((Xj)l)]2 − E[((Xj)l)]2

= (E[((Xi)l)] − E[((Xj)l)])2 + E[E[(Xi)2l ] − (Xi)2l ]

+E[E[(Xj)2l ] − (Xj)2l ]

= (E[((Xi)l)] − E[((Xj)l)])2 + Var((Xi)l) + Var((Xj)l).

(24)

Thus, it is sufficient to compute the expected value and
variance of each random value separately to obtain the final
distance.

APPENDIX B
CONDITIONAL MEAN AND COVARIANCE
Let us assume multivariate normally distributed data which

are partitioned as x =
[
x1
x2

]
and define a linear combination

x = x1 + Ax2, where A = −�12�
−1
22 . Now, we notice the

following equality:
Cov[x, x2] = Cov[x1, x2] + Cov[Ax2, x2]

= �12 + AVar[x2]

= �12 − �12�
−1
22 �22

= 0.

Thus, x and x2 are uncorrelated. In addition, they are jointly
normally distributed, and therefore, independent. Following
the initial assumptions, the conditional mean of x1 given x2
is obtained as follows:

E[x1|x2] = E[x − Ax2|x2]
= E[x|x2] − E[Ax2|x2]
= E[x] − Ax2
= μ1 + A(μ2 − x2)

= μ1 + �12�
−1
22 (x2 − μ2).

Further, we find out the following equality:
Var[x1|x2] = Var[x − Ax2|x2]

= Var[x|x2] + Var[−Ax2|x2]
+Cov[x, −Ax2] + Cov[−Ax2, x]

= Var[x|x2] + AVar[x2|x2]AT

−Cov[x, x2]AT − ACov[x2, x]

= Var[x].

Therefore, the conditional variance is defined as:
Var[x1|x2] = Var[x1 + Ax2]

= Var[x1] + AVar[x2]AT

+Cov[x1, x2]AT + ACov[x2, x1]

= �11 + �12�
−1
22 �22�

−1
22 �21

− �12�
−1
22 �21 − �12�

−1
22 �21

= �11 + �12�
−1
22 �21 − 2�12�

−1
22 �21

= �11 − �12�
−1
22 �21.

Note that the basic rules of matrix algebra are given in [73].
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