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Abstract: The use of deep neural networks in the object detection task has become the 

mainstream solution in recent years due to the major improvements in the performance and 

accuracy of the detections that they have offered. Simultaneously the IoT technology has 

started to integrate with artificial intelligence technology and IoT devices with integrated 

cameras have started to adopt image recognition techniques. These have increased the in-

terest in using object detection solutions on applications and devices in fields like surveil-

lance and autonomous driving. Recently the applications have also started to adopt using 

deep learning models on-device to keep the unnecessary traffic off the network, which has 

supported the development of lightweight object detection models. However, the studies 

have shown that deep neural networks are vulnerable to adversarial examples, which are 

images that contain a subtle perturbation capable to fool the object detector to make false 

detection.  

This thesis focuses to evaluate the sensitivity of lightweight object detection models 

against adversarial perturbation and studies what kind of adversarial attacks currently exist 

against object detection models. The experiments were conducted by crafting the adversar-

ial examples using the python library designed to run adversarial attacks against deep neu-

ral networks. The evaluations were completed on selected pre-trained models while using 
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the datasets based on COCO 2017 dataset. Experiments show that using the adversarial 

perturbation crafted on the projected gradient descent method, the mean average precision 

of the selected models was decreased on low noise levels 4–10%, on average levels 10–

28%, and on high levels 25–49%. When using adversarial perturbation crafted on the fast 

gradient sign method, the mean average precision of the selected models was decreased on 

low noise levels 10–22 %, on average levels 35–53%, and on high levels 70–84%. From 

the models used in experiments, the EfficientDet D0 512x512 model proved to resist the 

adversarial perturbation better than the others. Results show that pre-trained lightweight 

object detection models are vulnerable to adversarial examples crafted using the python 

library and it would need more research to make them more robust.  

Keywords: Adversarial Examples, Deep Learning, Object Detection, Sensitivity Analysis 

Suomenkielinen tiivistelmä: Syväoppivat neuroverkot ovat viime vuosina olleet yleisin 

käytetty menetelmä hahmontunnistuksessa niiden tarjotessa merkittäviä parannuksia suori-

tuskykyyn sekä tunnistusten tarkkuuteen. Samanaikaisesti IoT-teknologia on alkanut integ-

roitua tekoälyteknologian kanssa, jonka seurauksena kameroita sisältävät IoT-laitteet ovat 

alkaneet hyödyntämään kuvantunnistus tekniikoita. Nämä ovat kasvattaneet kiinnostusta 

hahmontunnistus ratkaisujen käytöstä sovelluksissa ja laitteissa eri aloilla, kuten valvon-

nassa ja itseohjautuvissa ajoneuvoissa. Viime aikoina syväoppimismalleja on implementoi-

tu suoraan laitteisiin, tarpeettoman liikenteen pitämiseksi poissa verkosta. Tämä on tukenut 

kevyiden hahmontunnistusmallien kehitystä. Tutkimukset ovat kuitenkin osoittaneet, että 

syväoppivat neuroverkot ovat haavoittuvia vihamielisille esimerkeille, joilla tarkoitetaan 

vaikeasti havaittavaa kohinaa sisältäviä kuvia, jonka seurauksena hahmontunnistus mallit 

saadaan tekemään virheellisiä tunnistuksia. 

Tämä tutkielma keskittyy toteuttamaan kevyiden hahmontunnistus mallien herkkyysana-

lyysin vihamielistä kohinaa kohtaan sekä tutkii millaisia vihamielisiä hyökkäyksiä hah-

montunnistus malleja vastaan, on olemassa. Tutkimukset suoritettiin luomalla vihamielisiä 

esimerkkejä käyttäen python kirjastoa, joka oli luotu vihamielisten hyökkäysten testaami-

seen syväoppivilla neuroverkoilla. Arvioinnit toteutettiin testaamalla valittuja esikoulutet-

tuja malleja tietoaineistoilla, jotka pohjautuivat COCO 2017 tietoaineistoon. Kokeet osoit-
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tavat, että projected gradient descent metodilla luodun hyökkäävän kohinan käyttö laski 

mallien keskimääräistä tarkkuutta matalilla kohinan tasoilla 4–10%, keskiverto tasoilla 10–

28% sekä korkeilla tasoilla 25–49%. Käyttämällä fast gradient sign metodia hyökkäävän 

kohinan luonnissa, mallien keskimääräinen tarkkuus laski matalilla kohinan tasoilla 10–

22%, keskiverto tasoilla 35–53% sekä korkeilla tasoilla 70–84%. Tutkimuksessa käytetyis-

tä malleista parhaiten hyökkäävää kohinaa vastusti EfficientDet D0 512x512 malli. Tulok-

set osoittavat, että esikoulutetut kevyet hahmontunnistusmallit ovat haavoittuvia python 

kirjastolla luoduille hyökkääville esimerkeille ja tutkimusta mallien sitkeyden paranta-

miseksi tulisi jatkaa. 

Avainsanat: Vihamielinen Esimerkki, Syväoppiminen, Hahmontunnistus, Herkkyysana-

lyysi 
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Glossary 

AE Adversarial Example 

AP Average Precision 

CNN Convolutional Neural Network 

DNN Deep Neural Network 

EN EfficientNet 

FGSM Fast Gradient Sign Method 

GPU Graphics Processing Unit 

IoT Internet of Things 

mAP Mean Average Precision 

MN MobileNet V2 

PGD Projected Gradient Descent 

PSNR Peak signal-to-noise ratio 

RGB Red Green Blue 

RN Resnet50 

SSD Single Shot MultiBox Detector 

SVM Support Vector Machine 

TF TensorFlow 

TF2 TensorFlow 2 
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1 Introduction 

Object detection is one of the most fundamental and challenging problem areas in the 

computer vision field and it forms the foundations for solving complex or high-level com-

puter vision tasks by detecting and locating pre-defined objects from natural images. While 

object detection has been an active area of research for several decades, the recent im-

provements in computational capabilities, availability of large-scale datasets, and use of 

deep learning techniques have provided major improvements in detection results. The deep 

learning neural networks have been a major force behind the remarkable breakthroughs 

made in the performance and accuracy of object detectors. The promising results have led 

to an increased interest in using object detection solutions in fields such as healthcare, se-

curity, agriculture, manufacturing, industrial and smart cities, while the object detection is 

already used to support applications related to robot vision, consumer electronics, surveil-

lance and security, autonomous driving, human-computer interaction, content-based image 

retrieval, and augmented reality. (L. Liu et al., 2020.) Simultaneously the Internet of things 

(IoT) technology has been through rapid development in the past decade and has gradually 

started to integrate with artificial intelligence technology. One of the key technologies 

driving this integration forward has been image recognition, as video cameras are integrat-

ed into intelligent IoT equipment, like in autonomous driving. However, the use of deep 

learning solutions in IoT has raised questions regarding the security of the systems, due to 

recent findings made on deep learning architectures. (F. Wu et al., 2020.) 

Studies from Szegedy et al. (2014) and Goodfellow et al. (2014) have demonstrated that 

deep neural networks are vulnerable to adversarial examples, which can cause serious se-

curity issues in applications. These adversarial examples are well-designed input samples, 

formed by adding small perturbations to the original sample. In object detection, the per-

turbations added to the image can be imperceptible to humans but can easily fool deep neu-

ral models to misclassify the input sample. While most of the studies around object detec-

tion focus on developing state-of-the-art deep learning models with better detection accu-

racies and faster processing times, the main concern should be pointed to the security issue 

created by vulnerability to adversarial examples as Y. Huang et al. state (2021). Eykholt et 
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al. (2017) showed that the traffic sign recognition systems can be misled to recognize a 

stop sign as a speed limit sign using adversarial examples, which can be very dangerous in 

autonomous driving applications. Simultaneously publicly available pre-trained object de-

tection models are currently used in mobile applications while containing the same vulner-

ability against adversarial examples as Y. Huang et al. (2021) showed in their study. 

Most of the studies related to the accuracy and vulnerability of object detection models 

have been concentrating on state-of-the-art object detection models. These models can be 

quite heavy and require a lot of computing resources to make the detections, which makes 

them unsuitable for IoT devices where computational capabilities are restricted. This cre-

ates a need for the study of how do the lightweight object detection models react to adver-

sarial examples, which this thesis aims to answer. The main use cases for the lightweight 

object detection models are in the IoT devices where computation capacities are limited, or 

in situations where fast or real-time object detection is preferred over the high accuracy of 

the detections. In the IoT schema, the data is collected by the sensors on the device and 

usually processed either on the device or a backend server. In cases where the processing 

of the data can be made on-device, brings several advantages as the unnecessary traffic can 

be kept off the network. An example of this could be an IoT device that collects the video 

stream as an input through the embedded video camera and detects objects in real-time. 

The on-device deep learning models have gained attention recently as applications have 

started to adopt them (Y. Huang et al., 2021). This also supports the need for the study. 

In this thesis, a sensitivity analysis will be conducted on selected lightweight object detec-

tion models when evaluating their detection accuracies on adversarial example inputs. The 

adversarial examples are crafted using the techniques already tested against the state-of-

the-art deep image classification models. Selection of the lightweight object detection 

models was made by preferring the model applicability in the IoT devices.  

This thesis aims to answer the following research questions: 

1. What kind of adversarial attacks currently exists against object detection models? 

2. How do the lightweight object detection models react to adversarial examples?  
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To answer these questions a literature review was concluded and experiments with adver-

sarial examples were made. The experiments cover crafting the adversarial examples from 

selected images with proven methods and evaluating the accuracy of the pre-trained object 

detection models with adversarial datasets. The goal here was to solve how the selected 

models react to the adversarial perturbation included in images when doing sensitivity 

analysis, by comparing evaluation results with a clean dataset and with adversarially per-

turbed datasets. The crafting of adversarial examples follows the perspective that for hu-

mans, the difference between an original image and the adversarial one should be hard to 

detect, or the perturbation in the image could not be categorized as intentional. 

This thesis is divided into nine chapters. The first chapter provides an introduction to the 

thesis. Chapters two, three, and four are part of the conducted literature review. Chapter 

two covers the topic of IoT from viewpoint of object detection, while chapter three ex-

plores the fundamentals of object detection, and chapter four builds an understanding of 

adversarial examples and their effects on object detection models. Chapter five covers the 

methodology used in the thesis. Chapter six demonstrates the process for running the ex-

periments regarding the sensitivity analysis of lightweight object detection models against 

adversarial examples. In Chapter seven, the results of the experiments are presented. Chap-

ter eight contains discussions about the results and limitations of this thesis work and pre-

sents some future research ideas. Finally, chapter nine concludes the thesis and summarizes 

the results. Appendix C contains information about copyrights and licences of images used 

in this research. 
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2 OBJECT DETECTION IN IOT DEVICES 

This chapter covers the topic of object detection in IoT devices. The first subchapter in-

cludes a brief introduction and background of IoT devices. The second subchapter inspects 

the advantages and restrictions related to the use of deep learning in IoT devices. In the 

third subchapter, a few cases where object detection is currently utilized in IoT devices are 

presented shortly.  

2.1 Introduction to IoT devices 

The internet of things (IoT) is a concept that refers to the networked everyday physical 

devices, home appliances, automobiles, and other components with embedded intelligence, 

programs, sensor devices, and actuator controllers, that are interconnected to each other via 

wireless sensors attached to them and transfer useful information between devices. These 

devices use different techniques to collect useful data and automatically flow this to other 

devices and back. Internet of Things has gained growing attention from researchers and 

practitioners in recent years with aim of designing and developing complex IoT systems to 

meet the needs of the future smart world. (X. Li et al., 2011; Xia et al., 2012.) 

One of the essential functions of IoT devices is the detection and recognition of the sur-

rounding environment. The collected data may provide necessary information for the de-

vice itself or support for other functions included in the device. Deep learning-based object 

detection models play an important part in these kinds of devices, mainly because of their 

accuracy and efficiency in detecting objects. If the object detection model does not work 

properly it can directly cause problems in the IoT devices using the model, and eventually 

may cause serious consequences, especially if the device is used in critical operations like 

autonomous driving or security surveillance. Therefore, research about the security of ob-

ject detection models has received more attention in recent years, and it should be a key 

feature to be improved in the future development of these models. (Wang, Tan, et al., 

2020.) 
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2.2 Deep Learning and IoT devices 

When deep learning applications are deployed on IoT devices they use one of the two ma-

jor methods in how they function: the first is the client-server method and the second cli-

ent-only method. In the client-server method, the IoT device is used as a sensor collecting 

the necessary data which is then sent to a cloud server running the deep learning model that 

processes the data and then sends the results to a client. This approach is good in situations 

where heavy computation can be done on a server. However, the key element in this ap-

proach is to maintain good connectivity between the device and the server. In the client-

only method, the deep learning model is running directly on the IoT device where collected 

data is also processed. This way there is no need for a network connection, which may 

provide faster results, but the limitations of the device resources should be acknowledged. 

(Ota et al., 2017.) 

As the use of artificial intelligence has become popular nowadays, deep learning methods 

have been included in mobile applications to support advanced functionalities like object 

detection. In many cases, the deep learning models are deployed onto a server, rendering 

the prediction to the application via the internet after taking the input from end devices. 

However, this approach has drawbacks such as severe latency, extensive server resource 

requirement, heavy bandwidth load, and privacy concerns. Therefore, many applications 

have started to adopt deep learning models on-device which is nowadays possible due to 

the development of computing capabilities on mobile devices. Deploying deep learning 

models on-device has several advantages. There is no round-trip to a server, which leads to 

bandwidth saving, faster inference time, and privacy-preserving as sensitive data stays on 

the device. Secondly, an internet connection is not required to run the application, which 

makes it more usable in rural areas. (Y. Huang et al., 2021.) 

Most mobile devices such as wireless sensors, smartphones, tablets, and security cameras 

have limited resources in terms of available energy, computing power, memory, and net-

work bandwidth. This makes it almost impossible to run state-of-the-art deep neural net-

work models on-device because of the computing power and memory usage that they re-

quire to operate properly are not available. Earlier it was presented that one solution would 
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be the use of cloud computing, where powerful servers would handle the running of DNNs, 

but it would increase data traffic cost and has other drawbacks. Running top-end DNNs on-

device would require either the capabilities of current mobile processors and chipsets to be 

increased or the complexity and memory requirements of DNN algorithms to be reduced. 

(Ota et al., 2017.) Chapter 3.4 presents some of the models that could be categorized as 

lightweight compared to top-end DNNs. These models are smaller in size and could be 

used on-device as they recognize the limitations of the computing capabilities of the IoT 

device. 

2.3 Object detection applications in IoT devices 

As L. Liu et al. (2020) stated in their article, the use cases for object detection can be found 

in applications related to robot vision, consumer electronics, security and surveillance, au-

tonomous driving, augmented reality, human-computer interaction, and content-based im-

age retrieval. While applications using object detection on-device might still be under de-

velopment, or at least have not been released for public use, some of the existing applica-

tions have adopted object detection to provide additional information for the users.  

For example, Adidas has created an application that allows customers to use their phone 

camera to seamlessly detect shoes in real-time, and within seconds returns an image recog-

nition match from hundreds of products (Google, 2021b). Another example using object 

detection is Lookout by Google. It provides information about the surroundings of the user 

with a help of a phone camera and sensors of the device, as it recognizes objects and text. 

Lookout can be used to detect food by its packaging labels, scan documents to be magni-

fied or read aloud by a screen reader, or skim the text and use text-to-speech to hear it 

aloud (Google, 2021a). Solutions for using object detection in agriculture were presented at 

the Tensorflow Developer Summit. Here the TensorFlow machine learning platform was 

successfully used by researchers at PlantVillage of Penn State University and the Interna-

tional Institute of Tropical Agriculture to help farmers in Africa to detect diseases in Cas-

sava plants (Tensorflow, 2018). 
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3 FUNDAMENTALS OF OBJECT DETECTION 

This chapter covers the fundamentals of object detection. The first subchapter offers a 

basic introduction to object detection and deep learning. In the second subchapter tradi-

tional object detection methods are briefly introduced before moving into deep learning-

based methods. In the third subchapter, an operation of the neural network is presented. 

The fourth subchapter presents some of the backbone networks in object detection, and the 

fifth subchapter introduces a few popular object detection models.  

3.1 Object detection and deep learning 

Object detection is a computer vision task based on the object recognition field which 

combines the tasks of image classification and object localization. The purpose of object 

detection is to locate the presence of an object in an image, with a bounding box, and to 

classify these instances of objects to a correct class. The image classification task is re-

sponsible for predicting the type or class of an object and assigning a class label to it. The 

object localization task is responsible for locating the presence of objects in the image and 

indicating these with a bounding box around the object. Object detection combines these 

tasks in a way that first a bounding box is drawn around each object on the image, and then 

a class label is assigned to each bounding box as seen in Figure 1. (Brownlee, 2019.) 

 

Figure 1. Computer vision tasks (F.-F. Li et al., 2016) 
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The approaches of object detection algorithms have been largely developed into two main 

categories: the traditional machine learning methods and the deep learning methods. The 

traditional machine learning-based object detection methods utilize a variety of computer 

vision techniques and rely on the established feature engineering for learning the features 

of the objects from a given input. The deep learning-based object detection methods in 

most cases use convolutional neural networks to capture and learn different features of the 

objects from given input and achieve better performance in large-scale data training. (Zou, 

2019.) 

In recent years the deep learning methods have been replacing the traditional machine vi-

sion methods because they have offered a better accuracy and performance in the same 

tasks. The history of modern deep learning can be divided into three development waves 

starting in the 1940s-1960s when it was referred to as cybernetics, the second wave in the 

1980s-1990s known as connectionism, and the current wave under the name of deep learn-

ing which started in 2006. Cybernetics was based on the idea of biological learning, simu-

lating the learning process of how human brains learn. At that time, the implementations of 

the first models such as the perceptron were created, which enabled the training of a single 

neuron. The wave of connectionism then introduced back-propagation to train a neural 

network with one or two hidden layers. The ongoing wave of deep learning started with a 

focus on new unsupervised learning techniques and the ability of deep models to general-

ize well from small datasets. However, the interest has since changed towards much older 

supervised learning algorithms and the ability of deep models to leverage large datasets 

containing labeled data. (Goodfellow et al., 2016.) 

The current resurgence of deep learning has been possible due to two main trends: the in-

creased amount of available training data, and the improved computational capabilities, 

which have made it possible to run much larger models and have helped deep learning 

models to grow in size (Goodfellow et al., 2016). Most of the current state-of-the-art deep 

learning-based object detection models are using a convolutional neural network architec-

ture as their backbone. These models can be primarily divided into two families based on 

the way how they operate. One of the families includes two-stage region proposal-based 

detectors and other one-stage regression-based detectors. (X. Wu et al., 2020.) 
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3.2 Traditional object detection 

Before deep learning-based models using convolutional neural networks became popular in 

the field of object detection, the traditional machine-learning-based methods were used in 

tasks such as pedestrian detection and facial detection. To determine the location and the 

class of an object in an image, the traditional object detection model pipeline can be mainly 

divided into three different stages including informative region selection, feature extrac-

tion, and classification of the object (Zhao et al., 2019). 

The informative region selection stage is responsible for determining the possible locations 

of the objects in the input image. This is done by generating an initial set of candidate re-

gions from the image, that further forms the potential object candidates. The set of regions 

should cover the majority of true object locations for it to be successful. This step can be 

seen as a rough classifier of whether certain regions contain objects of interest or not. To 

find all objects of different sizes, shapes, and positions, the simplest choice would be to 

scan the whole image using a multiscale sliding window. This method could find out all 

possible positions of the objects in a given image, but due to a large number of the possible 

object containing windows, it is computationally expensive and produces multiple redun-

dant windows unnecessary for detection. Computational costs and the number of possible 

windows could be reduced by using a fixed number of sliding windows, but this might 

produce unsatisfactory regions. (Zhao et al., 2019.)  

The feature extraction stage is responsible for recognizing different objects in the input 

image. This is done by extracting visual features that can provide a semantic and robust 

representation of objects. These features can be shapes, edges, or some other significant 

variation in RGB pixel values, that could refer to some object appearing in the image. In 

the traditional machine learning-based approach, these features are manually extracted. 

Representative features include scale-invariant feature transform, histograms of oriented 

gradients, and Haar-like. These features can produce representations associated with com-

plex cells appearing in human brains, which makes them useful in object detection. How-

ever, because objects can appear in multiple angles and forms, and the lighting conditions 
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and background of the input image can vary, designing a robust feature descriptor manual-

ly is near impossible. (Zhao et al., 2019.)  

Haar-like features can be thought of as a representation of a simple kernel in convolutional 

neural networks, where features are manually crafted instead of learned through training. 

Haar-like features can be used efficiently to detect edges and lines from the image. The 

main use cases for the features are in the field of face detection. The limitations of haar-

like features in detections appear when edges and lines are unclear, or objects differ from 

basic type, e.g., eye, lip, or nose is covered by hand. Haar-like features do not require train-

ing because they are hand-crafted. They also need fever computations which makes the 

detections faster. (Lienhart & Maydt, 2002.) One of the most famous face detection 

frameworks that use Haar feature selection was created by Viola and Jones (2004). 

The scale-invariant feature transform (SIFT) method transforms image data into scale-

invariant coordinates relative to local features. The features are generated through four 

major stages. In the first stage scale-space extrema detection, the image is searched for 

locations over all scales to identify potential keypoints invariant to scale and orientation 

changes. In the second stage of keypoint localization, a detailed fit is performed to nearby 

data of keypoint candidates for accurate location, scale, and the ratio of principal curva-

tures. Acquired information allows rejection of the poor keypoints, like ones with low con-

trast and ones poorly localized along an edge. In the third stage orientation assignment, one 

or more orientations are assigned to each keypoint to achieve invariance to image rotation. 

Lastly in the fourth stage keypoint descriptor, a descriptor for the local image region is 

calculated to make SIFT more robust to the changes in object shape or lighting conditions. 

Through these steps, SIFT generates large numbers of features that densely cover the im-

age over different scales and locations. A typical image of size 500x500 would produce 

about 2000 stable features by this method. (Lowe, 2004.) 

Histogram of Oriented Gradient (HOG) is a feature descriptor, based on the idea that ob-

ject shape can be effectively described by the distribution of edge directions and local in-

tensity gradients. This can be done by extracting the gradient and orientation of the edges 

from the image. The image is divided into small spatial regions, and for each region gradi-
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ents and orientation of the pixels are calculated. Then a histogram for each of these regions 

is generated to form the representation. To tackle the harmful effects of lighting conditions, 

the contrast-normalization techniques have been useful. (Dalal & Triggs, 2005.) 

Working as the last section of the traditional object detection model pipeline, the classifica-

tion of objects stage is responsible for distinguishing a target object from all other catego-

ries and making the representation of the objects more hierarchical, semantic, and informa-

tive for visual recognition. This is done by taking the extracted features and classifying the 

result into a certain class. In this stage, the supported vector machine (SVM), AdaBoost, 

and deformable part-based model (DPM) classifiers are usually good choices to go for. 

(Zhao et al., 2019.) 

3.3 Deep Learning based object detection 

Object detection has been gaining an increased amount of attention in recent years due to a 

wide range of applications and technological breakthroughs. There have been many factors 

that have made possible the fast evolution of object detection techniques, but the most no-

table ones are improvements in the computing power of GPUs and the development of 

deep convolutional neural networks. Most of the current state-of-the-art object detectors 

utilize the deep learning networks as a backbone for the model and a detection network for 

extracting features from the input image. (Jiao et al., 2019.)  

Convolutional Neural Network (CNN) is a type of deep learning network that has become 

a popular approach in image classification and object detection tasks. After the 2012 

ImageNet Large Scale Visual Recognition Challenge (ILSVRC), where CNN was applied 

in the image classification task with great success, it has become the dominant architecture 

in computer vision tasks. It provides an end-to-end learning model in which the gradient 

descent method can be used to train the parameters. Well-trained CNN can learn the fea-

tures of the image more fully than using the feature extraction methods based on traditional 

object detection, while extracted features have a stronger ability of discrimination and gen-

eralization than the hand-crafted features. The features of a single layer are generated from 

the features of the previous layer’s local area by sharing the weight of the convolutional 
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kernel. This makes the CNN more suitable for learning and representing the image features 

than other neural networks while keeping the translation and scale invariance in a certain 

scope. Typical CNN contains a convolutional layer, pooling layer, and fully-connected 

layer, but the development of object detection models has also created many new layers to 

tackle specific problems and to improve the performance of CNN. (Zhiqiang & Jun, 2017.) 

The structure of the CNN architecture consists of an input layer and hundreds of feature 

detection layers which make the network deep before a classification layer determines the 

predictions for the output layer (Figure 2). Feature detection layers perform either Convo-

lution, Rectified Linear Unit, or Pooling operation. Convolution is a linear operation where 

an image is put through convolution filters that activate certain features in the image. Con-

volution implements the multiplication of a set of weights with the input. Rectification 

Linear Unit (ReLU) is a linear activation function that maintains positive values and maps 

negative values to zero. Pooling performs non-linear downsampling to reduce the size of 

the input. In computer vision-related tasks, it means downsampling the detection of fea-

tures in feature maps. The classification layer is located before the output layer. It is a fully 

connected layer with N-dimensional output, N being the number of classes to be catego-

rized. The output of this layer is an N-dimensional vector where each element marks the 

probability of an input image belonging to one of those N classes. The final output layer is 

responsible for giving the classified output which is done with a softmax function. To ob-

tain accurate results, the CNN needs to be trained with thousands or millions of images 

which usually requires multiple GPUs operating in parallel. (Vasuki & Govindaraju, 2017.) 

In this thesis, it is beneficial to understand how the predictions are made on CNN. This is 

because the adversarial attacks aim to manipulate these predictions into something else 

than what they originally should be. The rest of the chapter describes the typical function-

ing of CNN, from taking the input image into a network to producing the output predic-

tions. 
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Figure 2. Convolutional Neural Network (Mathworks, n.d.) 

Operation on CNN starts by passing an input image containing one or more objects to be 

classified into the network. The number of input values depends on the image size and the 

depth of the pixels, which in the case of the RGB image is 3. The RGB color image of size 

256 x 256 can be represented as an array of 256 x 256 x 3, where all numbers must be 

translated or identified as objects belonging to a certain class. (Vasuki & Govindaraju, 

2017.) 

The first layer in CNN is a convolution layer responsible for performing a spatial convolu-

tion of a pre-defined mask with the pixel values. Equivalent to linear filtering operation, 

the result of convolution depends on the pre-defined mask which for the image of size 256 

x 256 x 3 could be 5 x 5 x 3. In convolution, the pixel values and mask values are multi-

plied and summed up to get convolved output at the position of the mask placed over the 

image (Figure 3). The mask is then moved over the image from left to right and from top to 

bottom while repeating the convolution in each location until the whole image is covered. 

Mask values are determined by the shape to be detected. If the shape appears in that loca-

tion of the image, the obtained convolved values are higher. Convolution produces a fea-

ture map which will be another array of numbers. A feature map works as an input to the 

second hidden layer where a similar convolution is repeated, and another feature map is 

produced. The second feature map is at a higher level than the first one. This process pro-

duces different activation maps for different features in the image and can represent even 

very complex features. (Vasuki & Govindaraju, 2017.) 
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Figure 3. Convolution operation in CNN based on Vasuki & Govindaraju (2017)  

The convolution layer is followed by an activation ReLU layer, making the operation non-

linear. The negative activation values are turned to zeros and positive activation values are 

kept as they are. Activation layers are followed by pooling layers, such as the average 

pooling, stochastic pooling, overlapped pooling, or max pooling, that take the activation 

inputs and produce a downsampled output. Using the max pooling with a filter size of 2 x 

2, the maximum value from the 2 x 2 activation region would be taken and the composition 

from all the regions would be the array output of this layer. To prevent overfitting of the 

model, dropout layers could be included in the architecture. These drop out certain activa-

tion outputs during the network training phase. (Vasuki & Govindaraju, 2017.) 

At the end of the network, a fully connected layer takes its input from the preceding layer 

and produces N-dimensional output. In the N-class problem, this could output N different 

probability values which each represent the probabilities of the object belonging to that 

class. When using the softmax approach, the probability of an object belonging to a class 

would be between 0 and 1, where the higher rating would mean the most probable class for 

the object. (Vasuki & Govindaraju, 2017.) 

3.4 Backbone networks in object detection 

The architecture of the object detection model presents an overview of how the model is 

built to make detections from the given input. It is generally divided into two parts, the 

backbone network, and the head. The backbone network acts as the basic feature extractor 
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for the object detection task, taking the image as an input and producing the corresponding 

feature maps as an output (Jiao et al., 2019). The head part is responsible for making the 

detections from feature maps and usually contains either a one-stage or a two-stage detec-

tor to do so. 

Most of the current backbone networks for object detection are based on the convolutional 

neural networks built for the image classification task without the fully connected layers. 

The backbone networks can be roughly divided between accuracy-oriented and efficiency-

oriented networks depending on the use case of the model. Deeper and densely connected 

backbones like VGG16, ResNet, ResNeXt, and AmoebaNet, achieve better results in the 

accuracy of detections, but are complicated and contain a lot of parameters, which usually 

makes them unusable in mobile devices. Lightweight backbones like MobileNet, Mo-

bileNetV2, ShuffleNet, SqueezeNet, and Xception on the contrary, can meet the require-

ments of mobile devices and produce the detections efficiently, but do not achieve such 

detection accuracy as the larger backbones. In applications where real-time object detec-

tion from video or webcam is needed, the demands are usually high processing speed and 

high accuracy of detections. In these situations, a well-designed backbone is a key element 

that should adapt to detection architecture and make a trade-off between speed and accura-

cy. (Jiao et al., 2019.) 

The interest in building small and efficient neural networks has been rising recently in the 

research literature. Approaches in this area can be roughly categorized either into methods 

that compress the pre-trained networks or methods that directly train small networks. One 

of the solutions that can help to implement deep learning models on-device is to reduce the 

size of the architecture of the model. One of the first examples of reducing the size of 

model architecture was made by Iandola et al. (2016) who introduced a small convolution-

al neural network called SqueezeNet. This lightweight model was able to achieve AlexNet-

level accuracy on ImageNet while having 50 times fewer parameters and reducing the size 

of the model to less than 0.5MB, which was 510 times smaller than the original AlexNet. 

Howard et al. (2017) introduced an efficient network architecture called MobileNets, that 

could be used to build very small and low latency models, suitable for mobile and embed-
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ded vision applications. MobileNets architecture is based on depthwise separable convolu-

tions. The deep learning models built on top of the MobileNet architecture are designed to 

effectively maximize the accuracy of detection while being aware of the resource re-

strictions of on-device or embedded applications. MobileNets differ from original large-

scale state-of-the-art DNNs in a way that they are small, low-latency, low-power models 

that are parameterized to meet the resource constraints of a variety of use cases, like fast 

real-time detection. (Howard et al., 2017.) MobileNets approach was improved with Mo-

bileNetV2 by Sandler et al. (2018), who proposed using inverted residual block in architec-

ture to achieve better performance. More recently Howard et al. (2019) introduced the third 

version of the MobileNet architecture family in form of MobileNetV3. This version con-

tained large and small models demonstrating the new state-of-the-art approach in the mo-

bile classification, detection, and segmentation tasks. 

Another lightweight architecture approach was introduced by Zhang et al. (2018) in form 

of ShuffleNet, which used pointwise group convolutions to reduce computation complexi-

ty, and explored a channel shuffle operation to enhance the performance of lightweight 

models. ShuffleNet was further improved to the second version ShuffleNet V2 by Ma et al. 

(2018), who proposed that direct metrics such as speed should be considered over indirect 

metrics, like a number of float-point operations (FLOPs), when designing network archi-

tecture. 

Han et al. (2019) presented a plug-and-play component Ghost module in their approach 

called GhostNet. The Ghost module can be used for building efficient neural architectures 

by reducing the computational costs of deep neural networks. The basic Ghost module is 

responsible for splitting the original convolutional layer into two parts and it utilizes fewer 

filters to generate several intrinsic feature maps. After this, a number of cheap transfor-

mation operations will be further applied for generating ghost feature maps efficiently. Due 

to the plug-and-play nature of the Ghost module, this component can be used to upgrade 

existing convolutional neural networks. (Han et al., 2019.) 
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3.5 Model head in object detection 

The head part of the object detection model architecture is responsible for making detec-

tions from feature maps produced by the backbone. As mentioned earlier, the deep learn-

ing-based object detection models are mainly divided into two families based on how they 

operate. On one side are the two-stage region-based detectors and on the other one-stage 

regression-based detectors. In the following subchapters, both methods are briefly over-

viewed, and a few models are introduced. 

3.5.1 Two-stage region proposal-based models 

Two-stage object detection models divide the detection process into two stages. In the first 

stage, a sparse set of region proposals are generated from the image, and in the second 

stage feature extraction from the proposals is made followed by object classification and 

bounding-box regression tasks (Jiao et al., 2019). Figure 4 presents the basic architecture 

of two-stage detectors, consisting of a region proposal network that feeds the region pro-

posals into a classifier and regressor. 

In the region proposal generation phase, the object detector tries to identify regions from 

the image that potentially might contain an object. The detector should propose regions 

with a high recall and all objects in the image should belong at least to one of the proposed 

regions. During the second stage, region proposals are processed by the deep learning-

based model which classifies the proposals with the right categorical label. These regions 

may either contain an object from predefined classes or belong to a background. The mod-

el might refine the original localization suggested by the proposal generator to make it 

more precise. Two-stage object detectors are often reported to get a state-of-the-art results 

with many public benchmark datasets. They are mainly more accurate than one-stage de-

tectors but generally fall short in terms of lower inference speed. (X. Wu et al., 2020.) 
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Figure 4. The basic architecture of two-stage detectors with RPN (Jiao et al., 2019) 

Faster R-CNN (Ren et al., 2017) is an example of a very accurate region-based deep detec-

tion model that introduced Region Proposal Network (RPN) and combined it with Fast R-

CNN (Girshick, 2015) object detector. RPN uses a fully convolutional network to simulta-

neously predict object bounds and objectness scores at each location, in order to solve the 

challenge of selecting the right regions for the second stage. In the second stage, the Fast 

R-CNN model takes the proposed regions from RPN as an input and provides the final 

object detection results. (Soviany & Ionescu, 2018.) 

3.5.2 One-stage regression-based models 

One-stage object detection models treat object detection as a simple regression problem 

and do not contain separate stages for the different tasks in the process. In these models, 

the region proposal and classification are performed simultaneously. All positions on the 

image are considered as potential objects, which are then tried to be classified either as a 

background or a target object. Most one-stage detectors follow the basic structure where 

the image is first spatially divided into a fixed number of grid cells, and then for each cell 

bounding boxes and class probabilities are predicted. One-stage detectors have dominated 

the two-stage detectors over the speed of the detections and are much more desired in real-

time object detection applications. However, they achieve relatively poor accuracy com-
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pared to two-stage detectors which have limited their usability in some cases. (X. Wu et 

al., 2020.) Figure 5 presents the basic architecture of one-stage detectors. 

 

Figure 5. The basic architecture of one-stage detectors (Jiao et al., 2019) 

YOLO (Redmon et al., 2015) object detection model is an example of a fast-performing 

one-stage regression-based model. It takes a full image as an input and uses a single neural 

network to predict the bounding boxes and corresponding classes. YOLO divides the im-

age into a fixed size grid, and for each cell in a grid, predicts a number of bounding boxes 

and confidence for each bounding box. The confidence here reflects the accuracy of the 

bounding box and whether the bounding box actually contains an object regardless of its 

class. It also predicts the class probabilities for each predefined class per box. After the 

calculations, the bounding box and class probability are combined, and the object is found 

by using non-maximum suppression. (Soviany & Ionescu, 2018.) 

SSD (W. Liu et al., 2015) object detection model is another example of a single-stage de-

tector treating object detection as a simple regression problem. It uses a set of predefined 

boxes of different aspect ratios and scales to predict the presence of an object in the image. 

SSD encapsulates all computations in a single network and thus does not include separate 

proposal generation or resampling stages. (Soviany & Ionescu, 2018.) SSD combines the 

regression idea of the YOLO and the anchor method of the Faster R-CNN to make predic-

tions from feature maps of different scales. The SSD model can achieve high detection 

accuracy of the Faster R-CNN model and the speed of the YOLO model, which makes it 

suitable for real-time object detection. (Zhiqiang & Jun, 2017.) 
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CenterNet (Duan et al., 2019) object detection model is a low-cost one-stage detector built 

upon the keypoint-based detector CornerNet. While CornerNet uses pair of keypoints to 

detect the top-left and bottom-right corners of the object to produce a bounding box, Cen-

terNet uses a triplet that also includes the keypoint at the center of corner keypoints. Cen-

terNet inherits partially the functionality of RoI pooling (Region of interest pooling) while 

still being recognized as a one-stage detector. The idea behind CenterNet is that when pre-

dicting the bounding box of the object, corner keypoints, and center keypoint should all 

belong to the same class. By exploring the visual patterns within the bounding box, Cen-

terNet should reduce the number of incorrect bounding boxes around objects while im-

proving the precision and recall of the model. (Duan et al., 2019.) 
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4 ADVERSARIAL EXAMPLES 

This chapter covers the topic of adversarial examples from the viewpoint of computer vi-

sion tasks. The first subchapter offers the basic introduction to adversarial examples, which 

is then followed by a brief introduction to adversarial machine learning. Adversarial exam-

ples are then observed together with deep learning to provide a better understanding of the 

current situation. Summary of current defense methods against adversarial examples are 

introduced, and the related studies linking adversarial examples into object detection are 

also presented. 

4.1 Introduction to adversarial examples in computer vision 

According to Molnar (2019), an adversarial example can be described as an instance with 

small intentional feature perturbations that cause a machine learning model to make a false 

prediction. More commonly the adversarial examples can be thought to be a representation 

of optical illusion for machines. While many different techniques to create adversarial ex-

amples exist, most of the approaches include minimizing the distance between an adversar-

ial example and the instance to be manipulated, while moving the prediction to desired 

adversarial result. In the case of neural networks, some of the methods require access to the 

gradients of the model, while others only need access to the prediction function, making 

these methods model-agnostic. (Molnar, 2019.) In the field of object recognition, the ad-

versarial examples are images with intentionally perturbed pixels aiming to deceive the 

detection model during application time. The main purpose is to trick machine learning 

models to misclassify the input into something else that it originally is while closely re-

sembling the original image as can be seen in Figure 6. 
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Figure 6. Adversarial example demonstration on images adapted from COCO dataset 

(Lin et al., 2017) 

In a comprehensive survey about adversarial examples in object recognition, Serban et al. 

(2020) summed up adversarial examples in the following way: “Given a classification 

function f and a clean sample x, which gets correctly classified by f with label y, an adver-

sarial example x’ is constructed by applying the minimal perturbation η to input x such that 

x’ gets classified with a different label ŷ.”  

arg𝑚 𝑖𝑛𝜂𝑓(𝑥 + 𝜂) = ŷ 

In case of the object detection, this main goal of adversarial examples can be further divid-

ed into different subgoals. These subgoals can include vanishing objects from the image, 

fabricating the image with additional false positives, targeted or untargeted mislabeling of 

the detected objects, and mislocalization of the detected object. Figure 7 shows example 

results of attack methods from the TOG suite developed by Chow et al. (2020). 
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Figure 7. Visualization of TOG attacks in object detection (Chow et al., 2020) 

One commonly known property among adversarial examples is their transferability be-

tween the detection models. Transferability means that the adversarial examples generated 

for one model may also be misclassified by another model trained to perform the same 

task. First studies of this property were made by Szegedy et al. (2014) and were continued 

by Goodfellow et al. (2014), Papernot, McDaniel, & Goodfellow (2016), and Papernot, 

McDaniel, Goodfellow, et al. (2016). (Y. Liu et al., 2016.) 

The existence of adversarial examples in deep neural networks is still an open question and 

while many hypotheses have been proposed to explain the situation, there is no universal 

explanation as to why they exist. Yuan et al. (2019) suggested three different reasons be-

hind adversarial examples by reviewing recent findings on the topic. The first reason was 

the incomplete datasets, which claims that the adversarial examples exist because of low 

probability and low test coverage of corner cases in datasets. The second reason referred to 

the model capabilities, where one claim was that the models are too linear in high-

dimensional manifolds. The third reason was about the robustness of the model, where 

one example was that the decision boundaries of deep neural networks are inherently in-

correct which causes the existence of adversarial examples. (Yuan et al., 2019.) 

To understand adversarial examples, it is good to have some knowledge about the key 

terms used in the field. Akhtar & Mian (2018) described the common technical terms that 
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are used in literature when discussing adversarial attacks on deep learning in computer 

vision. This thesis follows the same definition of the following terms: 

• Adversarial Example (Adversarial Image) is a modified version of a clean image 

that is intentionally perturbed to fool a deep neural network.  

• Adversarial perturbation is the noise that is added to a clean image on purpose. 

• Black-box attack, where adversarial examples are generated and inputted to the 

targeted model without any knowledge about the target model.  

• Non-targeted attack, where the model is fooled to falsely predict any label for an 

adversarial image as long as it is not the correct one. 

• Targeted attack, where the model is fooled to falsely predict a specific label for an 

adversarial image. 

• Threat model refers to the type of potential attacks against the model, e.g., a black-

box attack. 

• Transferability refers to the ability of adversarial examples to remain effective 

against other models. 

• Universal perturbation refers to the ability to fool a given model on any image 

with high probability. 

• White-box attack, where an attacker has complete knowledge of the targeted mod-

el. Including its parameters, architecture, training method, and in some cases the 

training data. 

4.2 Connections to adversarial machine learning 

Publications and studies have shown that adversarial examples exist in fields where ma-

chine learning algorithms are used. The research field known as adversarial machine learn-

ing has gained renewed interest since deep networks for object recognition were shown to 

be vulnerable to perturbed images. This has increased the number of research papers pro-

posing different types of countermeasures to mitigate the threat of adversarial examples in 

the field of computer vision but also fields like malware detection. The simplified categori-
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zation of the main attacks against machine learning can be made between the test time eva-

sion and training time poisoning as seen in Figure 8. (Biggio & Roli, 2018) 

 

Figure 8. Evasion and poisoning attacks in machine learning (Biggio & Roli, 2018) 

The development of adversarial examples can be observed through the history of evasion 

attacks. The first seminal work related to adversarial machine learning was done by Dalvi 

et al. (2004) and followed by Lowd & Meek (2005), who studied the problem with spam 

filtering and demonstrated that linear classifiers for spam filtering were vulnerable to ad-

versarial examples. The linear classifiers could be easily tricked by creating a spam email 

with few changes from the original content without significantly affecting the readability 

of the spam message. The idea was to modify the first words with the highest weight val-

ues assigned by the linear text classifier. This was achieved by either changing bad words 

or adding good words into a message, or with a combination of these approaches. The heu-

ristic countermeasures against these attacks were also proposed before 2010. The solutions 

would require learning linear classifiers with more uniform feature weights, which would 

require an attacker to make more changes to the content of the message to get it misclassi-

fied by the spam filter. (Biggio & Roli, 2018.) 

Image spam was invented in 2005 to evade textual-based analysis. This resulted in devel-

oping the countermeasures like recognizing known spam images through hashing and ex-

tracting text from suspect images with optical character recognition tools. Attackers would 

then start to add random noise patterns to the spam images to evade these defense methods, 

which resulted in the use of learning-based approaches based on low-level visual features 

as a countermeasure. Srndic & Laskov (2013) showed in their work that evasion attacks 
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could be successfully done against linear PDF malware detectors such as decision trees and 

linear SVM. (Biggio & Roli, 2018.) Adding noise to the spam images and using the learn-

ing-based approaches as a countermeasure can be seen as a predecessor for current adver-

sarial examples and defense methods in computer vision tasks, as the following chapters 

explain. 

4.3 Adversarial examples against deep neural networks 

While deep neural networks have become lately the mainstream solution to be used for 

solving complex problems in computer vision tasks, recent studies have shown their vul-

nerability to adversarial attacks. This poses a serious threat to the practical use of deep neu-

ral networks in current and future computer vision applications. Szegedy et al. (2014) first 

showed that adversarial examples, crafted by applying a certain hardly perceptible pertur-

bation on top of the original image, can make a deep neural network on an image classifi-

cation task to misclassify the image with high confidence. Goodfellow et al. (2014) argued 

that deep neural networks are vulnerable to adversarial examples because of the linear na-

ture of neural networks and proposed a simple and fast method to generate adversarial ex-

amples in form of the Fast Gradient Sign Method (FGSM).  

Moosavi-Dezfooli, Fawzi, & Frossard (2016) proposed an algorithm DeepFool, able to 

compute adversarial examples to fool state-of-the-art image classifiers. DeepFool comput-

ed the minimal adversarial perturbations that are sufficient to change classification labels, 

by assuming that the loss function can be linearized around the current data point at each 

iteration. In other research, Moosavi-Dezfooli, Fawzi, Fawzi, et al. (2016) showed the ex-

istence of universal adversarial perturbations, in which a small perturbation applied to any 

image was able to fool the image classifier. Baluja & Fischer (2017) trained feed-forward 

neural networks to generate adversarial examples against the target network or set of net-

works without using gradients. The Adversarial Transformation Network (ATN), was 

trained to generate adversarial examples that minimally modify the classifier’s outputs 

given the original input so that the new classification result would match an adversarial 

target class. Kurakin et al. (2016) first demonstrated that adversarial examples also exist in 

the physical world. They used the mobile phone camera to obtain printed adversarial imag-
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es which they used as an input to an ImageNet Inception v3 image classifier, with success-

ful results of fooling the classifier to misclassify objects. Y. Liu et al. (2016) studied the 

transferability of non-targeted and targeted adversarial examples and developed an ensem-

ble-based attack that successfully was able to fool a black-box image classification system 

in a targeted and non-targeted way. An extreme case of the adversarial example in deep 

learning neural networks was presented by Su et al. (2019) with One Pixel Attack. Their 

research showed that changing only one pixel of the input image was enough to successful-

ly fool the image classifier to misclassify the input.  

While most of the adversarial examples are meant to look like an original sample, some 

studies have shown the vulnerability of deep neural networks using a different approach. 

Nguyen et al. (2014) demonstrated in their research that it was easy to produce images that 

are completely unrecognizable to humans, but state-of-the-art DNNs believe these to be 

recognizable objects with high confidence. Brown et al. (2017) presented a method to cre-

ate universal, robust, targeted adversarial image patches in the real world. They created a 

printable label that could be stuck next to objects in any scene and as a result, the other 

objects in the image would be ignored and the image classifier would classify the image as 

a toaster. This was the case regardless of the scale or location of the patch and did not re-

quire knowledge of other objects included in the image. Athalye et al. (2017) made a simi-

lar approach for 3D objects. They succeed in printing a 3D object in the shape and look of 

a turtle, while the deep learning 2D classifier detected a representation of a rifle from dif-

ferent angles and distances. Methods created by Brown et al. (2017) and Athalye et al. 

(2017) used the Expectation Over Transformation (EOT) algorithm, which generates ad-

versarial examples that work even when the image is transformed. Results of these studies 

showed that adversarial examples and objects are a practical concern in real-world detec-

tion systems using deep neural networks, and that vulnerability could be exploited regard-

less of the viewing angle. 

While most studies focus on the vulnerability of deep neural networks and how to exploit 

them, the studies about increasing the robustness of deep neural networks against adversar-

ial examples have also been gaining increased attention in recent years. Madry et al. (2017) 

studied the gradient-based attack algorithm Projected Gradient Descent (PGD), where ad-
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versarial examples are generated independently for each benign sample. They showed that 

adversarial training with the PGD adversary can provide better robustness against a range 

of other adversaries, meaning that adversarial examples would not have such an effect on 

the model. However, as the history of adversarial machine learning shows the defense 

methods often become inefficient when new attacks are invented. This has also happened 

already to some of the defense methods created against adversarial examples in deep neu-

ral networks. Carlini & Wagner (2016) presented three optimization-based algorithms that 

successfully created adversarial examples against neural networks using the defensive dis-

tillation method. They tested the attacks against image classification tasks and showed that 

while defensive distillation helps to increase robustness against adversarial examples gen-

erated with some methods, it did not prevent C&W attacks. 

4.4 Defending against adversarial examples 

As previously mentioned, the deep neural networks' vulnerability to adversarial examples 

has also increased the attention towards creating more robust deep learning models and 

implementing new defense techniques against adversarial examples. The literature does not 

contain a universal approach for grouping the defense methods against adversarial exam-

ples, but one popular way is to divide these between reactive and proactive methods. 

Serban et al. (2020) used this kind of approach in their survey calling the reactive ones as 

Guards and the proactive ones as Defense by Design. Defense methods under Guards do 

not interact with the model but interact instead with the adversarial input. Defense methods 

under the Defenses by Design category interact directly with the model by modifying 

model architecture, the training data, or the loss function before the model is deployed. 

These categories can be decomposed further as seen in Figure 9.  
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Figure 9. Defense strategies against adversarial examples based on Serban et al. (2020) 

Detection methods rely on assumption that adversarial examples can be recognized from 

normal inputs. These methods usually include a separate detector trained to identify adver-

sarial examples from normal inputs and either discard or skip the adversarial samples. 

While a wide range of adversarial detectors has been developed using very distinct fea-

tures, they tend to fail in detecting strong adaptive attacks. Adversarial detectors are usual-

ly efficient against perturbations that they are trained to detect but need constant training 

against new attacks. This reduces their applicability as a defense method. Input transfor-

mation methods rely on pre-processing techniques such as compression and bit-depth re-

duction to remove the effect of adversarial perturbations and reduce their impact. These 

techniques are usually lightweight, low computational, and easy to implement and adopt. 

Input transformation methods often lead to stochastic gradients and offer good security 

against sensitivity analysis-based attacks. However, these methods are vulnerable to opti-

mization-based attacks, which most times break the defense. Another downside is that 

transforming the input image might cause other problems, like loss of accuracy in the de-

tections. (Serban et al., 2020.) 

The adversarial training method is a regularization technique used to improve the robust-

ness of neural networks by training them with adversarial examples. It relies on including 

adversarial examples as part of the training dataset. Adversarial training has shown very 

good results against adversarial examples in practice, and it has been mentioned as one of 

the state-of-the-art defense methods in the literature. Architectural defense methods pro-

pose to change the model’s architecture by either imposing layer-wise constraints or by 

altering the final layer of the model. One example of architectural defense methods is dis-

tillation, where smaller DNNs are trained with knowledge from larger DNNs. This transfer 
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learning method has been seen to improve the DNNs robustness against adversarial exam-

ples. Certified defense methods rely on formal verification techniques and assume that 

within some bounds adversarial examples can not be found. These methods are useful in 

tasks where robustness is paramount, as they are able to guarantee that perturbations within 

certain bounds can not cause misclassification of the input. On the downside, some certi-

fied defense techniques are very complex, require more training resources, and are not yet 

scalable to deep models which limits their usability. Another downside is that guarantees 

can be made only to the training data and that some attacks can already bypass these de-

fenses. (Serban et al., 2020.) 

4.5 Adversarial examples in object detection 

While most of the studies made around adversarial examples relate to image classification 

tasks, the practical computer vision applications are more often built around object detec-

tion which is a more complex topic. This has been acknowledged by the research commu-

nity and studies related to adversarial examples in object detection have been gaining in-

creased attention recently. This chapter introduces some of the studies around the topic to 

build an understanding of the current state of research and the findings that have been 

made. These findings will also be used to answer the first research question of the thesis. 

Xie et al. (2017) extended the creation of adversarial examples from image classification to 

object detection and semantic segmentation based on the observation that both of the 

methods can be formulated into the task of classifying multiple targets on a given image. In 

object detection, the target is an object proposal. They proposed a Dense Adversary Gener-

ation (DAG) algorithm that optimizes a loss function over a set of proposals to generate 

adversarial examples. The suggested approach was able to efficiently fool object detection 

models with visually imperceptible perturbations and was shown to generalize well across 

different training sets, different network architectures, and even different tasks. (Xie et al., 

2017.) 

Addressing the DAG method's weak black-box attacking ability and the fact that its high 

computation cost made it unavailable for attacks on video object detection, Wei et al. 
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(2018) presented the Unified and Efficient Adversary (UEA) method for image and video 

object detection. This was claimed to be the first method capable of attacking effectively 

against image and video object detection tasks, while also being able to fool both region-

proposal and regression-based object detectors. They utilized a generative mechanism in-

stead of the optimization procedure to quickly generate adversarial images. UEA method 

was based on the Generative Adversarial Network (GAN) framework, combining a high-

level class loss with a low-level feature loss to jointly train the adversarial example genera-

tor. To evaluate the efficiency of their attack they used the mAP (mean Average Precision) 

to compute the detection accuracy on the entire dataset before and after the attacks to see 

how much it would drop. UEA was shown to efficiently generate adversarial examples 

while being remarkably faster than previous attacking methods and having greater trans-

ferability between object detection models when tested with Faster-RCNN and SSD300 

models. (Wei et al., 2018.) The same approach to evaluate detection accuracies and effi-

ciency of the attacks is used in the experiments made in this thesis. 

In their work, Y. Li et al. (2018) introduced a robust adversarial perturbation (R-AP) 

method for attacking deep proposal-based object detectors and instance segmentation algo-

rithms. This method focused on attacking the Region Proposal Network (RPN) component 

of the model, which is used by the majority of object detectors, to extract region proposals 

from the image. They combined the label loss and the shape loss to calculate the adversari-

al perturbation. According to their best knowledge, it was the first work to investigate uni-

versal adversarial attacks against deep proposal-based models. Their evaluations with the 

MS COCO 2014 dataset showed that the R-AP was able to effectively attack several state-

of-the-art object detectors. R-AP was also suitable for black-box attacking because the 

detectors rely on a few standard RPNs, and disturbing the RPN naturally degrades the deep 

learning model's performance. (Y. Li et al., 2018.) 

Eykholt et al. (2017) proposed the algorithm Robust Physical Perturbations (RP2) to gener-

ate perturbations that are robust to the change of distance or angle of the viewing camera. 

They used the algorithm to create adversarial examples for road sign recognition systems. 

Their study demonstrated that by applying crafted perturbation in a sticker or road sign 

poster and placing this onto a real road sign, the road sign recognition systems were suc-
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cessfully fooled to detect stop signs as a speed limit. This approach was later extended 

from image classification to object detection in research made by Eykholt et al. (2018), 

where they also showed that it was possible to prevent physical objects to be detected from 

the image using the Disappearance Attack. They successfully evaluated this approach 

against state-of-the-art object detectors YOLOv2 and Faster R-CNN on video inputs.  

Thys et al. (2019) presented an approach to generate adversarial patches that hide a person 

from a person detector. In their research, they used a printed patch or sticker to completely 

hide or lower the accuracy of detecting a person from the image when using the YOLOv2 

object detector model in a real-world simulation. Another adversarial patch method was 

presented by X. Liu et al. (2018). Their black-box adversarial-patch-attack DPATCH ap-

plied a small, embedded patch in the input image causing Faster R-CNN and YOLO object 

detectors to not detect objects from the image. During the evaluations, this attack also 

demonstrated a great transferability between different architectures as the attack trained on 

Faster R-CNN was able to fool the YOLO object detector and vice versa.  

Wang, Wang, et al. (2020) tested Project Gradient Descent (PGD) method to create adver-

sarial examples against the Faster R-CNN object detection model with common backbone 

architecture. PGD method was stated to be the strongest first-order attack method on clas-

sification. Their tests showed that adversarial examples crafted with the PGD method were 

able to achieve a higher success rate than with the DAG method, which was rated as a 

state-of-the-art attack for generating adversarial examples against object detection models. 

While being more efficient and powerful than the DAG method, the adversarial examples 

crafted with the PGD method were not only misclassified but also mislocalized by the 

Faster R-CNN model. (Wang, Wang, et al., 2020.) 

In their work, Chow et al. (2020) developed a suite of six different adversarial objectness 

gradient attacks (TOG) on deep object detection networks, with the capability to fool state-

of-the-art object detection models either by untargeted or targeted attacks. The TOG-

untargeted attack creates an adversarial example that can fool the object detector to ran-

domly misdetect objects in the image without targeting any specific object, either by van-

ishing or mislabeling the objects, or providing multiple false detections. TOG-vanishing 
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attack removes the object detector’s ability to identify objects from the image. TOG-

fabrication attack fabricates the image with numerous false detections. The TOG-

mislabeling attack makes the object detector misclassify the objects to the selected class. 

TOG-patch attack creates an adversarial patch that can either cause an object to be van-

ished or be mislabelled by the model. The TOG-universal attack creates universal adver-

sarial perturbation by altering the pixel values of the entire image, which results in either 

vanishing objects from the image or fabricating the image with numerous false detections. 

The evaluations made with benchmark datasets VOC, COCO, and INRIA with state-of-

the-art models YOLOv3, SSD, and Faster R-CNN showed that current object detection 

models contain serious adversarial vulnerabilities, which creates a compelling need for the 

development of robust object detection systems. (Chow et al., 2020.) 

Another research made by Wang, Tan, et al. (2020) presented a black-box attack method 

against the region-based Faster R-CNN and regression-based YOLOv3 object detection 

models. They designed an optimization algorithm able to craft adversarial examples by 

only utilizing the position and label information of the predictions. Their Evaporate Attack 

was able to hide objects from being detected without any interior information of the model, 

reflecting a practical real-world case that attackers would face when attacking IoT systems 

using object detection. (Wang, Tan, et al., 2020) 
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5 METHODOLOGY 

This chapter covers the methods used in this research. The goal of the research was to 

evaluate the sensitivity of lightweight object detection models against adversarial perturba-

tion. For the research method, a sensitivity analysis was selected, as it is suitable for ana-

lyzing the changes that happen when clean and adversarially perturbed images are com-

pared. As for selecting the lightweight object detection models, a set of pre-trained object 

detection models from Tensorflow Model Garden (Hongkun et al., 2020) were used. This 

is one of the most recognized repositories containing different implementations of state-of-

the-art models for TensorFlow (Abadi et al., 2015). The repository contains TensorFlow 2 

Detection Model Zoo which offers a collection of detection models pre-trained on the CO-

CO 2017 dataset. TensorFlow Object Detection API (J. Huang et al., 2016) can be used to 

interact with these models. As for the dataset a Microsoft COCO 2017 validation dataset 

was selected to be used. This was chosen because the pre-trained models are trained with 

the full Microsoft COCO 2017 dataset and evaluated then with the validation dataset. As 

for the accuracy metrics, a COCO mAP (mean average precision) was selected from CO-

CO detection metrics. The reason for this was that pre-trained models are evaluated using 

the same metric. Creating an adversarial dataset from COCO 2017 validation set and then 

evaluating models with this dataset, allows comparisons with COCO mAP metrics between 

datasets containing clean and adversarially perturbed images. The creation of adversarial 

examples was done with Foolbox (Rauber et al., 2017, 2020), which is a Python library 

made for testing the robustness of machine-learning models. 

5.1 Sensitivity analysis 

According to Allen (2017), a sensitivity analysis describes how susceptible a dependent 

variable is when a change occurs in a given independent variable. Sensitivity analysis is 

most commonly used with mathematical models of prediction, in which the independent 

variable is known as input and the dependent variable as output (Allen, 2017). In the scope 

of this research, the independent variable is the input image that the model is going to pro-



 

35 

 

cess and the dependent variable will be the predictions that the object detection model pro-

duces. 

Allen (2017) states that there is no one way how sensitivity analysis should be computed, 

but it depends on the problem area and variables used. With statistical tests, it is possible to 

determine what the actual observation of new values will be if the predicted value of the 

output has changed. In modeling, it is possible to build testable equations representing the 

observable phenomena for predicting the values estimated parameters by the model itself. 

Allen continues to state that relationships between variables are generally hypothesized in 

a such way that the input is said to be a cause of the observation of the output. Allen uses 

an example of annual income (Y) as a function of the number of years spent in school (X), 

which can be one way to describe the relationship between variables. (Allen, 2017.) 

Allen (2017) also points out that sensitivity analysis is generally carried out with another 

statistical test known as uncertainty reduction. He states that the goal of the sensitivity 

analysis is to accurately determine how sensitive the observation of the output is, or how 

much the values change when the sample parameters change. In the case of the uncertainty 

analysis the same goal as with sensitivity analysis is accomplished; however, while sensi-

tivity analysis puts a value on how susceptible to change the output is when input is 

changed, the uncertainty analysis generates a range of possible observations or values in 

the output based on the given set of input. Using the same example of annual income and 

years spent in school, the uncertainty analysis could be used to generate the actual range of 

possible observed values of the output. Sensitivity analysis using the same input and output 

would produce values that could illustrate how susceptible annual income is to changes in 

the parameters of years spent in school. Allen also states that once the most sensitive pa-

rameters have been discovered, it would prove beneficial to further investigate exactly 

which parameters are most useful to the prediction of the output. For a better understand-

ing of the model and its power to predict the change in the output based on the input, it 

would be beneficial to use sensitivity analysis and uncertainty analysis together. (Allen, 

2017.) 
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5.2 TensorFlow 2 Detection Model Zoo 

TensorFlow Model Garden (Hongkun et al., 2020) is a GitHub repository containing pre-

trained state-of-the-art deep learning and machine learning models and modeling solutions 

for TensorFlow (Abadi et al., 2015) users. TensorFlow models can be used as out-of-the-

box implementation, or further fine-tuned for the specific task, through a TensorFlow 2 

Object Detection API (J. Huang et al., 2016) or TensorFlow Hub API (Abadi et al., 2015). 

TensorFlow Hub provides a front-end website that can be used to search and discover 

models and datasets from across the TensorFlow ecosystem. Existing solutions for image 

problem domains vary from object detection to image classification, image segmentation, 

and image style transfer. At the time of writing, TensorFlow Hub shows 51 different object 

detection models trained on COCO 2017 dataset compatible with TensorFlow version 2 

when TFLite models are excluded. TensorFlow 2 Detection Model Zoo however contains 

lists of 41 working models on object detection. The models that TensorFlow offers vary 

from deeper Faster R-CNN Inception ResNet V2 1024x1024 model to lightweight models 

such as SSD MobileNet V2 320x320.  

In this research, the models are used through the TensorFlow 2 Object Detection API. 

Models that were selected from the TensorFlow 2 Detection Model Zoo for the sensitivity 

analysis were limited to having an interference speed of less than 40 ms. This limitation 

was chosen to comply with restrictions that using object detection in IoT devices might 

cause and because many IoT-related applications rely on fast detections over the accuracy. 

The selected models are pre-trained on COCO 2017 dataset. Models and their base metrics 

can be seen in Table 1. 



 

37 

 

Table 1. Selected models from TensorFlow 2 Detection Model Zoo with base metrics 

 

A more informative description of the models can be found from TensorFlow Hub, with 

instructions on how to interact with them using the corresponding API. Models selected for 

this research are described in TensorFlow Hub in the following way: 

• EfficientDet D0 512x512 object detection model contains SSD architecture with 

EfficientNet-b0 backbone + BiFPN feature extractor, shared box predictor and fo-

cal loss. Trained with training images scaled to 512x512. 

• SSD MobileNet V2 320x320 object detection model contains SSD architecture, 

and it is trained on COCO 2017 dataset with training images scaled to 320x320. 

• SSD MobileNet V2 FPNLite 320x320 object detection model contains SSD archi-

tecture with FPN-lite feature extractor, shared box predictor, and focal loss. Trained 

with training images scaled to size 320x320. 

• SSD MobileNet V2 FPNLite 640x640 object detection model contains SSD archi-

tecture with FPN-lite feature extractor, shared box predictor, and focal loss. Trained 

with training images scaled to size 640x640. 

• CenterNet Resnet50 V2 512x512 object detection model contains CenterNet ar-

chitecture with ResNet-v2-50 backbone. Trained with training images scaled to 

512x512. 
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• CenterNet Resnet50 V1 FPN 512x512 object detection model contains CenterNet 

architecture with ResNet-v1-50 backbone. Trained with training images scaled to 

512x512. 

• CenterNet Resnet101 V1 FPN 512x512 object detection model contains Center-

Net architecture with the ResNet-v1-101 backbone. Trained with training images 

scaled to 512x512. 

5.3 Microsoft COCO 2017 dataset 

Microsoft Common Objects in Context (MS COCO) is a large-scale image dataset of com-

plex everyday scenes containing common objects in their natural context. The dataset was 

created to advance the state-of-the-art result in object recognition. MS COCO provides the 

dataset and evaluation metrics for different computer vision tasks, allowing users to evalu-

ate their detection models on the dataset. The COCO 2017 dataset is divided into the train-

ing dataset, containing around 118 thousand images, the validation dataset containing 5000 

images, and the test dataset containing around 41 thousand images. The dataset contains 

objects from 80 categories for object detection. An example image from COCO 2017 vali-

dation dataset can be seen in Figure 10. (Lin et al., 2014.) 

 

Figure 10. Image based on COCO 2017 validation dataset (Lin et al., 2017) 
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The object detection models in TensorFlow 2 Detection Model Zoo have been pre-trained 

with the COCO 2017 dataset and their evaluation results are based on the mean average 

precision of COCO detection evaluation metrics. This made possible the use of the COCO 

2017 dataset and COCO detection metrics in this research. Using the same evaluation 

technique to obtain the detection metrics in form of COCO mAP gave the possibility to use 

detection results presented in Table 1 when comparing the results between clean and ad-

versarial datasets. For testing the sensitivity of lightweight object detection models, a vali-

dation part of the COCO 2017 dataset was downloaded from the internet. The COCO 2017 

validation dataset contains 5000 images including objects from 80 different categories, and 

it is used to evaluate models trained with COCO 2017 dataset. 

5.4 Foolbox – Adversarial attacks library 

The crafting of adversarial examples was decided to be done using a popular Python li-

brary capable of generating the adversarial perturbation using different attack techniques 

and testing the robustness of machine learning models. Python library Foolbox (Rauber et 

al., 2017, 2020) was chosen for the task, while another library Adversarial Robustness 

Toolbox - ART (Nicolae et al., 2018) was also tested. Foolbox provides a large collection 

of state-of-the-art adversarial attacks to generate adversarial perturbation, and it is suited 

for comparing the robustness of models created with different frameworks. It has been cit-

ed over 220 times and has been used in numerous scientific publications, making it suitable 

for scientific research (Rauber et al., 2020).  

The adversarial example crafting process in Foolbox requires five elements: First, a model 

that takes the input image and makes the predictions. Second, an adversarial criterion 

which states what adversarial should do. Third, a distance measure which measures the 

size of perturbation. Finally, an attack algorithm that takes the input, predicted label, ma-

chine learning model, the adversarial criterion, and distance measure to generate an adver-

sarial perturbation. This perturbation can then be applied to the image making it an adver-

sarial example. (Rauber et al., 2017.) 
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The following parameters were selected to be used in the experiments made in this thesis: 

For the input image, an image from COCO 2017 validation dataset is provided. For the 

machine learning model, a Tensorflow Keras model is passed from TensorFlow API (Ab-

adi et al., 2015). These models contain canned architectures with pre-trained ImageNet 

weights and can be used for crafting adversarial examples for a classification task. Selected 

models are based on the common architectures, that are also used as backbones in pre-

trained object detection models located in TensorFlow Model Zoo. For the adversarial cri-

terion, a misclassification was selected. For the attack algorithm two gradient-based attacks 

from the Foolbox attack library were chosen, the Fast Gradient Sign Method (FGSM) and 

the Projected Gradient Descent (PGD). For the distance method in these attacks, L-Infinity 

Norm was used. The attack algorithms contain other configurable parameters that were 

kept as default when running the adversarial crafting function. As an output of this process 

a new image containing a certain amount of perturbation, depending on the selected epsi-

lon value and other parameters, was produced.  

The adversarial crafting process was run on each image in the validation dataset while 

changing the model, attack algorithm, and epsilon value parameters. This produced differ-

ent compilations from the same image while the amount of perturbation in the image 

changed. The produced adversarial examples with the same parameters were combined as 

a new adversarial dataset. These datasets were then used to evaluate the robustness of pre-

trained object detection models. 

5.5 Peak signal-to-noise ratio in evaluating the level of perturbation 

The gradient-based attack algorithms FGSM and PGD on the Foolbox attack library re-

quire an epsilon value to be selected in the adversarial crafting process. The epsilon value 

affects the amount of perturbation applied to the adversarial example. After testing differ-

ent values with a few selected sample images from COCO 2017 validation set, the output 

images were first visualized and then used as an input for the pre-trained object detection 

model from TensorFlow 2 Detection Model Zoo via TensorFlow 2 Object Detection API 

on Google Colab. According to the prediction results and visualization of the adversarial 

examples, the epsilon values of 0.02, 0.05, and 0.1 were chosen to be presenting the differ-
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ent stages of perturbation added to the image from low to high. These epsilon values were 

used with different model and attack algorithm parameters to craft adversarial datasets. 

Adversarial examples with the same epsilon value, model, and attack algorithm were com-

bined as one new adversarial dataset. To further analyze the quality of the adversarial ex-

ample and the amount of perturbation it contains, a more precise metric PSNR was calcu-

lated between a resized original image and a corresponding adversarial example. The aver-

age PSNR value was later calculated to full datasets for analyzing purposes. 

Peak signal-to-noise ratio (PSNR) is used as a quality measure between the original image 

and a compressed image. PSNR values range from infinity to 0, where a lower value 

means a noisier image and a higher value means similarity to the original image. (Dixit & 

Phadke, 2013). In this research, PSNR is calculated between the resized version of the 

original image and the image containing adversarial perturbation, meaning it is used to 

calculate the level of noise that the crafted adversarial example contains compared to the 

original image. The high PSNR value means that the crafted image is looking like the orig-

inal image and contains only a low amount of noise. The low PSNR value on the contrary 

would indicate a high numerical difference between the two images, meaning that pertur-

bation added to the image is more visible and the image noise level is therefore higher. The 

typical values of PSNR in lossy image compression are between 30 dB to 50 dB (Prab-

hakar et al., 2011). PSNR can also be described as a rough metric to describe human visual 

perception when comparing the quality of two images (Sara et al., 2019). 

5.6 COCO Metrics for evaluating the sensitivity  

The COCO detection evaluation metrics were used to evaluate the sensitivity of light-

weight object detection models against adversarially perturbed datasets. From all the avail-

able metrics this thesis focuses on Mean Average Precision (mAP), also stated as the CO-

CO primary challenge metric. This metric was selected for two reasons: since most of the 

latest research papers are using it to evaluate the accuracy of the object detection models 

and because the accuracy of the object detection models in Tensorflow 2 Detection Model 

Zoo is presented using the same metric. A full list of COCO detection evaluation metrics 

can be seen in Figure 11. 
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Figure 11. COCO detection evaluation metrics (Lin et al., 2014) 

COCO mAP uses a 101-point interpolated AP definition in the calculation. This means that 

interpolation is performed in N=101 recall points. Then computed results for each class are 

summed up and divided by the number of classes, making it an average across all catego-

ries. The COCO AP metric, also known as the primary challenge metric, computes the 

average precision with ten different IoU values from 0.5 to 0.95 with a step size of 0.05 

and takes the average among all computed results. (Hui, 2018.)  

The average precision (AP) metric evaluates a precision and a recall in different confi-

dence values. In object detection, precision is used to measure how accurate the prediction 

is, meaning what percentage of the predictions are correct, while recall moreover measures 

how well can a model find all the positives. Figure 12 presents the mathematical defini-

tions behind calculating precision and recall. (Hui, 2018.)  

The third metric needed to calculate the AP is Intersection over Union (IoU), which 

measures the overlap between two boundaries. In object detection, IoU is used to measure 

the overlap between the predicted boundary and the ground truth boundary. IoU threshold 

classifies each prediction either as a True Positive (TP) or False Positive (FP). The thresh-

old value can variate, but the starting point is usually 0.5 meaning that boundaries overlap 

50%. Choosing a more restrictive IoU threshold e.g., 0.75 results a different precision and 

recall values which affect the AP results as seen in Figure 13. (Padilla et al., 2021.) 
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Figure 12. Precision-Recall formulas based on Hui (2018) 

 

Figure 13. Average precision on different IoU (Padilla et al., 2021) 

A similar approach to evaluate the performance of adversarial attacks in object detection 

by comparing mean average precision results obtained with a clean and adversarial dataset 

was used by Chow et al. (2020) and Wei et al. (2018) in their respective research. For the 

rest of the thesis when AP is used in the text, it refers to COCO primary challenge metric. 

The TensorFlow 2 Object Detection API (J. Huang et al., 2016) provides mod-

el_main_tf2.py script for creating and running TF2 object detection models, which can be 

used to calculate the mAP metrics of the model when evaluated with the dataset. Figure 14 

shows an example of the model’s COCO Detection metrics produced with the script on 

evaluation notebook. As part of the experiments, the script was run with each dataset and 

model to get metrics for comparing the effects that adversarial perturbations cause to the 

object detection model's accuracy. The evaluation runs were completed using the cloud-

based platform Google Colab due to the insufficient number of local resources.  
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Figure 14. COCO detection evaluation metrics produced with model_main_tf2.py script 

on evaluation notebook 
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6 EXPERIMENTS 

This chapter presents the pipeline created for the experiments in this research and explains 

the selections made during the process. First, the selection of model architecture and attack 

algorithm parameters for the crafting process of adversarial examples are presented. Then 

decisions and experiments behind epsilon values used to craft adversarial examples are 

introduced. These three parameters affect the overall amount of perturbation included in 

adversarial examples and form the basis for the experiments. The third part introduces the 

creation of the datasets used in the experiments. The last part introduces the model evalua-

tion process and visualization of the detections. Figure 15 demonstrates the process from 

crafting adversarial examples to running the evaluations. The pipeline and Jupyter Note-

book files mentioned in the subchapters are available on the GitHub repository of this pro-

ject (Mäyrä, 2022). 

 

Figure 15. Flowchart demonstrating experiment pipeline of the thesis 

6.1 Selecting model and attack parameters on Foolbox 

The selection of the model parameter for crafting adversarial examples was based on the 

architectures present in the object detection models in this research. These architectures 

included MobileNetV2, Resnet50, and EfficientNetB0. Resnet101 architecture was present 

in one of the object detection models in this research but was not selected in crafting pa-

rameters because one Resnet family architecture was already involved. From the Foolbox 

library, the gradient-based attacks PGD and FGSM were chosen to be used as the attack 

algorithm parameter for crafting. These attacks were chosen after testing multiple different 

attacks from the Foolbox library and visualizing the crafted perturbations. The selection of 
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these attacks was based on two reasons: perturbation created by these attacks could be vis-

ualized clearly, and crafting adversarial examples with these methods was cost-efficient, 

which made it possible to craft many examples locally in a sufficient time. 

6.1.1 Model Architectures 

MobileNetV2 is a convolutional neural network architecture designed to be used on mobile 

devices for object detection and image classification tasks. It is based on an inverted resid-

ual structure where the residual connections are between the bottleneck layers. The inter-

mediate expansion layer uses lightweight depthwise convolutions to filter features as a 

source of non-linearity. The fully built MobileNetV2 architecture contains the initial fully 

convolution layer with 32 filters, followed by 19 residual bottleneck layers. Figure 16 

shows the MobileNetV2 architecture and two types of convolutional blocks that are used in 

it. (Sandler et al., 2018.) 

 

Figure 16. MobileNetV2 architecture and convolutional blocks (Sandler et al., 2018) 

ResNet50 is a convolutional neural network architecture based on residual neural net-

works. ResNet50 is 50 layers deep and uses bottleneck building blocks in its architecture 

as seen in Figure 17. ResNet50 architecture is based on the original ResNet-34 architec-

ture, but each 2-layer block is replaced by a 3-layer bottleneck block which results in the 

size of a 50-layer ResNet. Residual networks learn residual functions with reference to the 
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layer inputs, instead of learning unreferenced functions. This makes residual networks eas-

ier to optimize and gain accuracy from considerably increased depth. (He et al., 2016.) 

 

Figure 17. ResNet50 architecture and bottleneck building block (He et al., 2016) 

EfficientNet-B0 is a mobile-size baseline architecture that uses mobile inverted bottleneck 

MBConv including squeeze-and-excitation optimization as its main building block. It is a 

part of EfficientNet convolutional neural network architecture and a compound scaling 

method. The EfficientNet scaling method uniformly scales network width, depth, and reso-

lution with a set of fixed scaling coefficients, which makes it useful despite the size of the 

image that is used. Figure 18 shows the baseline architecture of EfficientNet-B0 (Tan & 

Le, 2019.) 



 

48 

 

 

Figure 18. EfficientNet-B0 baseline network (Tan & Le, 2019) 

6.1.2 Attack Algorithms 

The Fast Gradient Sign Method (FGSM) created by Goodfellow et al. (2014), is an attack 

algorithm that uses the gradient of the underlying model to find an adversarial example. It 

takes the original image and manipulates it by adding or subtracting a small error to each 

pixel. The deciding factor between adding or subtracting pixels depends on whether the 

sign of the gradient for a pixel is positive or negative. In other words, the idea is to adjust 

the input data to maximize the loss based on the same backpropagated gradients. The in-

creased number of errors in the direction of the gradient means that the image is altered to 

make the model output classification to be wrong. (Molnar, 2019.) The goal of the attack is 

to cause the model to misclassify the input image without targeting any specific class 

(Goodfellow et al., 2014). Figure 19 contains an implementation of the FGSM attack in the 

Foolbox library. In this research, a default implementation of the attack was used where 

only changes were made to the epsilon value of the attack. 

 

Figure 19. Foolbox implementation of FGSM (Rauber et al., 2017, 2020) 
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The Projected Gradient Descent (PGD) attack created by Madry et al. (2017) is much like 

the FGSM attack but it works iteratively. Because of this, it has been called in literature as 

Iterative-Fast Gradient Sign Method. In a PGD attack, the adversarial examples are created 

by iteratively applying the FGSM attack. PGD starts with randomly initialized perturbation 

which is then updated at each step. After the first random perturbation, PGD uses the sign 

of the gradient and updates the pixel values of the input image to the direction of the most 

considerable loss. This approach tries to find a perturbation that maximizes the loss while 

having the size of the perturbation small. (Madry et al., 2017.) Figure 20 contains the 

Foolbox implementation of the PGD attack. In this research, a default implementation of 

the attack was used where only changes were made to the epsilon value of the attack. 

 

Figure 20. Foolbox implementation of PGD (Rauber et al., 2017, 2020) 

6.2 Crafting adversarial examples 

Gradient-based attacks in the Foolbox library demand an epsilon value to be configured 

when crafting an adversarial example. Epsilon value controls the amount of perturbation 

that is added to the adversarial example. In this research, the aim was to measure the sensi-

tivity of object detection models against the adversarial perturbation by analyzing the ob-

tained AP value when the model is evaluated with the dataset containing perturbation ver-

sus the clean dataset. This means datasets should contain different levels of perturbation to 

see how the models react in each case.  
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The experiments to select epsilon values for crafting adversarial examples, that would be 

combined into adversarial datasets, were done by crafting adversarial examples using a 

combination of different model architectures and gradient-based attacks while changing the 

epsilon value. The epsilon values used with the FGSM attack varied between 0 and 0.1 

with an increase of 0.01 on each step, and with the PGD attack between 0 and 0.15 with an 

increase of 0.01 on each step. Besides just visualizing the images with perturbation, a 

PSNR value between the adversarial example and the original image was calculated to 

have a metric for the level of noise that the adversarial example contains. The PSNR calcu-

lation was completed using the tf.image.psnr function from TensorFlow 2 API and by fol-

lowing the example of computing the PSNR over tf.float32 Tensors (Abadi et al., 2015). 

The PSNR value between the original sample image and the adversarial example on the 

FGSM attack with the epsilon value of 0.02 was calculated to be between 29-30, with the 

epsilon value of 0.05 between 25-26, and with the epsilon value of 0.1 between 20-21, re-

gardless of the model architecture. The PSNR value between the original sample image 

and the adversarial example on the PGD attack with the epsilon value of 0.02 was calculat-

ed to be between 30-31, with the epsilon value of 0.05 between 29-30, and with the epsilon 

value of 0.1 between 25-26, regardless of the model architecture. Visualization of how the 

noise increases on different epsilon values when using MobileNet architecture on the 

FGSM attack can be seen in Figure 21 and on the PGD attack in Figure 22. 
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Figure 21. FGSM crafted adversarial examples on image adapted from COCO dataset 

(Lin et al., 2017) 
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Figure 22. PGD crafted adversarial examples on image adapted from COCO dataset 

(Lin et al., 2017) 

Looking at the two image collages above, it can be seen that with the FGSM attack the 

noise becomes more visible than with the PGD attack. This was the case regardless of the 

selected model architecture. To evaluate models with different levels of perturbed noise, 



 

53 

 

the epsilon values of 0.02, 0.05, and 0.1 were chosen to be used to craft the full adversarial 

datasets for the evaluation stage. These values would provide the view of how much the 

amount of perturbation in the image affects to AP metrics of the model while the adversar-

ial example is still recognizable to humans.  

After selecting the model, attack algorithm, and epsilon values for the attack, it was no-

ticed that the Foolbox was able to only produce perturbed images in the size of 224x224 as 

default, due to models and preprocessing steps used in the library. This meant that pro-

duced adversarial examples were smaller than the original images on the coco validation 

dataset. To achieve comparable results, a test was made to separate the perturbation from 

an adversarial example, then resize the perturbation to the size of the original image, and 

then apply the perturbation on top of the original image. However, this produced a notably 

lighter image than what the original was. Another test was done to resize the adversarial 

example to the size of the original image. However, this made all images too blurry com-

pared to the original image, so the result was not applicable. Results from these tests can be 

seen in Figure 23.  

 

Figure 23. Results of perturbation resize tests on image adapted from COCO dataset 

(Lin et al., 2017) 

After failing to resize the adversarial example to the size of the original image it was de-

cided that one more dataset would be made where the original images would be resized to 

the size of 224x224. This would make the AP metric comparisons possible. Figure 24 vis-

ualizes resized sample images without perturbation, the amount of perturbation that is add-

ed on crafting, and the output image containing the adversarial perturbation. 
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Figure 24. Demonstrating adversarial perturbation on images adapted from COCO da-

taset (Lin et al., 2017) 

6.3 Creating datasets for evaluation 

Adversarial datasets were created by running the coco validation dataset through a pipeline 

built in jupyter notebook containing Foolbox preprocessing and adversarial example craft-

ing methods. As some of the images on the COCO validation dataset are grayscale these 

were converted to the RGB images before crafting an adversarial version of them to avoid 

dimension errors. Crafted adversarial examples were then saved in jpg format. The crafting 

pipeline creates a copy of a COCO validation dataset but with images resized to 224x224 

containing adversarial perturbation. This pipeline was run with all combinations of model 

architecture, adversarial attack algorithm, and selected epsilon values. The comparable 

dataset without adversarial perturbation was obtained by running the COCO validation 

dataset through another jupyter notebook that resized each image into a size of 224x224. A 

list of datasets used in this research can be seen in Table 2, with names used to refer to 

them.  
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Table 2. Datasets used in research 

 

The ground truth files for the 224x224 size datasets were created from the coco-original 

dataset ground truth file, which is available in JSON format on cocodataset.org. The crea-

tion of ground truth files was done by using a script written into a jupyter notebook. The 

script would take a ground truth of an image from the JSON file and convert the bounding 

boxes to match the image size of 224x224 and then rewrite this into a new JSON file. This 

approach was validated by using the FiftyOne (Moore & Corso, 2020) tool to visualize the 

datasets with the ground truths to see that these were correctly shown on images after the 

resizing. The converted ground truth file was used with all datasets of size 224x224 as the 

images are the same, with the only difference being the amount of perturbation in them. A 

view from the FiftyOne tool with the coco-224 dataset and ground truths can be seen in 

Figure 25. 
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Figure 25. FiftyOne visualization of images and annotations adapted from COCO da-

taset (Lin et al., 2017) 

6.4 Model evaluations and detection visualizations on Google Colab 

The evaluation of the pre-trained object detection models was completed using the mod-

el_main_tf2.py script from the TensorFlow 2 Object Detection API. TF2 Object Detection 

API uses TFRecord format to train and evaluate the object detection model and provides a 

python script create_coco_tf_record.py for transforming the dataset into this format. All 

datasets used in this research were transformed into the TFRecord format before running 

the evaluations with the models. The evaluations were run on a Google Colab Notebook 

using Tensorflow version 2.20 and the installation of TF2 2 Object Detection API. The 

datasets and corresponding tfrecords were imported from Google Drive to the notebook, 

while the object detection models were downloaded from Tensorflow 2 Detection Model 
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Zoo. Google Colaboratory (Colab) offers the possibility to run Colab notebooks on 

Google’s cloud servers while leveraging Google’s hardware, including GPUs and TPUs on 

the browser. This approach was chosen due to insufficient resources on the local laptop. 

The research was completed with the use of Google’s GPUs and on most runs, the NVID-

IA Tesla K80 was acquired.  

After installing the environment, and uploading the datasets and models into the Colab 

notebook, the pipeline configuration file was updated to point to the model being evaluat-

ed, the tfrecords of the selected dataset, and to mscoco_label_map.pbtxt file, which maps 

integers of a class to a display name. This file was then used as a configuration file for the 

model_main_tf2.py script for evaluations. The pipeline in the evaluation notebook was 

first tested by running the evaluations on the coco-original dataset to confirm that the con-

figuration works. The obtained AP results were compared to the AP results of the model in 

Table 1 and ensured that the results were the same. The evaluations were then run with the 

rest of the datasets, in a way that each object detection model in Table 1 was evaluated 

with each dataset in Table 2. The evaluation results were collected into text files and ex-

ported into excel tables to get better visibility of the results. In excel the data was pro-

cessed to contain only the relevant AP results for this research as can be seen in Table 3. 

Comprehensive AP results can be found in Appendix A. 

Table 3. Model AP results in excel table 

 

Another Google Colab notebook was created for visualizing the detections. This notebook 

uses the TF2 Object Detection API to interact with the selected model and produces the 

detection results, which are then visualized by drawing a bounding box around the object 

with detection class and detection score. When used together with the AP results, visuali-

Epsilon value 0.05

CenterNet 

Resnet101 V1 FPN 

512x512

CenterNet 

Resnet50 V1 FPN 

512x512

CenterNet 

Resnet50 V2 

512x512

EfficientDet D0 

512x512

SSD MobileNet v2 

320x320

SSD MobileNet V2 

FPNLite 320x320

SSD MobileNet V2 

FPNLite 640x640

Speed (ms) 34,0 27,0 27,0 39,0 19,0 22,0 39,0

Tensorflow COCO (mAP) 34,2 31,2 29,5 33,6 20,2 22,2 28,2

coco-original 34,2 31,2 29,5 33,6 20,2 22,2 28,1

coco-224 24,1 20,5 19,8 26,9 18,1 18,7 19,2 PSNR avg.

MN-0.05-FGSM 13,8 10,6 10,9 17,2 11,1 10,6 9,2 24,88

MN-0.05-PGD 20,5 16,8 16,6 24,0 16,3 15,9 15,3 27,89

RN-0.05-FGSM 13,8 11,0 11,0 17,6 11,6 11,2 9,4 24,85

RN-0.05-PGD 20,6 16,9 16,5 24,2 16,3 16,0 15,4 27,87

EN-0.05-FGSM 13,3 10,4 10,7 16,4 10,7 10,3 9,0 25,03

EN-0.05-PGD 18,9 15,6 15,3 22,6 15,0 14,6 13,8 27,69



 

58 

 

zation provides a supportive aspect for understanding the effects that adversarial perturba-

tion causes on the detections. The visualization notebook was tested with a small set of the 

same images from the different datasets in Table 2. Figure 26 shows an example visualiza-

tion of the detections made by the EffientDet D0 object detection model when provided a 

sample image from coco-224 and EN-based datasets. Detections from other models with 

the same sample image on different attack parameters can be found in Appendix B. 

 

Figure 26.  Visualization of detections made by EfficientDet D0 512x512 model on im-

age adapted from COCO dataset (Lin et al., 2017) 
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7 RESULTS 

This chapter presents the results obtained from the evaluation notebook in which the eval-

uations were run on the models in Table 1 with datasets in Table 2 using the mod-

el_main_tf2.py script. While presenting and inspecting the results from the experiment, the 

main focus was to find out what kind of effect the adversarial perturbation included in im-

ages has on detection outcomes when observing the AP metric. To answer the research 

question “how do the lightweight object detection models react to adversarial examples” 

the following leading questions are used: 

• How does the attack algorithm affect the detection results? 

• Does the model architecture in adversarial crafting affect the detection results? 

• How much effect does the noise in the image have on PSNR and AP results?  

• Are some researched models more robust against adversarial examples than others? 

The first subchapter presents the AP results after resizing the images and compares the 

coco-224 dataset to the coco-original. The second subchapter presents the results of eval-

uations when datasets were created using the FGSM attack algorithm on different epsilon 

values. The adversarial datasets created with the FGSM attack are compared to the coco-

224 dataset. In the third subchapter, results from evaluations with datasets created using 

the PGD attack algorithm on different epsilon values are presented. The adversarial da-

tasets created with the PGD attack are compared to the coco-224 dataset. Figure 27 shows 

the obtained AP results in a graph while each subchapter includes a table of the related 

results.  
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Figure 27. Excel graph of models AP results with datasets 

7.1 Results on resized images 

This chapter briefly shows the AP results when models were evaluated with the coco-224 

dataset and compared to the coco-original dataset. The drop percentage in AP is rounded to 

the nearest one while AP is rounded to the nearest 10th to make the results more readable.  

The CenterNet models in this research are trained with images scaled to 512x512. After 

running the evaluations and comparing the results, the following observations were made: 

CenterNet Resnet101 model AP drops 30% from 34.2 to 24.1, while CenterNet Resnet50 

V1 model AP drops 34% from 31.2 to 20.5, and the CenterNet Resnet50 V2 model AP 

drops 33% from 29.5 to 19.8.  

The EfficientDet D0 model is also trained with images scaled to 512x512. After running 

the evaluations and comparing the results it was observed that the AP drops 20% from 33.6 

to 26.9. 

The SSD Mobilenet V2 320x320 and SSD Mobilenet V2 FPNLite 320x320 are trained 

with images scaled to 320x320 while the SSD MobileNet V2 FPNLite 640x640 model is 
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trained with images scaled to 640x640. After running the evaluations and comparing the 

results the following observations were made: AP of the 320x320 model without the FPN-

Lite feature extractor drops 10% from 20.2 to 18.1, while with the FPNLite the drop is 

16% from 22.2 to 18.7. AP value of the SSD MobileNet V2 FPNLite 640x640 model drops 

32% from 28.1 to 19.2. 

From the results in Table 4, it can be noticed that the AP value drops more with the models 

that have been trained with bigger image sizes and then evaluated with the coco-224 da-

taset. From here on the AP results of model evaluations with adversarial datasets are com-

pared to the results obtained with coco-224 instead of coco-original. This solution invali-

dates the difference coming from the image resizing step as images in the coco-224 dataset 

and adversarial datasets are the same size. 

Table 4. Model AP values on the coco-224 dataset 

 

7.2 Results with FGSM attack 

This chapter shows the AP results when models were evaluated with adversarial datasets 

crafted using the FGSM attack algorithm. The drop percentage in AP is rounded to the 

nearest one while AP is rounded to the nearest 10th to make the results more readable. Each 

subchapter contains a result table where the lowest and highest drop percent are highlight-

ed. 

Model coco-original Drop coco-224

CenterNet Resnet101 V1 FPN 512x512 34,2 30 % 24,1

CenterNet Resnet50 V1 FPN 512x512 31,2 34 % 20,5

CenterNet Resnet50 V2 512x512 29,5 33 % 19,8

EfficientDet D0 512x512 33,6 20 % 26,9

SSD MobileNet V2 320x320 20,2 10 % 18,1

SSD MobileNet V2 FPNLite 320x320 22,2 16 % 18,7

SSD MobileNet V2 FPNLite 640x640 28,1 32 % 19,2
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7.2.1 FGSM on epsilon value of 0.02 

When evaluating the models with the MN-0.02-FGSM dataset, the AP was reduced by an 

average of 15%. From the evaluated models, the SSD MobileNet V2 FPNLite 640x640 

had AP decreased the most as it dropped 21% to 15.2. The least decrease happened with 

the EfficientDet D0 512x512 model which AP dropped 11% to 24.0. 

When evaluating the models with the RN-0.02-FGSM datasets, the AP was reduced by an 

average of 13%. From the evaluated models, the SSD MobileNet V2 FPNLite 640x640 

had AP decreased the most as it dropped 18% to 15.8. The least decrease happened with 

the EfficientDet D0 512x512 model which AP dropped 10% to 24.3. 

When evaluating the models with the EN-0.02-FGSM dataset, the AP was reduced by an 

average of 18%. From the evaluated models, the SSD MobileNet V2 FPNLite 640x640 

had AP decreased the most as it dropped 22% to 15.0. The least decrease happened with 

the EfficientDet D0 512x512 model which AP dropped 14% to 23.2. 

From the results in Table 5, it can be noticed that the AP metric drops most when using the 

EN-0.02-FGSM dataset and least when using the RN-0.02-FGSM dataset. In overall, the 

drop in AP with this epsilon value and attack is between 10 to 22 percent, depending on the 

evaluated model. From the evaluated models, it seems that the EfficientDet D0 512x512 

model is most robust against the adversarial perturbation crafted with FGSM attack on 

epsilon value of 0.02, while the MobileNet V2 FPNLite 640x640 model performs worst. 

Table 5. Model AP values on FGSM-0.02 datasets 

 

Model coco-224 Drop MN-0.02-FGSM Drop RN-0.02-FGSM  Drop EN-0.02-FGSM

CenterNet Resnet101 V1 FPN 512x512 24,1 15 % 20,5 13 % 21,0 17 % 20,0

CenterNet Resnet50 V1 FPN 512x512 20,5 17 % 17,1 15 % 17,4 19 % 16,7

CenterNet Resnet50 V2 512x512 19,8 15 % 16,7 15 % 16,8 19 % 16,1

EfficientDet D0 512x512 26,9 11 % 24,0 10 % 24,3 14 % 23,2

SSD MobileNet V2 320x320 18,1 12 % 15,9 10 % 16,3 16 % 15,2

SSD MobileNet V2 FPNLite 320x320 18,7 16 % 15,8 13 % 16,2 18 % 15,4

SSD MobileNet V2 FPNLite 640x640 19,2 21 % 15,2 18 % 15,8 22 % 15,0
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7.2.2 FGSM on epsilon value of 0.05 

When evaluating the models with the MN-0.05-FGSM dataset the AP was reduced by an 

average of 44%, with the RN-0.05-FGSM dataset by an average of 42%, and with the EN-

0.05-FGSM dataset by an average of 45%. From the results in Table 6, it can be noticed 

that the AP metric drops most when using the EN-0.05-FGSM dataset and least when us-

ing the RN-0.05-FGSM dataset. In overall, the drop in AP with this epsilon value and at-

tack is between 35 to 53 percent, depending on the evaluated model. From the evaluated 

models, it seems that the EfficientDet D0 512x512 model is most robust against the adver-

sarial perturbation crafted with FGSM attack on epsilon value of 0.05, while the Mo-

bileNet V2 FPNLite 640x640 model performs worst.  

Table 6. Model AP values on FGSM-0.05 datasets 

 

7.2.3 FGSM on epsilon value of 0.1 

When evaluating models with the MN-0.1-FGSM dataset the AP was reduced by an aver-

age of 77%, with the RN-0.1-FGSM dataset by an average of 76%, and with the EN-0.1-

FGSM dataset by an average of 75%. From the results in Table 7, it can be noticed that the 

AP metric drops most when using the MN-0.1-FGSM dataset and least when using the EN-

0.1-FGSM dataset. In overall, the drop in AP with this epsilon value and attack is between 

70 to 84 percent, depending on the evaluated model. The high drop in AP value is under-

standable with these parameters as images in datasets are containing a lot of noise. From 

the evaluated models, it seems that the EfficientDet D0 512x512 model is most robust 

against the adversarial perturbation crafted with FGSM attack on epsilon value of 0.1, 

while the MobileNet V2 FPNLite 640x640 model performs worst. However, it should be 

noticed that all AP results are below 10 which means that models are not detecting objects 

Model coco-224  Drop MN-0.05-FGSM  Drop RN-0.05-FGSM  Drop EN-0.05-FGSM

CenterNet Resnet101 V1 FPN 512x512 24,1 43 % 13,8 43 % 13,8 45 % 13,3

CenterNet Resnet50 V1 FPN 512x512 20,5 48 % 10,6 46 % 11,0 49 % 10,4

CenterNet Resnet50 V2 512x512 19,8 45 % 10,9 44 % 11,0 46 % 10,7

EfficientDet D0 512x512 26,9 36 % 17,2 35 % 17,6 39 % 16,4

SSD MobileNet V2 320x320 18,1 39 % 11,1 36 % 11,6 41 % 10,7

SSD MobileNet V2 FPNLite 320x320 18,7 43 % 10,6 40 % 11,2 45 % 10,3

SSD MobileNet V2 FPNLite 640x640 19,2 52 % 9,2 51 % 9,4 53 % 9,0
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correctly in images. This means that models are pretty unsuitable for any detection tasks at 

this noise level. 

Table 7. Model AP values on FGSM-0.1 datasets 

 

7.3 Results with PGD attack 

This chapter shows the AP results when models were evaluated with adversarial datasets 

crafted using the PGD attack algorithm. The drop percentage in AP is rounded to the near-

est one while AP is rounded to the nearest 10th to make the results more readable. Each 

subchapter contains a result table where the lowest and highest drop percent are highlight-

ed. 

7.3.1 PGD on epsilon value of 0.02 

When evaluating the models with the MN-0.02-PGD dataset, the AP was reduced by an 

average of 7%. From the evaluated models, the SSD MobileNet V2 FPNLite 640x640 

model had AP decreased the most as it dropped 10% to 17.3. The least decrease happened 

with the SSD MobileNet V2 320x320 model where AP dropped only 4% to 17.4. 

When evaluating the models with the RN-0.02-PGD dataset, the AP was reduced by an 

average of 7%. From the evaluated models, the SSD MobileNet V2 FPNLite 640x640 

model had AP decreased the most as it dropped 9% to 17.4. The least decrease happened 

with the SSD MobileNet V2 320x320 model where AP dropped only 3% to 17.5. 

When evaluating the models with the EN-0.02-PGD dataset, the AP was reduced by an 

average of 12%. From the evaluated models, the SSD MobileNet V2 FPNLite 640x640 

Model coco-224  Drop MN-0.1-FGSM  Drop RN-0.1-FGSM  Drop EN-0.1-FGSM

CenterNet Resnet101 V1 FPN 512x512 24,1 77 % 5,6 77 % 5,5 76 % 5,9

CenterNet Resnet50 V1 FPN 512x512 20,5 80 % 4,0 81 % 4,0 80 % 4,2

CenterNet Resnet50 V2 512x512 19,8 74 % 5,1 76 % 4,8 75 % 5,0

EfficientDet D0 512x512 26,9 73 % 7,4 71 % 7,8 70 % 8,2

SSD MobileNet V2 320x320 18,1 73 % 4,8 72 % 5,1 71 % 5,2

SSD MobileNet V2 FPNLite 320x320 18,7 76 % 4,5 74 % 4,8 72 % 5,3

SSD MobileNet V2 FPNLite 640x640 19,2 84 % 3,1 83 % 3,2 82 % 3,4
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model had AP decreased the most as it dropped 17% to 16.0. The least decrease happened 

with the EfficientDet D0 512x512 model where AP dropped 8% to 24.7. 

From the results in Table 8, it can be noticed that the AP metric drops most when using the 

EN-0.02-PGD dataset, and least when using the RN-0.02-PGD dataset, even though the 

results between this and the MN-0.02-PGD dataset are very similar. In overall, the drop 

with this epsilon value and attack is between 3 to 17 percent depending on the evaluated 

model. The small drop in AP is understandable because the noise level in the images is not 

as high as it is with the datasets created with the FGSM attack. From the evaluated models, 

it seems that the SSD MobileNet V2 320x320 model and the EfficientDet D0 512x512 

model are most robust against the adversarial perturbation crafted with PGD attack on ep-

silon value of 0.02 if the drop percentage is to be considered. However the latter achieves 

better AP results in general. Of all reviewed models the MobileNet V2 FPNLite 640x640 

performs worst. 

Table 8. Model AP values on PGD-0.02 datasets 

 

7.3.2 PGD on epsilon value of 0.05 

When evaluating the models with the MN-0.05-PGD dataset the AP was reduced by an 

average of 15%, with the RN-0.05-PGD dataset also by an average of 15%, and with the 

EN-0.05-PGD dataset by an average of 22%. From the results in Table 9, it can be noticed 

that the AP metric drops most when using the EN-0.05-PGD dataset, and least when using 

the RN-0.05-PGD dataset, even though the results between this and the MN-0.05-PGD 

dataset are very similar. In overall, the drop in AP with this epsilon value and attack is be-

tween 10 to 28 percent depending on the evaluated model. From the evaluated models, it 

seems that the SSD MobileNet V2 320x320 model and the EfficientDet D0 512x512 mod-

Model coco-224  Drop MN-0.02-PGD  Drop RN-0.02-PGD  Drop EN-0.02-PGD

CenterNet Resnet101 V1 FPN 512x512 24,1 8 % 22,2 7 % 22,3 12 % 21,2

CenterNet Resnet50 V1 FPN 512x512 20,5 9 % 18,7 8 % 18,8 14 % 17,6

CenterNet Resnet50 V2 512x512 19,8 8 % 18,2 9 % 18,0 14 % 17,1

EfficientDet D0 512x512 26,9 4 % 25,7 4 % 25,9 8 % 24,7

SSD MobileNet V2 320x320 18,1 4 % 17,4 3 % 17,5 9 % 16,5

SSD MobileNet V2 FPNLite 320x320 18,7 6 % 17,5 5 % 17,7 12 % 16,5

SSD MobileNet V2 FPNLite 640x640 19,2 10 % 17,3 9 % 17,4 17 % 16,0
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el are most robust against the adversarial perturbation crafted with PGD attack on epsilon 

value of 0.05 if the drop percentage is to be considered. However the latter achieves better 

AP results in general. Of all reviewed models the MobileNet V2 FPNLite 640x640 per-

forms worst. 

Table 9. Model AP values on PGD-0.05 datasets 

 

7.3.3 PGD on epsilon value of 0.1 

When evaluating models with the MN-0.1-PGD dataset the AP was reduced by an average 

of 33%, with the RN-0.1-PGD dataset by an average of 32%, and with the EN-0.1-PGD 

dataset by an average of 40%. From the results in Table 10, it can be noticed that the AP 

metric drops most when using the EN-0.1-PGD dataset and least when using the RN-0.1-

PGD dataset. In overall, the drop with this epsilon value and attack is between 25 to 49 

percent depending on the evaluated model. From the evaluated models, it seems that the 

SSD MobileNet V2 320x320 model and EfficientDet D0 512x512 model are most robust 

against the adversarial perturbation crafted with PGD attack on epsilon value of 0.1 if the 

drop percentage is to be considered. However the latter achieves better AP results in gen-

eral. Of all reviewed models the MobileNet V2 FPNLite 640x640 performs worst. 

Table 10. Model AP values on PGD-0.1 datasets 

 

Model coco-224  Drop MN-0.05-PGD  Drop RN-0.05-PGD  Drop EN-0.05-PGD

CenterNet Resnet101 V1 FPN 512x512 24,1 15 % 20,5 15 % 20,6 22 % 18,9

CenterNet Resnet50 V1 FPN 512x512 20,5 18 % 16,8 18 % 16,9 24 % 15,6

CenterNet Resnet50 V2 512x512 19,8 16 % 16,6 17 % 16,5 23 % 15,3

EfficientDet D0 512x512 26,9 11 % 24,0 10 % 24,2 16 % 22,6

SSD MobileNet V2 320x320 18,1 10 % 16,3 10 % 16,3 17 % 15,0

SSD MobileNet V2 FPNLite 320x320 18,7 15 % 15,9 14 % 16,0 22 % 14,6

SSD MobileNet V2 FPNLite 640x640 19,2 20 % 15,3 20 % 15,4 28 % 13,8

Model coco-224  Drop MN-0.1-PGD  Drop RN-0.1-PGD  Drop EN-0.1-PGD

CenterNet Resnet101 V1 FPN 512x512 24,1 33 % 16,2 33 % 16,2 39 % 14,8

CenterNet Resnet50 V1 FPN 512x512 20,5 37 % 12,8 36 % 13,0 44 % 11,5

CenterNet Resnet50 V2 512x512 19,8 36 % 12,6 36 % 12,8 42 % 11,5

EfficientDet D0 512x512 26,9 26 % 19,9 25 % 20,1 33 % 17,9

SSD MobileNet V2 320x320 18,1 26 % 13,4 25 % 13,6 34 % 11,9

SSD MobileNet V2 FPNLite 320x320 18,7 33 % 12,5 31 % 12,8 41 % 10,9

SSD MobileNet V2 FPNLite 640x640 19,2 42 % 11,2 41 % 11,4 49 % 9,9
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8 DISCUSSION  

This chapter presents observations from acquired results, discusses the limitations of the 

research, and gives ideas for future research work. In the first subchapter, the observations 

made from the evaluation results are presented. The second subchapter covers observations 

made from the PSNR value of the adversarial examples. In the third subchapter, the ro-

bustness of lightweight object detection models used in the research is discussed. The 

fourth subchapter discusses the limitations of the research and mentions some future re-

search ideas. 

8.1 Observations based on evaluation results 

The first noticeable observation can be made from the results after the image resizing 

method, which was made to obtain comparable results between clean and adversarially 

perturbed images. The resizing step has reduced the AP metric of all reviewed models, and 

with the models trained on larger image sizes, the drop is even higher than with others. 

However, as this step was made to obtain comparable results from experiments, I am not 

going to cover this topic more at this point as the focus will be on results obtained with 

adversarial datasets. 

When comparing the selected gradient-based attacking algorithms FGSM and PGD used in 

this research, the results show that with the FGSM, the models’ AP is reduced more than 

with the PGD when the same epsilon value is used. Another note that can be made is that 

when the epsilon value gets higher, the evaluated AP results are getting lower with both 

attack methods, which is understandable as images on the dataset are containing more 

noise. Looking at the visualization and PSNR value of crafted adversarial examples, it can 

be noticed that the amount of noise added to the images on Foolbox is higher with the 

FGSM method in Figure 21 compared to the PGD method in Figure 22. While using the 

same epsilon, the PSNR value of images crafted with FGSM is noticeably lower than with 

PGD. Reflecting on these results, it could be argued that the adversarial examples crafted 

with FGSM methods contain more noise than with PGD, at least if the same epsilon value 
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is used. When focusing only on the epsilon value used to craft adversarial examples on 

Foolbox, the results show that with a higher value a more perturbation is added to the im-

age. This can be verified by looking at the PSNR value of the image, visualizing the image 

with adversarial perturbation, and looking at the AP result of models evaluated with adver-

sarial datasets. The higher the epsilon value is when creating the adversarial dataset, the 

noisier are images included in the dataset, and the lower AP metrics are obtained. 

From the evaluation results following observations were made regarding the model archi-

tecture in crafting adversarial examples. The adversarial datasets crafted with the ResNet50 

architecture seemed to be least effective in reducing the model AP value while the datasets 

crafted with the EfficientNetB0 architecture reduced it the most in the majority of cases. It 

was also noticed, that the dispersion between the AP results and attack algorithm was 

slightly higher when using the PGD attack instead of FGSM. When analyzing the architec-

ture used to craft adversarial datasets in Foolbox and the base architecture used by the ob-

ject detection model, using the same architecture did not produce lower AP results com-

pared to the case where these architectures were different. This can be seen in results with 

models using the MobilenetV2 base architecture that were evaluated with MN-datasets, or 

with models using the ResNet50 base architecture that were evaluated with RN-datasets. 

8.2 Observations based on PSNR value 

When looking at the average PSNR value of the datasets in Table 2, the average PSNR 

value for crafted datasets gets lower when the epsilon value is higher, meaning that the 

amount of adversarial perturbation in images can be recognized as a level of noise it con-

tains. However, looking at the average PSNR value more closely it can be noticed that this 

does not always mean lower AP results. The average PSNR value of the EN-0.05-FGSM 

dataset is 25.0 which is higher than the MN-0.05-FGSM dataset (24.9) or RN-0.05-FGSM 

dataset (24.9), but the obtained AP results (Table 6) are lower. Similarly, when comparing 

the AP results of the EN-0.05-FGSM dataset and EN-0.1-PGD dataset, the rounded PSNR 

value is the same (25.0) but the AP results are worse with the FGSM method. Average 

PSNR values of the datasets are shown in Appendix A. 
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According to observations, it can be assumed that if the PSNR value of the image is low, 

the image contains a high amount of noise making the detection of objects from the image 

harder, which is then reflected as a low AP results obtained by evaluation. This is under-

standable because the PSNR is used to provide a measure for human visual perception 

when comparing the quality of two images, and AP measures the accuracy of the object 

detection model to make correct predictions. To analyze the suitability of the PSNR metric 

when measuring the noise level in adversarial examples, the following example can be 

used: If the PSNR value obtained from an image is high, then this image contains only a 

small amount of perturbation making it slightly different from the original image. A low 

PSNR value would then mean that the image contains a high amount of perturbation, mak-

ing it very different from the original image.  

To address the results where the AP metric is worse on one dataset over the other, even if 

the average PSNR value is higher a few explanations can be made: The average PSNR 

value does not take a stand on how many objects one image would contain or that the 

PSNR value between images in the same dataset would be the same. This means that there 

will be variations in the results. Also when visualizing the crafted adversarial examples 

with the FGSM attack algorithm, these seemed to have more perturbation than images 

crafted with the PGD attack algorithm. Another thing that should be acknowledged is that 

the attacks used to craft adversarial examples were created against image classification 

models. When evaluating results with object detection models, there could be variations in 

cases where the amount of adversarial perturbation is more or less the same between da-

tasets because the attack is not optimized for the object detection task. However, in most 

cases the datasets crafted with the FGSM attack algorithm have lower PSNR values, the 

images contain more perturbation, and the evaluation provides lower AP results compared 

to datasets crafted with the PGD attack algorithm. 

8.3 Robustness of lightweight object detection models 

From the experiments made in this research, the following observations were made regard-

ing the robustness of lightweight object detection models from Tensorflow 2 Detection 

Model Zoo against adversarial examples. While looking at the AP results in general, the 
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assumption about the models' vulnerability to adversarial perturbation could be verified as 

each model had its AP results dropped when evaluated with datasets containing adversarial 

perturbation. This was the case even though the crafting method used to craft adversarial 

examples in Foolbox was designed to be used with image classification tasks and it is not 

optimized to fool object detection models. When visualizing the detections that the models 

made on adversarially perturbed images in this research, it was noticed that the perturba-

tion added to the images was able to affect the detection results in the following ways: the 

perturbation vanished the objects from being detected, the detected object was misclassi-

fied, or the image was fabricated with additional detections, which caused the model to 

make false detections. Figure 28 visualizes some of the detections from models with dif-

ferent architectures on images from crafted datasets. 

 

Figure 28. Detection examples from models with different architectures on images 

adapted from COCO dataset (Lin et al., 2017) 
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The EfficientDetD0 512x512 object detection model seemed to perform best against the 

adversarial datasets crafted using the Foolbox implementation of gradient attack methods 

FGSM and PGD. It achieved the highest AP results against each adversarial dataset, and 

when evaluated with the datasets crafted using the FGSM attack algorithm, the percentual 

drop in the AP metric was the lowest of all models. When evaluated with the datasets 

crafted using the PGD attack algorithm, the percentual drop in the AP metric was almost 

the same as with the SSD MobileNet V2 320x320 model, as both are having the lowest 

drop of all evaluated models. However, the overall AP results with the Effi-

cientDetD0 512x512 were notably higher. It can be argued that because the Effi-

cientDetD0 512x512 model was one of the best performing models according to AP results 

on the coco-original dataset, it would be one of the best with adversarial datasets as well. 

However, because it performed better than CenterNet Resnet or SSD MobileNet models 

used in this research, it could also reflect that the model architecture makes it more re-

sistant to adversarial perturbations than the others, but this should be further researched. 

The worst performing model in the experiments according to AP metrics was the SSD Mo-

bileNet V2 FPNLite 640x640 model. With each adversarial dataset crafted for the experi-

ments, it recorded the lowest AP results while the AP drop percent was also the highest in 

each case. One reason why this model performed worst could be the fact that it has been 

trained with images scaled to 640x640 and was now evaluated with images scaled to a size 

of 224x224, but this would need further research before making any conclusions. Even 

though it recorded the worst AP results with adversarial datasets, it seemed to resist adver-

sarial perturbations quite well on some sample images as seen in Figure 29. 

 

Figure 29. Detection examples from SSD MobileNet V2 FPNLite 640x640 model on 

image adapted from COCO dataset (Lin et al., 2017) 
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When analyzing the models' robustness against the architectures used in crafting adversari-

al datasets, the datasets that were crafted using the EfficientNetB0 architecture seemed to 

have the best success in decreasing the model accuracy in every other case except with the 

FGSM attack algorithm and epsilon value of 0.1. In general, the attack algorithm, epsilon 

value, and the model architecture to craft adversarial examples all affected the accuracy of 

the model when evaluated with the adversarial datasets. Using a higher epsilon value helps 

to visualize the perturbation that attacks add to the image as can be seen in Figure 30. This 

figure shows the difference in perturbations between the architectures, but it should be 

acknowledged that the perturbation is different in each image of the dataset. 

 

Figure 30. Adversarial perturbation of different architectures on image adapted from 

COCO dataset (Lin et al., 2017) 

The following observations were made regarding the calculated drop percent. The model 

AP results dropped from results obtained with the coco-224 dataset when evaluated with 

datasets crafted on epsilon value of 0.02 and FGSM attack between 10–22%, and with 
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PGD attack between 4–10%. Using an epsilon value of 0.05, the drop with datasets crafted 

using the FGSM attack was between 35–53%, and with the PGD attack between 10–28%. 

With an epsilon value of 0.1, the drop on adversarial datasets using FGSM attack was be-

tween 70–84%, and with adversarial datasets using PGD attack between 25–49%. On the 

left side in Figure 31, the object detection models are listed according to their robustness 

against adversarial perturbation. On the right side, the percentual drop in AP results be-

tween the coco-224 dataset and adversarial datasets is presented. 

 

Figure 31. Best performing models and average percentual drop by the attack 

Another observation regarding the models used in experiments that could be discussed is 

that if the model is trained with smaller images, the drop in AP metric is not as significant 

as with other models. This observation was made when comparing the MobileNet V2 

models trained on an image size of 320x320 to the MobileNet V2 model trained on an im-

age size of 640x640. The reason for this could lie in the fact that the images used in this 

research are 224x224 in size, which is closer to the size of images used to train the 

320x320 models, but this should be further investigated. 

8.4 Limitations of the research and future work 

While the results show that the pre-trained lightweight object detection models are vulner-

able to adversarial perturbation, it is hard to make universal conclusions about the sensi-

tivity of the models. Models used in the research were selected from a Tensorflow 2 Detec-

tion Model Zoo, which contains only a limited amount of pre-trained models for object 
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detection, making the scope of research quite narrow. The repository is missing some of 

the latest lightweight models mentioned in the literature and contains only some of the 

models mentioned in chapter 3.4. Models from the YOLO family are currently not includ-

ed in the TF2 Detection Model Zoo, but are under development and could make their way 

into the repository in the future. However, all the models in Model Zoo are pre-trained on 

COCO 2017 dataset which makes them a good starting point to be used in transfer learning 

for a new detection task or used for out-of-the-box interference with existing categories. 

What comes to the limitations of crafting the adversarial examples, the Foolbox python 

library does not contain straight attacks against the Tensorflow 2 Object Detection Models. 

When searching the python library to craft adversarial examples using different attack al-

gorithms, I did not come across one that could be used specifically for the object detection 

task or that could use the models straight from Tensorflow 2 Detection Model Zoo. The 

adversarial examples crafted on Foolbox are designed to fool a Keras image classification 

model, and therefore they should not be as effective against the object detection models as 

they would be against image classification models. This was also acknowledged by Wang, 

Wang, et al. (2020). However, the Keras image classification models selected for crafting 

the adversarial examples contain the same base architecture as object detection models 

used in experiments. It was studied if there would be any correlation between these when 

evaluating the sensitivity of the object detectors, but none could be found. The adversarial 

perturbation applied to the image is designed to cause the image classifier to misclassify 

the image. At first, the model in Foolbox predicts the most likely class to the whole image 

and then crafts a perturbation that should cause the prediction to be misclassified into 

something else. The process did not contain a check if the image prediction is correct at 

first or if the prediction is wrong after. Another note that should be made is that the majori-

ty of images in the COCO dataset contain objects from multiple classes and selecting only 

one class from the image might be difficult. However, the crafted adversarial examples in 

this research should be viewed as images containing adversarially crafted perturbation, 

which can be simplified to images containing noise as visualizations show. 

When thinking about limitations regarding the evaluation of object detection models, the 

first thing that should be noticed is that the images crafted via Foolbox are in the size of 
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224x224 and not in the size that they appear in COCO 2017 dataset. Because of this, the 

obtained AP results of adversarial datasets could not be compared to the results listed in 

Table 1. To obtain comparable results, a dataset containing coco-original images in the size 

of 224x224 was created. However, when reducing the size of images to 224x224 the quali-

ty of images suffers quite heavily which affects the AP results as seen in Table 4. Because 

of these changes, I decided to observe the percentual drop that happens in AP metrics be-

tween adversarial datasets and the coco-224 dataset when models are evaluated using the 

evaluation script. This could give approximate results of how the adversarial perturbation 

would affect the detection accuracy of the model if the images of adversarial datasets 

would be the same size as the images in the coco-original dataset. 

In this research, the evaluation results were based on the primary challenge metric from 

COCO detection evaluation metrics while other metrics produced by the evaluation script 

were not discussed when reviewing the results. This decision was made on purpose be-

cause otherwise the presentation and analysis would become too broad for the scope of this 

thesis, even though these results could have formed a better understanding of the models. 

To get a more informative view of the detections made from an image containing adversar-

ial perturbation, some other metric could have provided better results. When analyzing the 

amount of perturbation in images, the PSNR value can also be challenging because it dif-

fers between images even though a similar amount of perturbation would be included. Al-

so, when calculating the average PSNR value of adversarial datasets, the value with the 

FGSM attack was lower than with the PGD attack on the same epsilon value. To compare 

the perturbations created between attacks, a higher epsilon value could have been used 

with the PGD attack to obtain PSNR values closer to ones with the FGSM attack.  

The evaluations were made by analyzing the Mean Average Precision metric that is used in 

COCO detection evaluation metrics. Apart from the COCO AP metric, the AUC (area un-

der the curve) and ROC (Receiver Operating Characteristic) curve was tried to be calculat-

ed to obtain additional information on model performance. AUC-ROC curve is used to 

calculate the performance of the model in classification problems. When obtaining the raw 

detection results of datasets made by the object detection models, I noticed that to calculate 

the AUC-ROC curve, plenty of time would be taken to process the raw results into a cor-
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rect shape. Because of the time restrictions, the AUC-ROC curve was dropped from the 

scope of the thesis. Here are some observations which lead to this decision. The COCO 

dataset is annotated in a way that not all objects in images are marked in the ground truths. 

In some images, one large bounding box covers multiple same class objects, meaning that 

these objects are annotated as one object. The predictions made by COCO API are provid-

ed in a format that should be further processed to calculate the AUC-ROC curve. The 

ground truths in datasets would also need to be converted into the same format to make 

comparisons possible. The COCO dataset contains objects from 80 classes and for each 

image the predictions should be converted to a binary problem. If the image contains mul-

tiple same class objects close to each other, mapping the correct ground truth and predic-

tion would be difficult. 

To discuss the limitations relating to the hardware used in the research, the laptop that I 

used at first did not have sufficient resources to run evaluations on larger models. The 

evaluations were then completed on Google Colab in the cloud. However, the free tier of 

Google Colab had to be used because the Colab Pro is not yet available in Finland. The 

downside of using the free tier was the GPU limitations, which were broken a couple of 

times due to running multiple evaluations. This meant that GPU was not then available for 

a certain period which slowed down the process of running the evaluations. 

Future research in this area could relate to evaluating the most recent lightweight models 

outside of the Tensorflow 2 Detection Model Zoo and models in the YOLO family. This 

would give a broader view of how lightweight models react to adversarial examples and 

build a bigger picture of their vulnerability against subtle perturbations. The other adver-

sarial example crafting methods mentioned in chapter 4.5 could be used to test the sensitiv-

ity of the lightweight models, while another dataset could be used to train and test the 

models in the first place. Evaluation of the models could be done by using some other met-

ric than COCO AP or the full list of COCO detection metrics from Figure 11 could be in-

spected. It would be also beneficial to test how the defense methods mentioned in chapter 

4.4 reduce the effects of adversarial perturbation. One last suggestion for future research 

would be to develop a proper library for testing object detection models against different 

adversarial examples, as to the best of my knowledge, there currently are none. 
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9 CONCLUSION 

This chapter reflects the overall thesis process. The main goal of the thesis was to study the 

sensitivity of lightweight object detection models against adversarial perturbation. This 

was done by selecting a group of pre-trained object detection models from TensorFlow 2 

Detection Model Zoo and evaluating their detection accuracies on adversarially crafted 

datasets. The crafting process of adversarial datasets was completed by using the Foolbox 

python library and COCO 2017 validation dataset. For adversarial attack type, Foolbox 

implementations of popular attacks Fast Gradient Sign Methods and The Projected Gradi-

ent Descent were selected. While Foolbox did not provide straight implementations for 

attacking TensorFlow-based object detection models, I chose to craft adversarial examples 

against the image classification model, combine the output images as a new dataset, and 

test the object detection models accuracy with this dataset. For evaluation, the COCO 

Mean Average Precision metric was used. When comparing to the results reported in the 

literature where adversarial examples are created specifically against the object detection 

model, like in research made by Chow et al. (2020), the obtained results were not as good 

with this approach. This is also noticed in research made by Wang, Wang, et al. (2020), 

who state that the effect of image classification attacks is far from good enough in fooling 

object detectors. Nevertheless, some promising results were obtained. 

The research questions in the thesis were the following: 

1. What kind of adversarial attacks currently exists against object detection models? 

2. How do the lightweight object detection models react to adversarial examples?  

To answer the first research question, a literature review of studies related to adversarial 

examples in deep neural networks and object detection was conducted. A summary of the 

findings can be reviewed in chapters 4.3 and 4.5, while in the experiments, the FGSM and 

the PGD attacks were used to craft adversarial examples. While these attacks were opti-

mized to craft adversarial examples against image classification, they were able to reduce 

the accuracy of object detectors used in this research when compared to results obtained 

with clean images. 
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To answer the second research question, the experiments made in this thesis were evaluat-

ed using the proven evaluation metrics. The results show that when applying the adversari-

al perturbation to the images, the mean average precision used to calculate the accuracy of 

the object detection model was decreased. This was the case with each model used in the 

research against each adversarial dataset. Some of the models were able to resist the per-

turbation more than the others, but in each case, the accuracy of detection suffered. Even 

though the evaluations could not be made straight with the coco-original dataset, because 

of the size difference between images, the comparison between adversarial datasets and the 

coco-224 dataset showed that when the amount of adversarial perturbation is increased in 

images, the accuracy of detections is decreased. 

To get more precise results, adversarial examples should have been crafted using a method 

specifically optimized to fool an object detection task. The evaluated object detection 

model should be used as a parameter for the crafting, and the size of produced adversarial 

examples should be the same as the original COCO dataset to get more universal results. 

As part of this research, I tried to find a python library that would be capable to craft mul-

tiple adversarial attacks against object detection models. However, one specifically for the 

object detection task was not found and therefore adversarial examples were created 

against the image classification task. While TensorFlow 2 Detection Model Zoo does not 

contain the latest object detection models, it still has a quite good collection of models that 

could be tested. The lightweight models used in this research do not fully reflect the usabil-

ity of the models in low computation tasks, and it should be stated that the pre-trained 

models are not designed to be used in critical detection tasks. However, identical models 

are currently used in some android applications as shown by Y. Huang et al. (2021), which 

means that the models' vulnerability should be further researched, and their robustness 

should be improved. These observations create a need for further studies around the re-

search area and the possible development of a python library, for crafting attacks and eval-

uating the robustness of object detection models. 
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APPENDICES 

A Model AP metrics and dataset PSNR values 

 

 

 

Epsilon value 0.02

CenterNet 

Resnet101 V1 FPN 

512x512

CenterNet 

Resnet50 V1 FPN 

512x512

CenterNet 

Resnet50 V2 

512x512

EfficientDet D0 

512x512

SSD MobileNet v2 

320x320

SSD MobileNet V2 

FPNLite 320x320

SSD MobileNet V2 

FPNLite 640x640

Speed (ms) 34,0 27,0 27,0 39,0 19,0 22,0 39,0

Tensorflow COCO (mAP) 34,2 31,2 29,5 33,6 20,2 22,2 28,2

coco-original 34,2 31,2 29,5 33,6 20,2 22,2 28,1

coco-224 24,1 20,5 19,8 26,9 18,1 18,7 19,2 PSNR avg.

MN-0.02-FGSM 20,5 17,1 16,7 24,0 15,9 15,8 15,2 28,20

MN-0.02-PGD 22,2 18,7 18,2 25,7 17,4 17,5 17,3 29,08

RN-0.02-FGSM 21,0 17,4 16,8 24,3 16,3 16,2 15,8 28,14

RN-0.02-PGD 22,3 18,8 18,0 25,9 17,5 17,7 17,4 29,07

EN-0.02-FGSM 20,0 16,7 16,1 23,2 15,2 15,4 15,0 28,18

EN-0.02-PGD 21,2 17,6 17,1 24,7 16,5 16,5 16,0 28,86

Epsilon value 0.05

CenterNet 

Resnet101 V1 FPN 

512x512

CenterNet 

Resnet50 V1 FPN 

512x512

CenterNet 

Resnet50 V2 

512x512

EfficientDet D0 

512x512

SSD MobileNet v2 

320x320

SSD MobileNet V2 

FPNLite 320x320

SSD MobileNet V2 

FPNLite 640x640

Speed (ms) 34,0 27,0 27,0 39,0 19,0 22,0 39,0

Tensorflow COCO (mAP) 34,2 31,2 29,5 33,6 20,2 22,2 28,2

coco-original 34,2 31,2 29,5 33,6 20,2 22,2 28,1

coco-224 24,1 20,5 19,8 26,9 18,1 18,7 19,2 PSNR avg.

MN-0.05-FGSM 13,8 10,6 10,9 17,2 11,1 10,6 9,2 24,88

MN-0.05-PGD 20,5 16,8 16,6 24,0 16,3 15,9 15,3 27,89

RN-0.05-FGSM 13,8 11,0 11,0 17,6 11,6 11,2 9,4 24,85

RN-0.05-PGD 20,6 16,9 16,5 24,2 16,3 16,0 15,4 27,87

EN-0.05-FGSM 13,3 10,4 10,7 16,4 10,7 10,3 9,0 25,03

EN-0.05-PGD 18,9 15,6 15,3 22,6 15,0 14,6 13,8 27,69

Epsilon value 0.1

CenterNet 

Resnet101 V1 FPN 

512x512

CenterNet 

Resnet50 V1 FPN 

512x512

CenterNet 

Resnet50 V2 

512x512

EfficientDet D0 

512x512

SSD MobileNet v2 

320x320

SSD MobileNet V2 

FPNLite 320x320

SSD MobileNet V2 

FPNLite 640x640

Speed (ms) 34,0 27,0 27,0 39,0 19,0 22,0 39,0

Tensorflow COCO (mAP) 34,2 31,2 29,5 33,6 20,2 22,2 28,2

coco-original 34,2 31,2 29,5 33,6 20,2 22,2 28,1

coco-224 24,1 20,5 19,8 26,9 18,1 18,7 19,2 PSNR avg.

MN-0.1-FGSM 5,6 4,0 5,1 7,4 4,8 4,5 3,1 20,45

MN-0.1-PGD 16,2 12,8 12,6 19,9 13,4 12,5 11,2 25,14

RN-0.1-FGSM 5,5 4,0 4,8 7,8 5,1 4,8 3,2 20,44

RN-0.1-PGD 16,2 13,0 12,8 20,1 13,6 12,8 11,4 25,12

EN-0.1-FGSM 5,9 4,2 5,0 8,2 5,2 5,3 3,4 20,62

EN-0.1-PGD 14,8 11,5 11,5 17,9 11,9 10,9 9,9 25,03
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B Detections on images adapted from COCO dataset (Lin et al., 2017) 

 

MobileNet FGSM Adversarial Examples 
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MobileNet PGD Adversarial Examples 
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ResNet50 FGSM Adversarial Examples 
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ResNet50 PGD Adversarial Examples 



 

94 

 

 

EfficientNet FGSM Adversarial Examples 
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EfficientNet PGD Adversarial Examples 



 

96 

 

C License and copyright of Figures and Appendix B 

This appendix list figures containing images or annotations adapted or based on some other 

image or annotation and provides information about their license and copyright. Copy-

rights of images in the COCO dataset do not belong to COCO Consortium, which is why 

this appendix was created. 

Figure 6 

First-row corner images adapted from: COCO 2017 Validation Dataset (Lin et al., 2017). 

[Image]. Accessed 18.5.2022 on http://images.cocodataset.org/val2017/000000000285.jpg. 

Original: http://farm8.staticflickr.com/7434/9138147604_c6225224b8_z.jpg. CC BY 2.0: 

https://creativecommons.org/licenses/by/2.0/ 

Third-row corner images adapted from: COCO 2017 Validation Dataset (Lin et al., 2017). 

[Image]. Accessed 18.5.2022 on http://images.cocodataset.org/val2017/000000079408.jpg. 

Original: http://farm6.staticflickr.com/5324/9734800916_1a66b88f77_z.jpg. CC BY 2.0: 

https://creativecommons.org/licenses/by/2.0/ 

Figure 10 

Image based on: COCO 2017 Validation Dataset (Lin et al., 2017). [Image]. Accessed 

18.5.2022 on http://images.cocodataset.org/val2017/000000128372.jpg. Original: 

http://farm9.staticflickr.com/8479/8172792873_5d083ef147_z.jpg. CC BY-SA 2.0: 

https://creativecommons.org/licenses/by-sa/2.0/ 

Figure 11 

Image based on: COCO detection evaluation metrics (Lin et al., 2014). 

[Image]. Accessed 18.5.2022 on https://cocodataset.org/#detection-eval. 

CC BY 4.0: https://creativecommons.org/licenses/by/4.0/ 

Figure 14 

Based on: COCO detection evaluation metrics (Lin et al., 2014) obtained with mod-

el_main_tf2.py script of Tensorflow 2 Object Detection API (J. Huang et al., 2016). [Fig-

ure]. Accessed 18.5.2022 on evaluation notebook created on this thesis, available on 

https://github.com/vikamayr/project_ae (Mäyrä, 2022). 

http://farm8.staticflickr.com/7434/9138147604_c6225224b8_z.jpg
https://creativecommons.org/licenses/by/2.0/
http://farm6.staticflickr.com/5324/9734800916_1a66b88f77_z.jpg
http://images.cocodataset.org/val2017/000000128372.jpg
http://farm9.staticflickr.com/8479/8172792873_5d083ef147_z.jpg
https://creativecommons.org/licenses/by/4.0/
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Figure 21, Figure 22, Figure 23, Figure 30 

Images adapted from: COCO 2017 Validation Dataset (Lin et al., 2017). [Image]. Ac-

cessed 18.5.2022 on http://images.cocodataset.org/val2017/000000000139.jpg. Original: 

http://farm9.staticflickr.com/8035/8024364858_9c41dc1666_z.jpg. CC BY-NC 2.0: 

https://creativecommons.org/licenses/by-nc/2.0/ 

Figure 24 

First image on first and third row adapted from: COCO 2017 Validation Dataset (Lin et al., 

2017). [Image]. Accessed 18.5.2022 on 

http://images.cocodataset.org/val2017/000000000139.jpg. CC BY-NC 2.0: 

https://creativecommons.org/licenses/by-nc/2.0/ 

Second image on first and third row adapted from: COCO 2017 Validation Dataset (Lin et 

al., 2017). [Image]. Accessed 18.5.2022 on 

http://images.cocodataset.org/val2017/000000006471.jpg. Original: 

http://farm4.staticflickr.com/3228/2755941377_ea852330ca_z.jpg. CC BY-NC SA 2.0: 

https://creativecommons.org/licenses/by-nc-sa/2.0/ 

Third image on first and third row adapted from: COCO 2017 Validation Dataset (Lin et 

al., 2017). [Image]. Accessed 18.5.2022 on 

http://images.cocodataset.org/val2017/000000128372.jpg. Original: 

http://farm9.staticflickr.com/8479/8172792873_5d083ef147_z.jpg. CC BY-SA 2.0: 

https://creativecommons.org/licenses/by-sa/2.0/ 

Fourth image on first and third row adapted from: COCO 2017 Validation Dataset (Lin et 

al., 2017). [Image]. Accessed 18.5.2022 on 

http://images.cocodataset.org/val2017/000000142472.jpg. Original: 

http://farm8.staticflickr.com/7274/7871818696_6bf4905675_z.jpg. CC BY 2.0: 

https://creativecommons.org/licenses/by/2.0/ 

http://farm9.staticflickr.com/8035/8024364858_9c41dc1666_z.jpg
http://images.cocodataset.org/val2017/000000000139.jpg
https://creativecommons.org/licenses/by-nc/2.0/
http://farm4.staticflickr.com/3228/2755941377_ea852330ca_z.jpg
https://creativecommons.org/licenses/by-nc-sa/2.0/
http://images.cocodataset.org/val2017/000000128372.jpg
http://farm9.staticflickr.com/8479/8172792873_5d083ef147_z.jpg
https://creativecommons.org/licenses/by-sa/2.0/
http://images.cocodataset.org/val2017/000000142472.jpg
http://farm8.staticflickr.com/7274/7871818696_6bf4905675_z.jpg
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Fifth image on first and third row adapted from: COCO 2017 Validation Dataset (Lin et 

al., 2017). [Image]. Accessed 18.5.2022 on 

http://images.cocodataset.org/val2017/000000226417.jpg. Original: 

http://farm1.staticflickr.com/193/495093205_cbb83a14ff_z.jpg. CC BY-SA 2.0: 

https://creativecommons.org/licenses/by-sa/2.0/ 

Figure 25 

Left image on first row adapted from: COCO 2017 Validation Dataset (Lin et al., 2017). 

[Image]. Accessed 18.5.2022 on http://images.cocodataset.org/val2017/000000000139.jpg. 

CC BY-NC 2.0: https://creativecommons.org/licenses/by-nc/2.0/ 

Middle image on first row adapted from: COCO 2017 Validation Dataset (Lin et al., 2017). 

[Image]. Accessed 18.5.2022 on http://images.cocodataset.org/val2017/000000000285.jpg. 

Original: http://farm8.staticflickr.com/7434/9138147604_c6225224b8_z.jpg. CC BY 2.0: 

https://creativecommons.org/licenses/by/2.0/ 

Right image on first row adapted from: COCO 2017 Validation Dataset (Lin et al., 2017). 

[Image]. Accessed 18.5.2022 on http://images.cocodataset.org/val2017/000000000632.jpg. 

Original: http://farm2.staticflickr.com/1241/1243324748_eea455da9f_z.jpg. CC BY 2.0: 

https://creativecommons.org/licenses/by/2.0/ 

Left image on second row adapted from: COCO 2017 Validation Dataset (Lin et al., 2017). 

[Image]. Accessed 18.5.2022 on http://images.cocodataset.org/val2017/000000000724.jpg. 

Original: http://farm4.staticflickr.com/3576/3383381911_9d6d5b63a1_z.jpg. CC BY-NC-

SA 2.0: https://creativecommons.org/licenses/by-nc-sa/2.0/ 

Middle image on second row adapted from: COCO 2017 Validation Dataset (Lin et al., 

2017). [Image]. Accessed 18.5.2022 on 

http://images.cocodataset.org/val2017/000000000776.jpg. CC BY-NC-SA 2.0: 

https://creativecommons.org/licenses/by-nc-sa/2.0/ 

http://farm1.staticflickr.com/193/495093205_cbb83a14ff_z.jpg
http://images.cocodataset.org/val2017/000000000139.jpg
https://creativecommons.org/licenses/by-nc/2.0/
http://farm8.staticflickr.com/7434/9138147604_c6225224b8_z.jpg
https://creativecommons.org/licenses/by/2.0/
http://farm2.staticflickr.com/1241/1243324748_eea455da9f_z.jpg
https://creativecommons.org/licenses/by/2.0/
http://farm4.staticflickr.com/3576/3383381911_9d6d5b63a1_z.jpg
https://creativecommons.org/licenses/by-nc-sa/2.0/
http://images.cocodataset.org/val2017/000000000776.jpg
https://creativecommons.org/licenses/by-nc-sa/2.0/
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Right image on second row adapted from: COCO 2017 Validation Dataset (Lin et al., 

2017). [Image]. Accessed 18.5.2022 on 

http://images.cocodataset.org/val2017/000000000785.jpg. Original: 

http://farm8.staticflickr.com/7015/6795644157_f019453ae7_z.jpg. CC BY 2.0: 

https://creativecommons.org/licenses/by/2.0/ 

Annotations adapted from: COCO 2017 Validation Dataset (Lin et al., 2017). [Annota-

tions]. Accessed 18.5.2022 on https://cocodataset.org/#download. CC BY 4.0: 

https://creativecommons.org/licenses/by/4.0/ 

Figure 26, Figure 29, Appendix B 

Images adapted from: COCO 2017 Validation Dataset (Lin et al., 2017). [Image]. Ac-

cessed 18.5.2022 on http://images.cocodataset.org/val2017/000000226417.jpg. Original: 

http://farm1.staticflickr.com/193/495093205_cbb83a14ff_z.jpg. CC BY-SA 2.0: 

https://creativecommons.org/licenses/by-sa/2.0/ 

Figure 28 

First row images adapted from: COCO 2017 Validation Dataset (Lin et al., 2017). [Image]. 

Accessed 18.5.2022 on http://images.cocodataset.org/val2017/000000142472.jpg. Origi-

nal: http://farm8.staticflickr.com/7274/7871818696_6bf4905675_z.jpg. CC BY 2.0: 

https://creativecommons.org/licenses/by/2.0/ 

Second row images adapted from: COCO 2017 Validation Dataset (Lin et al., 2017). [Im-

age]. Accessed 18.5.2022 on http://images.cocodataset.org/val2017/000000226417.jpg. 

Original: http://farm1.staticflickr.com/193/495093205_cbb83a14ff_z.jpg. CC BY-SA 2.0: 

https://creativecommons.org/licenses/by-sa/2.0/ 

Third row images adapted from: COCO 2017 Validation Dataset (Lin et al., 2017). [Im-

age]. Accessed 18.5.2022 on http://images.cocodataset.org/val2017/000000006471.jpg. 

Original: http://farm4.staticflickr.com/3228/2755941377_ea852330ca_z.jpg. CC BY-NC-

SA 2.0: https://creativecommons.org/licenses/by-nc-sa/2.0/ 

http://farm8.staticflickr.com/7015/6795644157_f019453ae7_z.jpg
https://creativecommons.org/licenses/by/2.0/
https://cocodataset.org/#download
http://farm1.staticflickr.com/193/495093205_cbb83a14ff_z.jpg
http://images.cocodataset.org/val2017/000000142472.jpg
http://farm8.staticflickr.com/7274/7871818696_6bf4905675_z.jpg
https://creativecommons.org/licenses/by/2.0/
http://farm1.staticflickr.com/193/495093205_cbb83a14ff_z.jpg
https://creativecommons.org/licenses/by-sa/2.0/
http://farm4.staticflickr.com/3228/2755941377_ea852330ca_z.jpg
https://creativecommons.org/licenses/by-nc-sa/2.0/
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Fourth row images adapted from: COCO 2017 Validation Dataset (Lin et al., 2017). [Im-

age]. Accessed 18.5.2022 on http://images.cocodataset.org/val2017/000000128372.jpg. 

Original: http://farm9.staticflickr.com/8479/8172792873_5d083ef147_z.jpg. CC BY-SA 

2.0: https://creativecommons.org/licenses/by-sa/2.0/ 

http://images.cocodataset.org/val2017/000000128372.jpg
http://farm9.staticflickr.com/8479/8172792873_5d083ef147_z.jpg
https://creativecommons.org/licenses/by-sa/2.0/
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