
This is a self-archived version of an original article. This version
may differ from the original in pagination and typographic details.

Author(s):

Title:

Year:

Version:

Copyright:

Rights:

Rights url:

Please cite the original version:

CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

H-KPP : Hypervisor-Assisted Kernel Patch Protection

© 2022 by the authors. Licensee MDPI, Basel, Switzerland.

Published version

Kiperberg, Michael; Zaidenberg, Nezer Jacob

Kiperberg, M., & Zaidenberg, N. J. (2022). H-KPP : Hypervisor-Assisted Kernel Patch Protection.
Applied Sciences, 12(10), Article 5076. https://doi.org/10.3390/app12105076

2022

����������
�������

Citation: Kiperberg, M.; Zaidenberg,

N.J. H-KPP: Hypervisor-Assisted

Kernel Patch Protection. Appl. Sci.

2022, 12, 5076. https://doi.org/

10.3390/app12105076

Academic Editor: Arcangelo

Castiglione

Received: 19 January 2022

Accepted: 8 April 2022

Published: 18 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

H-KPP: Hypervisor-Assisted Kernel Patch Protection
Michael Kiperberg 1,† and Nezer Jacob Zaidenberg 2,3,*,†

1 Department of Software Engineering, Shamoon College of Engineering, Beer-Sheva 8410802, Israel;
michaki1@sce.ac.il

2 Holon Institute of Technology, Faculty of Sciences, Holon 5810201, Isreal
3 Faculty of Information Technology, University of Jyväskylä, FI-40014 Jyväskylä, Finland
* Correspondence: scipio@scipio.org
† These authors contributed equally to this work.

Abstract: We present H-KPP, hypervisor-based protection for kernel code and data structures. H-KPP
prevents the execution of unauthorized code in kernel mode. In addition, H-KPP protects certain
object fields from malicious modifications. H-KPP can protect modern kernels equipped with BPF
facilities and loadable kernel modules. H-KPP does not require modifying or recompiling the kernel.
Unlike many other systems, H-KPP is based on a thin hypervisor and includes a novel SLAT switching
mechanism, which allows H-KPP to achieve very low (≈ 6%) performance overhead compared to
baseline Linux.

Keywords: virtualization; Kernel Integrity; DKOM

1. Introduction

The execution of an unauthorized code is one of the attackers’ main vehicles in their
malicious actions. Multiple solutions have been proposed to prevent these attacks at
various stages, for example, Data Execution Prevention (DEP) [1] and driver signing [2]
attempt to prevent the execution and introduction of unauthorized code. Unfortunately,
both solutions were circumvented [3,4].

In addition to executing new code in kernel mode, attackers may attempt to perform
direct kernel-object modification (DKOM) to achieve their goal by overwriting various
fields of kernel objects directly. DKOM attacks can be used for privilege escalation and
hiding the attack traces. Microsoft’s Kernel Patch Protection (KPP) is an obfuscated integrity
checking mechanism for the Windows kernel. As with the previously described security
measures, KPP was reverse-engineered, and disabled [5]. In addition, KPP is not available
for the Linux kernel, which also suffers from vulnerabilities [6]. In particular, 158 new
vulnerabilities were discovered in 2021 alone [7].

We introduce H-KPP, hypervisor-based protection for Linux kernel code and data
structures. H-KPP prevents the execution of unauthorized code in kernel mode. In addition,
H-KPP protects certain object fields from malicious modifications. H-KPP can protect
modern kernels equipped with BPF facilities and loadable kernel modules. H-KPP does
not require modifying or recompiling the kernel. Unlike many other systems, H-KPP is
based on a thin hypervisor and includes a novel SLAT switching mechanism, which allows
H-KPP to achieve very low (≈6%) performance overhead compared to baseline Linux.

H-KPP accomplishes its main goal using two secondary-level address translation
(SLAT) hierarchies: the kernel and user mode hierarchies. The hypervisor switches between
the two hierarchies on every mode transition. The kernel-mode hierarchy prevents the
execution of all the pages but the pages belonging to the verified kernel and modules. The
transition between the hierarchies does not require the hypervisor’s attention, thus keeping
the overall system performance at optimum. H-KPP, unlike similar systems, supports
modern kernel features, like just-in-time code generation, which is used by the BPF.

Appl. Sci. 2022, 12, 5076. https://doi.org/10.3390/app12105076 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12105076
https://doi.org/10.3390/app12105076
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-8906-5940
https://orcid.org/0000-0003-3496-7925
https://doi.org/10.3390/app12105076
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12105076?type=check_update&version=1

Appl. Sci. 2022, 12, 5076 2 of 14

H-KPP’s detection of DKOM is based on periodic verifications of various object fields.
This behavior is similar to Microsoft’s KPP. However, the functionality of H-KPP in this
regard is much broader and is comparable with the functionality of Volatility, an offline
forensic investigation tool [8].

We have verified the effectiveness of H-KPP by using a specially crafted kernel module
that mimics some aspects of the malicious behavior of various attacks. It may seem
more natural to run an actual attack; unfortunately, the attacks we have found target
older versions of the Linux kernel. H-KPP successfully detected all the attacks that were
performed by the kernel module.

We have measured the performance of H-KPP code protection using various bench-
marks, which showed an average overhead of only ≈6%. We note that the overhead of full
hypervisors, which form the basis for other solutions, is much more significant. In addition,
we have evaluated the performance of the periodic kernel object verification. Our main
contributions are:

• We present the design of H-KPP, a KPP-like system implemented as a thin hypervisor.
• We present a novel SLAT-switching technique used by H-KPP, which can be helpful in

other scenarios.
• We present an online approach for kernel object verification that does not require

recompilation of the kernel.
• We evaluate the effectiveness of H-KPP using a kernel module that mimics common attacks.
• We evaluate the performance of H-KPP.

2. Background
2.1. Virtualization

Many modern processors are equipped with extensions to their basic instruction set
architecture that enables them to execute multiple operating systems simultaneously. H-
KPP utilizes Intel’s implementation of these extensions, which they call Virtual Machine
Extensions (VMX). The software that governs the execution of the operating systems is
called a hypervisor and each operating system (with the processes it executes) is called a
guest. Transitions from the hypervisor to the guest are called VM-entries and transitions
from the guest to the hypervisor are called VM-exits. While VM entries occur voluntarily
by the hypervisor, VM exits are caused by events during the guest’s execution, e.g., page
faults, execution of a privileged instruction, or a timer’s timeout. The event that causes a
VM exit is recorded for future use by the hypervisor. A special data structure called Virtual
Machine Control Structure (VMCS) allows the hypervisor to specify the events that should
trigger a VM exit and many other settings of the guest.

Intel’s Extended Page Table (EPT), a technology generally called Secondary Level
Address Translation (SLAT), allows the hypervisor to configure a mapping between the
physical address space, as it is perceived by a guest to the real physical address space.
Similarly to the virtual page table, EPT allows the hypervisor to specify the access rights for
each guest physical page. When a guest attempts to access a page that is either not mapped
or has inappropriate access rights, an event called an EPT violation occurs, triggering a
VM exit.

While, in general, hypervisors enable the execution of multiple operating systems on a
single machine, we propose to use a hypervisor environment for securing a single operating
system. The idea to use such a limited hypervisor for providing additional security is not
new [9,10]. Unlike full hypervisors, which tend to degrade the overall system performance
significantly, thin hypervisors may intercept only a small portion of the system’s events,
thus keeping the system performance at an optimum (see Section 5.2).

2.2. Execution Prevention

The execution of an unauthorized code is one of the attackers’ main vehicles in their
malicious actions. Multiple solutions have been proposed to prevent these attacks at various
stages. For example, Microsoft’s Data Execution Prevention (DEP) technology prevents

Appl. Sci. 2022, 12, 5076 3 of 14

the execution of instructions from unauthorized pages by utilizing the page table’s NX bit
introduced by Intel. Linux also utilizes the NX bit on processors that support it starting from
version 2.6.8 [11]. Unfortunately, this protection can be bypassed [3].

Another example is the driver signing facilities available on Windows [2], and Linux [12].
These facilities either prevent or issue a warning upon an attempt to load an unsigned driver
(kernel module). These facilities aim to prevent malicious code from even getting into the
kernel. Unfortunately, Kleissner demonstrated [4] that driver signing can be bypassed.

Microsoft’s Kernel Patch Protection (KPP) is an obfuscated integrity checking mech-
anism for the Windows kernel. For example, this mechanism prevents patching of the
System Service Descriptor Table (SSDT), which holds the addresses of the system-call
handlers. KPP consists of multiple verification code pieces that form a complete algorithm
for verifying the kernel’s critical data structures. In addition, the code pieces verify the
integrity of themselves in order to prevent their circumvention. As with the previously
described security measures, KPP was reverse-engineered and bypassed [5]. H-KPP is most
closely related to KPP in its goals. However, unlike KPP, H-KPP protects its verification
procedure by moving it from the kernel mode to the more secure root mode.

2.3. Kernel Data Structures

Attacks based on direct kernel-object modification (DKOM) [13] allows the attacker
to achieve his goal by overwriting various fields of kernel objects directly. This scheme
allows the attacker to place the system in a custom state that may be unreachable using
regular kernel functions. For example, typically, it is impossible to reach a state in which
an active process is not linked to the process list. DKOM attacks can be used to modify
dynamically allocated objects and static data structures, like the interrupt vector and the
system call tables. Because the kernel itself can modify kernel objects during an execution
of a vulnerable system-call handler [14], kernel code integrity alone does not guarantee the
integrity of the kernel objects.

DKOM can also be used to grant higher privileges to the process controlled by the
attacker. In addition, the attacker typically attempts to hide his malicious activity. For
example, the hiding procedure may involve removing the malicious process from the
process list. These modifications cannot be detected by the code integrity mechanism and
therefore require another approach.

Lastly, the kernel’s polymorphic nature, which is implemented using structures of
function pointers, is the attackers’ main target. By altering these pointers, the attacker can
alter the behavior of various system aspects. For example, by altering the show field of the
tcp4_seq_ops structure, the attacker can hide his network activity. Similarly, the attacker
can hide a certain process by altering the iterate field of the i_fop field in the inode object
representing the /proc directory. While the attacker’s inability to introduce new code to the
kernel imposes severe limitations, it is still possible [15] to reuse existing code to achieve
some of the attacker’s goals. Therefore, it is important to protect the function pointers from
malicious modifications.

3. System Design

H-KPP is a thin hypervisor that supports the execution of a single operating system.
The hypervisor is embedded in an EFI [16] application that boots before the operating
system and initializes the hypervisor. After successful initialization, the EFI application
boots the operating system bootloader, which initializes the operating system itself. The
operating system executes under the inspection of H-KPP. The main goal of the hypervisor’s
inspection is to prevent the execution of malicious code in kernel mode.

H-KPP accomplishes its main goal using two secondary-level address translation
(SLAT) hierarchies, see Table 1. The first hierarchy, kSLAT, is active when the guest
resides in kernel mode, while the second hierarchy, uSLAT, is active when the guest
resides in user mode. The hypervisor switches between the two hierarchies on every
mode transition. Both hierarchies define identity mapping. This mapping is used solely to

Appl. Sci. 2022, 12, 5076 4 of 14

prevent undesirable access to some pages. The kSLAT and the uSLAT hierarchies prevent
access to the hypervisor’s memory and prevent the modification of the kernel code pages.
In addition, the kSLAT hierarchy prevents the execution of all the other pages.

Table 1. Configuration of SLAT hierarchies.

Page Type kSLAT uSLAT

H-KPP memory No access No access
Firmware Read & Execute No access

Other Read & Write Full access

For its correct execution, H-KPP requires information about the underlying operating
system. A special tool extracts this information during the installation of H-KPP, before its
first execution. The information is then delivered to H-KPP using a configuration file.

3.1. Information Collection

H-KPP requires two types of information about the underlying operating system:
(a) kernel symbols, (b) module hashes. The offsets of the kernel’s global variables, function,
and structure fields allow H-KPP to inspect the operating system’s internal state during the
execution. Before granting execution permissions to the kernel’s code page, H-KPP verifies
its integrity by comparing its hash against a pre-calculated set of hashes. A special tool
hashes the executable pages of all the kernel modules by traversing either local directories
or the official repository of the operating system distributor. The hashes and the offsets are
stored in a configuration file, which H-KPP loads during its initialization.

3.2. First-Phase Initialization

H-KPP’s initialization consists of two phases. The first phase takes place before
the operating system’s bootloader. The second phase occurs during the initialization of
the operating system, after the establishment of its memory layout, which is affected by
ASLR [17].

During its initialization, the EFI application that embeds H-KPP allocates memory for
the hypervisor by calling EFI’s AllocatePages function with EfiRuntimeServicesData as
its memory type argument. Memory regions allocated with this memory type appear as
reserved in the memory map report that the EFI firmware delivers to the operating system.
Therefore, benign operating systems and drivers do not access such memory regions.

After allocating memory for H-KPP, the EFI application initializes the hypervisor itself.
The initialization includes the configuration of internal data structures and the installation
of the SLAT hierarchies. H-KPP’s initialization proceeds by executing the remaining EFI
application as the single guest of the hypervisor. The application exits to firmware, which
loads the operating system bootloader. The bootloader and the operating system itself
execute as a hypervisor guest, thus allowing the hypervisor to inspect their execution. The
hypervisor’s memory is protected from the operating system by the SLAT.

As the last step of its first-phase initialization, H-KPP configures the interception
of assignments to the LSTAR MSR, which holds the address of the system call handling
function. After laying out its code and data structures in the memory, the operating
system sets this MSR. Therefore, this MSR can be used as a trigger for the second phase of
H-KPP’s initialization.

3.3. Second-Phase Initialization

H-KPP reacts to the operating system’s attempt to set the LSTAR MSR, by completing
H-KPP’s initialization. The initialization process assumes that at this point, the kernel
determines the memory layout of its code and data structures. At first, the hypervisor
determines the kernel base address using the following equation:

Base = Symstext + IDT[0]− Symdivide_error

Appl. Sci. 2022, 12, 5076 5 of 14

In this equation, IDT is the Interrupt Descriptor Table, a table that holds the address of all
the interrupt handlers. The processor delivers interrupt zero upon an attempt to divide
by zero. In Linux, this interrupt is handled by the divide_error function. Symname denotes
the address of the symbol named “name” as reported by the debugging information of the
kernel binary.

After determining the kernel’s base address, the hypervisor configures the kSLAT
and the uSLAT as presented in Table 1 and sets the kSLAT to be the active SLAT hierarchy.
Pages containing code are marked as readable, executable, but not writable (RX), while
other pages are marked non-executable but readable and writable (RW). After determining
the kernel’s base address, H-KPP sets RX permissions to its code pages. In addition, H-KPP
grants RX permissions to all the firmware code, which is invoked by the kernel through the
EFI API.

H-KPP constantly monitors the loading of additional kernel modules and grants RX
permissions to their code pages. This is achieved by intercepting the “load_module” function.

3.4. Functional Interpretation

During its execution, H-KPP collects information about the executing environment.
This is achieved by intercepting the invocation of specific functions and analyzing their
arguments and return values. The interception mechanism (IM) is implemented using
software breakpoints. When IM is requested to intercept a function invocation, it replaces
the first byte of this function with a breakpoint instruction. It saves the replaced instruction
in the hypervisor’s internal storage. In addition, IM configures the CPU to inform it about
software breakpoint interrupts.

IM reacts to a software breakpoint by emulating the function’s original first instruction.
Then, IM pushes onto the stack a special data structure in order to induce an additional
software breakpoint interrupt upon the termination of the intercepted function. As Figure 1
shows, the data structure consists of three fields. The first field is set to the function’s first in-
struction, the breakpoint instruction. After completing its execution, the function will arrive
at the breakpoint instruction, inducing a software breakpoint interrupt and transferring the
control to IM. The second field, which is set to the magic number 0 × 1,122,334,455,667,788,
allows IM to determine whether the software interrupt was generated due to an entry to
the intercepted function or an exit from it. In the first case, IM pushes the special data
structure as described. IM pops it and transfers the control to the original return address in
the second case. The third field stores the values of the first six arguments passed to the
intercepted function, which can be examined on an exit from the function.

Struct StackFramePrologue {
u64 retAddr;
u64 magic;
u64 originalArgs[6];

}

Figure 1. Special stack data structure.

We note that IM is not required to include a full emulator for emulation of the first
instruction of an intercepted function. In practice, our observations show that the first in-
struction belongs to the following list: (a) PUSH RBP, (b) CALL IMM32, (c) NOP. Therefore,
in our current implementation, IM emulates only these three instructions.

IM notifies the interception requestor upon a function interception by invoking its
callback function F. The value returned by F instructs IM to either act normally or deviate
from the normal operation, see Table 2. During the interception of an entry to a function,
the normal operation transfers control to the function by emulating its first instruction. A
deviation is staying at the breakpoint instruction. During the interception of an exit to a
function, the normal operation is returning to the calling function. A deviation is calling
the same function again. The usefulness of this non-intuitive behavior is explained below.

Appl. Sci. 2022, 12, 5076 6 of 14

Table 2. IM actions on interceptions.

Event Normal Deviation

Entry Continue to function Stay at breakpoint
Exit Continue to caller Re-enter function

3.5. SLAT Switching

H-KPP implements efficient switching between kSLAT and uSLAT upon transitions
between kernel-mode and user-mode by utilizing Intel’s VMFUNC instruction. Intel’s vir-
tualization technology (VMX) allows the hypervisor to configure a set of SLAT hierarchies
that can be switched from the guest using the VMFUNC instruction without requiring
transitions to the hypervisor, thus keeping the overhead at a minimum.

H-KPP injects the VMFUNC instruction using trampolines from four locations in
the kernel (see Table 3): (a) transition to kernel mode due to system call, (b) transition
to user mode due to a return from a system call, (c) transition to kernel-mode due to an
interrupt, (d) transition to user-mode due to a return from an interrupt. H-KPP inserts a
jump instruction to a pre-allocated memory region at each location. In addition, H-KPP
generates code that performs VMFUNC, emulates the instruction that was replaced, and
jumps back to the original location.

Table 3. Mode Transition Points.

Event System Call Interrupt

Entry entry_SYSCALL_64 error_entry
Exit syscall_return_via_sysret retint_user

H-KPP allocates the required memory region in the kernel context by intercepting the
“module_alloc” function, which is used by the kernel for general memory allocation. Upon
the first entry to the “module_alloc” function, H-KPP does nothing and requests IM to
proceed to the function. Upon the first exit from the “module_alloc” function, H-KPP stores
the function’s return value (the address of the allocated memory region) in an interval
variable X and requests the IM to execute the “module_alloc” function again. Upon another
entry to the “module_alloc” function, H-KPP changes the value of the “size” argument to
match the total size of the SLAT switching code. Upon an exit, H-KPP performs several
actions: (a) it modifies the kernel’s page table to grant the newly allocated region with
execution rights, (b) it grants this newly allocated page with execution rights in kSLAT,
(c) it restores the return value to the value of the internal variable X, (d) it requests IM to
disable the interception of the “module_alloc” function.

3.6. Module Loading

During its initialization, the kernel loads additional executable pages in the form of
kernel modules. The kernel’s “load_module” function is responsible for loading new mod-
ules. Its first argument contains information about the module to be loaded. In particular,
it contains information about the module’s name and a temporary buffer containing the
module’s code and data (see Figure 2). H-KPP intercepts entries to this function and exits
from it. On an entry, H-KPP hashes the temporary buffer, page-by-page. If a particular
page is paged out, the hypervisor injects a page-fault exception to the guest and requests
the IM to stay at the breakpoint instruction. As a result, the operating system handles
the page-fault exception by loading the missing page, and the hypervisor gets another
opportunity to hash the temporary buffer. After completing the hash computation, the
hypervisor verifies that the hash value exists in the pre-calculated database.

On an exit from the “load_module” function, H-KPP looks up the recently loaded
module in the linked list of kernel modules pointed by the “modules” global variable. After
finding the module in this linked list, H-KPP configures kSLAT to grant execution rights

Appl. Sci. 2022, 12, 5076 7 of 14

to the module’s code pages. We note that the lookup is performed by the module’s name,
which is available through the first argument of the “load_module” function, which IM
preserved in the special stack data structure.

struct load_info {
const char *name;
struct module *mod;
Elf_Ehdr *hdr;
unsigned long len;
...
};

Figure 2. Layout of the kernel’s load_info structure.

3.7. Berkeley Packet Filter

The Berkeley Packet Filter (BPF) [18] technology allows user-space processes to sup-
ply programs for filtering network packets. These programs, compiled to bytecode, are
interpreted by the kernel. Alternatively, the bytecodes can be compiled to machine code by
a just-in-time compiler embedded in the kernel, thus introducing new executable code.

The simplest solution to the problem of a new unverifiable code is disabling the BPF
JIT compiler through the “bpf_jit_enable” variable. However, this change can harm the
overall system performance in some cases. Therefore, in its current implementation, H-KPP
intercepts the “do_jit” function and configures kSLAT to grant execution rights to the newly
generated code pages.

4. Kernel Objects Protection

H-KPP detects the modification of three types of kernel object fields. The first type
includes static objects, like the interrupt vector and the system-call table. Because the
content of these static objects does not change during the execution of the operating system,
H-KPP computes the hash of these objects after their initialization and then verifies their
integrity by periodically comparing their hash results with the precomputed value. H-KPP
uses SHA-1 as its hashing algorithm.

The second type includes function pointers of various objects, like the i_fop field of the
inode object (see Figure 3). These pointers may be assigned different values depending on
the loaded modules. For example, each file system can define a new set of functions pointed
by the i_fop field. Therefore, H-KPP limits its verification procedure to checking that the
i_fop field points to a module’s variable and that each field of this variable points to the
beginning of some function. The verification itself is performed periodically by traversing
the object graph as depicted in Figure 3. More precisely, H-KPP traverses the inodes and
constructs a set of all the objects pointed by the i_fop field. Then, H-KPP verifies that the
fields of these objects point to functions. If so, H-KPP stores a pair consisting of an object
address and its hash in H-KPP’s internal data structure. In the future, instead of verifying
each field of an object separately, H-KPP hashes it and compares its hash to the previously
stored value.

The third type includes fields whose values are subject to certain invariants. For
example, no two task_struct objects should reference the same credentials object via their
cred fields. H-KPP performs this verification by traversing the list of processes and storing
the addresses stored in the cred fields in an array. Then, H-KPP sorts the array and verifies
that consecutive items are different.

Another example is the equality invariant over the sets of task_struct objects. As
depicted in Figure 4, the set of active processes can be constructed using information from
two sources: (1) the linked list formed by the tasks field of the task_struct, (2) the tree
formed by the children and the sibling fields of the task_struct. H-KPP periodically
tests the sets of task_struct objects obtained from these sources. For each source, H-KPP
stores the addresses of the structures in an array. Then, the arrays are sorted and compared.

Appl. Sci. 2022, 12, 5076 8 of 14

super_blocks super_block super_block

inode inode

file_operations

s_list s_list

s_
in

odes

i_sb_list i_sb_list

i_f
op

read

write
iterate

Figure 3. A graph of the inode obejcts. The super_blocks variable points to a linked list of all the
super_block objects. Each super_block object contains a linked list of inode objects defined by the
s_inodes and the i_sb_list fields of the super_block and the inode objects. Each inode object
points via its i_fop field to the file_operations object which contains pointers to various functions,
like read, write, iterate, etc.

gs

current_task

ch
ild

ren

ch
ild

re
n

ch
ild

re
n

ch
ild

re
n

sibling sibling

sibling sibling sibling sibling sibling sibling

parent

pa
re

nt

parent

pa
re

nt

pa
re

nt

pa
re

nt

task
s tasks

tasks

tasks

tasks tasks tasks tasks tasks

Figure 4. A graph of the task_struct obejcts. The gs register points to a structure, whose
current_task field (black arrow) references the currently running task_struct object. From this
object we can climb up the process tree using the parent field (red arrows). After reaching the root,
we can descend using the children (brown arrows) and sibling fields (blue arrows). In addition, all
the processes can be traversed using the tasks field (green arrows).

The verification procedure relies on the kernel symbols and the register values for
locating and traversing the object graph. H-KPP intercepts the assignment to the LSTAR
register, which signifies the completion of the kernel’s initialization. At this point, H-KPP
configures the VMX_PREEMPTION_TIMER, which induces periodic transitions to the
hypervisor, thus allowing H-KPP to perform the periodic verification of the kernel objects.
Table 4 summarizes the performed verifications.

Appl. Sci. 2022, 12, 5076 9 of 14

Table 4. Kernel object verification summary.

Verification Type Verification Subject Referenced By

Hashing Interrupt Descriptor Table IDTR register
System Call Table sys_call_table variable

Function Pointer inode.f_op field super_blocks variable
XYZ_seq_ops structures XYZ_seq_ops variables

Set Equality task_struct objects obtained from 3 sources current_task
Single Reference task_struct.cred field current_task

5. Results
5.1. Effectiveness

This section evaluates the effectiveness and the performance of H-KPP. In order to assess
the effectiveness of H-KPP, we have developed a kernel module that mimics some aspects of
the malicious behavior of various attacks. It may seem more natural to run an actual attack;
unfortunately, the attacks we have found target older versions of the Linux kernel.

Our kernel module performs a sequence of operations that H-KPP should recognize
as malicious. To demonstrate a successful recognition, we performed the following steps
for each operation:

• rebooted the system;
• requested the kernel module to perform a specific operation;
• verified that a special message appeared in the hypervisor’s log.

Regarding the last step, we note that the hypervisor outputs its log messages to the
serial port in our current implementation, where these messages can be observed. We chose
this communication channel only due to its simplicity. If needed, other communication
channels, like Ethernet or USB, can be implemented. The following list summarizes the
operations implemented by our kernel module.

1. The 1st operation demonstrates code injection, as performed by multiple attacks.
While injecting a new code to various memory regions is possible, our kernel module
demonstrates an injection to the stack. Then, the kernel module jumps to the injected
code. The hypervisor reacts to the execution of unfamiliar code by writing a message
to its log and resetting the system.

2. The 2nd and the 3rd operations demonstrate patching of the interrupt descriptor table
(IDT) and the system call table, as performed by rootkit [19]. Specifically, the kernel
module patches the keyboard interrupt entry of the IDT, thus allowing it to act as a
keylogger. In the system call table, the kernel module patches the getdents system
call, which allows it to hide files. The hypervisor reacts to both of these patches by
writing a message to the log.

3. The 4th and the 5th operations demonstrate patching of the /proc inode’s
inode.f_op.read field and the patching of the tcp4_seq_ops.show field, which can
enable an attacker to hide processes and network connections. In both cases, the
hypervisor writes a log message.

4. The 6th operation demonstartes unlinking a given process from the process list, thus
enabling an attacker to hide a process, even from the kernel itself. The hypervisor
detects this attack using information from other sources and writes a log message.

5. The last operation demonstrates a privilege escalation attack by copying the creden-
tials of a privileged process. Specifically, this operation alters the task_struct.cred
field. The hypervisor recognizes that a particular credentials structure is referenced
more than once and writes a log message.

5.2. Code Integrity Component Performance

In order to assess the performance of H-KPP, we have installed it in a virtualized
environment running Ubuntu 20. Table 5 presents the exact specification of the testbed

Appl. Sci. 2022, 12, 5076 10 of 14

environment. We used the Phoronix Test Suite (PTS) as a benchmarking tool. The PTS
includes multiples programs that test various aspects of the system performance. We have
selected a subset of these tests for inclusion in our performance analysis. Table 6 describes
the selected tests.

Each test was executed in three configurations: without a hypervisor (“No HV”), with
a hypervisor that does nothing (“Thin HV”), with H-KPP. Each test was executed several
times, and the PTS displayed the average on the screen. Since the units of measurement are
different for each test, in order to achieve uniformity, we display the result in percentages
compared to the “No HV” configuration.

In Figure 5, we can see that the average overhead of the “Thin HV” configuration
is 2.5%, and the average overhead of the “H-KPP” configuration is 6.2%. In contrast, the
performance of a full hypervisor, like VirtualBox is above 38% [20].

Table 5. Testbed Specification.

Host CPU Intel(R) Core(TM) i7-10610U
Host memory 16 GB
Host OS Ubuntu 20.04.1 LTS
VMM KVM/QEMU
Guest CPU Intel(R) Core(TM) i7-10610U
Guest memory 8 GB
Guest OS Ubuntu 20.04.1 LTS
Benchmarking Tool Phoronix Test Suite (PTS) v5.2.1

Table 6. PTS Configuration.

Test Name Description

unpack-linux measures how long it takes to extract the
.tar.xz Linux kernel package

encode-mp3 measures the time required to encode a WAV file
to MP3 format

git measures the time needed to carry out some sample
Git operations

openssl makes use of the built-in “openssl speed”
benchmarking capabilities

unpack-linux encode-mp3 git openssl

0

5

10

No HV Thin HV H-KPP

Figure 5. Test results in percents compared with “No HV” as a baseline. Lower is better.

5.3. DKOM Component Performance

In addition to its code integrity, H-KPP recognizes kernel object modification by
performing periodic verification procedures. In this section, we analyze the performance of

Appl. Sci. 2022, 12, 5076 11 of 14

each verification procedure in terms of the object graph size. We measured the difference
between the timestamps at the beginning and the end of each procedure’s execution. Then,
depending on the procedure, we divided the result by the number of traversed objects.
A potential operator of our system can achieve acceptable performance degradation by
configuring the verification period according to the expected number of objects and the
time required to verify each object. Table 7 summarizes our results.

Table 7. Verification time.

Verification Type Time (ns) Objects Time Per Object (ns)

Hashing Interrupt Descriptor Table 6046 256 23
Hashing System Call Table 5408 447 12
inode.f_op field 8,432,219 118,425 71
file_operation objects 171,802 154 1115
XYZ_seq_ops structures 3852 4 962
Set equality task_struct 138,312 297 465
Single Reference task_struct.cred 72,250 297 243

6. Related Work

The main goal of hardware-assisted virtualization is the execution of multiple operat-
ing systems on a single hardware, as demonstrated by VirtualBox [21], VMware Worksta-
tion [22], Xen [23]. However, since its first introduction more than a decade ago, it has also
been used for the construction of secure applications.

The applications cover a wide range of security areas. For example, Nitro [24], and its
extension DRAKVUF [25], are Xen-based hypervisors for system call interception. They
work by intercepting the system call mechanism of the x86 architecture, thus providing
an OS-independent framework for virtual machine introspection (VMI). In particular,
DRAKVUF introduces the notion of a stealth breakpoint for the interception of kernel
functions. H-KPP uses a similar approach for intercepting the do_jit function, for example.

Another example is SBCFI [26]. SBCFI is a Xen-based hypervisor that provides control
flow integrity verification for the underlying operating system. Currently, H-KPP does
not include control flow hijacking countermeasures. However, it can be extended along
the lines of SBCFI. Moreover, in theory, H-KPP’s performance should be better due to its
minimalistic design.

BitVisor [9] is a thin hypervisor that intercepts access to ATA hard disks to enforce
storage encryption. A thin hypervisor is a preferred solution for security applications due
to its low overhead compared to a full hypervisor. Like BitVisor, H-KPP is based on a thin
hypervisor but provides different security services, namely protecting the kernel’s code
and data.

SecVisor [27] is another thin hypervisor that uses a secondary-level address translation
(SLAT) and IOMMU to prevent unauthorized code execution in kernel mode. H-KPP is
similar to SecVisor in its secondary-level address translation tables configuration. H-KPP
differs from SecVisor in three aspects. Firstly, H-KPP introduces a new approach for rapid
switching between two SLAT configurations, using code injection and the special VMFUNC
instruction. This approach significantly improves the system performance. While it is
difficult to make a direct comparison, we can see that SecVisor’s performance in all the test
cases was worse than Xen’s, a full hypervisor. In contrast, H-KPP’s performance is much
better than VirtualBox’s, which is also a full hypervisor. Secondly, unlike SecVisor, H-KPP
can handle just-in-time generated code of BPFs. Thirdly, H-KPP protects the kernel’s data
structures and kernel’s code protection.

Leon et al. [28] proposed a system that prevents the execution of unauthorized code
in user mode. This system is also based on a thin hypervisor. Unlike H-KPP, the system
proposed by Leon et al. targets user mode applications and therefore makes unrealistic
assumptions about the kernel mode execution. In particular, it assumes that the kernel
modules are compiled statically into the kernel and that the BPF mechanism is disabled.

Appl. Sci. 2022, 12, 5076 12 of 14

However, the ideas presented by Leon et al. can be integrated into H-KPP, thus allowing it
to protect the execution of user mode applications and the kernel. Resh et al. [29] proposed
a similar system for the Windows OS.

PrivGuard [30] is a lightweight system for protecting kernel objects. PrivGuard is
based on stack canaries and object duplication verifications performed during system calls.
H-KPP is similar to PrivGuard in its protection of the task_struct.cred field. Unlike
PrivGuard, H-KPP’s protection cannot be circumvented by an attacker with kernel-mode
privileges. In addition, H-KPP does not introduce any modifications to the kernel.

DLP-Visor [20] is a hypervisor-based system that attempts to prevent leakage of
personal data by blocking the execution of certain system calls. DLP-Visor analyzes the
system call execution at the level of the kernel itself. DLP-Visor’s approach to limiting
kernel object modification is based on access rights of user-mode application. Unlike
DLP-Visor, H-KPP limits only direct modification of kernel object; all indirect modifications
are allowed.

Volatility [8] is an offline tool for forensic investigation of memory snapshots. Ob-
taining a memory snapshot is not an easy task. ForenVisor [31], HyperSleuth [32] are
two hypervisors that are capable of performing precise memory acquisition. Kiperberg
et al. [33] described an adaptation of these ideas to modern operating systems.

Volatility includes multiple verification mechanisms intended to recognize malicious
actions that were captured in the memory snapshot. H-KPP’s kernel object verification
procedure follows the lines of Volatility. Unlike Volatility, H-KPP can recognize an attack
while it is being conducted.

Wang, Wu, and Liu proposed iCruiser [34] to protect link-based data structures of the
kernel. iCruiser uses a special canary embedded in the linked objects to verify the integrity
of the links. iCruiser requires recompilation of the kernel. In contrast, H-KPP’s verification
is not limited to link-based data structures and does not require kernel recompilation.

Srivastava, Erete, and Giffin proposed [35] to use a hypervisor to protect variables and
structure fields from malicious modification. While the approach of the described system is
more general than H-KPP’s, to keep an acceptable performance degradation, the authors
propose to partition the memory of kernel objects into protected and non-protected halves.
This partition, obviously, requires kernel recompilation.

Graziano et al. [36] described a so-called “evolutionary” attack method on kernel
objects that could not be recognized by traditional means. As an example of the attack’s
applicability, the authors could prevent the execution of a particular process without
removing it from the process list. Graziano et al. described a hypervisor-based system
that could be used to detect such attacks. While the current implementation of H-KPP is
vulnerable to evolutionary attacks, it can be augmented with the simulator described by
Graziano et al.

HUKO [37] introduces the notion of “subject-aware protection”. HUKO defines three
subjects: the kernel, a trusted kernel module, an untrusted kernel module. The kernel
is permitted to perform any operation on a kernel object. Trusted kernel modules are
permitted to perform only some operations. Untrusted kernel modules are permitted to
perform only a tiny subset of operations. HUKO’s object labeling mechanism relies on
information delivered to it from the modified Linux kernel. H-KPP is similar to HUKO
in that they both utilize a separate SLAT for each environment. Unlike H-KPP, HUKO is
based on Xen, a full hypervisor. As a result, the HUKO’s performance is not better than the
performance of Xen.

7. Conclusions

We have described a hypervisor-based system for protecting kernel code and data.
While the idea of protecting kernel code using a hypervisor is not new, H-KPP adapts
this idea to new operating system facilities, like BPF. In addition, we have presented a
novel approach for SLAT switching, which is based on code injected performed by the
hypervisor. This SLAT switching approach allows the system to remain efficient and secure

Appl. Sci. 2022, 12, 5076 13 of 14

simultaneously. Unlike other solutions, H-KPP is based on a thin hypervisor. As a result,
H-KPP has a negligible performance overhead making it applicable in real-world scenarios.

In addition, unlike some previously described systems, H-KPP does not require any
modifications of the underlying kernel. However, if such modifications are possible, more
general and precise protection can be achieved using object partitioning [35].

Author Contributions: Conceptualization, M.K.; methodology, N.J.Z. software, M.K. and N.J.Z.;
Validation, N.J.Z.; formal analysis, M.K.; investigation, M.K.; resources, N.J.Z.; data curation, M.K.;
writing—original draft preparation—M.K.; writing—review and editing N.J.Z.; visualization M.K.;
supervision N.J.Z.; project administration N.J.Z.; funding acquisition N.J.Z. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

ASLR Address Space Layout Randomization
DEP Data Execution Prevention
DKOM Direct Kernel Object Manipulation
eBPF extended Berkley Packet Filter
MSR Module Specific Register

References
1. Microsoft. Available online: https://docs.microsoft.com/en-us/windows/win32/memory/data-execution-prevention (accessed

on 27 March 2022).
2. Microsoft. Available online: https://docs.microsoft.com/en-us/windows-hardware/drivers/install/driver-signing (accessed on

27 March 2022).
3. Stojanovski, N.; Gusev, M.; Gligoroski, D.; Knapskog, S.J. Bypassing Data Execution Prevention on Microsoft Windows XP SP2.

In Proceedings of the Second International Conference on Availability, Reliability and Security (ARES’07), Vienna, Austria, 10–13
April 2007; pp. 1222-1226. [CrossRef]

4. Kleissner, P. Stoned Bootkit. In Proceedings of the Black Hat, Las Vegas, NV, USA, 25–30 July 2009; pp. 5–7.
5. Ermolov, M.; Shishkin, A. Microsoft Windows 8.1 Kernel Patch Protection Analysis. Available online: https://www.ptsecurity.

com/upload/corporate/ru-ru/analytics/Windows_81_Kernel_Patch_Protection_Analysis.pdf (accessed on 14 May 2022)
6. Chen, H.; Mao, Y.; Wang, X.; Zhou, D.; Zeldovich, N.; Kaashoek, M.F. Linux kernel vulnerabilities: State-of-the-art defenses and

open problems. In Proceedings of the Second Asia-Pacific Workshop on Systems, Shanghai China, 11–12 July 2011; pp. 1–5.
7. CVE Details. Available online: https://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33 (accessed on

27 March 2022).
8. The Volatility Foundation. Available online: https://www.volatilityfoundation.org/ (accessed on 27 March 2022).
9. Shinagawa, T.; Eiraku, H.; Tanimoto, K.; Omote, K.; Hasegawa, S.; Horie, T.; Hirano, M.; Kourai, K.; Oyama, Y.; Kawai, E.; et al.

Bitvisor: A thin hypervisor for enforcing i/o device security. In Proceedings of the 2009 ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments, Washington, DC, USA, 11–13 March 2009.

10. Rhee, J.; Riley, R.; Xu, D.; Jiang, X. Defeating dynamic data kernel rootkit attacks via vmm-based guest-transparent monitoring. In
Proceedings of the 2009 International Conference on Availability, Reliability and Security, Fukuoka, Japan, 16–19 March 2009;
pp. 74–81.

11. KernelNewbies. Available online: https://kernelnewbies.org/Linux_2_6_8 (accessed on 27 March 2022).
12. The Kernel Development Community. Available online: https://www.kernel.org/doc/html/v4.13/admin-guide/module-

signing.html (accessed on 14 May 2022).
13. Butler, J. DKOM (direct kernel object manipulation). In Proceedings of the Black Hat Windows Security, Seattle, WA, USA, 27–28

January 2004.

https://docs.microsoft.com/en-us/windows/win32/memory/data-execution-prevention
https://docs.microsoft.com/en-us/windows-hardware/drivers/install/driver-signing
http://doi.org/10.1109/ARES.2007.54
https://www.ptsecurity.com/upload/corporate/ru-ru/analytics/Windows_81_Kernel_Patch_Protection_Analysis.pdf
https://www.ptsecurity.com/upload/corporate/ru-ru/analytics/Windows_81_Kernel_Patch_Protection_Analysis.pdf
https://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33
https://www.volatilityfoundation.org/
https://kernelnewbies.org/Linux_2_6_8
https://www.kernel.org/doc/html/v4.13/admin-guide/module-signing.html
https://www.kernel.org/doc/html/v4.13/admin-guide/module-signing.html

Appl. Sci. 2022, 12, 5076 14 of 14

14. Kasspersky Lab. Overview of the Latest Windows OS Kernel Exploits Found in the Wild. CanSecWest/BlueHat. 2019. Available
online: https://github.com/oct0xor/presentations/blob/master/2019-02-Overview%20of%20the%20latest%20Windows%20
OS%20kernel%20exploits%20found%20in%20the%20wild.pdf (accessed on 27 March 2022).

15. Kiperberg, M. Preventing malicious communication using virtualization. J. Inf. Secur. Appl. 2021, 61, 102871. [CrossRef]
16. EFI Forum, Inc. Unified Extensible Firmware Interface (UEFI) Specification; UEFI Forum, Inc.: Beaverton, OR, USA, 2021.
17. Marco-Gisbert, H.; Ripoll, I. On the Effectiveness of Full-ASLR on 64-bit Linux. In Proceedings of the In-Depth Security

Conference, Vienna, Austria, 18–21 November 2014.
18. Goldshtein, S. The Next Linux Superpower: eBPF Primer; USENIX Association: Dublin, Ireland, 2016.
19. Baliga, A.; Iftode, L.; Chen, X. Automated containment of rootkits attacks. Comput. Secur. 2008, 27, 323–334. [CrossRef]
20. Kiperberg, M.; Amit, G.; Yeshooroon, A.; Zaidenberg, N.J. Efficient DLP-visor: An efficient hypervisor-based DLP. In Proceedings

of the 2021 IEEE/ACM 21st International Symposium on Cluster, Cloud and Internet Computing (CCGrid), Melbourne, Australia,
10–13 May 2021.

21. Oracle, VirtualBox. Available online: http://https://www.virtualbox.org/ (accessed on 27 March 2022).
22. VMware, Workstation Pro. Available online: https://www.vmware.com/products/workstation-pro.html (accessed on

27 March 2022).
23. Barham, P.; Dragovic, B.; Fraser, K.; H.S.; Harris, T.; Ho, A. Xen and the art of virtualization. Acm Sigops Oper. Syst. Rev. 2003,

37, 164–177. [CrossRef]
24. Pfoh, J.; Schneider, C.; Eckert, C. Nitro: Hardware-based system call tracing for virtual machines. In International Workshop on

Security; Springer: Berlin/Heidelberg, Germany, 2011.
25. Lengyel, T.K.; Maresca, S.; Payne, B.D.; Webster, G.D.; Vogl, S.; Kiayias, A. Scalability, fidelity and stealth in the DRAKVUF

dynamic malware analysis system. In Proceedings of the 30th Annual Computer Security Applications Conference, New Orleans,
LA, USA, 8–12 December 2014.

26. Petroni, N.L., Jr.; Hicks, M. Automated detection of persistent kernel control-flow attacks. In Proceedings of the 14th ACM
Conference on Computer and Communications Security, Alexandria, VR, USA, 31 October–2 November 2007.

27. Seshadri, A.; Luk, M.; Qu, N.; Perrig, A. SecVisor: A tiny hypervisor to provide lifetime kernel code integrity for commodity
OSes. In Proceedings of the Twenty-First ACM SIGOPS Symposium on Operating Systems Principles, Washington, DC, USA,
14–17 October 2007; pp. 335–350.

28. Leon, R.S.; Kiperberg, M.; Zabag, A.A.L.; Resh, A.; Algawi, A.; Zaidenberg, N.J. Hypervisor-Based White Listing of Executables.
IEEE Secur. Priv. 2019, 17, 58–67. [CrossRef]

29. Resh, A.; Kiperberg, M.; Leon, R.; Zaidenberg, N.J. Preventing execution of unauthorized native-code software. Int. J. Digit.
Content Technol. Its Appl. 2017, 11, 72–90.

30. Qiang, W.; Yang, J.; Jin, H.; Shi, X. PrivGuard: Protecting sensitive kernel data from privilege escalation attacks. IEEE Access 2018,
6, 46584–46594. [CrossRef]

31. Qi, Z.; Xiang, C.; Ma, R.; Li, J.; Guan, H.; Wei, D.S. ForenVisor: A tool for acquiring and preserving reliable data in cloud live
forensics. IEEE Trans. Cloud Comput. 2016, 5, 443–456. [CrossRef]

32. Martignoni, L.; Fattori, A.; Paleari, R.; Cavallaro, L. Live and trustworthy forensic analysis of commodity production systems.
In Proceedings of the International Workshop on Recent Advances in Intrusion Detection, Toulouse, France, 2–4 October 2000;
Springer: Berlin/Heidelberg, Germany, 2010.

33. Kiperberg, M.; Leon, R.; Resh, A.; Algawi, A.; Zaidenberg, N. Hypervisor-assisted atomic memory acquisition in modern systems.
In Proceedings of the International Conference on Information Systems Security and Privacy, Prague, Czech Republic, 23–25
February 2019; SCITEPRESS Science And Technology Publications: Setúbal, Portugal, 2019.

34. Li, W.; Wu, D.; Liu, P. iCruiser: Protecting Kernel Link-Based Data Structures with Secure Canary. In Proceedings of the 2016 IEEE
International Conference on Software Quality, Reliability and Security Companion (QRS-C), Vienna, Austria, 1–3 August 2016.

35. Srivastava, A.; Erete, I.; Giffin, J. Kernel Data Integrity Protection via Memory Access Control; Georgia Institute of Technology: Atlanta,
GA, USA, 2009.

36. Graziano, M.; Flore, L.; Lanzi, A.; Balzarotti, D. Subverting operating system properties through evolutionary DKOM attacks. In
Proceedings of the International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment, Sebastián,
Spain, 7–8 July 2016; Springer: Cham, Switzerland, 2016.

37. Xiong, X.; Tian, D.; Liu, P. Practical Protection of Kernel Integrity for Commodity OS from Untrusted Extensions; In Proceedings of the
NDSS San Diego, CA, USA, 6–9 February 2011.

https://github.com/oct0xor/presentations/blob/master/2019-02-Overview%20of%20the%20latest%20Windows%20OS%20kernel%20exploits%20found%20in%20the%20wild.pdf
https://github.com/oct0xor/presentations/blob/master/2019-02-Overview%20of%20the%20latest%20Windows%20OS%20kernel%20exploits%20found%20in%20the%20wild.pdf
http://dx.doi.org/10.1016/j.jisa.2021.102871
http://dx.doi.org/10.1016/j.cose.2008.06.003
http://https://www.virtualbox.org/
https://www.vmware.com/products/workstation-pro.html
http://dx.doi.org/10.1145/1165389.945462
http://dx.doi.org/10.1109/MSEC.2019.2910218
http://dx.doi.org/10.1109/ACCESS.2018.2866498
http://dx.doi.org/10.1109/TCC.2016.2535295

	Introduction
	Background
	Virtualization
	Execution Prevention
	Kernel Data Structures

	System Design
	Information Collection
	First-Phase Initialization
	Second-Phase Initialization
	Functional Interpretation
	SLAT Switching
	Module Loading
	Berkeley Packet Filter

	Kernel Objects Protection
	Results
	Effectiveness
	Code Integrity Component Performance
	DKOM Component Performance

	Related Work
	Conclusions
	References

