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STABILITY OF SOLUTION FOR RAO-NAKRA
SANDWICH BEAM MODEL WITH
KELVIN-VOIGT DAMPING AND TIME DELAY

Victor R. Cabanillas, Carlos Alberto Raposo, and
Leyter Potenciano-Machado

ABsTrRACT. This paper deals with stability of solution for a one-dimensional
model of Rao-Nakra sandwich beam with Kelvin—Voigt damping and time
delay given by
prhiugt — Erhiugy — k(—u+v + Qws) — Uzt — pugzt(-,t —7) =0,
p3havit — Esh3vze + k(—u 4+ v + awyz) — bugat = 0,
phwit + Elwggas — ka(—u + v + awg )z — cWeet = 0.
A sandwich beam is an engineering model that consists of three layers: two
stiff outer layers, bottom and top faces, and a more compliant inner layer
called “core layer”. Rao—Nakra system consists of three layers and the as-
sumption is that there is no slip at the interface between contacts. The top
and bottom layers are wave equations for the longitudinal displacements un-
der Euler—Bernoulli beam assumptions. The core layer is one equation that
describes the transverse displacement under Timoshenko beam assumptions.
By using the semigroup theory, the well-posedness is given by applying the
Lumer—Phillips Theorem. Exponential stability is proved by employing the
Gearhart-Huang-Priiss’” Theorem.

1. Introduction

Physical phenomena are usually modeled by equations involving differential op-
erators of evolution type. A unique equation is not enough to describe, for instance,
thermoelastic and viscoelastic processes of a given material, where the longitudi-
nal and transverse displacement are the unknown parameters. These parameters
follow different behavior depending on the material composition, and hence dif-
ferent differential equations govern them. In real life, transmission of the internal
energy inherent to the system requires (needs) a short time to circulate from one
place to another. In general, and for the sake of simplicity, time delays are usu-
ally neglected by the model. However, some experiments have shown that time
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delay could change the behavior of the original structure of physical phenomena.
It could destabilize the system, and therefore some dissipative mechanism has to
be introduced to thwart this effect.

In this manuscript, we deal with a Rao—Nakra system with viscoelastic damping
and a time delay term in the first entry. More precisely, for (z,¢) € (0,L) x RT,
L > 0, we consider the system
(L.1) prhiug — Erhiug, — k(—u+ v 4+ qwy) — Qe — pgg (-t —7) =0,
(1.2) pshsvy — Eshsvg, + k(—u+ v+ aw,) — buge =0,

(1.3) phwit + ETWggpr — ka(—u+ 0 + awy )y — CWazt = 0,
subject to the Dirichlet-Neumann boundary conditions

ru(0,t) = u(L,t) = v(0,t) = v(L,t) =0, in RT,
w(0,t) = w,(0,t) = w(L,t) = w,(L,t) =0, in RT
and with corresponding initial data

r(u(z,0),v(z,0),w(z,0)) = (uo(z),vo(x), wo(x)), in (0,L),
(ut(xaO))”t(x70)7wt(x70)) = (ul(x)vvl(x)awl(x))a in (OvL)

Small vibrations of a beam are given by

(16) 01Ut — k(ux + w)x, = 07
(1.7) 021t — buy + k(ug + 1) = 0.
This famous model has been introduced by S. P. Timoshenko [1] in 1921, where
u(x,t), ¥(z,t) model the transverse displacement of the beam and the angular
direction of the filament of the beam, respectively, and g1, 02, k, b are positive real
numbers. Since then, (1.6)—(1.7) have been widely studied by several authors in
different contexts.

The Mead—-Markus sandwich beam [2], of length L > 0 was introduced in 1969.

The equations of motion based on the formulation given by Fabiano and Hansen [3]
become

(1.4)

(1.5)

B? B

. mugs + + Ugrze — ~Szxxx — AUtgy = m ’ X , Q)
1.8 A C c 0 i 0,L 0

1 B
1.9 B8t +98 — =Spe + =Ugee =0 in (0,L) x (0, 00).

C C

For (1.8)—(1.9), w(x,t) denotes the transverse displacement of the beam, s(z,t) is
proportional to the shear of the middle layer, u(z,t) represents moment control, m
is the mass of the beam, A, B and C' are material constants, v and 3 are the elastic
and damping coefficients of the middle layer, respectively.

The following model for two-layer laminated beam was proposed by Hansen
and Spies [4] in 1997 based on Timoshenko’s theory

(1.10) owss + G —wy), =0, in (0,L) x RT,
(111) Ig(38tt —’l/Jtt) —D(SSM —wxz) —G(’IZ)—UI) :0, in (O,L) X R+7
(1.12) 31,811 — 3Dsys + 3G(Y) — wy) + dpus +48s, =0, in  (0,L) x RT,
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where o,G, 1,, D, and ¢ are positive constants and represent density, shear stiff-
ness, mass moment of inertia, flexural rigidity, adhesive stiffness, and adhesive
damping parameter, respectively. The function w(z,t) denotes the transversal dis-
placement, 1(z, t) represents the rotational displacement, and s(z, t) is proportional
to the amount of slip along with the interface at time ¢ and longitudinal spatial
variable z. This model has received a lot of attention from several authors over the
past several years. Please refer to [5] where the authors considered the dynamics
of laminated Timoshenko beams.

The general three-layer laminated beam model was developed in 1999 by Liu-
Trogdon—Yong (6]

(1.13) othiugy — E1hitg, — 7 =10,

(1.14) 03h3vy — Eshgvg, +7 =0,

(115) Qhwtt + EIwmwzz - Glhl (wz + (bl)x - G3h3(wm + ¢3)a: - h27—z = 07
(1.16)

h
011101, — E111 o1 40 — r 4 G (wy + ¢1) =0,

1.16
2
h
(1.17) 031303 11 — E3l3¢3 40 — ?37' + Gahg(w, + ¢3) = 0.

The physical parameters h;, p;, E;, G;, I; > 0 are the thickness, density, Young’s
modulus, shear modulus, and moments of inertia of the i-th layer for i = 1,2, 3,
from the bottom to the top, respectively. In addition, ph = ¢1h1 + 02hs + 03h3 and
EI = E1 LT + E3ls.

The Rao—Nakra system

o1hiuy — Erhqug, — k(—u+v+yw,) =0, in (0,L) x RT,
(1.18)  o3hzvy — Eshave, + k(—u+v+~w,) =0, in (0,L) x R,
ohwit + ElWgzee — ak(—u+v+yw,), =0, in (0,L) x RT,

is obtained from (1.13)—(1.17) when the core material is considered to be linearly
elastic i.e., 7 = 2Go¢ with the shear strain

= (—u+v+ws) and 7= hy+ = (h +hs),
2hs 2

where k := %, the shear modulus Gy =

ratio.

When the extensional motion of the bottom and top layers is neglected, we
obtain the two-layer laminated beam model proposed by Hansen—Spies. When
s(z,t) = 0, system (1.10)—(1.12) reduces to the Timoshenko system. For more
sandwich beam models found in the literature see for instance [7, 8| with refer-
ences therein.

Systems with delay in time have been studied, among others, in several branches
of Mathematics and Physics. Indeed, the control of Partial Differential Equations
with delay has become an attractive area of research because time delays so often
arise in many physical, chemical, biological, and economic phenomena, see [9] and
the references therein. Whenever the energy is physically transmitted from one

sitsys and —1 < v < § is the Poisson
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place to another, there is a delay associated with the transmission, see [10]. The
central question is that the delays source can destabilize a system that is asymp-
totically stable in the absence of delays, see for instance [11-14] and the references
therein.

Our motivation is the following Rao—Nakra model with internal damping and
Kelvin-Voigt damping, considered in [15]

(1.19) prhiug — Erhiug, — k(—u+v 4 qwy) — a1Ugg + aguy = 0,
(1.20) p3hsvy — Eshgvg, + k(—u+ v 4+ qwy) — bitgys + boug = 0,
(1.21) phwy + Elwgper — ak(—u + v + Qwy ) — C1Wegrat + cour = 0,

where a;,b;,¢; > 0, i = 1,2. The authors in [15] showed that (1.19)—(1.21) is
unstable if only one damping is imposed on the beam equation; beyond this, the
exponential stability holds when all three displacements are damped while poly-
nomial stability holds when just two of the three equations are damped. For the
case ag = by = cg = 0 we recover the system (1.1)-(1.3) without time delay and
Kelvin—Voigt damping in the bottom layer. For a1 = b; = ¢; = 0 in [16], the poly-
nomial stability was proved when damping is just on one of the three wave equations
and exponential stability was obtained by Ozkan Ozer-Hansen [17] when standard
boundary damping is imposed on one end of the beam for all three displacements.

In the literature, we find several studies on the effects of delay on beam systems.
We will provide several examples to emphasize the importance of systems involving
delays. For instance, Said-Houari and Larski [18] studied the following Timoshenko
system with delay

p1ost — K(pp + ). =0,
p2tbie — bye + K (pz + ) + pithy + pop(t — 1) = 0,

and they proved that the associated energy decays exponentially, whenever po < pu7.
Raposo et al. [19] demonstrated the exponential stability of a thermoviscoelastic
Timoshenko system with heat conduction modeled by the Cattaneo law. Nicaise
and Pignotti [20] studied the abstract evolution delay model

U(t)=AU@)+ F(U®) + kBU({t —7), U(0)=0, BU@t-—71)=f(t).

Under smallness assumption on the time delay feedback, and assuming that B is
a bounded operator on adequate spaces, they showed that the system is exponen-
tially stable.

The main purpose of this paper is to study the asymptotic behavior of the
solution associated with (1.1)—(1.5) by showing that the system is exponentially
stable, see Theorem 4.2. The paper is structured as follows. In Section 2, we
introduce the new variable as in [21] to deal with the delay parameter and we
obtain an equivalent system to (1.1)—(1.5). Then, we prove that the full energy
of the equivalent system is not increasing. In Section 3, the well-posedness of the
problem (1.1)—(1.5) is presented by using a semigroup approach. Finally, in Section
4 the exponential stability of the Cp-semigroup of contractions on an appropriated
Hilbert space is proved by employing the Gearhart—Huang—Priiss’ theorem [22-24].
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2. Statement of the problem

To deal with the delay term, as in [21], we introduce an auxiliary function 7
defined by
(21) n(xvyat) :ut(xvt_Ty)v (SL’,y,t) € (O,L) X (071) XRJr'

An immediate application of the chain rule yields
T77t($7yat) + ny<x7y’t) = 07 ($, yat) E (O7L) X (O’ 1) X R+'

Hereafter, we will use the notation n(y) to refer to n(z,y, t) and only when necessary,
we will use 7(y,t), for example in case when dealing with the delay term. Hence,
the system (1.1)—(1.3) becomes

prhiug — Erhitug, — k(—u + v + aw,)

(22) — Qg — p1ge (1) = 0 in (0, L) x RT,

(2.3) p3h3v — E3h3vgs + k(—u 4+ v + awg) — buges = 0in (0, L) x R,
(2.4) phwiy + ETwgpps — ka(—u 4+ v + wy )z — CWyee = 0 in (0, L) x R,
(2.5) 0e(y) +ny(y) = 0in (0,L) x (0,1) x R™.

In addition to the boundary and initial conditions (1.4)—(1.5), we add the following
condition about 7:
(2.6) n(,y,0) = fo(z, —my) =€ (0,L), y€(0,1),

where fj is a function defined in a suitable Sobolev space, see Section 3 for more
details. By the very definition of 7, we also have

2.7 n(z,0,t) = u(z,t), n(z,1,t) =ws(z,t—7) z € (0,L), T €(0,¢).

Henceforth (-,-) and || - || will denote the usual inner product and norm in
L?(0, L), that is

L L
(,0) = / w(@yo(@)de, [ull? = / () P

In order to find the energy associated with the system (2.2)—(2.5), proceeding
formally, we respectively multiply (2.2), (2.3) and (2.4) by uy, v; and w; in L2(0, L)
and (2.5) by 21, in L*(0,1;L2(0,L)). Thus, adding the resulting identities, by
previously using integration by parts, we obtain after taking the real part that

1d
37 {mhl luell® + p3hs|lvel|? + phllwel|* + Evha |fug||* + Eshs]lv,|®

) 1
+ Bl P4l = w0+ awl? 4 5 [ I )lPa]
0
+ afluat|® + Bllval|” + ellwael|* + p(n2(1),72(0))

g 2 g 2 _
+ ol (I = = IO =0,

with ¢ being a constant whose value will be fixed later, see (2.9).
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The previous identity motivates us to define the energy associated with the
system (2.2)—(2.5) as

1
(2.8) B(t) = 5 |prhuluel + pshsllonl® + phljwdl® + Buh g |2 + Byho o |

1
4 Bl ) =t v a4 ||nx<y>2dy]
0

and hence we obtain
d

aE@%:*MWmW*meW*dWmW

a1 1200)) (DI + o 12 0]

Note that 7,(0) = n.(2,0,t) = ug(x,t). Thus, applying Young’s inequality,
obtain

d I wl | 0
L B(t) < —bllva|? — cljwae? C———J (1) (— Ll ‘ﬂ L (0)]12.
SE(t) < —blvadl® — clhwsel*+ (5] = ) mDIP+ (—a+ B+ ) e (0)]
Then, imposing the following condition on the constants a, § and p
0
(2.9) a>— > |ul

we deduce that %E(t) < 0. Hence, the energy of the system (2.2)—(2.5) is not
increasing. The previous computations are only formal. The next step will make
sense of those by defining the appropriate phase space and domain through a semi-
group approach.

3. Well-posedness

We start this section by presenting the well-known Lumer—Phillips Theorem in
its version for Hilbert spaces.

THEOREM 3.1 (Lumer—Phillips, [25]). Let A be a linear operator with dense
domain D(A) in a Hilbert space X. If A is dissipative and there is a A\g > 0
such that the range R(A\oI — A) = X, then A is the infinitesimal generator of a
Co-semigroup of contractions on X.

For existence of solution, we use the following corollary of the Lumer—Phillips
Theorem, see [26, Theorem 1.2.4].

COROLLARY 3.1. Let A be a linear operator with dense domain D(A) in a
Hilbert space X . If A is dissipative and 0 € p(A), the resolvent set of A, then A is
A is the infinitesimal generator of a Cy-semigroup of contractions on X.

Now, by introducing the vector function U = (u, ¢, v, &, w, z,n)T, the system
(2.2)—(2.5) can be rewritten as

{ﬁU@)AU@L t>0,

U(O) = UO = (U07U1,U0,U1,w0,wl,f0)T,
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where the operator A: D(A) C X — X is defined for U = (u, p, v, &, w, z,n)T by

2
%Umz + TIZI(_U + v+ Oﬂgx) + plaTlQOww + mthnwm(l)
(3.1) AU = By — A (—ut v+ aw,) + b=, :
z
,%wmm + ';—;L*(—u +u+awy), + p%Zm
—Lny(y)

and the phase space is
X =H} x L* x H} x L[> x H* N H} x L? x L*(0,1; HY)
which is a Hilbert space with respect to the inner product
(32) (U, U)x = prha(p, @) + Erh(ug, iia) + p3hs(§, €)
+ E3hs(va, Uz) + ph(z, 2) + EI(Weq, Wax)

1
+H<—u+v+aww,—ﬂ+5+a1ﬂw>+5/ (N2 (y), 12 (y))dy
0

and norm
1UI1% = prhallel® + Erhalluz||® + pshsl|€l|* + Eshs|lv.]|? + phl 2?

1
4 BT+ ] = vt aw P45 [ (w)]Pdy,
0

where U = (u,p,v,&w, 2,17, U = (a, 3,0,&, 0, z,mT € X. Recall that the
domain of A consist of all U € X so that AU € X. Consequently, a straightforward
computation shows that the domain of operator A can be defined by

(3.3) D(A) = (H*n H)* x (H* N HZ) x (H* N HY) x L*(0,1; H*> N HY).
In order to apply an efficient semigroup method, one needs to show the associ-

ated operator’s dissipative property to the system. The following result shows that
our operator A enjoys such a property.

PROPOSITION 3.1. The operator A defined by (3.1) and (3.3) is dissipative and
satisfies

(3.4) Re(AU,U)x < —allwz | = bli&:|1* = ellz 1> = Blln(1)]”

for all U = (u,¢,v,&,w,2,m)7T € D(A). Here a := a — % - % >0 and B :=
L -l

2r 2 :

PROOF. Let U = (u,p,v,&,w,2,m)T € D(A). According to the definition of
the inner product in X given in (3.2), and applying several times integration by
parts formula combined with Fundamental Theorem of Calculus, one deduces

Re(AU,U)x = — allgz|* = bll&|* — ¢l 2

— pRe{1a (1), 12(0)) — (DI + o 12(0)12
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Taking into account that 7,,(0) = n,(z,0,t) = p.(z,t), Young’s inequality yields

w0 5 |pl
Re(AU, U)x < —(a =50 = 2 ) lal® = bll&all® = ellzel® = (5= = 5 ) lna (V)%
2 2T 2T 2
From condition (2.9) imposed on a, § and p, it follows directly that A is dissipative
and the estimate (3.4) is then satisfied. O

PROPOSITION 3.2. Let p(.A) be the resolvent of the operator A. Then 0 € p(A).

PROOF. By reductio ad absurdum, we assume that 0 € o(.A), the spectrum of
the operator A. This implies that there exists a sequence

U, = (un>¥7n7vna§n7wn72n7nn)T € D(A>7

indexed by n € N, with ||U,||x = 1 such that AU, = o(1), that is, AU, — 0in X.
Then by (3.4), one has

(3.5) lenells Enalls 2nall, 1me(W)] < [|AURx = o(1).
The definition (2.1) and Poincaré inequality leads to
(3.6) lenlls 1€nlls Nznll; [1mmllL20,1522(0,0)) = o(1).-
Let V,, = (0, —up, 0, —v,,0, —w,,0). Since (V,,) is bounded in X, we have that
(AU,,V,) = o(1). Then
(3.7) E1h1||un,x||2 + E3h3||vn,r||2 + EIHwnrm||2 + K[| — up + vy + awn,rnz
+ a{Pn,zs Unz) + 0{n,z, Vne) + (Znz, Wn o) + 1N,z (1), un ) = o(1).

The estimates obtained in (3.5) and the boundedness of the sequences (tn ), (Vn,z)
and (wy, ;) in L? lead us to

(3.8) Hun,va ||Un,IH7 Hwn,ww”v | = un +vn + awnﬂﬁ” = o(1).

From (3.6) and (3.8), we deduce that ||U,||x = o(1), which contradicts our assump-
tion. Hence, 0 € p(A), and the proof is now completed. O

THEOREM 3.2. The operator A defined above is the infinitesimal generator of
a Co—semigroup e"* of contractions in the Hilbert space X .

PROOF. It is obvious that D(A) is dense in X. By the previous proposi-
tions, the operator A is dissipative and 0 € p(A). Then, by Corollary 3.1, A is
the infinitesimal generator of a Cy—semigroup e*A of contractions in the Hilbert
space X. 0

The well-posedeness is given by the following result.

THEOREM 3.3. Let Uy € X, then there exists a unique weak solution U of
problem (1.1)—(1.5) satisfying

(3.9) U € ([0, +00); X).
Moreover, if Uy € D(A), then
(3.10) U € C([0,+00); D(A)) N C*([0, +00); X).
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PROOF. From semigroup theory, see e.g. [25], since A is the infinitesimal gen-
erator of a Cy—semigroup e of contractions in the Hilbert space X, we deduce
that U(t) = €U is the unique solution of problem (1.1)-(1.5) satisfying (3.9)
and (3.10). O

4. Exponential stability

In this section we will prove that the Cy—semigroup e*! of contractions is

exponentially stable. For this purpose, we will use the following theorem that gives
necessary and sufficient conditions for the exponential stability of a Cy—semigroup
of contractions. This result was independently obtained by Gearhart [22] and
Huang [23], and more recently by Pruss [24].

THEOREM 4.1. Let p(A) be the resolvent set of the operator A and S(t) = et4
be the Cy-semigroup of contractions generated by A. Then S(t) is exponentially
stable if and only if

(4.1) iR Cp(A)

and

(4.2) limsup || (iA — A) 7Y < oc.
[A] =00

In order to establish our main result we will prove that the operator A satisfies
(4.1) and (4.2). Let’s start with the first condition.

PROPOSITION 4.1. Let p(A) be the resolvent of the operator A. Then
iR C p(A).

PrOOF. We prove the inclusion by using a contradiction argument. If the
inclusion does not hold, then there exist w € R, w # 0 with |47} < |w| < oo, and
a couple of sequences (\,) C R, (U,) C D(A) with

Al < |w]y,  An — w, as m— 00
and
(4.3) Up := (Uns Py Uns &y Wy 2y M) s |[Unllx =1, [[(iA] — AUy x — 0.
Setting
(iMl — AU, =F,, Fo=(fr, fo,.. [0, D"
and by previous convergence in X, we have
w fn =0 in Hg(0,L)
2 A8 50 in L*0,L), as n— oo,
f2—0 in H*0,L)NH;(0,L), as n — oo,
fr—0 in L*(0,1;H}(0,L)), as n — oc.

To take advantage of the dissipative property of A, we take the inner product in X
of (i, I — A)U, against U, and after taking the real part of the resulting identity,
we immediately deduce from Proposition 3.1 that

0,L), as n — oo,
0,

(4.4)

Pn,xs fn,x; Zn,xy nn,w(l) — 0 in L2(07L) as n — o0.
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Moreover, thanks to Poincaré inequality, we also have the convergences
(4.5) Ons Eny 2Zny Mu(1) = 0 in L*(0,L) as n — oo.

The next step consists in proving that the sequence (U,,) converges to zero in X,
which would be a contradiction with the unitary property of U, see (4.3), and the
proof shall be completed. To do so, the identity (iA,I —.A)U,, = F,, reads as follows

(4.6) iAtn — on = fL, in H,
. FEq K
7f)\'n(;on - 7“71,9:9: - 7(_“% + Un + awn,a:)
(4.7) P1 p1ha
e — e thnee(1) = f2, i L2
p1h1 n,rx ,01h1 n,rx n’ )
(4.8) iMUn —En = f3, in Hg,
) E K b .
(4.9) iN&n — —3%7;“c + ——(—up +vn Wy g) — —&n s = é, in L2,
p3 p3hs p3hs
(4.10) iAWy — 2 = f5, in H?*NHy,
EI
(4.11) Az, + — 5 Wnaare — %(—un + U + QW g )0 — ihznw =f% in L?
p p p
) 1 .
(4.12) At (Y) + —1ny (y) = fu(y), in L(0,1; Hy).

Combining (4.4)—(4.5) with (4.6), (4.8) and (4.10), we easily get the conver-
gences

Uy, Up, Wy, — 0 in H&(O,L), —Up, + Uy, + QWp ;, — 0 in LQ(O,L), as n — oo.

It remains to prove that wy, ., — 0 in L? and 7, — 0 in L?(0,1; H}). Taking
the inner product of (4.11) with by phw, in L?(0, L), and integrating by parts, we
obtain
EImewwHQ = — Ka(—Up + v, + QWn, s wn,a:>
- C<Zn,m, W i) — i I (20, wn) + ph( Sv Wp).
By previous convergences, one can easily check that each term on the right-hand
side goes to zero in C when n — oco. Hence w;, z — 0 in L? when n — oo as

desired. On the other hand, equation 4.12 can be explicitly solved. Indeed, using
that 0, (z,0) = ¢, combined with a variation of parameters method, we easily get

. y .
N (2, y) = e TV, + T/ A=Y 1T (4 s)ds, a.e. (x,y) € (0,L) x (0,1).
0

Since || = 1 for all w € R and the norm in the space L?(0,1; H}) only involves
derivatives with respect to the spatial variable x, it follows that

||77n||L2(0,1;H3) < O(llonzll + HfZHL?(o,an)) —0 as n— o0

for some constant C' > 0. This completes the proof. (]

We now move to verify the second condition.
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PROPOSITION 4.2. The operator A satisfies the following resolvent estimate

limsup || (iA] — A) Y| < +oo0.
[A| =00

PRrROOF. We again use a contradiction argument. If the above condition does
not hold, then there exist a couple of sequences (\,,) C R, (U,) C D(A) with

Ap =00, as n— oo
and
(4.13) Up = (tns @15 Vs s s 2y 1) s Unllx =1, [[((Ad = A)Unlx — 0.
Let us set
(4.14) (iMI — AU, =F,, Fo=(fr, f2,..., 5, O

By previous convergence in X, we deduce the same convergences as in (4.4). Taking
the inner product of (4.14) with U, in X, considering the real part and using again
the dissipativity property of A given in Proposition 3.1, we obtain

(4.15) Onos Eny Znas Mna(1) =0 in L*(0,L) as n — oo,
and by Poincaré inequality, we also have
(4.16) Ons Eny Zny (1) = 0 in L*(0,L) as n — oco.

The idea of the proof is, as in Proposition 4.1, to prove that the sequence (U,)
goes to zero in X. However, the analysis of the convergences is more delicate
because of in this case the sequence of real numbers (\,) goes to infinity. As
F, = (ff, ..., f8 1), we can rewrite the spectral equation (4.13) in terms of its
components, and we will get the system (4.6)—(4.12) again. From (4.6), (4.8) and
(4.10), we easily get
b 1 __ 3 __ 5

By (4.4), (4.15) and (4.16), all the sequences on the right-hand side are bounded
in H}(0, L), and since \,, — 0o, we deduce

Up =

Up, Vpy Wy — 0 in HF(0,L) as n— oo
and therefore
(4.17) —Up + Uy +Qwy — 0 in L*(0,L), as n— .

Taking the inner product of (4.11) with phw,, in L?(0, L), and integrating by parts,
we get

E'I||11),wm||2 = — Ka(—Up + Up + QWy 5, W o)
- C<Zn,a:a wn,w> - 'L>\nph<2n; wn> + ph( Sa wn>

By previous convergences, namely (4.4) and (4.15)—(4.17), one can easily check that
the first three terms on the right-hand side go to zero in C when n — oco. The last
term can be written as



12 CABANILLAS, RAPOSO, AND POTENCIANO-MACHADO

Then, the convergences (4.4) and (4.16) imply that i\, ph(z,, w,) — 0. Hence
Wy gz — 0 in L? when n — oo as desired. On the other hand, once more as in
the Proposition 4.1, by recalling that n,(z,0) = ¢,, the variation of parameters
method allows us to obtain the explicit solution of (4.12)

. Yy
M(2,y) =e Vo, + 7 / e [T (2 8)ds, ae. (x,y) € (0,L) x (0,1).
0

Note that the norm in the space L%(0,1; H}) only involves derivatives with respect
to the spatial variable x, thus it follows that

HUnHL?(O,LHg) < C(llen,all + ||fZ||L2(0,1;H3))7

where the constant C' > 0 is independent of ), thanks to the fact [e’| = 1 for all
w € R. Hence |7l z2(0,1;13) — 0 as n — oo. This completes the proof. O

Finally, we establish our main result.

THEOREM 4.2. The semigroup S(t) = e** generated by A is exponentially
stable.

PROOF. From Proposition 4.1 and Proposition 4.2, it follows that the condi-
tions of Theorem 4.1 are satisfied and then our semigroup S(t) = e generated by
A is exponentially stable. O
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CTABUJIHOCT PEIITEEBA PAO-HAKPA MO/IEJIA
CEH/IBUY I'PEJE CA KEJIBUH-BOUT'TOBNUM
IMPUTVYIIEIHLEM 1 BPEMEHCKUUM KAINIBEBLEM

PE3uUME. OsBaj pajg ce 6aBu crabuiiHomihy pemiema jeIHOAMMEH3NOHAJIHOT Pao-
Hakpa mozena suinecsojue (cengpud) rpege ca Kensun-Bourtosum npuryriemem
U BPEMEHCKUM KAIIFhEHheM JATUM Ca,

prhiuy — E1hitg, — K(—u + v 4+ awy) — Gger — gt (-t —T) =0,
pshsvy — E3hgve, + k(—u+ v+ aw,) — buge = 0,
phwy + Elwgger — ka(—u 4+ v+ awy )y — CWage = 0.

CeHBUY Tpejia je MHKEHEPCKH MOJEJ KOJU Ce CACTOJU OJf TPH CJIoja: JBa TBP-
J1a CIIOJbHA CJI0ja, JIOIbe W TOPIbe CTPAaHe, U BUIIle YCKIal)eHOr yHyTpaIImher cIoja —
jearpa. Pao-Hakpa cucrem ce cacToju o1 Tpu CJI0ja 1 MPETIIOCTABKA je 18 HeMa, KJTH-
3ama Ha uHTepdejcy n3mehy KouTtakara. [opmy 1 J0HHU CI0j Cy OMTUCAHN TAJTACHOM
jeIHAYMHOM 3a y3/yXKHa IoMepama lipeMa npermnocraBkama Qjiep-BepHoyiujese
rpese. Ciioj jesrpa je JaT jeTHOM jeJHAUMHOM KOja OIHMCYje IMOIPETHO ITOMEPAH-e
IpeMa MmpeTnocTaBkaMa 1 umMorinenkoBe rpefe. Jloopa mocTaB/beHOCT MOJIENa je To-
Ka3aHa IpuMeHoM Teopuje mosayrpyna u Jlymep-@uiuicose Teopeme. Excnonen-
nyjaJTHa CTabUIHOCT je JoKa3aHa KopuihemeM [eapxapt-Xyanur-IIpycose Teopeme.

Programa de Estudios Generales (Received 02.05.2021.)
Universidad de Lima (Revised 07.04.2022.)
Lima (Available online 11.05.2022.)
Peru

vcabanilQulima.edu.pe

Department of Mathematics
Federal University of Bahia
Salvador

Brazil
carlos.raposo@ufba.br

Department of Mathematics and Statistics
University of Jyvaskyla

Jyvaskyla

Finland

leyter.m.potenciano@gmail.com



	1. Introduction
	2. Statement of the problem
	3. Well-posedness
	4. Exponential stability
	References

