
Kai-Kristian Kemell

JYU DISSERTATIONS 514

Improving Software Development
in Early-Stage Startups

JYU DISSERTATIONS 514

Kai-Kristian Kemell

Improving Software Development
in Early-Stage Startups

Esitetään Jyväskylän yliopiston informaatioteknologian tiedekunnan suostumuksella
julkisesti tarkastettavaksi yliopiston Ylistönrinteen salissa YAA303

toukokuun 6. päivänä 2022 kello 14.

Academic dissertation to be publicly discussed, by permission of
the Faculty of Information Technology of the University of Jyväskylä,
in Ylistönrinne, auditorium YAA303, on May 6, 2022 at 14 o’clock.

JYVÄSKYLÄ 2022

Editors
Marja-Leena Rantalainen
Faculty of Information Technology, University of Jyväskylä
Ville Korkiakangas
Open Science Centre, University of Jyväskylä

Copyright © 2022, by University of Jyväskylä

ISBN 978-951-39-9133-3 (PDF)
URN:ISBN:978-951-39-9133-3
ISSN 2489-9003

Permanent link to this publication: http://urn.fi/URN:ISBN:978-951-39-9133-3

ABSTRACT

Kemell, Kai-Kristian
Improving Software Development in Early-Stage Startups
University of Jyväskylä, 2022, 106 p. + included articles
(JYU Dissertations
ISSN 2489-9003; 514)
ISBN 978-951-39-9133-3 (PDF)

Startup companies are important drivers of economic growth globally. Over the
last two decades, software startups have become a part of mainstream culture,
and have, in the process, become associated with innovativeness and various
success stories. Many of the current and up-and-coming tech giants, the so-called
unicorns with a valuation of over one billion USD, are examples of these startup
success stories, some more well-known than others. However, past this
illustrious image, the vast majority of startups fail, and in up to 98 % of new
business ideas in general fail.

Software startups operate in a unique context often characterized by
disadvantage that stems from various factors that vary by startup. This unique
nature of the software startup context presents issues when it comes to applying
existing knowledge of Software Engineering (SE) (or Information Systems
Development (ISD)) into the startup context. Various research findings, existing
SE/ISD methods, and lessons learned from practice come from more established
software organizations such as multinational corporations. For example, Agile
methods are more equipped to tell an organization ‘how’ to develop software in
a situation where the needs of the customer are well understood. On the other
hand, startups often operate in a situation where it is also unclear ‘what’ should
be developed and there is no clear customer in sight yet.

This dissertation focuses on better understanding the software startup
context in SE, with a focus on how software startups develop software. To this
end, the dissertation ultimately proposes a method for early-stage software
startups. The dissertation comprises five academic articles, out of which three are
conference publications and two are journal publications. The articles utilize
qualitative methods to approach the different issues in each article. The results
of the dissertation further our understanding of how software startups work, and
the method presented in the fifth and final article of the dissertation will ideally
help early-stage startups work more systematically.

Keywords: startup, software startup, software engineering, software
development method, software development practice, decision-making, the
essence theory of software engineering

TIIVISTELMÄ (ABSTRACT IN FINNISH)

Kemell, Kai-Kristian
Ohjelmistokehityksen parantaminen alkuvaiheen startup-yrityksissä
Jyväskylä: Jyväskylän Yliopisto, 2022, 106 p. + alkuperäiset artikkelit
(JYU Dissertations
ISSN 2489-9003; 514)
ISBN 978-951-39-9133-3 (PDF)

Startup-yritykset ovat maailmanlaajuisesti merkittäviä markkinavoimia. Etenkin
edeltävän kahdenkymmenen vuoden aikana ohjelmistoalan startup-yrityksistä
on tullut maailmanlaajuinen kulttuuri-ilmiö liiketoiminnan kontekstissa. Sa-
malla startup-yritykset on alettu yhdistää innovaatioihin ja niihin lukuisiin on-
nistumistarinoihin, joita teknologia-alalla on viime aikoina nähty. Käytännössä
kuitenkin valtaosa startupeista epäonnistuu ja uusista liiketoimintaideoista yli-
päänsä jopa 98 % epäonnistuu.

Ohjelmistostartupit toimivat ainutlaatuisessa kontekstissa, jonka määrit-
tävä tekijä ovat haasteet ja ongelmat. Startup-yritykset kohtaavat erilaisia haas-
teita ja ongelmia, kuten resurssien puute tai epävarmuus, jotka vaihtelevat start-
up-yritysten välillä. Tämän seurauksena startup-yritysten voi olla vaikea hyö-
dyntää olemassa olevaa tietoa ohjelmistokehityksestä omaan tilanteeseensa. Ole-
massa oleva tutkimustieto, käytännön kokemuksista saadut opit ja nykyiset oh-
jelmistonkehitysmenetelmät, jotka ovat syntyneet suurten ohjelmistoyritysten
kokemuksista ja vastaavat niiden ongelmiin, eivät välttämättä sovi startup-yri-
tysten kontekstiin. Esimerkiksi ketterät kehitysmenetelmät (Agile) keskittyvät
siihen, miten ohjelmistoja tulisi kehittää, kun asiakas on selvillä ja tiedetään jo
mitä halutaan kehittää. Startup-yrityksen tilanne taas on usein se, että selvää asia-
kasta ei ole vielä tiedossa, eikä siitäkään ole selvää käsitystä, että millainen kehi-
tettävän ohjelmiston tai palvelun pitäisi lopulta olla.

Tämä väitöskirja tutkii startup-yrityksiä ohjelmistokehityksen näkökul-
masta. Väitöskirja keskittyy tutkimaan sitä, miten ohjelmistoalan startup-yrityk-
set kehittävät ohjelmistoja. Tämä väitöskirja koostuu viidestä artikkelista, joista
kolme on julkaistu tieteellisissä konferensseissa ja kaksi tieteellisissä lehdissä.
Tutkimuksen tulokset auttavat meitä ymmärtämään paremmin, miten startup-
yritykset kehittävät ohjelmistoja. Lisäksi väitöskirjan viidennessä artikkelissa esi-
tellään menetelmä, jonka tarkoitus on auttaa aikaisessa vaiheessa olevia ohjel-
mistostartuppeja työskentelemään systemaattisemmin.

Avainsanat: startup, ohjelmisto-startup, ohjelmistotuotanto, ohjelmistokehitys-
käytänteet, päätöksenteko, ohjelmistotuotannon Essence-teoria, ohjelmistonke-
hitysmenetelmä

Author Kai-Kristian Kemell
Faculty of Information Technology
University of Jyväskylä
Finland
ORCID 0000-0002-0225-4560

Supervisors Pekka Abrahamsson
Faculty of Information Technology
University of Jyväskylä
Finland

Tuure Tuunanen
Faculty of Information Technology
University of Jyväskylä
Finland

Reviewers Kari Smolander
Department of Software Engineering
Lappeenranta-Lahti University of Technology
Finland

Jürgen Münch
Department of Business Informatics
Reutlingen University
Germany

Opponent Kieran Conboy
School of Business & Economics
National University of Ireland Galway
Ireland

ACKNOWLEDGEMENTS

To give these acknowledgments some further context, I want to note that I
originally came to Jyväskylä a long time ago to study history, all the way back in
2009 (and it is, or was, now 2022). At the time, I moved to the Kortepohja student
village for what I assumed would be 5 years, in order to get a master’s degree.
Now, almost 13 years later, I have finally managed to get out of Kortepohja, and
I am leaving Jyväskylä with two master’s degrees and a doctoral degree. It has
been a long journey, and I certainly stayed in Kortepohja far longer than I thought
I would. As such, these acknowledgments occasionally span further into the past
than just the most recent four years that I have been working on this dissertation,
as I am also saying goodbye to Jyväskylä in the process.

First and foremost, I want to extend the biggest thanks to main supervisor,
professor Pekka Abrahamsson. I have deeply enjoyed working with Pekka every
step of the way. Pekka has been a very supportive supervisor whose advice and
positive feedback have been integral during these past four years. Pekka’s style
of supervising with me was rather hands-on, and as a result, I never felt
particularly lost at any point. I always had some clear goals to work towards,
either short-term or long-term ones.

I would also like to thank my second supervisor, professor Tuure Tuunanen.
Tuure was the one who initially reached out to me while I was working as an
intern at the department during my preceding studies, and asked me what I had
planned on doing after graduation. Based on our conversation, Tuure introduced
me to Pekka, which ultimately was the starting point for what you are now
reading. Past this, Tuure helped me shape my argumentation, and helped me
stay on track when it came to my goals. While the road was not always the
straightest one, I like to think that I eventually reached the goal.

Further in relation to this dissertation process, I would like to thank both of
my preliminary examiners, professor Jürgen Münch and professor Kari
Smolander, for taking their time to review this dissertation and for their
suggestions on how to improve it. In this final version, I have tried my best to
address their comments in order to improve this dissertation.

Moving on to my colleagues, I must first thank Ville Vakkuri. We originally
ended up working together as a result of a strict deadline necessitating my help
on a paper. What was supposed to be just a little bit of help on one conference
paper eventually became a close, long-term collaboration on AI ethics research.
Over these past three or so years, I have very much enjoyed working with Ville.
Thank you for all those marathon-length paper writing sessions, and for the ones
to come.

I would also like to thank everyone at the JYU Startup Lab. I especially
thank the Old Guard: Joonas Himmanen, Juhani Risku, and Johannes Impiö. I
also thank the not-quite-but-almost Old Guard: Taija Kolehmainen and Joni
Kultanen. I also also thank all the newer team members, who I regrettably did
not get to know so well due to the COVID-19-induced work-from-home situation
that never quite seemed to end. The Startup Lab was a great community to be a

part of during the dissertation process, and I enjoyed my time at the office while
it lasted. In the end, I spent more than half of my doctoral studies working
remotely as a result of the early 2020 pandemic that is still on-going at the time
of writing.

As for (other) fellow researchers, I thank all of my co-authors who have
worked on papers with me so far, as well as the Software Startup Research
Network that many of you are a part of. In particular, I thank Anh Nguyen-Duc
for past, current, and future collaboration.

I also want to thank Tapio Tammi, the amanuensis of the (ex) department
of Information Systems at JYU. Tapio was my first boss, and I felt like my time as
an intern at the department was important to me in mentally graduating from
being a university student and getting my foot in the door for future endeavors.
In this vein, I would also like to thank Eetu Luoma, who regrettably is no longer
with us but who was my second boss at the time.

Outside all the hours spent at the office or at home working on various
papers and this dissertation, I thank my old friends from the history department.
Thank you Zachris Haaparinne, Janne Tuomenlehto, Tuomas Olkkola, and Nooa
Nykänen, for helping me keep my mind off my studies at times (and sometimes
on them) during these 12 years. Kortepohja signing off. Viimeinen sammutti
valot.

In this vein, I also thank my friends from further down south in Finland, or
“the boys”: Heikki Hellman, Mikko Paavola, Toni Turunen, Heikki Mäkinen, and
Tomi Lakianperä. I also extend this thanks to Eetu Pitkänen and Teemu
Heikinheimo and extend a special thanks to Nick Hägerström. There are also
many of you not mentioned by name, but all the same, thank you, too, for keeping
me company all this time.

Similarly, I thank my wife Isis Kemell for keeping me company during this
process. With the work-from-home situation dragging on for two years now, you
have seen most of this happen up close. There is not much to say in that light but
thank you for being there! I love you.

Finally, I thank my parents Sirpa Kemell and Ilpo Kemell for their support
during my studies, and the past 31 years in general. While you were quite
shocked about my initial decision to start studying history of all things at JYU
back then, I think things turned out alright in the end.

In the end, I am already working at another university as a researcher.
While I may, at last, be done with studying, I nonetheless seem to be staying in
the university for another few years at the very least, and as such this dissertation
is ultimately turning out to be just another step along the way. As it seems, I am
certainly not done with writing papers for now.

Jyväskylä 06.05.2022
Kai-Kristian Kemell

LIST OF INCLUDED ARTICLES

I Kemell, K.-K., Nguyen-Duc, A., Wang, X., Risku, J., & Abrahamsson, P.
(2018). The Essence theory of software engineering : large-scale classroom
experiences from 450+ software engineering BSc students. In PROFES
2018 : Product-Focused Software Process Improvement : 19th Interna-
tional Conference, Proceedings (pp. 123-138). Springer. Lecture Notes in
Computer Science, 11271.

II Kemell, K.-K., Ravaska, V., Nguyen-Duc, A., & Abrahamsson, P. (2020).
Software startup practices : software development in startups through the
lens of the Essence theory of software engineering. In PROFES 2020 : 21st
International Conference on Product-Focused Software Process
Improvement, Proceedings (pp. 402-418). Springer. Lecture Notes in
Computer Science, 12562.

III Vakkuri, V., Kemell, K. -K., & Abrahamsson, P. (2020). ECCOLA - a
method for implementing ethically aligned AI systems. In Proceedings of
the 2020 46th Euromicro Conference on Software Engineering and
Advanced Applications (SEAA), 2020, pp. 195-204.

IV Nguyen-Duc, A., Kemell, KK. & Abrahamsson, P. (2021). The
entrepreneurial logic of startup software development: a study of 40
software startups. Empirical Software Engineering, 26.

V Kemell, K.-K., Suoranta, M., Nguyen-Duc, A., & Abrahamsson, P. (2022).
A card-based method for early-stage software startups. Unpublished
manuscript, to be submitted to a journal.

The author is the lead author in three of the papers and the second author in two
of the papers. More specifically, in Article I, the author analyzed the data and
produced the research publication. In Article II, the author designed the research
and provided guidance in carrying out the data collection to the second author
and wrote the article publication included in this dissertation. In Article III, the
author jointly designed the research, collected the data, and wrote the publication
with the first author. In Article IV, the author analyzed the data together with the
first author and co-wrote the paper. In Article V, the author designed the research,
gathered and analyzed the data, and wrote the publication.

FIGURES

FIGURE 1. Startup life-cycle according to Salamzadeh et al. (2015) 24
FIGURE 2. Customer development process in software startups

(Blank, 2013) ... 24
FIGURE 3. Product development process in software startups

(Blank, 2013) ... 24
FIGURE 4. Startup learning process and product development process as

adapted by Wang et al. (2016) ... 25
FIGURE 5. The Greenfield Startup Model (Giardino et al., 2016) 28
FIGURE 6. Essence kernel alphas (Jacobson et al., 2012; Object

Management Group, 2018) .. 41
FIGURE 7. Card example from the method: startup card 2 67
FIGURE 8. Startup Cards 1 and 2 ... 98
FIGURE 9. Startup Cards 3 and 4 ... 99
FIGURE 10. Startup Card 5 and 6 ... 100
FIGURE 11. Startup Cards 7 and 8 ... 101
FIGURE 12. Startup Cards 9 and 10 ... 102
FIGURE 13. Startup Cards 11 and 12 ... 103
FIGURE 14. Startup Cards 13 and 14 ... 104
FIGURE 15. Startup Cards 15 and 16 ... 105
FIGURE 16. Startup Card 17 .. 106

TABLES

TABLE 1. Research approach overview of the included articles 45
TABLE 2. Overview of the startup cards ... 66
TABLE 3. Primary Empirical Contributions (PECs) of the dissertation 74

CONTENTS

ABSTRACT
TIIVISTELMÄ (ABSTRACT IN FINNISH)
ACKNOWLEDGEMENTS
LIST OF INCLUDED ARTICLES
FIGURES AND TABLES
CONTENTS

1 INTRODUCTION .. 13
1.1 Motivation .. 13
1.2 Research Goals .. 15
1.3 Structure of the Dissertation ... 17

2 THEORETICAL BACKGROUND ... 19
2.1 Key Concepts ... 20

2.1.1 Conceptualizing Software Startups .. 20
2.1.2 The Startup Life-Cycle .. 23
2.1.3 Practice, Technique, and Method as Concepts 26

2.2 Software Development in Startups .. 27
2.2.1 Characteristics of Software Development in Startups 27
2.2.2 Agile Development in Startups ... 29

2.3 Startup Practices and Methods ... 31
2.3.1 Lean Startup ... 31
2.3.2 High-Profile Startup Practices ... 32
2.3.3 Growth Hacking .. 33
2.3.4 Research-Based Methods, Practices, and Tools for Startups .. 35
2.3.5 Suitability and Relevance of Existing SE Practices 36

2.4 The Essence Theory of Software Engineering 37
2.4.1 The Essence Language .. 38
2.4.2 The Essence Kernel ... 40
2.4.3 Essence in Research .. 41

3 RESEARCH METHODOLOGY ... 43
3.1 Research Evolution ... 43
3.2 Research Approach ... 44
3.3 Case Study ... 46
3.4 Action Research... 47
3.5 Data Collection and Analysis Methods ... 48

3.5.1 Qualitative Interview .. 48
3.5.2 Thematic Analysis ... 50

4 OVERVIEW OF THE ARTICLES ... 53

4.1 Article I: The Essence Theory of Software Engineering – Large-
Scale Classroom Experiences from 450+ Software Engineering
BSc Students .. 53

4.2 Article II: Software Startup Practices – Software Development in
Startups Through the Lens of the Essence Theory of Software
Engineering .. 55

4.3 Article III: ECCOLA – A Method for Implementing Ethically
Aligned AI Systems. ... 56

4.4 Article IV: The Entrepreneurial Logic of Startup Software
Development – A Study of 40 Software Startups 58

4.5 Article V: Startup Cards – A Method for Early-Stage Software
Startups .. 59

5 RESULTS AND CONTRIBUTIONS .. 61
5.1 Results .. 61

5.1.1 The Essence Theory of Software Engineering in a Student
and Startup Context .. 61

5.1.2 Work Practices and Decision-Making in Software Startups ... 63
5.1.3 Method: Startup Cards for Early-Stage Startups 65

5.2 Validity Threats ... 68
5.2.1 Article I ... 68
5.2.2 Article II .. 69
5.2.3 Article III ... 70
5.2.4 Article IV .. 71
5.2.5 Article V .. 72

5.3 Contributions ... 73
5.3.1 Theoretical Contributions .. 74
5.3.2 Practical Contributions ... 78
5.3.3 Limitations ... 81
5.3.4 Future Research Suggestions ... 82

YHTEENVETO (SUMMARY IN FINNISH) .. 83

REFERENCES ... 86

APPENDIX: STARTUP CARDS FOR EARLY-STAGE STARTUPS 97

ORIGINAL PAPERS

13

This section outlines the key concepts of this dissertation and discusses the
primary motivation behind the research included in it (Sections 1.1 and 1.2),
which are then further elaborated on in the background section (Section 2).
Additionally, this section contains the content outline of the dissertation (Section
1.3).

1.1 Motivation

This dissertation is about software development in the specific context of
software startups. Startups, in the past decade especially, have become associated
with success stories (Giardino, Wang & Abrahamsson, 2014). like those of some
of the newer multinational technology corporations such as Spotify and
Facebook. Startups are often seen as disruptors that challenge existing market
leaders with novel ideas and explosive growth, overtaking the old and inflexible
companies operating in the area, or forcing them to innovate to fight back.

Startups are important drivers of economic growth globally. There are
currently more than 140000 startups in Europe, and roughly a third of these have
managed to acquire at least one round of funding (The State of European Tech
2020). In total, this adds up to some €43,3 billion invested in European tech
startups in 2019 (The State of European Tech 2020), with similar projected
numbers for 2020 despite the unforeseen effects of the pandemic year. US
startups, on the other hand, saw investment up to 140 billion $USD in 2019
(PitchBook, 2019).

Yet behind the success stories and the impressive numbers, the vast
majority of startups end in failure (Crowne, 2002; Blank, 2013; Giardino et al.,
2014c), much like how most new companies in general fail. In terms of new
product ideas in general, over 98% fail (Mullins & Komisar, 2009). Thus, much of
the invested capital is wasted. This has set the stage for academic research

1 INTRODUCTION

14

looking to better understand startups in order to, ideally, prevent at least some
of these failures.

Today, startups are studied across disciplines, including Software
Engineering (SE), and to some extent IS (Information Systems). The
construct ’startup’ has been defined differently across these various disciplines
statups are studied in (Sutton, 2000; Ries, 2011; Blank, 2013; Unterkalmsteiner et
al., 2016; Ghezzi, 2018; Steininger, 2019). For the purposes of this introduction
section, we can highlight the core aspect of startups: startups are temporary
organizations. A startup either eventually becomes a mature organization, or it
fails somewhere along the way, as most startups do. During this stage of their life
cycle, these companies differ from other types of software organizations. This
serves as the motivation for many startup-related studies. As Unterkalmsteiner
et al. (2016) remark: ”software startups are quite distinct from traditional mature
software companies, but also from micro-, small-, and medium-sized enterprises,
introducing new challenges relevant for software engineering research.”

Due to this unique context startups operate in, the key issue, from an
academic point of view, is the applicability of existing research findings. If
startups differ from other types of companies, to what extent can we apply the
findings of past studies focusing on these traditional companies into the software
startup context? While the exact nature of this uniqueness remains a topic of
discussion in startup research in SE, it has become a common motivation behind
startup research in the area. Moreover, highlighting the importance of SE factors
in software startups in particular, Klotins et al. (2019) point out that
“inadequacies in software engineering could be a significant contributing factor
to the high start-up failure rate and precede any marketing or business-related
challenges.”

In this regard, startups are known to seldom utilize existing SE methods.
Especially earlier on in their lifecycles, software startups largely develop
software using various singular Agile practices (Paternoster et al., 2014) as
opposed to using textbook methods. Consequently, popular research areas and
industry trends in SE may not always have much relevance to startups. One
cannot do Agile at scale when there is no scale, or DevOps when there is only one
small team to work with and no silos to break down. Yet startups, like any other
type of software organization, should concern themselves with structuring their
work processes (Ries, 2011).

This difference between startups and more mature software organization is
the second core motivation behind this thesis. Software startups operate in a
unique context characterized by its uncertainty and even chaotic nature (Ries
2011, Paternoster et al., 2014), facing challenges that can differ greatly from those
larger companies face (Giardino et al., 2015). Startups find it difficult to utilize
existing software engineering methods that have been devised with larger, more
mature organizations in mind (Paternoster 2014). As Bosch et al. (2013) aptly
remark ”[Agile methods] are mainly applied in situations where the problem is
fairly well understood but the solution is not. In a startup context, however,
neither the problem nor the solution is well understood.” Further studies that

15

help us understand these differences between software startups and mature
software organizations are needed, as are studies that look at methods from the
point of view of startups.

The primary motivation behind this dissertation is the high failure rate of
startups. Though software startups are often associated with success stories
(Giardino, Wang & Abrahamsson, 2014), the vast majority of software startups
ultimately end in failure (Crowne, 2002; Blank, 2013; Giardino et al., 2014).
Though most new companies in general fail, existing studies have argued that
startup failures commonly attributed to business model issues may in fact be
closely related to software development issues (Klotins et al., 2019). The
importance of product development issues in relation to startup failures is also
suggested by Crowne (2002) in an early startup research paper. In the paper,
Crowne (2002) discusses various potential product development issues across
startup stages, although with no supporting empirical studies. Unterkalmsteiner
et al. (2016) also remark that “inadequacies in applying engineering practices
could be a significant contributing factor to startup failure.” Working on the
wrong product and failing to sufficiently validate the idea is a common cause for
failure as well, where requirements engineering (or validation) can be seen as a
key failure cause related to SE (Bosch et al., 2013).

Existing research has emphasized the importance of better understanding
SE in software startups and providing better support for SE in startups
(Unterkalmsteiner et al., 2016; Pantiuchina et al., 2017; Bajwa et al., 2017). If
startups struggle to utilize the results of existing studies, and struggle to make
use of existing methods and practices aimed at larger, more established software
companies, studies looking at methods and practices specifically in the startup
context may alleviate some of the problems faced by startups.

1.2 Research Goals

The primary objective of this dissertation is to create a method to help startups
tackle their key challenges. These are highlighted in existing publications,
namely that of Wang et al. (2016), as well as in that of Klotins et al. (2019). In brief,
startups struggle primarily with: (1) building product, (2) customer acquisition,
(3) funding, (4) building the team, and (5) business model. Yet, while these may
intuitively seem more related to business than SE, business and SE are closely
intertwined in startups. Klotins et al. (2019) expand mainly on the first of these
three challenges, and, as Klotins et al. (2019) also argue, many seemingly
business-related issues can in fact stem from SE problems in software startups.

Because of its article-based format, this dissertation has multiple objectives
building up to the goal of creating this method for software startups. On a general
level, the aim of this dissertation has been to further our understanding of how
software startups work (Articles II and IV) as well. As a research question, this is
summarized as follows:

16

RQ How can we improve software development in startups?

In the process of answering this question, the articles included in this dissertation
tackle the following, more specific research objectives:

Objective 1. To evaluate the suitability of the Essence Theory of Software
Engineering for small and immature software organizations, such as
software startups (Article I).

Objective 2. To further our understanding of how software startups develop
software, with a focus on practices (Articles II and IV) and decision-making
(Article IV) in particular.

Objective 3. To develop a method for software startups, with a focus on tackling
key challenges and antipatterns in startups (Articles III and V).

Objective 4. To evaluate the kernel of the Essence Theory of Software
Engineering in the startup context (Article II).

Initially, when I first started working on this dissertation, the main objective was
to evaluate the suitability of the Essence Theory of Software Engineering for the
software startup context, and to then create a version of Essence better suited for
it, if needed. Articles I and II supported this goal. In addition to studying what
practices are common in software startups and devising a list of such practices,
Article II evaluated how these practices fit Essence, and whether additional
alphas (see Section 2.5 for further information on Essence) were required to
accommodate them.

However, as my research progressed, I began to think, based on the results
we were seeing, that Essence was not well-suited for software startups. It added
unnecessary complexity to method adoption. Essence itself was difficult to adopt,
and to use a method described with the Essence language, one had to learn to use
Essence first.

The initial problems surfaced in the study in Article I where a large number
of SE student teams utilized Essence for a practical course project. Though the
teams also had positive sentiments about Essence, overall, the teams considered
difficult to understand. At the time, we nonetheless kept pursuing this approach.
In Article III, we develop a method for AI Ethics. Originally, this method was to
be a card-based method described using the Essence language, much like the
software startup method in Article V. These method development endeavours of
Articles III and V contributed to each other through shared lessons learned due
to the similar approach. Both methods were developed iteratively, using an
Action Research (AR) approach, and were originally intended to be described
using the Essence language.

The development of the methods of Articles III and V proceeded in tandem
between 2018 and 2021. Early on, Essence already began to seem like an obstacle
to the adoption of the AI Ethics method in Article III. The key issue was that, to
utilize the method described using Essence, its users would first have to learn
Essence. In other words, in addition to adopting a new method, its users would
have to also learn Essence. Given that Essence was, based on Article I, also

17

considered difficult to learn on its own, we saw this as a problem. Failing to
understand Essence despite trying to do so made it difficult for the teams to
utilize the method correctly. These early versions of the AI Ethics method were
tested with student teams who had been tasked with studying Essence through
a course assignment and had nonetheless struggled to do so. These issues are also
discussed in more detail in Article III (and in its extended journal version,
Vakkuri, Kemell et al. (2021)).

Based on these lessons learned from the AR process of Article III and the
results of Article I, Essence was ultimately not used to describe the Startup Cards
in Article V. This has also resulted in the role of Essence, overall, being smaller
than originally intended past Article II. Despite this being the case, though, the
core philosophy behind Essence, i.e., essentializing SE practices to create method,
was still utilized to devise the method in both Articles III and V, as we discuss in
more depth in the papers themselves. The Startup Cards also utilize some
notational characteristics of the Essence language, but do not fully formally
utilize it anymore, so as to make the method easier to adopt for teams that are
unfamiliar with the language – which, given the lack of widespread practitioner
adoption of Esence (SEMAT, 2018), most teams arguably are, especially in
startups. The cards could still be formalized using the Essence language, and the
dissertation nonetheless presents different contributions related to Essence as
well.

In summary, Articles I-IV further our understanding of how software
startups develop software (Articles II & IV) or otherwise contributed to the
creation process of method presented in Article V (Articles I & III).

1.3 Structure of the Dissertation

This dissertation comprises five scientific publications: three conference articles
and two journal articles. Together, these articles contributed to the creation of the
fifth and final article, and with it the method proposed in it. Aside from the
creation of the method, the articles, as discussed in the preceding subsection,
contributed to our understanding of how software startups work.

The rest of this dissertation, leading up these articles, is structured as
follows. Section 2 presents the theoretical background of this dissertation. Section
3 discusses the research methodologies utilized in the articles included in it.
Section 4 presents more detailed paper summaries for each included article.
Section 5 summarizes the results, threats to validity, and contributions of this
dissertation. After this, the five articles included in this dissertation are presented
in order. These articles are summarized briefly below, and in more detail in
Section 4.

In Article I, we deploy the Essence Theory of Software Engineering, a tool
aimed at established software organizations, in a student project setting in a
practical course on Software Engineering. The study aims to understand whether
inexperienced developers with little working history (as a team) could adopt and

18

utilize the tool successfully. As the method in Article V was originally going to
be described using the Essence language, we first wanted to understand whether
Essence could also be suitable for early-stage startups and early stage startup-
like environments such as student project teams.

Article II is focused on the use of practices in software startups. The goal of
the study is to propose an extensive list of different practices utilized by software
startups. This is done by validating an existing list of practices with empirical
data while adding new practices to the list as they emerged from the data.
Additionally, the paper looks at these practices through the lens of the Essence
Theory of Software Engineering. In doing so, we wish to understand whether
startup practices also fit the framework of Essence, or whether some
modifications ot the framework would make it better suited for the software
startup context.

In Article III, we develop a card-based method for AI ethics, using an
iterative AR approach. The method, like the one in Article V, was originally
intended to be described using the Essence language. Given the similar research
approach and method design philosophy between the two articles and methods,
the lessons learned from the development of this method directly contributed to
Article V and its method – and vice versa. As these method development
endeavours ran in tandem between 2018 and 2021, the opposite is also true, with
the lessons learned from the method of Article V also affecting that of Article III.

Article IV studies decision-making in software startups. Using a theoretical
framework from business studies, we look into how software startups make
decisions. We characterize decision-making in software startups and propose a
typology of software startups based on their decision-making logics.

Article V presents the main contribution of this dissertation: the Startup
Cards. The Startup Cards consist of various key practices for software startups,
formulated based on existing literature. These practices are intended to act as a
remedy against the key challenges commonly faced by software startups and the
anti-patterns commonly seen in them.

19

This section presents the theoretical background of this dissertation. In Section
2.1, I discuss the key concepts of this dissertation in more detail. Section 2.1 pro-
vides an overview of software startups, as well as concepts related to methods
and practices. The concept of startup and the characteristics associated with
startups remain a topic of discussion in software startup research. As the driving
force behind startup research is that startups differ from other business organi-
zations (Unterkalmsteiner et al., 2016), understanding the nature of these differ-
ences, on a conceptual level, is relevant. The section also looks at various models
describing the life cycle of startups, which is relevant as this dissertation is about
early-stage software startups.

Section 2.2 then moves the focus from (software) startups in general to
software engineering in startups, which is the main research area of this
dissertation. Startups also differ traditional business organizations in terms of
how they develop software. Startups prefer different development practices and
seem to struggle to utilize existing software engineering methods due to their
unique context.

Some practices and methods designed for (or created in) this startup context
exist. These are discussed in Section 2.3. As these are not abundant, the section
also includes discussion on growth hacking, a digital marketing strategy favored
by startups that is often connected with software engineering activities. The
subsection also includes discussion on research-based initiatives relevant in this
regard.

Finally, Section 2.4 introduces the Essence Theory of Software Engineering.
Essence provides a way of modeling practices and methods in software
engineering. We originally planned on utilizing Essence to describe the method
presented in Article V, the creation of which was the main objective of the
dissertation. However, as is discussed in detail later in this dissertation, due to
our research findings and experiences with using Essence, the role of Essence
became smaller as work on this dissertation progressed. Nonetheless, Essence is
evaluated in Article I, acts as a framework and is further evaluated in Article II,
and was used in the process of developing the methods in Articles III and V. It

2 THEORETICAL BACKGROUND

20

therefore still retains a notable role in this dissertation, which is why it is
discussed here.

2.1 Key Concepts

This dissertation is focused on software development in startups. While speaking
of startups, I speak of a specific subset of startups: software startups. Both startup
and software startup as concepts are clarified in this section. As is soon highlighted,
startups are temporary organizations. No startup remains a startup indefinitely.
Ultimately, the startup either fails or becomes a mature company. As such, while
discussing startups, this section also looks at the startup life cycle. Finally, the
third subsection focuses on key concepts related to describing work in the context
of software engineering, including the concepts of method and practice.

2.1.1 Conceptualizing Software Startups

In terms of academic research, startups are studied across disciplines. Being
companies, they have been studied in economic disciplines and as part of
organizational research in various disciplines, including IT ones. The term
“startup” has been defined differently across various disciplines (Sutton, 2000;
Ries, 2011; Blank, 2013; Unterkalmsteiner et al., 2016; Ghezzi, 2018; Steininger,
2019). New Technology-Based Firm (NTBF) is a concept used to discuss startups
in many business and organizational research papers (cf. Donckels & Segers, 1990;
Fudickar & Hottenrott, 2019). Given the tech-oriented nature of startups,
Software Engineering (SE) and Information Systems (IS) scholars have also taken
an interest in startups. However, IS papers focused on startups are few and far
between in the top IS journals such as Management Information Systems
Quarterly (MISQ). On the contrary, a large number of startup papers has been
published in SE venues, where software startup research has become a well-
established research area (Unterkalmsteiner et al., 2016). As startups are even
associated with technology, and more specifically Information Technology (IT),
by definition in some cases, it is not surprising that there is by now an extensive
number of papers on software startups in SE.

According to Unterkalmsteiner (2016), software startup research in SE and
IS dates back to 1994, when Carmel (1994) first introduced the concept of software
startup (in the form of software package startup in that paper). Since then, startups
have been studied from a multitude of point of views in SE, including studies on
software engineering practices, as well as more business-oriented studies
(Unterkalmsteiner et al., 2016). Business and SE are often closely intertwined in
the startup context, resulting in various SE studies on software startups
discussing business aspects to varying extents as well. Arguing for the
importance of SE from a business point of view in startups, Klotins et al. (2019)
remark that “inadequacies in software engineering could be a significant

21

contributing factor to the high start-up failure rate and precede any marketing or
business-related challenges.”

The key argument behind all software startup research is that software
startups are somehow different from conventional software companies. As
briefly touched upon in the introduction section, “software startups are quite
distinct from traditional mature software companies, but also from micro-, small-,
and medium-sized enterprises, introducing new challenges relevant for software
engineering research.” (Unterkalmsteiner et al., 2016). The exact nature of these
differences is an on-going topic of discussion in the area, with different papers
focusing on different characteristics. Paternoster et al. (2014) list 15 such
characteristics software startup research has associated with software startups to
differentiate them from other types of software companies: (1) highly reactive, (2)
innovation, (3) uncertainty, (4) rapidly evolving, (5) time-pressure, (6) third party
dependency, (7) small team, (8) one product, (9) low-experienced team, (10) new
company, (11) flat organization, (12) highly risky, (13) not self-sustained, (14) lack
of resources, and (15) little working history.

Aside from differentiating startups from other software organizations,
these characteristics are occasionally used to define startups as well. However,
whether the presence of any of these characteristics is required for a company to
be considered a startup remains debatable. As there is no widely agreed-upon
definition for what a startup is in software engineering literature, different
papers may place emphasis different characteristics.

Perhaps the most commonly utilized definition of a startup is that of
practitioner expert Steve Blank. Blank (2013) considers a startup “a temporary
organization designed to search for a repeatable and scalable business model.”
Thus, when a startup finds and successfully implements a sustainable business
model, it ceases to be a startup and grows into a mature company. A startup,
therefore, is a temporary organization that either becomes an established
company or fails somewhere along the way, although it can still be challenging
to determine when exactly a startup can be considered to have ceased to be a
startup.

Blank’s definition is especially popular among practitioners (e.g., Baldridge
& Curry 2021), but is also cited in various software startup research papers, as
underlined by Unterkalmsteiner et al. (2016) utilizing Blank’s definition in their
research agenda paper for the research area in SE. This dissertration also utilizies
this definition. However, this definition was not directly used for data collection
purposes in the articles included in this dissertation. For data collection purposes,
given the lack of a widely agreed-upon definition for the concept, Articles II and
V included any company whose founders considered it a startup. The study of
Article IV, on the other hand, utilized certain criteria for including or excluding
case companies, as discussed in more detail in the article.

In addition to the general definition of a startup, it is in order to briefly
discuss what a software startup is. Many associate startups with software (and
hardware) by definition and consider them technology companies by nature. One
example of this is the way NTBF is considered synonymous with startup. To

22

nonetheless be more specific, in this dissertation, software startups are not
exclusively startups whose main business is developing software. Rather, a
software startup is any startup that delivers, creates, or captures value through
software. For example, while Uber is a transportation company, its entire
business ultimately revolves around its use of software to deliver value.

Returning to the fifteen characteristics summarized by Paternoster et al.
(2014), it could be summarized that startups are inherently associated with
disadvantage that stems from market, financial, or technological adversities
(Wang & Nandhakumar, 2017). More specifically, this disadvantage stems from
some of these fifteen characteristics. The exact nature of this disadvantage
remains a topic of discussion in startup research, and it can arguably vary
between startups. Some startups, for example, are more susceptible to having
their ideas copied by other businesses than others due to the nature of their
business idea. Altogether this results in a context that is unique to startups,
differentiating them from mature software organizations (Unterkalmsteiner et al.,
2016).

Finally, many of the characteristics discussed in this section are in some
ways related to the temporary nature of software startups. As established,
startups are considered to be temporary organizations. In practice, this
temporary nature largely stems from the financial aspects. According to Blank
(2013), a startup is looking for “a repeatable and scalable business model,” and
so, in other words, a startup does not have one yet. Until a startup finds one, it
can only keep going as long as it has capital to burn. This can be investor capital
or the personal capital of the founder(s).

This is a widely acknowledged situation that has its own terminology and
metaphors. Startup practitioners often use aviation metaphors to discuss this. A
startup is seen as a plane that is on the runway, trying to take off. The runway,
in this metaphor, presents the capital the startup has. As it is constantly burning
capital in search of a viable business model, the length of the runway is
determined by how much time it has until it runs out of capital. The take-off, then,
is the point where the startup starts being able to support itself when its business,
or, so to say, takes off.

This has various implications for startups in practice. Primarily, this
situation creates time pressure. For example, time pressure be related to reaching
the market as soon as possible, or finding the next source of funding in order to
extend the runway. Time pressure, in turn, results in a need or urge to cut corners,
which in SE often manifests as technical debt (which I discuss in more detail in
Section 2.2). A startup may also feel the need to provide itself with a temporary
source of income outside its (planned) core business. For example, it is not
uncommon for startups developing software to take on externally commissioned
projects as a source of side income. While this can provide the startup with capital,
it can also make it difficult to make timely progress on their own product. In this
fashion, the temporary nature of startups is directly related to at least four of the
characteristics discussed by Paternoster et al. (2014): time pressure, uncertainty,
not self-sustained, and lack of resources.

23

2.1.2 The Startup Life-Cycle

As established thus far, startups are temporary organizations. They either fail
somewhere along the way, which most startups do, or successfully become
mature companies. As this dissertation is focused on early-stage startups in
particular, these life cycle models act as a framework for defining what an early-
stage startup is in practice. To this end, many models exist for conceptualizing
this startup journey from an initial idea to a startup, and from a startup to a
mature organization.

One example of a life-cycle model proposed by an extant study is the one
Nguyen-Duc et al. (2016) propose. This model splits the startup lifecycle into
three phases:

1. Pre-startup stage: ideas are developed and need to be validated, startups
in the quest for financial and human resources. Startup activities are
carried out by founders or short-term hires. The purpose of this stage is to
demonstrate business feasibility, team building and management. The
common financing model is bootstrapping, family, friends and foes (FFF).

2. Startup stage: prototypes are developed and experimented, startups have
already figured out the problem/solution match. Some revenue is
generated, but not necessarily over the break-even point. Founder seeks
support mechanisms from startup ecosystems, learn to accelerate their
business development. The common financing model is own funding and
seed funding.

3. Post-startup stage: products are extended, startups achieve the
product/market match. Startups expand their customer bases, the
revenue models are predictable and scalable. A hierarchical structure is
formed within the startups. The common funding model is Series A, Series
B, and other series.

Passaro et al. (2016) propose another model. Their model splits the startup

lifecycle into four phases: (1) ideation, (2) intention, (3) start-up, and (4)
expansion. In the ideation phase, the idea is generated and evaluated, with idea
viability being the milestone that ends the phase. In the intention phase, an initial
commitment is made towards carrying out the idea and a team is put together
and further validation is carried out. The second phase ends in a prototype. In
the third phase, the start-up phase, a business is built around the idea. This phase
is focused on searching for funding and further product and business
development and culminates in the first invoice. Finally, in the expansion phase,
the startup begins to scale and eventually stops being a startup upon success.
This model shares many similarities with the model of Nguyen-Duc et al. (2016).
Notably, though, in both models the startup phase or stage is in the middle of the
lifecycle, with the earlier steps being categorized under some other denomination.

24

FIGURE 1. Startup life-cycle according to Salamzadeh et al. (2015)

FIGURE 2. Customer development process in software startups (Blank, 2013)

FIGURE 3. Product development process in software startups (Blank, 2013)

A slightly different three-stage model is proposed by Salamzadeh et al.
(2015) (Figure 1). This model has three stages: bootstrapping, seed, and creation
stage. The first one is characterized by individual effort and low investment,
largely from 3Fs (Family, Friends, Fools) or angel investors. The second stage is
characterized by team work and participating in startup ecosystems such as
accelerators and incubators, and in terms of finances, average investment. The
third and final stage is about growing into a mature organization.

Blank (2013) considers learning to be central in any startup. Blank (2013)
highlights two distinct processes that startups should go through simultaneously.
First is the product development process that depicts, as the name implies, stages
in product development (Figure 2). Secondly, in addition to the product
development process, the startup engages in, or should engage in, a learning
process where the business is developed: the customer development process
(Figure 3). The customer development process is key in avoiding a situation
where one develops a product no one wants to use. As Blank (2013) considers
startups to be temporary organizations, where the primary objective of a startup
is to find a business model, this learning process is related to establishing a viable
and scalable business model in order for the startup to eventually grow into a
mature organization.

25

FIGURE 4. Startup learning process and product development process as adapted by
Wang et al. (2016)

Wang et al. (2016) present a modified version of these two processes. This
version is seen in Figure 4. These two processes are used to position this
dissertation, especially in terms of Article V. The method Article V presents, the
Startup Cards, is aimed at the highlighted areas of the process, whereas the
faded-out parts are increasingly out of scope of the method. It is primarily
intended to support the learning process and the earlier parts of the product
development process, with the intent that the learning be prioritized early on.

Through the lens of the model of Nguyen-Duc et al. (2016), the model is
most related to the pre-startup stage. The model associates many of the early-stage
startup activities, such as idea validation, with this stage. On the other hand, the
startup stage in this model is characterized by already having initial customers
and some revenue. Most of the practices remain relevant in the startup stage as
well, even though the focus of the method is on the preceding phase. Similarly,
in the life cycle model of Passaro et al. (2016), the focus is on the ideation and
intention phases, and to some extent the startup stage. Finally, from the point of
view of the model of Salamzadeh et al. (2015), the focus would be on the
bootstrapping stage, and to some extent the seed stage.

Aside from the method discussed in Article V, this dissertation has not
specifically focused on early-stage startups. In both Articles II and IV, we utilized
empirical data from startups. In selecting the case startups for these studies, the
focus was not on early-stage startups. In fact, in Article IV, as I discuss in more
depth later in this dissertation, we selected startups that were already further
along with their product development, so as to be able to focus more on SE
activities.

Having now discussed what software startups are, and having also
discussed what early-stage startups are, the following sections shift the focus
towards SE in startups. In the final subsection of this key concepts section, I
discuss the key concepts related to methods in SE and IS. Afterwards, having
discussed all the key concepts, I proceed to discuss software development in
startups.

26

2.1.3 Practice, Technique, and Method as Concepts

The focus of this dissertation is on SE in software startups. Before discussing SE
in the startup context, it is in order to briefly discuss the relevant concepts used
to describe work in the context of SE.

Traditionally, failures in software development have been attributed to the
use of irrational development approaches both by academics and practitioners.
From this follows that SE/IS Development (ISD) methods are considered one
solution to this problem (Fitzgerald 1996). How software is developed in practice
is a topic studied widely in both Information Systems (IS) and Software
Engineering (SE). In fact, SE by definition is about "the application of a systematic,
disciplined, quantifiable approach to the development, operation, and
maintenance of software; that is, the application of engineering to software”
(SEVOCAB, n.d.).

A method describes a process. In IS, a method is a “a predefined and
organized collection of techniques and a set of rules which state by whom, in
what order, and in what way the techniques are used to achieve or maintain some
objectives.” (Tolvanen, 1998). Software development or SE methods, at their core,
are structured processes designed for software development. They describe how
work should be carried out in a software project, and utilize either natural or
formal language, or some mix thereof, to do so.

A technique in IS, is a more atomic description of a work process. According
to the above definition, a method consists of various techniques which describe
smaller work processes, and together form a method. According to Tolvanen
(1998), a technique is “a set of steps and a set of rules which define how a
representation of an IS is derived and handled using some conceptual structure
and related notation.” In SE literature, practice is largely synonymous to method
in the SE discourse. Jacobson et al. (2012) similarly remark that methods consist
of practices. In addition, tools are software (and occasionally physical objects)
used to carry out development in practice, such as Integrated Development
Environments. Methods and practices may recommend using specific tools to
carry out the prescribed work processes as well.

From here on out, this dissertation will use the established SE concepts to
discuss these topics, e.g., practice over technique. While this is formally an IS
dissertation, the papers included in it have been published in SE venues, and
consequently utilize SE concepts. As such, I will speak of practices rather than
techniques in this dissertation as well. To this end, what is SE in the field of SE is
referred to as Information Systems Development (ISD) in the field of IS. These
are not fully interchangeable, and as such I speak of SE in this dissertation rather
than ISD, even if what is being studied here could also be discussed as ISD in IS
publications.

Most methods have historically been in-house methods (Bubenko, 1986;
Grant et al., 1992). This is also the case today, with in-house methods being
common, but with out-of-the-box methods also still seeing some utilization
(Ghanbari, 2017). This situation is highlighted in the recent article of (Kuhrmann
et al., 2021), who argue that, despite decades of Agile, we still do not have a clear

27

idea of what really constitutes Agile development due to the myriad of different
practices being mixed and matched to create various methods their creators
consider Agile. A practical example of this phenomenon is the idea of ScrumBut.
ScrumBut is a concept created to describe the various situations where
organizations utilize Scrum, a SE method, but ultimately end up specifying some
ways in which they deviate from the original method: “We use Scrum, but…”

While method tailoring is commonplace (Jacobson et al., 2012), method use
is nonetheless seemingly norm in established software organization (Digital.ai
2020), even if they are not being used strictly by the book. Jacobson et al. (2012)
even argue that using methods by the book is not something to strive for in the
first place, and that methods should be tailored to best suit the project context at
hand. To this day, though, in startups, and especially in newer and smaller
software startups, less systematic software development continues to be common
(Paternoster 2014), as is discussed later in this dissertation.

2.2 Software Development in Startups

As established thus far, the main argument behind startup research is that
startups differ from other types of companies, which makes research findings
concerning traditional companies not fully applicable to them. This is also the
case in SE research. To understand how exactly (and if) software startups differ
from other software organizations, various existing studies have looked at the
state of practice of SE in software startups.

2.2.1 Characteristics of Software Development in Startups

Various existing studies have looked at different facets of SE in startups. As has
already been briefly discussed in the introduction, startups typically utilize
singular Agile practices and seldom use SE methods, especially in the earlier
stages (Paternoster et al., 2014). The Greenfield Startup Model (Figure 5)
(Giardino et al., 2016) presents one way of conceptualizing software development
in startups. The model highlights key characteristics in software development in
startups. The starting point is that startups operate under a notable lack of
resources, which is often discussed in extant literature (e.g., Berg et al, 2018;
Paternoster et al. 2014; Wang et al. 2016). The other characteristics in the model,
such as the importance of the team (e.g., Cooper et al., 1994; Kemell, Elonen et al.,
2020; Seppänen et al., 2017; Seppänen, 2020) and Technical Debt (e.g., Apa et al.,
2020; Besker et al., 2018), are explored in the startup context various other studies.

Technical debt is "a metaphor for immature, incomplete, or inadequate
artifacts in the software development lifecycle that cause higher costs and lower
quality in the long run" (Seaman & Guo, 2011). As quality is seldom a focus in
software startups (Klotins et al., 2019) and startups prioritize speed (e.g., as a
result of time-to-market pressure, or due to the aforementioned lack of resources
etc.), short-term gains are often prioritized over long-term ones. This is not

28

necessarily counter-productive: the technical debt will never have time to realize
over the long-term if the startup fails, and most startups fail. Those startups that
do last longer, however, have to address their technical debt later. In practice,
this can mean simply abandoning old components or systems riddled with
technical debt instead of attempting to refactor or restructure them (Article IV).
As the Greenfield Model (Figure 1) (Giardino et al. 2016) posits, being forced to
deal with the technical debt accumulated early on, or failing to deal with it, may
hinder later performance.

FIGURE 5. The Greenfield Startup Model (Giardino et al., 2016)

Startups largely focus on one product or service (Paternoster et al., 2014;
Berg et al., 2018). With the entire business of the company based on that one
development endeavor, business activities become closely intertwined with SE.
What are perceived as business problems in software startups can in fact be SE
problems under the surface (Klotins et al., 2019).

Another example of a model conceptualizing software development in
startups is the Startup Hunter-Gatherer Cycle Model of Nguyen-Duc et al. (2015).
Based on the Cynefin framework (Snowden & Boone, 2007) and the work of
Steinert & Leifer (2012), the model splits activities in software startups into two
categories: hunting and gathering. In this model, hunting activities are related to
idea generation, requirements elicitation, and market and customer development.
Gathering activities, on the other hand, are related to describing requirements,
implementing prototypes, automated testing, system integration, as well as
deployment. These two activities are depicted in the model as two cycles, which
are positioned into a two-dimensional space where the vertical axis is product-
market fit and the horizontal one is time. Over time, a successful startup would
move from the unknown domain into the known domain in the product-market
fit Y-axis as a result of performing these activities. This model could be seen to
reflect the two startup learning processes of Blank (2013) discussed in Section 2.1.

Going into more granular detail, Klotins, Unterkalmsteiner & Gorschek
(2019) present a customized framework for categorizing startup practices, the

29

SoftWare and Business Process (SWBP), which they then use to analyze practice
use in startups in more detail based on the knowledge areas of the framework.
They base the framework on SWEBOK (Bourque and Fairley, 2014), with the
addition of some business aspects based on Osterwalder et al. (2005) and
Zachman (2003). Klotins et al. (2019) summarize that while many startups do try
to validate their ideas, the practices are ”often rudimentary and lack alignment
with other knowledge areas.” Moreover, they highlight that quality is considered
of little importance, occasionally with ”disastrous events” as a result.

In another paper, Klotins et al. (2019) discuss anti-patterns in software
startup. These are practices, or less specific descriptions of ways of working,
patterns, to avoid. These include issues such as taking too long to finish an initial
version of the product, or an MVP, and lack of customer involvement and lack of
validation activities. They break these anti-patterns down into smaller parts in
analyzing the issues leading up to these situations in the paper.

To provide a further look into how startups differ from other software
organizations in practice, the next subsection looks at the utilization of Agile in
the industry through various existing studies and industry surveys. We know
that startups prefer Agile practices to what extent they use established practices
(Paternoster et al., 2014). However, how Agile practices are actually utilized can
vary greatly between organizations, as is discussed next.

2.2.2 Agile Development in Startups

Conboy (2009) defines agility in the context of Information Systems Development
(ISD) as follows: “the continual readiness of an ISD method to rapidly or
inherently create change, proactively or reactively embrace change, and learn
from change while contributing to perceived customer value (economy, quality,
and simplicity), through its collective components and relationships with its
environment.” Indeed, Agile methods are associated with reactiveness and the
ability to deal with change, primarily in relation to software requirements. While
this definition does not explicitly contain the notion of iterativeness, the cyclical
nature of Agile is nonetheless present in the paper discussing the definition in
more detail (Conboy, 2009).

Though the ability to deal with change and reactiveness are central to
startups struggling with uncertainty, startups are averse to utilizing SE methods,
even Agile ones, and only adopt practices later on in the startup process as well
(Paternoster et al., 2014). Though startups use Agile practices, they are often used
in an ad-hoc fashion (Giardino et al. 2014). This may be a result of Agile methods
being well-suited for situations where the problem is understood and the method
is there to guide the ‘how’ part of the work, whereas in the startup context the
problem the solution being developed is supposed to address is also unclear
(Bosch et al., 2013). This disconnect is also at the root of the Lean Startup
methodology of Ries (2011).

Despite decades of research and vast industrial experiences on Agile, Agile
is still loosely defined in practice, especially out on the field (Kuhrmann et al.,
2021). Kuhrmann et al. (2021), based on a survey of 1467 companies, argue that

30

under 15% of all companies in fact develop software in a purely Agile or
traditional waterfall manner. Moreover, they argue that there are no methods or
practices that guarantee or prevent agility. As a result, "being Agile" or "doing
Agile" can mean very different things to different individuals and companies.

This is also important to acknowledge when discussing software
development in software startups and comparing it to software development in
mature organizations. According to the 14th Annual State of Agile report
(Digital.ai 2020), a large-scale practitioner survey based on 1121 company
responses, up to 95% of software companies utilize Agile development methods.
Another recent practitioner survey (GoodFirms Research, 2019) posits that some
84% of companies developing software utilize Agile methods to do so. Less
recent academic studies provide somewhat lower estimates (e.g., in 2011, 58% of
Finnish companies used Agile or Lean methods according to Rodríguez et al.
(2012). Nonetheless, the majority of software companies arguably utilize Agile
methods based on both academic and industry surveys.

Yet because 'Agile' is not a strictly defined method (Kuhrmann et al., 2021),
these companies can, in practice, work in very different ways and still consider
themselves to be using Agile methods. The aforementioned 14th Annual State of
Agile report serves to highlight this. The report, among other things, asked the
respondents to report which specific Agile practices they utilized. While some
practices were very widespread, no practice was utilized by every company who
reported being Agile. This is in line with the argument of Kuhrmann et al. (2021)
who posit that no specific practice makes a company Agile or not Agile.
Companies tailor and mix and match Agile practices to form their own ways of
working in the context of Agile. Moreover, companies also routinely tailor Agile
methods such as SCRUM into what are referred to as SCRUMbuts ("We use
SCRUM, but..."), which results in a situation where a company may report that
they are using SCRUM while actually deviating from traditional SCRUM in
various ways. In many cases, quality practices are the first ones to be omitted
(Ghanbari et al., 2018). Method tailoring is common in the industry in general
(Jacobson et al., 2012).

From this follows that, even though some startups utilize Agile methods
(Paternoster, 2014), their ways of working can still differ greatly from those of
larger companies that also utilize Agile. For example, as many as 85% of software
companies utilized daily standup meetings (Digital.ai, 2020), but only 30% of
software startups utilized daily standup meetings (Pantiuchina et al., 2017).
Given the different survey approaches used to produce these results, they are not
directly comparable, but nonetheless give us some insight into the current
situation. They underline how heterogeneous the use of Agile can be. While
startups also utilize Agile and Agile practices, they seem to prefer different Agile
practices than more mature organizations.

In addition to preferring different Agile practices than more mature
organizations, startups utilize Agile overall less than mature software
organizations. According to Paternoster et al. (2014) "agile and more traditional
methodologies struggle to get adopted by startups due to an excessive amount

31

of uncertainty and high time-pressure" and "software development practices are
reported to be adopted only partially and mostly in a late stage of the startup life-
cycle". In other words, startups are more likely to mix and match single practices
to suit their needs as opposed to using complete methods. Yet even singular Agile
practices are notably less common in startups than other types of organizations
(Pantiuchina et al., 2017). Thus, while startups may prefer Agile methods
compared to other types of methods, the utilization of methods as opposed to
various singular practices remains low compared to the rest of the industry, and
the way they are utilized also differs compared to mature organizations.

2.3 Startup Practices and Methods

If existing SE methods are poorly utilized by startups (Paternoster et al., 2014),
with Agile methods for example better suited for more mature software
organizations (Bosch et al., 2013), methods and practices specifically aimed at
startups could help. However, as is discussed in this section, such methods and
practices are scarce. This section identifies and presents some of the existing
methods and practices for startups.

2.3.1 Lean Startup

Arguably the most famous startup-related approach, the Lean Startup
methodology is based on the influential book of practitioner expert Eric Ries
(2011). In his book, based on his experiences on working on the online chat
service Second Life as the CEO of his startup, Ries discusses his lessons learned
from that endeavor. Based on these lessons learned, Ries formulates what they
refer to as Lean Startup.

The Lean Startup has also since been regularly discussed in academic
literature. Aside from being mentioned in passing in a large number of startup-
related publications, it is also the focus of a notable number of papers. For
example, Bosch et al. (2013) present a model to support the utilization of Lean
Startup principles in practice. Similarly, Lean Startup principles have been
utilized in Internal Corporate Ventures (ICV), and specifically in Internal
Startups, which are a subset of ICV. ICVs are a part of corporate entrepreneurship,
alongside strategic entrepreneurship, as discussed by Morris et al. (2010). ICVs
are organizations that exist inside existing business organizations and are
typically tasked with carrying out innovation in the form of proposing a new
product or service for the parent company (Maine, 2008). While poorly defined,
internal startups differ from ICVs in that they utilize startup approaches, such as
the Lean Startup (Kemell, Risku et al., 2020).

From the point of SE, lean startup can be seen as an approach primarily
focused on requirements. It is focused on validating business ideas as well as
more specific requirements or assumptions about the idea or solution. Lean
startup stresses the importance of learning and using data to both learn and make

32

informed decisions. In practice, lean startup is not a conventional method in the
sense that methods are understood in IS and SE literature, as it does not describe
a process. As a result, it is often considered difficult to utilize in practice (Bosch
et al., 2013). It is, as such, perhaps closer to what could be described as a
‘philosophy’ or an ‘approach’. Although the lean startup does suggest a
collection of tangible practices, these practices do not form a process, and
utilizing them can be challenging at times. Various practitioner handbooks and
other guidelines to support its adoption and use exist, out of which the book of
Maurya (2012) is one of the better-known ones.

The core of lean startup is the so-called Build-Measure-Learn loop. The BML
loop is focused on using data for business purposes. The BML loops is about
building (“Build”) Minimum Viable Products (MVPs) to collect data (“Measure”)
in order to validate assumptions (“Learn”). Each MVP should be built with a plan
in mind in terms of the measure and learn stages. MVPs are discussed further in
the following subsection.

The lean startup can be considered to present the shift in startup culture
that has happened after the early 2000s. As Blank (2013) discusses, during the
dot-com bubble, startups typically operated in “stealth mode” while hiding their
ideas from their competitors – and, in the process, their potential future
customers. When hiding an idea in this fashion, it is difficult to utilize lean
startup principles that focus on involving customers and collecting data and
feedback. Blank (2013) argues that the lean startup has since rendered this
approach focused on secrecy largely obsolete in most cases, although it can still
be useful to hide ideas in certain cases.

2.3.2 High-Profile Startup Practices

Some practices associated with startups, and with Lean Startup as well, have
become particularly acknowledged out on the field and in academic literature. In
particular, the Minimum Viable Product (MVP) and pivoting. In addition, high
levels of customer involvement have become associated with software
development in startups. These are not entirely novel concepts, however, as
customer involvement, for example, is a core principle of Agile development in
general. Similarly, MVPs are related to prototypes (e.g., as seen in Nguyen-Duc
et al., 2017), although the MVP has become a clearly separate concept in startup
literature. A prototype can be an MVP (even if advanced MVPs as initial MVPs
can be bad practice (Klotins et al., 2019)), but not all MVPs are prototypes.
Nonetheless, such practices have become associated with startups and have been
studied in various existing papers (including Article IV), and they are also
present in the method presented in Article V.

According to the Lean Startup, every startup should build MVPs in order
to gather data that can be used to validate their business idea. The Minimum
Viable Product is a key practice in software startups. According to Ries (2011),
the types of potential MVPs are numerous. An MVP does not have to be a
functional product, or a prototype. An MVP can be, for example, a simple video
explaining the product and why a user should buy it, or a seemingly functional

33

user interface that, under the hood, is not at all what it seems (Nguyen-Duc &
Abrahamsson, 2016). Indeed, MVPs are about learning, and there are many ways
to gather data about a business idea or an assumption.

Though MVPs are intended to help startups validate their ideas, their use
in practice is more multi-faceted. Nguyen-Duc & Abrahamsson (2016) find that
MVPs are often reused and retooled to what extent possible, depending on the
type of MVP in question. However, MVP use is not necessarily systematic, and
few startups seem to produce multiple MVPs of differing types (Nguyen-Duc &
Abrahamsson, 2016). When they are used, however, MVPs can produce various
benefits:

We found that MVPs could be useful for a startup as a design artifact, a boundary
spanning artifact and a reusable artifact. The process from business ideas to a launch-
ing product consists not only loops but also parallel branches. When market validation
and product design tasks are carried on at the same time, certain types of MVPs would
play a role of mutual adjustment between input from customers and product design.
(Nguyen-Duc & Abrahamsson, 2016)

Data can help companies make objective decisions. It can be difficult for a
CEO to abandon their vision even when data points to it not working, but such
difficult decisions may need to be done. The BML loop, in this sense, is but one
way of carrying out data-driven decision-making in startups. Moreover, this
emphasis on data is also reflected in the other method (or philosophy) discussed
in the next section: Growth Hacking.

The BML loop also stresses the importance of using the data to determine
whether to persevere (continue with the idea) or to pivot (change direction). In
more detail, a pivot can be considered a strategic change designed to test a
fundamental hypothesis about a product, business model, or growth engine
(Article IV). A pivot can be a fundamental change in the business plan, or it can
be any more minor change that changes some aspect of the business model. There
are multiple types of pivots. For example, changing the primary platform of your
service from iOS to Android would be a platform pivot. The pivot is a well-
established practice in startups, discussed by Ries (2011) and in various existing
papers (e.g., Bajwa et al., 2016; Bajwa et al., 2017; Bajwa et al., 2020; Khanna et al.,
2018; Article IV).

2.3.3 Growth Hacking

Growth Hacking is perhaps currently still predominantly seen in the academia
as a “digital marketing buzzword” (Herttua et al., 2017). However, Growth
Hacking as a concept has recently been gaining some traction in academic
research as well, with papers discussing the concept being published especially
in marketing and other business-related research venues (e.g., Bohnsack &
Liesner, 2019; Troisi et al., 2020). As is the case with lean startup, Growth Hacking
is more focused on business than SE, but still closely involves SE, as is highlighted
in this section.

34

Growth hacking remains loosely defined and calling it a method is not
accurate. It is more accurate to consider it a strategy (as Herttua et al. (2017) do)
or a model (as Troisi et al. (2020) characterize it). currently considered a strategy,
and particularly a digital marketing one. Growth hacking is a data-oriented
approach to digital marketing and is related to the growing importance of data
in business, and especially in startups. Growth hacking is about “hacking growth”
to gain new users or customers at a rapid pace, by using low-cost or novel
approaches to digital marketing. Its relevance to startup comes from this
association with low-cost and novel or innovative practices that can be utilized
by startups in particular.

In practice, growth hacking is carried out through the use of growth hacking
techniques, which could be likened to practices in SE, or practices or techniques in
IS literature. These techniques are describe specific ways of acquiring new users.
For example, ‘refer-a-friend’ and influencer marketing are considered growth
hacking techniques in one practitioner book (Patel & Wormley, 2017). While the
goal of Growth Hacking is clear, and the Growth Hacking techniques discussed
in grey and black literature are often quite straightforward descriptions of
tangible practices, the practices do not form a clear process. GH is about
experimentation. Not experimentation in the strict scientific sense, but nonetheless
experimentation where data is used as a metric of success. GH is about utilizing
those GH techniques and finding out what works or does not work for the startup
in question. A-B testing and other ways of weighing which techniques produce
result and which do not are key in growth hacking.

Whereas academic literature on growth hacking is still scarce, grey
literature on growth hacking is common. For example, various books (e.g., Ellis
& Brown, 2014; Linkner, 2017; Patel & Wormley, 2017) list singular growth
hacking techniques or growth hacking approaches that startups can utilize in an
attempt to grow their user base. Grey literature also includes various tools for
growth hacking, such as growth hacking funnels, or the Bull’s Eye Framework
(Weinberg & Mares, 2014).

The funnel is a business tool that predates growth hacking. The funnel
describes the process where, e.g., a website visitor becomes a paying user for a
software, going through different stages of the funnel on their way from the start
to the end. At every point of the way, some of the initial website visitors are lost,
and these conversion rates are important metrics when looking at user (or payer)
acquisition and related metrics such as user life-time value. This is why the
funnel is shaped like a funnel.

These funnels typically feature five or six stages that describe the
conversion process. At the very top of the funnel is often acquisition. At the
acquisition stage, users first enter the funnel by, e.g., visiting the website of the
service. In some funnels, acquisition is preceded by awareness where users first
become aware of the service but have yet to truly enter the funnel. Following
acquisition is activation when visitors convert into users by adopting the service,
if only to try it out before concluding that it is not for them. When users keep on
using the service, they move to the retention phase where they become regular

35

users. If they start paying for the service in the form of, e.g., premium
subscriptions, they move to the revenue stage of the funnel. Finally, if they are
satisfied enough with the product to pay for it and even refer their friends to it,
they move to the last referral stage. As growth hacking is very focused on data,
these funnels provide one source of data to be used while utilizing growth
hacking techniques. Underlining, in part, the relevance of the funnel from the
point of view of growth hacking, Feiz et al., (2021) utilize the funnel as a
framework in their study discussing growth hacking.

While seemingly entirely related to business, the idea of growth hacking is
linked with SE. In growth hacking literature, the individual in charge of growth
hacking, the so-called growth hacker, is someone also capable of programming.
Growth hacking is a form of digital marketing, and often the techniques are
technical. Many growth hacking techniques require changes to be made to the
software itself, or the software needs to be changed as a result of the lessons
learned.

2.3.4 Research-Based Methods, Practices, and Tools for Startups

Methods for software startups are scarce in general, and especially in academic
literature (Unterkalmsteiner et al., 2016). On the other hand, some more specific
tools that support specific tasks exist, however. This section discusses some
examples of such.

Melegati, Guerra & Wang (2022) propose a technique for eliciting
hypotheses based on cognitive mapping, HyMap. It is aimed at early-stage
startups looking to clarify their business idea. The hypotheses determined
through the use of HyMap can be helpful in helping startups better understand
their own ideas in the earlier stages of the process. The authors posit that an
assumption is a “personal or team-wise, generally implicit understanding taken
as truth without being questioned or proved” whereas a hypothesis is an
“explicit statement that has not been proved yet but could be tested through an
experiment” (Melegati et al., 2022). I.e., assumptions could be made into
hypotheses (by, e.g., using HyMap). The importance of testing assumptions in
startups is also discussed by Gutbrod & Münch (2018) as they propose a
workshop format for teaching how to prioritize assumptions.

Bosch et al. (2013) present a model for early-stage software startups focused
on idea validation. The model comprises three steps: idea generation (generating
ideas to work on), the backlog (generated ideas are prioritized into a backlog),
and the funnel (ideas are systematically validated). The third step, the funnel,
consists of four steps: problem validation, solution validation, MVP validation
small-scale, and MVP validation large-scale. The purpose of the model is to
provide an actionable framework in which to utilize the Build-Measure-Learn
loop of the Lean Startup of Ries (2011).

36

2.3.5 Suitability and Relevance of Existing SE Practices

While the suitability of existing SE methods in the startup context is often
questioned, it is arguably not as though they are completely off the mark in that
context, especially as far as individual practices are considered. As established so
far, though startups seldom use formal methods and even use practices only later
on (Paternoster et al., 2014), startups do utilize existing Agile practices to some
extent (Pantiuchina et al., 2017). Agile methods are argued to be ultimately poorly
suited for startups. The methods focus on how to carry out SE in a context where
the what is rather well understood, while in the startup context the what is the
bigger issue (Bosch et al., 2013). On the other hand, individual practices can be
better suited for the startup context.

In fact, many of the popular startup practices are ultimately rooted in
existing practices. MVPs (Lenarduzzi & Taibi, 2016; Ries, 2011) are closely related
to prototypes, although not all MVPs are prototypes. Past the very early stages
of a startup’s lifecycle, however, prototypes become common as MVPs as
product development progresses in the startup. Lean Startup (Ries, 2011) is
ultimately also based on Lean, as its name implies, which is a much older
philosophy. In a similar fashion, while the Growth Hacking Funnel is at the
center of Growth Hacking, marketing funnels date back nearly a century in the
form of the purchase funnel.

Using prototyping as an example, numerous studies on prototyping both in
and out of the startup context exist. The phenomenon is not new, and even rapid
prototyping has existed long before the MVP paradigm that stresses both speed
and learning. Studies on prototyping in startups also discuss the topic and their
results in the light of these existing studies (e.g., Nguyen-Duc et al., 2017). On the
other hand, Fagerholm et al. (2017) propose a model for continuous
experimentation using prototypes, which, while not directly aimed at startups as
such, is still validated in a startup context in the paper. While learning in stressed
in the startup context in particular, it is at the center of prototyping in general.

Turning to the Lean Startup philosophy, let us look at the Lean principles it
is built on. Poppendieck & Poppendieck (2003) discuss seven lean principles:

• Eliminate waste. Waste refers to any anything that does not add value to
the software. E.g., coding more features than is needed.

• Amplify learning. Software development should be an iterative learning
process.

• Decide as late as possible. Decisions should be based on data rather than
assumptions. The best way to avoid uncertainty is building in the option
to decide late(r).

• Deliver as fast as possible. The faster you start delivering software, the
quicker you start learning from it. Speed is about being able to start
receiving feedback from users or customers.

• Empower the team. Local signaling (visible charts, daily meetings…)
where the team makes decisions on its own in addition to those coming
from above is key.

37

• Build integrity in. Software should have a coherent architecture, be usable,
be suited for its purpose, while also being maintainable, adaptable, and
extensible.

• See the whole. A UI designer may be tempted to focus only on refining the
UI to be as good as possible, but even specialized experts should still retain
a sight of the big picture.

While lean startup does not place direct emphasis on all of these principles,
they can still be found in it. Overall, lean startup is about focusing on the essential
features (eliminate waste), while aiming to start delivering and learning as
quickly as possible. The MVPs simply take the concept of a prototype further and
expand on it past conventional, functional prototypes. On the other hand, the
lean startup does place less emphasis on building integrity in, as startups are
encouraged to fail fast, if failure is imminent.

Indeed, there is arguably plenty of overlap between existing SE practices
and methods and those tailored at, or favored by, startups. Though startup
research generally reinvents the wheel by arguing that startups are unique,
which can be used as an argument to re-investigate any topic in the startup
context, the findings of all extant studies may not be as irrelevant for startups as
startup literature often argues. Moreover, with startups becoming increasingly
common, not all studies utilizing startups as research subjects necessarily frame
the study as a startup study in particular (see for example (Fagerholm et al.,
2017)).

As such, to conclude this section on startup practices and methods, it should
be noted that not all existing practices and methods are necessarily ill-suited for
startups. Startups are argued to use various Agile practices despite these
practices not being devised to specifically suit the startup context. In fact, it seems
to not be entirely clear why startups forgo existing methods and practices. It is
possible that some practices or methods go unused, for example, because the
developers are inexperienced and simply do not know better or do not have the
time and will to learn these new processes that do not directly and right away
contribute to the tasks at hand.

2.4 The Essence Theory of Software Engineering

Proposed by the SEMAT initiative (SEMAT (n.d.)), which consists of both
practitioners and academics, The Essence Theory of Software Engineering
(Essence from here-on-out) is based on a sizeable endeavour. In practice, Essence
is a modelling tool for describing work practices and methods in SE. The official
site of Essence summarizes it as a language (Essence in Practice, n.d.).

Essence consists of two main components. The first one is what its authors
refer to as a kernel (Jacobson et al., 2012; Object Management Group, 2018), which
can be considered a set of building blocks for creating methods and describing
practices, as well as a project management tool even without using the language

38

to extend it further. The second one is the Essence language that is used to
describe methods, as well as the Essence kernel itself.

As discussed in the introduction, the original goal of this dissertation was
to evaluate the suitability of the Essence kernel for the software startup context,
and to devise a method for software startups by using the Essence language to
do so. Articles I and II supported this goal. However, based on the results of
Article I and the lessons learned in Article III, the method in Article V was
ultimately not described using the Essence language. Essence is, however,
nonetheless discussed here due to its role in this dissertation in spite of this.

Originally, when planning the research that ultimately produced this
dissertation, we were looking for theoretical frameworks for devising a method
for software startups. We wanted to use a framework for doing so in order for
the method design decisions to be justifiable through the framework. Essence is
a well-documented tool for devising methods that has also been studied in
academic research.

We considered Essence interesting due to its focus on method tailoring,
which is something startups actively engage in. Startups are known to rarely use
methods by-the-book and generally prefer various Agile practices over methods
(Paternoster et al., 2014), mixing and matching them to suit their own purposes.
As startups already engage in ad hoc method tailoring on their own, we felt that
Essence could have helped them to do so in a more systematic and planned
manner, while also encouraging them to more actively reflect on the way-of-
working they chose.

Additionally, we felt that cards are an approachable way of using a method
that can be potentially lightweight as well, which would suit startups. However,
based on Articles I and III, we concluded that using Essence to describe the
method in Article V would have made it too difficult to learn for the card-based
approach to be considered lightweight in this context. It is unlikely that startups
would be willing to devote resources towards adopting such a method. Though
the method was, as such, not described using Essence, the card-based approach
itself was considered suitable and was kept, making the method Essence-inspired
at most. To this end, the methods presented in Articles III and V were still devised
using the philosophy behind Essence: the practice of essentializing practices in
order to create methods from practices.

The rest of this section further discusses Essence in general. Section 2.4.1
presents the Essence language and its various notational elements. Section 2.4.2
presents the Essence kernel and its contents. Finally, Section 2.4.3 discusses
extant research on Essence.

2.4.1 The Essence Language

As the kernel is described using the Essence language, it is in order to discuss the
language first. The Essence language provides the means to describe methods
with Essence. To this end, it is also how the kernel is extended when using it as a
set of building blocks for describing methods.

39

The language of the specification is to be used to extend the kernel, and it is
what ultimately makes the specification modular. The language combines
natural and formal languages. It can be utilized on multiple levels of
conformance, with varying degrees of formal language used. Lower levels of
conformance offer less utility when used on conjunction with external tools,
while higher levels of conformance are more easily tracked and used with
external tools.

In the Essence language, elements are split into three areas of concern (i.e.,
categories). These are as follows: (1) customer, (2) solution (i.e., things related to
the software system being developed), and (3) endeavour (i.e., team-related
things). These areas of concern are color-coded in the Essence language, with the
customer area being green, the solution area being yellow, and the endeavour
area being blue. This colour-coding is also seen in practice in Figure 6, which
depicts the alphas of the Essence kernel. No element belongs into any area of
concern by default. An alpha, for example, can belong to any of the three
depending on the nature of the alpha, as seen in Figure 6 (Section 2.4.2) as well.

The Essence language contains a number of concepts that are used to
describe practices and methods. Some of these elements are also present as
building blocks in the kernel. There are eight concepts in the language: alphas,
alpha states, activity spaces, activities, competencies, work products, resources,
and patterns. These elements of the Essence language are detailed below.

Alphas and Alpha States Alphas are, simply put, “things to work with”. These
are elements that are central to the project or other endeavour at hand. Alphas
are things that are tracked to determine how the work is progressing. Indeed,
alpha, in Essence, is an acronym for Abstract-Level Progress Health Attribute. As
the more specific name behind the acronym implies, alphas are higher-level
elements, such as requirements, rather than single features of a software. To this
end, each alpha has a set of alpha states. These alpha states contain progress-
related descriptions and criteria that help determine how much progress has
been made on the alpha. For example, the requirements alpha progresses
from ’conceived’ where the requirements have only just been formulated,
to ’fulfilled’, where they have been successfully built into the system. (Object
Management Group, 2018)

Activities and Activity Spaces Activities are “things to do”. These are concrete
descriptions of work being carried out. Carrying out activities is what results in
progress on alphas and carrying out activities can produce work products. Some
competencies may be required to carry out certain activities. Activity spaces can
be used to organize activities. (Object Management Group, 2018)

Competencies Competencies describe the skills, abilities, or other such
qualities required to carry out certain activities in the context of the endeavour.
While these can be binary, determining levels of competency with certain skills
can be beneficial to better manage a project. (Object Management Group, 2018)

Work Products Work products are tangible work outcomes. They can be pieces
of software, documents, or any other type of relevant object. Work products are

40

created by carrying out activities and should be related to an alpha. (Object
Management Group, 2018)

Patterns and Resources Patterns are ”generic concepts that can be attached to
any language element.” (Object Management Group, 2018). For example,
patterns can be used to sequence activity spaces, or describe roles in a team.
Resources, on the other hand, are external resources outside the Essence model
being utilized that are referenced from it, such as websites.

2.4.2 The Essence Kernel

The Essence kernel is a ”stripped-down, light-weight set of definitions that
captures the essence of effective, scalable software engineering in a practice
independent way” (Object Management Group, 2018). It is intended to contain
all the key elements that are present in every SE endeavour (Jacobson et al., 2012).
In practice, the kernel contains: alphas (and their alpha states), activity spaces,
and competencies.

There are seven alphas in the Essence kernel, and they form the core of the
specification. These are seen in Figure 6. These alphas serve as a starting point
for constructing methods. Each SE project, arguably, has at least these elements
in it. The alpha states for these generic kernel alphas are important for keeping
track of progress on the project at hand. While constructing method, the users of
the specification would then add more alphas to account for relevant, more
project-specific concepts to account for.

The alphas form the core of the kernel, but the kernel also includes activity
spaces and competencies related to these alphas. These include generic activity
spaces such as “Specify the Software” which could contain activities such
as ”Identify Use Cases” and ”Specify Use Cases.” The competencies included in
the kernel are core competencies required to carry out such common work tasks.

In practice, this kernel provides building blocks for utilizing the Essence
language to construct methods. A method constructed using Essence could use
the kernel as a basis, adding alphas, activities and activity spaces, and
competencies that are specific to that project, to complement it. These would then
be used to formulate practices in order to construct a method. E.g., a practice
would be related to an activity (and an alpha) and would require certain
competencies. Though the kernel is intended to be extended to create methods,
the kernel alone, and as is, can act as a project management tool (Jacobson et al.,
2012).

41

FIGURE 6. Essence kernel alphas (Jacobson et al., 2012; Object Management Group,
2018)

2.4.3 Essence in Research

Nearly a decade after its inception, Essence has yet to become widespread out on
the field (SEMAT 2018). Similarly, Essence has seen modest interest in academic
research thus far. Nonetheless, some academic literature on Essence exists, and I
have published papers on Essence not included in this dissertation as well.
However, many of the existing studies on Essence are by members of the SEMAT
initiative behind Essence.

Existing research suggests that the lack of practitioner interest in Essence
may, in part, be a result of its resource-intensive adoption resulting from the
specification itself being difficult to understand, as well as a lack of tooling
(Graziotin & Abrahamsson 2013) and tutorial resources (Article I). Some tools to
help adopt and use Essence have been proposed (e.g., SematAcc (Graziotin &
Abrahamsson, 2013), and Essencery (Kemell, Evensen et al., (2019)). However, as
most effort in adopting Essence is related to learning to use the language and
grasping the idea of the kernel and Essence in general, tools for using can only
do so much to facilitate the utilization of the specification. In another study, we
develop a board game intended to help its players grasp the idea of Essence in
an attempt to make the specification more approachable (Kemell, Risku et al.,
2018).

Aside from studies looking to support the use or adoption of Essence
through tooling, there are education-focused papers on Essence, papers
demonstrating the use of Essence in various ways, as well as empirical papers.
Shortly after the Essence specification was published (Jacobson et al., 2012), those

42

involved with Essence published various papers on it. Park et al. (2016)
demonstrate how Scrum can be described with Essence. Ng (2015) uses Essence
to support theory-based software engineering in an industry setting. When the
specification had only just been published, Ng & Huang (2013) provided
preliminary support for the use of Essence in education based on feedback from
professors and lecturers. Ng et al. (2013) discuss the potential value of Essence
for SE research. Park (2015) provides algorithmic support for utilizing Essence.

Since these early days of Essence, many of the papers on Essence have been
carried out in student settings, and many of these papers have focused on
education as well. These include Article I, although the goal of Article I was also
to evaluate Essence in general, but while using student data to do so. Pieper et al.
(2017) discuss applying Essence games in an educational setting. Zmeev &
Zmeev (2020) publish on their experiences on having students utilize Essence in
a project-based SE course. Overall, it seems that few new SE studies utilizing or
focusing on Essence have been published since 2018.

43

In this section, I discuss the different methods utilized in the papers included in
this dissertation. The first two sections discuss the research methods utilized in
the articles of this dissertation. In the first section, I discuss Case Study as a
research method (used in Articles II and IV). In the second section, I discuss
Action Research as a research method (used in Articles III and V). In the third
section, I discuss the data collection and analysis methods used in this
dissertation: interviews (Articles II and IV) and thematic analysis (Articles I, II,
and IV).

3.1 Research Evolution

Originally, this dissertation was to evaluate the Essence Theory of Software
Engineering in the context of software startups, and, if needed, to then produce
a modified version of Essence (and specifically its kernel) better suited for that
context. In practice, this would have entailed the creation of new alphas for the
kernel as necessary, as well as activities and activity spaces, and competencies.
This would have been in addition to creating a method for early-stage software
startups, as is done in Article V. This method would then have been bound to
this software startup kernel using the Essence language.

The studies in Article I and II were conducted with this aim in mind. As
Essence is predominantly aimed at traditional software organizations, we
wanted to first see whether it could be utilized in other organizations as well.
While students are not fully analogous to startup, although many startups are
founded by students or recent students, we began this endeavor by studying
Essence in the context of student projects (Article I). The results indicated that
students could grasp the idea of Essence and utilize it. However, it also seemed
that it was difficult for them to learn to use Essence. In Article II, we studied the
Essence kernel through the lens of software startup practices, evaluating whether
additional alphas would be needed to cover the practices utilized by startups.

3 RESEARCH METHODOLOGY

44

Some time in early 2019, however, while working on Article III and the
ECCOLA method presented in it, we started doubting the suitability of Essence.
ECCOLA, like the method in Article V, is a card-based method developed using
an action research approach. Whereas the method in Article V is aimed at
software startups, ECCOLA is closer to a traditional SE method. While
developing ECCOLA, we struggled to make the method practical while adhering
to the Essence notation.

In the early stages of the development of ECCOLA, we tested the method
with student project teams. We instructed students to read a book on Essence and
made sure that they had done so by having them produce a course deliverable
on the book. Despite the students having read the book, at least in part, they
struggled to grasp the Essence language elements on the cards. Moreover,
including the Essence elements brought no benefits. As a result, we opted to
incrementally lessen the level of Essence conformance of ECCOLA. These lessons
learned carried over to startup method of Article V, changing the aims of this
dissertation. As we no longer saw the value of producing a version of the Essence
kernel for software startups and binding the method to that kernel, this objective
was abandoned. Instead, the focus of the dissertation became the development
of the method as a stand-alone method.

While the method, the Startup Cards for Early-Stage Startups, is still card-
based and based on the idea of essentializing practices that is the core of Essence,
it is no longer conformant with the Essence language to a notable degree. The
cards still utilize the colour-coding of the Essence language and are visually
similar to Essence cards, but the role of Essence is otherwise small. Though this
does not present a notable change in research objectives, it is still documented
here to further explain the background of this dissertation and research related
to it.

3.2 Research Approach

This dissertation took on a qualitative approach to the topic. All of the studies
included in this dissertation utilized primarily qualitative data, although, e.g.,
Article IV included some quantitative analysis of said data through thematic
analysis. In practice, this meant utilizing the number of codes to make
observations about the data.

Following the research method taxonomy of Järvinen (2001; 2004), this
dissertation includes both studies stressing what reality is, as well as studies
stressing the utility of artifacts. In terms of reality stressing studies, the
dissertation includes both theory-testing (Articles I and II) and theory-creating
(Article IV) studies. In terms of artifact-related studies, Articles III and V are both
artifact-building and artifact-evaluating studies. As Järvinen (2004) notes, an
action research approach includes both artifact-building and evaluation.
However, this classification of Articles III and V assumes that artifact includes SE
methods, which is more akin to how design science understands the concept of

45

artifact, as opposed to classifications that only include more traditional IT
artifacts such as software systems.

Though, according to some, qualitative studies can sometimes struggle with
generalizability due to the low number of cases or low amount of data otherwise,
the studies included in this dissertation generally contained satisfactory amounts
of empirical data. The data used in each paper is detailed in Table 1 below, along
with the research approach and methods of each study.

TABLE 1. Research approach overview of the included articles

Article Research
Approach

Objective(s) Research Methods

I Theory-
testing

Test Essence in a classroom / stu-
dent project setting to evaluate suita-
bility for startup context as well.

Case study (102 student
teams).

II Theory-
testing

Test the suitability of Essence in a
software startup context. Produce list
of startup practices.

Case study (13 startups).
Qualitative interviews as
data.

III Artifact-
building &
Artifact-
evaluating

Develop card-based software engi-
neering method for AI ethics.

Action research (various
types of organizations,
incl. 27 student teams).

IV Theory-cre-
ating

Study decision-making in software
startup context. Create typology of
startups based on decision-making
logics.

Case study (40 startups).
Qualitative interviews as
data.

V Artifact-
building &
Artifact-
evaluating

Develop card-based software engi-
neering method for startups.

Action research (43
startups).

Article I is a qualitative study. It features a study of 102 student teams

utilizing the Essence Theory of Software Engineering. This is a theory-testing
study where Essence is evaluated in a student setting. As data, we utilized course
reports written by the teams where they, among other things, discussed their use
of Essence during the project.

Article II is another qualitative, theory-testing study where Essence is
evaluated. In Article II, Essence is evaluated through startup practices. The study
itself focuses on startup practices, using empirical data and an existing list of
practices to compile a list of common startup practices. These practices are then
inserted into the framework of the Essence alphas to evaluate whether these
alphas fit the alphas of the Essence kernel as is, or whether additional alphas are
required to make Essence more suitable for the startup context.

Article IV is a qualitative, theory-creating study. Using interview data from
40 startups, we conduct a thematic analysis of the data in order to understand
decision-making in relation to SE decisions. As a result, we propose a taxonomy
of software startups based on decision-making logics.

46

Articles III and V are similar methodologically. Both articles utilize an AR
approach to develop and test an artifact (method) in a practical setting. The
methods, in terms of how they are presented, are also similar. Both methods are
card-based, the layout of the cards in both methods is very similar, and both
methods were originally going to be described using Essence. Because of this,
lessons learned could be shared between these two studies taking place
simultaneously between 2019 and 2021. In terms of content, however, the
methods are different: Article III presents a method for implementing Artificial
Intelligence (AI) ethics in practice, and Article V presents a method for early-
stage software startups.

In the following subsections of this section, I describe the utilized research
methods and data collection and analysis methods in more detail. While doing
so, I also discuss in more detail how they were used in the articles of this
dissertation.

3.3 Case Study

Case studies are common qualitative research methods. In IS, the qualitative case
study has historically been the most common qualitative method (Orlikowski
and Baroudi, 1991; Alavi and Carlson, 1992). According to Yin (2002) case study
as a method can be defined as follows: “a case study is an empirical inquiry that
investigates a contemporary phenomenon within its real-life context, especially
when the boundaries between phenomenon and context are not clearly evident.”
Case studies are best suited for answering ‘how’ and ‘why’ questions in terms of
research questions (Yin, 2002).

When discussing case study research as a method, a ‘case’ is the unit of
study (Myers, 1997). In the context of organizational research, a case is typically
a company. Case study, as a research method, can be utilized in conjunction with
various data collection and analysis methods. Qualitative interviews are
commonly used to form the bulk of the data used in case study research. They
can be supplemented with various documents (emails etc.) or observation. Case
study research takes no stance on the underlying etymological philosophy,
although some recommend specific etymological approaches to case study
research (e.g., Yin 2002 is a proponent of positivist case studies).

Case studies vary greatly in depth. A case study may consist of a single
interview with one respondent for each company. Some case studies, on the other
hand, may comprise multiple interviews with multiple respondents per case
company, with the interviews sometimes conducted with years in-between to
gain a longitudinal understanding of some phenomenon concerning the case
company. Some case studies only feature one case company. These are referred
to as single case studies, whereas case studies with multiple cases are, fittingly,
considered multiple case studies.

In this dissertation, I utilized case study research in Articles II and IV. In
both studies, semi-structured interviews were the primary empirical data used.

47

In addition, we utilized some observation data and document data as supporting
data in Article IV.

In Article II we had 13 software startup cases. Data from these cases were
collected through thematic interviews. Most cases had one respondent who was
interviewed once, while one case had two respondents and one case had three
respondents who were interviewed once. All case startups included in the study
had at least three employees and software played a role in their core business
value.

In Article IV we contacted 306 startups to ask them to participate in the
study. After excluding startups that did not meet our selection criteria, or were
not interested in participating, we were left with 40 case startups. To gather
suitable data, we utilized the following five selection criteria to select our case
startups: (1) the startup has at least two full-time members, so that their MVP
development is not individual activities, (2) the startup has operated for at least
six months, so that they have had time to accrue relevant experience, (3) the
startup has at least a first running prototype, so that their prototyping practices
can be discussed, (4) the startup that has at least an initial customer set, i.e., first
customer payments or a group of users, so that it has reached some milestones of
progress, and (5) software is a central part of the core business value of the startup.

3.4 Action Research

Action Research dates back to the Second World War. It has its roots in practice,
having been as a way of conducting social research in practical settings.
Specifically, AR was initially used to study extremism and radical thought such
as anti-Semitism and right-wing extremism in real-world settings. Rather than
focusing on individuals from a psychological point of view, AR looked at groups
of people and group dynamics, i.e., organizations. Since then, AR has become a
method commonly seen in organizational research in general, as well as IS.

In brief, modern AR is focused on solving organizational problems. In IS,
AR has been seen as a way conducting practical research that would benefit
practitioners out on the field. AR is participatory in that the researcher and the
organization that is the unit of the study collaborate in various ways in order to
address the problems the organization is facing (or the problem the researcher
wants to solve).

The AR tradition in IS largely draws on the influential paper of Susman and
Evered (1978), where they argue for the relevance and rigor of AR. Susman and
Evered (1978) consider AR a cyclical or iterative process with distinct phases.
These iterations vary in length and may not always include all the phases,
however, depending on the research context at hand. The cyclical model for AR
proposed by Susman & Evered (1978) is illustrated below. IS scholars have built
on the cyclical model of Susman & Evered (1978) to make it, they argue, better
suited for IS research. In particular, Davison et al. (2004) discuss what is referred

48

to as Canonical Action Research in IS, and which has become the common choice
for AR in IS.

In this dissertation, I utilized AR in two of the papers included: Article III
and Article V (which are discussed in more detail in the fourth section of this
dissertation). In Article III we present a method for AI ethics, and the paper was
later on expanded upon in Vakkuri et al. (2021), where the method description is
more robust given that it is a journal publication, allowing for more pages. The
method is developed using AR. In Article V, we develop a software startup
method using AR.

In both papers, we utilize the Action Research model of Susman and Evered
(1978) as a base while supplementing it with the additions of Davison et al. (2004)
and their Canonical Action Research. These two approaches are not mutually
exclusive. Rather, Davison et al. (2004) add more detail and guidelines to the
original AR process described by Susman and Evered (1978).

In both articles, the method proposed in the article is developed over
multiple AR cycles. In Article III, we develop the ECCOLA method over five AR
cycles and two years. In Article V, we develop the Startup Cards over four AR
cycles and four years. Both methods are deployed and tested in practical settings
multiple times over these AR cycles.

3.5 Data Collection and Analysis Methods

The first subsection of this section discusses qualitative interviews, which were
utilized in multiple articles included in this dissertation. The second subsection
discusses thematic analysis, which was used to analyze data in three of the five
articles.

3.5.1 Qualitative Interview

The interview is the most common data collection method in qualitative research
(Myers & Newman, 2007). It is used in qualitative research across disciplines,
including SE and IS. Interviews are commonly used in organizational research,
given that organizations are entirely reliant on the humans that comprise them.
For example, studies focusing on project management often carry out interviews
with project managers and upper management. The interactive nature of the
interview makes it possible to ask case-specific questions from a respondent, or
to direct the interview into new directions if considered beneficial or necessary
(Alshenqeeti, 2014), unless conducting a structured interview – rare as they are.

Interview data can be qualitative or quantitative, although quantitative
interviews are rarely used. In most cases interviews are used to collect qualitative
data. Qualitative interview data can be collected using structured, semi-
structured, or unstructured interviews. In a structured interview, a specific set of
questions is prepared beforehand, and these same questions, word for word, are
asked from each respondent. This set of questions are referred to as the interview

49

instrument. In a semi-structured interview, the interview instrument is not
exhaustive. The interview instrument of a semi-structured interview is more akin
to a guideline that directs the interview but does not dictate it entirely. This leaves
room for further questions that can be used to collect additional data from the
respondents. For example, if a particular respondent is very knowledgeable
about one theme in the interview, this theme can be discussed in more depth with
that particular respondent. Finally, it is debatable if unstructured interviews exist
at all, or whether they are simply less structured semi-structured interviews. An
unstructured interview would be an interview without an interview instrument
or pre-determined questions, but arguably a researcher always has some
questions or themes in mind before an interview. As such, it could be said, rather,
that semi-structured interviews can vary in how structured they are.

Data from qualitative interviews is utilized in two papers in this
dissertation. Qualitative interviews were used to collect all the empirical data in
Articles II and IV. In both cases, the interviews were used as a part of a multiple
case study of software startups.

In Article II, we interviewed 13 software startups. The interviews were
carried out as semi-structured interviews, using a thematic interview approach.
With technical respondents, we utilized an interview instrument with more
technical questions related to software development practices. With less technical
respondents, such as founders with exclusively a business background, we
utilized an interview instrument built around the alphas of the Essence Theory
of Software Engineering (see Section 2.5).

As the aim of the study was to validate an existing list of startup practices
(from Dande et al., 2014) and to supplement it with new ones if possible, utilizing
two interview instruments contributed to a better triangulation of data, as
suggested by Langley (1999) in the context of process data. In this case, focusing
solely on technical SE aspects could have omitted some less technical practices,
and vice versa.

After the interviews, the data was transcribed, and the transcripts were
used for data analysis. The data was analysed using thematic analysis as
discussed by Cruzes and Dybå (2011). Thematic analysis, also used in Article I
and Article IV to analyse data, is discussed in following subsection.

For Article IV, we contacted 306 startups for interviews. After excluding
startups that did not meet our selection criteria, or were not interested in
participating, we collected data from 40 software startups. To gather suitable data,
we utilized the following five selection criteria to select our case startups: (1) the
startup has at least two full-time members, so that their MVP development is not
individual activities, (2) the startup has operated for at least six months, so that
they have had time to accrue relevant experience, (3) the startup has at least a
first running prototype, so that their prototyping practices can be discussed, (4)
the startup that has at least an initial customer set, i.e., first customer payments
or a group of users, so that it has reached some milestones of progress, and (5)
software is a central part of the core business value of the startup.

50

Before setting up the interviews, we designed an interview instrument for
the semi-structured interviews. The one used in Article IV was modified from an
existing interview instrument used to gather data on pivots in software startup.
This modified instrument was piloted with startups and adjusted as needed
before being utilized to collect the data for the study. After finalizing the
interview instrument, it contained a number of pre-planned, guiding questions
for each interview. Past these pre-planned questions, the semi-structured
interviews would proceed in a case-specific manner based on the answers.

Subsequently, the interviews were transcribed by a third party organization
based on the recordings. The resulting 313 pages of transcripts were used for data
analysis. The data was analyzed using thematic analysis, which we discuss in the
next section of this section.

Typically, when interviews are used in organizational research, the
selection of the respondents warrants consideration. In some cases, the
researchers may have to select their respondents based on their point of access
(i.e., how, or rather, through whom they enter the organization) and whom it lets
them interview. For example, in large, multinational corporations, getting to
interview the CEO may be impossible without personal contacts. On the other
hand, the CEO may not always be the best person to answer questions in the first
place, depending on the topic being studied. A CEO might seem like the person
with the most knowledge about the company overall, but in the case of larger
organizations, various experts may be better suited to answer more specific
questions about the company, or e.g., questions about one specific project.

In the case of startup research, as is the case in this dissertation, these issues
are often not as prevalent. Startups typically exhibit flat organizational structures
and often have small teams as well (Paternoster et al. 2014). This often makes it
easier to set up interviews with founders, as well as CEOs and other key
personnel in practice. This also means that CEOs and founders have more in-
depth knowledge about the entire company on a ground level. In Article II for
example, all the interviews were conducted with CEOs or founders. However,
the choice of a respondent can still be important, as a non-technical founder may
not be able to answer technical questions about SE in the company.

3.5.2 Thematic Analysis

Thematic analysis is a common method for data analysis in empirical SE and is
“used for identifying, analyzing, and reporting patterns (themes) within data in
primary qualitative research” (Cruzes and Dybå, 2011). Thematic analysis is
common for analyzing qualitative data across fields of science. Braun & Clarke
(2006) propose six steps for carrying out thematic analysis:

1. familiarizing with data,
2. generating initial codes,
3. searching for themes,
4. reviewing themes,
5. defining and naming themes, and

51

6. producing the report.

This process is the standard for thematic analysis. Thematic analysis may or may
not utilize an existing framework for devising the codes and/or themes (Cruzes
& Dybå 2011).

Thematic analysis was used to analyze data in three papers in this
dissertation: Articles I, II, and IV. In Article I it was used to analyze data from 102
course reports written by student teams during a practical SE project course, one
report per team. In Article II it was used to analyze thematic interview data
collected from 13 software startups. In Article IV it was used to analyze semi-
structured interview data from 40 software startups. All three articles followed
the six-step-process of Braun & Clarke (2006).

In Article I, thematic analysis was utilized due to large volume of data, and
because we had no pre-conception of how the students may have felt about using
Essence. In the 102 reports analyzed for the paper, the parts relating to the use of
Essence were analyzed. While most of the report contents were other course
deliverables, each report contained a section on the use of Essence. This section,
while otherwise freeform, was to describe: (1) what they thought was good about
Essence, (2) what they thought was bad about Essence, and (3) how they had
utilized Essence during their course project.

We utilized an inductive approach where the codes arose from the data.
These reports were initially read while making notes and saving quotes in a
separate document. At the same time, the initial codes were formulated
iteratively based on the report contents. This process was then iterative as the
codes became final, with older, already read reports re-read and updated with
new codes. Once all the reports had been coded and no more codes were
considered relevant, the codes were arranged into four high-level themes:
difficult or resource-intensive to learn (Essence), inexperience (of the team), way-
of-working and method prison, and progress control. These themes captured the
main findings of the study and were used to structure the reporting of the
findings in Article I.

In Article II, we utilized thematic analysis to analyze interview data. As the
goal was to uncover novel practices, in addition to validating existing ones listed
in Dande et al. (2014), we utilized an inductive approach to support the elicitation
of new practices. First, the data was read in its entirety to gain an overview of the
data, and to begin formulating codes. Then, the interview transcripts were coded
one by one. Finally, the codes were arranged into themes that were relevant
across interviews. In Article II, the purpose of the thematic analysis was to
uncover new practices while providing context for the practices (with e.g., codes
such as prototype). Practices discussed by two or more case startups were
considered prevalent enough to be included into the list of practices presented in
this paper.

In Article IV, we used thematic analysis to a be able to produce a model
with higher-order themes describing some facets of how software startups
develop software. We utilized two coding systems. First, we developed a coding
scheme for SE activities by using the Software Engineering Body of Knowledge,

52

SWEBOK (Bourque and Fairley, 2014). This resulted in seven codes: P0. SE
(general), P1. Requirement Engineering, P2. Product Design, P3. Software
Construction, P4. Software Testing, P5. Software Maintenance, and P6. Software
Process Management. Secondly, we developed a coding scheme for effectuation-
driven and causation-driven business logics. There were 4 code categories and 18
codes in total for effectuation, and 4 code categories and 17 codes in total for
causation. These codes were generated by applying a descriptive coding
technique to identify entrepreneurial logic dimensions across the cases, as
suggested by Ruseson & Höst (2009).

While analyzing the data we looked at these two types of codes in
conjunction. We were interested in seeing how these two types of business logics
were applied to SE decisions. As such, in addition to looking at decisions made,
we utilized the two coding schemes to analyze decision-making related to
different types of SE events. In Article IV, we also utilized a mixed research
approach where we quantitatively analyzed the qualitative data, placing much
emphasis how many times each code appeared (and in conjunction with which
codes etc.) to propose the startup typology based on decision-making presented
in the paper.

Overall, inductive approaches were used in these studies due to software
startup research still being a relatively new research area (Unterkalmsteiner et al.,
2016; Klotins et al. 2018). Inductive research where conclusions are drawn
through a bottom-up exploration of evidence (data) is well-suited for such
research and is a common approach in empirical SE (Seaman, 1999; Wohlin and
Aurum, 2015; Ayala et al., 2018; Khurum et al., 2015).

53

In this section, each article included in this dissertation is summarized. There are
five subsections, one for each article. For each article, the subsection includes a
description of the research objectives of the study, the findings of the study, and
an explanation of how the article in question is connected to the dissertation.

4.1 Article I: The Essence Theory of Software Engineering –
Large-Scale Classroom Experiences from 450+ Software
Engineering BSc Students

Kemell, K.-K., Nguyen-Duc, A., Wang, X., Risku, J., & Abrahamsson, P. (2018).
The essence theory of software engineering: large-scale classroom experiences
from 450+ software engineering BSc students. In Product-Focused Software
Process Improvement, PROFES 2018 (pp. 123-138). Lecture Notes in Computer
Science, 11271. Springer, Cham.

Research Objectives
The Essence Theory of Software Engineering is intended to provide any
organization with tools to create their own ways-of-working (methods), as
method tailoring is common practice in the industry. However, out on the field,
Essence is primarily utilized by large, mature software organizations. There is (or
was at the time) little research on using Essence in a startup or student setting.
The goal of this paper was to understand whether students could utilize Essence
in an educational project setting and learn something about method tailoring in
the process. As method tailoring is common in the industry and following
methods by the book is less common, understanding method tailoring and tools
used to do so corresponds to industry needs. The research objectives of the study
were summarized into two research questions: (1) How useful do bachelor level
students find Essence? (2) What are the challenges in adopting Essence,

4 OVERVIEW OF THE ARTICLES

54

specifically for inexperienced software developers, and what could be done to
make its adoption easier?

Findings
The key finding of this paper was that student teams were successfully able to
utilize Essence, even though Essence is aimed at established software
organization. In more detail, we summarized our findings from this study as
follows:

• Essence can teach students new methods and practices by encouraging
them to study them in order to tailor their own methods using Essence.

• Essence encourages students to adjust their way of working based on the
SE context at hand as opposed to following existing methods by the book.

• Essence helps students structure their way of working in a practical setting.
• Essence is difficult to learn. Better tutorial resources for Essence are

needed to make it easier to adopt.

Connection to the Dissertation
Originally, the study in Article I was conducted to see if and how Essence would
work outside its intended context of large industry organizations. Essence has
not seen widespread industry adoption (SEMAT, 2018) and the use of Essence is
typically looked at in large or multinational software organizations. We wanted
to see if student teams could independently utilize Essence. More specifically, the
purpose was to see whether this was possible in a student context before using
Essence in a startup context, as a part the original plans for Article V, where the
method of Article V was to be described using Essence. As the students were able
to utilize Essence successfully to some extent, this paper, in 2018, served as a
motivation to continue the originally planned research where Essence played a
larger role.

However, while the results demonstrated that students could successfully
utilize Essence to some extent, one of the key findings of the paper was also that
Essence was difficult to learn. Later, together with the lessons learned in Article
III, this contributed to the method presented in Article not being described using
the Essence language.

Additionally, the use of students in Article I also warrants some discussion
from the point of view of this dissertation. As mentioned, the purpose of Article
I was to evaluate the suitability of Essence outside the context of large industry
organizations first and foremost. For this purpose, the use of student teams is
arguably justified, as they provide an environment that is certainly different from
that of large industry organizations. Additionally, I argue that the student teams
in Article I are reasonably startup-like environments.

A SE student team working on a practical SE project shares many of the
characteristics Paternoster et al. (2014) associate with software startups. Namely,
student teams also exhibit the following characteristics: small team, one product,
flat organization, low-experienced team, and little working history. These are
characteristics commonly associated with startups, and as such, much like how a
student may have extensive industry work experience, so can a startup developer,

55

but on average they would seem to apply to both. Time pressure also applies to
both, but for the student team it is related to course deadlines rather than, for
example, company financials.

In this light, I argue that Essence being difficult to learn for student teams
is also relevant from the point of view of startups as well. If students, who were
instructed to study Essence as a part of their studies, found Essence difficult to
learn, it is unlikely that startups battling time pressure and a lack of resources
would be willing to devote resources towards doing so. This finding already
made us decide on a low level of Essence conformance for the initial version of
the method of Article V in 2018. Higher levels of Essence conformance were
attempted in Article III, on the other hand, which cemented my decision to lessen
the role of Essence in the method of Article V.

4.2 Article II: Software Startup Practices – Software Development
in Startups Through the Lens of the Essence Theory of
Software Engineering

Kemell, K.-K., Ravaska, V., Nguyen-Duc, A., & Abrahamsson, P. (2020). Software
startup practices – software development in startups through the lens of the
Essence theory of software engineering. In PROFES 2020: 21st International
Conference on Product-Focused Software Process Improvement, Proceedings
(pp. 402-418). Springer. Lecture Notes in Computer Science, 12562.

Research Objectives
The philosophy behind the Essence Theory of Software Engineering is that
methods consist of practices. In order to model methods, one should first describe
practices. There are various practices already described in the Essence language
that can be found in the Essence Practice Library (Ivar Jacobson International,
n.d.). However, these existing practices are not focused on startups. To facilitate
the utilization of Essence in the startup context, and to better understand
software development in software startups, this study looked at the practice use
in software startups. More specifically, the objectives of this study were to (1)
find out what practices are commonly used by software startups and (2) to study
how the seven alphas of Essence fit the context of software startups, and whether
additional alphas would be needed to accommodate common software startup
practices. By producing a list of practices commonly used by software startups,
we wanted to create a list of practices that could then be utilized to create
methods for software startups with Essence.

Findings
We built on an existing list published as a work product from a Finnish project,
using empirical data from qualitative interviews to validate said list while adding
new practices as they were uncovered. Building on the list, we propose 76 startup
practices that can be used to build methods using Essence. Additionally, we

56

argue that the business aspect is more closely intertwined with SE in startups
than other types of organizations. As such, when utilizing Essence for startups,
including new alphas related to business could be beneficial. Such new alphas
could be, for example, business model, funding, and marketing. These should be
under a new, fourth area of concern: business. However, these changes are not
formally carried out in the paper and remain an open future research direction –
or a practical implication for the users of Essence.

Connection to the Dissertation
Article II provides insights into how software startups develop software by
studying individual work practices. The aim of the dissertation was, originally,
to study Essence in the startup context and to ultimately produce a version of the
Essence kernel tailored for software startups. However, along the way, Essence
became an obstacle in the process. Article I already highlights the difficulty of
adopting Essence, and this is further seen in Article III, as is discussed next.
Instead of simply learning to use the new method, if it is described in Essence, its
users will first have to learn to use Essence, which, as discussed in Article I, is not
simple, especially for novice developers such as startup practitioners.
Nonetheless, though the method in Article V is not a version of Essence, nor
formally described using the Essence language anymore, this paper provides
building blocks for using Essence in the startup context. Practices, in Essence, are
used to describe methods, and so, by building a list of startup practices, we
produced a list of building blocks for method engineering in this context.

4.3 Article III: ECCOLA – A Method for Implementing Ethically
Aligned AI Systems

Vakkuri, V., Kemell, K. -K., & Abrahamsson, P. (2020). ECCOLA - a method for
implementing ethically aligned AI systems. In Proceedings of the 2020 46th
Euromicro Conference on Software Engineering and Advanced Applications
(SEAA), 2020, pp. 195-204, doi: 10.1109/SEAA51224.2020.00043.

Research Objectives
The goal of the paper was to develop a method for implementing AI ethics. AI
ethics is a very topical field following recent process on AI. However, the field
has been active primarily in terms of theoretical discussion focused on defining
AI ethics through various principles. Empirical studies, on the other hand, are
lacking. To remedy this situation, we conducted a series of empirical studies in
order to understand the current state of the field (Vakkuri, Kemell &
Abrahamsson, 2019; Vakkuri et al., 2020; Vakkuri et al., 2022). Based on these
studies, we concluded that there was a need for further tooling to bridge the
evident gap between research and practice in the area. To do so, we set out to
devise a method for implementing AI Ethics: ECCOLA. In this paper, we

57

presented the first published version of the ECCOLA method, which was
developed by using Action Research.

Findings
The paper proposes a method, ECCOLA, for implementing ethics in AI. The
method was developed iteratively by utilizing Action Research (AR). Over the
multiple AR cycles, the method was improved based on the data collected. The
paper presents the first public version of the method (found online on Figshare
via Vakkuri, Kemell & Abrahamsson (2020)). The method presents a notable
contribution in the field of AI ethics, which had been characterized by a lack of
actionable tools to implement ethics in practice.

Connection to the Dissertation
Article III presents an exercise in method development. Its role in this
dissertation is its relevance to Article V. The lessons learned from Article III
contributed to Article V in various ways – and, in fact, vice versa. These two
method development endeavors ran in tandem between 2018 and 2021 and
lessons learned from one often influenced the other early on.

These shared lessons learned were possible due to the similarities the two
endeavors shared. Specifically, (1) both methods are card-based method and share
various high-level design decisions, (2) both methods were developed through a
cyclical AR process, and (3) both methods were originally intended to be
described using the Essence language. While the contents of the cards were
different, with one method being an AI Ethics method (Article III) and one being
a software startup method (Article V), lessons learned could be utilized in
relation to the card layout and how the cards are utilized in practice. As both
methods were developed using an iterative AR approach, the methods were
changed iteratively based on these lessons learned.

Originally, we planned on describing both methods using the Essence
language. Though the results of Article I already indicated that Essence was
likely to be difficult to adopt, this alone did not deter us from this decision. The
earlier versions of ECCOLA (Article III) were still described using Essence.
However, as we tested these initial versions of ECCOLA, we noticed that the
teams using ECCOLA were having issues with the Essence elements on the cards.
The teams were having issues utilizing ECCOLA because they also had to learn
Essence to do so, and the teams that struggled to grasp Essence were having
difficulties using the cards. We felt that this added needless complexity to the
method adoption process.

Consequently, we began to lessen the role of Essence in ECCOLA
incrementally, and ultimately it became minimal. This was a decision that carried
over to the method of Article V. Nonetheless, ECCOLA and the method in Article
V were ultimately still devised using the philosophy behind Essence: the practice
of essentializing practices in order to create methods from practices.

Aside from lessons learned related to Essence, the joint method
development processes of Articles III and V contributed to each other in terms of
the card layout and the overall design of the method. In the end, the cards of both

58

ECCOLA and the Startup Cards of Article V share a similar layout. The textual
contents of the cards of both methods are split into three categories, two of which
are directly shared between methods (‘motivation’ and ‘what to do’). Moreover,
both methods share various high-level design decisions: (1) both methods are
modular (i.e., a subset of the cards can be selected on a case-by-case basis), (2)
both methods work in conjunction with existing SE methods, (3) both methods
support iterative development, and (4) being modular, neither method proposes
a strict process that has to be followed each time, iteratively or not.

In this fashion, Articles III and V are ultimately closely linked together.
Lessons learned from one contributed to the other between 2018 and 2021. Article
III was later expanded on, and the extended version was published in Journal of
Systems and Software (see Vakkuri, Kemell et. al (2021)).

4.4 Article IV: The Entrepreneurial Logic of Startup Software
Development – A Study of 40 Software Startups

Nguyen-Duc, A., Kemell, KK. & Abrahamsson, P. (2021). The entrepreneurial
logic of startup software development: a study of 40 software startups. Empirical
Software Engineering, 26(91).

Research Objectives
Startups are characterized, among other factors, by the strong influence key
personnel hold over the companies. Due to the small team sizes, CEOs and CTOs
exert particularly large influence over startups. As a result, much of the decision-
making in startups, as well as their success, hinges on these entrepreneurial
personalities. Though extant studies in business disciplines recognize the
influence of entrepreneurial characteristics over companies, including startups,
it has scarcely been studied in SE. In this paper, we studied how SE-related
decisions are made in software startups. In doing so, we utilized two
entrepreneurial logic theories from entrepreneurship literature – effectuation and
causation – to categorize decisions made in software startups. More specifically,
the research objectives of the study were summarized in two research questions:
(1) How do entrepreneurial logics apply to SE activities in startups? (2) How do
entrepreneurial logics apply to software product development at the company
level?

Findings
The primary finding of the study was the typology for startups that is based on
decision-making characteristics. We proposed that startups could be classified
into Type One (effectuation-dominant), Type Two (mixed logic), or Type Three
(causation-dominant) startups. By classifying startups into these categories, it is
easier to reason about their SE decision-making by acknowledging the
characteristics of each type. Startups can, however, change category as they
operate, and as such a Type One startup is not guaranteed to stay Type One

59

indefinitely. As founders and CEOs exert notable influence over startups, it is
possible that shifts in their decision-making tendencies also reflect in their
startups.

Connection to the Dissertation
SE-related decision-making is closely related to method and practice use.
Understanding how SE decisions are made in startups helps us understand why
startups choose to work in certain ways. However, our findings regarding
decision-making in this study alone could not yet provide ways of utilizing this
three-point typology for software startups to influence method and practice
related decisions in startups.

On the other hand, in terms of this dissertation, the most interesting
findings from this paper were the following observations: (1) Many startups are
not successful in learning from their MVPs (due to the effectuation-driven
behaviour). MVPs are not used for learning purposes and are reused for different
purposes and in different scenarios, and (2) Testing can be minimalistic and
effectuation-driven unless the core value proposition is quality (e.g., in the form
of safety in safety-critical areas such as healthcare).

These findings were used to guide the creation of the method. First,
stressing the importance of learning is important in a method for software
startups. We have done this in the Startup Cards method. Secondly, though
quality cannot be forgotten entirely, it is not a foremost priority for most software
startups, which is also reflected in the method.

4.5 Article V: Startup Cards – A Method for Early-Stage Software
Startups

Kemell, K.-K., Nguyen-Duc, A, Suoranta, M. & Abrahamsson, P. (2022). A card-
based method for early-stage software startups. Submitted to a Journal for
Review.

Research Objectives
Startups struggle to utilize existing SE methods. These methods are aimed at
mature software organizations and fail to account for the unique context of
software startups. In the absence of methods suited for startups, startups utilize
singular Agile practices or simply develop software ad hoc. To remedy this
situation, we propose a method for early-stage software startups that contains
key software startup practices. This method, the Startup Cards, is created with
key software startup challenges and anti-patterns in mind in order to help
startups remedy these issues. The method is develop using Action Research (AR),
over the course of four Action Research cycles where it is utilized in a practical
setting by startup teams. More specifically, the method is developed in an action-
based entrepreneurship course (Rasmussen & Sørheim, 2006), or a learning
"through" entrepeneurship course (Sirelkhatim & Gangi, 2015) where student

60

teams work on real startups as startup teams. Based on data from its use, the
method is iteratively improved during the AR process.

Findings
Article V presents a method, the Startup Cards, for early-stage software startups.
The method takes on the form of a deck of 17 cards, with each card containing
one practice. The Startup Cards are intended to help startups tackle key startup
challenges. The cards describe key software startup practices that are based on
academic and practitioner literature. The method has been iteratively developed
over the course of four years, with improvements made based on data from its
utilization by startup teams. Article V presents the first published version of the
method.

Connection to the Dissertation
This article presents the main contribution of this dissertation. The main objective
of this dissertation was to produce a method for early-stage software startups.
That method is presented in Article V.

61

This section presents the results and contributions of this dissertation, as well as
the threats to their validity and their limitations. In Section 5.1, the results of the
articles and thus the dissertation are summarized and further split into
knowledge areas in the process. In Section 5.2, the threats to validity of the stud-
ies of this dissertation are discussed. These threats are approached through the
four aspects of validity discussed by Runeson & Höst (2009): construct validity,
internal validity, external validity, and reliability. Then, in Section 5.3, I discuss
the practical and theoretical implications of the results (contributions). Section
5.4 concludes this section with a discussion on the limitations of the dissertation.

5.1 Results

This subsection discusses the results of this dissertation. While discussing the
results, some observations and contributions are highlighted as Primary
Empirical Contributions (PECs). These are numbered. Aside from providing
concise summaries of the results of the articles, the PECs then act as a framework
for the contributions section (Section 5.3). In Section 5.3, their implications are
discussed in relation practice and existing scientific literature.

5.1.1 The Essence Theory of Software Engineering in a Student and Startup
Context

Though ultimately the method develop in Article V was not described formally
using Essence, many of the results of this dissertation are nonetheless related to
Essence. Articles I and II in particular present results related to Essence, among
other results. Similarly, though the Startup Cards presented in Article V are not
formally described using Essence, utilizing them with Essence can be done with
some extra effort in binding them to the Essence kernel.

5 RESULTS AND CONTRIBUTIONS

62

Article I studied Essence in the context of a large number (n=102) of student
projects, with each project having a team of students working on it. At the time
of its publication, it was one of the few Essence studies focused on an educational
context using empirical data. Since then, a few more Essence papers focused on
education have been published. While Essence is first and foremost a tool for
software companies that lets them describe methods and practices using the
Essence language, and to keep track of progress on the project by using the
Essence kernel alongside any custom-tailored Essence alphas, Essence can also
be useful in teaching students the idea of method tailoring. If, as the authors of
Essence argue (Jacobson et al., 2012; Jacobson & Stimson, 2018) one problem out
on the field is that organizations are stuck in so-called method prisons, i.e., stuck
using methods unsuited for the current context simply because that is the way
they are used to doing things, educating future professionals to avoid this type
of thinking may be helpful as a long-term remedy.

However, based on Article I, it also seems Essence is difficult to adopt,
especially for novice software developers such as students. Essence is a heavy
tool that necessitates learning the language and the kernel, and as a result is more
complex than a pure modelling language such as UML. Moreover, there are (or
were at the time) few tutorial resources available. If reading a book 300+ pages
long is the only way to learn to use the tool, its adoption can become a daunting
task. Past this difficult adoption, though, it seems that Essence can be helpful
even for more novice software developers. The kernel helps keep track of
progress on the project, while the language can be used to better grasp the
method being used in order to make changes to it. In our study, we look at
students mainly using SCRUM, and utilizing Essence to describe SCRUM gives
them a way of modifying SCRUM to better suit their project context. In this
fashion, Essence can encourage critical thinking when it comes to method use.

From this I derive the first two PECs of this dissertation:

PEC1 Students may be taught the idea of method tailoring through Essence.
(Article I)

PEC2 Essence is difficult to learn. (Article I)

A large part of using Essence is the process of essentializing practices and
methods and describing them with the Essence language. While this can be done
in-house for project-specific practices and methods, Essence encourages the
creation of collections of practices, or methods, for public use. This can be done
e.g., through the Essence Practice Library (Ivar Jacobson International, n.d.). In
Article II, we compile an extensive list of startup practices. This list is categorized
under the Essence alphas, and can serve as a basis for describing these practices
formally by using the Essence language. Moreover, we look at how the practices
fit under the Essence alphas by categorizing them into the seven alphas. In the
process, we propose new potential alphas for startups that future research may
look into.

Our findings regarding Essence in Article II are summarized in these two
PECs:

63

PEC3 The Essence kernel would need additional alphas to better cover the
various startup practices more focused on business elements. (Article II)

PEC4 The startup practices listed in Article II provide ample building blocks
for describing startup practices using Essence. (Article II)

Finally, in Article V, we propose a method for software startups: the Startup
Cards. Due to our findings in Article I and Article III, the method is not formally
described with the Essence language. Aside from what was already discussed in
this section in relation to Article I, in Article III we develop a method for AI ethics:
ECCOLA. ECCOLA, too, was originally described using Essence. However,
during the Action Research process, through which we developed ECCOLA, we
begun to think that Essence was only making the adoption of the method more
complex than it needed to be, and ultimately opted to not use Essence to describe
the method. As a result, using these lessons learned, the Startup Cards also do
not use Essence.

Our findings related to Essence in the context of method development are
summarized by the following PEC:

PEC5 Because Essence is difficult to learn, describing a method with Essence
adds an extra layer of complexity to method adoption when its users not
only have to learn to use the new method, but also how to use Essence.
(Article III and V)

Despite this being the case, much like ECCOLA, the Startup Cards are still
built on the idea of essentializing practices (discussed in Section 2.5). Moreover,
the Startup Cards in Article V are colour-coded into the three existing Essence
areas of concern (Customer, Solution, and Endeavor), as well as a potential fourth
area of concern: business (based on the results of Article II). With some effort on
the parts of its users, the Startup Cards can be used as a formal Essence method.

PEC6 The Startup Cards for Early-Stage Startups provide a card-based method
that can be described with Essence, although additional work to make it
Essence conformant is needed. (Article V)

5.1.2 Work Practices and Decision-Making in Software Startups

Startups struggle to utilize existing SE methods, as these methods are aimed at
larger organizations. Existing research argues that startups largely develop
software using singular Agile practices (Paternoster et al., 2014) or even ad hoc.
In Article II, we look into what these practices are. We take an existing list of
practices from Dande et al. (2014), validate it with empirical data from 13 startups,
and propose additional practices based on our data. These 76 practices give us a
clearer picture of how startups work in practice past the more general, higher-
level descriptions found in existing papers, such as that of Paternoster et al. (2014)
and Giardino et al. (2016).

These practices are varied. When inserted into the context of Essence and
its seven default alphas, they were split as follows: opportunity (7), stakeholders
(4), requirements (11), software system (10), work (3), team (11), way-of-working

64

(15). Additionally, 15 were considered to not be well-suited for any existing
Essence alpha. These 15 practices were business-related and financial practices,
such as practices related to funding (e.g., ’fund it yourself’). To summarize the
contribution of Article II, the following PEC is formulated:

PEC7 The list of startup practices produced in Article II provides insights into
how startups work in practice and can help startups pick up new work
practices. (Article II)

Work and work practices and closely related to decision-making. In
addition to providing further insights into practice and method use in startups,
Article IV focuses on decision-making. Not much is known about the logic
behind decision-making in startups in existing literature. To better understand
why and how decisions are made in startups, particularly in relation to SE, we
studied decision-making in software startups in Article IV. To find a suitable
framework for explaining this phenomenon, we looked at business literature for
a framework, as decision-making in business organizations in general is much
more commonly studied. As a result, we utilize two business logics to investigate
decision-making in Article IV.

Causal Logic and Effectual Logic are well-known ways of conceptualizing
decision-making in business contexts. In Causal Logic, one has a pre-determined
goal that one works towards by acquiring the needed resources or tools to
achieve that goal. Causal logic is about planning and executing that plan while
avoiding unexpected contingency to what extent possible. As Sarasvathy (2001)
puts it, “to the extent we can predict the future, we can control it”. Effectual Logic,
on the other hand, is more reactive. It is about selecting between several possible
goals with an existing set of resources at hand: “to the extent we can control the
future, we do not need to predict it” (Sarasvathy, 2001).

In software startups, requirements elicitation, negotiation, and
management in particular are mainly effectuation-driven processes. Causation is
mostly used for certain activities that are more detailed and plan-based, such as
requirement breakdown, estimation, analysis, and validation when the
requirements are already known, at least to some extent. Similarly, when it comes
to software design, causation is mostly seen in technical architectural activities in
the form of optimization, with architecture-related decisions made after careful
planning and with consideration in relation to trade-offs. On the other hand,
much of the software design otherwise is driven by effectuation. Overall, from a
business perspective, software design is driven by effectuation, while from a
technical perspective it can be more causation-driven and plan-based.

This is summarized in the following PEC:

PEC8 In startups, business-related decisions in SE are driven by effectuation,
while technical SE decisions are more commonly driven by causation.
(Article IV)

Testing, both system and user acceptance testing, are often causation-driven.
However, effectuation-driven testing is often applicable for demonstration.
Software maintenance is typically opportunistic and dealing with Technical Debt

65

(TD) is effectuation-driven. Technical debt occurs when short-term gain is
prioritized over long-term sustainability in software development, resulting in a
situation where these decisions that prioritized short-term gain in the past
necessitate rework or refactoring in the future. It is common for startups to
simply abandon existing systems they develop early on that end up riddled with
technical debt instead of attempting to fix them. To summarize:

PEC9 Technical debt is common in startups and startups often simply abandon
existing systems plagued by high degrees of technical debt as opposed
to attempting to fix them. (Article IV)

In terms of practices and methods, startups are characterized by self-
defined, adaptive and opportunistic workflows. With less formalized work
processes being typical earlier on, practices and processes usually evolve through
the startup lifecycle. In other words:

PEC10 Early-stage startups seldom use textbook methods and common
practices. (Article IV)

However, these are generalizations and individual startups may differ in
how they make decisions. To this end, startups can be categorized according to
their decision-making logics. First are effectuation-dominant startups, which are
the most common type of startups. These startups focus on internal resources
and social capital. They typically focus on speed over quality and e.g., accept TD
in order to move quickly. Secondly, and the second most common type of startup,
is the mixed-logic startup. These startups operate under less uncertain conditions
are may be spin-offs of established companies or startups that have already
established themselves a customer base. These startups more commonly utilize
traditional SE processes and practices, as their product development happens in
a more predictable context. Thirdly and finally, some startups may be causation-
driven, although such startups were not observed in our study in Article IV. These
startups would focus on long-term and analytics-driven approaches in mostly
using causal logic to make decisions.

The following two PECs summarize these findings:

PEC11 Startups can be categorized into effectuation-dominant startups, mixed-
logic startups, and causation-driven startups based on how they make
decisions. (Article IV)

PEC12 Most startups are effectuation-dominant. While mixed-logic startups are
also common, causation-driven startups seem exceedingly uncommon.
(Article IV)

5.1.3 Method: Startup Cards for Early-Stage Startups

The main result of this dissertation is the method in Article V: the Startup Cards
for Early-Stage Startups. The method is a deck of cards, with each card describing
one startup practice. The cards are based on existing literature, both academic
(white) literature and practitioner (grey) literature (e.g., Ries 2011). These cards

66

focus on helping early-stage startups validate their ideas and solutions. They
highlight the importance of making decisions based on data and changing course
when that data so suggests.

There are 17 cards in total in the method. Each card is split into three parts:
(1) motivation (i.e., why is this practice important), (2) what to do, and (3)
common mistakes. Additionally, each card lists references as further reading. As
the space on the cards is limited, the cards encourage their users to look deeper
into the topic elsewhere, if and when needed. The full list of cards with brief
descriptions is found in Table 2 below, while one of the cards is highlighted as
an example in Figure 7. The method in its entirety is found as an appendix
(Appendix I).

TABLE 2. Overview of the startup cards

Card Title Description
1 Appealing Idea Advice for idea generation.
2 Great Pitch Advice for presenting the idea (“pitching”) briefly.
3 Validating the Appealing Idea Advice for idea validation.
4 Get the Right Team Together Emphasizes the importance of the startup team.
5 Create a Business Model Advice for creating a business model.
6 Mapping the Competition Advice for understanding the competition in the

target market.
7 Establish Your Initial Way-of-

Working
Jacobson et al. 2012; Paternoster et al. 2014.

8 Validating the Potential Solu-
tion

Advice for solution (product/service) validation.

9 Frequent Early Pivots Emphasizes the importance of pivoting (changing
direction) when the idea of some part of it starts
looking unviable.

10 Utilize Metrics Advice for utilizing data in the form of metrics in
various ways.

11 Minimum Viable Product (in
One Day)

Advice for using MVPs to validate the idea and so-
lution.

12 Startup Spirit Emphasizes the importance of having the mindset
of an entrepreneur.

13 The Learn-Measure-Build
Loop

Further advice for using MVPs in a data-driven
manner.

14 Calculate the Financial Metrics Advice on how to better convince potential inves-
tors with financial numbers.

15 Manage Scope Advice for handling requirements and scope.
16 Work With Your (Future) Us-

ers
Emphasizes the importance of involving the user
in the development process to what extent possi-
ble.

17 Make it Stable Emphasizes the importance of basic quality even
when aiming for fast time-to-market as a startup.

67

The cards do not form a strict process, although some activities are more
relevant for earlier stage startups that are still working on figuring out the
specifics of their initial idea, while others are more relevant to startups already
working on a software solution to address their business idea. Each card is
standalone, although the cards occasionally refer to other cards. In this fashion,
the cards encourage their users to treat the cards as a checklist of issues to tackle,
focusing on what they feel is the most relevant at any given time.

FIGURE 7. Card example from the method: startup card 2

68

Each card contains ideas on how to tackle the topic of the card. Sometimes, these
come in the form of questions, e.g., “have you considered [thing]?” when no best
practice is available. In some cases, the cards propose good or best practices. In
this fashion, the cards provide ideas for how to address the topics in them. Ideally,
the users of the cards would look further into the topics by using the related
literature on the cards or through other resources, if needed, as the cards are A5-
sized, limiting the amount of information they are able to contain.

The final result of this dissertation can be summarized as follows:

PEC13 The Startup Cards for Early-Stage Startups method provides a way for
startups to improve their way-of-working through the use of the cards.
(Article V)

5.2 Validity Threats

In this section, the threats to validity of the articles of the dissertation are
discussed. This section is structured so that each of the five articles has its own
subsection for validity threats. As such, there are five subsections in this section.

5.2.1 Article I

In Article I, we had 102 student teams utilize Essence (Jacobson et al., 2012) while
working on a practical SE project. The data used for this study came in the form
of a subset of the course deliverables. Alongside other course material the student
teams delivered at the end of the course was a brief survey on their use of Essence.
In the report, the students were asked to discuss what was good about Essence,
what was bad about Essence, and how they had utilized Essence during their
project.

As the data collection relied on self-reported use, we were unable to confirm
the extent of Essence’s utilization among the teams. Whether the teams really had
utilized Essence to tailor a method, if they so claimed, remained unknown if they
did not include such content into their report. On the other hand, in many cases
it was possible to determine based on their responses whether the team had at
least understood the specification or not. For example, some teams would discuss
Essence as a method. Additionally, as the course deliverable was a report written
by each team rather than each individual student, it is possible that the Essence
section was simply left to the student(s) that most engaged with Essence or best
understood it, as opposed to representing the entire team.

Moreover, as the teams were not required to use Essence in any specific
manner, or at all, the utilization of Essence varied across the teams. The only
common Essence-related task during the course was that the teams were asked
to re-construct their current way of working approximately halfway through the
course, using practices an online library (Ivar Jacobson Practice Library) to do so.
After describing their current way of working, the teams were asked to modify it

69

as they best saw fit based on their team’s experiences with the project up until
that point. Indeed, the reported Essence experiences in many of the reports
revolved around this common task, pointing to little Essence use past it. As such,
the reported use experiences of some of the teams were more limited than those
of others, and may not have included much experiences in using Essence as far
as its project management aspects (alphas, alpha states) are considered.

Other potential threats to validity stem from how Essence was introduced
to the course and the student teams. Essence was introduced through a lecture.
As such, if the students nonetheless considered Essence difficult to learn, this was
after being given an introductory lecture on the topic. In addition to the
introductory lecture, the students were also introduced to the Ivar Jacobson
Practice Library in a guided manner. The library contains established practices
described using Essence, which can be used as building blocks when tailoring or
creating methods with Essence. Individuals trying to learn to use Essence
without such a guided introduction would likely have an even more difficult
time, especially in the absence of accessible tutorial resources.

5.2.2 Article II

In Article II, we conducted a qualitative case study on work practices in software
startup. The aim was to understand how startups work, as well as to evaluate the
suitability of the Essence Theory of Software Engineering in the startup context.
In terms of the latter objective, the goal was to evaluate how the uncovered
startup practices would fit the context of the Essence kernel and its alphas, and
whether new alphas would potentially be needed to account for all the practices.
Qualitative interviews were used to collect data from 12 startups.

The level of abstraction in describing practices is a potential threat to
validity. In many cases, a practice could be further broken down into more atomic
practices for further detail. For example, the Minimum Viable Product can be
considered a practice. Yet different types of MVPs, either as categories of MVPs
or even singular types of MVPs, could be considered practices as well. In this
fashion, some information is generally omitted when describing practices, as one
has to choose between detail and comprehensiveness. In the case of Article II,
some of the practices could be further split into multiple, more atomic practices.

In Article II, the number of cases presents a potential threat to validity. A
point of full saturation was not reached with 12 cases, even though it is arguably
a satisfactory number of cases in case study research. For example, Eisenhardt
(1989) considers five cases sufficient for novel research areas. Nonetheless, new
practices would continue to emerge from the cases, and some practices that were
not prevalent enough (only 1 case out of 12) were omitted from the list. It would
seem that continuing to add more cases would have resulted in an even more
extensive list of practices. Nonetheless, as the primary goal of the article was to
evaluate Essence in the startup context, this was not done. The list of practices in
Article II was considered sufficient for this purpose. Additionally, I argue that
the way we used an existing list of practices as the basis of the study, and which
we further validated in it, also dampens this threat to validity.

70

Finally, in this study, all the case startups were Finnish or Norwegian. This
is a potential threat to validity, as it is possible for the local Nordic startup culture
to differ from that of, e.g., the United States, resulting in different practices being
commonly used.

5.2.3 Article III

In Article III, we propose a method for implementing AI ethics in practice,
ECCOLA. ECCOLA was developed using AR, over the course of multiple
iterations, and using multiple types of data. During the process, ECCOLA was
tested in practice and the data from its use was utilized to iteratively improve the
method during the process.

Among other validity threats, I discuss what Kock (2004) considers the three
primary threats to AR: uncontrollability, contingency, and subjectivity.
Subjectivity becomes an issue when the researcher is deeply involved with the
client organization, and may result in bias, especially if there is potential for
conflict of interest. In Article III, various types of organizations and data were
involved in the AR process over multiple years. In the early iterations, data was
collected from a large number of student project teams, which presented little
risk of subjectivity over researcher involvement. The researchers were not closely
involved with the teams as they worked and only met the teams during weekly
mentor meetings. The students were encouraged to be critical of the method if
needed, and the feedback was considered honest and could be used to improve
the method. Later, further company data was used to keep working on ECCOLA,
but company data does not yet play a large role in Article III (as opposed to its
extended version, Vakkuri, Kemell et al. (2021)).

Contingency, as Kock (2004) discusses it, is largely synonymous with
external validity, or generalizability. One problem Kock (2004) associates with it
is that the body of data in AR is typically “broad and shallow,” referring to a
situation where there is a lot of data that may not be that valuable from a research
point of view. In Article III, the chosen research approach mitigates contingency
as a validity threat to some extent. The involved organizations were largely
student project teams, with the addition of one small real-world blockchain
project team. This made it so that there was no notable abundance of data present
in the organizations. Moreover, only data related to the use of the method was
collected and utilized. As such, data was collected with a clear goal in mind,
limiting the scope of the study.

As for uncontrollability, the research setting of choice served to give us
ample control over the organizations. Being student teams, the students would
have to follow the instructions of the teaching team and the researchers. As
opposed to studying a business organization, this gave us a large amount of
control over the teams. We instructed the teams to utilize the ECCOLA method,
which they consequently did, while also producing data of its use.
Uncontrollability did, thus, not present notable threats to validity in this context.

Additional threats to validity related to AI ethics could be discussed in
relation to Article III, but I feel that they are outside the scope of this dissertation.

71

Further discussion on validity threats for Article III can be found in its extended
journal version: Vakkuri, Kemell et al. (2021).

5.2.4 Article IV

In Article IV, we studied decision-making in software startups by means of a
multiple case study. As the theoretical framework for the study, we used causal
logic and effectual logic. The two types of logics were applied while looking at
decision-making related to SE decisions. As data, we used qualitative interview
data from 40 startups. Despite the data being qualitative in nature, we utilized a
quantitative approach to analyze it through thematic analysis. The number of the
codes was used to draw some conclusions in the article.

While discussing validity threats for this article, I refer to the framework of
Runeson & Höst (2009) who posit that there are four types of validity to consider:
construct validity, internal validity, external validity, and reliability. This
framework is not used through the entirety of this section due to its arguably
positivistic nature. For example, internal validity, as Runeson & Höst (2009)
consider it, suits relativistic case studies and action research poorly. On the other
hand, it is a suitable framework for discussing Article IV.

In Article IV, the research approach was built on existing studies. The
components used were based on existing research, and the measure of
entrepreneurial logic was based on approaches reported in previous studies
(Reymen et al., 2015; McKelvie et al., 2020). This was done to account for construct
validity. From the point of view of internal validity, this study did not aim to
determine relationships between the studied components, and as such this
particular threat to validity is not of notable concern in Article IV. Nonetheless,
the results of the study were compared to existing literature (e.g., Giardino et al.,
2016; Hevner & Malgonde, 2019; Melegati et al., 2019), and similarities, contrasts,
and explanations were examined in the light of extant research. These
comparisons can be argued to have enhanced the internal validity of Article IV.

In terms of external validity, or generalization, there are some threats to
validity. The number of cases in Article IV is high, 40 startups. This also made it
possible to look at the results more quantitatively. On the other hand, the case
startups were primarily based in Norway and the other Nordic countries. The
case startups were also mostly early or mid-stage startups and did not include
startups who had reached later, scale-up stages. The team sizes of the startups
included in the study were also small (between 3 and 20), and the case startups
were largely funded by bootstrapping. As such, these findings are most
applicable to startups with similar characteristics. Nonetheless, the large sample
size does provide Article IV with some generalizability. Moreover, as this was
not a longitudinal study, we cannot provide much discussion on how
entrepreneurial logics might change over time in the same startup as a result of
various factors.

To tackle validity threats related to reliability, all case startups were invited
to proofread the part of the results they contributed to, in order to ensure its
conformance with reality. We, the authors, also discussed the results over several

72

rounds of discussion after and during the data analysis, in order to tackle any
over-interpretation, and to account for alternative interpretations. The first and
second author also cross-checked the results of the analysis. The review process
of the journal Article IV was submitted to and accepted to, Empirical Software
Engineering, also helped increase the reliability of the study.

5.2.5 Article V

Article V presents the primary contribution of this dissertation: a method for
software startups. This card-based method was developed iteratively using an
AR approach. Over the course of 4 years, data from 40 startups was collected in
a practical course setting. Learning diaries formed the bulk of the collected data,
but other types of supporting data were also used. During the AR process, the
method was iteratively improved based on the data.

Among other validity threats, I discuss the three threats to AR validity
discussed by Kock (2004): uncontrollability, contingency, and subjectivity. In the
case of Article V, the threat of subjectivity has relatively little relevance for
multiple reasons. First, the AR process involved a large number of organizations,
resulting in more shallow interaction with the involved startups. In fact, and
secondly, the approach was rather hands-off, with the researchers only being
involved with the startups through weekly mentor meetings. As such, I retain
that the collection of the data, as well as the research process itself, was
sufficiently objective. It is only in the analysis phase that subjectivity a more
relevant threat to validity. In the article, some quantification was added to the
analysis of the otherwise qualitative data for a more transparent analysis.

Uncontrollability is a common potential threat in AR. The researcher never
has complete control over the research environment, it being an existing
organization. Moreover, sometimes change may happen in unexpected ways,
and in some cases the researcher may be forced to abandon the research site
before the study is finished. This is the primary threat in Article V, out of the
three discussed by Kock (2004). Due to the AR approach having been more
hands-off, the level of control over the organizations was lower as well. While
this was a conscious choice in research design, it nonetheless contributed to
uncontrollability in Article V. The startups in Article V were never required to
use the method, although its use was regularly advocated by introducing the
cards over the duration of the course, and occasionally the use of the method was
discussed during the mentor meetings. As such, in some cases, the startups
simply did not use the method – which was considered relevant data in and of
itself.

On the other hand, the course setting gave us more control over the AR
setting than we otherwise would have had. It made it simpler for us to stay in
contact with the startups on a regular basis. Moreover, the power dynamic
between the researchers (teachers) and the startup team members (mostly
students) made the startups more compliant. On the other hand, as established,
little control was ultimately exerted over the startups either way – as far as the

73

study of Article V is considered. As such, a degree of uncontrollability was built
into the AR design in Article V by not making the method use mandatory.

In Article V, contingency as a validity threat is tackled, to some extent, by
the chosen research design. First, the study is focused on the use of the method.
Only data related to the method is of interest. Secondly, we laid plans for data
collection so that only specific types of data were utilized. Thirdly, the
organizations in question, early-stage startups, are limited in personnel and do
not produce extensive amounts of documents early on that could be studied. This
is arguably more of an issue when studying, e.g., large, multinational business
organizations. Fourthly and finally, observation data was not utilized, and so,
with the used data limited to data created by the startups through their own
reporting, the data was more focused and concise.

Past these three types of generic validity threats for AR, however, the study
has its own unique threats to validity as well. Article V utilized student data.
However, while students are arguably less analogous to senior developers, for
example, they are not as different from startup practitioners demographically.
Startup practitioners are argued to be inexperienced, and similarly startups are
characterized by small team sizes and flat organization structures (Paternoster et
al., 2014; Giardino et al., 2014). Moreover, while most of the teams comprised of
students, the setting in Article V was a learning “through” entrepreneurship
(Sirelkhatim & Gangi, 2015) type course, where the students worked on startups
as though they were real, and some were indeed intended to be real startups. The
only difference between the real startups and the simulated ones were the
motivations of the teams. Even the teams who never intended for the startup to
become a real business (as a result of determining that it is unviable during the
course, or from the get-go) still interacted with real customers, developed a real
MVP, and in general carried out ‘real’ startup activities. As a result, I argue that
the use of student data poses less limitations in this context than it perhaps
otherwise would.

Finally, the data used in Article V presents some other threats to validity.
As mentioned in relation to contingency, the bulk of the data relied on self-
reported use through learning diaries. As such, the data we collected was varied
quantity and quality. Across 43 startups, however, I argue that we nonetheless
collected a satisfactory amount of data that let us evaluate the method. It should
be also noted, though, that the learning diaries were produced per team rather
than per student, and as such the sentiments in the learning diaries may
occasionally only present the sentiments of the person writing that part of the
learning diary, as opposed to the sentiments of the entire startup team.

5.3 Contributions

This section summarizes the practical and theoretical contributions of this
dissertation. The first subsection discusses the theoretical contributions. The
second subsection discusses the practical contributions. As mentioned in the

74

results section, the contributions of this dissertation are discussed through the
Primary Empirical Contributions (PECs) highlighted while discussing the results.
These have been organized into Table 3. While discussing the theoretical and
practical contributions of this dissertation, these PECs are referred to by number
(e.g., “PEC1 …”), as they provide a concise way of summarizing the key results
of the articles.

TABLE 3. Primary Empirical Contributions (PECs) of the dissertation

Description Article
1 Students may be taught the idea of method tailoring through Essence. I
2 Essence is difficult to learn. I
3 The Essence kernel would need additional alphas to better cover the vari-

ous startup practices more focused on business elements.
II

4 The startup practices listed in Article II provide ample building blocks for
describing startup practices using Essence.

II

5 Because Essence is difficult to learn, describing a method with Essence
adds an extra layer of complexity to method adoption when its users not
only have to learn to use the new method, but also how to use Essence.

III & V

6 The Startup Cards for Early-Stage Startups provide a card-based method
that can be described with Essence, although additional work to make it
Essence conformant is needed.

V

7 The list of startup practices produced in Article II provides insights into
how startups work in practice and can help startups pick up new work
practices.

II

8 In startups, business-related decisions in SE are driven by effectuation,
while technical SE decisions are more commonly driven by causation.

IV

9 Technical debt is common in startups and startups often simply abandon
existing systems plagued by high degrees of technical debt as opposed to
attempting to fix them.

IV

10 Early-stage startups seldom use textbook methods and common practices. IV
11 Startups can be categorized into effectuation-dominant startups, mixed-

logic startups, and causation-driven startups based on how they make de-
cisions.

IV

12 Most startups are effectuation-dominant. While mixed-logic startups are
also common, causation-driven startups seem exceedingly uncommon.

IV

13 The Startup Cards for Early-Stage Startups method provides a way for
startups to improve their way-of-working through the use of the cards.

V

5.3.1 Theoretical Contributions

Theory-wise, this dissertation furthers our understanding of how startups
develop software. Software startup research is still a young area of research in SE
(Unterkalmsteiner et al., 2016), and has not gained much ground in IS literature.
Articles II and IV both discuss software development in software startups. The
focus in Article II was on software startup practices while the focus in Article IV
was on decision-making in software startups, although with a focus on software-
related decisions (even in terms of business decisions). Article V, on the other
hand, presents a method for early-stage software startups.

75

In addition to software startups, this dissertation presents some theoretical
contributions in the context of the Essence Theory of Software Engineering. In
this regard, Articles I, II, III, and V present practical or theoretical contributions.
These practical and theoretical contributions can be considered rather
intertwined, depending on how one wants to utilize them.

The list of startup practices in Article II can be used to draw some theoretical
contributions, alongside the practical ones discussed in PEC7. However, these
mostly serve to support conceptions found in extant literature, and as such were
not highlighted as PECs. The practices in Article II were categorized using the
seven Essence alphas as follows, with the numbers indicating how many
practices were considered to belong under each alpha: opportunity (7),
stakeholders (4), requirements (11), software system (10), work (3), team (11),
way-of-working (15). Additionally, 15 were considered to not be well-suited for
any existing Essence alpha, as I discuss later in this section in relation to PEC3.

The frequency of some of these practices can be used to support existing
conceptions related to software startups. First, the team-related practices
emphasized the importance of the team. The majority of the case startups
discussed small team sizes focused on competence. This is in line with extant
research that considers the startup team the key resource in startups (Cooper et
al., 1994; Kemell, Elonen et al., 2020; Seppänen et al., 2017; Seppänen, 2020) and
many of the practices in Article II are also related to teams. Startups are typically
associated with a lack of resources (Paternoster et al., 2014), which makes the
team the one resource they do have. As the anecdotal wisdom in various startup
ecosystems posits, the team is more important than the idea, as ideas are only
worthwhile if a team can execute them. To this end, flat organization structures
and self-organizing teams were common practice. This is in line with Agile
literature that finds self-organizing teams beneficial in Agile (Karhatsul et al.,
2010).

Startups are also known to prefer various Agile practices instead of
textbook methods (Paternoster et al., 2014; Giardino et al., 2016. PEC10 also
highlights this based on Article IV, where we argue that based on our data from
that study, too, early-stage startup seem to work unsystematically and that even
these Agile practices only become more common later in the startup lifecycle.
Indeed, Agile, for example, is not well-suited for startups because it focuses more
on how to develop software while startups also struggle with what to develop and
why (Bosch et al., 2013). Eight of the 13 case startups in Article II also tailored
common agile practices to suit the culture and needs of their startup, with the
remaining five, then, seemingly not using any for the time being.

Practices related to scoping and MVP or prototype use were common in the
requirements-related practices of Article II. One of the startup anti-patterns of
Klotins et al. (2019) is related to scoping issues with MVPs, also highlighting the
importance of these practices. Startup literature in general, including that of
practitioner experts Ries (2011) and Blank (2013), discusses the importance of
focusing on the core features of the product in order to test it in practice as quickly
as possible.

76

Overall, Article II provides a detailed look into the practices utilized by
software startups. Existing studies mainly look at the bigger picture when
studying software development. For example, Giardino et al. (2016) propose the
Greenfield Startup Model to describe, on a high level of abstraction, how
software startups develop software. Paternoster et al. (2014) discuss software
development in software startups from the point of view of method use, focusing
on whether startups utilize methods or established practices at all, instead of
focusing on which practices they utilize. In comparison, Article II provides a
tangible list of practices utilized by software startups.

As was the case with some of the findings of Article II, some of the findings
of Article IV (PEC8; PEC9; PEC10) also support various findings in existing
literature, while also providing some new insights into these issues. Technical
debt is commonly associated with startups (Besker et al., 2018; Bosch et al., 2018;
Giardino et al., 2016). Article IV provides insights on how startups deal with
technical debt in practice. It seems to be common for startups to simply discard
existing systems or components riddled with technical debt instead of attempting
to refactor them (PEC9). Whether this is good practice or bad practice remains an
open question, however.

PEC8 provides both novel findings and validates existing research. In
existing literature, little is known about how and why decisions are made in
startups. According to existing research, startups are characterized, in this regard,
by the strong presence of entrepreneurial personalities, behaviors, decision-
making, and leadership (Bygrave et al., 1991). The small team sizes typically seen
in startups, along with other factors such as uncertainty, contribute to increasing
the influence key personnel such as the CEO or CTO have on the success of the
startup (Berg et al., 2018; Giardino et al., 2014; Paternoster et al., 2014). The
influence of entrepreneurial personalities have been discussed in extant literature
in IS (e.g., in Ojala 2015; 2016), but seldom in SE and in the startup context. In the
startup context, existing studies argue that the background of the entrepreneur
influences how MVPs are developed in the startup (Tripathi et al., 2018), and that
the founders of startups strongly influence how requirements engineering is
carried out (Melegati et al., 2019).

In this light, Article IV, with PEC8 and PEC11, provides a novel theoretical
contribution. These findings help us understand the logics behind decision-
making in software startups, through the lens of entrepreneurial logics, causation
and effectuation. However, on a general level, the prevalence of effectuation-
driven decision-making in startups can be considered to also validate existing
literature.

Traditional SE can largely be likened to causal logic. SE projects are seen as
a linear process with a clear goal, even if work inside the project is now often
carried out iteratively. Yet startups work in more tumultuous contexts
categorized, among other factors, by rapidly changing business and working
environments that are multiple-influenced (Giardino et al., 2014b, Giardino et al.
2016; Bajwa et al., 2017). Startups are also associated with a lack of resources and
time pressure (Paternoster et al. 2014). The startup context, thus, could be

77

assumed to be an environment to foster effectuation-driven decision-making,
which does seem to be the case (PEC8).

On the other hand, PEC8 also provides insights into how these two logics
are used in startups. Effectuation is the dominant logic behind business decisions,
while causation is common in software-related decisions. Perhaps causation is
prevalent in these types of decisions precisely because SE projects are often seen
linear processes with a clear goal – even when iterative approaches are used.
Existing SE approaches would also reflect this reality, and if startups try to utilize
existing practices to what extent they can, this might result in causation logics
becoming more prevalent in this context.

The main theoretical contribution of Article IV is the taxonomy for
categorizing startups based on decision-making logics. This provides a
framework that can be used to study startups in future studies. In the context of
the framework, we also argue that most startups are effectuation-dominant, and
that while mixed-logic startups are also common, causation-driven startups seem
exceedingly uncommon (PEC12).

In addition to these contributions related to software development in
startups, this dissertation presents multiple theoretical contributions related to
the Essence Theory of Software Engineering. The list of practices in Article II was
categorized under the Essence kernel alphas. In the process, we found 15
practices that were poorly suited for the existing alphas, resulting in PEC3.

PEC3 highlights the way business is closely intertwined with SE in software
startups, as with a single product, the entire business of a startup hinges on that
one piece of software. To this end, Klotins et al. (2019) also suggest that many
business-related issues in software startups may in fact stem from SE issues. In
traditional SE, software is usually developed in projects, although recently
continuous SE, SaaS, and DevOps blur the line between development and
operations and maintenance. It is now exceedingly rare for a software to be
‘finished’, as it is continuously developed further during its operational life.
Nonetheless, with startups being largely focused on developing one product,
business becomes directly linked with SE, as the viability of the company
depends on that one development endeavor. Thus, that one service is the
business. Similarly, early on, due to the flat organizational structure and small
team sizes commonly seen in startups (Paternoster et al., 2014), the developers
may also be closely associated with the individuals in charge of business
elements or may even be working on them as well (e.g., a programming-oriented
startup founder).

The Essence Theory of Software Engineering posits that its kernel includes
all the elements present in every single SE endeavor. However, for the startup
context, incorporating some business aspects may be necessary to achieve this.
While the alphas in the customer area of concern of the kernel (stakeholders,
requirements) do account for some business-oriented practices related to, e.g.,
validation, startups also engage in business model development. Finances and
funding are also important for startups, and are, in many cases, directly related
to the one software being developed (although it is also common for startups to

78

engage in commissioned projects unrelated to their actual, planned business to
provide themselves with an income early on etc.).

Based on Article II (PEC3), we propose a fourth, business-related area of
concern for Essence that would account for practices related to business model
development. These alphas could be, for example, funding, business model, and
marketing. However, Essence posits that alphas should be as orthogonal as
possible to avoid overlap (Ng, 2015). This poses challenges for devising new
alphas. Business or finance-related alphas might overlap with the ones in the
customer area of concern. When the software being developed is the business,
having the business model as an alpha has some overlap with requirements, for
example, and marketing activities are certainly also relevant from the point of
view of the existing stakeholder alpha. However, as Article II did not formally
develop these alphas, these are theoretical contributions that further research
needs to build on. In this regard, of course, it is certainly possible to simply use
business-oriented tools for the more business-related issues instead and to
consider them entirely out of scope of Essence even in the startup context,
although this, then, diminishes the value of Essence in that context.

Articles I, III, and V together present some theoretical and practical
contributions for Essence as well. Essence is difficult to learn (PEC2), and because
it is difficult to learn, describing a method with Essence adds an extra layer of
complexity to method adoption when its users not only have to learn to use the
method, but also Essence (PEC5). Arguably, this is mostly a practical contribution
of interest to those working on Essence or working with Essence. However, those
interested in utilizing Essence in research should keep these potential issues in
mind and think of ways to address them. This is also a theoretical contribution
in the sense that ways to use Essence in a more lightweight fashion could be
developed, although as Essence is an OMG standard (Object Management Group,
2018), notable changes to the specification are unlikely.

5.3.2 Practical Contributions

The primary practical contribution of this dissertation is the Startup Cards
method presented in Article V (PEC13). Using AR, the method has been
developed in a practical student project setting over the course of multiple
iterations. The method is discussed in more detail in Section 5.1.3 and Article V
and can be found in the appendix in its entirety. The method can help early-stage
software startups make better use of their resources by utilizing the established
practices described in the cards. The cards focus on highlighting the importance
of validating a business idea and the related software solution, as opposed to
working based on assumptions. As startups struggle to utilize existing SE
methods, this method may help startups work in a more systematic fashion.

As an additional contribution, the method also provides a framework for
teaching software startup entrepreneurship. It has been developed in a practical
startup entrepreneurship course and can arguably be used as a tool in other such
courses. The cards are not intended form a linear process in practical use (as, e.g.,
pivots can result in the need to repeat various activities), but the order in which

79

the practices are introduced can be used as a framework for teaching purposes.
The order of the cards is based on startup life cycle models (e.g., Wang et al.,
2016).

Finally, the version of the cards presented in Article V is the first version of
the cards to be published. In this version presented here, the focus of the method
has been on earlier stages of the startup life cycle, and on validation activities
specifically. The method, in this state, is intended to encourage startups to
validate their business idea before, and during, development, in order to help
determine whether the product or service has market potential, and in what
shape or form. The current card contents reflect this focus, and in terms of
validation activities, the method is considered complete based on our current
data and current understanding of software startup research.

On the other hand, while the method contains some SE practices, the
current set of cards is more focused on validation or requirements-related issues
as opposed to technical software issues. In this regard, moving further along the
startup life cycle, additional cards related to more technical development
activities could be proposed and included. Such cards are not included in this
initial version of the deck due to 1) potential scoping issues, and 2) the study
design of Article V. We studied early-stage startups in Article V, and few of the
startups proceeded with development past simple mock-up MVPs during the
study. While this provided a suitable setting for studying the validation-focused
card deck, it was not a suitable setting for studying software development issues
in startups. Additional cards related to more technical SE issues would be a
suitable addition for the method, as long as the scope of the method does not
become too large as a result. This is a potential future research direction we are
exploring.

In addition to the method, the list of practices compiled in Article II (PEC7)
can be useful for startups. The list contains 76 practices for startups. In addition
to serving as a starting point for describing startup practices using Essence
(PEC4), the methods can also provide startups with ideas on new practices to
pick up to support their work.

Originally, we planned on describing the methods in Articles III and V with
the Essence language. However, following the lessons learned in Article III, and
during the AR process in Article V itself (PEC5), the cards are no longer described
using Essence, although they retain some Essence elements. These include the
card-based nature of the method and the colour-coding on the cards, as well as
the idea behind essentializing practices in this fashion. Because of this, it is
possible to use the method via Essence, although this would require notable extra
effort on the part of its users (PEC6). The method assumes the existence of a
fourth, business-related area of concern, and has no alphas and alpha states of its
own.

To this end, PEC1 and PEC5 highlight Essence is largely a tool for
established and larger software organizations. As far as I am aware, many of the
companies utilizing Essence out on the field are indeed large multinational
organizations. Essence is a complex specification, and has its uses in method

80

engineering, but it seems to be best suited for experts of that area. Introducing
Essence to individuals or developers unfamiliar with modeling languages will
result in a steep learning curve, and whether this is worth it remains an open
question. In Article III and V, the Essence elements were simply confusing to the
users of the methods, even though the some of the users in Article III had a
rudimentary understanding of Essence. Based on this, I stress that describing
methods with Essence seems to only be useful for organizations already using Essence.
One cannot learn Essence by using an Essence method. Essence needs to be
studied.

As for studying Essence, PEC1 presents some practical contributions in the
context of Essence. Students can be taught the idea of method tailoring through
Essence. However, this is not something unique to Essence, and the idea of
method tailoring can certainly be taught by other means as well. In fact,
considering that Essence is difficult to learn (PEC1; PEC5), one must weigh
whether it is worth the effort to use Essence for this purpose. In the study of
Article I, we also saw some of the student teams remark that they could see the
value of Essence but felt that they could not fully utilize it due to their
inexperience and lack of knowledge on SE methods. Many of the students only
knew SCRUM, and teaching them to use Essence mostly resulted in them
devising various ScrumButs. These lessons learned, however, may have been
beneficial to them in the future.

To potentially address the difficult adoption of Essence, better tutorial
resources are needed. Moreover, Essence is described poorly in many of the
existing materials. The specification uses its own jargon which is difficult to
understand for potential new users. More concise and understandable
introductions to the specification are needed to facilitate its adoption, as we
discuss in Article I as well. In Article I, the student teams struggled to find tutorial
resources, and lamented the fact that seemingly the only way to really start
utilizing Essence was to read a 300-page-book full of Essence jargon. For example,
Essence still does not have a Wikipedia entry as of February 2022.

In terms of Essence, Article I also presents some practical implications. Most
importantly, Article I highlights the importance of good tutorial resources.
Students struggle to utilize Essence when the only way to familiarize themselves
with the notation and the kernel is to read a 300+ pages long book. Shorter, more
concise resources for beginners help newer users get into the topic. While more
Essence content has been published since the writing of Article I, there is still, e.g.,
no Wikipedia page for Essence. This can make the method seem difficult to
approach. On the other hand, past its potentially difficult adoption process,
Essence can be useful for teaching students about methods. Essence is built
around the idea of tailoring methods to suit the present context, which it can used
to teach. While some proponents of Scrum, for example, may argue that creating
ScrumButs is bad practice, tailoring methods to better suit the context at hand,
when done with careful consideration as opposed to simply omitting practices to
do less work, should not be treated as such.

81

Finally, it can be briefly noted that Article III presents a novel and valuable
contribution for AI ethics by proposing a method for implementing AI ethics in
practice. Thus far, AI ethics research has been characterized by a lack of empirical
studies. While this is valuable work, and this existing body of knowledge was
used to construct the ECCOLA method presented in Article III, there has been a
prominent gap between research and practice in the area. Article III is expanded
on in Vakkuri, Kemell, et al. (2021). However, this is out of the scope of this
dissertation, as the role of Article III in this dissertation were its lessons learned
in method engineering that supported the development of the early-stage startup
method presented in Article V.

5.3.3 Limitations

The primary limitation of this dissertation as a whole is that all the Articles
included (I-V) utilized qualitative research approaches. The generalizability of
qualitative research is always a potential limitation. Whereas quantitative results
are based on larger sets of data, qualitative research often generalizes, e.g., based
on a handful of case companies. However, in this dissertation, this limitation has
been mitigated to some extent with sizeable data sets – at least in the context of
qualitative research.

In Article I, we had data from over 100 student teams. In Article IV, we had
interview data from 40 case startups. In Article V, we developed the Startup
Cards method over the course of four years, using data from 43 startup teams.
The number of teams or startups in these three articles lends support to the
generalizability of the results. For comparison, Eisenhardt (1989) argues that, for
novel research areas, five cases, or even a single in-depth case, may be sufficient.
Software startups as a research area in SE is no longer particularly novel, but
neither is it particularly established (Unterkalmsteiner et al., 2016).

In Article II, we utilized data from 13 cases, which, compared to the
aforementioned articles, is far less. Indeed, the number of cases is a particular
limitation for Article II. A larger number of cases may see new practices emerge
using the same research approach, and the results of Article II are not at all
exhaustive.

Another limitation with Articles II and V is the lack of an established
definition for what is a startup. In the lack of such widely accepted definition, the
studies included any company that considered itself a startup. Thus, if imposing
a specific definition for what is a startup on the data sets of these two studies, one
might exclude some of the startups now included. In Article IV, we utilized a
specific set of criteria for case inclusion or exclusion. While one may disagree
with the criteria, they draw a clear line for what was or was not considered a
startup in Article IV. While this arguably is not a large limitation to the
generalizability of the results, it is useful to acknowledge that it can be difficult
to differentiate between startups and other business organizations in practice.

82

5.3.4 Future Research Suggestions

Articles II and V offer future research avenues for Essence in relation to software
startups. Article II provides initial evaluation of Essence in a startup context and
provides preliminary suggestions for new potential alphas. Future studies could
investigate whether these additional alphas really are needed, and if so, such
studies could propose such formal alphas. In Article II, we provide some starting
points for such a study. Article V, on the other hand, provides a method that was
originally described using Essence. However, during its development process,
the role of Essence was lessened. A future study could look at the method
through Essence to make the method more useful to those capable of utilizing
Essence. Article II provides a list of startup practices that can be expanded upon,
categorized, and otherwise further studied outside the context of Essence as well.

Article IV was a cross-sectional view into startups. There we no longitudinal
aspects to the study. As such, future studies could expand upon the findings of
Article IV by taking on a longitudinal approach. This would make it possible to
look into how and why shifts in decision-making logic happen as a result of
different changes to the startup context at hand. Additionally, future studies
could look into developing methods that take into account the largely
effectuation-driven approach to SE that software startups seem to exhibit.

83

YHTEENVETO (SUMMARY IN FINNISH)

Tässä väitöskirjassa tutkin ohjelmistokehitystä startup-yrityksissä. Väitöskirjani
tavoite oli paitsi auttaa meitä ymmärtämään paremmin miten startup-yrityksen
kehittävät ohjelmistoja, myös kehittää startup-yrityksille suunnattu ohjelmisto-
kehitysmenetelmä. Tämä menetelmä on tämän väitöskirjan pääasiallinen tulos ja
se on esitelty sen viidennessä artikkelissa.

Startup-yritykset eroavat monin tavoin muista yrityksistä myös ohjelmisto-
kehityksen suhteen. Startup-yritysten on muun muassa havaittu suosivan erilai-
sia lähestymistapoja ohjelmistokehitykseen. Ne eivät esimerkiksi juuri käytä
muiden yritysten suosimia ohjelmistonkehitysmenetelmiä vaan käyttävät kor-
keintaan yksittäisiä alalla hyväksi todettuja työkäytänteitä (good practice) ja
työskentelevät pitkälti niin kuin itse parhaaksi näkevät.

Valtaosa startupeista kuitenkin epäonnistuu. Nämä epäonnistumiset johtu-
vat useista eri tekijöistä. Olemassa olevassa tutkimuksessa on kuitenkin argu-
mentoitu, että moni epäonnistuminen johtuu muun muassa ohjelmistokehityk-
seen liittyvistä tekijöistä. Startup-yrityksillä on etenkin ongelmia vaatimusmää-
rittelyn kanssa. Monet startup-yritykset kehittävät ohjelmistoa, jolla ei välttä-
mättä ole lopulta mitään markkina-arvoa. Tällaiset ongelmat johtuvat usein siitä,
että startup-yritys ei ole tehnyt riittävää markkinatutkimusta tai ollut riittävästi
yhteydessä potentiaaliseen käyttäjäkuntaansa.

Tässä väitöskirjassa kehitetyn menetelmän tavoite on auttaa startup-yrityk-
siä välttämään muussa tutkimuksessa havaittuja haasteita ja huonoja käytänteitä.
Menetelmän on myös tarkoitus painottaa idean ja tuotteen validoinnin (valida-
tion) merkitystä. Menetelmä muun muassa rohkaisee käyttäjiään aktiivisesti tes-
taamaan oletuksiaan tuotteestaan ja ideastaan keräämällä dataa. Sen sijaan, että
startup-yritys kehittäisi tuotettaan keskenään, olisi tärkeää, että potentiaalista
käyttäjäkuntaa kuultaisiin jo aikaisessa vaiheessa. Toimimalla näin voisi olla
mahdollista huomata jo aikaisessa vaiheessa, että tuotteella ei välttämättä ole-
kaan kysyntää sen suunniteltujen käyttäjien keskuudessa.

Alun perin tämän väitöskirjan tarkoitus oli tutkia Essence-teorian (The Es-
sence Theory of Software Engineering) soveltuvuutta ohjelmistoalan startup-yri-
tysten kontekstiin ja muuttaa sitä paremmin siihen soveltuvaksi siltä osin kuin
olisi tarve. Lisäksi tavoitteena oli kehittää ohjelmistoalan startupeille suunnattu
ohjelmistonkehitysmenetelmä käyttäen Essenceä sen mallintamisessa. Essence
on käytännössä mallinnuskieli, jolla mallinnetaan työtapoja ja -menetelmiä. Mal-
linnuskielen lisäksi Essenceen kuuluu kuitenkin ns. kerneli (kernel), joka käytän-
nössä sisältää erilaisia rakennuspalikoita, joiden päälle ja joita käyttäen menetel-
miä Essencellä mallinnetaan.

Tutkimusprosessin aikana kuitenkin alkoi vaikuttaa siltä, että Essence ei ol-
lut sopiva työkalu tähän käyttötarkoitukseen. Artikkelissa I huomasimme jo, että
Essenceä oli vaikea oppia käyttämään. Kun artikkelissa kolme käytimme Essen-
ceä menetelmän kuvaamiseksi, huomasimme nopeasti, että menetelmää vaikea
oppia käyttämään. Käyttääkseen menetelmäämme, oli sen käyttäjien ensin opit-
tava käyttämään ja ymmärtämään Essenceä. Tämä teki menetelmän oppimisesta

84

huomattavan työlästä sen käyttäjille. Kehittäessämme tätä kolmannessa artikke-
lissa esiteltyä menetelmää iteratiivisesti, vähensimme Essencen roolia menetel-
män kuvaamisessa iteraatioiden välillä, kunnes lopulta sen rooli oli hyvin pieni.
Näiden tulosten perusteella päätimme myös olla käyttämättä Essenceä artikke-
lissa viisi esitellyn menetelmän kuvaamiseksi. Essence jäi näin ollen väitöskirjas-
sani lopulta pienempään rooliin kuin alun perin oli suunniteltu. Menetelmässä
on kuitenkin edelleen vaikutteita Essencestä.

Seuraavaksi käsittelen väitöskirjan tuloksia artikkelitasolla. Artikkelissa I
tutkimme Essencen soveltuvuutta pienempiin ohjelmistokehitysorganisaatioihin.
Essence on lähinnä suurten ohjelmistokehitysyritysten käytössä, vaikkei sitä yli-
päätään usein käytetä ainakaan toistaiseksi. Artikkelin yksi tutkimuksessa tut-
kimme opiskelijatiimien käyttökokemuksia Essencestä. Tutkimuksessa 102 opis-
kelijatiimiä käyttivät Essenceä osana käytännönläheistä ohjelmistokehitysprojek-
tia, jossa tiimit kehittivät ohjelmistoa yliopistokurssia varten. Tutkimuksen pe-
rusteella myös opiskelijatiimien onnistui käyttää Essenceä, mutta heidän oli kui-
tenkin vaikea oppia sitä käyttämään.

Artikkelissa II tutkii myös Essenceä. Tässä artikkelissa Essenceä tutkittiin
startup-yritysten kontekstissa. Käyttämällä pohjana muiden tutkijoiden luomaa
listaa startup-yrityksissä käytetyistä työkäytänteistä, loimme listan 76 startup-
yritysten käyttämästä työkäytänteestä haastattelemalla startup-yrityksiä. Listan
perusteella voimme ymmärtää paremmin, miten startup-yrityksissä kehitetään
ohjelmistoja. Lisäksi listaa katsottiin Essencen näkökulmasta. Tutkimuksen pe-
rusteella ehdotimme muutoksia Essenceen, jotka tekisivät siitä paremmin star-
tup-kontekstiin soveltuvan.

Artikkelissa III esittelemme menetelmän (ECCOLA) tekoälyn etiikan tuo-
miseksi käytäntöön. ECCOLAn kehityksestä opimme useita asioita, jotka auttoi-
vat viidennessä artikkelissa esitellyn startup-menetelmän kehittämisessä. Vas-
taavasti startup-menetelmän kehitys tuki ECCOLAn kehitystä samalla tavalla,
sillä kumpaakin menetelmää kehitettiin samaan aikaan vuosina 2018–2021. Mo-
lemmat menetelmät (1) käyttävät kortteja menetelmän esitystapana, (2) kehitet-
tiin syklistä toimintatutkimusta (Cyclical Action Research) tutkimusmenetel-
mänä käyttäen, (3) oli alun perin määrä kuvata käyttämällä Essenceä ja (4) ovat
modulaarisia ja tukevat iteratiivista ohjelmistokehitystä. Näin ollen menetelmien
kehitysprosessit tukivat toisiaan.

Artikkeli IV sen sijaan tutkii päätöksentekoa ohjelmistoalan startup-yrityk-
sissä. Tutkimuksessa käytettiin teoreettisena viitekehyksenä liiketoimintatutki-
muksen alalla käytettyä viitekehystä, jossa yritysten päätöksenteko jaetaan kehit-
tämislogiikkaan (effectual logic) ja suunnittelulogiikkaan (causal logic). Käytän-
nöllisenä esimerkkinä näiden havainnollistamiseksi käytettäköön kokkia, joka te-
kee ruokaa. Suunnittelulogiikkaan nojaava kokki katsoisi reseptistä tarvittavat
ainekset ja kävisi sitten kaupassa ostamassa ne. Kehittämislogiikkaan nojaava
kokki sen sijaan katsoisi ensin jääkaappiin ja päättäisi sitten tilannepohjaisesti,
mitä aikoo valmistaa. Vastaavaa tutkimusta ei ole juuri tehty startup-yritysten
kontekstissa, eikä etenkään ohjelmistokehitykseen liittyen startup-kontekstissa.

85

Artikkelissa IV tutkimme startup-yritysten päätöksentekoa ohjelmistokehityk-
seen liittyvissä päätöksissä tämän viitekehyksen näkökulmasta.

Tutkimuksen perusteella muodostimme typologian, joka jakaa startup-yri-
tykset kolmeen ryhmään sen mukaan, miten ne tekevät päätöksiä näiden kahden
päätöksentekologiikan näkökulmasta. Tämän typologian mukaan startupit voi-
vat olla (1) kehittämispainotteisia (effectuation dominant), (2) monilogiikkaisia
(mixed logic) tai (3) suunnittelupainotteisia (causation-dominant). Suurin osa
startupeista vaikuttaisi olevan kehittämispainotteisia. Monilogiikkaiset startupit
ovat myös yleisiä. Sen sijaan suunnittelupainotteisia startuppeja ei tutkimuksen
40:n startupin joukosta löytynyt. Lisäksi artikkelissa esiteltiin useita löydöksiä
liittyen startup-yritysten ohjelmistonkehitys-käytänteisiin.

Artikkeli V esitteli tämän väitöskirjan tärkeimmän tuloksen: startup-yrityk-
sille suunnatun ohjelmistonkehitysmenetelmän. Tämä menetelmä on korttipoh-
jainen menetelmä, jossa jokainen kortti esittelee yhden tärkeän aiheen tai suora-
naisen työkäytänteen. Korttipakassa on yhteensä 17 korttia. Kortit perustuvat
paitsi tämän väitöskirjan muihin artikkeleihin myös väittelijän muihin tutkimuk-
siin (joita esiteltiin luvussa 1.4) sekä tieteenalan muuhun tutkimukseen. Kortit
perustuvat myös muuhun startup-aiheiseen, asiantuntijoiden kirjoittamaan kir-
jallisuuteen akateemisen kirjallisuuden lisäksi.

86

REFERENCES

Abrahamsson, P., Suoranta, M., Lahti, S., & Kemell, K.-K. (2021). The Startup
Scratch Book : Opening the Black Box of Startup Education. In E. Klotins,
& K. Wnuk (Eds.), ICSOB 2020 : 11th International Conference of Software
Business (pp. 193-200). Springer. Lecture Notes in Business Information
Processing, 407. https://doi.org/10.1007/978-3-030-67292-8_15

Alavi, M. & Carlson, P. (1992). A Review of MIS Research and Disciplinary
Development. Journal of Management Information Systems, 8, 45-62.

Alshenqeeti, H. (2014). Interviewing as a Data Collection Method: A Critical
Review. English Linguistics Research, 3(1), 39–45.

Apa, C., Jeronimo, H., Nascimento, L., Vallespir, D., & Travassos, G. (2018). The
Perception and Management of Technical Debt in Software Startups. In:
Nguyen-Duc A., Münch J., Prikladnicki R., Wang X., Abrahamsson P.
(eds) Fundamentals of Software Startups. Springer, Cham, 61-78.

Ayala, C., Nguyen-Duc, A., Franch, X., Höst, M., Conradi, R., Cruzes, D., Babar,
M. A. (2018). System requirements-OSS components: matching and
mismatch resolution practices – an empirical study. Empirical Software
Engingeering, 23(6), pp. 3073–3128. https://doi.org/101007/s10664-017-
9594-1

Bajwa, S. S., Wang, X., Nguyen-Duc, A., & Abrahamsson, P. (2016). How Do
Software Startups Pivot? Empirical Results from a Multiple Case Study.
In: Maglyas A., Lamprecht AL. (eds) Software Business. ICSOB 2016.
Lecture Notes in Business Information Processing, vol 240. Springer,
Cham)

Bajwa, S., Wang, X., Nguyen-Duc, A., Abrahamsson, P. (2017). “Failures” to be
celebrated: an analysis of major pivots of software startups. Empirical
Software Engineering, 22(5), 2373–2408.

Baldridge, R., & Curry, B. (2021). What is a Startup? Forbes.
https://www.forbes.com/advisor/investing/what-is-a-
startup/#544a2a9a4c63

Berg, V., Birkeland, J., Nguyen-Duc, A., Pappas, I., Jaccheri, L. (2018). Software
startup engineering: A systematic mapping study. Journal of Systems and
Software, 144, 255-274.

Besker, T., Martini, A., Edirisooriya, L., Blincoe, K., & Bosch, J. (2018).
Embracing Technical Debt, from a Startup Company Perspective. In
Proceedings of the 2018 IEEE International Conference on Software
Maintenance and Evolution (ICSME), pp. 415-425.

Biyani, G. (2013). Explained: The actual difference between growth hacking and
marketing. http://thenextweb.com/insider/2013/05/05/the-actual-
difference-between-growth-hacking-and-marketing-explained/

Blank, S. (2013a). Four Steps to Epiphany. K&S Ranch.
Blank, S. (2013b). Why the Lean Startup-Up Changes Everything. Harvard

Business Review (May 2013).

87

Bohnsack, R., & Liesner, M. (2019). What the hack? A growth hacking taxonomy
and practical applications for firms. Business Horizons, 62(6), PP. 799-818.

Bosch, J., Olsson, H., Björk, J., & Ljungblad, J. (2013). The Early Stage Software
Startup Development Model: A Framework for Operationalizing Lean
Principles in Software Startups. LESS 2013. LNBIP. 167. 1-15.

Bourque P., & Fairley, R. E. (2014). Guide to the software engineering body of
knowledge (SWEBOK (R)): Version 30. IEEE Computer Society Press.

Braun, V., & Clarke, V. (2006) Using thematic analysis in psychology.
Qualitative Research in Psycholology, 3(2), 77–101.
https://doi.org/101191/1478088706qp063oa

Bubenko jr, J., (1986) Information System Methodologies - A Research View. In:
Information System Design Methodologies: Improving the Practise.
Proceeding of the IFIP WG 8.1 Working Conference, Noordwijkerhout, the
Netherlands, 5-7 may, 1986. (eds. T.W. Olle, H.G. Sol, A.A. Verrinj-Stuart)
North Holland Publishing Company, Amsterdam, pp. 289-318.

Carmel, E. (1994). Time-to-completion in software package startups. In
Proceedings of the 27th Hawaii International Conference on System
Sciences (HICSS), pp. 498–507. IEEE.

Clark, C. (2008) The impact of entrepreneurs' oral ‘pitch’ presentation skills on
business angels' initial screening investment decisions, Venture Capital,
10(3), pp. 257-279.

Conboy, K. (2009). Agility From First Principles: Reconstructing the Concept of
Agility in Information Systems Development. Information Systems
Research, 20. 10.1287/isre.1090.0236.

Cooper, A. C., Gimeno-Gascon, F. J., & Woo, C. Y. (1994). Initial Human and
Financial Capital as Predictors of New Venture Performance. Journal of
Business Venturing, 9(5), pp. 371-395.

Crowne, M. (2002). Why software product startups fail and what to do about it.
Evolution of software product development in startup companies. In
Proceedings of the 2002 Engineering Management Conference IEMC'02,
pp. 338-343, IEEE.

Cruzes, D. S., & Dybå, T. (2011). Recommended steps for thematic synthesis in
software engineering. In Proceedings of the 2011 Symposium on Empirical
Software Engineering and Measurement (ESEM), pp. 275-284, IEEE.

Dande, A., Eloranta, V. P., Kovalainen, A. J., Lehtonen, T., Leppänen, M.,
Salmimaa, T., ... Koskimies, K. (2014). Software startup patterns - an
empirical study. Tampereen teknillinen yliopisto. Tietotekniikan laitos.
Raportti-Tampere University of Technology. Department of Pervasive
Computing. Report; 4.

Davison, R., Martinsons, M.G., & Kock, N. (2004). Principles of canonical action
research. Information Systems Journal, 14(1), pp. 65–86.
http://dx.doi.org/10.1111/j.1365-2575.2004.00162.x.

Digital.ai (2020). 14th annual State of Agile report. Retrieved 28 Sep 2021 from
<https://stateofagile.com/#ufh-i-615706098-14th-annual-state-of-agile-
report/7027494>.

88

Donckels, R., & Segers, J. P. (1990). New Technology Based Firms and the
Creation of Regional Growth Potential: Theoretical Considerations and
Empirical Evidence for Belgium. Small Business Economics, 2(1), pp. 33-
44.

Essence in Practice (n.d.). What is Essence?
https://essence.ivarjacobson.com/services/what-essence

Eisenhardt, K. M. (1989). Building theories from case study research. Academy
of Management Review, 14(4), pp. 532-550.

Ellis, S., & Brown, M. (2014). Startup Growth Engines: Case Studies of How
Today’s Most Successful Startups Unlock Extraordinary Growth. E-Book.

Fagerholm, F., Guinea, A., Mäenpää, H., & Münch, J. (2017). The RIGHT model
for Continuous Experimentation. Journal of Systems and Software, 123,
292-305. 10.1016/j.jss.2016.03.034.

Feiz et al. (2021). Typology of Growth Hacking Strategies Along the Growth
Hacking Funnel. Iranian Journal of Management Studies, 14(2), pp. 331-
346.

Fitzgerald, B. (1996) Formalized systems development methodologies: a critical
perspective. Information Systems Journal, 6, pp. 3-23.

Fudickar, R., & Hottenrott, H. (2019). Public research and the innovation
performance of new technology based firms. The Journal of Technology
Transfer, 44, pp. 326-358.

Ghanbari, H. (2017). Investigating the causal mechanisms underlying the
customization of software development methods. Jyväskylä studies in
computing, 258, 2017. [Doctoral dissertation]

Ghanbari, H., Vartiainen, T., Siponen, M. (2018). Omission of Quality Software
Development Practices: A Systematic Literature Review. ACM Computing
Surveys, 51(2).

Ghezzi, A. (2018). Digital startups and the adoption and implementation of
Lean Startup Approaches: Effectuation, Bricolage and Opportunity
Creation in Practice. Technological Forecasting and Social Change, 146,
pp. 945-960.

Giardino, C., Bajwa, S. S., Wang, X., & Abrahamsson, P. (2015, May). Key
challenges in early-stage software startups. In International conference on
agile software development (pp. 52-63). Springer, Cham.

Giardino, C., Paternoster, M., Unterkalmsteiner, M., Gorschek, T., and
Abrahamsson, P. (2016). Software Development in Startup Companies:
The Greenfield Startup Model. IEEE Transactions on Software
Engineering, 42(6), 585-604.

Giardino, C., Unterkalmsteiner, M., Paternoster, N., Gorschek, T., and
Abrahamsson, P. (2014b). What Do We Know about Software
Development in Startups? IEEE Software, 31(5), pp. 28-32. doi:
10.1109/MS.2014.129.

Giardino, C., Wang, X., & Abrahamsson, P. (2014c). Why early-stage software
startups fail: a behavioral framework. In International conference of
software business (pp. 27-41). Springer, Cham.

89

GoodFirms Research (2019). Remarkably Useful Stats and Trends on Software
Development. https://www.goodfirms.co/resources/software-
development-research

Grant, D., Ngwenyama, O., & Klein, H., (1992) Validating ISD Methodologies
Within The Organizational Context: An Action Research Case Study.
Working paper series, Binghampton, State University of New York, 92-
215.

Graziotin, D., & Abrahamsson, P. (2013). A Web-based modeling tool for the
SEMAT Essence theory of Software Engineering. Journal of Open Research
Software, 1.

Gutbrod, M., & Münch, J. (2018). Teaching Lean Startup Principles: An
Empirical Study on Assumption Prioritization. In Software-intensive
business: start-ups, ecosystems and platforms: proceedings of the
International Workshop on Software-intensive Business: Start-ups,
Ecosystems and Platforms (SiBW 2018): Espoo, Finland, December 3,
2018.-(CEUR workshop proceedings; 2305) (pp. 245-253). RWTH Aachen.

Herttua, T., Jakob, E., Nave, S., Gupta, R., & Zylka, M. P. (2016). Growth
Hacking: Exploring the Meaning of an Internet-Born Digital Marketing
Buzzword. In: Zylka M., Fuehres H., Fronzetti Colladon A., Gloor P. (eds)
Designing Networks for Innovation and Improvisation. Springer
Proceedings in Complexity. Springer, Cham.

Hevner, A., & Malgonde, O. (2019). Effectual application development on
digital platforms. Electronic Marketing, 29(3), 407–421.

Ivar Jacobson International (n.d.). Essence Practice Library.
https://practicelibrary.ivarjacobson.com/start

Jacobson, I., Ng, P., McMahon, P. E., Spence, I., and Lidman, S. (2012). The
Essence of Software Engineering: The SEMAT Kernel. ACMQueue, 10, pp.
40-52.

Jacobson, I., & Stimson, R. (2018). Escaping Method Prison.
http://semat.org/news/-
/asset_publisher/eaHEtyeuE9wP/content/escaping-method-prison

Järvinen, P. (2001) On research methods. Juvenes-Print, Tampere.
Järvinen, P. (2004). Research Questions Guiding Selection of an Appropriate

Research Method. Hansen, Bichler and Mahrer (eds.), Proceedings of
European Conference on Information Systems 2000, 3-5 July. Vienna:
Vienna University of Economics and Business Administration, 2000. pp.
124-131

Karhatsu, H., Ikonen, M., Kettunen, P., Fagerholm, F., & Abrahamsson, P.
(2010). Building Blocks for Self-Organizing Software Development Teams
a Framework Model and Empirical Pilot Study. In Proceedings of the 2nd
International Conference on Software Technology and Engineering
(ICSTE).

Kemell, K.-K., Elonen, A., Suoranta, M., Nguyen-Duc, A., Garbajosa, J., Chanin,
R., Melegati, J., Rafiq, U., Aldaeej, A., Assyne, N., Sales, A., Hyrynsalmi, S.,
Risku, J., Edison, H., & Abrahamsson, P. (2020). Business Model Canvas

90

Should Pay More Attention to the Software Startup Team. In A. Martini,
M. Wimmer, & A. Skavhaug (Eds.), SEAA 2020 : 46th Euromicro
Conference on Software Engineering and Advanced Applications (pp. 342-
345). IEEE. Euromicro Conference on Software Engineering and Advanced
Applications. https://doi.org/10.1109/seaa51224.2020.00063

Kemell, KK., Evensen, A., Wang, X., Risku, J., & Abrahamsson, P. (2019). A
Tool-based Approach for Essentializing Software Engineering Practices. In
Proceedings of the 45th Euromicro Conference on Software Engineering
and Advanced Applications (SEAA2019), Kallithea-Chalkidiki, Greece,
2019, pp. 51-55.

Kemell, K.-K., Nguyen-Duc, A., Wang, X., Risku, J., & Abrahamsson, P. (2018).
The Essence Theory of Software Engineering : Large-Scale Classroom
Experiences from 450+ Software Engineering BSc Students. In M.
Kuhrmann, K. Schneider, D. Pfahl, S. Amasaki, M. Ciolkowski, R. Hebig,
P. Tell, J. Klünder, & S. Küpper (Eds.), PROFES 2018 : Product-Focused
Software Process Improvement : 19th International Conference,
Proceedings (pp. 123-138). Springer. Lecture Notes in Computer Science,
11271. https://doi.org/10.1007/978-3-030-03673-7_9

Kemell, K.-K., Ravaska, V., Nguyen-Duc, A., & Abrahamsson, P. (2020).
Software Startup Practices : Software Development in Startups Through
the Lens of the Essence Theory of Software Engineering. In M. Morisio, M.
Torchiano, & A. Jedlitschka (Eds.), PROFES 2020 : 21st International
Conference on Product-Focused Software Process Improvement,
Proceedings (pp. 402-418). Springer. Lecture Notes in Computer Science,
12562. https://doi.org/10.1007/978-3-030-64148-1_25.

Kemell, K.-K., Risku, J., Strandjord, K. E., Nguyen-Duc, A., Wang, X., &
Abrahamsson, P. (2020). Internal Software Startups : A Multiple Case
Study on Practices, Methods, and Success Factors. In A. Martini, M.
Wimmer, & A. Skavhaug (Eds.), SEAA 2020 : 46th Euromicro Conference
on Software Engineering and Advanced Applications (pp. 326-333). IEEE.
Euromicro Conference on Software Engineering and Advanced
Applications. https://doi.org/10.1109/seaa51224.2020.00061

Kemell, K.-K., Wang, X., Nguyen-Duc, A., Grendus, J., Tuunanen, T., &
Abrahamsson, P. (2018). 100+ Metrics for Software Startups : A Multi-
Vocal Literature Review. In S. Hyrynsalmi, A. Suominen, C. Jud, X. Wang,
J. Bosch, & J. Münch (Eds.), SiBW 2018 : Proceedings of the First
International Workshop on Software-intensive Business: Start-ups,
Ecosystems and Platforms (pp. 15-29). CEUR workshop proceedings, 2305.
RWTH Aachen University. Retrieved from http://ceur-ws.org/Vol-
2305/paper02.pdf

Khurum, M., Fricker, S., Gorschek, T. (2015). The contextual nature of
innovation – an empirical investigation of three software intensive
products. Information and Software Technolology, 57, pp. 595–613.
https://doi.org/101016/jinfsof201406010

91

Klotins, E. (2018). Software start-ups through an empirical lens: are start-ups
snowflakes?. In 1st International Workshop on Software-Intensive
Business: Start-Ups, Ecosystems and Platforms, SiBW 2018, Espoo,
Finland, 3 December 2018. CEUR-WS.

Klotins, E., Unterkalmsteiner, M., & Gorschek, T. (2018). Software engineering
antipatterns in start-ups. IEEE Software, 36(2), 118-126.

Klotins, E., Unterkalmsteiner, M., Gorschek, T. (2019). Software engineering in
start-up companies: An analysis of 88 experience reports. Empirical
Software Engineering, 24(1), 68-102.

Kock, N. (2004). The three threats of action research: a discussion of
methodological antidotes in the context of an information systems study.
Decision Support Systems, 37, 265-286.

Kon, Fabio and Cukier, Daniel and Melo, Claudia and Hazzan, Orit and Yuklea,
Harry, A Panorama of the Israeli Software Startup Ecosystem (March 1,
2014). Available at SSRN: https://ssrn.com/abstract=2441157 or
http://dx.doi.org/10.2139/ssrn.2441157

Kuhrmann, M. et al. (2021). What Makes Agile Software Development Agile.
IEEE Transactions on Software Engineering. doi:
10.1109/TSE.2021.3099532.

Langley, A. (1999). Strategies for Theorizing from Process Data. Academy of
Management Review, 24(4).

Lenarduzzi, V., & Taibi, D. (2016). MVP Explained: A Systematic Mapping
Study on the Definitions of Minimal Viable Product. In Proceedings of the
2016 42th Euromicro Conference on Software Engineering and Advanced
Applications (SEAA).

Linkner, J. (2017). Hacking Innovation: The New Growth Model from the
Sinister World of Hackers. Fastpencil Publishing.

Maine, E. (2008). Radical innovation through internal corporate venturing:
Degussa's commercialization of nanomaterials. R and D Management,
38(4), 359-371.

Maurya, A. (2012). Running Lean: Iterate from Plan A to a Plan That Works.
O'Reilly Media Inc.

McKelvie, A., Chandler, G., DeTienne, D., & Johansson, A. (2020). The
measurement of effectuation: highlighting research tensions and
opportunities for the future. Small Business Economics, 54(3), 689–720.

Melegati, J., Goldman, A., Kon, F., & Wang, X. (2019). A model of requirements
engineering in software startups. Information and Software Technology,
109, 92–107. https://doi.org/101016/jinfsof201902001

Melegati, J., Guerra, E., & Wang, X. (2022). HyMap: eliciting hypotheses in
early-stage software startups using cognitive mapping. Information and
Software Technology, 144. doi:
https://doi.org/10.1016/j.infsof.2021.106807.

Morris, M. H., Kuratko, D. F., & Covin, J. G. (2010). Corporate entrepreneurship
& innovation. Cen-gage Learning.

92

Mullins, J., & Komisar, R. (2009). Getting to Plan B: Breaking Through to a
Better Business Model. Harvard Business Review Press.

Myers, M. D. (1997). Qualitative Research in Information Systems. MIS
Quarterly, 21(2), pp. 241-242. MISQ Discovery, archival version, June 1997,
http://www.misq.org/supplements/. Association for Information
Systems (AISWorld) Section on Qualitative Research in Information
Systems, updated version, last modified: May 12, 2021.
www.qual.auckland.ac.nz

Myers, M., & Newman, M. (2007). The Qualitative Interview in IS Research:
Examining the Craft. Information and Organization, 17(1), 2-26.

Ng, P. (2015). Integrating software engineering theory and practice using
essence: A case study. Science of Computer Programming, 101, pp. 66-78.

Ng, P., & Huang, S. (2013). Essence: A framework to help bridge the gap
between software engineering education and industry needs. In
Proceedings of the 2013 26th International Conference on Software
Engineering Education and Training (CSEE&T), 2013, pp. 304-308, doi:
10.1109/CSEET.2013.6595266.

Ng, P., Huang, S., & Wu, Y. (2013). On the value of essence to software
engineering research: A preliminary study. 2013 2nd SEMAT Workshop
on a General Theory of Software Engineering (GTSE).

Nguyen-Duc, A., & Abrahamsson, P. (2016). Minimum Viable Product or
Multiple Facet Product? The Role of MVP in Software Startups. In: Sharp
H., Hall T. (eds) Agile Processes, in Software Engineering, and Extreme
Programming. XP 2016. Lecture Notes in Business Information Processing,
vol 251. Springer, Cham.

Nguyen-Duc, A., Seppänen, P., & Abrahamsson, P. (2015). Hunter-gatherer
cycle: a conceptual model of the evolution of software startups. In
Proceedings of the 2015 International Conference on Software and System
Process (ICSSP), pp. 199-203.

Nguyen-Duc, A, Shah, S. M. A., and Ambrahamsson, P. (2016). Towards an
Early Stage Software Startups Evolution Model. In Proceedings of the 42th
Euromicro Conference on Software Engineering and Advanced
Applications (SEAA), pp. 120-127, doi: 10.1109/SEAA.2016.21.

Nguyen-Duc, A., Wang, X., & Abrahamsson, P. (2017) What influences the
speed of prototyping? An empirical investigation of twenty software
startups. In Baumeister, H., Lichter, H., & Reinisch, M. (eds) Agile
processes in software engineering and extreme programming lecture notes
in business information processing. Springer International Publishing, 20–
36

Object Management Group (2018). Essence - Kernel and Language for Software
Engineering Methods. https://www.omg.org/spec/Essence/1.0/PDF

Ojala, A. (2015). Business models and opportunity creation: How IT
entrepreneurs create and develop business models under uncertainty,
26(5), 451–476.

93

Ojala, A. (2016). Discovering and creating business opportunities for cloud
services. Journal of Systems and Software, 113, 408–417

Orlikowski, W., & Baroudi, J. (1991). Studying Information Technology in
Organizations: Research Approaches and Assumptions. Information
Systems Research, 2(1), 1-28.

Osterwalder, A., Pigneur, Y., & Tucci, C. (2005). Clarifying business models:
origins, present, and future of the concept. Communications of the
Association of Information Systems, 15, 1–43.

Pantiuchina, J., Mondini, M., Khanna, D., Wang, X., and Abrahamsson, P. (2017)
Are Software Startups Applying Agile Practices? The State of the Practice
from a Large Survey. In: Baumeister H., Lichter H., Riebisch M. (eds) Agile
Processes in Software Engineering and Extreme Programming. XP 2017.
Lecture Notes in Business Information Processing, vol 283. Springer,
Cham. https://doi.org/10.1007/978-3-319-57633-6_11

Park, J. S. (2015). Essence-Based, Goal-Driven Adaptive Software Engineering.
2015 IEEE/ACM 4th SEMAT Workshop on a General Theory of Software
Engineering.

Park, J. S., McMahon, P. E., & Myburgh, B. (2016). Scrum Powered by Essence.
ACM SIGSOFT Software Engineering Notes, 41(1), 1-8.

Passaro, R., Rippa, P., & Quinto, I. (2016). The start-up lifecycle: an
interpretative framework proposal. VII Annual Scientific Meeting of the
Italian Association of Management Engineering (AiIG), - Higher
Education and Socioeconomic Development, October 13-14, 2016,
Bergamo, Italy, pp. 1-25.

Patel, S., & Wormley, R. (2017). 100 Days of Growth Book - 100 Actionable Tips
to Grow Your Startup Faster. E-Book. https://100daysofgrowth.com/

Paternoster, N., Giardino, C., Unterkalmsteiner, M., Gorschek, T., and
Abrahamsson, P. (2014). Software Development in Startup Companies: a
Systematic Mapping Study. Information and Software Technology, 56(10),
pp. 1200-1218.

Pieper, J., Lueth, O., Goedicke, M., & Forbrig, P. (2017). A case study of software
engineering methods education supported by digital game-based learning:
Applying the SEMAT Essence kernel in games and course projects. In
Proceedings of the 2017 IEEE Global Engineering Education Conference
(EDUCON), pp. 1689-1699. doi: 10.1109/EDUCON.2017.7943076.

Pitchbook (2019). 4q 2018 PitchBook-NVCA venture monitor Pitchbook
https://pitchbookcom/news/reports/4Q2018-pitchbook-nvca-venture-
monitor

Poppendieck, M., & Poppendieck, T. (2003). Lean Software Development: An
Agile Toolkit. Addison-Wesley Professiona.

Rasmussen, E. A., & Sørheim, R. (2006). Action-based entrepreneurship
education. Technovation 26(2), 185-194.

Reymen, I., Andries, P., Berends, H., Mauer, R., Stephan, U., & Burg, EV. (2015)
Understanding dynamics of strategic decision making in venture creation:

94

A process study of effectuation and causation. Strategic Entrepreneurship
Journal, 9(4), 351–379.

Ries, E. (2011). The Lean Startup: How Today's Entrepreneurs Use Continuous
Innovation to Create Radically Successful Businesses. New York: Crown
Business.

Rodríguez, P., Markkula, J., Oivo, M., & Turula, K. (2012). Survey on agile and
lean usage in finnish software industry. Proceedings of the 2012 ACM-
IEEE International Symposium on Empirical Software Engineering and
Measurement, pp. 139-148.

Runeson, P. & Höst, M. (2009). Guidelines for Conducting and Reporting Case
Study Research in Software Engineering. Empirical Software Engineering,
14(2), p. 131.

Salamzadeh, A., & Kawamorita K., H. (2015). Startup companies: Life cycle and
challenges. In 4th International conference on employment, education and
entrepreneurship (EEE), Belgrade.

Sarasvathy, S. (2001). Causation and effectuation: Toward a theoretical shift
from economic inevitability to entrepreneurial contingency. Academy of
Management Review, 26(2), pp. 243–263.

Seaman CB (1999). Qualitative methods in empirical studies of software
engineering. IEEE Transactions on Software Engineering, 25(4), pp. 557–
572.

Seppänen, P. (2020). Yes, We Can! Building a Capable Initial Team for a
Software Startup. In: Nguyen-Duc A., Münch J., Prikladnicki R., Wang X.,
Abrahamsson P. (eds) Fundamentals of Software Startups. Springer,
Cham.

Seppänen, P., Liukkunen, K., & Oivo, M. (2017). Little Big Team: Acquiring
Human Capital in Software Startups. In Proceedings of the 18th
International Conference on Product-Focused Software Process
Improvement, PROFES 2017, Innsbruck, Austria, November 29–December
1, pp. 280-296.

Seaman, C., & Guo, Y. (2011) Measuring and monitoring technical debt.
Advances in Computing, 82, pp. 25–46

SEMAT (n.d.). What is SEMAT? semat.org/what-is-semat-
SEMAT (2018). Great pick up of Semat. http://semat.org/news/-

/asset_publisher/eaHEtyeuE9wP/content/great-pick-up-of-semat
SEVOCAB – Software and Systems Engineering Vocabulary (n.d.).

https://pascal.computer.org/sev_display/index.action
Sirelkhatim, F., and Gangi, Y. (2015). Entrepreneurship education: A systematic

literature review of curricula contents and teaching methods. Cogent
Business & Management, 2(1).

Snowden, D., & Boone, M. (2007). A Leader’s Framework for Decision Making.
Harvard Business Review, Nov 2007, 69–76.

Steinert, M., & Leifer, L. J. (2012). ‘Finding One’s Way’: Re-Discovering a
Hunter-Gatherer Model based on Wayfaring. International Journal of
Engineering Education, 28(2), pp. 251-252.

95

Susman, G. I., & Evered, R. D. (1978). An assessment of the scientific merits of
action research. Adm. Sci. Q., 582-603.

Sutton, M. (2000). The Role of Process in a Software Start-Up. IEEE Software,
17(4), 33-39.

Steininger, D. (2019). Linking information systems and entrepreneurship: A
review and agenda for ITassociated and digital entrepreneurship research.
Information Systems Journal, 29(2), pp. 363–407.

The State of European Tech (2020). Retrieved from
https://2020.stateofeuropeantech.com

Tolvanen, J-P. (1998). Incremental Method Engineering with Modeling Tools -
Theoretical Principles and Empirical Evidence. Jyväskylä Studies in
Computer Science, Economics and Statistics, 47. [Doctoral Dissertation].

Tripathi, N., Klotins, E., Prikladnicki, R., Oivo, M., Pompermaier, L. B.,
Kudakacheril, A. S., Unterkalmsteiner, M., Liukkunen, K., & Gorschek, T.
(2018). An anatomy of requirements engineering in software startups
using multivocal literature and case survey. Journal of Systems and
Software, 146, 130–151. https://doi.org/101016/jjss201808059

Troisi, O., Maione, G., Grimaldi, M., & Loia, F. (2020). Growth hacking: Insights
on data-driven decision-making from three firms. Industrial Marketing
Management, 90. 538-557.

Unterkalmsteiner, M., Abrahamsson, P., Wang, X., Nguyen-Duc, A., Shah, S.,
Bajwa, S., Baltes, G., Conboy. K,, Cullina, E., Dennehy, D., Edison, H.,
Fernandez-Sanchez, C., Garbajosa, J., Gorschek, T., Klotins, E., Hokkanen,
L., Kon, F., Lunesu, I., Marchesi, M., Morgan, L., Oivo, M., Selig, C.,
Seppanen, P., Sweetman, R., Tyrvainen, P., Ungerer, C., & Yague, A. (2016)
Software startups: a research agenda. E-Informatica Software Engineering
Journal, 10(1), pp. 89–123. https://doi.org/105277/e-Inf160105

Vakkuri V., Kemell K.-K., Abrahamsson P. (2019) Implementing Ethics in AI:
Initial Results of an Industrial Multiple Case Study. In: Franch X.,
Männistö T., Martínez-Fernández S. (eds) Product-Focused Software
Process Improvement. PROFES 2019. Lecture Notes in Computer Science,
vol 11915. Springer, Cham. https://doi.org/10.1007/978-3-030-35333-9_2

Vakkuri, V., Kemell, K.-K., Abrahamsson, P. (2020). Internet resource for
ECCOLA - a Method for Implementing Ethically Aligned AI Systems.
figshare. Poster. https://doi.org/10.6084/m9.figshare.12136308.v2

Vakkuri, V., Kemell, K.-K., Jantunen, M., Halme, E., and Abrahamsson, P.
(2021). ECCOLA — A method for implementing ethically aligned AI
systems. Journal of Systems and Software, 182.

Vakkuri, V., Kemell, K.-K., Kultanen, J., & Abrahamsson, P. (2020). The Current
State of Industrial Practice in Artificial Intelligence Ethics. IEEE Software,
37(4), 50-57. https://doi.org/10.1109/MS.2020.2985621

Vakkuri, V., Kemell, K.-K., Kultanen, J., Siponen, M., & Abrahamsson, P. (2022).
Ethically aligned design of autonomous systems: Industry viewpoint and
an empirical study. To be published in the Journal of Business Ethics and
Organization Studies, Summer 2022.

96

Wang, G., & Nandhakumar, J. (2017). Strategic Swaying: How Startups Grow
Digital Platforms. In Proceedings of the 2017 International Conference on
Information Systems (ICIS).

Wang, X., Edison, H., Bajwa, S. S., Giardino, C., & Abrahamsson, P. (2016, May).
Key challenges in software startups across life cycle stages. In International
Conference on Agile Software Development (pp. 169-182). Springer, Cham.

Wohlin, C., & Aurum, A. (2015). Towards a decision-making structure for
selecting a research design in empirical software engineering. Empirical
Software Engineering, 20(6), 1427–1455. https://doi.org/101007/s10664-
014-9319-7

Yin, R. K. (2002). Case Study Research, Design and Methods, 3rd ed. Newbury
Park, Sage Publications.

Zachman, J. A. (2003) The Zachman framework for enterprise architecture
Primer for Enterprise Engineering and Manufacturing. Zachman
International.

Zmeev, D. O., & Zmeev, O. A. (2020). Project-Oriented Course of Software
Engineering Based on Essence. In Proceedings of the 2020 IEEE 32nd
Conference on Software Engineering Education and Training (CSEE&T),
pp. 1-3, doi: 10.1109/CSEET49119.2020.9206240.

Zott, C., Amit, R., and Massa, L. (2011). The Business Model: Recent
Developments and Future Research. Journal of Management, 37(4), 1019-
1042.

97

APPENDIX: STARTUP CARDS FOR EARLY-STAGE STARTUPS

This appendix features the method presented in Article V. As Article V has not
yet been published at the time of the publication of this dissertation, the version
of Article V included in this dissertation does not provide a way of properly
accessing the method. The final version of Article V, once it is published, will
contain some way of accessing the method. For the purposes of this dissertation,
however, the method is included in this appendix as individual cards. There are
17 cards in total, and as such 17 cards are found in this appendix.

FIGURE 8. Startup Cards 1 and 2

98

FIGURE 9. Startup Cards 3 and 4

99

FIGURE 10. Startup Card 5 and 6

100

FIGURE 11. Startup Cards 7 and 8

101

FIGURE 12. Startup Cards 9 and 10

102

FIGURE 13. Startup Cards 11 and 12

103

FIGURE 14. Startup Cards 13 and 14

104

FIGURE 15. Startup Cards 15 and 16

105

FIGURE 16. Startup Card 17

106

ORIGINAL PAPERS

I

THE ESSENCE THEORY OF SOFTWARE ENGINEERING:
LARGE-SCALE CLASSROOM EXPERIENCES FROM 450+

SOFTWARE ENGINEERING BSC STUDENTS

by

Kai-Kristian Kemell, Anh Nguyen-Duc, Xiaofeng Wang, Juhani Risku & Pekka
Abrahamsson, 2018

19th International Conference on Product-Focused Software Process Improvement
(PROFES) (pp. 123-138). Springer. Lecture Notes in Computer Science, 11271

DOI 10.1007/978-3-030-03673-7_9

Reproduced with kind permission by Springer.

The Essence Theory of Software Engineering –

Large-Scale Classroom Experiences from 450+ Software

Engineering BSc Students

Kai-Kristian Kemell1[0000-0002-0225-4560] Anh Nguyen-Duc2[0000-0002-7063-9200] Xiaofeng

Wang3[N/A] Juhani Risku1[N/A] and Pekka Abrahamsson1[0000-0002-4360-2226]

1 University of Jyväskylä, 40014 Jyväskylä, Finland
{kai-kristian.o.kemell|pekka.abrahamsson|juhani.risku}@jyu.fi

2 University of Southeast Norway
angu@usn.no

3 Free University of Bozen-Bolzano, 39100 Bozen-Bolzano, Italy,

xiaofeng.wang@unibz.it

Abstract. Software Engineering as an industry is highly diverse in terms of de-

velopment methods and practices. Practitioners employ a myriad of methods and

tend to further tailor them by e.g. omitting some practices or rules. This diversity

in development methods poses a challenge for software engineering education,

creating a gap between education and industry. General theories such as the Es-

sence Theory of Software Engineering can help bridge this gap by presenting

software engineering students with higher-level frameworks upon which to build

an understanding of software engineering methods and practical project work. In

this paper, we study Essence in an educational setting to evaluate its usefulness

for software engineering students while also investigating barriers to its adoption

in this context. To this end, we observe 102 student teams utilize Essence in prac-

tical software engineering projects during a semester long, project-based course.

Keywords: Software Engineering, Method, Practice, Essence, SEMAT, Educa-

tion, Software Process Engineering

1 Introduction

Software Engineering (SE) work out in the field is diverse, with practitioners employ-

ing a myriad of different methods and practices in equally diverse SE endeavors [5, 10].

As little consensus exists in terms of best practices and methods, practitioners have

taken to using what they consider to be the best option(s) for their own SE context,

often tailoring them by omitting some suggested practices or rules [5]. Though e.g.

Agile methods are currently widely employed out on the field, the practices and meth-

ods that are understood as being Agile are numerous [1]. Especially software startups

use a diverse mix of agile methods and practices, with some simply opting to use ad

hoc SE methods [17].

This diversity in the SE industry has, alongside other factors such as technological

advances, resulted in a gap between education and practice in SE [2, 13]. As it is not

possible to teach university students all the methods and practices employed by

mailto:kai-kristian.o.kemell%7Cpekka.abrahamsson%7Cjuhani.risku%7d@jyu.fi
mailto:angu@usn.no

2

practitioners, curriculum-makers are faced with choices on what to focus on. General

theories and methods that can be taught to students to support them in the adoption of

new practices in the future are one option in attempting to tackle this gap. One such

theory is the Essence Theory of Software Engineering (Essence from here-on-out), pro-

posed by the SEMAT initiative1 [10].

Created to address the vast range of methods employed in the field, Essence is a

method-agnostic progress control tool for SE. Essence is modular in nature and can be

used to model any existing methods, practices, or combination of such [15]. Thus, Es-

sence is designed to suit any SE possible context [9], making it a potentially powerful

tool. However, its flexibility is also a potential a downside: in order to use Essence,

resources have to be devoted towards modeling the practices and methods being used,

as well as learning how to do specifically by using Essence.

Presently, Essence has yet to see widespread adoption among practitioners, although

it has seen some traction among the academia [21]. It is possible that its rather resource-

intensive adoption is one barrier for its adoption, as has been discussed in extant re-

search [8, 18]. For this purpose, some tools have been suggested to aid practitioners in

its adoption and in using it: e.g. [8] presented SematAcc to help users visually track the

alpha states while using Essence and [11] presented an Essence-themed board game to

make learning Essence easier. However, more tools and further studies specifically fo-

cusing on its supposedly difficult adoption are also required to better understand the

barriers of its adoption and to consequently be able to tackle them. Additionally, an

educational perspective on Essence is interesting because Essence can help address the

gap between education and industry needs. For example, [2] report that SE graduates

are often perceived by the industry as lacking in e.g. the ability to follow processes and

project management skills, both of which Essence can help teach.

In this paper, we study Essence in a large-scale classroom setting. We observe over

one hundred project teams consisting of second year SE students employ Essence dur-

ing course projects mimicking a field SE endeavor. The teams carry out a complete SE

project, from requirements formulation to a finished software product, using Essence

to manage their project. Then, based on their projects, the students reflect on their ex-

periences with Essence in a written experience report. With the data collected from

these experience reports, we seek to understand:

RQ1: How useful do bachelor level students find Essence?

RQ2: What are the challenges in adopting Essence, specifically for inexperienced

software developers, and what could be done to make its adoption easier?

The rest of this paper is structured as follows. In the next section, we discuss the

Essence specification and extant research on it in further detail. In the third section, we

present and discuss the study design. In the fourth section, we analyze the data and

present our findings. We then discuss the practical and theoretical implications of our

findings in the fifth section, as well as the potential limitations of the study and direc-

tions for future research. The sixth and final section concludes the paper.

1 semat.org

3

2 The Essence Theory of Software Engineering

Essence is a modular, method-agnostic progress control tool for SE endeavors. Pro-

posed by the SEMAT initiative to address the myriad of methods and practices em-

ployed by industry practitioners, Essence is a framework into which any combination

of existing methods or practices can be inserted. In practice, Essence consists of a kernel

and a language. The kernel [14], its authors argue [10], contains all the elements present

in every SE endeavor, while the language can be used to extend the kernel to fit any

specific SE endeavor. I.e. Essence, in its base form, contains the elements required to

track progress in a generic SE endeavor, but it is intended to be tailored for specific SE

contexts.

The Essence kernel consists of three views: alphas, activity spaces, and competen-

cies. In the kernel, there are seven alphas (Fig. 1.), “things to work with”: opportunity,

stakeholders, requirements, software system, work, team, and way of working [10].

These alphas, Jacobson et al. [10] posit, are present in every SE endeavor. Alpha is an

acronym for an “Abstract-Level Progress Health Attribute” [14]. For the project to pro-

gress, these alphas need to be worked on. To this end, the kernel contains activity

spaces. Activity spaces may contain 0 or n activities, or “things to do”. The activity

spaces in the kernel, much like the alphas, are elements Jacobson et al. [10] argue are

found in every SE endeavor. Finally, the kernel contains a set of competencies: skills

needed to carry out the endeavor [10]. These alphas, activity spaces, and competencies

are further split into three areas of concern: endeavor, solution, and customer.

Fig. 1. The Essence Kernel Alphas

The alphas of the kernel serve as a way of tracking project health. Alpha states offer a

way of tracking progress on the various areas of the endeavor. Each of the seven base

alphas has a set of states that describe the progress made on each individual alpha. For

4

example, the states for the requirements alpha range from conceived, where the require-

ments have only just been formulated, to fulfilled, where they have been implemented

into the system in a manner satisfying the stakeholders.

Jacobson, Stimson & Hastie [9] suggest Essence as a solution to what they call

method prisons. In speaking of method prisons, they refer to the idea of organizations

being stuck following one method or set of methods regardless of their suitability in the

current context at any given time. However, they posit, the SE practitioners often pre-

sent methods as monolithic for example by using very varied presentation styles to de-

scribe them. By presenting methods in a uniform manner, by e.g. using Essence, and

by simply promoting a method-agnostic idea, Jacobson et al. [9] argue that organiza-

tions could escape method prisons and potentially improve their work processes by

creating better methods specifically suited for their SE context.

Though its modular and extensible nature is the greatest strength of Essence, it can

also be its greatest weakness. Whereas it makes Essence a powerful tool, it also makes

it both resource-intensive and potentially difficult to adopt. Perhaps consequently, Es-

sence has not gained widespread recognition among practitioners, although it has

gained some traction among the academia [21]. Graziotin & Abrahamsson [8] suggest

that the modest attention Essence has received among practitioners may well stem from

the steep learning curve of the specification. Even though Jacobson et al. [9] make a

potentially interesting case in promoting the idea of tailoring methods more actively, it

may seem easier for practitioners to get started by simply using an existing method.

3 Research Design and Methodology

In this section, we describe the methodology of the classroom study on Essence in the

context of student SE projects. In the first sub-section, we discuss the course from

which the data was collected. The role of Essence in said course is then discussed in

the second sub-section. The third and final sub-section discusses our data collection and

analysis methodology in detail. The data is then analyzed in the following main section.

3.1 The Course

The study presented in this paper was conducted using data from the TDT4140 – Soft-

ware Engineering course at the Norwegian University of Science and Technology

(NTNU). More specifically, all data for this study was collected during the 2017 spring

iteration of the course during which the students utilized Essence in their projects. In

this instance of the course, each project team was to engineer a functional software by

carrying out a real SE project in a university setting. The theme of the projects was to

radically improve university education by means of software robots. The exact goal of

the projects was to “make a bot to replace Prof. Abrahamsson at his course on SE”.

Following the first lecture of the course, the students were instructed to form project

teams consisting of 4 to 5 students. The teams were formed by having the students give

a subjective evaluation of their own programming skills in terms of programming con-

fidence and then form teams with individuals with similar evaluations. This was done

to negate any potential internal issues (e.g. workload distribution issues) within the

5

teams arising from skill differences in programming. Starting from the first lecture,

these teams were to work on their projects until the end of the course. The teams were

first tasked with interviewing university teaching staff in order to discover tangible

needs that could be addressed through their software. Stakeholders were involved in

this fashion to make the project mimic a real SE endeavor more closely.

After gathering needs through the interviews and selecting the one(s) they wished to

address, the students were to plan their development methodology and start utilizing it.

During the course and the projects, weekly two-hour-lectures continued to offer rele-

vant information and to support the project teams. The project work itself was carried

out largely independently by each team.

3.2 The Role of Essence in the Course

Essence was introduced to the teams in the first lecture. The first lecture focused on

discussing SE work in practice, specifically from the point of view of projects. During

the lecture, Essence was discussed primarily in relation to its seven alphas, which were

underlined to present the essential elements of an SE endeavor. In terms of methods,

the students were instructed to initially work in whatever fashion they thought was best.

The reasoning behind this line of action was to create fertile ground for the later adop-

tion of Essence: by letting the teams first work in a rather unsystematic or even ad hoc

fashion, they would likely be more receptive to tools that could help them systematize

their way of working. I.e. having experienced unsystematic SE project work, they

would better understand the need for more structured approaches to SE.

This approach, in practice, resulted in the teams largely working with various

“ScrumBut”2 approaches for the first three weeks. Their use of Scrum was likely to

have stemmed from a previous course at the university having introduced them to

Scrum. After three weeks of working as they saw fit without outside assistance from

the teaching team, the teams were introduced to the Ivar Jacobson Practice Library3.

They were tasked with using the practice cards (Fig. 2) from the library to re-construct

their way of working and to modify it as they saw fit based on their experiences so far.

In this fashion, the teams were introduced to both the progress control aspect of Es-

sence and its method-agnostic philosophy during the course. After the introduction of

the practice cards, the use of Essence was not enforced during the project work and

there were no regular check-ups to confirm its utilization. Full and correct utilization

of Essence was not mandatory, and its utilization or lack thereof did not affect the

grades given to the teams. All teams were instructed to utilize it to what extent they felt

they could, but this was not supervised in practice. This approach was chosen to gather

more unbiased data on the possible barriers of adoption in the case of Essence.

2 ScrumBut refers to using Scrum while omitting some parts of it, “We use Scrum, but…” (refer

to: https://www.scrum.org/resources/what-scrumbut)
3 https://practicelibrary.ivarjacobson.com/start

6

Fig. 2. A project team showing their practice cards

3.3 Data Collection and Analysis Methodology

The data for this study was collected through written reflective reports provided by each

team at the end of their projects4. In their report, each team was instructed to reflect on

their experiences with Essence, along with other content unrelated to this study. As for

Essence, they were to describe how they utilized it and how they felt about having done

so. More specifically: (1) what they thought was good about Essence, (2) what they

thought was bad about Essence, and (3) how they utilized Essence during their project.

Ultimately, 102 project teams of 4-5 students finished the course and delivered a

written project report. Our data analysis is based on these 102 reports. The teams were

not given a strict format to follow in the sections of their reports describing Essence,

which led to the data being somewhat diverse in presentation. Each report was to dis-

cuss the afore-mentioned three topics related to their use of Essence, but past these

general guidelines the Essence sections of the reports were freeform. In practice, this

largely just meant that teams that had utilized Essence relatively little wrote little about

it whereas teams that had utilized it fully wrote far more about their experiences.

Thematic analysis was chosen as the method of analysis for this study due to the

large volume of the data, as well as the lack of pre-determined assumptions of how the

students possibly perceived the use of Essence in this context. Both the final themes

and the initial codes used to formulate them were generated from the data in an induc-

tive fashion. The analysis process was iterative and reflexive.

Initially, the author conducting the thematic analysis went through the data and rec-

orded key points for each report, both by directly quoting the reports and by making

summarizing remarks, in a separate text document. During this process, initial codes

were formulated based on recurring sentiments in the reports. E.g. many reports turned

4 A book showcasing the results of the projects can be found on Figshare: https://figshare.com/ar-

ticles/100_Open_Sourced_Software_Robots_for_Tomorrow_s_Education_Revolutioniz-

ing_the_University_Learning_Experience_with_Bot_Technologies/5597983

7

out to describe various initial difficulties in adopting Essence. The analysis process was

iterative, and reports and the recorded key points and quotations were regularly re-read

as further codes were generated. This phase was concluded once all reports had been

analyzed and the final set of codes had been applied to each of them where applicable.

Finally, the themes were generated inductively from the coded data. Codes were

arranged into matching themes, with each theme encompassing one or more codes. In

determining the themes, the research questions were used as a framework for organiz-

ing the data under the themes as well as determining the relevance of the codes and

what was to ultimately be included into the study. In presenting the results in the next

section, some of the direct quotations used in the analysis process were also included.

Additionally, in our first research question we speak of usefulness. Usefulness is a

construct often used in relation to evaluating software systems designed especially for

work-related use (e.g. [4]). In the context of this study, we define usefulness to be re-

lated to either learning something new about SE or SE progress control (educational

usefulness) or providing help in SE project work (practical usefulness). These two

seemingly separate types of usefulness are nonetheless closely linked together, how-

ever. E.g. a learning experience related to SE project work may simultaneously result

in practical usefulness through the application the newly-learned information into prac-

tice, which may also take place at a later point in time. In our analysis, we thus speak

of usefulness while referring to usefulness in both senses.

4 Results

The reports showed a very varying degrees and success of utilization of Essence among

the 102 project teams. Whereas some of the teams had clearly utilized Essence in its

entirety and reflected upon it in depth, some of the teams had done the bare minimum

of selecting different practices to use while forgoing the progress control aspect of Es-

sence. However, despite the varying degree and success of Essence utilization among

the teams, the reports discussed similar themes across the spectrum.

4.1 Theme 1: Difficult or Resource-Intensive to Learn

The reports indicated that the majority of the teams considered Essence difficult to learn

to some extent. Even most of the teams that ultimately utilized Essence successfully

considered it to have been difficult to initially grasp. As the course involved only a

general introduction to Essence and its principles, the teams were to study and use Es-

sence on their own using what resources they would find on the SEMAT website or the

Internet in general. This resulted in most teams feeling that Essence was difficult to

learn, or “hard to get a grasp on when first introduced” (Report 048). The teams gener-

ally considered to be a direct result of the types of resources available online:

…we felt that almost anywhere we went to read about SEMAT we were either

drowned with information (the Essence Kernel PDF has 308 pages) or the infor-

mation was too abstract that we felt left confused after reading. (Report 041)

8

The web page material, the articles and the academic resources about SEMAT are

filled with many new terms, but few clear definitions. It would be easier for the next

years students to grasp what SEMAT really is, if there existed some sort of document

on blackboard explaining the SEMAT terminology. (Report 016)

Largely in line with the quotation above, though Essence was considered difficult to

learn, the teams almost uniformly cited the lack of good tutorial resources as the main

reason for this. The existing ones were considered either too lengthy or to simply be

written in a needlessly complex manner, failing to offer a good initial touch to the spec-

ification. This is also supported by some reports directly stating that past the initial

barrier of adoption, Essence was a useful tool. However, due to its resource-intensive

adoption, many felt that they wanted to focus on the practical SE work instead:

We just wanted to get on with the programming and it seemed like it was just one

more unnecessary thing we needed put effort into when we already had quite a lot

with learning new technologies and languages. (Report 044)

Past the self-reported issues related to learning Essence, it was also occasionally possi-

ble to determine that a team had not managed to internalize Essence based on the con-

tents of their report. It was evident that some teams had only utilized the practice cards,

as they had been directly instructed to do, and ignored the kernel and its alphas and

other views, i.e. the progress control aspect of Essence. It is likely that this was caused

by the perceived difficulty of learning the specification: some of these teams likely felt

that they had understood Essence despite only grasping parts of it. Though the difficulty

of learning Essence was primarily blamed on the lack of good tutorial resources, one of

the teams did specifically state that they felt Essence itself was too abstract for them.

Despite Essence being considered somewhat difficult to initially learn by the teams,

it was generally considered to have been a positive experience. Even the teams that

reported having particularly struggled with learning it, or having been unwilling to in-

itially devote resources towards doing so, felt that it had ultimately been useful:

In retrospective, perhaps we would have had even greater progress with our project

and higher learning outcome from the course if our understanding of SEMAT had

improved at an earlier stage (Report 062)

When we later, a bit too late probably, actually sat down and studied what it meant

and how to use it, it seemed kind of genius. (Report 044)

4.2 Theme 2: Inexperience

Another recurring theme present in the reports was inexperience in relation to SE. In

their reports, the teams often discussed their own perceived inexperience with SE in

relation to Essence. The inexperience of the teams evidently had a multifaceted signif-

icance to their experiences with Essence.

9

On one hand, the teams felt that Essence was more useful because they were inex-

perienced. They felt that, being inexperienced developers, Essence helped them (1)

structure their way of working, (2) learn about new methods and practices, and (3)

manage their projects better. In conjunction with the practice library, Essence was per-

ceived to have been very educational in relation to SE methods and practices.

While still being on our own and with little experience, SEMAT provided us guide-

lines that allowed us to improve and learn while planning and working on the pro-

ject. Resulting in a much better experience with projects than before and a concept

we are proud of. Knowledge we absolutely will include in future projects and pro-

gramming. (Report 078)

...our experience with the ESSENCE kernel has been almost exclusively positive.

Given that is prevents overlooking parts of the software development cycle, we per-

ceived it as more beginner friendly than other competing, more fragmented ap-

proaches to software development methodology. (Report 047)

On the other hand, some teams felt that their inexperience with SE might have also had

a negative impact on the usefulness of Essence. As Essence encourages one to develop

their own way of working, these teams felt they could not make the most of Essence

due to their lack of knowledge about practices:

A team of beginner developers such as ourselves might get locked up in the [prac-

tice] cards already made, resulting in using methods that is ineffective for us since

we wouldn’t make up any new techniques that isn’t “available”. We think that with

a little more experienced team that hasn’t made their own method yet, this would be

extremely helpful. (Report 013)

Not all teams considered this to be a negative situation, however. Some teams felt that

the way Essence encouraged them to experiment with new practices and to learn by

working as a team was helpful, even though they initially did not have a clear idea of

what practices might work for their team. Essence, they felt, challenged them to actively

think about what they were doing and why, and even though it did not provide direct

answers to those questions, it facilitated learning in a positive manner. Thus, the general

sentiment among the groups was that Essence, as well as the practice library related to

it, had been very useful for them as inexperienced developers. As a concluding remark,

it is worth noting that while not all of the teams comprised of individuals with little or

no past experience with practical SE work, the resounding majority of them nonetheless

did, being comprised of second year SE students. This was also evident in the way the

teams actively reflected on their own inexperience in various ways in their reports.

4.3 Theme 3: Way of Working and the Method Prison

One of the most discussed positive aspects of Essence perceived by the teams was its

method-agnostic approach. The ability to freely choose between methods and practices

10

was considered both new and highly positive, letting them, in the words of Jacobson et

al. (2017), escape the “method prison”:

Our team really liked the freedom SEMAT gives you in defining the way you develop

something and how you can customize it, choose the practices you want and not be

forced to use practices you don’t want to use (Report 036)

There were many positives of applying the kernel to our project, like choosing what

we wanted to implement in our regular work day allowed us to use only what we

wanted and thought we could benefit from. This level of freedom created a higher

level of productivity than for example Scrum, where we are forced to use all aspects

of the framework that do not necessarily benefit us. Not being forced to do things

that we feel would slow us down and not benefit us really made us appreciate the

SEMAT Essence Kernel (Report 071)

As many of the students in the course had previously taken a course on Scrum, many

of the reports consequently also included reflections related to Scrum. These teams dis-

cussed how they had initially started using Scrum or ScrumBut but had then begun to

reflect on what they were doing and why, resulting in them refining their own way of

working by using Essence. Used in conjunction with the practice card library, Essence

provided them with new alternative practices to utilize. This resulted in the teams ex-

perimenting with different practices. On a more general level, they felt that the method-

agnostic approach of Essence prepared them for different ways of working in the future.

 Additionally, the teams reported positive experiences with actively reflecting on

their way of working. Aside from initially tailoring a method for themselves, some of

the teams reported having found Essence useful in facilitating the idea of continuously

improving their work processes based on their experiences. Furthermore, some teams

also noted that Essence had made it easier to communicate their way of working to the

team as well as to discuss it within the team:

This overview of all practices really benefited us when we put together our way of

working and made it easy to visualize our workflow. Whenever a team member was

unhappy with any aspect of our work methodology we reviewed the cards and added

or removed any if needed. (Report 060)

Finally, the teams discussed having learned much about new methods and practices

simply by browsing through the practice cards available in the Ivar Jacobson practice

library. This serves to underline the importance of tools related to adopting Essence. In

this case, the practice cards helped teams of inexperienced developers tailor methods

using Essence despite not having any previous experience with different SE practices.

4.4 Theme 4: Progress Control

The Essence kernel provides a framework upon which to build a project-specific tool.

However, even without any modifications, the kernel already serves as a basic progress

11

control tool. This was also reflected in the reports. Most teams that had properly utilized

the kernel had had positive experiences using Essence to manage and track progress:

Selecting and using the alpha state cards that were relevant to our circumstances to

assess our progress proved extremely effective. When we used them for the first time

we were surprised to learn that we had not made as much progress as we thought.

The cards were useful in seeing where we wanted to be in terms of progress in the

different alphas, and thus facilitated the process of fixing our impediments. (Report

005)

The team then agreed to purchase a cork board and print out the Alpha State Cards

in order to quickly and easily get an overview over the team’s overall progress. This

proved valuable, as none of the team members had partaken in any projects of this

scale previously. The clear visualization the cards provided gave a much clearer

picture of the project’s progression overall than what the team found orally. (Report

055)

Although Essence did clearly facilitate the idea of tailoring methods and choosing the

methods that work best, this may not always be preferable. If the alternative to being

locked in a “method prison” is the use of ineffective ad hoc methods, following an

established method by the book may well be the more effective option. However, the

teams felt that Essence helped them formalize their way of working aside from also

facilitating the idea of tailoring it to suit their context-specific needs.

In relation to the inexperience of the teams discussed in a preceding sub-section,

many of the teams felt that the Essence kernel provided a good overview of a software

engineering endeavor especially because they had little experience with SE project

work. Even though not all teams that utilized the kernel extended it, they nonetheless

felt the Essence kernel in its base form was already useful in tracking their progress –

except for one. One of the teams felt that they had had a solid understanding of the state

of their project prior to using Essence and that “it didn’t help us anything to convert it

into cards and more complicated sentences” (Report 059). This is not surprising as tools

are just that: tools. Similarly, though formal methods and practices are typically pre-

ferred, it is quite possible to carry out SE endeavors using ad hoc methods, as e.g. a

notable number of software startups chooses to do [17].

4.5 Summary of Findings

Having discussed the results through the themes present in the data set, we now turn

back to our formal research problem. Below, we provide summarizing answers for the

two research questions posed in the introduction before going into more detail:

RQ1: Do bachelor level students find Essence useful?

Results: Essence was considered useful by the students, for varying reasons

RQ2: What are the challenges in adopting Essence, specifically for inexperienced

software developers, and what could be done to make its adoption easier?

12

Results: The largest challenge in adopting Essence was the lack of good tutorial

resources, which consequently could be addressed by creating better such resources.

Though the student teams nearly universally considered Essence useful, there were dif-

ferences between the teams in terms of why they considered it useful, largely based on

the extent to which they had utilized it. Essence was considered useful for (1) teaching

new methods and practices, (2) teaching a method-agnostic approach to SE, (3) helping

the team properly structure their way of working, and (4) providing a useful framework

for managing an SE project, depending on the degree of its utilization among each team.

Few teams had anything negative to say about the specification itself, with most of the

negative feedback relating to difficulties in adopting Essence.

Indeed, though Essence was considered useful by the teams, it was nonetheless evi-

dently difficult for them to adopt. Many teams, even those that did utilize it the most,

considered it to have been difficult to initially learn. The reports that discussed the rea-

sons behind its perceived difficult adoption all cited the lack of good tutorial resources

as the main problem. The teams felt that the resources they could find online were either

hundreds of pages long or did simply not describe Essence simply enough for begin-

ners. This resulted in some teams opting to focus their efforts elsewhere by e.g. focusing

on learning to program and use programming tools, leaving Essence for later.

Having discussed our findings in relation to our research questions, we present a

further, visual summary of how the themes discussed earlier in this section are inter-

linked (Fig. 3). It is organized in a manner similar to how Giardino et al. [6] summarized

their findings and depicts the adoption of Essence among students as a process. The

student teams, as developers, were inexperienced. This inexperience resulted in a lack

of resources as they had to divide their resources between e.g. learning to program,

learning to use the programming tools, and learning Essence. In this situation, Essence

often took on a lower priority, consequently becoming more difficult for the teams to

learn. However, once the teams began to understand and utilize Essence, they began to

work more systematically. All teams utilized Essence and the practice cards to work in

a more systematic fashion, and many, but not all, teams grasped the kernel and began

to use it as a progress control tool. For the teams that understood how to fully utilize

Essence, its use ultimately resulted in an escape from the so-called method prison [10].

These teams actively reflected on their way of working and saw Essence also as a tool

to facilitate learning in order to (attempt to) work in an efficient fashion in any given

context in the future.

Fig. 3. Adoption process of Essence among SE students

13

Based on our findings, we therefore argue that SE students find Essence useful for

multiple reasons. Furthermore, we confirm that Essence is considered difficult to learn,

and our data suggests that the largest challenges in adopting Essence currently stem

from a lack of tutorials and guides aimed at beginners. The current resources available

online were considered too lengthy or advanced to be of use for new users of Essence.

5 Discussion

As extant literature has suggested [8], our findings confirm that Essence is indeed con-

sidered difficult and resource-intensive to adopt. However, our findings indicate that

stems from a lack of good tutorial resources as opposed to Essence being difficult to

use as such. The current manuals and other resources available were considered by the

student teams to be too complex for beginners. Thus, the most direct solution to this

issue would simply be the creation of better tutorial resources specifically aimed at new

users of Essence.

As a solution to making Essence easier to adopt, [8] suggested the development of

tools that could be used to make the practical use of Essence easier. This was not con-

firmed by our findings as none of the teams voiced explicit wishes for more tools to

help utilized Essence. However, given that the practice card library, an external tool as

well, was very positively received among the teams, it is likely that further tooling

would also make Essence either easier to adopt and possibly more useful.

In terms of the usefulness of Essence for bachelor level students, our data indicates

that Essence was indeed considered useful by the resounding majority of the project

teams we studied. Less than ten teams out of 102 reported having found the use of

Essence an outright negative and useless experience. In this light, we argue that Essence

is useful for bachelor level students. More specifically, it was found useful in terms of

(1) teaching new methods and practices, (2) teaching a method-agnostic approach to

SE, (3) helping the team properly structure their way of working, and (4) providing a

useful framework for managing an SE project.

From the point of view of SE education in universities, Essence is interesting as,

based on our experiences, it can potentially provide a common ground for SE education

through its method-agnostic nature. Such common ground is currently missing. We

have showed that it can simultaneously teach students SE progress control as well as

practical SE work. It also prepares SE students for working with different methods and

practices out on the field. Essence could therefore be used to provide students with a

higher-level understanding of the way SE work is structured. Essence can serve as a

basis upon which SE students can build a general understanding of different SE meth-

ods as opposed to learning about single methods one at a time.

Learning to construct a method out of practices is an important learning goal for

software engineering education. Based on our observations during the course, it was

noted that some teams also learned to include so called anti-patterns or bad practices

explicitly in their process description. This is a novel thought and should be further

elaborated in future studies. By labeling a practice as a bad-practice, the team in ques-

tion explicitly communicated about their improvement needs. Manual testing is an

14

example of such practice as it indicates lack of automated test suite, which slows down

the development and is thus not a sustainable solution.

Additionally, in terms of generalizing our findings, we suggest that our findings

could also be interesting for future research from the point of software startups. SE

students, like startup practitioners [3, 12], are often more inexperienced developers, and

it is also not uncommon for university students to participate in software startups during

their studies. Most software startups fail [7] for various reasons, and Kon et al. [12]

posited that specifically younger, more inexperienced startup practitioners are consid-

ered more prone to failure among investors. Software startups face various challenges

across their life cycles [22], including challenges with “building product”, “staying fo-

cused & disciplined”, and “over capacity/too much to do”, which Essence could poten-

tially be used to aid in solving. Finally, it has been established that software startups,

like mature organizations, should concern themselves with structuring their work pro-

cesses [19], which is something we found Essence to be useful for among SE students.

Relating these past studies to our findings here, we suggest that future studies could

investigate Essence from the point of view of software startups. Our findings, however,

do not offer direct support to this link between these two contexts. In possibly pursuing

this line of research, it could be useful to also evaluate the suitability of the Essence

kernel in the context of software startups, as software startups have been shown to de-

velop software in different ways than mature organizations [10], and their business as-

pect is linked with their SE process in a unique fashion.

Finally, while we have studied perceived difficulties in adopting Essence in the con-

text of SE students, future studies may wish to study impediments to its adoption among

practitioner organizations. As Essence has yet to see widespread practitioner adoption

[21], the reasons behind this situation are worth investigating. Similarly, it is likely that

more experienced practitioners find Essence useful or not useful for different reasons

than the SE students studied in this paper.

5.1 Limitations of the Study

The primary limitations of the study are associated with the data collected during it. In

collecting the data, we chose to rely on self-reported use of Essence over observation

and regular check-ups. From this results that the validity of the reported utilization of

Essence among the teams cannot be directly confirmed. However, the student teams

seldom failed to report problems in utilizing Essence, with most teams that failed to

utilize Essence fully reporting so themselves. In other cases, it was also largely possible

to determine whether a team had understood the specification or not based on the way

they reported on its utilization. We thus argue that this does not present a major threat

to the validity of our data in such a large data set (102 teams).

Additionally, while the use of students as subjects for scientific studies is a long-

standing topic of discussion across disciplines, including SE, the aim of this study was

to study Essence specifically in relation to SE students and education. The use of stu-

dents as subjects in this context is therefore not an issue.

15

6 Conclusions

In this paper, we have studied the Essence Theory of Software Engineering in a large-

scale bachelor level course through experience reports. We introduced Essence to 102

project teams in a project-based SE course at a Norwegian university and observed its

use during the projects. Based on 102 project reports discussing, among other things,

the Essence use experiences of project teams of 4-5 individuals, we described the bar-

riers of adoption of Essence and its usefulness for SE students.

We discovered that while Essence was considered difficult to learn by the teams,

these difficulties largely stemmed from the lack of good tutorial resources. Some teams

failed to fully utilize Essence, forgoing its progress control aspect partially or entirely,

primarily due to its difficult adoption. There is thus a clear need for better introductory

guides to Essence that are specifically designed for new users.

Past its difficult adoption, Essence was nonetheless nearly universally considered

useful by the project teams. Even the teams that had not fully utilized Essence consid-

ered the method-agnostic approach and the practice cards to have been useful for plan-

ning out and formalizing their way of working during their projects. Additionally, the

teams that had grasped the Essence kernel (except for two teams) also reported Essence

having been useful in tracking progress during their projects. They felt that Essence

gave them a good general understanding of SE project work through the alphas and that

the alpha states helped them keep track of progress on their endeavor.

We therefore argue in favour of using Essence in SE education. By helping SE stu-

dents gain a better understanding of SE project work and by preparing them for future

adoption of various practices and methods, Essence can help tackle gaps [2, 13] be-

tween SE education and practice. To summarize our findings:

(1) Essence can teach students new methods and practices by encouraging them to

study them in order to tailor their own methods using Essence

(2) Essence encourages students to adjust their way of working based on the SE

context at hand as opposed to following existing methods by the book

(3) Essence helps students structure their way of working in a practical setting

(4) Better tutorial resources for Essence are needed to make it easier to adopt

References

1. Abrahamsson, P., Salo, O., Ronkainen, J., and Warsta, J.: Agile Software Development

Methods: Review and Analysis. Otamedia: VTT Publications, 478 (2002).

2. Almi, N. E. A. M., Rahman, N. A., Purusothaman, D., and Sulaiman, S.: Software engineer-

ing education: The gap between industry's requirements and graduates' readiness. In: Com-

puters & Informatics (ISCI), 2011 IEEE Symposium on (2011).

3. Crowne, M.: Why software startups fail and what to do about it – Evolution of software

product development in startup companies. In: Proceedings International Engineering Man-

agement Conference (IEMC), 338-343 (2002).

16

4. Davis, F. D. Jr.: A Technology Acceptance Model for Empirically Testing New End-User

Information Systems: Theory and Results. Massachusetts Institute of Technology (1985).

5. Ghanbari, H.: Investigating the causal mechanisms underlying the customization of software

development methods. Uni. of Jyväskylä: Jyväskylä Studies in Computing, 258 (2017).

6. Giardino, C., Paternoster, N., Unterkalmsteiner, M., Gorschek, T., and Abrahamsson, P.:

"Software Development in Startup Companies: The Greenfield Startup Model". IEEE Trans-

actions on Software Engineering, 42(6), pp. 585-604 (2016).

7. Giardino, C., Wang, X., and Abrahamsson, P.: Why Early-Stage Software Startups Fail: A

Behavioral Framework. In International Conference of Software Business, pp. 27-41.

Springer, Cham (2014).

8. Graziotin, D., and Abrahamsson, P.: A Web-based modeling tool for the SEMAT Essence

theory of Software Engineering. Journal of Open Research Software, 1 (2013).

9. Jacobson, I., Stimson, R., and Hastie, S.: Escaping Method Prison. https://www.in-

foq.com/articles/escape-method-prson last accessed 15 May 2018 (2017)

10. Jacobson, I., Ng, P., McMahon, P. E., Spence, I., and Lidman, S.: The Essence of Software

Engineering: The SEMAT Kernel. ACMQueue, 10, pp. 40-52 (2012).

11. Kemell, K. O., Risku, J., Evensen, A., Dahl, A. M., Grytten, L., Jedryszek, A., Rostrup, P.,

Nguyen-Duc, A., and Abrahamsson, P.: Gamifying the Escape from the Engineering Method

Prison - An Innovative Board Game to Teach the Essence Theory to Future Project Manag-

ers and Software Engineers. [to be published in the proceedings of ICE2018] (2018)

12. Kon, F., Cukier, D., Melo, C., Hazzan, O., and Yuklea, H.: A Panorama of the Israeli Soft-

ware Startup Ecosystem. SSRN: https://ssrn.com/abstract=2441157 (2014).

13. Lethbridge, T. C., Díaz-Herrera, J., LeBlanc Jr., R. J., and Thompson, J. B.: Improving soft-

ware practice through education: Challenges and future trends. Proceedings: FOSE ‘07 Fu-

ture of Software Engineering (2007).

14. Object Management Group: Essence – Kernel and Language for Software Engineering

Methods. Version 1.1. http://semat.org/essence-1.1, last accessed 2018/05/28.

15. Park, J. S., McMahon, P. E., and Myburgh, B.: Scrum Powered by Essence. ACM SIGSOFT

Software Engineering Notes, 41(1), pp. 1-8 (2016).

16. Parnin, C., Helms, E., Atlee, C., Boughton, H., Ghattas, M., Glover, A., Holman, J., Micco,

J., Murphy, B., Savor, T., Stumm, M., Whitaker, S., and Williams, L.: The Top 10 Adages

in Continuous Deployment. IEEE Software, 34(4), 86-95 (2017).

17. Paternoster, N., Giardino, C., Unterkalmsteiner, M., Gorschek, T. and Abrahamsson, P.:

Software development in startup companies: A systematic mapping study. Information and

Software Technology, 56, pp. 1200-1218 (2014).

18. Pieper, J.: Discovering the Essence of Software Engineering – An Integrated Game-Based

Approach based on the SEMAT Essence Specification. In Proceedings of the 2015 IEEE

Global Engineering Education Conference (EDUCON), pp. 939–947 (2015).

19. Ries, E.: The Lean Startups: How Today’s Entrepreneurs Use Continuous Innovation to

Create Radically Successful Businesses. New York: Crown Books (2011).

20. SEMAT: SEMAT and Essence – What is it and why should you care? http://semat.org/what-

is-it-and-why-should-you-care-, last accessed 2018/05/20.

21. SEMAT: Great pick up of Semat. http://semat.org/news/-/asset_pub-

lisher/eaHEtyeuE9wP/content/great-pick-up-of-semat, last accessed 2018/05/13.

22. Wang, X., Edison, H., Bajwa, S. S., Giardino, C., and Abrahamsson, P.: Key Challenges in

Software Startups Across Life Cycle Stages. In: Sharp H., Hall T. (eds) Agile Processes, in

Software Engineering, and Extreme Programming. XP 2016. Lecture Notes in Business In-

formation Processing, vol 251. Springer, Cham (2016)

http://semat.org/what-is-it-and-why-should-you-care-
http://semat.org/what-is-it-and-why-should-you-care-

II

SOFTWARE STARTUP PRACTICES: SOFTWARE
DEVELOPMENT IN STARTUPS THROUGH THE LENS OF
THE ESSENCE THEORY OF SOFTWARE ENGINEERING

by

Kai-Kristian Kemell, Ville Ravaska, Anh Nguyen-Duc & Pekka Abrahamsson, 2020

21st International Conference on Product-Focused Software Process Improvement
(PROFES) (pp. 402-418). Springer. Lecture Notes in Computer Science, 12562

DOI 10.1007/978-3-030-64148-1_25

Reproduced with kind permission by Springer.

Software Startup Practices – Software Development in

Startups through the Lens of the Essence Theory of

Software Engineering

Kai-Kristian Kemell1[0000-0002-0225-4560] Ville Ravaska1,

Anh Nguyen-Duc2[0000-0002-7063-9200] and Pekka Abrahamsson1[0000-0002-4360-2226]

1 University of Jyväskylä, Jyväskylä 40014, Finland
2 University of Southeast Norway, Norway

kai-kristian.o.kemell@jyu.fi

Abstract. Software startups continue to be important drivers of economy glob-

ally. As the initial investment required to found a new software company be-

comes smaller and smaller resulting from technological advances such as cloud

technology, increasing numbers of new software startups are born. Startups are

considered to differ from other types of software organizations in various ways,

including software development. In this paper, we study software development

in startups from the point of view of practices to better understand how startups

develop software. Using extant literature and case study data, we devise a list of

practices which we categorize using the Essence Theory of Software Engineering

(Essence). Based on the data, we propose a list of common practices utilized by

software startups. Additionally, we propose potential changes to Essence to make

it better suited for the software startup context.

Keywords: Software Startup, Essence Theory of Software Engineering, Soft-

ware Development, Software Development Practice, Case Study.

1 Introduction

Software startups continue to be important drivers of economy globally. As the initial

investment required to found a new software company becomes smaller and smaller as

a result of technological progress, more and more startups are founded. While most

startups fail [4], just like most new companies [13], some go on to become mature,

established software organizations, or even multinational technology giants.

Typically, the main argument for studying software startups is that they differ from

mature software organizations in various ways, thus making the findings of many ex-

isting studies not directly applicable to them. This is a result of there still being no

accurate definition for what a startup is [21][23]. Various characteristics such as time

pressure or resource scarcity are attributed to startups to differentiate them from mature

companies [21], but academically drawing an exact line has been a challenge in the area

[13]. The way software startups develop software has been one area of study.

2

For example, Paternoster et al. [21] conducted a more general, large-scale study aim-

ing to understand how software startups develop software. They noted that software

startups operate mostly using various Agile practices or ad hoc methods. Specific facets

of software development (SWD) in software startups, such as prototyping [19] have

also been studied. However, studies focusing on Software Engineering (SE) practices

in software startups are still scarce, and studies into SWD in software startups in general

are still needed [23]. Some high-profile startup practices such as the Five Whys are

commonly discussed in e.g. startup education, but systematic studies are lacking.

Thus, to better understand how software startups develop software, we study prac-

tices in this paper. Specifically, we seek to understand what practices are commonly

used by software startups. In addition, we approach this topic through the lens of the

Essence Theory of Software Engineering and seek to understand how this theory fits

into the context of software startups. To this end, we study how the seven alphas of the

theory (section 2.3) fit the context of software startups, and whether other alphas would

be needed to make the theory better suited for this context.

2 Background – Software Startups, Software Development

Practices, and the Essence Theory of Software Engineering

This section is split into three subsections. First, we discuss SWD in software startups.

Then, we define SWD practices in this context. Finally, we discuss Essence.

2.1 Software Development in Software Startups

Typically, software startups do not strictly follow any formal software development

method [21]. Instead, they combine practices from different methods that suit their

needs at the moment or simply use ad hoc practices [18].

As the aim of this study is to uncover software development practices universal to

(most) software startups, a notable paper is that of Dande et al. [6]. Dande et al. [6]

studied software startups in Finland and Switzerland and devised a list of 63 practices

commonly utilized by software startups. However, these practices are not solely soft-

ware development ones but also include practices related to customers and business.

Kamulegeya et al. [11] studied these practices and reported that they seemed to apply

in the Ugandan startup context as well, further validating this list of practices. They do

add, however, that culture and location might influence commonly used practices.

Other studies focusing on practices have not aimed to create such extensive lists of

practices but have nonetheless studied software startup practices in different contexts.

Klotins, Unterkalmsteiner, and Gorschek [15], for example, created a framework for

categorizing software startup practices that differs from the one proposed by Dande et

al. [6]. Giardino et al. [9] propose the Greenfield Startup Model to explain software

development in early-stage software startups. In the process, they uncovered various

practices that supplement and confirm the findings of Dande et al. [6]. Paternoster et al.

[21] in their study on how software startups develop software discuss having found 213

3

practices, which, however, were not listed in their paper. Nonetheless, their findings to

lend support to those of Dande et al. [6].

2.2 Software Development Practice as a Construct

Jacobson et al. [10] suggest that a set of practices is what forms a method in the context

of SE. Methods, according them, describe ways-of-working, i.e. how work should be

carried out. A way-of-working exists in an organization even if a formal SE method is

not utilized [10]. A practice, then, describes a more atomic unit of work.

Historically in academic literature, and particularly in Information Systems, the con-

struct technique has been used for the same purpose in the context of method engineer-

ing [22]. Tolvanen [22] defines a technique to be a set of steps and rules that define

how a representation of information system is derived and handled using conceptual

structure and related notation. A tool, in this context, refers to a computer-based appli-

cation supporting the use of a technique.

2.3 The Essence Theory of Software Engineering

The Essence Theory of Software Engineering [10] provides a way of describing meth-

ods and practices. It consists of a notational language and a so-called kernel, which

includes building blocks that can be used as a basis for constructing methods. The ker-

nel, its authors argue [10], contains basic elements that are universal in any SE project.

The Essence kernel contains three types of objects: alphas (i.e. things to work with),

activities (i.e. things to do), and competencies (skills required to carry out the work). In

this study, we focus on the alphas in the context of software startups. The seven Essence

alphas are as follows: (1) Stakeholders, (2) Opportunity, (3) Requirements, (4) Software

System, (5) Team, (6) Way of Working, and (7) Work. These alphas are split into three

areas of concern. The first two belong in the customer area of concern, numbers three

and four in the solution area of concern, and the last three in the endeavor area of con-

cern. Furthermore, each alpha has alpha states used to track progress on the alpha. [10]

The authors of Essence posit [10] that these are the essential elements that are present

in every SE project. Every project, then, has its own unique context, which most likely

contains more things to work with, but those are not universal to every project. In order

to reap the most benefits out of Essence, its users would then extend this basic kernel

with the Essence language to include these unique features of their particular project or

company to describe their method(s) with it.

In this paper, the role of Essence is two-fold. First, it serves as a framework for

analyzing our data. We utilize the alphas to sort the software startup practices we dis-

cover into categories. Secondly, in the process of doing so, we study whether all the

uncovered practices fit into these seven alphas. I.e., do the alphas also present all the

essential elements of software development in software startups?

We chose to utilize Essence as the framework for this study for two reasons. First,

Essence is an OMG standard. Standards can shape the industry and should be studied.

In this case, we are particularly interested in seeing whether Essence suits startups as

well. Secondly, Essence provides one framework for categorizing work in SE projects

4

through its kernel and alphas. In studying practices, we considered it important that we

have a framework for categorizing them in some fashion.

3 Study Design

The goal of this study is outlined at the end of the introduction. We approached this

topic using a qualitative multiple case study approach. Aside from this empirical data,

we utilized the list of 63 startup practices presented by Dande et al. [6].

3.1 Data Collection

The empirical data for this study was collected by means of a multiple case study (n=13)

(Table 1). The interviews were conducted F2F. The audio was recorded, and the re-

cordings were transcribed for analysis. All the respondents were CEOs or founders, as

we wished to interview respondents with extensive knowledge of the case startups.

Table 1. Cases.

Case Employees Company Domain Respondents Age (in years, at the

time of interview)

1 6 Software/ Hardware 1 <1

2 5 Software 3 1-3

3 3 Software / Hardware 2 <1

4 5 Software 1 1-3

5 7 Software /

Consulting

1 <1

6 3 Software / Hardware 1 1-3

7 8 Software 1 >3

8 12 Software 1 >3

9 6 Software 1 1-3

10 5 Software 1 >3

11 85 Software / Hardware 1 1-3

12 5 Software / Hardware 1 >3

13 6 Software 1 >3

We utilized a qualitative, thematic interview approach. We chose a thematic approach

because most software startups develop software ad hoc [18][21]. Data were then col-

lected with one of two interview instruments depending on how technical the respond-

ent(s) were. With technical respondents, we utilized an interview instrument (found on

Figshare1) more focused on the technical aspects of software development (interviews

6 to 13 in Table 1). With less technical respondents and in group interviews, we utilized

an interview instrument built around the Essence alphas (same Figshare link below).

 In utilizing two interview instruments, we wanted to gain a deeper understanding of

the practices used through triangulation in terms of data collection methods, as sug-

gested by Langley [16] in the context of process data. Using different types of data can

1 https://doi.org/10.6084/m9.figshare.13017227.v1

5

provide a more comprehensive understanding of the phenomenon. In this case, we felt

that focusing solely on the technical aspects might omit some less technical practices.

3.2 Data Analysis

The analysis of the empirical material in this paper was conducted following the the-

matic synthesis guidelines of Cruzes and Dyba [5]. The material was first transcribed

for analysis. The material was then read thoroughly for an initial overview of the data.

After this, the coding process was started, and each interview was coded. These codes

were then arranged into themes. The coding process was done inductively, with codes

and themes arising from the data (as opposed to e.g. using Essence as the framework at

this stage). E.g., codes included such codes ‘team’, ‘funding’, and ‘prototype’. Using

this approach, we analyzed the data to find practices, either ones already discussed by

Dande et al. [6] or novel ones, with the novel ones made into a list.

Practices that were discussed by two or more of the case startups were considered

prevalent enough to be included into the list of practices. Once the empirical data had

been analyzed and new practices had been formulated, we took the list of 63 software

startup practices of Dande et al. [6] and these new practices and inserted them into the

framework of the Essence Theory of Software Engineering [10] and its alphas. I.e., we

categorized each practice, if possible, under one of these alphas (see section 5.2 for

critical discussion about this approach). The categorized practices were then reviewed

by three other authors to form a consensus.

4 Results

This section is divided into 9 subsections. In the first one, we present the new practices

we uncovered through the case study. In the next seven, we go over the results in rela-

tion to each Essence alpha, discussing the practices found in each category. In the ninth

and final one, we discuss practices that did not fit under any of these alphas.

Given the space limitations of this paper, the clarifying descriptions for the 63 prac-

tices of Dande et al. [6] have not been included in the tables in this section. Such de-

scriptions have, on the other hand, been added for any novel practices proposed by us.

Each practice has an identified (Pn), where practices P64 and up are practices based on

the empirical data and practices P63 and below are from Dande et al. [6].

4.1 New Practices

Based on the data, we propose 13 new practices (Table 2) that were not present in the

list of Dande et al. [6]. These practices were mentioned by at least two case startups.

Other new practices were also uncovered but discussed by only one case startup. These

practices were not considered common based on this set of data.

6

Table 2. New practices based on our data.

ID Practice Description

P64
Study subjects that support

the startup

Studying while working on a startup gains competence

in the team without growing in personnel.

P65 Attend startup events
Startup events provide opportunity for feedback from

experts and allows you to meet potential investors.

P66 Create an MVP early on
MVP helps you to focus on the most important features

in the beginning.

P67
Test features with custom-

ers

Testing features with real customers gets you the best

feedback.

P68 Get advisors
Experienced professionals or investors can help startup

to grow in advisor or mentor role.

P69
Use efficient tools to plan

your business model

Business model canvas, pitch deck etc. help you to focus

your business idea and are easy to change if needed.

P70 Test different tools
Start with tools team is familiar with and test different

ones to find those that work the best for you.

P71 Conduct market research
Research the markets and competitors to focus your idea

and to find your unique value proposition.

P72
Have frequent meetings

with the whole team

Use meetings to organize and plan your work at least

once a week.

P73 Avoid strict roles Let the team co-operate in all of the tasks.

P74 Create a prototype Create prototype to validate your product or features.

P75
Use efficient communica-

tion tools

Use tools that allow natural communication inside the

team when not working in the same space.

P76 Prioritize features
Choose which features are needed now and plan others

for future releases.

4.2 Opportunity

The opportunity alpha is related to understanding the needs the system is to fulfill and

is within the customer area of concern. Practices for this alpha are presented in Table 3

below. No new practices for this category were found in the data.

Table 3. Practices for the Opportunity alpha.

ID Practice Cases Supporting

P1 Focus your product 1,2,6,7,8,9,11,12,13

P2 Find your value proposition and stick to it on all levels 9,13

P4 Focus on goals, whys 9

P18 Validate that your product sells 1,2,4,5,7,8,11

P20 Form deep relations with the first customers to really understand

their needs

1,6,9,11,13

P33 In the development of customer solutions, find a unique value

proposition in your way of acting

1,2,3,5,6,8,9

P34 Follow communities 1,2

The case startups were highly focused on understanding their customers and fulfilling

the needs of the customer (segments). This is in line with the idea of software startups

7

being product-oriented and customer-focused. On the other hand, the lack of support

for P4 makes it seem that these startups were more focused on fulfilling the needs they

had uncovered rather than understanding why these needs were important.

Focusing on the system and the needs it was intended to fulfill was considered im-

portant from the point of view of competition as well. Focusing on one’s unique value

proposition is conventionally considered an important strategy for differentiating from

one’s competitors.

4.3 Stakeholders

Four practices were categorized under the stakeholder alpha (Table 4), which is another

alpha in the customer area of concern in Essence. For startups, most notable stakehold-

ers are typically investors and customers or users. In addition, nearly half of the case

startups discussed the importance of their advisors as stakeholders (P68).

Table 4. Practices for the Stakeholders alpha.

ID Practice Cases Supporting

P24 Keep customer communications simple and natural 6

P32 Showing alternatives is the highest proof of expertise -

P35 Share ideas and get more back 1,2

P68 Get advisors 1,4,5,6,8,9

Especially early-stage startups tend to rely on advisors. For example, startup ecosys-

tems tend to foster advisor relationships in various ways. Startups working in incubators

are likely to receive guidance from various experts. Advisors can provide startups with

capabilities they are lacking and help them expand their contact networks.

The practice of sharing ideas to hone them and to get feedback was also discussed

by some case startups. While in some cases companies may be reluctant to share their

ideas in fears of having them stolen, none of the case startups indicated this type of

concerns. To this end, advisors can also provide feedback if a startup is afraid of re-

vealing their ideas to potential investors due to such concerns.

4.4 Requirements

Requirements help provide scope for the work being done on the system. Four new

practices were uncovered in this category and most existing practices in this category

were well-supported by the cases (Table 5).

However, P3 was in conflict of what some of the case startups stated. P3 posits that

a startup should present its product as facilitating rather than competing. While this is

one valid approach, startups do also seek to compete in some cases.

The requirements alpha, in the data, was closely related to the stakeholders alpha:

uncovering customer needs was the main focus in requirements (P10). In the case

startups, prototypes were typically used to do carry out validation (P67, P74). While a

startup should be open to new features and needs (P51), they should be prioritized (P76)

to create a clear core product (P52, P53).

8

Table 5. Practices for the Requirements alpha.

ID Practice Cases supporting Cases conflicting

P3 Present the product as facilitating rather

than competing to the competitors

- 1,2,6

P5 Use proven UX methods 12 -

P10 Design and conduct experiments to find

out about user preferences

1,2,4,6,9,12,13 -

P21 Use planning tools that really show value

provided to customers

2 -

P51 Anything goes in product planning 1,2,11 -

P52 To minimize problems with changes and

variations develop a very focused concept

1,2,3,4,5,6,7,12,13 -

P53 Develop only what is needed now 1,2,3,12 -

P66 Create an MVP in the beginning 1,2,4,13 -

P67 Test features with customers 1,3,4,5,6,7,8,9,11 -

P74 Create prototype 1,2,3,4,5,6,9,12 -

P76 Prioritize features 1,2,3,9,11 -

4.5 Software System

The software system alpha is focused on the product itself, i.e. the system; software or

hardware. The software system alpha is in the solution area of concern of the Essence

kernel. Some of the previously proposed practices were largely prevalent in the cases

while some received little support from our data. More technical practices (P23, P54,

P57) would have required a more technical focus from the interviews. No new practices

were proposed for this category. The practices for this category are in Table 6.

Table 6. Practices for the Software System alpha.

ID Practice Cases

supporting

Cases

conflicting

P7 Have a single product, no per customer variants 1,2,3,5,7,8,11,12 6,13

P8 Restrict the number of platforms that your product

works on

1,2,3,4,7,12 -

P14 Anyone can release and stop release 2 -

P23 Adapt your release cycles to the culture of your

users

- -

P54 Make features easy to remove - -

P55 Use extendable product architecture 1,2,3,9,11 -

P57 Bughunt - -

P58 Test APIs automatically, UIs manually 2,13 -

P59 Use generic, non-proprietary technologies 2,7 -

P60 Create a solid platform 3,8,9,11 -

Out of the practices of this category, only P7 had some conflicts in the data. This prac-

tice is largely B2C focused, whereas a B2B startup might understandably focus on tai-

loring its system especially for larger customers. However, it is perhaps worth aiming

for a modular product where such manual tailoring is not needed.

9

Overall, these practices further underlined that startups should have a clear focus in

their development. For example, they should focus on a limited number of platforms,

possibly only one initially (P8). Additionally, startups are conventionally seen as agile

and their systems as prone to changes based on feedback. Indeed, these practices sup-

port the idea that the system should be developed with modifications in mind (P60).

Features should be easily added (P55) or removed (P54) when necessary.

4.6 Work

Work in the context of Essence refers to the work tasks required to produce the system.

It is under the endeavor area of concern in the Essence kernel. For software startups,

this also involves business model development. How the work is carried out from the

point of view of e.g. methods, belongs into the way of working category, on the other

hand. Few existing practices were considered to belong into this category and no new

practices for this category were found (Table 7).

Table 7. Practices for the Work alpha.

ID Practice Cases supporting

P44 Tailored gates and done criteria 8

P48 Fail fast, stop and fix 1

P62 Use the most efficient programming languages and platforms 2,3,7

While P48 is arguably closely related to prototyping and validation activities which

were extensively discussed by the respondents, it was seldom discussed directly. On

the other hand, P62 was discussed in relation to system architecture. Efficiency in this

case was considered subjectively: the developers focused on languages and platforms

they had prior experience with and could thus start working the fastest with.

4.7 Team

The team comprises the individuals working on the startup, the founders or owners and

the employees or unpaid ones. It is under the endeavor area of concern in the Essence

kernel. The team sizes for the case startups are in Table 1 in Section 3. One new practice

(P64) was added into this category based on the data (Table 8).

The most mentioned practices were P41 and P42. The initial team is important as it

needs to have the required competencies (P41). To this end, an experienced team may

be required (P42). Some of the cases conflicted with P42, although not because the

teams did not want an experienced team but simply because they could not find one.

 However, this did not mean that the startups did not want and experienced team. Ra-

ther, they simply did not have one due to being founded by a group of students with

little prior experience.

If the team is lacking competencies and expanding the team is not possible or feasi-

ble in a given situation, the existing team members may be have to learn new skills

instead (P64). This also ties to P37, as the small team sizes often result in a single

10

employee having to take on various different tasks. A developer is often involved in

business decisions as well, especially in early-stage startups.

Flat organization structures (P26) are associated with startups and this was also the

case in our data. Involving employees in decision-making may also serve to better bind

them (P29). With a small, focused team, staff turnover can be damaging (P38).

Table 8. Practices for the Team alpha.

ID Practice
Cases

supporting

Cases

conflicting

P26 Flat organization 1,2,3,5,9 -

P27 Consider career expectations of good people 4,9 -

P28 Don’t grow in personnel 1,2,3,12 -

P29 Bind key people 2,3,6,7 -

P36 Small co-located teams 1,2,3,4,5,6 12

P37 Have multi-skilled developers 1,2,3,12 -

P38 Keep teams stable in growth mode 1,2,3,4,6,7,13 9

P40 Sharing competence in team 4,5 -

P41 Start with competence focus and expand as

needed

1,2,3,4,6,8,9,13 -

P42 Start with small experienced team and expand as

needed

1,2,3,4,7,8,12,13 1,2,3

P64 Study skills and topics that support your startup 1,2,3,4,8,9 -

4.8 Way of Working

Way of Working refers to how the work is carried out, including practices, tools, pro-

cesses, and methods [10]. It is under the endeavor area of concern in the Essence kernel.

Most previously proposed practices were supported by our data in this category. Four

new practices were proposed for this category (Table 9).

Most case startups discussed having taken some existing agile practices and tailoring

them rather than using them by the book (P47). While this ties to P72 in that frequent

team meetings are common in agile development, it gained enough emphasis to be its

own separate practice. On the other hand, the use of by-the-book methods (P46) was

not discussed by any of the startups, with the startups using various mixed practices.

Communication in general is an important part of agile development, and arguably de-

velopment in general. The case startups frequently discussed the importance of tools in

facilitating communication (P75). While shared physical workspaces can reduce the

need for tools, their importance is highlighted when working remotely. An early-stage

startup may not have a physical workspace at all, or its members may have erratic work

hours due to having a day job, resulting in communication tools becoming important.

Self-organizing teams are recommended in agile development and this is also argu-

ably common for startups (P39, P73).

11

Table 9. Practices for the Way of Working alpha.

ID Practice Cases

supporting

Cases

conflicting

P9 Use enabling specifications 1,2,3 -

P15 Create the development culture before processes 1,8,11 -

P39 Let teams self-select 1,2,3,5,8 -

P43 Have different processes for different goals - -

P45 Time process improvements right 3 -

P46 Find the overall development approach that fits

your company and its business

- -

P47 Tailor common agile practices for your culture

and needs

1,2,3,4,6,7,8,13 -

P49 Move fast and break things 4,7 -

P50 Forget Software Engineering 1 -

P61 Choose scalable technologies 2,3,9,11 -

P63 Start with familiar technologies and processes 1,2,3,7 -

P70 Test different tools 1,3 -

P72 Have frequent meetings with the whole team 1,2,3,4,5,8,12 -

P73 Don’t have strict roles 1,2,3 9

P75 Use efficient communication tools 2,3,5 -

4.9 Other Practices Unsuited for Existing Essence Alphas

Not all of the practices we propose, or the ones proposed by Dande et al. [6], fit under

any of the existing Essence alphas. These were practices related to the business aspect

of software startups, such as marketing, business model development, or funding.

Whereas Essence focuses on SE in mature software organizations, the business aspect

in software startups is closely intertwined with software development. For example, the

needs of the customers or the customers in general, may not be clear to a software

startup, which results in the requirements evolving over time.

Practices P6, P11, P25, P31, and P71 concern marketing activities. For example, P25

is about getting a few initial customers who are particularly interested in the system and

who can then be used as reference customers in marketing, or who themselves can mar-

ket the product. P6 and P31 are more general marketing practices. These types of ac-

tivities are difficult to incorporate into any existing Essence alpha. While marketing is

a customer related activity and thus could be linked to stakeholders, the existing stake-

holder alpha focuses on clearly identified and involved stakeholders such as the organ-

ization commissioning a project, as opposed to obtaining new customers (stakeholders).

P16 and P17 are related to funding. Funding or simply available cash to burn is

something that is constantly tracked in a startup, much like the alphas are tracked in

Essence. No existing alpha supports funding with clear emphasis. Some of the alpha

states of the Work alpha include mentions of securing sufficient funding, but this pro-

cess is seldom so straightforward in a startup.

The remaining practices in this category are related to overall business model devel-

opment and business planning. For example, P13 suggests that outsourcing some part

of the business can help the startup focus on the core product, and P22 suggests a strat-

12

egy for rapid and high growth. P30, on the other hand, could be filed under the Stake-

holders alpha, but doing so might not place sufficient emphasis on the strategic im-

portance of such decisions from a business point of view.

As we do not formally develop new alphas in this paper, we leave the proposals

related to these observations for the following discussion section.

Table 10. Practices not applicable to any existing Essence alpha.

ID Practice Case supporting Case

conflicting

P6 Do something spectacular - -

P11 Use tools to collect data about user behavior 1,2,7 -

P12 Make your idea into a product 1,2,3,4,5,6,7,8,12,13 11

P13 Outsource your growth 5,9,11,12,13 3

P16 Get venture capital and push your product 1,2,4,5,8,9 3

P17 Fund it yourself 1,2,3,7,9 -

P19 Focus early on those people who will give

you income in the long run

5,6,7,8,11,13 -

P22 Start locally grow globally 1,2,3,6,7,8,9,13 -

P25 Help customers create a great showcase for

you with support

1,6,8,9 -

P30 Form partnerships and bonds with other

startups

1,3,4,5,13 -

P31 Make your own strength as a “brand” 8 -

P56 Only use reliable metrics 5,6,7 -

P65 Attend startup events 1,2,3,4,8 -

P69 Use efficient tools to plan your business

model

1,2,3 -

P71 Conduct market research 1,2,6,12 -

5 Discussion

The primary contributions of this study are (1) this list of practices 76 and its implica-

tions we discuss here, and (2) the implications these practices have for utilizing Essence

in the startup context. First, In terms of the practices and the data overall, our findings

seem to support existing literature. Paternoster et al. [21] argued that startups develop

software using various agile practices or ad hoc. The case startups of this study did

discuss the utilization of methods either, only occasionally mentioning singular prac-

tices that could be seen as Agile. Many of the practices, such as focusing on a set of

functionalities or utilizing MVPs, are also discussed in the Greenfield Startup Model of

Giardino et al. [9].

It is common for larger software organizations, too, to take a method such as

SCRUM and then omit some practices to create yet another "scrumbut,” with quality

practices often the first ones to go [8]. Startups, on the other hand, seem to seldom even

use tailored methods, pointing to an even higher degree of unsystematic approaches to

SE – based on both our data and existing studies (e.g. [18][21]).

In terms of how startups differ from mature organizations, aside from the aforemen-

tioned use of ad hoc methods and singular agile practices, technical debt is one element

13

typically associated with startups [1][9]. Some of the practices were ones that would

arguably generate technical debt (e.g.” move fast, break things”), but the case startups

did not explicitly discuss technical debt as an issue.

The list of practices in this paper presents a closer look at the way software startups

develop software. These existing studies have focused on method use and specific is-

sues faced by startups such as technical debt accumulation, or MVPs. By better under-

standing what practices startups use we can further our understanding of how they differ

from larger software organizations. This is arguably important as it possible that one

factor contributing to the lack of method use in startups may be that they feel that ex-

isting methods are not well-suited for the startup context. The practices listed in this

paper support existing literature. For example, P66 posits that an MVP should built

early on, which is in line with Klotins et al. [14] who argue that one common issue for

software startups is taking too long with an initial version of the product.

The other contribution of this paper is related to Essence, which we have used as a

theoretical framework for categorizing the practices in this paper. Essence is intended

to be used in any SE endeavor. Its so-called kernel, its authors argue [10], contains the

elements present in every SE endeavor. This kernel acts as a set of building blocks that

can then be extended using the Essence language to describe methods.

In this paper, we looked at Essence from the point of view of software startups.

Based on our data and extant literature (e.g. [14, 15]), the business aspect is deeply

intertwined with software development in the startup context. In fact, Klotins et al. [14]

argue that software startups largely fail due to business issues that originate from SE

processes. This supports the idea that SE and business aspects are difficult to separate

in software startups. If the goal of Essence is to contain the elements present in every

SE endeavor, for the startup context this would thus seem to include business elements.

For example, a conventional software project that is commissioned has clear require-

ments which have been agreed upon with the customer(s). On the other hand, software

startups spend significant effort trying to ascertain whether their idea addresses a real

need of a real customer (segment) at all. These idea or business validation activities to

hand-in-hand with development activities. Moreover, whereas a developer in a large

organization simply develops, in startups roles are seldom so clear-cut, especially early

on. In an early-stage startup, a developer may be involved in business activities as well.

Some of the practices in this paper, namely the business-related ones, were not well-

suited for any existing Essence alpha. To better incorporate the business aspect into

Essence in order to make it more suitable for the startup context, we propose the fol-

lowing: (1) a fourth area of concern for business aspects should be added, and (2) new

alphas for this business area of concern should be added. We suggest that funding,

business model, and marketing could be new alphas for this area of concern.

Alphas are things to work with and while using Essence one tracks progress on the

alphas, each of which is split into alpha states to aid in this process. Therefore, each of

these three new alphas should be in some way measurable. First, funding pivotal for

any startup [3], and can be quantitatively measured with various metrics, making it a

straightforward alpha. Progress on this alpha is likely to fluctuate as cash is burned and

new funding is obtained. Secondly, business model development is at the core of a

startup [17]. Indeed, one widely used definition for what is a startup posits that a startup

14

is a “temporary organization designed to look for a business model that is repeatable

and scalable” [2]. Startups constantly invest resources into validating that they are try-

ing to address a real need. Progress on business model development could be tracked

by evaluating how well the current business model is functioning and to what extent it

is already operational. Thirdly and finally, marketing may warrant its own alpha. Mar-

keting is as important to startups as it is to any other company [4]. Startups generally

have less capital to spend on marketing, forcing them to get creative with it.

Alternatively, one other option would be to look at other theories and frameworks

commonly utilized by startups for business model development. Potential business-re-

lated alphas could be derived e.g. from the Business Model Canvas [20].

5.1 Practical Implications

The primary practical contribution of this study are the practices listed in the tables in

the results section. These practices can help guide work in software startups. Moreover,

they can be used to construct methods in conjunction with other practices. Additionally,

based on these practices and the data, we suggest the following implications:

 Flat organization and self-organizing teams seem to be an effective way for

constructing the initial team. Self-organizing teams have been noted to be ben-

eficial in Agile [12]. It may also be beneficial to avoid strict roles.

 You should have a clear idea of what is the core product and what features are

the key features at any given moment. Having a scope too large for the product

or an MVP is a frequent reason for failure in software startups [14].

 Forming close relationships with initial customers and users is beneficial.

They can help you develop your product and participate in development. They

can also aid in marketing. For example, user communities on social media

platforms built around your (future) product can be beneficial in various ways.

5.2 Limitations of the Study

There are several limitations in this study. First, defining practices is a challenge in

various ways. The level of abstraction in defining a practice can be subjective, and a

single practice, when trying to describe how work should be carried out, can be de-

scribed with varying levels of detail. Thus, some practices could be combined under a

single practice of a higher level of abstraction rather than being split into multiple, more

detailed practices. This is something that should be taken into account when looking at

the practices discussed in this paper.

Secondly, practices in Essence can belong under multiple alphas. For the clarity of

presentation, we chose to separate them into categories by alpha. However, some prac-

tices under one alpha could also justifiably be assigned under another alpha. Thus, the

categorization in this paper is not conclusive and was used to 1) structure the analysis

section, and 2) to evaluate whether each practice would fit under any existing alpha.

Some of the business-focused practices could not clearly fit under any existing alpha,

which was one of the main contributions of this study.

15

Thirdly, eliciting practices is also a challenge. Aside from practices explicitly con-

sidered practices by the respondents (e.g. pair programming), practices need to be de-

fined based on what the respondents tell about their startup and its team and their work.

This, too, is not a fully process if the practices are defined by an external party (re-

searchers). We present but one way of categorizing work in startups into practices. In-

deed, though they never listed them, Paternoster et al. [21] report to have found 213

practices, indicating that many more practices could be outlined based on different data.

Finally, qualitative studies can suffer from generalizability issues due to the nature

of the approach. We, however, argue that 13 cases is a large enough number for some

generalizability. E.g., Eisenhardt [7] suggests five cases to be sufficient for novel areas.

6 Conclusions

In this paper, we have studied Software Engineering (SE) in software startups from the

point of view of practices, by means of a case study of 13 startups. Data were collected

through semi-structured interviews. This set of data was used to complement and ex-

pand upon the results of an existing study that produced a list of 63 practices [6]. Based

on our empirical data and this list, we propose 76 software startup practices that can be

used in method engineering in the startup context.

 We then took these practices and inserted them into the framework of the Essence

Theory of Software Engineering to understand whether Essence also covers the aspects

of SE in software startups and not just conventional SE projects. Our results suggest

that the business aspect of startups is so intertwined with SE that the more business-

oriented practices could not fit into the framework of Essene. We propose that Essence

either be extended to include these business aspects for the startup context, or that other

theories and tools are used in conjunction with it to cover the business aspect. We pro-

pose potential new alphas that could be used to extend Essence that future studies.

References

1. Besker, T., Martini, A., Lokuge, R. E., Blincoe, K., Bosch, J.: Embracing Technical Debt,

from a Startup Company Perspective. In Proceedings of the 2018 IEEE International Con-

ference on Software Maintenance and Evolution (ICSME), IEEE (2018).

2. Blank, S.: The four steps to the epiphany: successful strategies for products that win. Book-

Baby (2007).

3. Chang, S. J.: Venture capital financing, strategic alliances, and the initial public offerings of

Internet startups. Journal of Business Venturing, 19(5), 721-741, (2004).

4. Crowne, M.: Why software product startups fail and what to do about it. Evolution of soft-

ware product development in startup companies. In Proceedings of the 2002 Engineering

Management Conference IEMC'02, pp. 338-343, IEEE (2002).

5. Cruzes, D. S., Dyba, T.: Recommended steps for thematic synthesis in software engineering.

In Proceedings of the 2011 Symposium on Empirical Software Engineering and Measure-

ment (ESEM), pp. 275-284, IEEE (2011).

16

6. Dande, A., Eloranta, V. P., Kovalainen, A. J., Lehtonen, T., Leppänen, M., Salmimaa, T., ...

Koskimies, K.: Software startup patterns - an empirical study. Tampereen teknillinen ylio-

pisto. Tietotekniikan laitos. Raportti-Tampere University of Technology. Department of

Pervasive Computing. Report; 4 (2014).

7. Eisenhardt, K. M.: Building theories from case study research. Academy of Management

Review, 14(4), 532-550 (1989).

8. Ghanbari, H., Vartiainen, T., Siponen, M.: Omission of Quality Software Development

Practices: A Systematic Literature Review. ACM Computing Surveys, 51(2), (2018).

9. Giardino, C., Paternoster, N., Unterkalmsteiner, M., Gorschek, T., Abrahamsson, P.: Soft-

ware Development in Startup Companies: The Greenfield Startup Model. IEEE Transactions

on Software Engineering, 42(6), 585-604 (2016).

10. Jacobson, I., Ng, P. W., McMahon, P., Spence, I., Lidman, S.: The essence of software en-

gineering: the SEMAT kernel. ACM Queue, 10(10), 40 (2012).

11. Kamulegeya, G., Hebig, R., Hammouda, I., Chaudron, M., Mugwanya, R.: Exploring the

Applicability of Software Startup Patterns in the Ugandan Context. In Proceedings of the

43rd Euromicro Conference on Software Engineering and Advanced Applications (SEAA),

pp. 116-124, IEEE, (2017).

12. Karhatsu, H., Ikonen, M., Kettunen, P., Fagerholm, F., Abrahamsson, P.: Building Blocks

for Self-Organizing Software Development Teams a Framework Model and Empirical Pilot

Study. In Proceedings of the 2nd International Conference on Software Technology and En-

gineering (ICSTE) (2010).

13. Klotins, E.: Software start-ups through an empirical lens: are start-ups snowflakes? In Pro-

ceedings of the International Workshop on Software-intensive Business: Start-ups, Ecosys-

tems and Platforms (SiBW) (2018).

14. Klotins, E., Unterkalmsteiner, M., Gorschek, T.: Software Engineering Antipatterns in start-

ups. IEEE Software, 36(2), 118-126, (2018).

15. Klotins, E., Unterkalmsteiner, M., Gorschek, T.: Software engineering in start-up compa-

nies: An analysis of 88 experience reports. Empirical Software Engineering, 24(1), 68-102.

(2019)

16. Langley, A.: Strategies for Theorizing from Process Data. Academy of Management Re-

view, 24(4), (1999).

17. Lueg, R., Malinauskaite, L., Marinova, I.: The vital role of business processes for a business

model: the case of a startup company. Problems and Perspectives in Management, (12, Iss.

4 (contin.)), 213-220, (2014).

18. Melegati, J., Goldman, A., Paulo, S.: Requirements Engineering in Software Startups: a

Grounded Theory approach. 2nd Int. Work. Softw. Startups, Trondheim, Norw. (2016).

19. Nguyen-Duc, A., Wang, X., Abrahamsson, P.: What Influences the Speed of Prototyping?

An Empirical Investigation of Twenty Software Startups. In Proceedings of the 2017 Inter-

national Conference on Agile Software Development (XP2017), pp. 20-36. (2017).

20. Osterwalder, A., Pigneur, Y., Clark, T.: Business Model Generation: A Handbook for Vi-

sionaries, Game Changers, and Challengers. Hoboken, NJ: Wiley (2010).

21. Paternoster, N., Giardino, C., Unterkalmsteiner, M., Gorschek, T., Abrahamsson, P.: Soft-

ware development in startup companies: A systematic mapping study. Information and Soft-

ware Technology, 56(10), 1200-1218 (2014).

22. Tolvanen, J. P.: Incremental method engineering with modeling tools: theoretical principles

and empirical evidence. Ph. D. Thesis, University of Jyvaskyla (1998).

23. Unterkalmsteiner et al.: Software Startups - A Research Agenda. E-Informatica Software

Engineering Journal, 1, 89-124 (2016).

III

ECCOLA: A METHOD FOR IMPLEMENTING ETHICALLY
ALIGNED AI SYSTEMS

by

Ville Vakkuri, Kai-Kristian Kemell & Pekka Abrahamsson, 2020

46th Euromicro Conference on Software Engineering and Advanced Applications
(SEAA) (pp. 195-204). IEEE

DOI 10.1109/SEAA51224.2020.00043

Reproduced with kind permission by IEEE.

This is the author's version of the work. The definite version was published in: V. Vakkuri, K. -K. Kemell and P. Abrahamsson, "ECCOLA - a
Method for Implementing Ethically Aligned AI Systems," 2020 46th Euromicro Conference on Software Engineering and Advanced

Applications (SEAA), Portoroz, Slovenia, 2020, pp. 195-204, https://doi.org/10.1109/SEAA51224.2020.00043

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for

resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

ECCOLA - a Method for Implementing Ethically Aligned AI Systems
Ville Vakkuri [0000-0002-1550-1110]

Faculty of Information Technology
University of Jyväskylä

Jyväskylä, Finland
ville.vakkuri@jyu.fi

Kai-Kristian Kemell [0000-0002-0225-4560]
Faculty of Information Technology

University of Jyväskylä
Jyväskylä, Finland

kai-kristian.o.kemell@jyu.fi

Pekka Abrahamsson [0000-0002-4360-2226]
Faculty of Information Technology

University of Jyväskylä
Jyväskylä, Finland

pekka.abrahamsson@jyu.fi

Abstract— Various recent Artificial Intelligence (AI) system
failures, some of which have made the global headlines, have
highlighted issues in these systems. These failures have resulted in
calls for more ethical AI systems that better take into account
their effects on various stakeholders. However, implementing AI
ethics into practice is still an on-going challenge. High-level
guidelines for doing so exist, devised by governments and private
organizations alike, but lack practicality for developers. To address
this issue, in this paper, we present a method for implementing AI
ethics. The method, ECCOLA, has been iteratively developed using
a cyclical action design research approach. The method aims at
making the high-level AI ethics principles more practical, making it
possible for developers to more easily implement them in
practice.

Keywords—Artificial Intelligence, AI ethics, Ethics,
implementing, method

1. INTRODUCTION
As we make increasing progress on Artificial Intelligence

(AI), the systems become increasingly widespread and exert
a growing impact on society. This has also resulted in us
witnessing various AI system failures, which have served to
highlight various ethical issues associated with these
systems. Many of these failures have made the global
headlines and resulted in public backlash. Especially privacy
issues related to facial recognition technology have become
a prominent topic among the general public, as well as for
policymakers.

The systems we develop, despite us having had some
collective learning experiences from past system failures,
are still far from being problem-free. Ethical issues persist,
and more arise as the technologies become more
sophisticated. Aside from the obvious physical damage
potential of systems such as autonomous vehicles, data
handling alone is ripe with ethical issues without universal
answers.

The discussion on the field of AI ethics has soared in
activity in the past decade following this technological
progress, resulting in the birth of some key principles that
are now widely acknowledged as central issues in AI ethics.
One such issue is the demand for AI systems that are
explainable [1]. The problem thus far has been transferring
this discussion into practice. I.e., how to actually influence
the development of these systems?

For the time being, this has mostly been carried out
either via guidelines or laws and regulations. Guidelines
have been devised by companies [2], governments [3] and
standardization organizations [4]. Yet, these guidelines have
been lacking in actionability. Developers struggle to
implement abstract ethical guidelines into the development
process [5,6].

Methods and practices in the area remain highly
technical, focusing on specific issues in e.g. machine
learning [7]. While certainly useful in their specific contexts,
these types of tools do not help companies in the design
and development process as a whole. Thus, development
methods are still required to bridge this gap between
research and practice in the area.

In this paper, we present our work on an AI ethics
method: ECCOLA. ECCOLA has been developed iteratively
over the past two years through empirical use and data
resulting from it, with each iteration improving the method.
ECCOLA is intended to help organizations implement AI
ethics in practice, in an actionable manner.

The rest of this paper is structured as follows. The
second section discusses the theoretical background of the
paper: AI ethics, methods in AI ethics, as well as the Essence
Theory of Software Engineering used in devising the method
in question. The third section presents the method, ECCOLA.
In the fourth section we discuss how ECCOLA was iteratively
developed and what kind of data were used in doing so. In
the fifth and final section we discuss the method in relation
to extant literature and conclude the paper.

2. THEORETICAL BACKGROUND
This section is split into three subchapters. In the first

one, we provide an overview of the current state of AI
ethics in research. In the second one, we focus on the state
of the practical implementation of AI ethics, discussing the
methods and other tools that currently exist to help
practitioners implement it. In the third and final one, we
discuss the Essence Theory of Software Engineering, and
specifically the idea of essentializing software engineering
practices, as this an approach we have utilized in devising
ECCOLA.

A. AI Ethics
AI ethics is a long-standing area of research. In the past,

much of the debate focused on hypothetical future
scenarios that would result from technological progress.

https://doi.org/10.1109/SEAA51224.2020.00043

This is the author's version of the work. The definite version was published in: V. Vakkuri, K. -K. Kemell and P. Abrahamsson, "ECCOLA - a
Method for Implementing Ethically Aligned AI Systems," 2020 46th Euromicro Conference on Software Engineering and Advanced

Applications (SEAA), Portoroz, Slovenia, 2020, pp. 195-204, https://doi.org/10.1109/SEAA51224.2020.00043

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for

resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

However, as these hypothetical future scenarios start to
become reality following said progress, which to many has
been faster than anticipated, the field has become
increasingly active.

Much of the research in the area has focused on theory,
and specifically to define AI ethics by highlighting key ethical
issues in AI systems. This discussion has focused on
principles. Many have been proposed and discussed, and,
by now, some have become largely agreed-upon [8]. Based
on an analysis of the numerous AI ethics guidelines that
now exist, Jobin et al. [8] listed the key principles that could
be considered central based on how often they appear in
these guidelines: “transparency, justice and fairness, non-
maleficence, responsibility, privacy, beneficence, freedom
and autonomy, trust, dignity, sustainability, and solidarity.”

To provide an example of the type of research that has
been conducted on these principles, we can look at
transparency. Transparency [9] is widely considered one of
the central AI ethical principles. Transparency is about
understanding AI systems, how they work, and how they
were developed [9,10]. It has been argued to be the very
foundation of AI ethics: if we cannot understand how the
systems work, we cannot make them ethical either [11]. The
discussion on transparency has, aside from defining what it
is, focused on how to achieve it. For example, Ananny &
Crawford [10] discussed the limitations of the idea of
transparency in relation to the complexity brought on by
machine learning. Is being able to see inside the system
really enough or even helpful? Transparency is featured as a
key principle in the high-profile guidelines of EU [3] and IEEE
[4], for example.

Though principles are one way of categorizing the
discussion in the area, it is ultimately about bringing
attention to potential ethical issues in AI, with or without
pinning them under a specific principle. Privacy issues, for
example, have been one prominent topic of discussion both
in academia and the media following various practical
examples of (ethical) AI system failures. Privacy issues have
been discussed in relation to data handling, technology such
as facial recognition, as well as racial bias, which falls under
the principle of fairness.

Indeed, guidelines have, thus far, been the main way of
bridging the gap between research and practice in the area.
The purpose of these guidelines has been to distill the
discussion in the area into a tool. However, past research
has shown that guidelines are rarely effective in software
engineering. McNamara et al. [6] studied the impact the
ACM Code of Ethics1 had had on practice in the area, finding
little to none. This seems to also be the case in AI ethics: in a
recent paper [5], we studied the current state of practice in
AI ethics and found that the principles present in literature
are not actively tackled out on the field.

1 https://www.acm.org/code-of-ethics

This state of affairs underlines a need for more
actionable tools for implementing AI ethics in practice. In
the context of software engineering, we thus turn to
methods, i.e. ways of working that direct how work is
carried out [12]. As software engineering in any organization
is carried out using typically some form of an agile method
[13], hybrid or in-house ones, incorporating AI ethics into
these methods would be a goal to strive for.

B. Methods in AI Ethics
There are already various methods and tools for

implementing AI ethics, as highlighted by Morley et al. [7] in
their systematic review. These are largely tools for the
technical side of AI system development, such as tools for
machine learning. On the other hand, we are not currently
aware of any method focusing on the higher-level design
and development decisions surrounding AI systems.
Guidelines have been devised for this but seem to remain
impractical given their seeming lack of adoption out on the
field [5].

Aside from AI ethics methods and tools, some ethical
tools from other fields do exist that could potentially be
used to design ethical AI systems. One example of such a
tool is the RESOLVEDD method from the field of business
ethics [14]. We have, in a past study [15], studied the
suitability of this particular method for the AI ethics context,
with our results suggesting that dedicated methods would
be more beneficial. Such methods, however, are currently
lacking.

Aside from ECCOLA, there is currently some other
activity in method development for the area as well, though
to the best of our knowledge most of these are still work-in-
progress. E.g., while not a software engineering method as
such, Leikas et al. [16] recently presented an “ethical
framework for designing autonomous intelligent systems”.
This framework, however, is more focused on higher level
design than development and not specifically aimed at
developers or product managers.

In devising ECCOLA, our method, we have turned to the
Essence Theory of Software Engineering for method
engineering. Specifically, we have utilized the theory’s
philosophy of essentializing software engineering practices
in devising a method, as we discuss next.

C. Essentializing to Create Methods from Practices
The Essence Theory of Software Engineering (Jacobson

et al. [12]) is a method engineering tool. It comprises a
method core, which the authors refer to as a kernel, as well
as a language. The kernel, they argue [12], contains all the
core elements present in any software engineering project.

To this end, the kernel contains three types of items:
alphas (ie. things to work with), activities (things to do), and
competencies (skills required to carry out the tasks). There

https://doi.org/10.1109/SEAA51224.2020.00043

This is the author's version of the work. The definite version was published in: V. Vakkuri, K. -K. Kemell and P. Abrahamsson, "ECCOLA - a
Method for Implementing Ethically Aligned AI Systems," 2020 46th Euromicro Conference on Software Engineering and Advanced

Applications (SEAA), Portoroz, Slovenia, 2020, pp. 195-204, https://doi.org/10.1109/SEAA51224.2020.00043

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for

resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

are seven alphas, which form the core of the kernel2:
opportunity, stakeholders, requirements, software system,
work, team and way-of-working. The kernel provides a basis
for constructing methods using the Essence language to
describe them. I.e., the theory consists of basic building
blocks which can be utilized by using the language to extend
the base to build a method. On its own, the kernel could be
used as a generic software engineering method, but the
point of Essence is to construct new methods using the
language, while utilizing the kernel as an extensible starting
point for doing so.

Software engineering methods consist of practices. A
practice is a more atomic unit of work, such as pair
programming. In creating ECCOLA, we have utilized the idea
of essentializing [17] software engineering practices. In
short, this refers to describing them using the Essence
language. This offers one way of breaking down practices
into different elements in order to describe them, making
them easier to understand. This also serves to make
practices more modular, as describing them in the same
notational language makes it easier to combine them into
methods.

Essentializing practices is described as a process by
Jacobson [17] as follows:

“- Identifying the elements – this is primarily identifying a list of
elements that make up a practice. The output is essentially a
diagram [...]

- Drafting the relationships between the elements and the outline
of each element – At this point, the cards are created.

- Providing further details – Usually, the cards will be
supplemented with additional guidelines, hints and tips, examples,
and references to other resources, such as articles and books”
As can be observed in the above quote, Essence utilizes

cards to describe methods. This is also an approach we have
utilized in ECCOLA: ECCOLA is a card deck.

Essence was also chosen due to its method-agnostic
approach and modular philosophy on methods. From the
get-go, ECCOLA was never intended to be a stand-alone
method, but rather, a modular extension to existing
software development methods that would bring in AI
ethics.

Originally, we planned on using the Essence language to
describe ECCOLA. For example, principles such as
transparency could have been alphas (i.e. things to work
with) in the method. However, as the development of the
method progressed and we began to test its early versions
in practice, Essence turned out to make the method
confusing to its users. As a result, the role of Essence in
ECCOLA grew smaller, as we discuss in the fourth section.

3. ECCOLA - A METHOD FOR DESIGNING ETHICALLY ALIGNED AI
SYSTEMS

As we have discussed in section II, AI ethics is currently
an area with a prominent gap between research and

2 http://semat.org/alpha-definitions-overview/competency-cards

practice. Much of the research has been theoretical and
conceptual, focusing on defining key principles for AI ethics
and how to tackle them. The numerous guidelines for AI
ethics that currently exist [8] have tried to bridge this gap to
bring these principles to the developers, but seem to not
have had much success. Indeed, ethical guidelines tend to
not have much impact in the context of SE [6]. To bridge this
gap we propose a method for implementing AI ethics:
ECCOLA.

ECCOLA3 (figure 1) is intended to provide developers an
actionable tool for implementing AI ethics. To utilize the
various AI ethics guidelines in practice, the organization
seeking to do so has to somehow make them practical first.
ECCOLA, on the other hand, is intended to be practical as is,
and ready to be incorporated into any existing method.
ECCOLA does not provide any direct answers to ethical
problems, as arguably correct answers are a rare breed in
ethics in general, but rather asks questions in order to make
the organization consider the various ethical issues present
in AI systems. Though ultimately how these questions are
then tackled is up to the organization in question, ECCOLA
does encourage taking into account any ethical issues it
highlights.

ECCOLA is built on AI ethics research. It utilizes both
existing theoretical and conceptual research, as well as AI
ethics guidelines that have been devised based on existing
research as well. In terms of guidelines, the cards are based
primarily on the IEEE Ethically Aligned Design guidelines [4]
and the EU Trustworthy AI guidelines [4]. As these
guidelines have already distilled much of the existing
research on the topic under various principles, these
principles have been utilized in ECCOLA as well. AI ethics
research has been used to further expand on these
principles in ECCOLA.

In practice, ECCOLA takes on a form of a deck of cards.
This approach was based on the Essence Theory of Software
Engineering [12], which was used to describe the first
versions of the method. Methods described using the
Essence language are utilized through cards. However, using
cards in the context of software engineering methods is not
a novel idea, nor one proposed by Essence. E.g., Planning
Poker in Agile uses cards and the idea of Kanban is founded
around using cards in the form of sticky notes.

There are 21 cards in total In ECCOLA. These cards are
split into 8 themes, with each theme consisting of 1 to 6
cards. These themes are AI ethics themes found in various
ethical guidelines [8], such as transparency or data. Each
individual card, then, deals with a more atomic aspect of
that theme, such as, in the case of data, data privacy and
data quality. Aside from the main set of cards, ECCOLA also
features an A5-sized game sheet that describes how the
method is used.

3 https://figshare.com/articles/Internet_resource_for_ECCOLA_-

_a_Method_for_Implementing_Ethically_Aligned_AI_Systems/12136308

https://doi.org/10.1109/SEAA51224.2020.00043

This is the author's version of the work. The definite version was published in: V. Vakkuri, K. -K. Kemell and P. Abrahamsson, "ECCOLA - a
Method for Implementing Ethically Aligned AI Systems," 2020 46th Euromicro Conference on Software Engineering and Advanced

Applications (SEAA), Portoroz, Slovenia, 2020, pp. 195-204, https://doi.org/10.1109/SEAA51224.2020.00043

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for

resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Figure 1. ECCOLA - a Method for Implementing Ethically Aligned AI Systems

https://doi.org/10.1109/SEAA51224.2020.00043

This is the author's version of the work. The definite version was published in: V. Vakkuri, K. -K. Kemell and P. Abrahamsson, "ECCOLA - a
Method for Implementing Ethically Aligned AI Systems," 2020 46th Euromicro Conference on Software Engineering and Advanced

Applications (SEAA), Portoroz, Slovenia, 2020, pp. 195-204, https://doi.org/10.1109/SEAA51224.2020.00043

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for

resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Each card in ECCOLA is split into three parts (figure 2):
(1) motivation (i.e. why this is important), (2) what to do (to
tackle this issue), and (3) a practical example of the topic (to
make the issues more tangible). Each card also comes with a
note-making space. As the cards are generally utilized as
physical cards, the card is split into two with the left half of
each card containing the textual contents and the right half
containing white space for notes. This note-making space
has been included to make using the cards more convenient
in practice.

Figure 2. Card example from ECCOLA, Card #3 Communication

ECCOLA supports iterative development. During each
iteration, the team is to choose which cards, or themes, are
relevant for that particular iteration. ECCOLA is also
method-agnostic, making it possible to utilize it with any
existing or in-house SE method.

Depending on by whom ECCOLA is utilized, the tool has
different goals. First, for product owners, the tool is
intended to result in non-functional user stories involving
ethics. Secondly, for a team of developers, the goal of
ECCOLA is facilitating communication. By using the cards,
the team will end up discussing ethical issues and making
decisions based on the discussions. Finally, if utilized by a
single developer, the goal of the method is raising
awareness of ethical issues in AI. A single developer would
instead dwell on these potential issues on their own while

possibly looking further into the issues online for other
points of view.

In developing ECCOLA, we have had three main goals for
the method:

To help create awareness of AI ethics and its
importance

To make an adaptable, modular method
suitable for a wide variety of SE contexts, and

To make ECCOLA suitable for agile
development, and to also make ethics a part of
agile development in general.

Next, we discuss how ECCOLA has been developed. It
has been developed iteratively with multiple sets of data.

4. ECCOLA DEVELOPMENT PHASES AND DATA
ECCOLA has been developed iteratively through multiple

phases (five, thus far). For this purpose, we have utilized the
Cyclical Action Research method described by Susman and
Evered [18] in developing it. In each phase, we have
collected empirical data, based on which ECCOLA has been
improved (figure 3).

The subsections of this section each cover one phase. In
each subsection, we discuss what ECCOLA looked like at the
time, how it was tested, and how it was changed based on
the data. This process is also summarized in Table 1.

Figure 3. Cyclical Action Research process on ECCOLA. Including Cycle of
Action, Observation, Reflection on each iteration

A. Phase 1 (Q1-Q2 2018)
In early 2018, prior to starting our work on ECCOLA, we

searched for existing methods for AI ethics, ultimately

https://doi.org/10.1109/SEAA51224.2020.00043

This is the author's version of the work. The definite version was published in: V. Vakkuri, K. -K. Kemell and P. Abrahamsson, "ECCOLA - a
Method for Implementing Ethically Aligned AI Systems," 2020 46th Euromicro Conference on Software Engineering and Advanced

Applications (SEAA), Portoroz, Slovenia, 2020, pp. 195-204, https://doi.org/10.1109/SEAA51224.2020.00043

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for

resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

finding none. Thus, we expanded our horizons and looked at
ethical tools from other fields instead, to see if anything
would seem applicable in the context of AI ethics as well.
This led us to eventually test an existing ethical tool from
the field of business ethics, the RESOLVEDD strategy [14], in
the context of AI ethics. Our aim was to see if existing
ethical tools, even if they were not specifically created for AI
ethics, could be suitable for that context.

We conducted a scientific study on RESOLVEDD in the
context of AI ethics. These findings have been published in-
depth elsewhere (see Vakkuri & Kemell [15]). In short, we
discovered that forcing developers to utilize RESOLVEDD did
have some positive effects. Namely, it produced
transparency in the development process, and the presence
of an ethical tool made the developers aware of the
potential importance of ethics, resulting in ethics-related
discussions within the teams. However, the tool itself was
not considered well-suited for the context by the
respondents. Moreover, when forcing developers to utilize
such a tool, the commitment towards it quickly vanished
when the tool was no longer compulsive.

TABLE I. CYCLICAL ACTION RESEARCH PHASES

Phase
Version

Prim
ary Background

Theories

Study setting

Tim
ing

Study Participants

1
N
/
A

RESOLVEDD, EAD,
Essence Class Q1-Q2

2018
5 teams of
4-5 students

2

1 RESOLVEDD, EAD,
Essence Class

Q2
2018 -
Q2
2019

27 teams of
3-5 students

2 RESOLVEDD, EAD,
Essence Class

Q2
2018 -
Q2
2019

27 teams of
3-5 students

3 RESOLVEDD, EAD,
Essence Class

Q2
2018 -
Q2
2019

27 teams of
3-5 students

3 4 EU AI HLEG, EAD Blockchain
Project

Q2-Q3
2019

2 sw
developmen
t team
members

4 5 EU AI HLEG, EAD Conference
Workshop

Q4
2019

8
researchers

5 6 EU AI HLEG, EAD N/A On-
going N/A

B. Phase 2 (Q2 2018 - Q2 2019)
1) Creating Version 1 (Q2 2018 - Q1 2019)

Based on the results of the RESOLVEDD study, we began
to develop a method of our own, ECCOLA, during the latter

half of 2018. This initial version of the method was based on
three primary theories: (1) RESOLVEDD strategy, (2) The
Essence Theory of Software Engineering, and (3) The IEEE
Ethically Aligned Design guidelines.

We utilized some of the general ideas of RESOLVEDD,
which were deemed useful based on the data we collected.
Namely, we took to RESOLVEDD for ideas on how to make
the tool support iterative development. Additionally, we
included some of the aspects of RESOLVEDD which were
shown to support transparency of systems development
(e.g. the idea of producing formal text documents while
using the method).

We began to describe the method using the Essence
language (see section 2.3). Methods described using
Essence are visualized through cards, and thus, ECCOLA took
on the form of a card deck as well. This also meant that we
included the various elements of Essence into the cards. For
example, we made some of the key AI ethics principles,
namely transparency, accountability, and responsibility, into
alphas in the context of Essence (i.e. measurable things to
work on). The cards also included various activities that
were to be performed in order to progress on these alphas,
as well as patterns and other Essence elements.

The AI ethics contents of the method, at this stage, were
based primarily on the IEEE Ethically Aligned Design
guidelines [4]. We included key principles from the
guidelines such as transparency and accountability, which
have been prominent topics of discussion in AI ethics.
Additionally, we utilized various research articles. For
example, to expand on transparency, we utilized the studies
of Dignum [9] and Ananny & Crawford [10], among others.

Much like how while using RESOLVEDD one produces
text answering some questions posed by the tool, we
incorporated the same idea of producing text while using
ECCOLA into the initial version of the method. The
theoretical background of this early version was based
primarily on the IEEE EAD guidelines and the idea of the ART
principles of AI Ethics [9].
2) Testing Version 1 (Q1 2019)

This first version of ECCOLA was tested in a large-scale
project-based course on systems development at the
University of Jyväskylä in the first quarter of 2019. In the
course, 27 student teams of 4-5 students worked on a real-
world case related to autonomous maritime. Each team was
tasked with coming up with an innovation that would help
make autonomous maritime possible. The teams were not
required to actually develop these innovations into
functional products, given the time and capability
constraints in a course setting, but rather, to hone the ideas
as far as they could in the context of the course. Some
teams ultimately did produce technical demos, but this was
not required. The results of these projects have been
published in an educational book4.

4 https://jyx.jyu.fi/handle/123456789/63051

https://doi.org/10.1109/SEAA51224.2020.00043

This is the author's version of the work. The definite version was published in: V. Vakkuri, K. -K. Kemell and P. Abrahamsson, "ECCOLA - a
Method for Implementing Ethically Aligned AI Systems," 2020 46th Euromicro Conference on Software Engineering and Advanced

Applications (SEAA), Portoroz, Slovenia, 2020, pp. 195-204, https://doi.org/10.1109/SEAA51224.2020.00043

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for

resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

As any such innovation would involve AI directly or
indirectly, given the autonomous maritime context, we
chose to test ECCOLA by having these teams utilize it to
reflect on the ethical issues their ideas might pose. The
teams were introduced to ECCOLA during a course lecture
and were handed a physical card deck. Each team was then
told to utilize the card deck in whatever way they saw fit,
while writing down notes on the cards as - or if - they used
them. Additionally, unstructured interview data was
collected from the teams through their weekly meetings
with their assigned mentor and this feedback was taken into
account in developing the method.

Prior to the course, the students had been tasked with
reading a book on Essence, Software Engineering
Essentialized [17], which explains the tool. Though the
educational goal of this was elsewhere, this also served to
make sure the students would not be overtly confused with
this version of ECCOLA being described using the Essence
language.

After the students had utilized the cards for a week, they
were collected and the written notes on them analyzed.
Based on this data, and the discussions the teams had had
with their mentors in the weekly meetings, ECCOLA was
improved as follows. First, alpha states were added to the
alphas to make tracking progress on them easier. Secondly,
practical examples were added to the cards to make the
ethical issues on them more tangible to someone not versed
in AI ethics. Thirdly, we improved the language on the cards,
reducing academic jargon and focusing on practice. Finally,
we removed the academic references that were initially
present in each card. These were deemed to provide little
value in raising awareness as none of the teams indicated
having used them.
3) Testing Version 2, (Q1 2019)

This iteration took place during the same systems
development course described in the preceding subsection.
This iteration was carried out in the same manner as the
previous one. The same student teams were tasked with
utilizing the new version of ECCOLA again while writing
down notes on them as they did. Additional data was again
collected in the weekly mentor meetings. Overall, this was,
in terms of time elapsed, a brief iteration carried out during
the course.

After another week, ECCOLA was once more improved
based on the data collected. We added a game sheet
describing how the cards and the method should be used.
This was done because it became clear that we had to teach
the users of the method to use it as it lacked clear
instructions. The cards were also numbered to make the
method easier to grasp and to make it easier for the cards
to refer to each other. To this end, we also improved the
language on the cards, aiming to reduce academic jargon.
4) Testing Version 3 (Q1 2019)

As was the case with the previous two iterations in this
phase, the third version of ECCOLA was tested in the

systems development course in a similar manner. However,
as this was towards the end of the course, there were no
further iterations to be tested in the same setting. Thus, we
took our time to analyze the feedback from all three
versions, reflect on it, and study new publications in the
area to improve the method.

This resulted in a lengthier creation process for the
subsequent version. Based on the data and our reflection
we made larger changes to the method. We discuss these in
the following subsection.
5) Creating Version 4 (Q2 2019)

Data from phase 2 indicated that the method, though
cumbersome to use, did help the teams implement AI
ethics. The notes they had made on the cards showed that
they had conducted ethical analyses successfully and
changed their ideas based on their analyses. The AI ethics
portion of the method thus worked. However, the method
was not easy to use.

After the course had concluded, we had time to make
larger improvements to the method based on the data. We
opted to lessen the role of Essence in the method, forgoing
the idea of using the Essence language to describe it. It
seemed that Essence had made ECCOLA more confusing
than it otherwise would have been, as in addition to
learning the method, its users would have to learn the
Essence notation and Essence in general. We stopped using
the Essence elements in the cards and instead split the
cards into different AI ethics themes. However, the general
approach of using cards for the method seemed to work
and thus this approach was kept.

The role of Essence in ECCOLA remains largely in relation
to the idea of essentializing practices. This is described in
the quote in section II C. ECCOLA aims to distill the essential
parts of the AI ethics principles in the guidelines while
making them more actionable through the card format.

Additionally, based on the data, the method seemed to
be too heavy to use. ECCOLA was initially designed to be a
linear process that was iteratively repeated. Its users,
however, would be free to modify the process based on
their development context and based on their use
experience. Nonetheless, this approach was considered too
rigid, and the respondents felt it was just another process
tacked onto their other work processes. Moreover, the
teams were using the method in a modular fashion, using
individual cards as they deemed suitable, despite the
instructions telling them to use it as a process.

We thus changed the approach, making the cards more
stand-alone. In doing so, we wanted to make ECCOLA more
modular by design, so that the users of the method could
indeed choose which cards to utilize based on which ones
they felt were relevant for their current situation. We felt
that this would also make ECCOLA easier to use in
conjunction with other methods.

During this time period, before the next empirical test,
we also expanded the theoretical basis of the method. The

https://doi.org/10.1109/SEAA51224.2020.00043

This is the author's version of the work. The definite version was published in: V. Vakkuri, K. -K. Kemell and P. Abrahamsson, "ECCOLA - a
Method for Implementing Ethically Aligned AI Systems," 2020 46th Euromicro Conference on Software Engineering and Advanced

Applications (SEAA), Portoroz, Slovenia, 2020, pp. 195-204, https://doi.org/10.1109/SEAA51224.2020.00043

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for

resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

initial version of the EU Guidelines for Trustworthy AI were
published in early 2019, some aspects of which we chose to
incorporate into ECCOLA. Other novel literature was also
included to expand on theoretical basis of the method.

C. Phase 3 (Q2-Q3 2019)
As the primary concern with the versions 1-3 had been

the way ECCOLA was used as a method in practice rather
than its AI ethical contents, we chose to focus on making a
method that is easier and more practical to use. For this
purpose, we made a spin-off of ECCOLA for the context of
blockchain ethics. Many of the AI ethical themes such as
transparency and data issues could be translated into this
context, even if the contents of the cards had to be
modified to be better suited for it. Additional blockchain
specific issues were also added into these cards.

In this phase, ECCOLA was utilized in a real-world
blockchain project by two of the project team members.
Data was collected through observation and various
unstructured interviews. The team was free to utilize the
cards as they wished, and was encouraged to reflect on how
the method would best suit their SE development method
of choice. However, the team could also receive
consultation from one of the researchers where needed on
how to use the cards, as well for clarification on their
contents, if needed. As a result, we gained a better
understanding of how the method was utilized in practice
(e.g., how many cards were used per iteration on average,
which was 6) in a real-world SE context.

Notably, in this phase, ECCOLA was utilized in
conjunction with existing SE methods, namely SCRUM. The
feedback regarding the use of ECCOLA with another method
was positive, lending support to the idea that ECCOLA does
work as a modular method, especially with Agile methods.
However, more testing is still needed in this regard in the
future.

Based on the data gathered from the blockchain project,
the main ECCOLA card deck was iteratively improved. The
lessons learned from studying the use of the blockchain
ethics version of ECCOLA were incorporated into ECCOLA.
The data from this phase was primarily used to improve the
contents of the cards by adding more contextual content
(i.e. why these things are important) into each card. In this
phase, the cards were also split into themes for clarity of
presentation. Finally, stakeholder analysis was deemed to
require more focus based on the data, and thus cards to
support it were added.

D. Phase 4 (Q4 2019)
After improving ECCOLA based on the lessons learned

from the blockchain project, we presented ECCOLA at the
10th International Conference on Software Business,
ICSOB2019 5 , in a workshop. In the workshop the

5 https://icsob2019.wordpress.com/workshops/

participants utilized ECCOLA to discover potential ethical
issues in a given, hypothetical AI development scenario. The
participants of the workshop were split into two groups for
the task.

The first group was tasked with developing an idea for
an AI-based drone that would help farmers improve their
harvests. The second group was tasked with developing an
AI-based system that would filter and evaluate immigration
applications. During the workshop, the groups worked on
the ideas iteratively in timed sessions. Each group had a
customer stakeholder that progressively presented them
with more requirements at the end of each iteration. For
every iteration, the groups were to select the cards they felt
would be most relevant for the requirements of that
iteration.

At the end of the workshop, verbal feedback from the
participants was collected. This was done in the form of a
discussion where the participants talked about their
experiences with each other and between the two groups.
These group interviews were recorded and later transcribed
for analysis.

The feedback was then utilized to develop the current
version of ECCOLA. The themes were color coded for further
clarity of presentation. Additionally, we expanded the
motivation and practical example portions of some of the
cards to make them more stand-alone. E.g., in some cases, a
user might have had to search online for more information
on some past incident that was only mentioned by name.

E. Phase 5 (On-going)
The development of ECCOLA continues. We argue that

we have now reached a stage of maturity where ECCOLA
can be brought forward to the scientific community.
However, the method is not finalized and its development
and testing continues in this iterative manner. The current
version of ECCOLA, discussed in this paper, will again be
tested and iteratively improved in the future (The most
recent version is available at bit.ly/eccola-for-ai-ethics).

However, we feel that we have now reached a point of
maturity where we wish to share the method with the
scientific community. We discuss our reflections on the
current state of ECCOLA in the next and final section of the
paper in detail.

5. DISCUSSION AND CONCLUSIONS
In this paper, we have presented a method for

implementing AI ethics: ECCOLA. ECCOLA is intended to help
organizations develop more ethical AI systems by providing
them with means of implementing AI ethics in a practical
manner. ECCOLA has been developed iteratively using the
Cyclical Action Research approach [18]. Though
development on the method continues, we have reached a
state of maturity where we want to share the method with
the scientific community.

https://doi.org/10.1109/SEAA51224.2020.00043

This is the author's version of the work. The definite version was published in: V. Vakkuri, K. -K. Kemell and P. Abrahamsson, "ECCOLA - a
Method for Implementing Ethically Aligned AI Systems," 2020 46th Euromicro Conference on Software Engineering and Advanced

Applications (SEAA), Portoroz, Slovenia, 2020, pp. 195-204, https://doi.org/10.1109/SEAA51224.2020.00043

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for

resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

The purpose of ECCOLA is to help us bridge the gap
between research and practice in the area of AI ethics.
Despite the increasing activity in the area, the academic
discussion on AI ethics has not reached the industry [5].
Through ECCOLA, we have attempted to make some of the
contents of the IEEE EAD guidelines [4] and the EU
Trustworthy AI guidelines [3] actionable, alongside other
research in the area.

In developing ECCOLA, we have had three main goals for
the method:

 To help create awareness of AI ethics and its
importance,

 To make an adaptable, modular method
suitable for a wide variety of SE contexts, and

 To make ECCOLA suitable for agile
development, and to also make ethics a part of
agile development in general.

In relation to the first goal, there is currently no way of
benchmarking what is, so to say, sufficiently ethical in the
context of AI ethics. This is arguably a limitation for any such
method in the context currently. Benchmarking ethics is
difficult and thus it is equally difficult for a method to have a
proven effect in a quantitative manner. Moreover, ethical
issues are often context-specific and require situational
reflection. This has been why we have instead chosen to
focus on raising awareness and highlighting issues rather
than trying to provide direct answers for them. Raising
awareness has also been a goal of the IEEE EAD initiative [4].
Raising awareness is important as the area of AI ethics is
new for the industry.

ECCOLA provides a starting point for implementing
ethics in AI. Based on our lessons learned thus far, we argue
that ECCOLA facilitates the implementation of AI ethics in
two confirmable ways. First, ECCOLA raises awareness of AI
ethics. It makes its users aware of various ethical issues and
facilitates ethical discussion within the team. Secondly,
ECCOLA produces transparency of systems development. In
utilizing the method, a project team produces
documentation of their ethical decision-making by means of
e.g. making notes on the note-making space in the cards
and non-functional requirements in product backlog.
Transparency is one key issue in AI systems, both in terms of
systems and in terms of systems development [9]. These
documents, as we have done while testing the method, can
also be analyzed to understand how the method was used,
aside from seeking to understand the reasoning behind the
ethical decisions that were made.

The second goal has been based on the method-agnostic
philosophy of the Essence Theory of Software Engineering
[12]. Industry organizations use a wide variety of methods,
from out-of-the-box ones to, more commonly, tailored in-
house ones [19]. ECCOLA is not intended to replace any of
these. Rather, ECCOLA is intended as a modular tool that

can be used in conjunction with any existing method. The
use of ECCOLA in conjunction with agile methods and SE
methods in general should still be further tested. For the
time being, we received positive feedback relating to the
modularity of ECCOLA when it was utilized in a project while
using it in conjunction with SCRUM, an agile method
(section IV C).

This, in turn, leads us to the third goal. As agile
development is currently the trend, ECCOLA has been
designed to be an iterative process from the get-go.
However, during its iterative development, we noticed that
a strict process was not a suitable approach due to being
too heavy (section IV B). The users of the method opted out
of adhering to the process and used the cards in a modular
fashion despite the instructions. Now, ECCOLA is a modular
tool by design. Being a card deck, this means that its users
are able to select the cards they feel are relevant for each of
their iterations, as opposed to having to go through the
same process every time. Moreover, ECCOLA is intended to
become a part of the agile development process in general.
Ethics should not be merely an afterthought, but rather, a
non-functional requirement, as well as a part of the user
stories.

ECCOLA is a tool for developers and product owners.
Ethics cannot be outsourced, nor can ethics be
implemented by hiring an ethics expert [5]. AI ethics should
be in the requirements, formulated in a manner also
understood by the developers working on the system.

As governments and policy-makers have already begun
to regulate AI systems in various ways (e.g. bans on facial
recognition for surveillance purposes6), this trend is likely to
only accelerate. With more and more regulations imposed
on AI systems, organizations will need to tackle various AI
ethics issues while developing their systems. This will
consequently result in an increasing demand for methods in
the area. While this will also inevitably result in the birth of
various new methods, developed by companies, scholars,
and standardization organizations alike, for the time being
ECCOLA can serve as a starting point.

6 https://www.bbc.com/news/technology-51148501

https://doi.org/10.1109/SEAA51224.2020.00043

This is the author's version of the work. The definite version was published in: V. Vakkuri, K. -K. Kemell and P. Abrahamsson, "ECCOLA - a
Method for Implementing Ethically Aligned AI Systems," 2020 46th Euromicro Conference on Software Engineering and Advanced

Applications (SEAA), Portoroz, Slovenia, 2020, pp. 195-204, https://doi.org/10.1109/SEAA51224.2020.00043

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for

resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

REFERENCES
[1] C., Rudin, “Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead,” Nat Mach Intell 1,

2019, pp. 206–215.
[2] S., Pichai, AI at Google: our principles. Blog 2018. https://www.blog.google/technology/ai/ai-principles/
[3] AI HLEG (High-Level Expert Group on Artificial Intelligence),“ Ethics guidelines for trustworthy AI,” 2019 https://ec.europa.eu/digital-single-

market/en/news/ethics-guidelines-trustworthy-ai
[4] The IEEE Global Initiative on Ethics of Autonomous and Intelligent Systems, “Ethically Aligned Design: A Vision for Prioritizing Human Well-being with

Autonomous and Intelligent Systems”, First Edition. IEEE. 2019. https://standards.ieee.org/content/ieee-standards/en/industry-
connections/ec/autonomous-systems.html

[5] V. Vakkuri, KK. Kemell, J. Kultanen and P. Abrahamsson, "The Current State of Industrial Practice in Artificial Intelligence Ethics," in IEEE Software, vol.
37, no. 4, 2020, pp. 50-57.

[6] A,. McNamara, J., Smith, E., Murphy-Hill, “Does ACM's code of ethics change ethical decision making in software development?” Proceedings of the
2018 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineer ing ESEC/FSE,
2018, pp. 729-733.

[7] J., Morley, L., Floridi, L., Kinsey, and A., Elhalal, “From What to How: An Initial Review of Publicly Available AI Ethics Tools, Methods and Research to
Translate Principles into Practices,” 2019, Preprint arXiv:1905.06876

[8] A., Jobin, I., Marcello, and V., Effy, "The global landscape of AI ethics guidelines." Nature Machine Intelligence 1.9, 2019, pp. 389-399.
[9] V., Dignum, “Responsible Autonomy,” 2017, Preprint arXiv:1706.02513.
[10] M., Ananny and K., Crawford, “Seeing without Knowing: Limitations of the Transparency Ideal and Its Application to Algorithmic Accountability,” New

Media & Society vol. 20(3), 2018, pp. 973–89.
[11] M., Turilli and L., Floridi, “The ethics of information transparency” Ethics and Information Technology, vol. 11(2), 2009, pp. 105-112.
[12] I., Jacobson, et al. "The essence of software engineering: the SEMAT kernel," Communications of the ACM 55.12, 2012 pp. 42-49.
[13] G.,Theocharis, M., Kuhrmann, J., Münch and P. Diebold, “Is Water-Scrum-Fall Reality? On the Use of Agile and Traditional Development Practices,”

Proceedings of the 16th International Conference on Product-Focused Software Process Improvement (PROFES 2015), volume 9459 of LNCS, 2015,
pp. 149-167.

[14] Pfeiffer, R.S. and Forsberg, R.P., “Ethics on the Job: Cases and Strategies” Wadsworth Publishing Company, California 1993.
[15] V., Vakkuri, and KK., Kemell, "Implementing AI Ethics in Practice: An Empirical Evaluation of the RESOLVEDD Strategy." Software Business. ICSOB

2019. Lecture Notes in Business Information Processing, Springer, Cham, vol 370 2019.
[16] J., Leikas, R., Koivisto and N., Gotcheva, "Ethical framework for designing autonomous intelligent systems." Journal of Open Innovation: Technology,

Market, and Complexity 5.1, 2019.
[17] I., Jacobson, et al. "The Essentials of Modern Software Engineering," ACM, New York, 2019.
[18] G., Susman, and R., Evered. "An assessment of the scientific merits of action research," Administrative science quarterly 1978 pp. 582-603.
[19] H., Ghanbari, "Investigating the causal mechanisms underlying the customization of software development methods." Jyväskylä studies in computing,

258, 2017.

https://doi.org/10.1109/SEAA51224.2020.00043

IV

THE ENTREPRENEURIAL LOGIC OF STARTUP SOFTWARE
DEVELOPMENT: A STUDY OF 40 SOFTWARE STARTUPS

by

Anh Nguyen-Duc, Kai-Kristian Kemell & Pekka Abrahamsson, 2021

Empirical Software Engineering, vol. 26

DOI 10.1007/s10664-021-09987-z

Reproduced with kind permission by Springer.

The entrepreneurial logic of startup software development Nguyen-Duc et al. 1

Untitled Manuscript No.

(will be inserted by the editor)

The entrepreneurial logic of startup software development:

A study of 40 software startups

Anh Nguyen-Duc1 · Kai-Kristian Kemell2 · Pekka Abrahamsson3

Received: date / Accepted: date

Abstract

Context: Software startups are an essential source of innovation and software-intensive products. The need to

understand product development in startups and to provide relevant support are highlighted in software research.

While state-of-the-art literature reveals how startups develop their software, the reasons why they adopt these

activities are underexplored.

Objective: This study investigates the tactics behind software engineering (SE) activities by analyzing key

engineering events during startup journeys. We explore how entrepreneurial mindsets may be associated with SE

knowledge areas and with each startup case.

Method: Our theoretical foundation is based on causation and effectuation models. We conducted semi-structured

interviews with 40 software startups. We used two-round open coding and thematic analysis to describe and

identify entrepreneurial software development patterns. Additionally, we calculated an effectuation index for each

startup case.

Results: We identified 621 events merged into 32 codes of entrepreneurial logic in SE from the sample. We found

a systemic occurrence of the logic in all areas of SE activities. Minimum Viable Product (MVP), Technical Debt

(TD), and Customer Involvement (CI) tend to be associated with effectual logic, while testing activities at different

levels are associated with causal logic. The effectuation index revealed that startups are either effectuation-driven

or mixed-logics-driven.

Conclusions: Software startups fall into two types that differentiate between how traditional SE approaches may

apply to them. Effectuation seems the most relevant and essential model for explaining and developing suitable

SE practices for software startups.

Keywords: Software startup engineering, entrepreneurial logics, effectuation theory, case study, effectuation

index, software engineering for startups

1. Introduction

More and more software is developed by startup companies with limited resources and little operating history.

Successful companies like Uber, Spotify, and Kahoot developed their software products during their startup stages.

According to Pitchbook, investment in US startups only is more than 120 billion USD in 2019 (PitchBook, 2019).

This substantial financial investment also implies a massive waste due to startups’ high failure rate (Giardino et

al., 2014). Previous research reveals critical challenges in both business and product development (Giardino et al.,

2015). Consequently, attempts to deal with these challenges could eventually increase the odds of success, and

the economic savings would be significant (Lindgren and Münch, 2016). The need to better understand software

engineering (SE) in startups and provide relevant support for practitioners has been emphasized in the software

startup research community (Unterkalmsteiner, 2016; Pantiuchina, 2017; Bajwa et al., 2017; Nguven-Duc et al.,

2020). The emergence of software startup as a research theme is shown by an increasing number of studies on

different engineering aspects in a startup context, for example, SE (Klotins, Unterkalmsteiner, Chatzipetrou, et

al., 2019), requirements engineering (Melegati et al., 2019), software architecture (Fagerholm et al., 2017),

software Minimum Viable Product (MVP) (Duc and Abrahamsson, 2016), and startup ecosystems (Tripathi et al.,

2018). These studies explore the commonalities among startups regarding engineering processes, practices, and

ways of working. We have better understood the demand for SE principles, processes, and practices in startup

1 Business School, University of South Eastern Norway
Gullbringvegen 36, 3800, Bø i Telemark

Tel.: +47-48348496

E-mail: angu@usn.no

2 University of Jyväskylä, Finland
3 University of Jyväskylä, Finland

mailto:angu@usn.no

The entrepreneurial logic of startup software development Nguyen-Duc et al. 2

companies, their challenges, and common ways of working. However, we do not understand why they adopt a

particular workflow and under which circumstances they make these decisions.

State-of-the-art software startup research inherited from empirical SE research several preoccupations with

normative studies on methods, methodologies, and models, and it lacks theories to understand and explain how

and why things happen (Ralph, 2016). For instance, Aurum et al. (2003) adopted decision-making theories to

understand the nature of requirement engineering activities. In response to this theoretical gap in software startup

research, our previous work began to explore decision-making logics in software startups (Nguyen-Duc,

Seppanen, and Abrahamsson, 2015; Kemell, Ventilä, Kettunen, and Mikkonen, 2019). Understanding the logic

behind startup activities would enable the exploration of a systematic connection between decisions, activities,

behaviors, and startup context, contributing to theory building in software startup research. Furthermore, patterns,

or anti-patterns with their antecedent and consequent factors can be directly beneficial for startup companies.

Startups differ from established companies in the strong presence of entrepreneurial personalities, behaviors,

decision-making, and leadership (Bygrave et al., 1991). Startups operate with a high level of uncertainty, multiple

influences, and small team sizes, which magnify the influence of key persons, such as the CEO or CTO, on the

project’s success (Paternoster et al., 2014; Berg et al., 2018; Giardino et al., 2014). While entrepreneurial

characteristics are evident in both information systems and business literature (Ojala 2015, 2016; Nambisan 2017),

entrepreneurship rarely appears in SE research, either contextually or as a primary focus of the investigation.

Tripathi et al. (2018) found that entrepreneurs’ backgrounds influence how MVPs are developed. The following

year, Melegati et al. (2019) found that startup founders strongly influence requirement engineering activities.

However, neither study explores the logic underlying observed phenomena. Prescriptive methodologies have

recently attracted considerable interest in entrepreneurship research (Sarasvathy and Dew 2005a, 2005b; Dew et

al., 2009; Fisher, 2012; Berends et al., 2013; Reymen et al., 2015; Mansoori and Lackéus, 2019). There is a

widespread research effort to identify the common logic or principles behind entrepreneurs’ decisions and actions.

A prominent example of an entrepreneurial logic is effectuation, presented as a set of heuristics any entrepreneur

could use for business development in the context of high uncertainty (Sarasvathy and Dew 2005a, 2005b). The

logic has been proposed in contrast to a traditional causation logic, in which entrepreneurs are plan-driven, perform

their best within given constraints, and accept the possibility of a changed goal (Sarasvathy and Dew 2005a;

Wiltbank et al., 2006; Read et al., 2009). As product development is critical for software startups, it is crucial to

understand how entrepreneurial logic applies to software development activities.

In the quest to develop a theory of software startup engineering (Nguven-Duc et al., 2020), we want to understand

further the logic behind decision-making (Boland 2008) in software startups. As a framework, we employ two

entrepreneurial logic theories from entrepreneurship literature to investigate how requirement engineering,

software design, construction, testing, and software development happen. To the best of our knowledge, this is

one of very few attempts to incorporate entrepreneurial logic in the context of software development (Nguyen-

Duc et al., 2017; Hevner and Malgonde, 2019). Of previously published studies, we are aware only of Khurum et

al.’s (2015) use of the opportunity recognition theory and Hevner and Malgonde’s (2019) assessment of

effectuation theory in platform development. Unlike Hevner, we describe both effectual and causal logics in each

SE activity. We also propose an explanatory model of the influences of entrepreneurial logic on software

development activities in startups. This study aims to better understand the connections between the logic of

startup founders and SE activities. Two research questions (RQs) were derived from the research objective:

RQ1: How do entrepreneurial logics apply to SE activities in startups?

RQ2: How do entrepreneurial logics apply to software product development at the company level?

The remainder of the paper is structured as follows: Section 2 contains background and related work, Section 3

explains the research method, Section 4 describes the results, Section 5 describes the findings, and Section 6

concludes the paper.

2. Related Work

The section presents important definitions used in this paper, background and related work about Software

Startups, Software Engineering in Startups and Entrepreneurial logics. The key terminologies are summarized in

Table 1.

The entrepreneurial logic of startup software development Nguyen-Duc et al. 3

Table 1 Key terminologies

Terms Definitions Reference

Software startup

Highly reactive and rapidly evolving software-intensive product

development companies with an innovation focus and a lack of

resources, working under uncertainty and time pressure

Section 2.1

Startup stage Three main stages are pre-startup, startup and post-startup Section 2.1.

Lead Users
Users who have a needs of general market but earlier than the

crowd
Section 2.2

Minimum Viable Product
A version of a product with just enough features to be usable by

early customers
Section 2.2

Entrepreneurial logic
The process of creatively defining, reframing and taking action to

make sense out of business situations
Section 2.4

Sense making
A process by which people give meaning to their collective

experiences
Section 2.4

Causal Logic
A process of pursuing a predetermined goal by acquiring needed

resources, tools to achieve the goal
Section 2.4.1

Effectual Logic
A process of selecting among several possible goals with a pre-

given set of resources
Section 2.4.2

Technical debt

Implied cost of additional rework caused by choosing a quick

technical solution to meet an urgent demand instead of a

sustainable approach that would take longer.

Section 2.5

2.1. Definitions of Software Startups

The term “startup” has been defined differently across various disciplines (Sutton, 2000; Ries, 2011; Blank, 2013;

Unterkalmsteiner et al., 2016; Ghezzi, 2018; Steininger, 2019). Steve Blank (2013) describes a startup as a

temporary organization that aims to create innovative high-tech products without a prior working history as a

company. The author further highlights that the business and its product should be developed in parallel within

the startup context. Eric Ries (2011) defines a startup as a human institution designed to create a unique product

or service under extreme uncertainty. Rather than a formal company, a startup should be considered a temporary

organizational state that seeks a validated and scalable business model (Unterkalmsteiner et al., 2016). A company

with a dozen employees can still be in a startup state while it validates a business model or a market. As previous

startup research has done (Berg et al., 2018), we define a startup as a highly reactive and rapidly evolving company

with an innovation focus and a lack of resources, working under uncertainty and time pressure. We looked for

companies that develop software products as their primary value proposition or include software as a significant

part of their products or services.There are many different startup life-cycle models describing startups’ states of

objectives, resources and business maturities. A startup model can have from three to seven stages, depending on

the aspects they focus on. As adopted in our previous work (Nguyen-Duc et al. 2016, 2017), we define startups’

phases as the followings:

 Pre-startup stage: ideas are developed and need to be validated, startups in the quest for financial and

human resources. Startup activities are carried out by founders or short-term hires. The purpose of this

stage is to demonstrate business feasibility, team building and management. The common financing

model is bootstrapping, family, friends and foes (FFF)

 Startup stage: prototypes are developed and experimented, startups have already figured out the

problem/solution match. Some revenue is generated, but not necessarily over the break-even point.

Founder seeks support mechanisms from startup ecosystems, learn to accelerate their business

development. The common financing model is own funding and seed funding.

 Post-startup stage: products are extended, startups achieve the product/market match. Startups expand

their customer bases, the revenue models are predictable and scalable. A hierarchical structure is formed

within the startups. The common funding model is Series A, Series B, and other series

2.2. Agile development, User-centered Design and Lean startups

Contributions to agility and reactiveness of product development are known from Agile (Beck et al., 2001),

Lean (Gautam and Singh, 2008; Ries 2011), and User-centered Design (Norman 1986; Gothelf 2013)

methodologies. Dealing with certain levels of uncertainties can be seen from different agile practices, such as

short development cycles, collaborative decision-making, rapid feedback loops, and continuous integration enable

software organizations to address change effectively (Highsmith and Cockburn, 2001; Beck and Andres, 2004).

In startup contexts, Giardino et al. showed that agile practices are adopted, but in an ad-hoc manner (Giardino et

The entrepreneurial logic of startup software development Nguyen-Duc et al. 4

al., 2014). Pantiuchina et al. studied 1256 startup companies and reported that different agile practices are used to

different extents, depending on the focus of the practices (Pantiuchina et al. 2017). The authors found that speed-

related agile practices are used to a greater extent in comparison to quality-related practices. Recently Cico et al.

reported that startups in their growth phases do apply Agile practices in various ways. Strict adoption of agile

methodology seems not to be perceived critically, and in some situations, it is difficult to apply agile practices due

to the nature of developing products (Cico et al., 2020).

Lean startups with the focus on forming hypotheses about businesses, building experiments to evaluate them (Ries

2011), had a large impact on startup and research communities. Minimum Viable Product (MVP) is a central

concept of the approach, defined as a version of a product with just enough features to be usable by early customers

(Ries 2011). Bosh et al. discussed why few practitioners apply Lean Startup methods because of the lack of

guidelines for method operationalization (Bosch et al., 2013). Other factors influencing the implementation of

Lean Startup are also reported, such as the costs of prototyping in particular (Ladd et al., 2015), experience and

knowledge about the methodology (Nguyen-Duc et al., 2016, 2017), and experimentation in general (Gemmell et

al., 2012).

Customer Development is another popular paradigm that focuses on customers upfront, i.e. developing the

customers rather than products in the early stages of startups (Blank 2007; Blank & Dorf, 2012; Alvarez 2014).

So startups are advised to search for the right customers to test their business hypotheses and thus obtaining

validation or refutation of the overall business model. This relates to the marketing practices of lead users who (1)

face the needs that will be general in the market, but face them much earlier than the crowd, (2) are positioned to

benefit significantly by obtaining the solution to those needs (von Hippel, 1986). User-Centered Design is also a

relevant paradigm for certain types of startups, as they aim for creativity and empathy for designing user-centric

solutions and helping developers to change their mindset on how to approach a problem and envision its solution

(Signoretti et al., 2019). Hokkanen et al. studied User Experience (UX) practices in startups and suggested that

startup products need to fulfill minimal functional and user experience requirements (Hokkanen et al., 2015).

Startups, in general, do not follow one or many of these methodologies strictly. This applies not only to startup

companies, as a recent large-scale survey in European software companies showed that modern software and

system development does not follow any blueprint and adopt different hybrid approaches (Tell et al, 2017). The

understanding of which compositions of development methods, i.e. Agile, Lean, etc that actually work in software

development contexts is missing (Tell et al, 2017). In this work, we aim to understand the possible links between

adopted development practices with the entrepreneurial logics.

2.3. Software Engineering Models for Startups

The need for understanding and modeling SE phenomenon in startup companies has been recognized in SE

literature. Giardino et al. (2016) explained a phenomenon of accumulated TD in startup contexts when product

quality is a low priority and the startup team is more focused on speeding up development. The authors pointed

out that lack of resources is the main driver for the observed product development patterns; however, they did not

explain how the limited resource leads to the lack of focus on quality. Nguyen-Duc et al. (2016) described startup

development patterns by looking at the co-evolution of product and business as an inter-twined process: startups

need entrepreneurial skills and project management skills when hunting implementing opportunities (Nguyen-

Duc et al., 2015). These models take into account the influence of business factors in decisions on product

development. However, the number of cases investigated at that time was limited. Fagerholm et al. (2017)

implemented the Build-Measure-Learn cycles (Ries, 2011) as continuous experimentation systems, where the new

product idea can be hypothesized and tested.

Some studies explored particular activities of product development, such as MVP development or requirement

engineering. Nguyen-Duc et al. (2017) described how MVPs are used in different software startups, and Tripathi

et al. (2018) revealed how the supporting roles of startup ecosystem elements influence MVP development. More

recently, Melagati et al. (2019) presented how founders and other factors influence startups’ requirement

engineering activities. These studies acknowledged the impact of entrepreneurs on SE activities; however, they

do not have a theoretical model to explain this impact. These studies call for the adoption of decision-making

theories to fill the gap. More recently, Klotins, Unterkalmsteiner, Chatzipetrou, et al. (2019) looked at

commonalities among startups’ goals, challenges, and practices. The authors showed that startups share the same

SE challenges and practices with established companies; however, startups need to evolve multiple activities

simultaneously. The study described product development startups from a project management perspective to

consider planning, measuring, and controlling activities. This assumption suggests a plan-driven logic when

The entrepreneurial logic of startup software development Nguyen-Duc et al. 5

looking at the startup development process and might lead to a similar observation when comparing these plan-

based activities to those of established companies. In contrast to a plan-driven and controlled approach, effectual

logic adopts means-driven, emergent, and flexible mechanisms to deal with the environment’s uncertainty.

Previous studies in SE have suggested that the availability of resources can influence the occurrence of engineering

phenomena, i.e., TD (Giardino et al., 2016) and the choice of which MVP to implement (Nguyen-Duc, Dahle, et

al., 2017).

2.4. Effectuation and Causation Logics in Entrepreneurial Decision Making

Entrepreneurial logic is defined as a process of creatively defining, reframing and taking action to make sense out

of situations that require new assumptions and understandings (Cunnhingham et al. 2002). Sensemaking is defined

as "the ongoing retrospective development of plausible images that rationalize what people are doing" (Weick

1995, Weick et al. 2005). In the purpose of making sense from startup situations, two kinds of entrepreneurial

logic that have recently gained research attention are the logics of effectuation and causation (Sarasvathy, 2001;

Alvarez and Barney, 2005; Fisher, 2012; Reymen, 2015). Below, we present their definitions and examples in the

context of software development.

2.4.1. Causal Logic

In a nutshell, causal logic describes a process of pursuing a predetermined goal by acquiring needed resources,

tools to achieve the goal. The causal logic focuses on the predictable aspects of an uncertain future and follows

the logic of “to the extent we can predict the future, we can control it” (Sarasvathy, 2001, p. 7). An example of

this approach is to conduct a project in a large company. When a project manager is assigned to the project, he

perhaps needs to gather his team to apply for extra resources if needed. He needs to be aware of project constraints

and perform to achieve the predetermined goals of the project. The project manager’s attitude towards unexpected

contingency is avoided. He relies on accurate predictions, careful planning, and focusing on predetermined

objectives. In the causation model, startups focus on competition and constrain task relationships with customers

and suppliers. For instance, the project manager needs to manage the relationships with external stakeholders to

limit their possible negative influences (delays in the project schedule, unexpected costs, and other unanticipated

problems). The causation model highlights the action to maximize returns by selecting optimal approaches

(Sarasvathy and Dew, 2005b). The manager will prioritize analytical calculations and pursue an optimized

approach.

2.4.2. Effectual Logic

An effectual logic describes a process of selecting among several possible goals with a pre-given set of resources

(Sarasvathy, 2001; Barney, 1991). The effectual logic focuses on the controllable aspects of an unpredictable

future and follows the logic of “to the extent we can control the future, we do not need to predict it” (Sarasvathy,

2001). For example, a startup that is a spin-off from a university has technological patents. The startup decides to

develop different business models leveraging the application of the patents. The effectuation-driven startup tends

to involve as many people as possible in the early stages to generate value for the startup. Instead of focusing on

maximized returns, the effectuation-driven startup examines how much one is willing to lose on a startup journey.

In our example, the startup team needs to calculate and commit only the resources, time, and effort that they can

tolerate wasting.

2.5. The Need for Entrepreneurial Logic in Software Development

Traditional software development approaches start with a particular goal and realize it through a linear or iterative

development process, which is largely overlap with causal logic. Significant parts of SE research base on a

prescriptive assumption that software development projects can be guided by reference frameworks, processes,

techniques, and tools. When managing a software project, one could assume a certain level of control based on

plan-driven and systematic working manners (Klotins, Unterkalmsteiner, Chatzipetrou, et al., 2019) where project

context, such as market, customers, and other ecosystem elements, are somewhat identified as a priori.

Table 2 Software startup phenomenon and their possible connections to entrepreneurial logics

Phenomenon Description Reference Judgment

Software pivot

A pivot is a strategic change

designed to test a fundamental

hypothesis about a product,

business model, or growth

engine.

Model of pivot

triggering factors

(Bajwa et al.,

2017; Bajwa,

A certain type of product pivot would

be desirable and plan-driven. But most

of the pivots are triggered by external

factors and reflect the effectual logic

The entrepreneurial logic of startup software development Nguyen-Duc et al. 6

2020; Khanna et

al., 2018)

Technical debt

(TD)

implied cost of additional

rework caused by choosing a

quick technical solution to meet

an urgent demand instead of a

sustainable approach that would

take longer.

Greenfield model

of software

startups

(Giardino, 2016;

Seaman and Guo,

2011)

Startups accumulate TD, but its nature

might be different from large

companies in that TD is a way to

manage tolerable loss in effectual logic.

Minimum Viable

Product (MVP)

A version of the product to

collect validated learning

MVP-based

learning (Nguyen-

Duc et al., 2017;

Duc and

Abrahamsson,

2016)

Startups develop many MVPs but in

order to gather necessary learning, they

need a more plan-driven approach

Customer

involvement in

product

development

Customers involve early and

often in requirement, design, and

testing activities

Continuous

involvement

(Nguyen-Duc et

al., 2017;

Melegati et al.,

2019; Yaman et

al., 2016)

Effectuation-driven companies

encourage the contribution of external

stakeholders in co-creating company

value

Software development in startups often needs to deal with multiple-influenced and rapidly changing business and

working environments, which makes effectual logic relevant (Giardino et al., 2014; Giardino et al., 2016; Bajwa

et al., 2017). In software startups, product development is often essential for the success or failure of the company.

They are often limited in resources and work under pressure to prove their products or services to attract funding.

Such settings make formal software development paradigms less applicable (Pantiuchina et al., 2017; Kemell et

al., 2019). Notably, previous studies also reported that startups’ working way is contingent on their environment

(Nguyen-Duc et al., 2015; Nguyen-Duc et al., 2016; Kemell et al., 2019). Effectual logic could help explain

decisions or activities taken in resource-constraint situations. Brettel et al. showed that effectuation is positively

linked to process output and efficiency in highly innovative RandD projects (Brettel et al., 2012). Similarly, these

logics could be relevant to SE activities in startups. Several previously studied technical concepts in software

startups, such as MVP and TD, can be explored further under entrepreneurial logic (as shown in Table 2).

Figure 1 A conceptual framework of entrepreneurial logics in software startups

In this study, we argue that entrepreneurial logic can help to understand specific patterns between entrepreneurial

contexts and how product development activities are chosen. Mansoori proposed a three-tiered framework for the

mapping of entrepreneurial processes onto the three levels: logic, model, and tactics (Mansoori, 2015, 2020). At

the logic level, principles for startups include the notion of uncertainty (epistemological or ontological), view of

the future (predictable or completely unknown), nature of the process (discovery or creation), epistemological

discussions (realism or constructivism), and relation to external stakeholders (transactional or generative)

(Mansoori 2015). At the model level, there are often organized sequences of operations and interactions for

guiding entrepreneurial actions. At the tactic level, there are activities, exercises or practices that are in line with

the underlying logic and the prescribed model. While the original framework applies to entrepreneurial activities

in general, we adopted it to the software engineering model and activities, as seen in Figure 1. At the model level,

The entrepreneurial logic of startup software development Nguyen-Duc et al. 7

we relate the entrepreneurial logic to SE processes, i.e. requirement engineering, software design, implementation,

and testing. At the tactic level, we will extract specific SE activities and practices that characterize entrepreneurial

logic. This study takes the first step towards entrepreneurial software development by exploring the connection

between entrepreneurial logic and software product development activities. Our intention is not to predict startups’

behaviors or to classify them as either kind of logic.

3. Research Methodology

Our research goal was to generate new knowledge about the logic behind software product development in

startups, which needs to be investigated in its natural setting. Inductive research with a bottom-up exploration of

evidence and conclusions generated from this evidence is a suitable approach commonly adopted in empirical SE

research (Seaman, 1999; Wohlin and Aurum, 2015; Ayala et al., 2018; Khurum et al., 2015). All the different

research methodologies have their place in software engineering, and each approach has value for the software

engineering practitioner (Easterbrook et al., 2008). The possible choices for such an empirical study were

exploratory, descriptive, explanatory, and evaluation research (Collis and Hussey, 2009). Compared to other SE

research fields, software startup research is still a growing field with a limited understanding of engineering-

specific activities in this context (Unterkalmsteiner et al., 2016; Berg et al., 2018; Klotins et al., 2019). From

philosophical perspectives, the study adopted a mixed view between interpretivism and positivism. On one hand,

the study has many assumptions of interpretivism, i.e. research must be interpreted within the context in which it

takes place, and research findings are subjective (Walsham, 1995). Besides, the goal of this research is to provide

deep insight regarding entrepreneurial scenarios, not to confirm or test a hypothesis. Therefore, we endeavored to

explore software development from entrepreneurial perspectives descriptively; we explain how to plan and

organize startups’ work accordingly. Since these phenomena involve mainly human factors, it is vital to evaluate

human perceptions of the subject (Easterbrook, 2008). On the other hand, we adopt the concept of cognition from

positivism, emphasizing the role of empirical evidence in the formation of ideas, rather than innate ideas or

traditions. Systematic approaches to collect and analyze evidence is pursued towards reproducible findings and

logic-based science. By collecting data in the form of responses to standardized questions, i.e. survey research,

accumulated evidence can constitute facts.

It is not uncommon in SE/Information Systems (IS) research for empirical studies adopting both paradigms

(Runeson and Höst, 2009, Stol et al., 2016). In a mixed-research approach, qualitative data can be coded

quantitatively” by counting words and categorizing statements (Trochim, 2001) or combinations of survey data

with case studies (Ralph, 2015). We have adopted the approaches in our previous work (de O. Melo et al., 2013;

Ayala, 2018). To gather and interpret the evidence needed to answer our research questions, we conducted semi-

structured interviews with startup cases. Depending on the in-depth knowledge of a case, qualitative research can

focus narrowly on a few case studies, or tackle a broader scope. We used the same set of key questions repeatedly

in a relatively large number of cases (N=40). We aim at observing both frequency distribution and systematic and

thematic patterns across interview cases.

This study could have been carried out at the activity, team, project, and company levels. To associate

entrepreneurial logic with SE, we needed to look at specific activities and their context; hence, the first analysis

was performed at the activity level (RQ1). Since we collected data from different companies, it was

straightforward to then perform the second analysis at the company level: in other words, a cross-case analysis.

3.1. Case Selection

The challenge of identifying proper startup cases and differentiating the similar phenomena represented among

them — freelancers, SMEs, or part-time startups — is well known in software startup research (Unterkalmsteiner,

2016; Berg et al., 2018). Based on the successful approaches adopted in previous studies (Klotins,

Unterkalmsteiner, Chatzipetrou, et al., 2019; Berg et al., 2020), we defined five criteria for our case selection:

 A startup that has at least two full-time members, so their MVP development is not individual activities

 A startup that operates for at least six months, so their experience can be relevant

 A startup that has at least a first running prototype, so the prototyping practice is a relevant topic

 A startup that has at least an initial customer set, i.e., first customer payments or a group of users, so that

certain milestones in the startup’s process are made

 A startup with software as the central part of its business core value

We intended to conduct multiple interviews in each startup to achieve data triangulation (Boyatzis, 1998);

however, most startups could only provide a single interview. We obtained multiple follow-up interviews in seven

The entrepreneurial logic of startup software development Nguyen-Duc et al. 8

cases (S01–S05, S07, S08), which provide the main insights. The other 33 cases, with a single interview, extend,

and confirm the findings from the principal cases. All the information about the cases was collected via internet

research and written documents provided by the companies to address gaps left by the lack of follow-up

interviews. The characteristics of the cases studied are summarized in Section 3.3.

Figure 2 Data collection and analysis process

3.2. Data Collection

The main data collection methods were semi-structured interviews, participant observations, face-to-face

discussions with project leaders, and document analysis. The identification and collection of data were performed

in three rounds. The first round was conducted from March 2015 to February 2016; data collection was mainly

done by the first author and a research associate. The second round was conducted during September 2016 and

January 2017. The third round was conducted from September 2017 to June 2018; this data collection was

performed collectively by the first author and graduate students at the Norwegian University of Science and

Technology. A consistent approach was undertaken to collect data (as shown in Figure 2). The data collection

process was as follows:

Step 1: Identifying cases. Contacts for startups were searched via four channels: (1) startups within the

authors’ professional networks; (2) startups in the same towns as the authors and from Startup

Norway; and (3) startups listed in the Crunchbase database. We also included contacts we made at

startup events, such as the Norwegian Investment Forum, Startup Weekend, and Hackathons.

Step 2: Feasible analysis. We spoke with software startups in coworking spaces and incubators in

Trondheim, Norway, to become familiar with startup scenes and their current issues.

The entrepreneurial logic of startup software development Nguyen-Duc et al. 9

Step 3: Study design. Several more interviews were conducted both face-to-face and remotely to build data

collection equipment. The interview guideline was modified from an existing one, which focused

on the topic of startup pivots.

Step 4: Case piloting. Case analysis was conducted using information available from the internet or

provided by the case companies that allowed a holistic understanding of each case and provided

more substantial evidence for the conclusions drawn from the interviews. This step was conducted

before proceeding to the actual interview with startups.

Steps 5 and 6: Data collection. Interviews allowed us to collect information in the participants’ own words

rather than by limiting them to predefined response choices on a survey (Oates, 2005). We chose

to conduct semi-structured interviews, as these are expected to give a researcher the flexibility to

probe deeper into unforeseen information that may emerge during interviews (Seaman, 1999).

Each interview lasted between 40 and 70 minutes. The number of interviews in each round is

shown in Table 3.

Table 3 Data collection rounds

The final contact list included 306 startups from the USA, Norway, Sweden, Finland, Italy, Germany, Spain, the

Netherlands, Singapore, India, China, and Vietnam. We approached the companies on the final list to search for

participants; many startups expressed their interest in the study results but did not have time to participate. These

companies responded to our call for participation with sentiments similar to “[t]he research appears interesting

and relevant to our experience. Unfortunately, we do not have the resources and time to participate in such a

survey.” Besides some large companies who were not interested in the research, we did not see the difference

between the ones who accepted and the ones who refused to participate. By emailing and talking via phone,

professional networks and nearby startups have a slightly lower turn over rate than startups from Crunchbase.

However when approaching startups via personal introduction or meet in person, there is significantly higher

chance to aquire their participation.

Excluding startups that were not interested in the research or startups that did not meet our selection criteria, the

final number of eligible cases was 40 startups (turnover rate ca. 13%). Among them 25% of the total number of

cases come from our convenient networks, 70% of the cases are systematically selected and collected from

physical interviews, 5% of the cases are from the CrunchBase database. Some startups required that the authors

sign a non-disclosure agreement with the companies; this step was essential to establish a formal link between the

researchers and the participating startups and ensure the data confidentiality the companies required to feel more

comfortable with our observations of their internal activities.

Table 4: (Common parts of) the interview guidelines

Section 1: Business background

Please tell us about your product and your company

How was the current software product developed ?

What is your team competence? How is it evolved over time?

What is your current market?

What is your business model?

Section 2: Idea visualization and prototyping

 Could you tell us about the time when: (1) the first idea came to your mind, (2) the

first prototype completed, (3) the first payment customer

 How can you achieve the problem/solution fit with your prototype?

Section 3: Product development

How many times have you changed? About the most significant pivot: How

decisions are made?How was the current software product designed? What is the

most challenging issue?

How was the current software product implemented and tested? What is the most

challenging issue?

How was the current software product maintained and extended? What is the most

challenging issue?

Round No. of contacts No. of cases No. of interviews

1 219 20 27

2 40 7 7

3 47 13 13

The entrepreneurial logic of startup software development Nguyen-Duc et al. 10

In the first round of data collection, most participants answered a simple pre-interview questionnaire in which

they filled out basic information about themselves and the company. In some cases, accessing sprint planning

documents, product specifications, pitching slides, and communication mailing lists extended our knowledge

about startup product development activities. Participant observation occurred in cases S02 and S03, where the

first author involved in these cases was either a consultant or a co-founder. These measures facilitated more

efficient interviews, as the first author possessed more knowledge about the case and could use less time on

formalities. Most of the interviews were conducted by the first author. The author also took notes to mark essential

concepts that came up in the interviews. Later on, all the interviews were transcribed using a freelancing service.

A researcher in our network recommended the service, and the pilot test of the service was conducted before the

study adopted it. The total number of transcripts was 313 A4 pages. In the second and third rounds of data

collection, the first authors attended some interviews. Most of the interviews in these rounds were conducted by

either graduate students or associated researchers. Although interview questions were slightly different among the

three rounds of interviews, the interview structure and key questions remained the same. The interviewees were

typically asked about (1) the business background, (2) idea visualization and prototyping, and (3) product

development. The common key questions is described in Table 4.

3.3. Case Demographics

As shown in Figure 3, our cases vary significantly in terms of application domains. The investigated companies

deliver software platforms in healthcare, information technology infrastructure, education, logistics, sales, and

marketing. Investigated MVPs included software-intensive products (e.g., mobile apps, dynamic webs, and data

analytics) and hardware-relevant products (e.g., Internet of Things platforms). The startup cases present a large

spectrum of market segments: prominent startups (65%) targeted a niche market, such as hyper-local news readers,

a population of high school pupils and college students, IoT product developers, software developers, and sale-

intensive organizations; 35% of the cases currently follow a business-to-business (B2B) model; and the rest

operate a business-to-customer (B2C) model. From a geographical perspective, the case sample is biased toward

startups serving the Nordic and UK markets: these constitute 75% of the study’s total cases. Other geographical

markets include the USA, Germany, France, the Netherlands, Poland, Singapore, Hong Kong, and Vietnam. In

terms of their headquarters’ locations, the demographic representation of the case is shown in Figure 4.

Figure 3 Distribution of startups in application domains

The entrepreneurial logic of startup software development Nguyen-Duc et al. 11

Figure 4 Distribution of startups in terms of headquarters’ locations

Team sizes varied from 2 to 85 people, but most of the study’s startups (27 out of 40) had a team of between 3

and 20 people. These headcounts include full-time workers employed during the study period, regardless of

whether they were included on the payroll at that time. For example, one startup consists of the CEO, CTO, a

designer in Norway, and an outsourcing team of six full-time developers in India. The portion of engineers in

startups in our sample ranges from 33% to 100%. In many startups, the team is collocated and unstructured. In

other cases, it is typicall to observe organizational structures with a separation between product development teams

and sales teams. Most of our startups (85% of the total number of cases) are financial bootstraps: they fund the

development of products and services through internal cash flow and are cautious with their expenses. Most of the

bootstrap startups studied received financial support from their governments, incubators, and accelerators, and

startup programs. Some cases were initiated by an investor who secured a stable income for the team. Some cases

were in the post-startup phase, with annual revenue above EUR 1 million. Some other startups had invested more

than EUR 1 million. The financial information for the remaining startups is either unknown or indicates that they

were struggling with their cash flow at the time of the study. The detail profiles of our cases as well as their

financial situations are reported in Table 5.

Table 5: The profiles of the startups included in the study

Cases Country Product
Application

domain

Years

Operati

onal*

Current

Stage

No.

People

Annual

Revenue

Source Startup

type

S01 Italy
Photo trading

platform

Arts,

Entertainment

and Recreation

4
Pre-

Startup
15 <50k Eur

Source1 1

S02 Norway
Hyper-local

news platform

Professional,

Scientific, and

Technical

Services

1
Pre-

Startup
2 110k Eur

Source1 2

S03 Norway
Shared shipping

platform

Transportation

and Warehousing
3 Startup 6 <10k Eur

Source2 1

S04 Norway

Digitalized

construction

management

process

Construction 5
Post-

Startup
9 >300k Eur

Source2 1

The entrepreneurial logic of startup software development Nguyen-Duc et al. 12

S05 Finland
Underwater

camera product

Agriculture,

Forestry, Fishing

and Hunting

4
Pre-

startup
3 Unknown

Source2 1

S06 Norway
Sales

visualization

Professional,

Scientific, and

Technical

Services

3
Post-

startup
18

>1.5 mil.

Eur

Source2 2

S07 Vietnam
Shop location

app

Professional,

Scientific, and

Technical

Services

4 Startup 14 ∼200k Eur

Source1 1

S08 Norway
Event and ticket

platform

Professional,

Scientific, and

Technical

Services

4 Startup 4 Unknown

Source2 1

S09 UK

Game-based

classroom

learning tool

Education 9
Post-

startup
12

∼2 mil.

Eur

Source1 2

S10 Norway IoT OS platform

Professional,

Scientific, and

Technical

Services

4 Startup 3 >150k Eur

Source2 1

S11 Norway
Ticketing

system

Professional,

Scientific, and

Technical

Services

4 Startup 5 >150k Eur

Source2 1

S12 Norway eLearning Education 8 Startup 3 Unknown Source2 1

S13 UK
Shipping

services

Professional,

Scientific, and

Technical

Services

2 Startup 3 Unknown

Source3 2

S14 Sweden
Journalism

publishing

Professional,

Scientific, and

Technical

Services

11 Startup 16 Unknown

Source3 2

S15 Norway
Secondhand

marketplace

Professional,

Scientific, and

Technical

Services

6
Pre-

startup
2 Unknown

Source2 1

S16 Norway Smart grid Utilities 5 Startup 30 Unknown Source2 1

S17 Norway
Simulation-

based training
Education 7 Startup 7 Unknown

Source2 2

S18 Holland

Software

development

services

Professional,

Scientific, and

Technical

Services

7 Startup 5 Unknown

Source3 1

S19 Norway
Mobile alert

services

Professional,

Scientific, and

Technical

Services

9 Startup 5 Unknown

Source1 1

S20 Norway eLearning Education 14 Startup 13 350k Eur Source2 2

S21 Norway
Fish farm

tracking system

Agriculture,

Forestry, Fishing

and Hunting

1
Pre-

startup
6 Unknown

Source2 1

S22 Norway

Networks of

connected

camera

Professional,

Scientific, and

Technical

Services

1 Startup 10 Unknown

Source2 1

The entrepreneurial logic of startup software development Nguyen-Duc et al. 13

S23 Finland
Underwater

drone

Agriculture,

Forestry, Fishing

and Hunting

4
Pre-

startup
4 Unknown

Source2 1

S24 Finland

Tracking

devices for

shipment

Professional,

Scientific, and

Technical

Services

2
Post-

startup
85

>8 mil.

Eur

Source2 2

S25 Finland

Muscle

operation

measure

Health Care and

Social Assistance
2

Pre-

Startup
20 100k+ Eur

Source2 2

S26 Pakistan
Smart home

solution
 Manufacturing 2

Pre-

startup
8 Unknown

Source1 1

S27 Pakistan
Smart

wheelchair

Health Care and

Social Assistance
1

Pre-

Startup
3 Unknown

Source1 1

S28 Finland

Connecting

healthcare

services to home

Health Care and

Social Assistance
5 Startup 5 Unknown

Source1 1

S29 Pakistan
Smart home

devices

Professional,

Scientific, and

Technical

Services

1
Pre-

Startup
5 Unknown

Source1 1

S30 Finland
UI framework

for mobiles

Professional,

Scientific, and

Technical

Services

4
Pre-

Startup
3 Unknown

Source1 1

S31 Finland

Aeronautical

engineering

services

 Manufacturing 5 Startup
Unknow

n
Unknown

Source2 1

S32 Norway
IoT solution for

gas supplier
Utilities 2 Startup 8 Unknown

Source2 1

S33 Norway

Personal

hydration

monitoring

device

Health Care and

Social Assistance
2 Startup 10 Unknown

Source2 2

S34 Finland

Enterprise

information

management

solution

Professional,

Scientific, and

Technical

Services

5 Startup 10 Unknown

Source2 1

S35 Norway Ear device
Health Care and

Social Assistance
2 Startup 5 Unknown

Source2 1

S36 Finland

Wireless earplug

with active noise

cancelling

Health Care and

Social Assistance
2

Pre-

startup
10

2000

orders/yea

r

Source2 2

S37 Norway
Autonomous

drones

Transportation

and Warehousing
3

Pre-

startup
7 Unknown

Source2 2

S38 Norway

Sensor-based

detecting

systems

Health Care and

Social

Assistancee

2 Startup 7 Unknown

Source2 1

S39 Norway Security for IoT

Professional,

Scientific, and

Technical

Services

2 Startup 3 Unknown

Source2 1

S40 Norway
Drone control

glove

Professional,

Scientific, and

Technical

Services

1
Pre-

startup
13 Unknown

Source2 2

Notation: Source1: startups within the authors’ professional networks; Source2: startups in the same towns as the

authors and from Startup Norway; Source3: startups listed in the Crunchbase database

The entrepreneurial logic of startup software development Nguyen-Duc et al. 14

3.4. Data Analysis

Data analysis included three steps: (1) labeling SE activities, (2) identifying entrepreneurial logics that occurred

in each case, and (3) mapping the entrepreneurial logics and SE activities.

3.4.1. Labelling SE Activities

We applied a thematic analysis, which is commonly seen in empirical SE research (Cruzes and Dyba, 2011). The

objective of our thematic synthesis process was to answer the research questions and come up with a model of

higher-order themes describing a way of software development in startups. Braun et al. (2006) suggest six steps

for a thematic analysis: (1) familiarizing with data, (2) generating initial codes, (3) searching for themes, (4)

reviewing themes, (5) defining and naming themes, and (6) producing the report. As suggested in the literature,

we adopted open coding (Braun et al., 2006; Wohlin and Aurum, 2015). Sentences that mentioned SE activities

and their contexts are labeled. We developed a taxonomy of startup knowledge and practice areas, including SE

knowledge areas from SWEBOK (Bourque and Fairley, 2014). We tried to produce as many codes as possible to

avoid missing any relevant or interesting information. The coding scheme for SE activities includes:

P0. SE (general)

P1. Requirement Engineering

P2. Product Design

P3. Software Construction

P4. Software Testing

P5. Software Maintenance

P6. Software Process Management

3.4.2. Identifying Effectuation-driven and Causation-driven Behaviors

To understand the logic behind decisions in a startup, we need first to understand the startup journey and important

milestones. The first step was to read through the transcribed interviews to generate initial ideas and identify

possible trends or patterns. For each case, we extracted texts related to critical events that occurred during the

startups’ journeys. Our approach is similar to previous studies that used key events identified through information

from the interviews (de O. Melo et al., 2013; Reymen et al., 2015; Reymen et al., 2017; Fagerholm et al. 2017).

Key events were defined as actions or decisions taken by the entrepreneurial teams to create the venture (Reymen

et al., 2017). Examples of these events were introducing the first product idea, acquiring funding, initiating

collaboration with a supplier, developing the first MVP, product demonstration and launch, hiring employees, and

significant pivoting (Reymen et al., 2015). Such events were collected from critical people (e.g., CEOs or CTOs

in the startups) and reflected their intentions. The decisions made by external stakeholders were placed in the

context category. For each case, we tried to capture each event’s timestamp—the pre-startup, startup, and post-

startup phases—to plot each case’s story in chronological order.

We attended to describe the startup event from participants' perspectives or views. We look for the meaning behind

startups’ events and activities. Daher stated that “the study of meaning does not directly refer to actual experience,

but to the way the self considers its past experience” (Daher et al., 2017). And the meaning of being effectuation-

driven or causation-driven is reflected from what the interviewees' own wills.

Identifying entrepreneurial logic was crucial to categorizing a case as either effectuation or causation. As in

previous work, we coded entrepreneurial logic at the company level: we created a balanced coding scheme

consisting of two theoretical categories based on effectuation and causation theory, i.e., one effectuation and one

causation category with four dimensions for each category (Chandler et al., 2011; Reymen et al., 2015). We reused

a set of empirical indicators (Sarasvathy, 2001; Read et al., 2009; McKelvie et al., 2020) and modified the coding

scheme to make it relevant to the SE context. The coding scheme for the effectual logic includes:

E1 Basis for acting: means-oriented

E1.1 Building product mainly on an internal knowledge base and external existing owned resources

E1.2 Defining a general product development plan without concrete details

E1.3 Using internal or resource and infrastructure in the local environment

E1.4 Decisions mainly based on personal preferences

E1.5 Opportunities, ideas, and requirements come from existing contacts

E2 Attitude towards unexpected events: leverage

E2.1 Accepting and incorporating unexpected changes, ready for pivots

E2.2 Changing and adapting any potential plans made to accommodate unforeseen events

E2.3 Actively exposing to external stakeholders with an open mind

The entrepreneurial logic of startup software development Nguyen-Duc et al. 15

E2.4 Positively reacting to and incorporating unforeseen developments

E3 Attitude towards outsiders: partnerships

E3.1 Reaching trust-based flexible stakeholder agreements and commitments

E3.2 Co-create business with stakeholders

E3.3 Engaging in stakeholder collaborations to pursue opportunities

E3.4 Exposing MVPs to potential clients early on

E4 View of risk and resources: affordable loss

E4.1 Be willing to make affordable personal sacrifices (including nonmonetary)

E4.2 Finding unused resources in a local environment (including subsidies)

E4.3 Investing limited, small amounts of personal money, time, and effort

E4.4 Managing growth expectations and ambitions

E4.5 Limiting stakeholders’ commitments to levels that are uncritical to them

The coding scheme for the causal logic includes:

C1 Basis for acting: goal-oriented

C1.1 Base actions upon expectations (market, technology, policy trends) and predictions (of founders,

board members, investors)

C1.2 Defining and pursuing project goals, product, customer needs, or market goals (more specific than

“profit” or “a better planet”)

C1.3 Defining and satisfying organizational needs (personnel, organization structure, infrastructure, or

technology) and selecting between options based on specific goals

C1.4 Evaluating planned progress and adapting means based upon feedback

C1.5 Searching and selecting contacts, clients, and partners based upon predefined plans

C2 Attitude towards unexpected events: avoid

C2.1 Feeling threatened by unexpected events, therefore working in isolation with external

environments as much as possible)

C2.2 Carrying out plans as defined in cases of unforeseen developments (avoid changes)

C2.3 In cases of unforeseen changes, focusing on activities within startups rather than engaging in

environmental factors

C2.4 Pulling away from the project or resolving it quickly in cases of unforeseen developments

C3 Attitude towards outsiders: competitive analysis

C3.1 Acquiring resources through market transactions or contract-based agreements with stakeholders

C3.2 Creating and carrying out the patent strategy

C3.3 Carrying out competitor analysis and competitive positioning

C4 View of risk and resources: expected returns

C4.1 Maximizing personal profit

C4.2 Calculating and evaluating expected outcomes and returns

C4.3 Planning development in big steps and with large sums (including large recruitment, where large

is relative for each company)

C4.4 Postponing stakeholder (including clients) contact at the expense of own funds (focus on internal

development)

C4.5 Search for stakeholders that commit the amounts necessary for the execution of the plan

To generate initial codes, the first and second authors applied a descriptive coding technique to identify

entrepreneurial logic dimensions systematically across all cases (Runeson and Höst, 2009). Descriptive coding

helped organize and group similar data into categories, which was the first step towards creating themes. All

events in each case were coded according to four effectual and four causal dimensions; thus, effectual, and causal

logic could co-occur in the same event. The number of quotes per code is presented in Table 6. We counted how

many effectuation dimensions (potentially ranging from 0 to 4) and how many causation dimensions (potentially

ranging from 0 to 4) were coded per event. If at least one effectuation or causation dimension was coded for each

event, we could identify that event’s entrepreneurial logic.

Table 6: Number of quotes per code

Themes
No. of

quotes

C1.1 Base actions upon expectations and predictions 25

C1.2 Defining and pursuing project goals 34

The entrepreneurial logic of startup software development Nguyen-Duc et al. 16

C2.1
Carefully interacting with environment for secrecy reasons (feel threatened by

unexpected events, therefore work in isolation as much as possible)
12

C2.2 Carrying out plans as defined in cases of unforeseen developments 15

C2.3
In cases of unforeseen changes, focusing on activities within startups rather than

engaging in environmental factors.
11

C2.4 Drawing back from project or quickly resolving in cases of unforeseen developments 16

C3 Attitude towards outsiders. competitive analysis 19

C4.2 Calculating and evaluating expected outcomes 9

C4 View of risk and resources: expected returns 5

C4.3 Planning development in big steps and with large sums 26

C4.5 the execution of the plan 9

E1 Basis for acting Means-oriented 49

E1.1 Building on own knowledge base and other available existing own resources 15

E1.2 Short-term planning 61

E1.3 Local infrastructure and inside environment 12

E1.4 Following personal preferences 71

E2.1 Accepting, gathering and incorporating unexpected, leading to pivots 56

E2.2 Changing and adapting any potential plans made to accommodate unforeseen events 26

E2.3 Actively exposing to outside influences, while being open minded 33

E3.1 Reaching trust-based flexible stakeholder agreements and commitments 20

E3.2 Co-create business with stakeholders 24

E3.4 Exposing MVPs to potential clients early on 27

E4 View of risk and resources: affordable loss 17

E4.1 Be willing to make affordable personal sacrifice (including non- monetary) 9

E4.2 Finding unused resources in local environment (including subsidies) 9

E4.3 Investing limited, small amounts of personal money, time and effort 21

We then counted the number of events belonging to either effectuation or causation for each case. In total, we

coded 631 events from all cases. The number of coded events varied significantly among cases, from 4 to 26

events in a single case. This variance is due to the relevancy of cases and events in each case to entrepreneurial

logic. The total number of effectuation codes is 450 (71.4%). The total number of causation codes is 181 (28.6%).

Figure 5 Mapping entrepreneurial logics and SE activities

3.4.3. Mapping Entrepreneurial Logics and SE Activities

Not every event relates to SE. We went through each case and identified the quotes that had both SE labels and

entrepreneurial logic labels. An example of how two layers of codes are matched is shown in Table 7, with some

quotes extracted from case S12. To understand how quotes about SE activities are related to entrepreneurial logic,

we employed axial coding (Corbin and Strauss, 1990) to map them into entrepreneurial logic coding scheme.

Table 7 Startup behavior quotes from case S12

SE Area Quotes Entrepreneurial Logic

The entrepreneurial logic of startup software development Nguyen-Duc et al. 17

P1. Requirement

Engineering

Either we solve them by providing them

different products or we do ignore parts of the

market. We make a very active statement on

what kind of requirements we do fulfill. Then

we turn down clients that do not believe the

[00:17:48] requirement. We make a very clear

statement to what we think the future of

journalism is, then we pursue it. The cost of

that is neglecting parts of our market.

C4.5. Search for stakeholders that

commit the amounts necessary for

the execution of the plan

P1. Requirement

Engineering

That is because we are in a very challenging

market with changing requirements, so that is

what they want. Then, as we got bigger, we

tried to create a more complex organization

within the company. That was the biggest

challenge, or at least to us, because we did not

know how to do it.

E1. Basis for acting: means-oriented

P1. Requirement

Engineering

There will always be requirements arriving,

that is one thing. Sometimes the new

requirements disrupt the old requirements. At

the moment, we are working to disrupt the old

products. To reinvent them and to kick the

[00:15:36] away under our old products.

E2.2. Changing and adapting any

potential plans made to

accommodate unforeseen events

P6. Process Management

Yes, we have always been working in an agile

Way. We are not adhering to any specific

agile approaches, but we can’t do long-term

specifications. That is not doable in an

industry that is changing very rapidly. We

have always been working with long-term

visions but with short-term specifications. The

way we developed specifications, it is always

with the collaboration with the clients or the

customers

E3.4. Exposing MVPs to potential

clients early on

P3. Software

Construction

We do all software development in-house, we

do not do any outsourcing to India or other

places for the simple reasons that everything

we do is very short cycle. It’s very innovation-

oriented, so our software developers probably

taught 50% of the time and code 50% of the

time, so outsourcing wouldn’t really work for

the way we work

E1.1. Building on their knowledge

base and other available existing

owned resources

Two-dimensional queries were created in NVivo version 12 to map the entrepreneurial logics and SE activities,

as shown in Figure 5.4 To aid the mapping process, we developed a qualitative codebook that includes all quotes

and their associated codes (illustrated by Figure 6). Two authors read the codes, the case context and assign an

explanation to them. We use collaborative notes and mind maps as additional tools to record any discoveries in

the data.

3.4.4. Effectuation Index for Cases

To determine whether a case is either effectuation or causation dominant, we defined an Effectuation Index (EI),

which has been used in a previous study (McKelvie et al., 2020):

EI = X(EffectuationEvents)/ X(Events) (1)

For comparison among cases, we defined three categories based on the value of EI:

 EI between 0.7 and 1: effectuation dominant

4 https://www.qsrinternational.com/nvivo-qualitative-data-analysis-software/home

http://www.qsrinternational.com/nvivo-qualitative-data-analysis-software/home

The entrepreneurial logic of startup software development Nguyen-Duc et al. 18

 EI between 0.3 and 0: causation dominant

 EI between 0.31 and 0.69: mixed

Figure 6 An example of the qualitative codebook

Table 8: Effectuation Index value of each case

Id No. Events No. Effectuation. No. Causes. Effectuation Index Logics type

S01 8 7 1 0,87 Effectuation

S02 13 9 4 0,69 Mixed

S03 21 15 6 0,71 Effectuation

S04 19 14 5 0,74 Effectuation

S05 7 6 1 0,86 Effectuation

S06 12 5 7 0,42 Mixed

S07 7 6 1 0,86 Effectuation

S08 8 7 1 0,87 Effectuation

S09 14 6 8 0,43 Mixed

S10 8 7 1 0,87 Effectuation

S11 19 14 5 0,74 Effectuation

S12 6 5 1 0,83 Effectuation

S13 15 9 6 0,6 Mixed

S14 16 11 5 0,69 Mixed

S15 16 14 2 0,87 Effectuation

S16 11 8 3 0,73 Effectuation

S17 11 7 4 0,64 Mixed

S18 12 9 3 0,75 Effectuation

S19 23 16 7 0,7 Effectuation

S20 26 13 13 0,5 Mixed

S21 11 10 1 0,91 Effectuation

S22 11 9 2 0,82 Effectuation

S23 13 11 2 0,85 Effectuation

S24 14 6 8 0,43 Mixed

S25 31 21 10 0,68 Mixed

S26 13 13 1 0,92 Effectuation

S27 6 5 1 0,83 Effectuation

S28 33 27 6 0,82 Effectuation

S29 31 25 6 0,81 Effectuation

S30 23 18 5 0,78 Effectuation

S31 25 19 6 0,76 Effectuation

S32 18 13 5 0,72 Effectuation

S33 13 7 6 0,54 Mixed

S34 6 5 1 0,83 Effectuation

S35 16 13 3 0,81 Effectuation

S36 15 5 10 0,33 Mixed

S37 18 8 10 0,44 Mixed

The entrepreneurial logic of startup software development Nguyen-Duc et al. 19

S38 14 13 1 0,93 Effectuation

S39 21 18 3 0,86 Effectuation

S40 27 16 11 0,59 Mixed

The EI value for each case is given in Table 8. The higher effectuation index value is, the more dominant effectual

activities are found. Table 9 describes the mean EI value for startups regarding their locations (international or

Nordic startups), stages (pre, startup, or post phase), and application domain sectors. Pearson chi-squared test

shows no significant difference in the distribution of EI values across these categories.

Table 9: EI values among startups in different locations, stages and industry domains

Context factors N No Effectuation

per case

No Causation

Per case

Mean

EI

Chi

square

test

Locations

International 8 10 3.38 0.76 p-

value=

0.80
Nordic 32 11.56 4.84 0.72

Stages

Pre-startup 14 12 4.64 0.74 p-

value=

0.43
Startup 22 11.41 4.04 0.75

Post-startup 4 7.75 7 0.51

Industry domains

Agriculture, Forestry, Fishing and

Hunting

3 9 1.33 0.87 p-

value=

0.12 Arts, Entertainment and Recreation 1 7 1 0.87

Construction 1 14 5 0.74

Education 4 7.75 6.5 0.60

Health Care and Social Assistance 7 14.86 5.29 0.71

Manufacturing 2 16 3.5 0.84

Professional, Scientific, and

Technical Services

18 11.33 4.33 0.73

Transportation and Warehousing 2 11.5 8 0.57

Utilities 2 10.5 4 0.72

4. Results and Analysis

The sections below present the data obtained during the study and how this data answers the research questions.

The entrepreneurial logic of startup software development Nguyen-Duc et al. 20

Figure 7 The occurrences of entrepreneurial logics across SE area of activities

4.1. RQ1: How do entrepreneurial logics apply to SE activities in startups?

We identified many SE events tagged with entrepreneurial logic. Figure 7 presents the distribution of these events

across SE knowledge areas and logic types. We observed the largest number of entrepreneurial events associated

with software constructions, followed by requirement engineering, software process, software testing, architecture

design, and software maintenance (details are given in Table 10). As our interviewees did not describe their SE

activities to the same extent (some focused more on requirement engineering aspects, some talked more about

their software processes), the numbers do not represent close relationships among the SE knowledge areas.

However, we can see that both effectuation and causation logic occur in all SE knowledge areas. Effectuation

logic is the dominant logic in software construction, requirement engineering, architecture design, software

maintenance, and software. Testing is the only type of activity where our cases reported that the number of

causation events was larger than the number of effectuation-driven events. We present detailed observations in

the following sub-sections.

Table 10: Entrepreneurial logics across SE activities

Area No. SE Events No. Effectuation Events No. Causation Events

Software Construction 112 84 28

Requirement Engineering 87 59 28

Software Process 52 42 10

Software Testing 37 14 23

Architecture Design 21 16 5

Software Maintenance 15 9 6

4.1.1. Requirements Engineering

The thematic codes for entrepreneurial logics in Requirement Engineering are given in Table 11. Requirement

engineering activities include the elicitation, analysis, validation, documentation, and scoping of software

requirements (Bourque and Fairley, 2014). In many software startups, requirements based on hypothesized

business or market demands and the process of requirement elicitation were directly associated with the customer

development journey (Blank, 2013; Melegati et al., 2019). Requirement elicitation and management in many

software startups can be characterized by effectual logic. The primary sources of requirements are internal

stakeholders (i.e., the startup founders) and external stakeholders who can be reached with the existing resources,

i.e., the entrepreneurs’ personal and professional networks. It is common for startup founders to generate product

ideas themselves or based on internal knowledge and then derive concrete requirements by engaging customers

early in the development process. This differs from the situation in established companies, where several

requirements originate from paying customers or marketing departments.

We actively looked for the right requirements from our customers. We occasionally searched for any

product area. Recently this year, we started a new product feature, and this disrupted one of our old features.

The entrepreneurial logic of startup software development Nguyen-Duc et al. 21

That decision was made in collaboration with our customers and was implemented with their sponsorship.

It is a collaboration agreement in which they finance parts of the development (S14).

In market-driven startups, requirement engineering is often centralized around lead users (von Hippel, 1986), who

can express demands currently unknown to the public. They are not the source of requirements, features, and main

factors driving startup learning. They contribute to product brainstorming, testing, and feedback or even participate

in developing and co-creating new products or services. We found that startups often collaborate closely with

some lead users or include them as the startup teams’ internal members.

We sketched the designs of all the ideas we had. We discussed them one by one. The most convincing idea

was selected for further development. . . I know the food delivery and stuff like that pretty well, so I am

often the winner (S04).

We see that startups might not find many more requirements for their products than what can be collected from

their lead users. Startups might start with a sub-optimal set of requirements due to the limited inclusion of lead

users (Nguyen-Duc et al., 2017), and the requirement list gradually evolves due to changes in startups’ resources

and networking positions. It is also possible that not all users’ inputs manifest as valuable for customers or a

market. Startups often have a low threshold for stakeholder participation and influence on their businesses and

products. Depending on internal social capital, startups might involve lead users to different extents. The low

threshold seems to be a challenge for startups to identify valuable inputs, and hence, there could be a long journey

to identify the winning features.

Moreover, startups often build prototypes as a means of communicating their requirement engineering activities.

However, prototype features, such as levels of fidelity and types of prototypes, depend highly on the currently

available resources for making such prototypes. For instance, the CEO of S04 mentioned using screenshots that

she created in communications with her first customers:

We worked directly with a customer’s organization and learned their current solutions. We described our

approach using prototypes like screenshots. It would be hard for them to realize the benefit without concrete

examples... (S04).

The prioritization of requirements that match the current development resources is more evidence of effectual

logic. Startups might have many innovative ideas, but they will often produce low-fidelity prototypes due to the

lack of development resources. Functioning prototypes (MVPs) are often built based on available software

components, libraries, frameworks, and even other software products. For instance, many pre-existing libraries

are used to develop AI-based software solutions (S21, S32), create new operating systems (S10, S14), or assemble

web-user interfaces (S01–S04, S06–S09, S30).

Table 11 Entrepreneurial logics in requirement engineering activities

Logics Codes Explanations

Effectuation

Engaging in stakeholders within

founders’ networks

Startups utilize their existing resources and connections

to identify, gather, and validate their product

requirements

Quantity and quality of

requirements depend on lead users

involved

Startups actively seek lead users (who deal intensively

with the requirements where there is no suitable solution

existing on the market) within their resources and

capacity

Significance of internal source of

requirements

Requirements might significantly come

from internal stakeholders

MVPs for requirement

communication

low-fidelity MVPs due to the available re-

source and time in the startup team

Resource-driven requirement

prioritization

Requirements might be adjusted and prioritized due to

available technical resources, infrastructures, and code

Tolerance of sudden changes in

requirements

Startups tend to accept changing requirements from key

customers that might lead to business-driven pivots

Adaptive approaches to prioritize the

requirement

Requirement selection and prioritization depend on the

business context, iteratively leading to a family of

product line

The entrepreneurial logic of startup software development Nguyen-Duc et al. 22

Causation

Requirements extracted from a

comparative analysis

Product features are identified via successful experience

or competitors’ products

Plan-driven analysis of markets,

customers, and competitors

Startups are not able to develop all collected

requirements, and a formal prioritization process is

often needed

Avoiding changes to core business

value development

Startups often negotiate with customers on requirements

that are not aligned with their core business values.

Negotiation is often done based on a long-term goal

analysis

Dropping new requirements to

avoid unforeseen development

Requirements or new features that lead to an unforeseen

cost-benefit situation are canceled

Regarding requirement change management, software companies in the early stages (pre-startup or startup) tend

to accept and incorporate significant changes in their feature list, leading to a pivot. This can be explained by the

effectual logic attitude towards unexpected events.

It’s very difficult to say no when “giant” customers tell you we need that functionality. If you’re going to

have us as customers, you will have to make it. We need it in the contract that you have to make it. We

also built it [the software product], and we built it bigger and bigger (S11).

The change can also lead to reworking during product development, which startups will need to cope with:

There will always be new requirements arriving, that is one thing. Sometimes the new requirements disrupt

the old ones. At the moment, we are working to disrupt the whole old product, reinvent them, and throw

away the whole codebase (S14).

Startups often adopt adaptive approaches to deal with changes in requirements. Requirement selection and

prioritization depend on the business context and, iteratively, lead to a product line family. To sum up, many

requirement engineering activities are recorded in the association to effectual logic.

Software startups also express causal logic when dealing with requirement engineering. Goal-oriented requirement

engineering occurs when defining and planning user stories with limited uncertainties. The analysis of customers,

markets, and competitors is goal-oriented and follows some kind of predefined plan. Requirements are then turned

into short-term sprint backlogs and are often implemented according to the sprint plans.

We found out that in Norway, the public only knows one ticketing provider called Company A,

which is owned by Company B, which is owned by Company C, a big international company. Then

we saw a market possibility for providing a ticketing system, a DIY ticketing system for the smaller

venues because Company B and Company C, everything you had to do you did by email

correspondence (S11).

When faced with an unexpected change—for example, customers proposing an innovative but peripheral

requirement—many startups implement a causation-centric strategy by avoiding unforeseen consequences in

developing a product or business, even though this would lead to some customers’ requests being adjusted or even

dropped.

We turned down clients that did not believe the [00:17:48] requirement. We make a very clear

statement to what we think the future of journalism is, then we pursue that, and the cost of that is

neglecting parts of our market (S14).

Observation 1: Requirement elicitation, negotiation, and management tend to be effectuation-driven processes in

which startups explore new types of products or customers. Certain finely detailed activities, such as requirement

breakdown, estimation, analysis, and validation, tend to be causation-driven when requirements are known to

some extent.

4.1.2. Software Construction

The thematic codes for entrepreneurial logics in Software Construction are given in Table 12. Software

construction is the creation of working software through a combination of configuration, coding, unit testing, and

The entrepreneurial logic of startup software development Nguyen-Duc et al. 23

debugging (Bourque and Fairley, 2014). In software startups, construction activities apply to both final software

products and MVPs. Concerning effectual logic, MVPs are typically developed according to this model in terms

of how the speed of implementation, the functionalities, and quality of MVPs mainly rely on the available technical

competence in the startup companies. A startup can launch a good front-end prototype very quickly with a user

experience expert in the team. A startup can also start with low-fidelity wireframes created by a startup founder

who does not have technical competence. The founders of the startups examined in this study created various

MVPs, including paper sketches, mockup design tools, and competitor products (S2, S09, S11, S13).

The first version is like a hack; it took a lot of time to make it up and running. It was impossible for

teachers to use because it needed a developer to set up all the network things. It was done in a really

hacking manner. Also, it was one instance so it could run one quiz at a time… It failed completely

as we just had to throw away the prototype (S09).

The underlying logic is to accept development waste and focus on learning from throw-away prototypes. The

minimum effort could also become a wasted effort, for example, when the prototype simulates but does not

illustrate. The CEO of S11 introduced the concept of faking a product: “fake it until you make it.” Without

technical capacities, he demonstrated his business vision with a “faked product,” which implies a lack of primary

quality, both in terms of functionality and user experience. The CEO of S02 expressed that what they built, in the

beginning, is a minimum potential prototype, but not the MVP:

Building a prototype is like building a fake house. The exterior design is done, you can see how it

feels, but the internal part is empty. It helps you figure out if this kind of house you want to live in…

We are creating a minimum viable product, not a completely viable one (S02).

Consequently, road mapping and planning for MVPs are often overlooked. After completing an MVP, the creation

of the next one is often decided opportunistically. Essential elements of a plan are often neglected: for example,

how many MVPs are needed, for what the next MVP will be used, and the criteria for evaluating MVP learning

outcomes. Startups accept failure when building MVPs and embrace exploratory development at the cost of

economic sacrifices.

Startups are also known to adopt workaround solutions, such as a set of files that is reasonably functional.

Developing and testing MVPs at fast rates enables startups to validate their assumptions about their business

viability. However, the focus on development speed can also lead to minimum viability. A workaround solution

is different from a planned temporary solution, i.e., a piecemeal MVP (Ries, 2011). In some cases, startups have

to throw away an MVP that was not designed for long-term use. Startups often aim to develop software early by

incrementally adding features into the prototype (Nguyen-Duc et al., 2017). In this way, TD is created as startups

focus on speed and neglect quality (Giardino et al., 2016). More seriously, some software products were built

using architecture not designed for scale. S09 developed an in-class quiz-based application to check student

understanding of lectures in real time; multiple prototypes developed by the CEO or as a student project

experimented with different classes. The final prototype, which captured refined design and business ideas, was

further developed into a version suitable for launch; however, the release’s quality did not match the performance

demanded by unexpected growth in users.

In another case, S27 rapidly developed an initial MVP with a hastily built front-end and a hacking back-end

function with no security that just achieved minimum performance. The MVP was thrown away, and the company

acquired its first seed investment for serious prototype development. Somehow, the launched product contains

many components from previous MVPs with a large amount of technical debts. The team deployed the product to

customers and extended it further. This later was perceived as a mistake that costed the company significantly:

At one stage, you just had to drop everything but keep the concept and create it from scratch. The

concept was good, the implementation was not bad, but it didn’t fit into the commercial world. And

at another stage, we needed to get new people with some new minds that could think slightly

differently (S27).

Many startups hired external resources, such as local contractors or offshore software vendors, based on their

experience and networks. This practice is often the case with non-technical founders or companies with limited

in-house technical competence. Examples of local contractors are consultant companies, makers’ spaces, student

projects, and freelancers. In case S15, skilled contractors were hired to achieve a quick start with a functional

MVP. As mentioned by the CEO, the use of external resources enables speedy product experimentation and

The entrepreneurial logic of startup software development Nguyen-Duc et al. 24

development. Furthermore, as contractors are not an integral part of the startup, their relatively easy dismissal

facilitates scaling-down activities that may be necessary if the startup lacks funding or changes directions. Some

startups use local contractors, while others hire offshore vendors. Making use of local vendors can be a feasible

option:

The local one [vendor] delivered very quickly. It is critical that the component from China comes

on time, especially when we needed to demonstrate in the week after in the UK. It is always a matter

of time. If we could do everything internally, we would have saved a lot of time sending; it would

have been great! (S38)

Table 12 Entrepreneurial logics in software construction activities

Logics Codes Explanations

Effectuation

Resource-based MVP

development

MVP development relies on existing and accessible technical

competence

Product experiments with

tolerance for waste

MVPs are created for demonstration, which is not suitable for long-

term use and often thrown away in the later stages of the startup

journey

Overlooked product road-

mapping and planning

Construction of MVPs usually occurs in an experimental and

opportunistic manner

Speed-first MVP development
Startups often need to balance quality and speed to market, and in

most cases, time-to-market is prioritized

Recruitment of external

competence

Hired developers or contractors are often from the founders’

network

Component-based

development

MVPs typically contain a significant number of ready-to-use

components that can be plug-and-play in a short time

Innovative product

development requires

exploratory approaches

Innovative products often involve RandD activities that are not

purely driven by goals and plans

Causation

Short-term plan-based

product development

Product development is planned from the requirement to launch,

and different efforts are performed to achieve the initial plan

Preventing software

constructions from business

threats

Software construction might be paused because of financial and

business uncertainty

Most of our startups leveraged existing libraries, frameworks, and components to build a runnable MVP quickly,

accessing either paid APIs or Open Source Software (OSS) components. Particularly, the adoption of OSS

components was mentioned in all the cases, from using OSS tools (S19) to the integration of OSS code (S02, S03,

S05, S20) to participation in the OSS community (S18). The main benefits, including reduced development cost

and faster time-to-release, were mentioned by the CTO of (S19) and (S20):

The things we are doing today, we might not even come to the idea of making it happen if we do not

have open-source software (OSS) as an experiment. Without OSS, it would take a lot of time and be

very costly (S19).

It is very hard nowadays not to use OSS artifacts, especially when with Android development (S20).

It was observed that component-based development can influence the product architecture of early MVPs. In S02,

OSS JavaScript frameworks were considered the central part of product architecture for the web and mobile

applications. It also appears that many advanced technologies were adopted using OSS:

A core part of our product includes a machine learning (ML) algorithm. We are lucky enough to

find ML libraries in C++, and they are entirely OSS (S02).

One possible challenge of using ready-made components is to find a suitable component in terms of maturity,

code quality, and level of support, which also appears as an effectuation-driven behavior:

OSS is used in many architectures and for many purposes... Searching a suitable library was

sometimes not so easy but the time was paid back at the end (S05).

The entrepreneurial logic of startup software development Nguyen-Duc et al. 25

The selection process needs to consider functional requirements and quality requirements for the component and

the whole product. The CEO of S12 stated that many large companies had offered free APIs to access their data

and functionality, integrating them into final software products to consider other issues, such as quality, scalability,

and cost. OSS components might not be the minimum available solution, but they reduce the inherent risks of

scaling for later phases.

In terms of causal logic, from a short-term perspective, software constructions are plan-based, with concrete

expected outputs. Startups also adopt a plan-based product development approach from the requirement elicitation

activities to product deployment. So long as the product requirements are identified (e.g., an established sprint

backlog), it is expected that the sprint will be operated without many changes.

For us, this was not the major change because the product was ready, and the customer had the need

for it. It was a pretty straightforward delivery for us (S14).

Business and financial stability appear to be important influencing factors on whether causal logic occurs and

underlies the software construction process, as in case S03 with secured initial seed funding:

For the first two or three years, we have been only a product development-driven company.

Everything we did was product development... We have grown a lot in Norway by product

development, word of mouth, and customer satisfaction (S03).

Startups also express their causation-driven behaviors by avoiding unexpected events and focusing on internal

project activities rather than engaging in external interaction. For instance, S25 had to stop its development

activities due to uncertain financial conditions in its early stage.

The operations... stopped, like, one-and-a-half years ago, when we noticed that we were not capable

of raising the risk funding for the development of the required technology (S25).

Observation 2: MVP development is typically an experimental and waste-tolerant process, driven by time-to-

market, available competence, and internal incentives. Software construction is often opportunistic, and plan-

driven coding activities occur in the short term or later stages of a startup’s life cycle.

Table 13 Entrepreneurial logics in software design activities

Logics Codes Explanations

Effectuation

Early customer involvement in

solution design

Startup actively involves customers

in the design space to co-create

business value

Solution design as an experimental

process

Solutions for a given customer or

market are iteratively visualized

through experimental activities

An adaptive approach for a

configurable product design

The product design in some cases

needs to be adaptable to different

customers’ requirements

Causation
Technical architecture as

an optimizable task

Architectural decisions are made

with a thorough consideration of

cost-benefit trade-offs

4.1.3. Software Design

The thematic codes for entrepreneurial logics in Software Design are given in Table 13. Software design represents

the problem-solving space where actual business value is planned to be implemented. Software design can include

both user interface design and architectural design (Bourque and Fairley, 2014). The effectual logic is apparent in

the solution design process, i.e., identifying the best solution for a current customer or market demands. This

process might be experimental, means-driven, and change-prone. The process often involves early customers. In

S19, the startup not only exposed their MVPs to potential customers quite early, but also used MVPs to involve

the customers to their design process:

The entrepreneurial logic of startup software development Nguyen-Duc et al. 26

Yes, I think it is important to get the customer involvement in the [product] design... Otherwise, it

would be a bit scary to launch a new system with assumptions that someone would use it (S19).

Regarding architectural issues as part of the experimental process, S37 said that:

We have struggled with the choice of platform for the autopilot. Controllers need to be implemented

on something, so we have spent a lot of time on embedded components to get the right protocols to

control the reserves and get to know what ran on the OSS stuff (S37).

Because of active customer involvement, in some cases, architecture needs to be adapted to cover different

requirements:

Because there are many other parties involved. And many other systems where the interfaces might

not be so able to integrate if they are old legacy systems. So they are usually the biggest challenge

(S31).

We also observed a customized software design when different requirements arose in the design phase. The

architecture for a single product might need to evolve into a product-line architecture with extendibility.

In terms of causal logic, technically speaking, software design is a plan-driven activity. The integration of

complexity and other quality attributes in functional software is an achievable task. Architectural decisions are

made with a thorough consideration of cost-benefit trade-offs, especially when a system needs some quality

attributes for the long run, i.e., performance, and availability.

Observation 3: From a business perspective, software designing is an effectuation-driven process; from a technical

perspective, software designing could be plan-based and optimizable.

4.1.4. Software Testing

The thematic codes for entrepreneurial logics in Software Testing are given in Table 14. Software testing includes

four levels: unit, integration, system, and acceptance testing (Bourque and Fairley, 2014). Regardless of levels of

testing, we focused on the testing activities that evolve potential or actual users. Product testing is based on

assumptions and hypotheses set by the startup about generated value for users and customers. In this sense, product

testing is an important mechanism to validate the product/market fit. Many startups do not talk about their testing

process in detail. From our observations, startups appear to have more causation-driven testing activities than

effectuation-driven ones, as described below.

Effectual logic appears in software testing as the minimum viable testing concept. As found in previous studies

(Giardino et al., 2016), software startups prioritize time-to-market over acceptable product quality. This practice

is represented by the lack of proper test plans and insufficient testing at different levels. Startups use existing

developer resources, such as spare development time, in their milestone-driven plans for testing.

We prefer to work quickly, and writing tests could double the development time... If these parts are

built to be replaced later, then we think there’s no point in spending time on testing (S2).

They can tolerate possible losses due to the lack of quality focus. The available resources and equipment then

influence the testing activities:

We are working with a partner to put in place some equipment for further testing, but until now, we

have focused primarily on approximate measurements due to a lack of premises and equipment

(S39).

When releasing and testing a product version to early adopters, a company may sell the product to others through

word of mouth. This fits with the effectual logic concept of “initial customers as partners and vice versa.” Overall,

it seems that startups with a broad base of potential customers and investors interested in what they are doing as

they develop a new product or service have an advantage over those entrepreneurs operating in isolation.

Causal logic is more apparent in the development of particular types of products (e.g., hardware-relevant products)

or specific application domains (e.g., automotive, and healthcare industry), where quality is intrinsic to a released

The entrepreneurial logic of startup software development Nguyen-Duc et al. 27

software system. In the mindset of these startup founders, testing is as essential as implementation. High quality

in hardware development is vital because of the cost associated with production and quality mistakes, which

dramatically affect the perceived functionality of the product (Berg et al. 2020). In contrast to software products,

it is challenging to implement changes and improve the quality after the product has been produced and assembled.

Failures can cause high costs, more work, and, at worst, a security issue to make sure no one gets

hit if it [a flying drone] falls. This is opposed to a car or a boat because testing them is much easier.

Setting up robust tests and making a foundation for testing for something that can fail in the air is a

unique challenge with flying things. The quality has to be better, and it is not easy to test things...

We must accept that the fastest way isn’t always the best one. For flying, it is important to do things

properly instead of choosing quick solutions (S37).

Some companies decided to do test-driven development by developing both requirement description and test cases,

using the test cases to track the software development, as illustrated in case S40:

Test-driven development is also changing now a little towards acceptance of test-driven

development. So, we can write tests that customers can also read and verify by themselves that they

are passing and that we are implementing the right features. Also, we are moving more towards

automated end-to-end tests, that the test begins from the user interface and ends... (S40).

Observation 4: While system testing and user acceptance testing are often results of causation-driven behaviors,

effectuation-driven testing is often applicable for demonstration.

Table 14 Entrepreneurial logics in software testing activities

Logics Codes Explanations

Effectuation Minimal viable testing
Startups might perform testing just enough for purposes

of demonstration or launching

Causation

Testing is by-designed in specific

types of products

Hardware-related products often require heavy upfront

testing

User acceptance of test-driven

development

Startups with quality as value proposition need to

achieve their plans for user acceptance tests

Test-driven development
Test plan are often made at the same time with

requirement specifications in hardware-related products

4.1.5. Software Maintenance

The thematic codes for entrepreneurial logics in Software Maintenance are given in

Table 15. Software maintenance in SE is about modifying software products after delivery to correct faults and

improve performance or other attributes (Bourque and Fairley, 2014). In startups, software maintenance and

construction are often mixed when providing running software for some customers and, at the same time,

developing new features or new variants of the product. Where effectual logic is concerned, startups often take on

many maintenance tasks as they support their first bespoke customers. In these cases, product improvement and

new features are not typically planned, and customer satisfaction is an important criterion that directs further

development.

Question: Have you planned for a way to upgrade the software of sold gloves?

Answer: We have not thought about that. We have assumed that if the user thinks there is something

wrong, then the user will contact us. Then we help the user with the error that has occurred. We have

no analytical overview of the products that are out there (S40).

Table 15 Entrepreneurial logics in software maintenance activities

Logics Codes Explanations

Effectuation

Customer-driven software

maintenance
Maintaining tasks tailored to specific customers

Contingency approach of managing

TDs

Depending on contexts, the debts can be managed,

accepted, avoided, or ignored

Reacting to bespoke change requests
Maintenance tasks occur from new feature requests or

bug fixes for bespoken customers

The entrepreneurial logic of startup software development Nguyen-Duc et al. 28

Causation

Scheduled management of tools and

infrastructures

Maintenance tasks, including infrastructure and

configuration management, are typically scheduled and

repeated

Planned software maintenance
Software maintenance tasks are planned along with

development and testing

Another trigger for effectuation-driven software maintenance is the TD incurred during software construction

(Giardino et al., 2016). The metaphor implies that “interest” has to be paid during maintenance and development

activities and that the “principle” should be repaid, i.e., with code refactoring, at some point for the long-term

health of the software product (Krutchen et al., 2012; Seaman and Guo, 2011). While the startups agreed that TD

trade-offs are crucial for their businesses, they each handled the debt differently. It is often uncertain whether the

impact of “work-around solutions” on later maintenance tasks when products are operating in a customer

environment.

In the beginning, we made a lot of mistakes, but they didn’t last long... Now that you started re-

coding the system, leaving roughly six months of work behind... you said let’s leave it there (S11).

The effectual logic here is shown by the contingency approach that TD can be purposefully avoided, fixed, or

ignored.

In terms of causal logic, we also observed that, within these startups, maintenance tasks, including infrastructure

and configuration management, are typically scheduled and repeated regularly. Software maintenance can also be

planned to some extent to avoid unexpected incidents and optimal in terms of cost-benefits:

It was implemented in such a way that it was not difficult to work on it or further develop it (S40).

Observation 5: Software maintenance in software startups occurs opportunistically. Dealing with TD is

effectuation-driven by nature. Startups often throw away systems that are not working and develop new systems

rather than reverse engineering the faulty product.

4.1.6. Software Process

The thematic codes for entrepreneurial logics in Software Process are given in Table 16. Startups are known to

adopt a lightweight and agile workflow rather than following a specific formal method (Pantiuchina et al., 2017;

Nguyen-Duc et al., 2017). Many startups do not have actual processes or a systematic way of working because

they do not often prepare for a long run. Align with the effectuation approach, software startups tend to be agile

or even ad-hoc and reactive:

Yes, we have always been working in an agile way. We are not adhering to any specific method, but

we cannot do long-term specifications. That is not doable in an industry that is changing very rapidly.

We have always been working with long-term visions but with short-term specifications. The way

we developed specifications, it is always with the collaboration with the clients or the customers

(S14).

Agile development was mentioned as the best approach to achieve speed and agility in startups. The CEOs related

agility to less upfront planning and the short-term driven evolution of the startups. They also mentioned the speed

of prototyping, development, and fast time-to-market when asked about an agile approach. Employees at the

startups stated that full control of development activities and partnerships would prepare them to respond to

unexpected changes. Some startups also highlighted the importance of team collaboration over defined processes.

The adoption of certain agile practices or approaches might differ between the development of hardware and

software elements:

Our MVP is relatively simple, while software changes likely happen all the time. We are still trying

to find what is the right way to do it (S37).

Many startups characterized their workflow as a trial-and-error approach, adopted to deal with uncertainty in

business and technology. It is worth noting that technological uncertainty might be due to the complexity of

technology and the team’s available technical competence.

The entrepreneurial logic of startup software development Nguyen-Duc et al. 29

Typical sprints are anywhere between one and five days, and we always give very small steps to

make sure that we don’t head down a blind road, a blind alley. To make sure that we all understand

what we’re doing without making (S12).

Startups might not know which development approaches are practical for them due to their relatively short

operation history. This is different from established companies, where they have learned and adopted stable

working approaches. The journey of learning about processes and practices is rather means-driven than goal-

driven; the processes are proposed by and adopted for the available resource in the startups. The effectiveness of

the adopted process is then determined by the current startup team, current resources, customers, and products.

Table 16 Entrepreneurial logics in process management activities

Logics Codes Explanations

Effectuation

Short-term planning
Short iterations are commonly adopted with a vision of

at most six months in advances

Change-prone and dynamic

development environment

Startups might face difficulties in adopting a set of

specific development approaches due to the quick

change of the project context

Self-defined workflow
It is typical for many startups to adopt no formal guided

development approaches

Evolving working processes and

practices

Changes in organization or product might trigger the

need to try better development approaches

Causation
Plan-driven adoption of software

processes

Startups might pursuit a strategic goal of adopting

software processes and practices

We have not made any such routines, so we are at that stage that we learn that we should do it. We

started very sharply, and we have not yet reached a point where we have realized that it could help

us. I know that we could probably have served more formal routines (S39).

Startups often react to their environmental contingencies by adapting their workflow to fit the new financial,

organizational, and managerial conditions. Again, the means-driven attitude applies to the startups because their

adjusted working approaches will depend on their internal competence and experience with methodologies. A

startup team would not be likely to try out a Lean Startup approach if they do not have anyone in a team with prior

experience with this style.

We came to a crossroads in February, where we decided to let one tech team continue to work on it,

and one team started to work with flex sensors. We wanted to see if we could get a faster prototype

by changing the solution method (S40).

In terms of causal logic, we also observed cases where plan-driven product development was adopted from the

beginning. For instance, S03 had little uncertainty about their business due to the investment and precise product

requirements. The product development was prioritized and planned in a year based on the formal analysis of

product requirements and a stable development team:

In the next 6 to 12 months, we are going to move into a real strict agile process. Because we have

our daily stand-ups and our backlogs and stuff like that, but we try to keep it a little loose (S03).

Observation 6: Software startups are characterized by self-defined, adaptive, and opportunistic workflows. The

evolution of practices and processes is expected through startup development.

4.2. RQ2: How do entrepreneurial logics apply to software development at the company level?

Insights from RQ1 do not give us a comparative view among startups regarding how they adopt entrepreneurial

logic during their product development. We calculated the Effectuation Index (EI) using events extracted from SE

activities for each startup case. There were no startups that included only causation logic or effectuation logic. To

search for a possible explanation for the application of effectual logic or causation logic, we conducted a Chi-

square test (as shown in Section 3.4.4) in Mean EI values across startup locations, phases and industry domains.

Qualitatively, we looked at the common codes that are identified as effectuation-driven or causation-driven

activities and summarized them at the company level. The type description below applies to a state of a startup,

without excluding the possibility that startups shift among these types. Observations from 40 startups showed that

The entrepreneurial logic of startup software development Nguyen-Duc et al. 30

at a certain point in time a startup can be characterized as either an effectuation-dominant startup or a mixed-logic

startup. The list of startups cases according to their types is given in Table 17.

Table 17 Entrepreneurial logics occurred in the company level

Startups

type

Definition Common conditions
Startup Cases

Effectuation-

dominant

S01, S03, S04, S05, S07, S08,

S10, S11, S12, S15, S16, S18,

S19, S21, S22, S23, S26, S27,

S28, S29, S30, S31, S32, S34,

S35, S38, S39

Startups that are experiencing the

major number of their product

development activities under

effectuation logics

Great level of uncertainties

Limited resources

Frequent iterative processes

Technical debt

Pivot-ready

Mixed

Startups that have significant

number of effectuation-driven and

causation-driven activities

Reduced uncertainties

Acquired team competence

Agile-like procceses

Process improvement

S02, S06, S09, S13, S14, S17,

S20, S24, S25, S33, S36, S37,

S40

Causation-

dominant

Startups that are experiencing the

major number of their product

development activities under

causation logics

Managable level of

uncertainties

Traditional software

development procceses

None

4.2.1. Startup Type 1: Effectuation-dominant

Effectuation-dominant startups (27 out of 40 cases) often initiate with some unique advantages: for instance, a

product idea that did not previously exist, a market segment with little competition, a group of talented developers,

or an existing source of customers. These startups strongly emphasize personal knowledge as the starting point,

i.e., the founders are competitive in business competence or technical competence. They also rely heavily on their

internal resources. This can be seen from startups deriving the product requirement internally or with existing

requirements (Klotins, Unterkalmsteiner, Gorschek, et al., 2019). The requirement elicitation process might

involve internal or external (or both types) stakeholders (Melegati et al., 2019). These stakeholders include both

lead users and individuals who commit to resources, and in many cases, startups need to discover the most valuable

requirements. Social capital, the relationships between people in various networks, is critical for startups because

these companies often explore their network to identify new requirements, explore business opportunities, and

recruit partners or employees.

Effectuation-dominant startups also rely only on resources that they are willing to lose. Almost all of our

effectuation-driven startups threw away many MVPs, even high-fidelity ones (Duv and Abrahamsson, 2016).

Startups are willing to take the risk that their products or features are not desired in the market and, in most cases,

are ready to pivot to a new idea if necessary (Sarasvathy, 2001). In these startups, technical redirection can happen

any time new information is unearthed. These startups do not focus heavily on components and system testing.

Software maintenance is carried on in parallel with development with a short-term focus on current customer

satisfaction. From this perspective, phenomena such as TD or speed over quality are probably unavoidable and

perhaps a way for startups to prepare for the possible losses incurred with a technical pivot. Effectuation is an

iterative process, and startups learn continuously from their experiences. We also found that the learning process

is ad hoc and informal, lacking knowledge discovery, extraction, and storage. This generates challenges in the

future when startups scale up their products and organizations.

Observation 7: An effectuation-dominant startup focuses heavily on internal resources and social capital. The

startup embraces a focus on speed over quality, neglects quality assurance investment, accepts TD, and tolerates

technical pivots to deal with uncertainty.

4.2.2. Startup Type 2: Mixed-logic

Compared to effectuation-dominant startups, mixed-logic startups (13 out of 40 cases) have reduced uncertainties

regarding their markets, funding, and team conditions. Either they are spin-offs from established companies and

inherit well-defined problems with existing customer contacts (S06, S20), they have evolved into more stable

stages (S09), or they operate in a regulated domain (S40). In these startups, we found several middle-term and

The entrepreneurial logic of startup software development Nguyen-Duc et al. 31

long-term plans regarding their product development. These startups emphasize their plan-based analysis,

selection, and prioritization of requirements to a (partly) validated market. When they implement their goals, the

startups tend to ignore external influences, opportunities, and requirements and instead focus on achieving their

visions. Product development is more similar to methodologies reported by established companies. Software

development methodologies become more of a concern when startups look for productivity, quality, and a

sustainable working experience. In these companies, the significant difference is the investment in testing

activities. We also observed the adoption of formal approaches with a large upfront sum, such as test-driven

development (S40). Activities such as architectural designs and software maintenance contain a lot of planning

and analysis.

Observation 8: A traditional SE process and practice is relevant to a mixed-logic startup where both business and

product development is relatively and subjectively predictable. A mixed-logic startup is often the continuation of

an existing business or a startup at a certain maturity level.

4.2.3. Startup Type 3: Causation-dominant

Startups that are experiencing the major number of their product development activities under causation logics

are not observable from our sample. By definition, these startups would adopt long-term and analytics-driven

approaches. The idea type-3 startups might have an analytical approach to customer requirements, stable value

propositions which unlikely to change in a short-term perspective, an early and clear overview of their product

architecture, adopt principled software development processes and practices including test-driven development,

continuous integration, and DevOps (Section 4.1).

5. Discussion

5.1. Discussing the Primary Observations

By applying entrepreneurial logics, this study explains many findings from previous software startup research.

Melegati et al. (2019) reported that requirements engineering has multiple influences and helps explore the market

opportunity and devise a feasible solution. We observed that requirement elicitation and negotiation tend to be

effectuation-driven. Startup founders use their current knowledge about technology, markets, cultures, and social

capital to identify the product’s market fit. Klotin, Unterkalmsteiner, Chatzipetrou, et al. (2019) reported a survey

result showing that internal sources, such as brainstorming and the invention of requirements, are the most popular

requirement sources. The authors also reported challenges establishing contact with their potential customers and

involving them in the product work. In our findings, we showed a means-driven principle, and the startup’s social

capital would likely shape this challenge. We emphasize that the real problem of requirement engineering in

startups is that many customers’ requirements would probably not possess the right inputs for product-killing

features. Effectuation logic helps to explain why a “lean” approach suitable for User-Centered Design in software

startups (Hokkanen et al., 2015). Startups in the early stages often search for lead users from their social capitals

and this process is probe-and-sense without detailed plans in advance.

Many startups are not successful in learning from their MVPs due to the effectuation-driven behaviors. They tend

to overlook product roadmapping and planning, reuse MVPs for many different purposes and in different scenarios

(Duc and Abrahamsson, 2016), which leads to accumulated TD (Giardino et al., 2016). With the attitude of

tolerating for (prototyping) failure, MVP building process is seen as a waste-tolerant process rather than a

validated learning process in startup and that this process seems to be driven by time-to-market, available

competence, and internal incentives. To improve the situations, lightweight guidelines at operationalization levels

would be a possible approach (Bosch et al., 2013, Nguyen-duc et al., 2020).

Software testing is a particular engineering area with a dominant number of causation-driven events. On the one

hand, we have observed the so-called “minimum viable testing” approach as an inappropriate quality assurance

approach. On the other hand, startups often mention testing as a plan-driven endeavor. This happens in startups

developing quality-critical products (e.g., hardware startups), safety, and security-critical domains (e.g., health-

care and automotive), or in a startup with established software development methodology (process improvement).

Klotin, Unterkalmsteiner, Chatzipetrou, et al. (2019) argued that startups could benefit from more rigorous testing

practices. We can agree with this observation only when startups have quality attributes as their core value

propositions. When MVPs are released for events such as demonstrations and funding pitches, testing is

effectuation-driven and minimalistic. Giardino et al. (2016) pointed out several contributing factors to

accumulated TDs in software startups, including lack of architectural design, automated testing, and minimal

project management. These factors fit well with effectual logic as startup members are prepared for changes,

The entrepreneurial logic of startup software development Nguyen-Duc et al. 32

associate change with affordable loss, and avoid excessive upfront investment in design, implementation, and

testing. Throw-away work seems to be a natural part of the startup, and reuse seems to be opportunistic.

Regarding software processes, software startups can be characterized by their opportunistic workflows. We would

argue that the entrepreneurial logic would determine which software procceses and practices are adopted.

Pantiuchina et al. (2017) reported that startups adopt agile practices differently and communication practices, such

as daily standup meetings, are not common among startup teams. Their findings of the overwhelming of speed-

related practices reflect the adoption of effectuation logic in software construction and testing. Klotin,

Unterkalmsteiner, Chatzipetrou, et al. (2019) showed that start-ups often have communication issues, shortages

of the domain, and engineering expertise. From the view of effectuation logics, startups tend to include any people

who can contribute to their value proposition. This can solve the need for competence and knowledge in a short

time but poses a challenge of team cohesiveness. While a team often needs to go through several steps to reach

their optimal performance (Tuckman, 1965), startups might have a challenge reaching this performing stage.

Our findings propose a classification of startups into either Type One (effectuation-dominant), Type Two (mixed-

logic) or Type Three (causation-dominant). Once startups are organized into distinct types, it will be easier to

reason about their engineering activity decisions. Traditional SE processes and practices are more relevant to

causation-domain startups (Type Three) or mixed-logic startups (Type Two), where both business and product

development are relatively and subjectively predictable. This aligns with some observations from previous studies,

i.e., startups in the early stages adopt less formal management practices than those in the post-startup stage (Klotin,

Unterkalmsteiner, Chatzipetrou, et al., 2019). We argue that a startup classification is a contingency approach, in

which both internal factors (e.g., founders’ experience and characteristics, team competence, and available

technologies) and external factors (e.g., institutional factors, startup ecosystems, and market conditions) might

lead to startups becoming one of the three types. The cross-sectional view on startup classification does not mean

a consistent occurrence of the logics in all engineering activities, e.g. causal logics can still be observed from

effectuation-dominant startups. Hence, we suggest the reasoning for startup tactics should be done in the

association with SE decisions to be taken and its contexts. Besides, we do not capture the dynamic aspect of startup

types, i.e. startups might be in a transition from Type One to Type Two or from Type Two to Type Three. A study

of logic shifts, as shown in entrepreneurship research (Reymen et al., 2017), needs to be done in a longitudinal

manner.

5.2. The Applicability of Entrepreneurial Logics in Software Startup Engineering

Exploring and comparing causation and effectuation logic to make sense of startups’ business activities are

widespread in business research (Sarasvathy, 2001; Sarasvathy and Dew, 2005a; Chandler et al., 2011; Reymen

et al., 2015; Reymen et al., 2017; Harms and Schiele, 2012; Smolka et al., 2016). Sarasvathy (2001) emphasizes

that causation logic is more suitable for existing markets, and effectuation logic is more suitable for new markets

and products. Chandler et al. (2011) illustrate the occurrence of these logics in business experimentation.

Flexibility regarding unforeseeable events in effectuation has been contrasted with carrying out a planned strategy

under causal logic (Reymen et al., 2015). Our observations show that both kinds of logic can be found in different

SE areas of activities. After comparing our results with those of previous studies (Giardino et al., 2016; Melegati

et al., 2019; Klotins et al., 2019; Tripathi et al., 2019), we understand the logics behind how some engineering

activities are carried on. Indeed, after quantifying the number of logic-driven events across 40 startups, we did not

observe any case adhering to only one logic. We do not have enough insight into each case to conclude possible

patterns of adopting logics, engineering activities, and their consequences; however, effectuation logic appears to

be the primary principle behind product development in the early stages of startups. Moreover, as SE deals with a

systematic development approach, we would expect more plan-based and analysis-driven activities in software

startups that invest in their workflow. Mansoori and Lackéus (2019) propose a framework for applying

entrepreneurial methods consisting of the three levels of logic, model, and tactics. While we have not seen the

consistent appearance of causation and effectuation at the model level, we observe that they are relevant at the

tactical level.

Tactics connect the abstract nature of the logics to the tangible realm of practices. Tactics are often detailed and

specify the context of use and the outcomes of action. Several engineering phenomena, such as MVP, TD, lead

users, and test-driven development, can be described using causation or effectuation logic at the tactic level.

Reymen et al. (2017) studied decision-making logics in four high-tech startups. The authors found both effectual

and causal logics in different parts of startups’ business models. In our own study, we see the appearance of both

logics in different parts of the product development lifecycle. Harms and Schiele (2012) found that, for business

development, the entrepreneurs’ experiences might also influence the choice of entrepreneurial logic, not only the

The entrepreneurial logic of startup software development Nguyen-Duc et al. 33

surrounding environments. Dew et al. (2009) also found that entrepreneurial experts frame decisions using

effectual logic while novices use a causation-driven approach and tend “to go by the textbook.” (Dew et al. 2009,

p. 1) It might also be that the dominant decision-making logic may shift several times (Reymen et al., 2015), and

both decision-making logics may co-exist according to the different degrees of uncertainty in the market and

technology or the number of decision-makers involved (Nummela et al., 2014). We observed some contextual

variables that might determine whether a effectual mindset or a causal mindset should be in place, including

business uncertainty, startup maturity, funding situations, and expertise in engineering methods regarding SE

activities. Future work can further investigate these as factors that precede the choice of logic in software startup

engineering.

Existing research has also revealed that it is possible to observe both kinds of entrepreneurial logic in different

stages of a startup. Smolka et al. reported that causation and effectuation both have positive effects on business

development (Smolka et al., 2016). Founders who are resource-driven and engage in planning activities tend to

have better startup performance. This is a fascinating observation; however, we did not have enough insight to

validate this combined effect in software development contexts. The logic shifts may also explain the changes in

startups’ business strategies, marketing approaches, and workflows (Reymen et al., 2017; Sarasvathy, 2001;

Harms and Schiele, 2012). Looking at startups in different stages, we hypothesize that startup founders can shift

their logic from effectuation-driven towards causation-driven by gradually establishing their workflow in different

SE activities.

5.3. Threats to Validity

In qualitative research, scientific validity must be addressed to replicate research and ensure that the findings are

trustworthy (Yin, 2003; Runeson and Höst, 2009; Cruzes and Dyba, 2011). To ensure the validity of this study,

we followed the validity guidelines from Runeson (Runeson and Höst, 2009). Construct validity ensures that the

studied operational variables represent the construct we aim to investigate according to the research questions. In

our study, the components were developed based on existing literature (McKelvie et al., 2020). This study’s

measure of entrepreneurial logic is based on approaches reported in previous studies (Reymen et al., 2015;

McKelvie et al., 2020). Our interview questions reveal major key events in each startup, reflected by CEOs or

startup co-founders with insights into business and product aspects. A possible risk here is bias in data, i.e.

interviewee might focus on the most improvised or messy aspects of the product development. We implemented

some measures against this threat. First, we read again the interview transcripts, which captured also emotional

expressions to recall how the interviewee presented themselves. Second, we investigated the context of main

labeled events to detect if there is any visible bias. It is not easy to understand a startup and its cultural, institutional,

and contextual factors within a single interview of about 60 minutes; therefore, we compensated by collecting data

about the startups through incubator and company websites before interviews. We also talked to co-authors or

researchers (if available) who have connections to the case to better understand the socio-cultural context of the

case.

To improve the study’s reliability, we invited all participating startups to proofread the (part of) results to ensure

their conformance with reality. Moreover, we had several rounds of discussions after data analysis among authors

to allow alternative interpretations and regulate possible over-interpretations. The review process from the

Empirical Software Engineering journal also helps us critically reviewing initial research questions and make

additional adjustments and analyses.

Internal validity concerns causal relations between investigating factors, such as our entrepreneurial logic, and

making engineering decisions. Our study explores the logic’s occurrence across types of SE activities and startup

cases and does not aim to associate a relationship. Therefore, this particular limitation is not a concern in this

study.

External validity refers to the extent to which the findings are generalizable beyond the context studied. For

qualitative studies, the intention is to enable analytical generalization where the results are extended to companies

with common characteristics. We have tried in different ways to achieve the diversity and representative of our

cases. However, it was very difficult to reach out and talk to startups. We did not detect any systematic bias due

to the possible differences between the ones who accepted and the ones who refused to participate. By emailing

and talking via phone, professional networks and nearby startups have a slightly lower turnover rate than startups

from Crunchbase. However, when approaching startups via personal introduction or meet in person, there is a

significantly higher chance to acquire their participations.

The entrepreneurial logic of startup software development Nguyen-Duc et al. 34

Our case sample is skewed toward specific geographical locations (Norway and Nordic countries in general),

startup phases (dominated by companies in either pre-startup or startup stages), team sizes (mostly between three

to 20 people), and funding model (mostly by bootstrapping). Consequently, it would be safe to relate these findings

to startups with similar characteristics (i.e., European software startups). Startups from other American countries

or startups already in a growth stage might not share the features observed in the majority of our cases; they may

be more causal than effectual, for example. Another remark is that our findings apply to the startups at the time at

which they were investigated. The study was not designed as a longitudinal case study; hence, we do not claim

that entrepreneurial logic will appear in the same way in these startups at another point in time.

Reliability refers to the extent to which data and the analysis are dependent on the specific researchers. We have

defined and validated interview protocols with colleagues. Some interviews were in Norwegian. We tried our bset

to preserve the actual meaning of respondents via the transcription. Recordings were transcribed shortly after each

interview to mitigate bias. We have cross-checked the analysis results between the first and second authors of this

study, and a high consensus level was reached. Additionally, we compared findings to related literature (Giardino

et al., 2016; Hevnera and Malgonde, 2019; Klotins et al., 2019; Melegati et al., 2019), examining similarities,

contrasts, and explanations. Such comparisons have enhanced the internal validity and quality of our findings

(Eisenhart, 1989).

6. Conclusions

As software startups find themselves operating in uncertain, risky, and dynamic environments, existing software

development approaches have limited applicabilities due to their prediction-based theoretical underpinnings. Our

goal is to increase current knowledge about SE in startup contexts by adopting the entrepreneurial logic lens. From

a qualitative survey of 40 startups, we observe dominant effectuation-driven software development behaviors that

focus on requirement engineering, software construction, process management, software design, and maintenance.

Effectuation-driven approaches promise to develop different processes, models, and tactics that welcome

uncertainty and risk. We showed that both entrepreneurial logics occur and help advance the current understanding

of the how and why of engineering processes and practices in startups. For instance, TD acceptance, requirement

identification, and MVPs tend to be driven by effectual logics, while causal logic drives test-driven development.

Future research will explore how best to build software development methods that incorporate aspects of

entrepreneurial behavior logic. We propose three potential areas of future research:

 Making the right decisions is essential for entrepreneurial application success in software startups. The

effectuation-driven approach to software development supports a new way to take actions that fit existing

means but still consider the long-term goals.

 We need to better understand the influence of entrepreneurial contexts on the occurrence of behavior

logics. We do not have enough data to compare and analyze different environment conditions and relate

them to the frequency of entrepreneurial logics across SE activities.

 Logic can shift from effectuation-driven to causation-driven software development. We had mostly cross-

sectional views into startup cases, which limited our observation of the behavior logics’ temporal

evolution. Founders and managers need to understand how and under which conditions the effectuation-

driven behaviors change to causation-driven ones.

The entrepreneurial logic of startup software development Nguyen-Duc et al. 35

References

Alvarez C (2014): Lean Customer Development, O’Reilly Media, Sebastopol, CA.

Alvarez SA, Barney JB (2005) How do entrepreneurs organize firms under conditions of uncertainty?

https://doiorg/101177/0149206305279486

Aurum A, Wohlin C (2003) The fundamental nature of requirements engineering activities as a decision-making

process. IST 45(14): 945–954 http://wwwsciencedirectcom/science/article/pii/S095058490300096X

Ayala C, Nguyen-Duc A, Franch X, Höst M, Conradi R, Cruzes D, Babar MA (2018) System requirements-OSS

components: matching and mismatch resolution practices – an empirical study. Empir Softw Eng 23(6): 3073–

3128. https://doi.org/101007/s10664-017-9594-1

Bajwa SS (2020) Pivoting in software startups. In: Nguyen-Duc A, Münch J, Prikladnicki R, Wang X,

Abrahamsson P (eds) Fundamentals of software startups: Essential engineering and business aspects. Springer

International Publishing, Springer Nature Switzerland AG, pp 27–43

Bajwa SS, Wang X, Duc AN, Abrahamsson P (2017) “Failures” to be celebrated: an analysis of major pivots of

software startups. Empir Softw Eng 22(5):2373–2408

Barney J (1991) Firm resources and sustained competitive advantage. J Manage 17(1): 99–120

https://doi.org/101177/014920639101700108

Barton Cunningham, J., Gerrard, P., Schoch, H., & Lai Hong, C. (2002). An entrepreneurial logic for the new

economy. Management Decision, 40(8), 734–744. https://doi.org/10.1108/00251740210437707

Beck K, Andres C (2004): Extreme Programming Explained: Embrace Change, 2nd edn. Addison-Wesley

Professional, Boston

Beck K, Beedle M, van Bennekum A, Cockburn A, Cunningham W, Fowler M, et al. Manifesto for Agile

Software Development [Internet]. Manifesto for Agile Software Development. 2001. Available from:

http://www.agilemanifesto.org/

Berends H, Jelinek M, Reymen I, Stultiëns R (2013) Product innovation processes in small firms: Combining

entrepreneurial effectuation and managerial causation. J. Prod. Innov. 31(3):616–635.

https://onlinelibrarywileycom/doi/abs/101111/jpim12117

Berg V, Birkeland J, Nguyen-Duc A, Pappas I, Jaccheri L (2018) Software startup engineering: A systematic

mapping study. J Syst Softw 144: 255-274

Berg V, Birkeland J, Nguyen-Duc A, Pappas IO, Jaccheri L (2020) Achieving agility and quality in product

development: an empirical study of hardware startups. J Syst Softw. 167, https://doi.org/101016/jjss2020110599

Blank S (2013) An MVP is not a cheaper product it’s about smart learning. Steve Blank. URL:

https://steveblank.com/2013/07/22/an-mvp-is-not-a-cheaper-product-its-about-smart-learning/ Access dated:

April 2019

Blank SG (2007): The Four Steps to the Epiphany, 2nd ed., Cafepress.com, San Francisco.

Blank SG and Dorf B (2012): The Startup Owner’s Manual: The Step-By-Step Guide for Building a Great

Company, K&S Ranch, Pescadero, CA.

The entrepreneurial logic of startup software development Nguyen-Duc et al. 36

Boland RJ (2008) Decision making and sensemaking. In: Burstein F, Holsapple CW (eds) Handbook on

decision support systems 1: Basic themes international handbooks information system. Springer-Verlag Berlin

Heidelberg, pp 55–63

Bosch J, Holmström Olsson H, Björk J, Ljungblad J. (2013): The Early Stage Software Startup Development

Model: A Framework for Operationalizing Lean Principles in Software Startups. In: Fitzgerald B, Conboy K,

Power K, Valerdi R, Morgan L, Stol K-J, editors. Lean Enterprise Software and Systems. Berlin, Heidelberg:

Springer; 2013. pp 1–15

Bourque P, Fairley RE (2014) Guide to the software engineering body of knowledge (SWEBOK (R)): Version

30. IEEE Computer Society Press

Boyatzis RE (1998) Transforming qualitative information: Thematic analysis and code development. Sage

Publications Inc

Braun V, Clarke V (2006) Using thematic analysis in psychology. Qual Res Psychol 3(2):77–101.

https://doi.org/101191/1478088706qp063oa

Brettel M, Mauer R, Engelen A, Küpper D (YEAR): Corporate effectuation: Entrepreneurial action and its

impact on R&D project performance. J Bus Ventur 27(2):167–184. https://doi.org/101016/jjbusvent201101001

Bygrave WD, Hofer CW (1991) Theorizing about entrepreneurship. Entrepreneurship: Theory and Practice

16(2):13–22. https://doiorg/101177/104225879201600203

Chandler GN, DeTienne DR, McKelvie A, Mumford TV, (2011) Causation and effectuation processes: A

validation study. J Bus Ventur 26(3):375–390. https://doi.org/101016/jjbusvent200910006

Cico O, Duc AN, Jaccheri L. (2020): An Empirical Investigation on Software Practices in Growth Phase

Startups. In: Proceedings of the Evaluation and Assessment in Software Engineering [Internet]. New York, NY,

USA: Association for Computing Machinery; 2020. pp.282–7

Collis J, Hussey R (2009) Business research: A practical guide for undergraduate and postgraduate students.

Palgrave MacMillan, UK. https://wwwmacmillanihecom/page/detail/Business-Research/?K=9780230301832

Corbin JM, Strauss A (1990) Grounded theory research: Procedures canons and evaluative criteria. Qual Sociol

13(1):3–21. https://doiorg/101007/BF00988593

Cruzes DS, Dyba T (2011) Recommended steps for thematic synthesis in software engineering In: 2011

International symposium on empirical software engineering and measurement. IEEE, pp 275–284.

https://doi.org/101109/ESEM201136

Daher M, Carré D, Jaramillo A, Olivares H, Tomicic A. (2017): Experience and Meaning in Qualitative

Research: A Conceptual Review and a Methodological Device Proposal. FQS 2017;18(3).

de O Melo C S, Cruzes D, Kon F, Conradi R (2013) Interpretative case studies on agile team productivity and

management. Inf Softw Technol 55(2):412–427. https://doi.org/101016/jinfsof201209004

Dew N, Read S, Sarasvathy SD, Wiltbank R (2009) Effectual versus predictive logics in entrepreneurial

decision-making: Differences between experts and novices. J Bus Ventur 24(4):287–309.

https://doi.org/101016/jjbusvent200802002

Duc AN, Abrahamsson P (2016) Minimum viable product or multiple facet product? The role of MVP in

software startups In: Sharp H, Hall T (eds) Agile processes in software engineering and extreme programming

lecture notes in business information processing. Springer International Publishing, Cham, pp 118–130

The entrepreneurial logic of startup software development Nguyen-Duc et al. 37

Easterbrook S, Singer J, Storey MA, Damian D (2008) Selecting empirical methods for software engineering

research. Springer, London, pp 285–311

Easterbrook, S., Singer, J., Storey, M.-A., & Damian, D. (2008). Selecting Empirical Methods for Software

Engineering Research. In F. Shull, J. Singer, & D. I. K. Sjøberg (Eds.), Guide to Advanced Empirical Software

Engineering (pp. 285–311). Springer. https://doi.org/10.1007/978-1-84800-044-5_11

Eisenhardt KM (1989) Building theories from case study research. Acad Manage Rev 14(4):532–550

Fagerholm F, Sanchez Guinea A, Mäenpäa H, Münch J (2017) The right model for continuous experimentation.

J Syst Soft 123:292–305. https://doi.org/101016/jjss201603034

Fisher G (2012): Effectuation causation and bricolage: A behavioral comparison of emerging theories in

entrepreneurship research. ETP 36(5):1019–1051

Gautam N and Singh N (2008): Lean product development: Maximizing the customer perceived value through

design change (redesign). International Journal of Production Economics, vol. 114(1): pp. 313–332.

Gemmell RM, Boland RJ, & Kolb DA (2012): The socio-cognitive dynamics of entrepreneurial ideation.

Entrepreneurship Theory & Practice, 36(5):1053–1073

Ghezzi A (2018): Digital startups and the adoption and implementation of lean startup approaches: Effectuation

bricolage and opportunity creation in practice. https://doi.org/101016/jtechfore201809017

Giardino C, Bajwa SS, Wang X, Abrahamsson P (2015) Key challenges in early-stage software startups. In:

Lassenius C, Dingsøyr T, Paasivaara M (eds) Agile processes in software engineering and extreme

programming lecture notes in business information processing. Springer International Publishing, Cham, pp 52–

63

Giardino C, Paternoster N, Unterkalmsteiner M, Gorschek T, Abrahamsson P (2016): Software development in

startup companies: The greenfield startup model. IEEE Trans Softw Eng 42(6):585–604.

https//doi.org/101109/TSE20152509970

Giardino C, Unterkalmsteiner M, Paternoster N, Gorschek T, Abrahamsson P. What Do We Know about

Software Development in Startups? IEEE Software. 2014 Sep;31(5):28–32.

Giardino C, Wang X, Abrahamsson P (2014) Why early-stage software startups fail: a behavioral framework In:

International conference of software business. Springer, Cham, pp 27–41

Gothelf J (2013): Lean UX: Applying Lean Principles to Improve User Experience. USA: O’Reilly

Harms R, Schiele H (2012) Antecedents and consequences of effectuation and causation in the international new

venture creation process. IJE 10(2):95–116. https://doi.org/101007/s10843-012-0089-2

Hevner A, Malgonde O (2019) Effectual application development on digital platforms. Electron Mark

29(3):407–421 https://doi.org/101007/s12525-019-00334-1

Highsmith J, Cockburn A (2001): Agile software development: the business of innovation. Computer

34(9):120–127

Hokkanen L, Väänänen-Vainio-Mattila K (2015): UX Work in Startups: Current Practices and Future Needs. In:

Lassenius C, Dingsøyr T, Paasivaara M, editors. Agile Processes in Software Engineering and Extreme

Programming. Cham: Springer International Publishing; 2015. p. 81–92

The entrepreneurial logic of startup software development Nguyen-Duc et al. 38

Kemell KK, Ventilä E, Kettunen P, Mikkonen T (2019) Amidst uncertainty – or not? Decision-making in early-

stage software startups. In: Hyrynsalmi S, Suoranta M, Nguyen-Duc A, Tyrvainen P, Abrahamsson P (eds)

Software business lecture notes in business information processing. Springer, Cham, pp 369–377

Khanna D, Nguyen-Duc A, Wang X (2018) From MVPs to pivots: A hypothesis-driven journey of two software

startups. In: Wnuk K, Brinkkemper S (eds) Software business lecture notes in business information processing.

Springer International Publishing, Cham, pp 172–186

Khurum M, Fricker S, Gorschek T (2015): The contextual nature of innovation – an empirical investigation of

three software intensive products. Inf Softw Technol 57:595–613. https://doi.org/101016/jinfsof201406010

Klotins E, Unterkalmsteiner M, Chatzipetrou P, Gorschek T, Prikladniki R, Tripathi N, Pompermaier L (2019)

A progression model of software engineering goals challenges and practices in start-ups. IEEE Trans Softw Eng,

https://doi.org/101109/TSE20192900213

Klotins E, Unterkalmsteiner M, Gorschek T (2019): Software engineering in start-up companies: An analysis of

88 experience reports. Empir Softw Eng 24(1):68–102. https://doi.org101007/s10664-018-9620-y

Kruchten P, Nord RL, Ozkaya I (2012) Technical debt: From metaphor to theory and practice. IEEE Softw

29(6):18–21

Kraaijenbrink J (2008) The nature of the entrepreneurial process: Causation effectuation and pragmatism. In:

Groen A, Oakey R, Van Der Sijde P, Cook G (eds) New technology-based firms in the new millennium 9.

Emerald Group Publishing Limited, Bingley, pp 187. https://doiorg/101108/S1876-0228(2012)0000009015

Ladd T, Lyytinen K, & Gemmell R (2015): How customer interaction and experimentation advance new venture

concepts in a cleantech accelerator. Academy of Management Proceedings, 2015(1), 11415.

Lindgren E, Münch J (2016) Raising the odds of success: the current state of experimentation in product

development. IST 77:80–91. https://doi.org/101016/jinfsof201604008

Mansoori Y, Lackéus M (2019) Comparing effectuation to discovery-driven planning prescriptive

entrepreneurship business planning lean startup and design thinking. Small Bus Econ 54(3):791–818.

https://doi.org/101007/s11187-019-00153-w

Mansoori, Y. (2015). Entrepreneurial methods. Licentiate dissertation. Gothenburg, Sweden: Chalmers

University of Technology.

Mansoori, Y., & Lackéus, M. (2020). Comparing effectuation to discovery-driven planning, prescriptive

entrepreneurship, business planning, lean startup, and design thinking. Small Business Economics, 54(3), 791–

818. https://doi.org/10.1007/s11187-019-00153-w

McKelvie A, Chandler GN, DeTienne DR, Johansson A (2020) The measurement of effectuation: highlighting

research tensions and opportunities for the future. Small Bus Econ 54(3):689–720.

https://doi.org/101007/s11187-019-00149-6

Melegati J, Goldman A, Kon F, Wang X (2019) A model of requirements engineering in software startups. IST

109: 92–107. https://doi.org/101016/jinfsof201902001

Nambisan S (2017) Digital entrepreneurship: Toward a digital technology perspective of entrepreneurship. ETP

41(6):1029–1055. https://doi.org/101111/etap12254

Nguven-Duc A, Münch J, Prikladnicki R, Wang X, Abrahamsson P (eds) (2020) Fundamentals of software

startups: Essential engineering and business aspects, 1st edn. Springer Nature Switzerland AG.

The entrepreneurial logic of startup software development Nguyen-Duc et al. 39

Nguyen-Duc A, Dahle Y, Steinert M, Abrahamsson P (2017) Towards understanding startup product

development as effectual entrepreneurial behaviors. In: Felderer M, Méndez Fernandez D, Turhan B,

Kalinowski M, Sarro F, Winkler D (eds) Product-focused software process improvement lecture notes in

computer science. Springer International Publishing, Cham, pp 265–279

Nguyen-Duc A, Seppanen P, Abrahamsson P (2015) Hunter-gatherer cycle: A conceptual model of the

evolution of software startups. In: ICSSP 2015: Proceedings of the 2015 International Conference on Software

and System Process. ACM, New York, NY, USA, pp 199–203. https://doi.org/101145/27855922795368

Nguyen-Duc A, Shah SMA, Ambrahamsson P (2016): Towards an early-stage software startups evolution

model. In: Software Engineering and Advanced Applications (SEAA) 2016: 42nd Euromicro Conference. IEEE,

pp 120–127

Nguyen-Duc A, Wang X, Abrahamsson P (2017) What influences the speed of prototyping? An empirical

investigation of twenty software startups. In: Baumeister H, Lichter H, Reinisch M (eds) Agile processes in

software engineering and extreme programming lecture notes in business information processing. Springer

International Publishing, pp 20–36

Norman D and Draper S (1986): User Centered System Design: New Perspectives on Human-Computer

Interaction. FL, USA: CRC Press, 1986.

Nummela N, Saarenketo S, Jokela P, Loane S (2014) Strategic decision-making of a born global: A comparative

study from three small open economies. MIR 54(4):527–550. https://doi.org/101007/s11575-014-0211-x

Oates BJ (2005) Researching information systems and computing. Sage, Newbury Park, California

Ojala A (2015): Business models and opportunity creation: How IT entrepreneurs create and develop business

models under uncertainty 26(5) 451–476 DOI 101111/isj12078

Ojala A (2016) Discovering and creating business opportunities for cloud services. J Syst Softw 113:408–417

Pantiuchina J, Mondini M, Khanna D, Wang X, Abrahamsson P (2017) Are software startups applying agile

practices? The state of the practice from a large survey. In: Baumeister H, Lichter H, Reinisch M (eds) Agile

processes in software engineering and extreme programming lecture notes in business information processing.

Springer, Cham, pp 167–183

Paternoster N, Giardino C, Unterkalmsteiner M, Gorschek T, Abrahamsson P (2014) Software development in

startup companies: A systematic mapping study. Inf Softw Technol 56(10):1200–18.

https://doi.org/101016/jinfsof201404014

Pitchbook (2019) 4q 2018 PitchBook-NVCA venture monitor Pitchbook https://pitchbookcom/news/reports/4Q-

2018-pitchbook-nvca-venture-monitor Date assessed: April 2019

Ralph P (2016) Software engineering process theory: A multi-method comparison of sensemaking-coevolution-

implementation theory and function-behavior-structure theory. IST 70:232–250.

https://doi.org/101016/jinfsof201506010

Read S, Song M, Smit W (2009) A meta-analytic review of effectuation and venture performance. J Bus Ventur

24(6):573–587. https://doi.org/101016/jjbusvent200802005

Reymen I, Andries P, Berends H, Mauer R, Stephan U, Burg EV (2015) Understanding dynamics of strategic

decision making in venture creation: A process study of effectuation and causation. Strateg Entrepreneurship J

9(4):351–379. https://doi.org/101002/sej1201

The entrepreneurial logic of startup software development Nguyen-Duc et al. 40

Reymen I, Berends H, Oudehand R, Stultiëns R (2017) Decision making for business model development: a

process study of effectuation and causation in new technology-based ventures. R D Manag. 47(4):595–606.

https://doi.org/101111/radm12249

Ries E (2011) The lean startup: how today’s entrepreneurs use continuous innovation to create radically

successful businesses. Crown Publishing Group, USA

Runeson P, Höst M (2009): Guidelines for conducting and reporting case study research in software

engineering. Empir Softw Eng 14(2): 131

Sarasvathy SD (2001) Causation and effectuation: Toward a theoretical shift from economic inevitability to

entrepreneurial contingency. Acad Manage Rev 26(2):243–263

Sarasvathy SD, Dew N (2005a) Entrepreneurial logics for a technology of foolishness. SJM 21(4):385–406.

https://doi.org/101016/jscaman200509009

Sarasvathy SD, Dew N (2005b) New market creation through transformation. J Evol Econ 15(5):533–565.

https://doi.org/101007/s00191-005-0264-x

Seaman C, Guo Y (2011) Measuring and monitoring technical debt. Adv Comput 82:25–46

Seaman CB (1999) Qualitative methods in empirical studies of software engineering. IEEE Trans Softw Eng

25(4):557–572

Signoretti I, Marczak S, Salerno L, Lara A d, Bastos R. (2019): Boosting Agile by Using User-Centered Design

and Lean Startup: A Case Study of the Adoption of the Combined Approach in Software Development. In: 2019

ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM). pp. 1–6.

Smolka KM, Verheul I, Burmeister-Lamp K, Heugens PP (2016) Get it together! synergistic effects of causal

and effectual decision-making logics on venture performance. ETP 42(4): 571-604

https://doiorg/101111/etap12266

Steininger DM (2019) Linking information systems and entrepreneurship: A review and agenda for IT-

associated and digital entrepreneurship research. Inf Syst J 29(2):363–407. https://doi.org/101111/isj12206

Stol, K., Ralph, P., & Fitzgerald, B. (2016). Grounded Theory in Software Engineering Research: A Critical

Review and Guidelines. 2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE), 120–

131. https://doi.org/10.1145/2884781.2884833

Sutton SM (2000) The role of process in software start-up. IEEE Soft 17(4):33–39.

https://doi.org/101109/52854066

Tell P, Klünder J, Küpper S, Raffo D, MacDonell SG, Münch J, et al. (2019): What are Hybrid Development

Methods Made Of? An Evidence-Based Characterization. In: 2019 IEEE/ACM International Conference on

Software and System Processes (ICSSP). 2019. pp. 105–14.

Tripathi N, Klotins E, Prikladnicki R, Oivo M, Pompermaier LB, Kudakacheril AS, Unterkalmsteiner M,

Liukkunen K, Gorschek T (2018) An anatomy of requirements engineering in software startups using multi-

vocal literature and case survey. J Syst Soft 146:130–151. https://doi.org/101016/jjss201808059

Tripathi N, Oivo M, Liukkunen K, Markkula J (2019) Startup ecosystem effect on minimum viable product

development in software startups. IST 114:77–91

Trochim, W. (2001). Research Methods Knowledge Base. Atomic Dog Publishing, Cincinnati, OH, USA.

The entrepreneurial logic of startup software development Nguyen-Duc et al. 41

Tuckman BW (1965): Developmental sequence in small groups. Psychol Bull 63(6):384–399.

Unterkalmsteiner M, Abrahamsson P, Wang XF, Anh ND, Shah S, Bajwa SS, Baltes GH, Conboy K, Cullina E,

Dennehy D, Edison H, Fernandez-Sanchez C, Garbajosa J, Gorschek T, Klotins E, Hokkanen L, Kon F, Lunesu

I, Marchesi M, Morgan L, Oivo M, Selig C, Seppanen P, Sweetman R, Tyrvainen P, Ungerer C, Yague A

(2016) Software startups: a research agenda. E-Informatica Software Engineering Journal 10(1):89–123.

https://doi.org/105277/e-Inf160105

von Hippel E (1986) Lead users: A source of novel product concepts. Manage Sci 32(7):791–805.

https://doi.org101287/mnsc327791

Walsham G (1995): The emergence of interpretivism in IS research. Inf Syst Res 6(4):376–394.

https://wwwjstororg/stable/23010981

Weick, K. (1995). Sensemaking in Organisations. London: Sage.

Weick, K., Sutcliffe, K. M., & Obstfeld, D. (2005). Organizing and the process of sensemaking. Organization

Science, 16(4): 409–421

Wiltbank R, Dew N, Read S, Sarasvathy SD (2006) What to do next? The case for non-predictive strategy

27(10):981–998. https://doi.org/101002/smj555

Wohlin C, Aurum A (2015): Towards a decision-making structure for selecting a research design in empirical

software engineering. Empir Softw Eng 20(6):1427–1455. https://doi.org/101007/s10664-014-9319-7

Yaman SG, Sauvola T, Riungu-Kalliosaari L, Hokkanen L, Kuvaja P, Oivo M, Männisto T (2016) Customer

involvement in continuous deployment: A systematic literature review. In: Daneva M, Pastor O (eds)

Requirements engineering: Foundation for software quality lecture notes in computer science. Springer

International Publishing, Cham, pp 249–265.

Yin R K (2003) Case study research: Design and methods, 3rd edn. Sage, London

V

A CARD-BASED METHOD FOR EARLY-STAGE SOFTWARE
STARTUPS

by

Kai-Kristian Kemell, Anh Nguyen-Duc, Mari Suoranta & Pekka Abrahamsson,
2022

Submitted to a journal for review in January 2022. Being revised for the second
review round at the time of this dissertation’s publication

Request a copy from author.

	Improving Software Development in Early-Stage Startups
	ABSTRACT
	TIIVISTELMÄ (ABSTRACT IN FINNISH)
	ACKNOWLEDGEMENTS
	LIST OF INCLUDED ARTICLES
	FIGURES
	TABLES
	CONTENTS
	1 INTRODUCTION
	1.1 Motivation
	1.2 Research Goals
	1.3 Structure of the Dissertation

	2 Theoretical Background
	2.1 Key Concepts
	2.1.1 Conceptualizing Software Startups
	2.1.2 The Startup Life-Cycle
	2.1.3 Practice, Technique, and Method as Concepts

	2.2 Software Development in Startups
	2.2.1 Characteristics of Software Development in Startups
	2.2.2 Agile Development in Startups

	2.3 Startup Practices and Methods
	2.3.1 Lean Startup
	2.3.2 High-Profile Startup Practices
	2.3.3 Growth Hacking
	2.3.4 Research-Based Methods, Practices, and Tools for Startups
	2.3.5 Suitability and Relevance of Existing SE Practices

	2.4 The Essence Theory of Software Engineering
	2.4.1 The Essence Language
	2.4.2 The Essence Kernel
	2.4.3 Essence in Research

	3 Research Methodology
	3.1 Research Evolution
	3.2 Research Approach
	3.3 Case Study
	3.4 Action Research
	3.5 Data Collection and Analysis Methods
	3.5.1 Qualitative Interview
	3.5.2 Thematic Analysis

	4 Overview of the Articles
	4.1 Article I: The Essence Theory of Software Engineering – Large-Scale Classroom Experiences from 450+ Software Engineering BSc Students
	4.2 Article II: Software Startup Practices – Software Development in Startups Through the Lens of the Essence Theory of Software Engineering
	4.3 Article III: ECCOLA – A Method for Implementing Ethically Aligned AI Systems
	4.4 Article IV: The Entrepreneurial Logic of Startup Software Development – A Study of 40 Software Startups
	4.5 Article V: Startup Cards – A Method for Early-Stage Software Startups

	5 Results and Contributions
	5.1 Results
	5.1.1 The Essence Theory of Software Engineering in a Student and Startup Context
	5.1.2 Work Practices and Decision-Making in Software Startups
	5.1.3 Method: Startup Cards for Early-Stage Startups

	5.2 Validity Threats
	5.2.1 Article I
	5.2.2 Article II
	5.2.3 Article III
	5.2.4 Article IV
	5.2.5 Article V

	5.3 Contributions
	5.3.1 Theoretical Contributions
	5.3.2 Practical Contributions
	5.3.3 Limitations
	5.3.4 Future Research Suggestions

	YHTEENVETO (Summary in finnish)
	REFERENCES
	Appendix: Startup Cards for Early-Stage Startups
	ORIGINAL PAPERS
	THE ESSENCE THEORY OF SOFTWARE ENGINEERING: LARGE-SCALE CLASSROOM EXPERIENCES FROM 450+ SOFTWARE ENGINEERING BSC STUDENTS
	SOFTWARE STARTUP PRACTICES: SOFTWARE DEVELOPMENT IN STARTUPS THROUGH THE LENS OF THE ESSENCE THEORY OF SOFTWARE ENGINEERING
	ECCOLA: A METHOD FOR IMPLEMENTING ETHICALLY ALIGNED AI SYSTEMS
	THE ENTREPRENEURIAL LOGIC OF STARTUP SOFTWARE DEVELOPMENT: A STUDY OF 40 SOFTWARE STARTUPS
	A CARD-BASED METHOD FOR EARLY-STAGE SOFTWARE STARTUPS

