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a b s t r a c t 

The study of brain network interactions during naturalistic stimuli facilitates a deeper understanding of human 
brain function. To estimate large-scale brain networks evoked with naturalistic stimuli, a tensor component anal- 
ysis (TCA) based framework was used to characterize shared spatio-temporal patterns across subjects in a purely 
data-driven manner. In this framework, a third-order tensor is constructed from the timeseries extracted from 

all brain regions from a given parcellation, for all participants, with modes of the tensor corresponding to spa- 
tial distribution, time series and participants. TCA then reveals spatially and temporally shared components, 
i.e., evoked networks with the naturalistic stimuli, their time courses of activity and subject loadings of each 
component. To enhance the reproducibility of the estimation with the adaptive TCA algorithm, a novel spectral 
clustering method, tensor spectral clustering, was proposed and applied to evaluate the stability of the TCA algo- 
rithm. We demonstrated the effectiveness of the proposed framework via simulations and real fMRI data collected 
during a motor task with a traditional fMRI study design. We also applied the proposed framework to fMRI data 
collected during passive movie watching to illustrate how reproducible brain networks are evoked by naturalistic 
movie viewing. 
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. Introduction 

There is growing interest in studying brain function in response
o naturalistic stimuli, for example, viewing film clips or listening to
poken narratives or music, as naturalistic experimental paradigms
ay evoke human cognition and behavior that more closely resem-

les “real-world ” brain function ( Hasson et al., 2004 ; Huth et al., 2016 ;
eer et al., 2020 ; Nishimoto et al., 2011 ; Sonkusare et al., 2019 ;

piers and Maguire, 2007 ). Naturalistic stimulus paradigms during func-
ional magnetic resonance imaging (fMRI) are emerging as a power-
ul tool to define brain imaging-based markers of psychiatric illness
 Eickhoff et al., 2020 ), with several advantages in comparison to un-
onstrained resting state. Namely, studying brain network function dur-
ng naturalistic stimuli may facilitate a deeper understanding of human
rain function since the passive state is better constrained, and partic-
∗ Corresponding authors. 
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pant motion is reduced relative to unconstrained rest, which greatly
ncreases the quality of the fMRI data. However, new analytical strate-
ies are needed that assess both the shared rapid temporally evolving
rain responses evoked by the naturalistic stimuli in participants, as well
s idiosyncratic evoked signals in individual participants ( Simony and
hang, 2020 ). 

Both categorical and dimensional sources of variability can con-
ribute to inter-subject variation in responses to naturalistic stimuli
MRI. In addition, while naturalistic stimuli paradigms provide better
onstraint of brain activity, there are challenges with modeling the
voked responses. Namely, evoked brain activity using conventional
MRI study designs and stimuli is relatively straightforward to model,
hereas naturalistic stimuli are complex and dynamic, and it is much
ore difficult to generate a model of evoked activity for analyses. Data-
riven methods that place no assumptions on the temporal course or
rvard.edu (L.D. Nickerson), cong@dlut.edu.cn (F. Cong) . 
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patial pattern of brain activity obviate these challenges. Inter-subject
orrelation (ISC, Hasson et al., 2004 ) is one such data-driven approach
or characterizing the consistency of brain responses across participants
iewing the same naturalistic stimuli. For dynamic complex stimuli
uch as movies, ISC measures share information across brains by us-
ng each individual’s measured brain activity to model another indi-
idual’s brain activity. Using this strategy, the shared brain regions
hat respond to the same time-locked naturalistic stimuli across sub-
ects can be estimated, even with stimuli that reflect complex dynamic
eal-life contexts ( Hasson et al., 2004 ; Kauppi et al., 2014 ; Lerner et al.,
011 ; Nastase et al., 2019 ). Modifications to ISC include the temporal
nter-subject functional correlation (ISFC), which considers the correla-
ions between time courses from all possible pair-wise combinations of
rain parcels across subjects ( Simony et al., 2016 ), and the spatial ISC,
hich is an extension of temporal ISC to multi-voxel pattern analysis
 Haxby et al., 2014 ; Norman et al., 2006 ). 

Inter-subject representational similarity analysis (IS-RSA) is another
echnique that can be used to explore between-subject variability in the
elationships between brain activity and behaviors ( Finn et al., 2020 ;
riegeskorte et al., 2008 ; Mantel, 1967 ; Meer et al., 2020 ). Van der Meer
nd colleagues (2020) explored the differences between movie viewing
nd resting state with Hidden Markov Models (HMM) and found that
ubject differences in brain state dynamics were linked to subjective
ovie ratings using IS-RSA. Through the study of between-subject vari-

bility, different schematic events ( Baldassano et al., 2018 ) and different
onditions when participants recall a movie ( Chen et al., 2017 , 2016 )
an be distinguished via the corresponding brain activity. In most cases,
nderstanding patterns of brain states that are consistent across subjects
s well as patterns that reflect inter-subject variability are of interest. In
his study, we leverage a popular tensor decomposition method to si-
ultaneously estimate spatial-temporal brain activity patterns that are

hared across participants and that reflect inter-subject variability. 
Generally, ISC-based methods are implemented with either a leave-

ne-out framework, in which one subject’s time course is correlated with
he average of all other subjects for each region, or a pairwise frame-
ork, in which correlation analysis is performed between each possible
air of subjects ( Finn et al., 2020 ). A limitation of this computational
rocedure is that the resulting correlations are highly interdependent
nd violate the assumption of common parametric tests ( Nastase et al.,
019 ), requiring careful attention to the inference method. In order
o mitigate this limitation, we use a tensor component analysis (TCA)
ramework that characterizes spatio-temporal patterns that are shared
cross subjects as well as idiosyncratic features of evoked activity to
aturalistic stimuli unique to different subjects, in a purely data-driven
anner that assesses all brain networks simultaneously. 

Tensor Component Analysis (TCA), also known as tensor Canonical
olyadic Decomposition (CPD, Kolda and Bader, 2009 ), is a fundamen-
al model for tensor decomposition of multidimensional data with more
han two dimensions. Assuming the data meet the assumption of a mix-
ure model, in which signal sources undergo a linear mixing process,
CA more accurately estimates sources than matrix decomposition algo-
ithms, and without any constraints ( Williams et al., 2018 ). FMRI signals
re innately multidimensional and can be naturally represented in ten-
or form. For example, a third-order fMRI tensor is organized as space ×
ime × subjects (the order of modes does not impact the estimation). In
CA of the fMRI tensor, the spatial and temporal information regarding
rain network activity evoked by different stimuli that is common to
ll participants exists in the first two dimensions. Subject loadings that
apture between-subject variability exist in the third dimension. 

TCA has demonstrated promise in a range of neuroimaging appli-
ations. It has been shown to have superior performance in identify-
ng hidden signal sources when compared with 2-D matrix decomposi-
ion, e.g. principle component analysis (PCA) and independent compo-
ent analysis (ICA), of multidimensional data ( Williams et al., 2018 ).
CA has also been explored for magnetoencephalography (MEG) data
nalysis ( Zhu et al., 2020 a), and nonnegative constraint TCA applied to
2 
lectroencephalography (EEG) time-frequency domain data was able to
dentify event-related ( Cong et al., 2015a , 2015b ; Wang et al., 2018 )
nd naturalistic stimulus-evoked EEG responses ( Zhu et al., 2020 b).
okhtari et al. (2019) investigated how different tensor organiza-

ion and tensor decomposition methods applied to fMRI data impact
he interpretation of dynamic functional connectivity. In our previous
tudy ( Hu et al., 2021 ), sparse constrained nonnegative TCA was pro-
osed to estimate frequency specific coactivation patterns. TCA has
lso been applied to task fMRI data to explore additional dimensions
f the data other than space and time, such as run and task condition
 Andersen and Rayens, 2004 ), and has been adapted for multi-subject
MRI data analysis by placing spatial and temporal constraints to ad-
ress inter-subject variability ( Beckmann and Smith, 2005 ; Helwig and
ong, 2013 ; Kuang et al., 2020 , 2015 ; Mørup et al., 2008 ; Zhou and Ci-
hocki, 2012 ). We advance TCA for analysis of multi-subject fMRI data
ollected during naturalistic stimuli viewing by proposing a pipeline that
oes not place any constraints on the data and that enhances the repro-
ucibility of the results. 

We address three key issues that have limited the use of tensor de-
omposition for naturalistic stimuli fMRI ( Wolf et al., 2010 ). First, the
CA algorithm may be slow or fail to converge, or have suboptimal con-
ergence when applied to whole brain data. To mitigate this issue, the
CA is usually constrained in some way ( Beckmann and Smith, 2005 ;
hou et al., 2014 ). Instead of constraining the TCA algorithm, we pro-
ose instead to implement a parcellation strategy to reduce the data
rior to TCA to facilitate convergence. Second, we propose a novel ten-
or spectral clustering method to enhance the reproducibility of the esti-
ated components. Last, model order selection is always a challenge for

ensor and matrix decomposition methods ( Abou-Elseoud et al., 2010 ;
eckmann, 2012 ; Kuang et al., 2018 ). Here we propose to select the
odel order based on component reproducibility assessed via our novel

pectral clustering method. The effectiveness of the proposed framework
s first demonstrated with simulated and traditional task fMRI, in which
e know the ground truth stimulation time courses (and hence have a
odel of the brain activity). We then apply the proposed framework to

MRI data collected during movie watching, in which there is no a pri-

ri model of brain activity, to identify spatial brain networks engaged
uring the task. Analysis of both task fMRI and naturalistic stimuli fMRI
esults show that the proposed method has several advantages compared
ith the widely used ISC method. 

The rest of the paper is structured as follows. In section 2 , Mate-
ials and Methods, we present the TCA model that was used to esti-
ate spatio-temporal shared components, e.g., the decomposition al-

orithm used in this paper, the criteria that were used to evaluate the
eproducibility of estimated components and the model order selection
ethod, and the test datasets. In section 3 , Results, we show results us-

ng simulated data and motor task fMRI. After establishing the robust-
ess of the proposed framework from simulations and conventional task
MRI, we show results from application of our analytic approach to two
ifferent naturalistic stimuli fMRI datasets: one in which participants
atched a short 82 second montage of scenes, collected from 184 par-

icipants by the Human Connectome Project (HCP), and one in which
articipants watched a longer movie (20 minutes), collected from 17
articipants by Meer et al. (2020) . In sections 4 and 5 , the Discussion
nd Conclusions, respectively, we discuss the benefits and pitfalls of our
roposed approach and the conclusions from our work. The mathemati-
al foundation of tensor spectral clustering used to evaluate the stability
f estimated components is provided in the Appendix. 

. Materials and methods 

.1. TCA model 

Our proposed application of TCA of naturalistic stimuli fMRI data
roceeds in three steps as shown in Fig. 1 . First, a data reduction step is
ntroduced in which the activity of node (or region) time courses is ex-
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Fig. 1. Tensor component analysis pipeline. (A) Estimating node timeseries with dual regression from standard preprocessed dense data. (B) Stacking all subjects’ 
node data to construct a tensor. (C) Extracting tensor components with tensor component analysis. The estimated components of each mode 𝒔̂ , 𝒄̂ , 𝝈̂ correspond to 
the spatial distribution, time course and subject loadings, respectively. 
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racted from the naturalistic stimuli fMRI data using an open-access par-
ellation scheme derived from independent component analysis (ICA)
f resting state fMRI; next, the time courses from all participants are
tacked to construct a third-order fMRI tensor; last, TCA is applied to
stimate spatio-temporal patterns and their corresponding subject load-
ngs. 

In the first step, rather than applying TCA to voxel-wise fMRI data, a
hole brain parcellation scheme is applied to extract node time courses

or the TCA. This is done for several reasons. First, BOLD signals are
xpected to be correlated across neighboring voxels and, with an ap-
ropriate parcellation method, node time courses will have a higher
ignal noise ratio (SNR) compared with the SNR of time courses from
ense data ( Glasser et al., 2016 ). Parcellation schemes based on ICA of
MRI data with high model orders ( > 100 to several hundred) will be
3 
omprised of components that feature individual small brain regions,
ilateral brain regions, or sparse sub-networks that may have regions
verlapping other components (e.g., reflecting hubs such as posterior
ingulate cortex), and can thus be considered as nodes for use in net-
ork analysis ( Smith, 2012 ). Several studies have demonstrated that
rain parcellation with spatial ICA demonstrates better performance for
etwork modeling compared with other parcellation methods (Smith
t al., 2011; Arslan et al., 2018), with higher model orders providing
etter performance ( Pervaiz et al., 2020 ). In this study, a brain par-
ellation scheme derived from ICA of the Human Connectome Project
HCP, Van Essen et al., (2013) ) resting state fMRI data with model or-
er of 300 (provided by the HCP, Smith et al., 2011) is used to ex-
ract node time courses for TCA. The time courses are extracted via
he first stage of dual regression ( Nickerson et al., 2017 ) in which the
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(  
ull set of ICA components, 𝐒 ICA , are regressed against each partici-
ant’s 4D fMRI data (e.g., multivariate spatial regression) to extract the
ime courses. This is different from how conventional binary parcella-
ion masks are used to extract average time courses from each node
n that the multivariate spatial regression accurately handles any po-
ential spatial overlap among the ICA maps due to individual brain re-
ions participating in more than one brain network (or sub-network)
epresented in the ICA maps. The analysis code for the tensor compo-
ent analysis framework is available at https://github.com/GHu-DUT/
ensor- components- analysis- for- naturalistic- stimuli- fMRI . 

.1.1. Multilinear mixing model 

For naturalistic fMRI we assume, similar to the ISC model ( Finn et al.,
020 ; Nastase et al., 2019 ), that time courses 𝐂 ∈ ℝ 

N × J and spatial
atterns 𝐒 ∈ ℝ 

M × J of nodes in the parcellation are stimulus-evoked re-
ponses that are consistent across subject. N is the number of timepoints,
 is the number of patterns, M is the number of nodes. Thus, in our TCA-
ased model, for each pattern 𝑗, the loading 𝝈𝑖,𝑗 for subject 𝑖 is different
rom other subjects. In this case, for subject 𝑖 , the node time courses,
 𝑖 ∈ ℝ 

M × N , can be represented as: 

 𝑖 = 𝐒 × 𝐝𝐢𝐚𝐠 
(
𝝈𝑖, ∶ 

)
× 𝐂 

𝑇 + 𝐈 𝐝 𝑖 + 𝜺 𝑖 , (1)

here 𝐈 𝐝 𝑖 are stimulus-evoked responses that are idiosyncratic to each
ubject and 𝜺 𝑖 corresponds to noise, which may reflect spontaneous neu-
al activity and non-neural physiological and scanner signal sources.
𝐢𝐚𝐠 ( 𝝈𝑖, ∶ ) is a square matrix of order J with 𝝈𝑖, ∶ on the diagonal and
ther elements of the matrix equal to zero. 

.1.2. Tensor construction 

A tensor is constructed by stacking the multi-subject data, 𝐗 𝑖 , to cre-
te 𝐗 ∈ ℝ 

M × I × N , with I equal to the total number of subjects. Although
he spatial and temporal patterns are assumed to be shared across partic-
pants, the loadings on the components in each participant are different.
f note, the model also does not place any assumptions on the distribu-

ion of time courses or spatial distributions. 

.1.3. TCA unmixing model 

TCA is a basic model for tensor decomposition that is unconstrained.
ith different constraints, different algorithms can be derived, includ-

ng non-negative canonical polyadic decomposition (NCPD) ( Zhou et al.,
014 ) and independent constrained CPD (e.g. tensor-ICA Beckmann and
mith, 2005 ). In the TCA model, a third-order tensor 𝐗 can be rep-
esented as the sum of several rank-1 tensors and a residual tensor 𝐄
 Hitchcock, 1927 ), which is illustrated in Fig.1 (C). The mathematical
ormula is as follow: 

 = 

𝑅 ∑
𝑟 =1 

𝐬̂ 𝑟 ◦𝝈̂𝑟 ◦𝐜̂ 𝑟 + 𝐄 = 

𝑅 ∑
𝑟 =1 

𝐗 

𝑟 
+ 𝐄 , (2)

here vectors ̂𝐬 𝑟 ∈ ℝ 

M × 1 , 𝝈̂𝑟 ∈ ℝ 

I × 1 and 𝐜̂ 𝑟 ∈ ℝ 

N × 1 are 𝑟 𝑡ℎ estimated
ensor component (TC) spatial distribution 𝐒 , subject loadings 𝝈 and
ime courses 𝐂 respectively. The operator ◦ represents the outer product
f vectors. 𝐗 

𝑟 
represents the rank-1 tensor that constructed by the corre-

ponding components of each mode. The idiosyncratic stimulus-evoked
esponses, spontaneous signals and noise signals are contained in the
esidual tensor 𝐄 and 𝑅 is the number of extracted patterns. Ideally, the
umber of tensor components, or model order, should be equivalent to
he number of patterns, J , shared across subjects. However, in real-world
pplications, the number of spatio-temporal patterns is unknown. In the
resent study, we propose a novel method for determining model order
ccording to stability of tensor spectral clustering. Once a solution is
dentified, for each tensor component, the spatial distributions are 𝐬̂ 𝑟 ,
ime courses are 𝐜̂ 𝑟 . These are the same across subjects, with subject
oadings, 𝝈̂𝑟 , reflecting between-subject variation in the strength of the
atterns. 
4 
.2. TCA estimation algorithm 

The alternating least-squares (ALS) algorithm ( Cichocki et al., 2015 ;
olda and Bader, 2009 ) is used to estimate factor matrices 𝐒 , 𝐂 and 𝝈.
he ALS algorithm proceeds by fixing two of the factor matrices to op-
imize over the third factor matrix. For example, while time courses, 𝐂 ,
re being estimated, the spatial patterns, 𝐒 , and subject loadings, 𝝈, are
xed. The time courses are updated with the following rule: 

 ← argmi n 𝐂̃ 
1 
2 

||||||
𝐗 − 

𝑅 ∑
𝑟 =1 

𝐬̂ 𝑟 ◦𝝈̂𝑟 ◦𝐜̂ 𝑟 
||||||
2 

𝐹 

, (3)

here 𝐹 represents the Frobenius norm. The updating rule is solved
s a linear least-squares problem that is convex and has a closed-form
olution. The other factor matrices are solved with the same updating
ule and the three factor matrices are updated in an alternating fashion
ntil the stop criteria is met, in this case when the absolute difference
f the fits between two adjacent iterations is less than 1e-8, or when the
umber of iterations exceeds 1000. The ALS algorithm is provided open
ccess from the tensor toolbox ( https://www.tensortoolbox.org ). 

.3. Model order selection via tensor spectral clustering 

Similar to ICA, model order (number of extracted components) selec-
ion is a significant methodological concern when applying these data
riven algorithms for fMRI data analysis ( Abou-Elseoud et al., 2010 ;
eckmann, 2012 ; Kuang et al., 2018 ). Information-theoretic criteria
ITC) have been used in numerous signal processing applications to es-
imate model order, including minimum code length based minimum
escription length (MDL) criterion ( Rissanen, 1978 ), Akaike informa-
ion criterion (AIC) ( Akaike, 1998 ), and Bayesian information criterion
BIC) ( Rissanen, 1978 ). However, studies have demonstrated that esti-
ations based on different criteria may be different and these criteria
ay lose efficacy when the signal noise ratio is low ( Cong et al., 2011 ;
u et al., 2020 ). In this study, model order is selected based on re-
roducibility of the decomposition results. We use the reproducibility
f the estimated rank-1 tensor 𝐗 

𝑟 
= ̂𝐬 𝑟 ◦𝐜̂ 𝑟 ◦𝝈̂𝑟 via a novel tensor spectral

lustering approach to select the model order. In this case, the tensor de-
omposition is done for a range of model orders, the algorithm stability
nder each model order is evaluated via tensor spectral clustering, and
he model order with the highest algorithm stability index is selected as
he appropriate decomposition. 

In the stability analysis, for the given dataset, the same algorithm
ith the same parameters is ran 𝐾 times, each with different initial

onditions. For each model order, 𝑅 , 𝑅 ×𝐾 components are estimated
cross runs for each mode (temporal, spatial, subject). The similarity ma-
rices (or adjacency matrices calculated by correlating each pair of com-
onents for a mode) for each mode 𝐖 

( 𝐒 ) , 𝐖 

( 𝝈) , 𝐖 

( 𝐂 ) ∈ ℝ 

𝑅𝐾×𝑅𝐾 are then
ed into tensor spectral clustering, which is a co-clustering method that
nables fusing and assessing the stability information of different modes
imultaneously. Details of the formulation for tensor spectral clustering
re provided in the Appendix. In tensor spectral clustering, the num-
er of clusters is set to equal number of extracted components 𝑅 . Stable
omponents will form a tight cluster, with a stability index quantified
s the average of the intra-cluster similarities. Ideally, if the estimated
omponents for a given model order are stable, the intra-cluster similar-
ty of the corresponding cluster is close to 1, whereas the stability index
or unstable components will be close to 0. The algorithm stability is
efined as the average of component stability indices. 

.4. Simulations 

We demonstrate the effectiveness of the proposed framework us-
ng numerical simulations performed in MATLAB. The simulated
patial maps and time courses for 29 ICA components (SimBT
 Erhardt et al., 2012 ) http://mialab.mrn.org/software ) and time courses

https://github.com/GHu-DUT/Tensor-components-analysis-for-naturalistic-stimuli-fMRI
https://www.tensortoolbox.org
http://mialab.mrn.org/software
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Fig. 2. Ground truth spatio-temporal signal sources used in simulations. The left figure shows the spatial distribution of 29 ICA components. The right column shows 
time courses for consistent components across subjects (the first row, 𝑪 ), idiosyncratic components (the second row, 𝑰 𝒅 ) and for spontaneous components (the third 
row, 𝜺 ). 
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 http://mlsp.umbc.edu/simulated_fmri_data.html ) are shown in Fig. 2 .
our components were simulated to represent consistent spatio-
emporal signals across subjects (with time courses shown in the first
ow of Fig. 2 ). There are also three idiosyncratic components for each
ubject, similar to scanner or motion artifacts present in fMRI data (sec-
nd row of Fig. 2 ). These components were given a random circular shift
or each subject. Time courses in the third row of Fig. 2 represent sponta-
eous brain activity included in the simulations. Different spontaneous
omponents were generated independently for each subject following
 Gaussian distribution. The total signal noise ratio (SNR) was fixed
t 2dB. We generated a random node weight matrix 𝐒 ∈ ℝ 

29 × 8 and
ubject loading matrix 𝝈 ∈ ℝ 

10 × 8 to generate 10 participant datasets
sing equation (1) . All subject’s data were then stacked to construct a
hree-order tensor 𝐗 Simulation ∈ ℝ 

29 × 10 × 100 . This tensor was then de-
omposed with model orders ranging from 2 to 10. Under each model
rder, the TCA algorithm was run 20 times and the stability index was
alculated with tensor spectral clustering. The correlation coefficients
etween the estimate components for the model order with the high-
st stability index and the corresponding ground truth were used as a
riterion to evaluate the performance of the proposed framework. 

.5. Motor task fMRI experiment 

The effectiveness of the proposed framework is also demonstrated
ith conventional motor task fMRI in which we know the ground truth

timulation time courses that can be used to model the brain task ac-
ivity. Motor task fMRI data from 100 healthy unrelated subjects (22-
6 years) were utilized from the WU-Minn Human Connectome Project
HCP; Van Essen et al., 2013 ). During the motor task, participants
ere presented with visual cues to either tap their left or right fin-
ers, squeeze their left or right toes, or move their tongue. Blocks for
ach movement type lasted 12 seconds and were preceded by a 3 sec-
nd cue. For each subject, a total of 284 timepoints were collected with
R = 0.72s. Additional details of the motor task for the HCP are provided

n Barch et al. (2013) . 

.5.1. Preprocessing 

The fMRI data went through the HCP’s standard minimal preprocess-
ng pipeline (motion correction, distortion correction, high-pass filtering
200s), and nonlinear alignment to MNI template space ( Glasser et al.,
013 )). 

.5.2. GLM 

In order to evaluate the performance of TCA, we used the stan-
ard GLM as the gold standard, which was applied to the same
5 
ata. A conventional mixed-effects GLM analysis was conducted to de-
ive activation estimates for each reference function, as described in
arch et al. (2013) . Five predictors were included in the Motor model

right hand, left hand, right foot, left foot, and tongue. Time courses
f visual cues for each type of movement were convolved with Hemo-
ynamic Response Function (HRF) and low-pass filtered with a high-
requency cutoff of 0.5 Hz. Spatial maps of linear contrasts (Cues, Foot,
ongue, Hand) of the parameter estimates were computed to compare
ach condition to baseline. Higher level GLMs, including age and sex as
ovariates, were used to estimate the spatial distributions of tongue, foot
nd hand movement and total movement evoked brain activity via one
ample t-tests of the contrast of parameter estimate maps, with a correc-
ion for multiple tests to control the family-wise error (FWE). Since the
voked response to the motor mapping task was so strong ( Barch et al.,
013 ), a higher threshold (p < 0.001) was used. 

.5.3. TCA 

Following the recommendations of Pervais et al. (2020) , a higher
odel order functional parcellation based on spatial ICA components
as used as the parcellation scheme for our study. Spatial ICA compo-
ents provided by the HCP with a model order of 300 were used as
emplates with dual regression ( Nickerson et al., 2017 ) to derive the
ubject-specific time courses of each node, as shown in Fig. 1 (A). Post-
rocessing of time courses included: (1) removal of the first 10 time-
oints (2) demeaning, (3) detrending linear, quadratic and cubic trends,
nd (4) variance normalization. The time courses for each node for each
ubject were then stacked in the subject dimension to create a tensor,
 Motor ∈ ℝ 

300 × 100 × 284 . The tensor was then decomposed with TCA,
ith model orders ranging from 2 to 20. The decomposition was re-
eated 20 times for each model order to calculate the reproducibility of
he estimated components and the model order via our proposed tensor
pectral clustering strategy. Task-related TCA components were identi-
ed via similarity of component time courses to the “ground truth ” time
ourses from the GLM analyses. 

.5.4. ISFC 

We compared our approach with another popular approach for nat-
ralistic fMRI data analysis, ISFC ( Simony et al., 2016 ). ISFC was calcu-
ated with a sliding window of 20s (28 TRs). At each time point,t, the
airwise correlations between all nodes were calculated over the win-
ow interval (t, t + 20) to construct a correlation matrix for time point t.
orrelation matrices were computer for each window shifted by 0.72s
1 TR) in time. The resulting sliding window correlation matrices were
hen analyzed with k-means clustering, with the number of clusters set

http://mlsp.umbc.edu/simulated_fmri_data.html
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rom 2 to 20. For each k-means run, cluster indices of each timepoint
ere used to represent the occurrence of each task-related brain state

cluster). The spatial distributions of each brain state were derived by
alculating the average connectivity of each node with all other nodes
n the cluster. The time course of each state is calculated as the aver-
ge occurrence across subjects. For ISFC, “ground truth ” time courses
ere assumed to be the GLM stimulation time courses convolved with

he HRF and the sliding window. 

.6. Naturalistic stimuli fMRI experiment 

We used a naturalistic fMRI dataset that was also collected by the
CP ( Van Essen et al., 2013 ). Healthy adult participants (aged 22-35
ears) underwent fMRI using a 7 T Siemens Magnetom scanner (voxel
ize = 1.6mm 

3 , TR = 1s) during a movie-watching paradigm. The sam-
le used here (n = 184) reflects all available data for this paradigm.
ach subject underwent four runs of 15-min movie watching (MOVIE1-
OVIE4). Each run comprised five video clips presented in a fixed order.

MRI data were also collected during a validation clip (the fifth video
lip), consisting of a brief montage (1min 22s) of moving scenes de-
icting people and landscapes. The music played along with the movie
cenes contained features to evoke consistent brain activity across par-
icipants ( Alluri et al., 2012 ). Five music features (Fluctuation Cen-
roid, Fluctuation Entropy, Key Clarity, Mode and Pulse Clarity) were
xtracted using the MIRToolbox ( Lartillot, O., 2007 ). These music fea-
ures facilitate the interpretation of the estimated tensor components. In
ddition, this movie included a social scene. To demonstrate relation-
hips between inter-subject variability in TCA components with behav-
or and facilitate interpretation of results, the subject loadings on social
cene-related TCA components were assessed for correlations with be-
avioral measures from the Semi-Structured Assessment for the Genetics
f Alcoholism (SSAGA; BUCHOLZ et al., 1994 ; Hesselbrock et al., 1999 )
nd NIH Toolbox. We selected seven measures related to social function,
ncluding Friendship, Loneliness, Perceived Hostility, Perceived Rejec-
ion, Emotional Support, Instrumental Support and Antisocial Personal-
ty Problems Raw Score. 

All fMRI analyses utilized the FIX-denoised data that underwent stan-
ard HCP minimal preprocessing (motion correction, distortion correc-
ion, high pass filtering, and nonlinear alignment to MNI template space
 Glasser et al., 2013 )) plus regression of 24 framewise motion estimates
six rigid-body motion parameters and their derivatives and the squares
f those 12) and regression of confound components identified via ICA
 Griffanti et al., 2014 ; Salimi-Khorshidi et al., 2014 ). Details of data ac-
uisition and basic data preprocessing can be found in previous studies
 Glasser et al., 2013 ; T. Vu et al., 2016 ; Van Essen et al., 2012 ). 

Both TCA and ISC were applied to same FIX-denoised dataset. TCA
as implemented exactly the same way as for the analysis of the motor

ask fMRI data (shown in Fig. 1 ), with the resulting tensor, 𝐗 Nat uralist ic ∈
 

300 × 184 × 82 , decomposed with our TCA approach. ISC was also ap-
lied to the HCP naturalistic stimuli fMRI to compare the performance
f TCA and ISC. In ISC, the same parcellation strategy used for the TCA
ramework was also applied. In ISC framework, IS-RSA was used to eval-
ate the relationship between shared brain networks across subjects and
ubject traits. For each subject pair, brain similarity was calculated as
he correlation of activity time courses. Behavioral similarity was cal-
ulated according to absolute value of the difference in behavioral data
f subject pair. Representational similarity was assessed by calculating
orrelation between the brain and behavioral similarity matrices. De-
ails of IS-RSA can be found in the previous study ( Finn et al., 2020 ;
riegeskorte et al., 2008 ; Mantel, 1967 ; Meer et al., 2020 ). 

In order to demonstrate that our proposed framework is also suit-
ble for naturalistic stimuli with longer durations, we used the natu-
alistic stimuli fMRI data provided by Meer et al. (2020) , which imple-
ented a paradigm with 20 min movie stimuli (The Butterfly Circus).

MRI data were collected with identical movie stimuli on two separate
ccasions (Movie view A and Movie view B) with an interval of three
6 
onths between sessions. 17 participants completed both movie view-
ng sessions. Two participants were excluded because of in-scanner head
otion. The fMRI data was collected with TR of 2200msec and 535

olumes were acquired. Standard preprocessing was performed using
MRIPrep ( Esteban et al., 2019 ) and included slice-timing, motion cor-
ection, co-registration to the structural image, spatial normalization
o MNI space, and spatial smooth with a 6 mm Gaussian kernel. ICA-
ROMA was subsequently performed using non-aggressive denoising.
etails of the data collection, pre-processing, and brain state dynamics
an be found in Meer et al. (2020) . The Butterfly Circus narrates an in-
ense, emotionally evocative story of a man born without limbs who is
ncouraged by the showman of a renowned circus to overcome obsta-
les of self-worth and reach his own potential. Annotations for (i) the use
f language, (ii) change of scenes, (iii–v) Positive/Negative Faces, and
vi–viii) Positive/Negative Scenes during the movie are also provided.
eer et al. (2020) applied a hidden Markov model (HMM) to identify

rain states dynamics for 14 canonical brain networks (BN) derived with
roup ICA ( Shirer et al., 2012 ). In order to compare the results with the
ndings of Meer et al. (2020) , we used the same set of BNs for parcel-

ating the fMRI data. The first 5 time points for each BN average tem-
oral course were discarded. Thus, for each subject we obtained a ma-
rix ( 530 × 14 ) for each movie viewing session. The matrices for movie
iewing A and movie viewing B were then stacked and concatenated in
he subject dimension to construct the tensor, 𝐗 ∈ ℝ 

30 × 530 × 14 , that
as decomposed via our TCA approach. 

. Results 

.1. Simulations 

Fig. 3 shows the simulation results. Fig. 3 (A) shows the algorithm
tability indices for the different model orders. We found that the al-
orithm stability curve reached its peak at model orders of 3 and 4. To
xtract more information about the simulated brain responses, results at
odel order 4 were further analyzed. Note that the algorithm stability

ndex at this model order is 1, which means all components estimated
t that model order are the same for all 20 runs, indicating that all the
omponents are reproducible. The spatial distributions, time courses and
ubject loadings for each component are shown in Fig. 3 (B-E). Based on
he correlation coefficient between estimated component time courses
nd spatial maps with the ground truth time courses and spatial maps,
ll four components are successfully estimated. In order to highlight
he activated and deactivated brain regions, the spatial distribution of
he estimated component is shown with a proportional threshold of 5%
 Garrison et al., 2015 ), with warm colors representing activation (rel-
tive to the within-component global average) and cool colors repre-
enting deactivation (relative to the within-component global average)
ithin each component. 

.2. Motor task fMRI experiment 

For motor task fMRI data, for TCA, the algorithm stability curve
eached a peak at model order of 4. Hence, the estimated TCA compo-
ents with model order of 4 were selected for further analysis. For ISFC,
he number of clusters is selected as 6. With this number of clusters, the
stimated time courses have the greatest similarity to the corresponding
round truth time courses. 

The spatial distributions and time courses of the estimated compo-
ents, and the results from applying the GLM and ISFC for analysis
re shown in Fig. 4 , with display and thresholding at |Z| > 2.3 after
ransformation into Z-scores across the spatial domain, and warm col-
rs representing activation and cool colors representing deactivation.
or each component, after normalization, both stimulus timing and es-
imated time courses are demonstrated in the same subfigure to identify
f the estimated components. In the experiment, the embedded com-
onents that correspond to the tongue, foot and cues are successfully
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Fig. 3. Simulation results. (A) Algorithm 

stability index for different model orders. 
The algorithm reaches the greatest stability 
at model order of 4, which is exactly the 
same as the number of consistent compo- 
nents. (B) - (E) estimated components and 
ground truths signals. 𝑟 is the correlation 
coefficient between the estimate compo- 
nent spatial map/time course and the cor- 
responding ground truths. For spatial dis- 
tributions, a proportional threshold of 5% 

( Garrison et al., 2015 ) was used, with warm 

colors representing activation (relative to 
the within-component global average) and 
cool colors representing deactivation (rel- 
ative to within-component global average) 
within each component. For time courses, 
the red represents ground truth and the 
black indicates estimations. 
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stimated. However, the component corresponding to hand movements
ailed to be detected by TCA, which is due to poor temporal consistency
cross subjects (see Supplementary Fig.1). E.g., components with worse
onsistency across subjects will reduce algorithm stability and, in turn,
he model order that may reveal such components will not be selected
s the final model order. 

Inspection of the spatial maps and time courses in Fig. 4 shows that
he estimation of spatial distributions of activation are very consistent
cross methods. Comparison of the estimated time courses of the visual
ues from TCA and ISFC shows that the TCA time courses resemble the
isual cues after being convolved with hemodynamic response function.
he time courses of ISFC are similar to the stimulation time course con-
olved with the sliding window, which results in a distorted represen-
ation for the visual cues ( Fig. 4 (A)). Such distortions may hinder the
nvestigation of the relationship between brain activity and movie fea-
ures in naturalistic stimuli. However, ISFC successfully estimated the
patial map and time course of the hand movements whereas TCA did
ot at this model order (see Supplementary Fig. 2). 

.3. Naturalistic stimuli fMRI experiment 

For the short naturalistic stimuli fMRI from the HCP, the TCA al-
orithm reaches the highest stability at model order equal to 3 and all
hree tensor components estimated under this model order are highly re-
roduced (see Supplementary Fig. 3). The estimated components under
his model order were selected for further analysis. 

The spatial distribution of the first tensor component estimated with
CA and the corresponding map estimated by ISC analyses of these data
re shown in Fig. 5 (A). Bilateral occipital fusiform gyrus, lingual gyrus
nd superior temporal gyrus are identified as activated regions in both
he TCA component and the ISC spatial map. However, bilateral post-
entral gyrus, superior parietal lobule and left precentral gyrus are also
dentified as activated in the ISC map, but not in the TCA component.
ilateral cerebellum and lateral occipital cortex are activated in the TCA
omponent. 

Fig. 5 (B) shows a bar plot of the average correlation coefficients
etween the subject time courses extracted from the lingual gyrus and
emporal gyrus, and the temporal course of the TCA component. This
hows that the time course of lingual gyrus is negatively correlated with
he estimated TCA component time course, whereas the time course
f the temporal gyrus is positively correlated with the estimated time
ourse. This opposite response to the movie stimuli of the lingual gyrus
nd temporal gyrus is not identified by ISC. Fig. 5 (C) shows the esti-
7 
ated time course of the first tensor component with the onset of the
nnotated stimuli in the movie to illustrate the relationship between
hem. Inspection of the timing suggests that landscape scenes result in
ncreases in BOLD signal for this mode, while scenes with social con-
ent are associated with decreases in BOLD signal. In an exploratory
nalysis, we applied the proposed framework on a social cognition task
MRI from the HCP dataset. Then we compared the spatial distribu-
ion between social task evoked brain network (Supplementary, Fig.
) and the movie stimuli evoked component, and found that the so-
ial task network was significantly correlated (r = 0.27, P = 10 − 6 ) with
he TCA component. The network estimated with ISC was also signifi-
antly correlated with the social task evoked brain network (r = 0.28,
 = 10 − 6 ). Correlations between the subject loadings for the TCA com-
onent and the behavioral measures related to social function showed
 significant correlation (FDR corrected, P < 0.05) between TCA com-
onent loadings and antisocial personality score ( Fig. 5 (D)). A sig-
ificant correlation (r = 0.02, P = 0.01) between antisocial person-
lity scores and shared brain activities across subjects estimated with
SC is also identified with IS-RSA but the correlation coefficient is
nly 0.02. 

The time course of the second tensor component was significantly
orrelated with the music feature Pulse Clarity (r = 0.39, P = 10 − 4 ), as
hown in Fig. 5 (E). But the time courses estimated with ISC failed to cor-
elated with the music feature (r = 0.19, P = 0.10). All three estimated
ensor component spatial maps show effects in bilateral cerebellum, oc-
ipital fusiform gyrus, and lateral occipital cortex. The lingual gyrus is
eactivated in the first TCA component, but not in the second or third
omponents. Left frontal pole, which does not appear in the first TCA
omponent, is deactivated in both the second and third TCA compo-
ents, and the bilateral superior temporal gyrus is activated in the first
nd second TCA components, but not the third. Thus, TCA is able to
dentify overlapping brain activation modes. 

Fig. 6 demonstrates that our proposed framework is also suitable for
MRI data with long-duration movie stimuli. Three components were
stimated with TCA. The spatial distributions show a strong correla-
ion with the spatial distributions reported in Meer et al. (2020) using
MM (correlation indicated above each map). The first TCA component
orresponds to the language state estimated with the HMM (r = 0.86,
 = 10 − 5 ). The time course of the component was significantly cor-
elated with annotation of the use of language (convolved with HRF,
 = 0.12, P = 0.006), as shown in Fig. 6 (A). The second component cor-
esponds to an interoception state (r = 0.72, P = 0.004) and the third
omponent corresponds to task-positive network (r = 0.88, P = 10 − 5 ).
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Fig. 4. Comparison of TCA, GLM and ISFC. For spatial 
distributions, warm colors represent activation (relative 
to within-state global average) while cool colors repre- 
sent deactivation (relative to within-state global average) 
within each state. In the plots of the time courses, the 
red lines represent estimated time courses with TCA, blue 
lines are the estimated time courses with ISFC, and the 
black dash lines represent the ground truth time courses. 
Note that for TCA, the ground truth time courses are the 
experiment stimulus time course convolved with the HRF, 
which is the theoretical neural response of the task. For 
ISFC, the ground truth time courses are the experiment 
stimuli time courses convolved with the sliding window 

(28TRs). 
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he occupancy of these three components was shown to be higher dur-
ng movie watching than during resting-state ( Meer et al., 2020 ), which
emonstrates that TCA can estimate brain activity evoked with natural-
stic stimuli distinct from spontaneous brain activity. We also found that
ubject loadings during movie viewing B are lower than for movie view-
ng A, so even though similar spatial and temporal patterns of activity
re evoked with repeated stimuli, differences in brain activation corre-
ponding to repeated viewing of the same stimuli can also be assessed
ith TCA. Last, we evaluated the relationship between subject loadings
nd scores from the post-movie questionnaires that were administered
o participants and found that subject loadings on the first tensor com-
onent for movie viewing B were significantly correlated with bore-
om (P = 0.02, uncorrected), which may explain the smaller subject
oadings reflecting reduced strength on this pattern during the repeat
iewing. 
8 
. Discussion 

In this study, an analysis framework for applying TCA to fMRI data
o discover spatio-temporal components that are shared across subjects
uring naturalistic movie viewing was proposed. In this framework, a
hird-order tensor is constructed from the timeseries extracted from all
rain regions from a given parcellation, for all participants. This ten-
or is then decomposed via TCA to identify modes corresponding to the
patial distribution (maps) and time series that are common to all par-
icipants, and subject loadings that reflect between-subject variability in
he patterns of brain activation in response to naturalistic stimuli. The
tability of the extracted components is evaluated with a novel cluster-
ng method, tensor spectral clustering, to guarantee the reproducibility
f the results. Model order is selected based on the stability of the re-
ults across a range of model orders. Extensive testing ( Figs. 3–5 and
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Fig. 5. (A) Spatial maps for the first TCA component, the ISC spatial map. (B) The bar plot shows the average correlation coefficient of subject time courses of 
lingual gyrus and temporal gyrus with time course estimated with tensor component analysis (TCA). (C) Timeline of the first tensor component with the onset point 
of each scene. The trends of the timeline with landscape and social related scenes are different. (D) The subject loadings for the first tensor component significantly 
correlated with Antisocial Personality Problems Raw Score ( 𝜌: correlation coefficient). (E) Spatial map and time course for the second TCA component. The time 
course of the second tensor component was significantly correlated with the music feature Pulse Clarity (r = 0.39, P = 10 − 4 ). 
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upplementary Fig. 4-7) demonstrates that the framework is feasible
nd capable of extracting interpretable and reproducible components. 

Compared with traditional fMRI study designs, naturalistic stimuli
re complex and dynamic, and it is much more difficult to generate
 model of evoked activity for analyses. With movie stimuli, the time
ourses of brain activity across subjects are assumed to be consistent
cross subjects and changing along with ongoing movie scenes. In addi-
ion, the brain network(s) that are activated for information processing
uring movie viewing are assumed to be the same across participants.
ased on these assumptions, we have proposed a data-driven TCA frame-
ork for characterizing shared spatio-temporal patterns of evoked ac-

ivity to naturalistic stimuli across subjects. FMRI signals are innately
ultidimensional and can thus be naturally represented in tensor form.
e show that TCA is suitable for naturalistic stimuli fMRI analysis, that

ur framework is able to estimate in a purely data-driven fashion the
rain activity evoked by naturalistic stimuli that corresponds to differ-
nt stimuli features. 
9 
.1. Merits of TCA framework 

The proposed framework has several merits. For naturalistic stim-
li fMRI, the variability across subjects has attracted more and more
ttention ( Finn et al., 2020 ; Nastase et al., 2019 ), Our proposed frame-
ork provides an estimate of subject loadings directly, which can be
sed to explore individual differences and condition differences. For ex-
mple, we identified a pattern of evoked activity that had a temporal
ourse related to the presence of social stimuli and loadings that were
ssociated with a measure of antisocial personality problems from a di-
gnostic interview ( Fig. 5 (D)). Even though the relationship between
rain network and subjects’ traits can also be identified with IS-RSA,
he method creates many samples by calculating paired correlation co-
fficients, which can blur the relationship between brain activity and
ehavioral measures, resulting in weaker associations. Another merit of
ur framework is that the brain responses to different features of the nat-
ralistic stimuli can be separated into different patterns ( Fig. 4 ). Third,



G. Hu, H. Li, W. Zhao et al. NeuroImage 255 (2022) 119193 

Fig. 6. The estimated tensor components of long-duration movie stimuli. The spatial distributions of these components are highly correlated with spatial distribution 
estimated with hidden Markov model (HMM). And we also find that the time course of the first tenor component is significantly correlated with the annotation: The 
use of language (panel A right). Black line represents estimated time courses with TCA. Red line denotes annotation of the use of language convolved with HRF. For 
both the second and the third tensor components, we found that subject loadings of the second movie viewing (View B) are significantly lower than that of the first 
movie viewing (View A). 
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a  
he time courses of the estimated components are estimated without dis-
ortion ( Fig. 4 & Fig.5(E)), which facilitates the interpretation of the es-
imated components and represents an advantage over ISFC. Fourth, by
ombining TCA with evaluation of algorithm stability, the model order
s identified in a data-driven manner and reproducibility of the estima-
ion is enhanced (Supplementary, Fig. 3 ). 

In this study, different datasets were used to demonstrate differ-
nt strengths of the TCA framework applied for naturalistic stimuli
MRI data analysis. Time courses of evoked brain networks can be es-
imated with both TCA and ISFC. Since the ground truth stimulation
ime courses are known for traditional task fMRI, motor task fMRI was
sed to compare the performance of TCA and ISFC in terms of time
ourses estimation accuracy. The results ( Fig. 4 ) show that TCA cap-
ures the time courses of each pattern without destroying temporal
ttributes, which can happen with ISFC. Preserving the temporal at-
ributes greatly facilitates the interpretation of estimated patterns. HCP
ovie scenes were used to demonstrate that relativeness of nodes in

he same network are better evaluated with TCA framework. In or-
er to demonstrate that TCA framework is also suitable for natural-
stic stimuli with longer durations, the van de Meer dataset, previ-
usly analyzed with Hidden Markov Modeling, was used. When the
CA framework was applied to the dataset, brain networks with higher
ccupancy during movie watching than during resting-state were ex-
racted, demonstrating that TCA is suitable for naturalistic stimuli with
onger durations and that it is capable of estimating brain activity
voked with naturalistic stimuli that is distinct from spontaneous brain
ctivity. 

Improving the reproducibility of neuroscience research is
ne of greatest concerns for present day neuroimaging research
 Poldrack, 2019 ; Poldrack and Farah, 2015 ). To guarantee the stability
f the TCA algorithm and a suitable model order for the decomposition,
 novel spectral clustering algorithm was proposed that is applied to
omponents estimated from multiple runs. In our simulation study,
he model order selected based on the proposed algorithm stability
ndex was exactly the same as the number of simulated consistent
omponents across subject, demonstrating that the proposed algorithm
tability index identifies an appropriate model order ( Fig. 3 (A)). In the
aturalistic stimuli fMRI study, our results demonstrate that shared
p  

10 
patial-temporal components estimated by our framework are highly
eproducible (Supplementary, Fig. 3 ). 

.2. Comparison with ISC 

Both TCA and ISC are based on the assumption that consistent brain
ctivity across subjects occurs when subjects view the same naturalis-
ic stimuli, but the way they estimate the brain activity is different. ISC
everages the correlation across subjects to constrain the spontaneous
rain activity and to enhance detection of the brain activity evoked by
he naturalistic stimuli. TCA estimates brain activity based on a mathe-
atical model that enables extraction of consistent components across

ubjects. 
Extending ISC to ISFC by combining with a clustering method shows

hat both ISC and TCA can be used to estimate brain activity that cor-
esponds to different stimulus features, and the spatial distributions of
he extracted components are highly consistent across the two meth-
ds ( Fig. 4 ). ISC is a relatively simpler approach based on correlations,
ith extension to ISFC involving the calculation of connectivity matrix
cross subjects and the addition of k-means clustering. While this ap-
roach may be considered more straightforward in terms of implemen-
ation and interpretation than TCA analysis, ISFC relies on second-order
ather than first-order estimates. This lowers the temporal resolution of
he analyses ( Fig. 4 ), which is somewhat limiting in the context of a dy-
amic stimulus. In particular, this prevents the possibility to pinpoint
ne particular frame of the movie as driving a given ISFC configuration;
ather, any of the data points contributing to the particular estimate
ay be involved. In the TCA framework, brain temporal activities can

e estimated accurately. 
Both ISC and TCA can be used to explore subject variability. ISC,

ia inter-subject representational similarity analysis ( Finn et al., 2020 ;
riegeskorte et al., 2008 ; Mantel, 1967 ; Meer et al., 2020 ), can be used

o explore the relationship between brain activity and behavior at the
evel of subject pairs. Studies have shown that this method is sensitive
o explicit manipulations of attention or prior beliefs about a stimu-
us ( Cooper et al., 2011 ; Lahnakoski et al., 2014 , 2012 ). Investigation
f individual differences using ISC requires the use of non-parametric
pproaches because the correlations across subjects are highly interde-
endent, thereby violating the assumption of common parametric tests
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 Nastase et al., 2019 ). In contrast, TCA provides an estimate of sub-
ect loadings and the spatial-temporal distribution simultaneously. The
ubject loadings can then be used to investigate individual variability
nd condition differences ( Fig. 5 & Fig. 6 ). While this is a strength of
CA, we also found that IS-RSA can identify brain activity related to
ehavior ( Meer et al., 2020 ) that TCA does not, and as such, these two
ethods may provide complimentary insights into naturalistic stimuli

rain-behavior relationships. For both ISC and TCA, the assumption that
ifferent subjects will have the exact same spatial distribution and tem-
oral course in response to naturalistic stimuli may be too strong and
ay result in difficulty estimating components with slight misalign-
ents across participants, as was found with hand movement in the
otor task fMRI study using TCA. Advanced methods that can estimate

ime-unlocked components are worth exploring in future research. 

.3. Potential data-driven methods for naturalistic stimuli fMRI 

Theoretically, some other purely data-driven methods such as spa-
ial ICA ( Calhoun et al., 2001 ; McKeown et al., 1998 ) and temporal
CA ( Smith et al., 2012 ) can also be applied to naturalistic stimuli fMRI
ata, although both place constraints in the spatial and temporal do-
ains, respectively, and neither provide subject loadings that can be
sed to assess inter-subject variability. Spatial ICA assumes that differ-
nt brain networks are spatially independent and when model order is
arge enough ( > 100) ( Smith, 2012 ) the results from this method can
e used as brain parcellation, which is the way we used spatial ICA in
his paper. Spatial ICA can also be used to separate signal from noise
ources and may also identify components that correspond to responses
o naturalistic stimuli. However, this method is typically implemented
ia temporal concatenation of multi-subject data and thus would not
ecessarily take advantage of similarity in activation responses across
ubjects. Temporal ICA assumes that statistically independent temporal
unctional modes exist in the brain, which may not be a realistic as-
umption considering that some brain networks have correlated or anti-
orrelated time courses during stimulation. In addition, both of these
ethods may have difficulty separating spontaneous brain activity from

he naturalistic stimulus-evoked brain activity that is immersed within
t ( Bolton et al., 2018 ). In our proposed TCA framework, only brain ac-
ivities that are share spatial-temporal information across subjects are
dentified, with the spontaneous brain activity being left in the tensor
esidual, as shown in Fig. 1 (C). 

.4. Limitations and future work 

There are some limitations to our study. First, we selected a parcella-
ion scheme based on ICA with a particular model order. Several studies
 Allen et al., 2014 ; Jafri et al., 2008 ; Pervaiz et al., 2020 ; Smith et al.,
012 ) have demonstrated that extracted time courses from such par-
ellations are able to identify intrinsic brain networks when projected
nto the fMRI data. However, several studies have demonstrated that
he model order of the ICA can greatly impact the estimated compo-
ents ( Abou-Elseoud et al., 2010 ; Beckmann, 2012 ; Kuang et al., 2018 ).
e recently presented a new algorithm, called Snowball ICA, that esti-
ates components without the need for specifying a model order. This

echnique relies on extracting the most information from the fMRI data
y obviating the impact of the PCA data reduction step associated with
pecific ICA model orders ( Hu et al., 2020 ). Future work on the TCA
ramework could be done to investigate the impact of different parcel-
ation schemes. 

For motor task fMRI, TCA successfully identify networks evoked by
ongue, foot and cues ( Fig. 4 ). However, the algorithm fails to iden-
ify a component corresponding to evoked brain activity associated with
and movement. This is because hand movement is sophisticated and
he variance across subjects makes it difficult to estimate a common
patio-temporal pattern ( Fig. 5 ) using TCA. Because our algorithm re-
ies on component stability as a criteria for model order selection, the
11 
roposed framework will be most suitable to extract those components
hat have high spatio-temporal consistency across subjects. As shown
n the GLM results, the consistency of hand movements across subjects
as lower than for other movements (Supplementary Fig. 3), which
ade it difficult to extract a related component for our implementa-

ion of TCA. In this study, the number of extracted tensor components is
elected based on the reproducibility of the estimated components. As
he number of extracted tensor components increases, the reproducibil-
ty of the estimated components is reduced. We also observed that for
igher model orders, extracted components generally related to evoked
esponses in specific participants, rather than reflecting consistent com-
onents across subjects. In some contexts, this may not be a limitation.
amely, this could be a strength of our method if one is interested in

ndividual variability, and in the case of hand movements it may be
seful for understanding variability that reduced the consistency across
ubjects. However, more work is needed to determine how best to use
hese additional components to investigate individual variability. 

Naturalistic stimuli fMRI is a powerful tool to study brain network
nteractions that resemble brain function that occurs as we go about our
aily lives. However, care must be taken in identifying suitable natu-
alistic paradigms. Only three consistent spatial-temporal components
ere estimated in the movie experiment. Even though the movie’s nat-
ralistic stimuli contained plenty of features, variance in the subjects’
ttention may have reduced the shared evoked responses across subjects.
n further studies, the selection or designation of naturalistic stimuli will
eed to be investigated further to develop stimuli that will result in more
onsistent stimulus evoked activity. 

. Conclusion 

The proposed tensor analysis framework is a powerful method that
an extract evoked brain response to naturalistic stimuli that are em-
edded within resting state brain activity. With the proposed frame-
ork, interpretable and reproducible brain states can be extracted and

ndividual variability in the strength of the evoked responses can be
ssessed. Three types of experiment (simulation, motor task fMRI, nat-
ralistic stimuli fMRI) demonstrated that the proposed framework is a
romising tool to extract brain networks evoked with naturalistic stim-
li. 
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upplementary materials 

Supplementary material associated with this article can be found, in
he online version, at doi:10.1016/j.neuroimage.2022.119193 . 

ppendix: TCA stability analysis with tensor spectral clustering 

Background of spectral clustering on graph theory 

In this study, a novel tensor spectral clustering algorithm is pro-
osed to evaluate the stability of TCA algorithms. First, we provide some
ackground on spectral clustering. Spectral clustering is a technique
ith roots in graph theory. Consider an undirected weighted graph
 = ( V , E ) , where V is a set of nodes and E is a set of edges reflecting
 statistical measure of connectivity between each pair of nodes. The
eighted adjacency matrix of G is denoted as a symmetric matrix 𝐖 .
he generalized degree of the nodes in G is defined as 𝐃 = diag ( 𝐖 𝒆 ) ,
here 𝒆 is a vector of ones. The combinatorial Laplacian matrix is de-
ned as 𝐊 = 𝐃 − 𝐖 . The transition matrix of the graph 𝐏 = 𝐖 

T 𝐃 

−1 is
 column stochastic matrix. Thus, the matrix can be interpreted as a
arkov chain. The stationary distribution of the Markov chain is given

y π = diag ( 𝐃 ) . 

 diag ( 𝐃 ) = 𝐖 

T 𝐃 

−1 diag ( 𝐃 ) = 

 

T 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝑑 −1 1 0 0 0 
0 𝑑 −1 2 0 0 
0 
0 

0 
0 

⋱ 0 
0 𝑑 −1 

𝑛 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝑑 1 
𝑑 2 
⋮ 
𝑑 𝑛 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
= diag ( 𝐃 ) (A1)

In addition, diag ( 𝐃 ) is an eigenvector of 𝐏 and the corresponding
igenvalue is one ( R.Benson et al., 2015 ). 

In the partition of a graph, it is assumed that the graph can be sepa-
ated into two parts, S and S̄ , then the bottleneck of a graph is defined
s the boundary between the two clusters. The bottleneck ratio of any
et Ψ is defined as: 

( Ψ) = 

𝑐𝑢𝑡 ( S ) 
𝜋( S ) 

, (A2)

here 𝑐𝑢𝑡 (S) = 

∑
V 𝑖 ∈S , V 𝑗 ∈S̄ 

𝐖 𝑖𝑗 , 𝜋(S) = 

∑
V 𝑖 ∈S 

𝜋𝑖 . A small bottleneck ratio in-

icates a good partition of the graph ( Levin et al., 2007 ). 
The indicator vector 𝑓 over the nodes in G is defined: 

 𝑖 = { 0 V 𝑖 ∉ Ψ
1 V 𝑖 ∈ Ψ

. (A3)

The property of Laplacian matrix is leveraged as follow: 

 

T 𝐊 𝑓 = 

1 
2 

𝑛 ∑
𝑖,𝑗=1 

𝑤 𝑖𝑗 

(
𝑓 𝑖 − 𝑓 𝑗 

)2 = 

∑
V 𝑖 ∈Ψ, V 𝑗 ∈Ψ̄

𝑤 𝑖𝑗 = 𝑐𝑢𝑡 ( Ψ) . (A4)

Since π = diag ( 𝐃 ) , 𝜋(Ψ) could be represented as 𝑓 T 𝐃 𝑓 . Hence,
he objective of matrix spectral clustering is to find 𝑓 that minimizes
 

T 𝐊 𝑓 ∕ 𝑓 T 𝐃 𝑓 . 
Both matrices 𝐊 and 𝐃 are positive definite. According to generalized

ayleigh entropy, the solution is the vector 𝑓 such that 𝐊 𝑓 = λ𝐃 𝑓 . We
bserved that: 

 𝑓 = λ𝐃 𝑓 ⇔
(
𝐈 − 𝐃 

−1 𝐖 

)
𝑓 = λ𝑓 ⇔ 𝐏 T 𝑓 = ( 1 − λ) 𝑓 (A5)

So, the problem is equivalent to computing the eigenvectors of 𝐏
 Ng et al., 2002 ). 

Tensor spectral clustering 

For multimode tensor spectral clustering (TSC), different modes have
ifferent transition matrices . In this appendix, a third-order tensor is used
s the example for tensor spectral clustering. 𝐏 (1) , 𝐏 (2) , 𝐏 (3) are three
ransition matrices for third-order tensor decomposition. They are cal-
ulated as follows: 

 

( 𝑚 ) = 𝐖 

( 𝑚 ) T 𝐃 

( 𝑚 ) −1 , (A6)
12 
here 𝐃 

( 𝑚 ) is defined exactly the same as with matrix spectral clustering.
he generalized transition tensor 𝐏 can then be defined as: 

 = 𝐈 ×1 𝐏 ( 1 ) ×2 𝐏 ( 2 ) ×3 𝐏 ( 3 ) , (A7)

here 𝐈 ∈ ℝ 

𝑅𝐾 ×𝑅𝐾 ×𝑅𝐾 ×𝑅𝐾 is a unit tensor, and the number of modes of 𝐈
re one more than the number of modes of the tensor to be decomposed.

Similar to matrix spectral clustering, generalized singular value
ecomposition (SVD), Higher-order singular value decomposition
HOSVD, Lieven et al., 2000 ), is applied to the transition tensor 𝐏 . For
OSVD of 𝐏 , the essence of the decomposition of the last mode is the
igenvalue decomposition of the covariance matrix for the matrix un-
olding of tensor 𝐏 on the last mode. The unfolding of tensor 𝐏 on the
ast mode is denoted as 𝐏 ( end ) , which is calculated as follow: 

 ( end ) = 𝐈 ( end ) 
(
𝐏 ( 1 ) ⊗ 𝐏 ( 2 ) ⊗ 𝐏 ( 2 ) 

)T 
. (A8)

The covariance matrix of 𝐏 ( end ) is: 

 ( end ) 𝐏 ( end ) 
T = 𝐈 ( end ) 

(
𝐏 ( 1 ) ⊗ 𝐏 ( 2 ) ⊗ 𝐏 ( 3 ) 

)T (𝐈 ( end ) (𝐏 ( 1 ) ⊗ 𝐏 ( 2 ) ⊗ 𝐏 ( 3 ) 
)T )T 

. 

(A9) 

We defined the following: 

 TSC = 𝐖 

( 1 ) 𝐖 

( 1 ) ⊛𝐖 

( 2 ) 𝐖 

( 2 ) ⊛𝐖 

( 3 ) 𝐖 

( 3 ) (A10) 

 TSC = 𝐃 

( 1 ) 𝐃 

( 1 ) ⊛ 𝐃 

( 2 ) 𝐃 

( 2 ) ⊛ 𝐃 

( 3 ) 𝐃 

( 3 ) (A11) 

 TSC = 𝐃 TSC − 𝐖 TSC (A12)

𝐖 TSC is a symmetric matrix and represents weighted adjacency ma-
rix of TSC. 𝐃 TSC is a diagonal matrix. Both matrices 𝐊 TSC and 𝐃 TSC are
ositive definite. Then equation (A9) can be reduced as follows: 

 TSC = 𝐃 

−1∕2 
TSC 𝐖 TSC 𝐃 

−1∕2 
TSC = 𝐏 ( end ) 𝐏 ( end ) 

T . (A13)

Similar to matrix spectral clustering, the purpose of tensor spectral
lustering is to find 𝑓 that minimizes 𝑓 T 𝐊 TSC 𝑓∕ 𝑓 T 𝐃 TSC 𝑓 . Based on
he generalized Rayleigh entropy and diagonal property of 𝐃 TSC , the
bjective function: 

 

T 𝐊 TSC 𝑓 ∕ 𝑓 T 𝐃 TSC 𝑓 = 𝑓 T 
(
𝐃 TSC − 𝐖 TSC 

)
𝑓 ∕ 𝑓 T 𝐃 TSC 𝑓 (A14)

s equivalent to finding 𝑓 to minimize 𝑓 T ( 𝐈 − 𝐃 

−1∕2 
TSC 𝐖 TSC 𝐃 

−1∕2 
TSC ) 𝑓 =

 

T ( 𝐈 − 𝐏 TSC ) 𝑓 . 
At this stage, the problem of tensor spectral clustering is reduced to

atrix spectral clustering. So, the last mode eigenvector of HOSVD of
he transition tensor 𝐏 can be used for multimode co-clustering. 

Given a set of samples that we want to cluster into 𝑘 subsets, and each
ample has more than one modality to be considered, the procedure of
SC is as follows: 

1 Form the weighted adjacency matrices of each modality: 𝐖 

(1) , 𝐖 

(2) ,
𝐖 

(3) , ⋯ . 
2 Define the transition matrix of each modality: 𝐏 (1) , 𝐏 (2) , 𝐏 (2) , ⋯ . Then

the transition tensor 𝐏 is defined with equation (A7) . 
3 Find the 𝑘 eigenvectors 𝒗 1 , 𝒗 2 , ⋯ , 𝒗 𝑘 corresponding to the

𝑘 largest eigenvalues of the last mode of transition tensor 𝐏 with
HOSVD. Form the matrix 𝐕 = [ 𝒗 1 , 𝒗 2 , ⋯ , 𝒗 𝑘 ] by concate-
nating eigenvectors in columns. 

4 Normalize each row of 𝐕 to have unit length 𝐋 𝑖,𝑗 = 𝐕 𝑖,𝑗 ∕ ( 
∑
𝒋 

𝐕 

2 
𝑖, j ) 

1∕2 . 

5 Cluster points, each row of 𝐋 , into 𝑘 clusters via Hierarchical clus-
tering ( Gordon, 1987 ). 

6 Find the corresponding row 𝑖 of 𝐋 and original sample, assign the
original sample to the cluster 𝑗 that row 𝑖 assigned. 

Software for tensor spectral clustering is available at https://github.
om/GHu-DUT/Tensor _ Spectral _ Clustering . 

For the stability analysis of TCA algorithms, for the given dataset,
he same algorithm with the same parameters is ran 𝐾 times. Given

https://doi.org/10.1016/j.neuroimage.2022.119193
https://github.com/GHu-DUT/Tensor_Spectral_Clustering
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he number of extracted components 𝑅 , for each mode, there are 𝑅 ×𝐾

omponents. When TSC is applied during the stability analysis of TCA,
he similarity matrices of each mode 𝐖 

( 𝐒 ) , 𝐖 

( 𝝈) , 𝐖 

( 𝐂 ) work as weighted
djacency matrices. Furthermore, eigenvectors of last mode of the transi-

ion tensor 𝐏 are fed into Hierarchical clustering. The number of clusters
s defined as exactly same as the number of extracted components R,
ith stable components producing a tight cluster. The stability index is
uantified with the average intra-cluster similarities 

 𝑠 

(
𝑆 𝑘 

)
= 

1 
𝑁 

∑
𝑖,𝑗∈𝑆 𝑘 

⟨𝐋 𝑖 , 𝐋 𝑗 ⟩, (A15)

here 𝑆 𝑘 is the set of indices that belong to the 𝑘 th cluster and ⟨𝐋 𝑖 , 𝐋 𝑗 ⟩
epresents similarity between 𝑖 th and 𝑗th components. Ideally, if the
xtraction of the component is stable, the inner similarity of the corre-
ponding cluster is close to 1 and the stability index of unstable com-
onents approaches 0. The algorithm stability is defined as the average
f components stability indices. When the selected model order is ap-
ropriate for the tensor being decomposed, the algorithm will be sta-
le. Hence, hyperparameters such as the model order can be selected in
erms of algorithm stability. 
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