
This is a self-archived version of an original article. This version 
may differ from the original in pagination and typographic details. 

Author(s): 

Title: 

Year: 

Version:

Copyright:

Rights:

Rights url: 

Please cite the original version:

CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

Towards multi-concern software development with Everything-as-Code

© 2022 IEEE

Published version

Stirbu, Vlad; Raatikainen, Mikko; Röntynen, Joel; Sokolov, Vlas; Lehtonen, Timo;
Mikkonen, Tommi

Stirbu, V., Raatikainen, M., Röntynen, J., Sokolov, V., Lehtonen, T., & Mikkonen, T. (2022).
Towards multi-concern software development with Everything-as-Code. IEEE Software, 39(4),
27-33. https://doi.org/10.1109/ms.2022.3167481

2022



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2022.3167481, IEEE Software

Towards multi-concern
software development with
Everything-as-Code

Vlad Stirbu
CompliancePal, Tampere, Finland

Mikko Raatikainen
University of Helsinki, Finland

Joel Röntynen
Solita, Helsinki, Finland

Vlas Sokolov
Solita, Munich, Germany

Timo Lehtonen
Solita, Tampere, Finland

Tommi Mikkonen
University of Jyväskylä, Finland

Abstract—As software is becoming a central element in our lives, more and more stakeholders
have concerns. Unlike today, when developers stop their coding activities to satisfy these
stakeholder concerns, we propose dealing with them as part of the coding workflow, the central
element of programmers’ daily duties. This can be achieved by extending the approach that we
call Everything-as-Code (EaC) beyond software engineers and operators.

SOFTWARE is everywhere and implements
many new functionalities in products and ser-
vices. Therefore, many non-functional or regula-
tory concerns have emerged and must be assured
of being appropriately addressed. For example,
safety and effectiveness in medical devices are
assured by conformance with regulatory pro-
cesses and requirements, covering specifically the
software development lifecycle [4], introduced to
protect against errors that the developers might
otherwise make. Similarly, the EU’s general data
protection regulation (GDPR) [14] guards against
misused personal information. The need for trust-
worthy AI [3] and ethical guidelines for its use
[8] have recently been proposed to ensure that

the technology use is fair and does not cause
negative side effects. While these examples are
just the tip of an iceberg, the trend is prevalent,
and few systems and their developers are – and
even should not be – free from similar assurance
concerns.

The resulting situation is not straightforward
for the software developers of these products and
services. The developers face multiple concerns
for software emerging from domains other than
the development of the software solution itself.
These new concerns often imply new stakehold-
ers ensuring meeting their particular concerns,
which can even block a non-compliant release.
For them, dependability and security assurance is

Manuscript submitted to IEEE Software Published by the IEEE Computer Society © 2022 IEEE 1



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2022.3167481, IEEE Software

not enough, but a specific audit trail is required,
resulting in additional interaction and sidesteps
in the development process serving their needs,
such as additional documents and tools. Thus,
the developers must adapt their ways of working,
incorporating yet another new tool or document.

In this paper, we argue for a development
approach that places the software and the way
software developers work at the core of the sys-
tem and related product development activities.
As the baseline, we use the Everything-as-Code
(EaC) paradigm [15]. While many software de-
velopment and operation specialists have already
adopted practices of EaC, e.g., as Infrastructure-
as-Code, our proposal extends EaC beyond soft-
ware engineers and operators. We argue that the
concept of EaC is extendable and can capture
many non-functional or regulatory concerns re-
quiring traceable information for assurance. To-
wards this end, we describe two different indus-
trial cases to demonstrate capturing information
for medical compliance and AI-Explainability as
forms of EaC. Then, upon allowing the develop-
ers to advance at the pace determined by iterative
development with continuous delivery of small
increments, we elaborate on how to capture and
embed multiple other concerns in this process
while respecting the spirit of today’s software
development.

EaC state-of-the-practice
Today’s software engineering practices, es-

pecially DevOps [1], [9], focus on short itera-
tions and shortening the time from feature imple-
mentation till availability to the end-users with
many automated activities. Once developers have
implemented a feature, it is integrated into the
code baseline after passing verification, delivered
and deployed to a production environment, and
continuously monitored. Through extensive au-
tomation, the integration and delivery processes
leverage the capabilities of version control tools,
such as GitHub and GitLab, to automatically
execute custom pipelines that build the software,
run tests, create the needed infrastructure for the
execution environment from a versioned config-
uration, and deploy the software into this envi-
ronment. Concepts such as infrastructure-as-code
or configuration-as-code are applied because the
steps and activities are specified as ”as-code” and

performed efficiently, at a relatively low cost, by
code-based scripts familiar to software developers
and operations specialists.

This code-based approach has been applied
even further. The increased speed pressures orga-
nizations that expose their functionality to third
parties to deliver the documentation as developer
portals. They contain application programming
interfaces or software development kits documen-
tation and technical guidelines for using them,
deployed at the same pace as the DevOps team
delivered the new functionality. The documenta-
tion specialists develop Docs-as-Code practices
for managing and releasing documentation that
relies on the same tooling as the development
teams. Similarly, as software-intensive systems
have become more connected and make use of
3rd party software components, activities related
to cybersecurity and software supply chain man-
agement have been integrated as DevSecOps into
the DevOps practices.

Towards broadening non-software
development concerns in EaC

While EaC as described above is being ap-
plied to domains closely related to software de-
velopers, such as infrastructure or security, we
bring forward that the concept of EaC is ex-
tendable beyond technical stakeholders, such as
for regulation or governance. The information
required these stakeholders is captured in code
assets similar as any other information in EaC.

With new stakeholder concerns implemented
by broadening the EaC envelope, some constants
remain: to keep the development team moving
at software speed, the tooling for continuous
software engineering revolves around source code
and, thus, assumes that GitHub-style support is
available for all tasks, leveraging facilities such
as versioning and automatic workflows. In other
words, with a new stakeholder with novel con-
cerns impacting the software or its development
process, the stakeholder should adapt to the soft-
ware development environment and tooling in-
stead of developers actively providing separate
views to any concern that the stakeholders may
raise.

In addition to enabling value to the end-users
and other stakeholders as soon as possible, this
EaC way of working centered around code and

2 Manuscript submitted to IEEE Software



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2022.3167481, IEEE Software

Git respects the developers’ and other specialists’
workflows. As software development is largely
about creative work, interwinding other concerns
into the development process allows the develop-
ers to maintain their cadence, making them more
productive [7]. In contrast, interaction among
stakeholders can lead to workflow interruptions,
whose resolution can delay development [6].

Consequently, we argue that the next logical
step and continuation of EaC is the expansion
beyond software engineers and operators. While
this may sound radical, we have already made
software developers consider the terminology of
other fields, up to the point of institutionalizing
it as the domain-driven design [2], in which the
software adopts the terminology of the field it
is serving. With EaC, as the code is the cen-
tral concept, other fields that relate to it must
operate on its terms by borrowing development
metaphors. For example, the pull request, the
developers’ main change management event, can
accommodate other specialists during the review
phase. However, we do not expect a layperson to
master code and Git as a developer, but proper
tooling and abstracting interfaces on top of code
and Git are needed to make the EaC accessible.
Next, we provide two concrete examples from the
industry. They cover Compliance-as-Code and AI
Explainability-as-Code, and both are commercial
endeavors.

Case I: Medical Compliance as Code
Before bringing products to the market, medi-

cal device manufacturers must demonstrate com-
pliance with safe and effective use regulations.
Traditionally, the regulatory compliance evidence
has been collected in a waterfall fashion. How-
ever, with the trend of delivering more innova-
tions by software, manufacturers face the chal-
lenge of adapting their way of working so that
the regulatory activities are aligned – in addition
to the product lifecycle – with the iterative and
incremental practices of agile development.

Scenario: Handling 3rd party software
Today, no software is built in isolation but

with a functionality-reuse mindset so that a man-
ufacturer develops only the essential functional-
ity of the product. At the same time, the rest
comes from various third-party components –

either commercial or open-source ones – as soft-
ware of unknown pedigree (SOUP). Regardless
of who developed the software components, the
manufacturer has the final quality responsibility.
Therefore, the manufacturer must ensure that the
respective components have been developed with
the rigor expected for medical software.

The risk analysis process for SOUP is a source
of friction between the software developers and
regulatory affairs professionals. The software de-
velopers move swiftly but are not accustomed to
performing the risk management activities during
their daily routine. Likewise, the regulatory affairs
specialists are not accustomed to the high velocity
of increments at which software developers in-
troduce changes, sometimes incorporating SOUP
components. Keeping the software development
and risk management aligned using the waterfall-
influenced documentation sprint is not optimal.
The regulatory tasks must be performed on the
accumulated change-set as a sum of all incre-
ments. As the changeset grows, tracking evolution
becomes difficult with artifacts that potentially
update several times. A more effective approach,
depicted in Figure 1, is to expand the review
phase of the pull request to include regulatory
affairs professionals in those requests that need
their attention. The regulatory affairs profession-
als can perform the necessary tasks on a small
increment and directly interact with the rest of
the team that introduced the change. All involved
have fresh and accurate information about the
nature of the change.

As a concrete implementation, a GitHub-
integrated tool called CompliancePal
(https://compliancepal.eu/) can detect if a pull
request introduces new or modifies the existing
SOUP components [13]. The tool requires a
software developer to justify the use of the
SOUP component with functional, performance,
and possible hardware requirements. Next,
this information is presented to a regulatory
specialist using a custom web user interface that
emphasizes the changes in SOUP dependencies
in a UML-like fashion. Together with the
software developer, they determine if the change
introduces new risks for which they must plan
mitigation. The workflow completes successfully
only when the new SOUP component has
been introduced in the software decomposition

Manuscript February 2022 3



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2022.3167481, IEEE Software

m
ut

i-c
on

ce
rn

 n
ee

d

Fe
at

ur
e 

br
an

ch

M
er

ge

Pu
ll 

re
qu

es
t

Feature  development

(commits) C

he
ck

s 
pa

ss

Code and regulatory review

(commits)

main

m
ut

i-c
on

ce
rn

 re
vi

ew

a)

b) c)

Figure 1: A conceptual synthesis of two cases demonstrating pull request flow enhanced with multi-
concern views: a) the identified and reviewed multi-concern activity and the record of the activity being
performed recorded using GitHub’s pull request check facility, acting as a quality gate; b) the semantic
diff view emphasizing new SOUP components introduced in the pull request; c) the visualization of
a model card in which information is integrated into the pull request flow..

documentation.

Lessons learned
The compliance workflow integrated into a

pull request ensures that the regulatory activi-
ties are performed upon changes. The required
regulatory documentation and the evidence of
performed activities are collected and tracked in
a software development environment using the
developers’ way of working and tooling. The
regulatory affairs specialists and software devel-
opers work together using compliance-as-code
practices to achieve common product goals in
each increment.

The feedback received from the medical de-
vice manufacturers that used CompliancePal en-
courages expanding the range of regulatory ac-
tivities handled in this fashion. The initial worry
that the regulatory affairs professionals were not
at ease with the pull request workflow and the
user interface metaphors used by the Git vendor

were overstated. They learned the tools fast and,
helped by the custom views, worked in sync with
the developers.

Case II: Explainable AI by Model Cards
Our second example focuses on the work of

data scientists and challenges in communication,
particularly how to document and communicate
pipeline architecture and Machine Learning (ML)
model decisions to foster transparency and sup-
port ML model validation. Model card [12] is
an approach that aims to clarify ML models’
intended use cases and avoid their misuse. In-
tended as documentation for a trained ML model,
a model card contains information about the in-
tended use case, benchmark evaluation in relevant
conditions, such as demographics or geographic
location, or any other information that the creators
consider necessary for the proper use. Parts of
model cards can be automatically extracted and
generated, but other parts require a data scientist

4 Manuscript submitted to IEEE Software



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2022.3167481, IEEE Software

to record the design decisions and rationales
manually. Therefore, the model cards can form
an additional task for developers to tackle and
consider in their daily routines.

Sample application: Object detection
To assess the feasibility and fitness of

the model cards approach in the consultancy
business, we set up a continuous delivery
pipeline for an object detection task to
detect magazines based on their logos in
pictures of magazine racks. The pipeline is an
open-source, version-controlled, reproducible
solution hosted in a GitHub repository
(https://github.com/solita/mlops-pipeline-
sagemaker). The pipeline runs on AWS
SageMaker Pipelines framework and orchestrates
a series of standard data-related steps, such as
data augmentation and processing, as well as
the automated training, testing, and deployment
of the object detection neural network with a
TinyYolo [5] architecture.

As the final step of the pipeline, a model
card is automatically generated, with its metadata
stored both in JSON format so that a machine-
readable format can be used to generate different
views and an HTML for web-based usage. We
focused on creating a view for data scientists
looking for other use cases for the trained model.
The model card contains sections for overview
and model details, considerations for the use
of the model (intended use cases, limitations
and tradeoffs, and ethical considerations), perfor-
mance metrics and examples of the model predic-
tion in the evaluation set, and training parameters.
The data scientist needs to fill in the overview and
the considerations of use for new versions of the
model, while the other sections are automatically
updated on every run of the pipeline.

Lessons learned
Using the EaC approach, where all aspects of

the pipeline will be defined as code or templates
in a repository under version control, enables a
shared understanding in a cross-functional team.
Having everything under version control makes
the development better traceable, as all changes
are tracked. Over time, this allows more people
to see and validate the decisions and assess the
rationales. Furthermore, the systematic way of de-

veloping models using the pipeline will establish
best practices within the company, allowing code
and template reuse in a scalable way.

The data scientists working with the model
card found it beneficial to have to think about and
record the limitations of the model already during
the development process, as these considerations
affected the decisions about how to train the
model. For example, for better accuracy in a
typical phone use scenario, they started using
tilted photos during training.

Although the original proposal presented the
model card as a visual representation, recent de-
velopments (https://github.com/tensorflow/model-
card-toolkit) propose a programmatic mechanism
to generate the model cards and a machine-
readable serialization that facilitates the consump-
tion of model cards by scripts in ML pipelines.
While this is a step in the right direction, the
proposed information is still limited to technical
stakeholders, such as data scientists or machine
learning engineers. To fulfill the model card’s
potential, the information should accommodate
the needs of other stakeholders. The model card
metadata becomes a model from which various
views intended for different stakeholders can be
derived, in a similar fashion as various software
architectural views can be derived from a single
software model. A model card becomes a must-
have artifact that conveys the information about
the model’s intended use or performance and
other activities conducted with the model (e.g.,
regulatory risk management) or metadata about
data sets that facilitate downstream testing.

Discussion and Key Takeaways
The core element that contributes to the on-

going success of DevOps practices is the col-
laboration culture between the software develop-
ment and operations organizations [11]. Sharing
information and expanding the skill-set of the
team members, as well as performing activities
together, induces a sense of shared responsibility.

The above cases demonstrate how the EaC ap-
proach can be extended to safety-critical systems
and AI/ML applications for concerns of ensuring
that the systems are safe and effective and that
ML models do not introduce unintended side
effects, respectively. As the software engineers or
data scientists already possess much knowledge

Manuscript February 2022 5



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2022.3167481, IEEE Software

needed by the other stakeholders, they are active
information producers. In contrast, other stake-
holders typically use or assess the information
without actively modifying it. Therefore, it is nat-
ural that the workflows that facilitate information
sharing and collaboration are built around the
tools used by the software engineers, especially
Git for version control and pull requests for
change management. Additional tools can gen-
erate the custom information views required by
other stakeholders, making Git the ledger system
for EaC.

Our contribution shows that by facilitating
the collaboration of regulatory affairs specialists,
generally understood as performing quality as-
surance tasks, with software engineers and data
scientists, the new multi-disciplinary team im-
proves the quality outcome in compliance and
AI-explainability. The results, in line with the
expectations of DevOps adoption [10], provide
practical examples of how EaC is indeed able
to handle the concerns of non-coder stakeholders
while at the same time not interfere significantly
with developers, which are able to maintain their
high delivery pace, and way of working.

REFERENCES

1. Christof Ebert, Gorka Gallardo, Josune Hernantes, and

Nicolas Serrano. DevOps. IEEE Software, 33(3):94–

100, 2016.

2. Eric Evans and Eric J Evans. Domain-driven design:

tackling complexity in the heart of software. Addison-

Wesley Professional, 2004.

3. Luciano Floridi. Establishing the rules for building

trustworthy AI. Nature Machine Intelligence, 1(6):261–

262, 2019.

4. International Electrotechnical Commission. IEC

62304:2006/A1:2015. Medical device software - Soft-

ware life-cycle processes, 2015.

5. Ivan Khokhlov, Egor Davydenko, Ilya Osokin, Ilya

Ryakin, Azer Babaev, Vladimir Litvinenko, and Roman

Gorbachev. Tiny-yolo object detection supplemented

with geometrical data. In 2020 IEEE 91st Vehicular

Technology Conference (VTC2020-Spring), pages 1–5,

2020.

6. Kati Kuusinen. Value creation and delivery in agile soft-

ware development: Overcoming stakeholder conflicts.

In IFIP Conference on Human-Computer Interaction,

pages 123–129. Springer, 2017.

7. Kati Kuusinen, Helen Petrie, Fabian Fagerholm, and

Tommi Mikkonen. Flow, intrinsic motivation, and de-

veloper experience in software engineering. In He-

len Sharp and Tracy Hall, editors, Agile Processes,

in Software Engineering, and Extreme Programming,

pages 104–117, Cham, 2016. Springer International

Publishing.

8. Stefan Larsson. AI in the EU: Ethical guidelines as a

governance tool. The European Union and the Tech-

nology Shift, pages 85–111, 2021.

9. Leonardo Leite, Carla Rocha, Fabio Kon, Dejan Miloji-

cic, and Paulo Meirelles. A survey of devops concepts

and challenges. ACM Computing Surveys (CSUR),

52(6):1–35, 2019.

10. Welder Pinheiro Luz, Gustavo Pinto, and Rodrigo

Bonifácio. Adopting devops in the real world: A theory,

a model, and a case study. Journal of Systems and

Software, 157:110384, 2019.

11. Lucy Ellen Lwakatare, Pasi Kuvaja, and Markku Oivo.

Dimensions of devops. In Casper Lassenius, Torgeir

Dingsøyr, and Maria Paasivaara, editors, Agile Pro-

cesses in Software Engineering and Extreme Program-

ming, pages 212–217, Cham, 2015. Springer Interna-

tional Publishing.

12. Margaret Mitchell, Simone Wu, Andrew Zaldivar, Parker

Barnes, Lucy Vasserman, Ben Hutchinson, Elena

Spitzer, Inioluwa Deborah Raji, and Timnit Gebru.

Model cards for model reporting. In Proceedings of

the conference on fairness, accountability, and trans-

parency, pages 220–229, 2019.

13. Vlad Stirbu and Tommi Mikkonen. CompliancePal:

A tool for supporting practical agile and regulatory-

compliant development of medical software. In 2020

IEEE International Conference on Software Architec-

ture Companion (ICSA-C), pages 151–158. IEEE,

2020.

14. Paul Voigt and Axel Von dem Bussche. The EU gen-

eral data protection regulation (GDPR). A Practical

Guide, 1st Ed., Cham: Springer International Publish-

ing, 10:3152676, 2017.

15. Afzaal Ahmad Zeeshan. Automating everything as

code. In DevSecOps for. NET Core, pages 109–162.

Springer, 2020.

Vlad Stirbu is the founder of CompliancePal. He
received his D.Sc (Tech) in software engineering from
Tampere University of Technology. His research inter-
ests include continuous software engineering prac-
tices in the context of regulated industries. Contact
him at vlad.stirbu@compliancepal.eu

6 Manuscript submitted to IEEE Software



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2022.3167481, IEEE Software

Mikko Raatikainen is a researcher focusing on
software engineering and business at University of
Helsinki. He holds D.Sc. (Tech.) in software engineer-
ing. Contact him at mikko.raatikainen@helsinki.fi

Joel Röntynen is a data scientist and quantum soft-
ware engineer working for Solita, based in Helsinki,
Finland. He holds a PhD in theoretical physics. Con-
tact him at joel.rontynen@solita.fi

Vlas Sokolov is a data scientist working for Solita,
based in Munich, Germany. He holds a PhD in astro-
physics. Contact him at vlas.sokolov@solita.fi

Timo Lehtonen is a senior software designer at
Solita, a consultancy company for software intensive
data solutions. He defended his doctoral degree in the
field of software engineering in 2017. Contact him at
timo.lehtonen@solita.fi

Tommi Mikkonen is a professor of software engi-
neering at University of Jyväskylä. He received his
doctoral degree in 1999 from Tampere University of
Technology. Contact him at tommi.j.mikkonen@jyu.fi

Manuscript February 2022 7


