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ARTICLE INFO ABSTRACT

Keywords: Locating the nodes of outdoor wireless sensor networks (WSNs) using (tri)lateration with a low-cost ranging

Range-based localization technique, such as the received signal strength indicator (RSSI), often results in inaccurate location estimates.

RSSI . This can mostly be explained by the combined effect of distance estimate errors and localization geometry,

?dfl‘ptnvet_ both of which are subject to the reference nodes used. To develop techniques for reducing localization error,
rilateration

the distance estimate errors and localization geometry must be analyzed and taken into account. To address
these challenges, this paper aims to seek ways to improve the quality of range-based trilateration localization
for WSN nodes in varying outdoor conditions. Based on simulations, we analyze the effects of ranging error
and localization geometry on localization error. For that purpose, we introduce a simple measure to evaluate
the geometry of reference triangle (GRT). To improve localization accuracy and precision, we propose an
adaptive range-based localization (ARBL) algorithm that is based on trilateration and reference node selection.
In ARBL, the GRT values are calculated for each 3-combination of a preselected reference node set, based on
which the combinations are selected. The algorithm exploits these reference node 3-combinations aiming to
find the best ones at a given time using a selection criteria that is based on ranging error and localization
geometry. The simulation and experimental results indicate that the proposed algorithm reduces localization
error considerably. This shows that it is possible to achieve sufficient localization accuracy using range-based
trilateration localization, even based on the RSSI in challenging outdoor conditions, by employing applicable
techniques and information.

Reference node selection
Wireless sensor network

1. Introduction In anchor-based localization, a few of the nodes are called reference
nodes (aka anchors, beacons, landmarks, or seeds), and their locations

In the last two decades, localization of nodes in wireless sensor are assumed to be known a priori [2,3,5-7]. Reference nodes are
networks (WSNs) has attracted the attention of numerous researchers. equipped with a GNSS receiver, or their locations are manually con-
Localization is one of the core services in wireless sensor networks, figured. Unknown (unlocalized) nodes use reference nodes’ coordinates
and the knowledge of nodes’ locations is useful or even necessary in with distance (or angle) estimates or other information to estimate their

many functions, services, and applications in WSNs [1-3]. Contrary
to traditional networks, WSNs are designed for specific applications,
and thus, have specific design constraints [1,4]. WSN nodes also have
much tighter resource constraints (e.g., limited communication range,
and limited energy, processing, memory, and storage capacity). These
constraints apply to localization algorithms and protocols in WSNs as
well. A technique commonly used to obtain location information is
Global Navigation Satellite Systems (GNSS), such as GPS or GLONASS.

However, adding a GNSS receiver to each WSN node is neither a cost- A i ¢ c )
effective nor energy-efficient solution in a large scale. Further, the time difference of arrival (TDoA), angle of arrival (A0A), or received

receiver’s operation is limited in some outdoor environments, such signal strength indicator (RSSI). Based on the distance estimates to

as under dense foliage or in urban canyons. Therefore, alternative the reference nodes, and the reference nodes’ coordinates, an unknown
. e

solutions are required. node can estimate its location using a location computation technique,

own locations using a localization algorithm.

Typically, localization algorithms in wireless sensor networks are
classified into two main categories: range-based and range-free algo-
rithms [2,6-10]. Range-based algorithms employ estimated inter-node
distances or angles in localization, whereas range-free algorithms use
connectivity (e.g., hop counts) or pattern matching (fingerprinting), for
example. In range-based localization, distance or angle estimates can
be obtained using ranging techniques, including time of arrival (ToA),
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such as Lateration [5,11] (trilateration or multilateration), Min-max
(bounding box) [11,12], or a probabilistic approach (e.g., maximum
likelihood).

Similar to the other range-based techniques, RSSI-based localization
has its pros and cons. On one hand, it is a low-cost, energy-efficient
technique requiring no additional hardware except a radio transceiver,
which makes it suitable for sensor networks. On the other, this ap-
proach is sensitive to changes in environmental and weather conditions
which often results in inaccurate range and location estimates [13-16].
Range-based localization error depends mainly on the combined effect
of the ranging error and localization geometry, that is, the locations of
the reference nodes relative to the unknown node [17]. Thus, the size
of the localization error varies depending on which reference nodes are
used, as ranging errors and localization geometry change accordingly.
Furthermore, some location computation techniques are more robust to
ranging errors and/or localization geometry than others [11]. Although
trilateration is a widely used, low-cost technique for location compu-
tation, trilateration is sensitive to ranging errors and the locations of
the reference nodes [17]. This may cause unpredictable variation in
the location estimates depending on the reference node set. In addition,
the same reference node combination may work for one unknown node
but not necessarily for another. Therefore, selecting suitable reference
nodes (i.e., those with the highest quality for localization) in each case
is important for achieving acceptable localization accuracy. Further-
more, selecting only a subset of reference nodes will reduce energy
consumption.

This paper aims to seek ways to improve the quality of range-based
trilateration localization for WSN nodes in spatially and temporally
varying outdoor conditions. Based on simulations, we analyze the
effects of ranging error and localization geometry on localization error
(in 2D). As a solution, we propose an adaptive range-based trilateration
localization (ARBL) algorithm that is based on reference node selection.
To reduce the computational load, the reference nodes are preselected
based on their RSSI value and geometry. Initially, a set of n reference
nodes with the best RSSI value is selected from the set of all reference
nodes. Geometry of reference triangle (GRT) values are calculated
for each 3-combination in this preselected reference node set. The
algorithm exploits these 3-combinations and aims to find the best ones
at a given time for computing the final location estimate of a node,
by adapting the reference node selection to the prevailing localization
geometry and ranging errors. The algorithm is scalable, and can be
implemented in low-cost, resource-constrained WSN nodes.

GRT is inspired by the geometric dilution of precision (GDOP),
which is commonly used in satellite positioning to describe the geo-
metric error caused by the mutual geometry of satellites. To calculate
GDOP, an estimate of the location and satellite location data is re-
quired. In contrast, the calculation of GRT is based only on the location
data of the reference points in the vicinity of the unlocalized node. The
distance of the reference point from the node is estimated based on
the RSSI value. GRT approximates well the so-called average HDOP
value, which is based on the average of the HDOP values of the different
position estimates at the plane (2D).

The results from the simulations and the collected experimental data
indicate that the ARBL algorithm can reduce localization error consid-
erably, resulting in much better accuracy than the nearest-neighbors
approach in a given set of reference nodes. It also produces smaller
localization error than EATL [18] and RNST [19] algorithms with
the applied simulation parameters. This shows that achieving usable
and accurate location estimates is possible, even in challenging and
varying outdoor conditions, provided that applicable techniques and
information are exploited. Overall, this study provides new insights into
RSSI- and range-based localization and its feasibility in wireless sensor
networks.

In summary, this paper makes the following main contributions:

» We analyze the effects of ranging error and localization geometry
on localization error.
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+ We introduce a simple measure to evaluate the geometry of
reference triangle (GRT), and propose an ARBL algorithm that is
based on trilateration and reference node selection.

» We evaluate the performance of the proposed algorithm using
simulations and real measurement data.

The remainder of this paper is organized as follows. In Section 2,
related studies are discussed briefly. In Section 3, the theoretical back-
ground related to the localization problem in scope is presented. In
Section 4, the effect of localization geometry and ranging error on local-
ization error is analyzed based on simulations. The proposed adaptive
range-based localization algorithm is presented in Section 5, followed
by the performance evaluation in Sections 6 and 7. Finally, after a short
discussion, the conclusion is provided in Section 8.

2. Related work

To date, several survey articles about localization in WSNs have
been published (e.g., [2,5-10,20,21]), classifying and presenting some
of the numerous localization algorithms and techniques proposed in
the past few years. In this section, we review several papers related to
our work, focusing on trilateration-based localization algorithms that
utilize reference node selection.

2.1. Anchor- and range-based trilateration localization algorithms

Many of the anchor- and range-based localization algorithms and
techniques proposed in the past few years are based on trilateration [2,
5,6,8]. Although extensively studied, most of the range-based (and
range-free) approaches do not take into account the effect of localiza-
tion geometry on localization error. The selection of reference nodes is
an essential part of range-based localization, and particularly important
for trilateration-based localization. Reference node selection greatly
affects the localization quality, and therefore, cannot be ignored. Often
reference nodes are selected either randomly or by using the nearest
neighbors approach without considering the localization geometry. By
selecting the reference nodes based on localization geometry and dis-
tance measurement error (and other metrics), localization error could
be considerably reduced.

2.2. Reference node selection algorithms

Despite the prevalence of anchor-based localization, relatively few
studies related to reference node selection algorithms have been con-
ducted. This subject is covered, for instance, in papers [17-19,22—
31].

In [22], a selective anchor node localization algorithm (SANLA) is
proposed. In SANLA (based on DV-hop), an unknown node computes
its location by trilaterations, in each of which one of the anchor nodes
is fixed (the reference node), and two are the combinations of the
other anchors. Next, the same anchor combinations are used with the
unknown node to compute the location of the fixed reference node.
These coordinates are compared with the real coordinates, and the
combination which produced the smallest error can be found and
reported to the unknown node. Now, the unknown node knows which
of its location estimates gave the best result, and considers that one as
the node’s coordinate. Although the algorithm was shown to produce
good results, its computation cost is increasing heavily along with the
increased number of nodes or anchor ratio.

The authors in [19] proposed a reference node selection algorithm
based on trilateration (RNST) for mobile nodes in indoor sensor net-
works. The unlocalized node computes the distances between each pair
of nodes, and finds out if any of the reference triplets can form a
nearly equilateral triangle. Then the location estimates are computed
using all the possible equilateral triangles, and the average value is set
as the final estimate. However, the performance of the algorithm was
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evaluated using only the equilateral triangle placement of the reference
nodes.

The confidence-based iterative localization (CIL) algorithm is pro-
posed in [17]. The algorithm is based on the quality of trilateration
(QoT), a probabilistic metric that quantifies the geometric relationship
of the reference nodes and ranging errors, and indicates the accuracy
of the particular trilateration. In CIL, each node has a confidence value
indicating the accuracy and reliability of the location estimate, and it
is used as an evaluating indicator. The confidence of a node based on
trilateration is defined as a product of the QoT and the confidence of
the reference nodes in trilateration. The localization process is carried
out from high-confidence nodes (beacons with positioning devices)
to low-confidence nodes (others) iteratively using trilaterations. An
unlocalized node receives location information from reference nodes
(localized nodes) with different confidence values. At each stage, an
unknown node selects the trilateration with the highest quality (con-
fidence) to locate itself. At any time, the location estimate can be
refined if a higher-confidence location is available. The experiment and
simulation results showed that localization accuracy was significantly
improved by using CIL.

In a more recent work [18], the authors propose a distributed refer-
ence node selection algorithm based on error analysis for trilateration
localization (EATL). The algorithm complies with three principles for
optimizing the selection of anchor nodes to be used in trilateration. Two
principles are related to the distribution of the reference nodes, and
state that the minimum internal angle of the reference triangle should
be larger than 13° and its shortest edge as long as possible. The third
principle is related to the relative position between the unknown node
and the reference nodes, which also affects localization accuracy, and
states that the distances between the unknown node and the reference
nodes should be as similar as possible. The competitive performance
of the algorithm was demonstrated with simulations. However, the
distance errors applied in the simulations appear to be somewhat over-
optimistic, particularly if RSSI is used for ranging, which may reduce
the performance in real scenarios.

Improved trilateration localization with minimum uncertainty prop-
agation and optimized selection of anchor nodes (ITL-MEPOSA) is
proposed in [24]. The authors define the standard deviation of consecu-
tive distance estimates between an unknown node and an anchor node
as the uncertainty information. Optimized selection of anchor nodes
is based on minimum uncertainty propagation; that is, three anchors
that have the minimum product of the mean distance estimate and the
corresponding uncertainty information (SD) are selected. These anchor
nodes and the corresponding mean distance estimates are employed in
trilateration. However, the effect of localization geometry is not dealt
with.

To tackle the issue of biased locations of reference nodes, in [23]
the authors proposed a method for selecting reference nodes based
on hierarchical clustering. Based on their coordinates, reference nodes
are divided into separate groups, and references belonging to different
clusters are selected for trilateration.

In [25], distributed algorithms to select a subset of reference nodes
to minimize the error of localization (CRLB of variance) was stud-
ied when global (global-nearest-neighbor, global-crlb) or only local
(local-nearest-neighbor, local-crlb) information is available. The au-
thors proposed an algorithm, called local-crlb, which uses distances
and the CRLB on localization error for selecting the references. The
simulation results showed that local-crlb achieved significantly smaller
location error than the often used nearest-neighbor approach (local-
nearest-neighbor). The authors extended their investigations in [26] by
analyzing distributed algorithms for selecting subsets of references for
localization regarding location error, energy consumption and commu-
nication. Three algorithms (RS-GC, RS-LC, RS-LC-CR) use the CRLB on
localization error for selecting while two algorithms (RS-GD, RS-LD)
are conventional, distance-based algorithms. For both local and global
knowledge, CRLB-based algorithms achieved better accuracy than the
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conventional ones. The algorithms with global knowledge achieved
the smallest error, but with the price of higher energy consumption
and communication overhead. However, RS-LD achieved the best ratio
between location error and energy consumption. While CRLB consid-
ers both ranging errors and localization geometry, it requires some
prior knowledge from the network (e.g., variation of RSSI, path loss
exponent), and may be computationally expensive.

A node selection algorithm based on RSS threshold, called Node-
selection Least Squares (NS-LS), is proposed in [27,29]. The idea is
to select the highest RSS threshold guaranteeing a mean number of
anchor nodes (N,,) inside the range of all the nodes. The N,, value
is chosen to optimize the trade-off in position accuracy versus energy
consumption, and it was achieved when N,, = 3. When compared
with ML estimation, NS-LS showed similar performance in localization
accuracy while the reduction in energy consumption was considerable.
In [28,29], the authors improved their distributed and cooperative
RSS-based localization algorithm by combining the node selection with
real-time path loss estimation (OLPL-NS-LS). For the node selection,
two criteria depending on the path loss estimates was proposed to
reduce the number of cooperating nodes: low path loss selection for
selecting the nodes with the lowest path loss exponent and, thus, better
propagation conditions; low distance selection for selecting the closest
nodes to reduce distance error estimates, which was shown to achieve
better performance. It was shown that OLPL-NS-LS outperformed ML
and MDS algorithms, and that having a smaller number of cooperative
nodes reduced the energy consumption without affecting the accuracy.
However, computing the location estimates using the proposed iterative
approach involves many steps and requires initial location estimates.

Applying game theory and utility functions, the authors in [30]
proposed a reference node selection strategy based on utility function
for iterative multilateration based algorithms. Utility function includes
the relevant information for the node selection, and it is comprised of
the benefit indicator and the cost function, and models the trade-off
between them. Here, CRLB is inversely proportional to the benefit, and
the cost is proportional to distance. Each reference node combination
is a possible coalition, and the coalition value for each is computed
based on the utility function. Then, the subset of reference nodes with
the highest coalition value is used for localization. Simulation results
showed that higher coalition values resulted in more accurate location
estimates. As compared to random selection and closest distance se-
lection, the utility based selection achieved smaller localization error.
In [31], the authors addressed the reference node selection problem
for cooperative localization by modeling the localization process as a
cooperative game. They also proposed a randomized search method
exploiting spatial correlation (in terms of GDOP or CRLB) among the
reference nodes in coalition to reduce computation complexity. Besides
ranging quality and node geometry, anchor uncertainty was included
into the node selection via the squared position error bound (SPEB). In
the utility function, benefit is inversely proportional to SPEB, and cost
is proportional to the number of selected nodes and their distance to
the coalition head. However, the SPEB is calculated using the estimated
locations as input which may produce errors.

Collectively, these studies outline a critical role for selecting ref-
erence nodes in the localization process. Some of the proposed tech-
niques consider either localization geometry [18,19,23] or ranging/
localization error [22,24] in the selection, and some consider both [17,
25,26,30,31]. Some of the algorithms take also the energy efficiency
into account [26], or try to optimize the trade-off between localiza-
tion accuracy and energy consumption [27-29]. Further, the anchor
uncertainty can be utilized in the reference node selection [31]. Un-
fortunately, increasing the localization accuracy often reduces energy
efficiency due to increased computation and/or communication cost.
Some algorithms might use iterative approaches, require initial location
estimates, or some prior knowledge from the network. Sometimes the
algorithm is evaluated based on simulations using parameters or setups
which may be unrealistic. Or the scalability of the algorithm is bad. We
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recognize the importance of taking the ranging error and localization
geometry into account in localization. In our approach, we aim at
improving the localization geometry by selecting the reference nodes
for trilateration based on a simple evaluation. Further, we consider the
combined effect of ranging error and localization geometry in comput-
ing the final location estimate. The proposed method was designed and
evaluated based on simulations and real RSSI measurement data from
an outdoor sensor network. This approach is scalable and low-cost, thus
enabling its implementation in WSN nodes.

3. Theoretical background

A sensor network can be represented by an undirected Euclidean
graph G = (V,E), where V = {v,05,...,0s, Uppyqs --. - U, } is the set of
n nodes, and e = {v;,v;} C E if the nodes v; and v; are connected.
The nodes are connected if their inter-node distance w(e) is smaller
than their radio range, which can be defined as distance or based on
RSSI. Generally, nodes are assumed to be aware of their neighboring
nodes. In V, the set of m unknown nodes U" = {v,,v,,...,0,}, and
the set of n — m reference nodes R = {v,,,,...,v,}. Considering two-
dimensional (2D) case, the localization problem can be defined as:
Given a multihop network G = (V, E), a set of reference nodes R with
the known locations (x,, y,) for all r € R, and the inter-node distances
w, the aim is to find the unknown locations (x,, y,) for all u € U'.

A typical range-based localization algorithm employs some ranging
technique (RSSI, ToA, TDoA) to estimate the inter-node distances,
and an appropriate location computation technique to compute un-
known node locations. In this context, the distance estimates needed
in localization can be obtained using any ranging technique. As the
experimental part of this study is based on distance estimation using
RSSI, in this section we describe the techniques commonly used for
RSSI-based ranging and location computation. Furthermore, some of
the main factors affecting RSSI- and range-based localization accuracy
are briefly discussed.

3.1. RSSI-based ranging

The principle behind RSSI-based ranging techniques is that a radio
signal decays (its amplitude decreases) when it travels farther from the
transmitter. A popular model used to reflect the path loss of a radio
signal is the log-normal shadowing model, which can be expressed as (see,
e.g., [10,32]):

P.(d) = P.(dy) — 10nlog <di) +X,, )
0

where P.(d) (or RSSI(d)) is the received power [dBm] at distance d
[m] from the transmitter, P,.(dy) (or RSSI(dy)) is the received power
[dBm] at the reference distance d,, (usually 1 m) from the transmitter,
n is the path loss exponent (PLE), and X is the zero-mean Gaussian
random variable with the variance of 2, that is, X ~ N(0,c45). The
value of P.(d,) can be estimated, for example, by using the Friis free-
space equation, or it can be a predefined or empirically measured value.
In addition, the PLE n can be predefined, or computed either offline
or online by using, for example, fixed reference nodes with known
distances.

Eq. (1) without the stochastic term X, is often referred to as the
log-distance path loss model, expressing the average received power at
distance d from the transmitter. The log-distance path loss model can
be used to estimate the distance d [m] between two neighboring nodes
as follows:

d = dy 10P-do)=Pdn/10n, )
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Fig. 1. An example of trilateration with accurate and inaccurate distance estimates.
Using the correct distances (d;) leads to the accurate location (x,y) while using the
erroneous distances (zi,) leads to the inaccurate location estimate (%, §). In the figure,
i=1,...3.

3.2. Lateration

Lateration is a commonly used location computation technique in
WSNs, and it refers to the technique of determining an unknown node’s
location based on three (trilateration) or more (multilateration) reference
nodes with known locations and the measured distances (e.g., based
on the RSSI) to them [3,11,33]. In two-dimensional space, distances
to at least three non-collinear reference nodes are required to obtain
a unique solution. Next, mathematical basics for lateration are briefly
described.

Assume that the locations of n reference nodes are x; = (x;,y,),
and that the distances between the unknown node x = (x, y) and the
reference nodes are d;. This leads to the following set of n equations:

G =)+ -y =d, 3

where i = 1,...,n. The equations can be linearized, for example, by
subtracting the last nth equation from all the preceding ones. After re-
arranging the terms, we obtain the following system of linear equations:

Ax =b, 4
where the coefficient matrix

2(x, = x1)
2(x, = x3)

2y, — 1)

A= 2y - ¥2)

2(xn _xn—l) 2(yn _yn—l)

and the right-side vector

b=
2 2 2 ' 2 2 2
dn—l _dn_xn—l _yn—1+xn+yn

The algebraic solution for Ax = b, and thus, the location (estimate) of
the unknown node is

x=(ATA)'ATh. 5)

In practice, the distance estimates are erroneous to some extent,
resulting in varying localization error. An example of trilateration with
inaccurate distance estimates is illustrated in Fig. 1. To mitigate the
effect of inaccurate distance estimates, more than three reference nodes
and distance estimates could be used [33]. On average, the localization
accuracy increases with the number of reference nodes used (to some
point) provided that their observations are independent [26]. The
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increase of accuracy is logical since more information can be used for
localization. In the case n > 3, Ax = b is an overdetermined system of
linear equations for which we can find a least square solution % that
minimizes the mean square error, that is:

% = arg, min ||Ax — b||°. 6)

Although adding extra reference nodes should improve the estimate, it
will also increase the computation and communication cost. The system
of linear equations comes bigger and require various solving meth-
ods [33]. Further, communication to each reference node is required. In
resource-limited WSNs, the trade-off between localization accuracy and
efficiency often need to be done. Achieving high localization accuracy
with a minimum number of reference nodes is still an open research
problem [10].

3.3. Factors affecting localization accuracy

Localization accuracy is the most important metric to evaluate the
performance of a localization algorithm or system. Often, the accuracy
is presented as a mean absolute localization error (MAE) of the nodes in
the network (or the samples for a node), that is, the difference between
the estimated and ground truth locations. Localization error can be also
presented as relative to radio range.

Localization error A%; for node (or sample) i is defined as:

A% = 1% x| = /(& =) + (G - 0% @)

where %; = (%;,9) and x = (x,y) are the estimated and ground
truth locations, respectively. The mean and the standard deviation of
localization error, A% and s,;, respectively, are defined as:

®

where n is the number of nodes (or location estimate samples).

In the following, we briefly introduce some of the main factors
that affect the accuracy (or precision) of RSSI-based node localization.
Most apply to anchor- and range-based localization in general. The
magnitude of the effect on the localization error depends, for example,
on the joint effect of the factors, and the localization algorithm used
(see, e.g., [11,34] for a detailed analysis). We categorize the factors
into two main groups: (1) distance estimation error and (2) localization
geometry. In addition, algorithmic error has an effect on localization
accuracy.

3.3.1. Distance estimation error
Ranging error. Ranging error is the difference between the estimated
and the true inter-node distance.

Ranging error Ad, for sample i is defined as:

Ad, =d, —d, 9

where d; and d are the estimated and the true distances, respectively.

The mean and the standard deviation of the ranging error, Ad and s Al
respectively, are defined as:

— 1w s
Ad:;;‘Ad[

where n is the number of distance estimate samples.

Ranging has a significant role in range-based localization, and rang-
ing accuracy impacts localization accuracy [5,10,11,35]. Ranging error
is probably the most significant and characteristic factor that impairs
RSSI-based localization accuracy, mainly because of the sensitivity of
the RSSI to changes in environmental and weather conditions [16].
The sources of error in RSSI-based ranging can be divided into external
(e.g., propagation environment, weather conditions, interference) and
internal (related to node’s HW) factors. Two major sources of error are

n n
1 > 1 »
CSai =1y 2Ad, - - X 4d)?, (10)
i=1 i=1
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path loss exponent (PLE) estimation error (see, e.g., [16,36]), and tem-
perature change (see, e.g., [13,15,16]). Other sources of error include
RF transceiver related issues, antenna characteristics, interference, and
other weather conditions (e.g., humidity, rain, snow). Furthermore, the
choice of which ranging technique is used affects the final localization
accuracy (e.g., RSSI vs. TDoA) [5,10]. The effect of distance estimates
on localization accuracy is clear, as can also be seen by looking at the
equations for lateration. Reducing ranging error is the key to improved
distance estimation and localization accuracy [35]. Our previous pa-
pers [15,16] focused on finding the reasons behind the RSSI-based
ranging error, and proposed some error mitigation techniques.

Node degree. The degree of a node u, deg(u), is the number of its
neighbors (i.e., links). The average node degree of a graph G (i.e., the
network) is denoted as

deg,, (G) = rl, Y deg(w), an
u=1

where n is the number of nodes [37]. The average node degree (con-
nectivity, the average number of neighbors) affects the localization
error indirectly through distance estimation error in multihop cases.
The connectivity depends on the node density, p = n/A (i.e., the
number of nodes per unit area), and the radio transmission range [37].
Many localization algorithms are sensitive to the connectivity (or node
density), and it has a strong effect on their localization accuracy [6,11].
Further, RSS-based ranging technique requires higher node density than
time-based (ToA) to achieve good localization accuracy [32]. A bigger
node degree (greater number of neighbors) results in straighter paths
and increases the number of options for finding a shortest path to the
reference nodes [11,34]. On average, increasing the average number
of neighbors (node density) decreases localization error [11,20,32,34].
Nodes at the border areas of the network have a lower node degree, on
average, than that of nodes in the middle [37].

Network topology. Network topology affects the localization error in-
directly through the distance estimation error. The network may be
anisotropic for an unknown node (e.g., due to holes or blocks between
it and the reference nodes), which leads to overestimation of dis-
tances. Localization accuracy greatly depends on the network topology;
irregular and random topology usually results in larger localization
error [6,10,20]. In irregular topology, node density in some regions
may differ largely from the average node density of the network [10].
Therefore, large variation in the node degree values between the nodes
may indicate a bad network topology.

3.3.2. Localization geometry
The number and location of reference nodes. The number (or percentage)
and location of reference nodes used in node localization define the
localization geometry. Dilution of precision (DOP) is a measure that
refers to the geometry of the distribution of reference nodes relative to
an unknown node used to estimate its location [34,38,39]. Geometric
dilution of precision, GDOP, is commonly used in GNSS applications
to describe the geometric error caused by the mutual geometry of
satellites. Statistically, DOP can be seen as a multiplier of the expected
localization error [38]. Smaller DOP indicates better distribution of the
reference nodes and therefore, better location precision. An example of
two different localization geometries is illustrated in Fig. 2.

As a measure of localization geometry in the two-dimensional case,
horizontal DOP (HDOP) can be used (see, e.g., [39]). First, we construct
a geometry matrix H,

X=X Y=y
R, R,
X=X Y=)
, 12)
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Fig. 2. An example of a good (left) and bad (right) localization geometry.

where (x, y) and (x;,y,), i = 1, ..., n, are the coordinates of an unknown
node and the reference nodes, respectively, and R; is the Euclidean
distance between the unknown node and reference node i, defined as

R; = \V (x— x,‘)2 +(y- y[)z'
The covariance matrix G can be derived as follows:
G=H'H)", 13)

from which HDOP can be computed as follows:

HDOP = \/ag +o2= \/GLl +G,,. (14)

The location of reference nodes (their geometric relation) has a
significant effect on localization accuracy [6,10,17,31]. Further, the
relative location between the unknown and reference nodes affects the
accuracy [10,18]. Consequently, if more than three reference nodes
are available, the selection of reference nodes based on localization
geometry can be used to improve localization accuracy [18,19,23,25,
26,30,31]. Thus, localization error might be reduced by selecting only
the most suitable references for a node. In addition, the localization
accuracy depends on the number (density) of reference nodes [6,7].
Increasing the number of reference nodes tends to increase localization
accuracy to some extent [10,11,18,29,34].

As shown above, HDOP is based on the relative locations of the
unknown node and reference nodes. In [39], it was shown that HDOP
values vary widely as the relative position of the node to be located to
the fixed reference nodes changes. Therefore, its validity depends on
how accurate the location estimate of the unknown is. To overcome this
uncertainty, we defined a simple measure for localization geometry,
called the geometry of reference triangle (GRT), in the case when three
reference nodes are used (i.e., trilateration). Unlike HDOP, GRT de-
pends only on the known locations of the reference nodes. Specifically,
GRT defines the ratio of the edges of the reference triangle as:

GRT = &, (15)
dmin + dmd

where d, ., dnin, and d,q are the maximum, minimum, and median
edge length of the reference triangle, respectively, and GRT = [0.5, 1].
In the ideal case (GRT = 0.5), the reference nodes form an equilateral
triangle (d, = d) = d;, £y, 3 = 60°), while in the worst case (GRT = 1),
the reference nodes are collinear. In practice, the ratio of the edges,
as shown in Eq. (15), determines the size of the smallest angle in the
triangle. At the general level, GRT describes the effect of geometry
of reference nodes on localization. As compared to HDOP, GRT is
computationally much simpler. Further, when applied with inaccurate
location estimates, the computed HDOP is misleading unlike GRT,
which is based on the known reference node locations only. Also, the
usage of HDOP requires that location estimates are already computed
while GRT does not. For GRT, it is necessary only to preselect the
reference nodes based on RSSI values. Therefore, GRT is more practical
and energy-efficient in the real scenarios.
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Fig. 3. Simulation setup. 500 unknown nodes (crosses) and three reference nodes (R1,
R2, R3).

Error in reference nodes’ locations. The effect of inaccurate reference
nodes’ locations on localization error is also clear, as can be seen
in the lateration equations, and it results in erroneous distance and
localization geometry estimates. If the reference nodes’ locations used
in the location computation are erroneous, whether or not the ranging
error exists, the distance estimates will be incorrect. Moreover, an
error in the reference nodes’ locations affects the localization geom-
etry, as the locations used in the location computation are distorted.
This leads to different DOP (and GRT) and localization accuracy and
precision. As stated in the literature, the accuracy (uncertainty) of the
reference nodes’ locations affects the localization accuracy of unknown
nodes [31,34,35]. Usually reference nodes’ locations are based on GNSS
and may have a large variation [40]. Particularly, if regular nodes are
used as references (virtual anchors) after they have obtained their own
location estimates with some uncertainty, it has effect on localization
accuracy [31,35]. Our previous paper [40] focused on reducing the
location error of GNSS-based stationary reference nodes.

4. Localization error analysis

Although the role of ranging error and localization geometry in
localization error has been widely recognized in the literature, it is
necessary to know the mechanism in more detail. In this section,
we analyze the effect of localization geometry (HDOP and GRT) and
ranging error on localization error through simulations. The purpose is
to show the need for an algorithm that takes both these aspects into
account.

4.1. Simulation setup

We analyzed the effect of localization geometry and ranging error
on localization error through simulation setup, as shown in Fig. 3. The
setup consisted of 500 unknown nodes uniformly distributed in the area
of 100 x 100 m (x,y ~ U(0, 100)), and three reference nodes (R1, R2,
R3). Reference nodes R1 and R3 were fixed, and the location of R2
was changed between R2 and R2’ by varying the angle « from 60° to
0.5° in step of 0.5°. Distance measurement error, Ad, was uniformly
distributed, that is, Ad ~ U(—¢,¢€). where € = {0.1,0.15,0.2,0.25,0.3}d.
Thus, we assume that the distance measurement error is relative to
the measured distance between the unknown and the reference node,
d, and that each unknown node can directly communicate with the
reference nodes (i.e., are within their radio range). For each com-
bination of Ad and «, the location estimates of the unknown nodes
were computed using trilateration, and the corresponding localization
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Fig. 4. An example of different localization geometries and the corresponding HDOP and GRT values. As can be seen, the HDOP value (in colors) depends also on the location
of an unknown node while the GRT value does not. Smaller HDOP and GRT values indicate better localization geometry. The resolution of the grid to compute the HDOP values
is 0.2%x0.2 m, i.e., a total of 250000 grid points in the area of 100 x 100 m. The HDOP values outside the range [1,5] are clamped to the first (< 1) or last (> 5) colormap color.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1

Parameters used in the simulations.
Parameter Value
Network area 100 X 100 m
Number of unknown nodes 500
Number of reference nodes 3
Angle « [60.0,0.5]°
Ranging error (4d ~ U(-¢,¢)) £ =1[0.1,0.3]1d

errors, HDOP, and GRT were computed. To implement lateration (as
described in Section 3), we used the MATLAB mldivide function [41] to
solve the system of linear equations Ax = b for x. For each scenario,
the mean absolute error (MAE) of the location estimates (n = 500)
and localization error standard deviation (SD) was computed, as well
as the average HDOP. The average HDOP (AvgHDOP) was computed
by averaging the HDOP values of all the unknown nodes (n = 500).
The parameters used in the simulations and their values are shown in
Table 1.

4.2. Effects of ranging error and localization geometry on localization error

The geometry of the reference nodes and unknown node has a
significant effect on localization. We used two metrics, HDOP and
GRT, to analyze this effect. We also show the relationship between
HDOP and GRT. For reference node selection, we use only GRT that is
computationally lighter and thus more suitable for resource-constrained
nodes. The value of HDOP depends on the locations of the unknown
node and the reference nodes, while GRT depends only on the locations
of the reference nodes, as shown in Fig. 4. Generally, the better geom-
etry of the reference nodes results in better HDOP values on average,
and also in smaller variation. However, there can be large variations
depending on the location of the unknown node, particularly when the
reference nodes’ geometry is bad, as shown in Fig. 4(b) and (c), for
example. As GRT defines only the ratio of the edges of the reference
triangle, there can be multiple triangles with the same GRT value but
different reference locations. This results in different HDOP values and
localization errors, on average. Typically, the best HDOP values can be
achieved by placing the reference nodes at the edges of the network in
a regular shape.

The relationship between AvgHDOP and GRT values is illustrated in
Fig. 5(a). As can be seen, the relationship is linear when GRT is below
0.9 approximately. This indicates that, on average, GRT approximates
the AvgHDOP, and we can use GRT instead of HDOP to measure the
localization geometry. Actually, the relationship between the AvgHDOP
and GRT results from the fact that when HDOP is averaged over the
network (nodes) it evens the effect of the unknown node location and
emphasizes the effect of the reference nodes. When GRT is above 0.9

approximately, AvgHDOP starts to increase fast. This results mostly
from very high HDOP values at the locations close to or in line with the
reference nodes, as can be seen in Fig. 4(c). Therefore, it is important
to exclude the reference node combinations with high GRT values from
location computation. It should be noted that the correlation between
the AvgHDOP and GRT depends on the number and distribution of the
unknown nodes.

The effect of GRT on localization error (MAE) is illustrated in
Fig. 5(b). As can be seen, MAE clearly increases when GRT increases.
Likewise, the increasing of distance measurement error (4d) increases
MAE. The effect of distance measurement error on localization error
is bigger when localization geometry is worse (bigger GRT and AvgH-
DOP). This shows that localization geometry and ranging error both
have a significant effect on localization error. When the localization ge-
ometry (GRT) gets worse, the variation in HDOP values increases. This
results in higher variation in localization error, too, as the localization
error of a node depends on its location relative to the reference nodes.
To illustrate this, the localization error (MAE+SD) vs. GRT (¢ = 0.1d)
is shown in Fig. 5(c). It reveals that the variation of localization error
also increases when GRT increases, together with MAE. Therefore, it is
very important to exclude the reference nodes with bad geometry (high
GRT value). This way we can reduce the mean and standard deviation
of localization error, and also reduce the effect of ranging error.

5. Adaptive range-based localization algorithm based on trilater-
ation and reference node selection

Ranging errors and localization geometry vary throughout the net-
work, and depend on the reference nodes applied for localization. This
inevitably leads to varying localization errors for a node depending
on the reference set used. Based on the findings from simulations and
experiment, and further analysis, we propose an ARBL algorithm that
aims to find the best combinations of reference nodes at a given time.
The proposed algorithm computes an unknown node’s location estimate
for each combination of three reference nodes (i.e., trilateration) that
fulfills the specified conditions, and selects n combinations based on a
criterion to be used in the final location computation. The purpose is to
reduce localization error by adaptively selecting the most appropriate
reference nodes and location estimates at a particular time, while
aiming to keep the algorithm as cost-effective and scalable as possible.
Actually, the ARBL algorithm could be applied to the combinations of
more than three reference nodes which might reduce the localization
errors. In that case, however, the computation of GRT values and
lateration would be computationally more expensive. In the following,
a more detailed description of the algorithm is given.
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Fig. 5. The effect of localization geometry and ranging error on localization error (based on the simulation setup shown in Fig. 3). (a) AvgHDOP vs. GRT, (b) Localization error

(MAE) vs. GRT, (c) Localization error (MAE+SD) vs. GRT (n = 500).

5.1. Algorithm description

The flow chart of the proposed algorithm (ARBL) is presented in
Fig. 6. We divide the algorithm into four phases and discuss them in
order.

5.1.1. Selecting reference combinations

In the beginning, an unknown node forms a reference set of the
n best reference nodes based on the RSSI values; that is, Sgpr =
{i | RSSI; € max, RSST}, where i is the reference node index. By
ruling out the reference nodes with bad RSSIs, we are trying avoid
the references that are distant or have a bad link. In general, distance
estimates should be better for shorter distances [32]. Then, the node
generates all possible 3-node combinations of Sy p; that is, C(n,3) = j
combinations (C, ... ,C;). For example, if n = 5, the number of combi-
nations C(5, 3) = 10. Using more than five reference nodes increases the
number of combinations quickly; the total number of k-combinations of
n nodes is (:) = #lk), If less than five reference nodes are available,
the number of 3-node combinations would be C(4,3) = 4 or C(3,3) =
1, which would probably downgrade the performance. Therefore, for
a proper functionality, at least five reference nodes are needed. For
trilateration, three reference nodes at the minimum are required.

5.1.2. Evaluating reference triangles

The node evaluates the suitability of reference triangles for local-
ization based on their geometry. For each combination C;, the node
computes the GRT value, GRT = %, where d,.., dmin, and dp g
are the maximum, minimum, and median edge length of the reference
triangle C;, respectively. To rule out possible badly formed triangles,
we set the following condition for the ratio of the edges that must be
fulfilled:

GRT; < GRT,,, (16)

where GRT; is the GRT value for combination C;, and GRT,, is the
given threshold value for GRT. By changing the threshold value, GRT};,
the condition can be tightened or loosened. This condition rules out
nearly collinear and otherwise badly formed reference node combi-
nations which may have a negative effect on localization accuracy.
The elimination of nearly collinear reference triangles is an essential
part of the algorithm. Good triangles can tolerate larger distance er-
rors and produce reasonable localization accuracy, while bad triangles
may produce very large localization errors even with relatively small
distance errors (see Fig. 5). It is possible that all combinations of the
n closest reference nodes are unsuitable for localization. In a very bad
geometry scenario (GRT > GRT},), the initial location estimates will
be computed for all the combinations.

In general, the unknown node should be inside the convex hull of
the reference nodes. As we know only the location estimates, which
are probably inaccurate, the reasoning based on them whether the
node is inside or outside the convex hull is uncertain. Furthermore,

convexity alone does not describe the suitability of the reference nodes.
A node outside the convex hull may have a better localization geometry
(HDOP) than inside it, depending on the situation (see, e.g., [39] and
Fig. 4). In addition, calculating HDOP based on the location estimates
can be misleading. However, as we know the shape of the reference
triangles exactly, we chose to use that information to evaluate the
suitability of the reference nodes. Further, GRT can be used to exclude
the bad combinations before any locations are computed which is more
energy-efficient.

5.1.3. Computing initial location estimates

If the conditional statement above is true for the particular reference
triangle C;, the node will compute its initial location estimate by
applying the reference node coordinates and the distance estimates in
trilateration. The node computes an initial location estimate, (%;, y;), for
each reference node combination C; that fulfills the condition defined
in Eq. (16).

5.1.4. Computing the final location estimate

To estimate the error of each location estimate %, we first compute
the difference between the distance estimate d; to the reference node
i (e.g., based on RSSI) and the distance d[.’ to the reference node
i computed based on the location estimate. The difference, Ad;, is
computed as:

Ad;=d, — /(& = x)2+ G- y)2,

d!

i

a7

where (%, §) are the coordinates of the location estimate, and (x;, ;) is
the location of reference node i. The basic principle is illustrated in
Fig. 7.

As a criterion for trying to find the best location estimates, we use
the average of the absolute distance differences, Ad (the smaller the
better). Specifically, 4d is computed for each approved reference node
combination of an unknown node as follows:

R N Y
n; di=\G=x2+G =)

where n = 3 is the number of reference nodes. The rationale behind the
criterion is the hypothesis that the smaller the Ad, probably the smaller
the localization error, on average. This is actually close to the idea of
the least squares estimation in localization, in which the sum of the
squared residuals, that is, the differences between the location estimate
and distance estimates, is minimized. A similar approach was applied
in [11], for instance, where the average of the distance differences
was used to check the validity of a location estimate. To justify this
hypothesis, the relationship between GRT, average Ad, and localization
error is illustrated in Fig. 8 (based on the setup in Section 4). As can be
seen in Fig. 8(a), Ad, averaged over the nodes, increases with GRT, that
is, when the localization geometry gets worse. Accordingly, localization

d= , (18)
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Fig. 6. Flow chart of the ARBL algorithm.

error (MAE) increases with average Ad, on average. Bigger ranging
error combined with bad geometry results in larger average Ad and,
consequently, larger localization error (MAE). Therefore, Ad can be
used as a justified approximation of localization error.

The final location estimate, (%, 9), is then computed by averaging the
n initial location estimates from the combinations that have the smallest
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Fig. 7. Principle of computing the difference (4d,) between the distance estimate (d,)
and the distance based on the location estimate (d;).

Ad as follows:

e (1. 19,
%.9) = (; fo’;Zyz) i 19)
! |i€min,, Ad

i

where i is the index of the reference set, and (%;, ;) is the corresponding
location estimate. To improve robustness, we use averaging instead of
simply taking the location estimate with the smallest Ad.

5.2. Implementation issues

Although implementation of the proposed algorithm (ARBL) is not
in the scope of this paper, we briefly discuss some of its aspects
next. Overall, the algorithm is scalable and low cost, and it can be
implemented in typical resource-constrained WSN nodes.

5.2.1. Selecting reference combinations

A node can initiate the localization process either by sending a
request to the sink or reference nodes (active) or without request by
receiving periodic beacon messages (passive). Either way, the sink or
reference nodes broadcast beacon messages, which are received and
forwarded by other nodes. This can be repeated consecutively for
different radio channels (if used). Based on the link RSSI values, the
node forms a reference set of the n best reference nodes, and gener-
ates its three-node combinations, that is, a total of (;’) combinations.
Restricting the number of reference nodes to n (e.g., n = 5) makes
the algorithm scalable. Moreover, using only three reference nodes
(i.e., trilateration) makes the algorithm computationally lightweight
and energy efficient. This is noteworthy, as the computational complex-
ity of lateration increases rapidly with the number of reference nodes,
thus making it excessively heavy for low-cost WSN nodes.

5.2.2. Evaluating reference triangles

The node needs to know the edge lengths of a reference triangle to
evaluate its suitability for trilateration. The lengths can be computed
based on the reference node coordinates received in the beacon mes-
sages. By changing the value of the threshold, GRT,,, it is possible
to tighten or loosen the condition. Too small GRT;, would exclude
too many triangles while too big GRT,, would include badly formed
triangles. Further, this choice has an effect on localization accuracy, as
was shown in Section 4.



J. Luomala and I. Hakala

60 T T T
Ad ~ U(—0.1d,0.1d)
Ad ~ U(—-0.15d, 0.15d)
50 Ad ~ U(—0.2d,0.2d) 1
Ad ~ U(—0.25d, 0.25d)
Ad ~ U(—0.3d,0.3d)

Average Ad

0 L L L
0

0.6 0.7

GRT
(a)

0.8 0.9

13

Computer Networks 210 (2022) 108865

70 T T T T
Ad ~U(-0.1d,0.1d)

60 k Ad ~ U(—0.15d, 0.15d) _
Ad ~ U(-0.2d,0.2d)
Ad ~ U(—0.25d, 0.25d)

50 - Ad ~U(-0.3d,0.3d) ]
a0t ,
2
s 30 R

20 F s

10 E

0 1 1 1 1
0 10 20 30 40 50
Average Ad
(b)

Fig. 8. An example of the relationship between GRT, average Ad, and MAE based on the setup in Section 4. (a) The average of the absolute distance differences, Ad, averaged
over the nodes (n = 500) vs. GRT, (b) the mean localization error (MAE) vs. average Ad with different ranging errors. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)

5.2.3. Computing initial location estimates

The distance estimates needed in trilateration can be computed
in many ways. Regardless, distance estimates can be easily computed
in typical resource-constrained WSN nodes. In addition, if available,
distance estimates can be computed using other ranging techniques
than RSSI, such as ToA or TDoA, or together with RSSI as a hybrid
approach.

In trilateration, the node uses the estimated link distances and the
reference nodes’ coordinates to compute the location estimate. There
are alternative techniques for implementing the trilateration in WSN
nodes, which may differ in accuracy and computational complexity.

5.2.4. Computing the final location estimate

For evaluating each initial location estimate, the node needs to
know the distance estimates to particular reference nodes, and the
coordinates of the location estimate and reference nodes. These are
already known; thus, no extra communication is required. The final
location estimate is then computed by averaging the coordinates of the
n best initial location estimates based on the applied criterion.

5.3. Localization efficiency and scalability

The computation complexity of the ARBL algorithm is low. It uses
only low-complex techniques that can be easily computed in resource-
constrained sensor nodes. The computation of GRT for each reference
node combination is very simple, requiring only basic arithmetic oper-
ations. Trilateration is easy to compute as it uses only three reference
nodes and the related distance estimates in location computation.
Further, trilaterations are computed only for the best combinations
based on the GRT value. Computing the evaluation criterion for initial
location estimates and the final location estimate is also simple. Using
only a subset of nearby reference nodes and trilateration makes ARBL
energy efficient in terms of computation and communication.

The scalability of ARBL is good. It is a distributed algorithm using
only local information. Increasing the network size (number of nodes)
or density does not affect the computation complexity, as the size of
the reference node set is fixed.

6. Performance evaluation by simulation

The performance of the proposed algorithm was evaluated through
MATLAB simulations. In the following, we first describe the data and
methods used for evaluating and comparing the localization accuracy.
Then, we present and analyze the results.

10

Table 2

Simulation parameters of the trilateration-based ARBL algorithm.
Parameter Default value  Value/Range
Network area — 100 X 100 m
Number of setups — 200
Number of unknown nodes (N,,;) — 100
Total number of reference nodes (N,,,) 15 [6,25]
Number of nodes in reference set (N, ) 6 [5,10]
GRT threshold value (GRT,;,) 0.95 [0.65,1]
Number of estimates in final estimation (N4 .) 6 <[1,20]
Ranging error (4d ~ U(—¢,¢)) e=02d e =1[0.1,0.3]d

6.1. Simulation data and methods

To evaluate the applicability of the ARBL algorithm in different
scenarios, we analyzed its localization accuracy in several randomly
generated networks. Further, we studied the effect of different parame-
ters on its localization accuracy. The localization errors, averaged over
the nodes, were computed for 200 different setups. Each setup consisted
of 100 unlocalized nodes (N, = 100) and 6 — 25 reference nodes
(N,oy =6-25), uniformly distributed in the area of 100x 100 m (x, y ~
U (0, 100)). Distance measurement error, Ad, was uniformly distributed,
that is, Ad ~ U(—¢, €), where € = xd. Thus, we assume that the distance
measurement error is relative to the distance between the unlocalized
and the reference node. For simplicity, we also assume that each
unlocalized node can directly communicate with the reference nodes
(i.e., one-hop neighbors). The ARBL algorithm always uses reference
nodes’ 3-combinations in trilateration localization. The evaluation was
performed with MATLAB (R2020a) [41]. The parameters used in the
simulations and their values/ranges are shown in Table 2.

6.2. Simulation results

To evaluate the performance, we first compared ARBL to different
localization approaches in terms of localization error (MAE). These
were EATL [18], RNST [19], and lateration with a nearest-neighbors
approach. For EATL and RNST, we applied few different parameters’
values that were selected to be feasible in our setups. However, we
did not use iterations for EATL as in [18]. In the nearest-neighbors ap-
proach (NN(k)), for each unlocalized node, we always selected k closest
reference nodes for lateration. Here, we applied the NN(k) approach
with the values of k = {3,6,9, 12}. In this scenario, the total number of
reference nodes (N,,,) was 15, the number of nodes in a reference set
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Localization error [m] for ARBL, lateration with the nearest-neighbors approach (NN(k), k = {3,6,9,12}), EATL [18], and RNST [19]. MAE and
90th Percentiles of localization error for the nodes, averaged over the setups.

Algorithm Average® EATL parameters® RNST parameter® Not located
MAE 90th Percentile R r threshold, equilateral triangle criteria

ARBL 5.57 11.14

Lateration with NN(3) 38.34 52.42

Lateration with NN(6) 7.70 15.10

Lateration with NN(9) 8.91 16.95

Lateration with NN(12) 10.25 19.20

EATL 7.07 12.63 50 m 0.3R 0.8R 50.1%

EATL 9.19 17.48 50 m 0.3R 0.5R 23.0%

EATL 18.12 34.90 100 m 0.3R 0.4R 1.3%

EATL 18.80 37.95 100 m 0.I5R 0.25R 0%

RNST 7.59 14.28 <25°

RNST 6.73 12.63 < 50°

RNST 6.60 12.28 <75°

RNST 6.83 12.74 < 100°

aAveraged over 200 setups, 100 nodes in each.

bR = radio range, r = inner circle of the ring, threshold, = shortest edge length.

¢Equilateral triangle criteria = EL] 160° — a;.

(Nyes ser) Was 6 (i.e., the closest reference nodes), GRT threshold value
(GRT,;,) was 0.95, and the number of initial location estimates chosen
for the final location estimation based on the criterion (N f;,4 .5,) Was 6.
The distance measurement error Ad ~ U(—0.2d,0.2d). The localization
error (MAE) of ARBL, EATL, RNST, and NN(k) with k = 6 (which gave
the smallest average error) in each setup is shown in Fig. 9. As can be
seen, ARBL outperforms the other approaches over the range of setups,
with only few exceptions (it is the worst one in 2 out of 200 (1%), and
the best one in 182 out of 200 (91%) setups). The high peaks are mostly
due to few nodes that had very bad localization geometry. For example,
the median error for the setup that has the highest MAE is about 5 m.
The localization errors (MAE and the 90th percentiles of the errors)
averaged over the setups for ARBL, EATL, RNST, and the lateration with
nearest-neighbors approach (k = {3,6,9, 12}) are shown in Table 3. As
can be seen, ARBL produces smaller localization error than by using
the closest reference nodes, regardless the number of references. The
localization error of ARBL is also smaller than that of EATL and RNST,
although RNST gets quite close. For EATL, it should be noted that the
high number of nodes is not located as we did not use any iterations.
However, the results should give an estimate of its accuracy. Moreover,
the performance of the algorithms depends on the parameter values
used which makes their comparison quite challenging. Regardless, this
shows that taking the effect of localization geometry and ranging error
into account when selecting the references results in better outcome,
in general. Furthermore, it is computationally cheaper to use only
minimum number of references (= 3) in lateration.

Next, we investigated how different parameters affect the perfor-
mance of ARBL when Ad ~ U(—¢, ), where € = {0.1,0.15,0.2,0.25,0.3}d.
First, the effect of the total number of reference nodes (N, ) on
localization error was studied with N,, = {6,10,15,20,25}. The other
parameters were set to the default values (N, ;,, = 6, GRT,;, = 0.95,
N finaiest = 6)- The results are shown in Fig. 10(a). As expected, local-
ization error decreases when the number of reference nodes increases,
probably because there will be more references in a close proximity.
Further, increasing ranging error results in increased localization error,
which is also intuitive. When N,,, is 15 or more, localization error of
ARBL drops below 10 m, on average, even for ranging error as high as
30%.

The effect of the number of nodes in a reference set (N, ,,) on
localization error was studied with N,,, ., = {5,6,7,8,9, 10}, while the
other parameters were set to the default values (N,,, = 15,GRT,;, =
0.95, N fipgi oy = 6). The results are shown in Fig. 10(b). As can be
seen, the localization error seems to be quite independent of the value
of N,./ o (slightly increasing, particularly for high ranging errors),

= 6-38. This is surprising, since

reaching its smallest value when N, ; ,
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increasing the number of nodes in a reference set (N, ) increases
the number of reference node combinations and, therefore, the number
of potentially good combinations. However, the bigger the N,/ ., the
bigger are the distances and distance errors between the references
and the unlocalized node, on average, which may partly explain the
behavior.

The effect of the GRT threshold value (GRT,;) on localization error
was studied with GRT,, = {0.65,0.7,...,0.95,0.96,...,1}. The other
parameters were set to the default values (N,,, = 15, N, o
6, N final est = 6). In this case, only the GRT,;, condition of ARBL was
used. The results are shown in Fig. 10(c). As can be seen, changing
the value of GRT,, does not have much effect on localization error
when GRT,, is below 0.9. However, above it, localization error starts to
slowly increase. When GRT,, is above 0.99, the effect on localization
error is drastic. This indicates that GRT;, should be used at least to
exclude the combinations with very bad localization geometry.

The effect of the number of estimates in final estimation (N ;.4 ¢5)
on localization error was studied with N, . = {1,...,20}. The
other parameters were set to the default values (N, = 15, Ny,r o =
6, GRT,, = 0.95). The results are shown in Fig. 10(d). As can be seen,
the localization error reduces first when N, ., increases, reaching
its optimal values between 5 and 7. Localization error starts to increase
again after N, ., gets bigger until it is around 15. Above that,
increasing the value of N, ., does not affect localization error much.
This may be explained by the fact that there are probably not enough
combinations that are below GRT},, and therefore, the actual value
used is smaller.

In summary, the simulation results show that, on average, the
ARBL algorithm can produce quite accurate results in various network
scenarios. Almost without exceptions, it outperforms the often used
nearest-neighbors approach, regardless the number of reference nodes.
In most cases, it also results in smaller localization error than the
EATL [18] and RNST [19] algorithms, that are based on localization
geometry in reference node selection. However, there are cases when
the localization error of some nodes is increased due to bad geometry
and ranging error.

7. Performance evaluation by experimental measurement

In addition to the simulation, we set up a sensor network to collect
experimental measurement data for localization. In this section, we
first describe the test equipment and data collection process, and the
data and methods used for evaluating and comparing the localization
accuracy and precision of ARBL. Next, we present and analyze the
results.
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Fig. 9. Localization error (MAE) of ARBL, the best nearest-neighbors approach (NN(6)), EATL [18], and RNST [19] for different setups. The default simulation parameters for
ARBL were the following: N,,, = 15, N,,; , = 6, GRT,, = 0.95, N, ., = 6, and 4d ~ U(-0.2d,0.2d). The red circles indicate the cases (2 out of 200) when ARBL resulted in
higher MAE than the other approaches. For EATL, the parameter values were the following: R = 50 m, r = 0.3R, threshold, = 0.5R. No iterations were used, and 23% of nodes
were not located. For RNST, we classified reference triangles as ’almost equilateral” if Z?:I |60° — a;| < 75°. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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Fig. 10. (a) Localization error vs. the total number of reference nodes (N,,,) with N, ., =6, GRT,, = 0.95, and Ny, ., = 6. (b) Localization error vs. the number of nodes in a
reference set (N,,, ) with N,,, =15, GRT,, =095, and N ;,, ., = 6. (c) Localization error vs. GRT threshold value (GRT,,) with N,,, =15 and N,,, ., = 6 (Note that only GRT,,
condition of ARBL was applied in this case). (d) Localization error vs. the number of estimates in final estimation (N, o) With N, =15, N,/ ., = 6, and GRT;;, = 0.95. Results

averaged over 200 different setups. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 11. Network setup of the nodes (relative locations) used in the experimental
measurement. The set of the available reference nodes for any unlocalized node is all
the other nodes. Note that the reference node set used in localization varies according
to the given combination. An example node to be analyzed (node 6) is circled.

7.1. Experimental setup and data collection

For evaluating the proposed algorithm in varying conditions, we
set up a WSN aimed to collect RSSI and temperature data over long-
term experiments. The configuration for collecting the empirical mea-
surement data consisted, in total, of eight WSN nodes that used At-
mel ZigBit 2.4 GHz wireless modules (ATZB-24-B0) [42] with an
IEEE 802.15.4-compliant AT86RF230 radio transceiver [43]. Four of
the nodes were integrated with a Sensirion humidity and temperature
sensor (SHT75) [44]. In addition, the setup comprised a gateway
(Atmel ZigBit 2.4 GHz sink node and Raspberry Pi 3) and a database
server (MongoDB). The sensor nodes were attached to lamp posts
around the university campus parking lot at a height of approximately
3 m by using mounting racks. The nodes were powered by secondary
batteries which were charged by solar panels and discontinuous mains
power (controlled with a timer and a PECU switch). The gateway was
on the terrace of the university building, and it was mains-powered and
connected to the LAN via Ethernet. The network setup is illustrated in
Fig. 11.

The measuring cycle for collecting RSSI and temperature data was
1 min. Once a minute, the sink node sent a broadcast message at
a transmit power level of +3.0 dBm (Prx) by using one of the ra-
dio channels (11-26). The radio channel was changed every minute.
In addition, the temperature readings for the nodes were measured
once a minute with the SHT75 sensors, where available. The nodes
sent the raw data directly to the gateway, from where the data was
sent to the MongoDB database server to be stored and processed
further. Data processing, analysis, and computing were performed using
MATLAB (R2020a) [41]. The collected and applied data is shown in
Table 4.

For evaluation, the inter-node distances were measured using a laser
distance meter (Leica DISTO D8), where possible. The distances that
could not be measured were computed by applying trigonometry. Rela-
tive node locations were computed based on the inter-node distances by
using classical multidimensional scaling (MDS). We used the MATLAB
cmdscale function [41] to generate the configuration matrix based on a
distance matrix. The relative locations (can be rotated and/or reflected)
were set as the ground truth node locations against which the estimates
were compared. The mean error for the reconstruction was 0.02 m
(max = 0.06 m), that is, the mean absolute difference between the
measured distances and the distances based on the coordinates.
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Table 4

Collected RSSI and temperature data (1 Min samples).
Data Description
Timestamp? yyyy-mm-dd hh:mm
Node 0x810{1,2,3,4,5,6,7,8}
Neighbor 0x810{0,1,2,3,4,5,6,7,8}
Channel 11 — 26 (IEEE 802.15.4)
RSSI RSSI [dBm] at Prx = +3.0 dBm
Timestamp” yyyy-mm-dd hh:mm
Node® 0x810{1,2,4,5}
Temperature T [°C] (SHT75)

2RSSI data.

bTemperature data.
¢The SHT sensor of node 4 was broken.

Table 5

Parameters of the ARBL algorithm used in the experiment.
Parameter Value
Number of unknown nodes (N,,,) 1 (of 8)
Total number of reference nodes (N, ) 7
Number of nodes in reference set (N, ) 5
GRT threshold value (GRT,;,) 0.85
Number of estimates in final estimation (N, o) 4

To estimate the inter-node distances for localization, we used RSSI-
based ranging techniques based on the ones proposed in [16]. However,
range estimates can be obtained using any appropriate technique. Based
on the distance estimates and the reference node coordinates, location
estimates were computed using lateration.

7.2. Experimental data and methods

To evaluate the performance of the proposed localization algorithm
(ARBL), we analyzed the localization error of eight unknown nodes
based on real measurement data. The data used in the evaluation
consisted of three separate, 2-week periods, that is, a total of 6 weeks
of data. The data was collected (i) between 15 and 28 April 2019, (ii)
between 27 May and 9 June 2019, and (iii) between 8 and 21 July 2019.
During the first measurement period, there were no leaves on the trees
of the parking lot, while during the second and third periods, the trees
were in full leaf. The third period was during the summer vacation
when the traffic in the parking lot was sparse, unlike during the other
periods.

We compared the results given by the ARBL algorithm to the lat-
eration with a nearest-neighbors approach (NN(k) with k = {3,4,5,6})
and to the results given by lateration when using single reference node
combinations, or a set of k reference nodes combinations (k =3, ...,6).
Out of the eight nodes, one node at a time was the unknown node
(N« = 1), and the seven others formed the set of reference nodes
from which the reference nodes for lateration were taken (N, = 7).
The k-node combinations of the reference nodes from a set of seven
nodes makes a total of ZZ=3 C(7, k) = 98 combinations for an unknown
node. Two of the combinations (C = {1,2,3},C = {4,6,8}) were nearly
collinear, which resulted in a very large localization error, and thus,
had a disproportionate big effect on the overall results. Therefore, we
excluded those combinations from the other computations and figures
except those for the algorithms (ARBL and NN(k)). The ARBL algorithm
can reject bad three-node combinations solely based on the given
condition (Eq. (16)) when evaluating the reference triangles. In the
experiment, we used the ARBL parameter values that were found to
be more suitable for this particular network than those used in the
simulations. Specifically, the number of nodes in reference set (N, )
was 5, the GRT threshold value (GRT;,) was 0.85, and the number
of estimates in the final estimation (N ;,, .,) was 4. The parameter
values for ARBL used in the computations are shown in Table 5. The
evaluation was carried out using MATLAB (R2020a) [41].



J. Luomala and I. Hakala

100 — . o
: & High
True location
[ ) Location estimate (combinations)
50 1
2
@
= g
A ol I
> e
. g
. @
wn
50 + |
Low
-100
-100 100

Computer Networks 210 (2022) 108865

50 T
True location High
Location estimate (combinations)
Location estimate (ARBL)
A
A
NIE
A z
E o} 5"y 1 %
g tet LY AN &
2 g
]
w0
- A
|
|™ Low
250 5 ;
-50 0 50
X [m]
(d)

Fig. 12. (a) The location estimates (n = 97776) of node 6 for 6 weeks (1008 h) using the different reference node combinations (a total of 97). The dot of estimate &; is colored
based on the density of the estimates in the circle area centered in %; and having a radius r = 2.5 m (lightness increases monotonically with density). In (b), respectively, the gray
dots are the location estimates produced using the different reference node combinations, and the colored dots are the location estimates (n = 1008) produced using the proposed

ARBL algorithm. The figure (b) is the magnification of the highlighted area shown in figure (a). In both figures, each dot represents a 1 h estimate. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 13. (a) Localization error versus time for node 6. Combinations (mean + SD, n = 97), NN(4), and the ARBL algorithm. The localization errors are presented as the averages of
24 h computed based on 1 h localization errors. (b) Mean localization errors (n = 1008) of each reference node combination (97), NN(4), and the ARBL algorithm computed based
on 6 weeks of data for node 6 (bars). Mean + SD of the mean values of the combinations for each number of reference nodes (lines).

7.3. Experimental results

We first take one node (node 6) as an example, and analyze its
localization error. The location estimates (n = 97776) obtained using
the different reference node combinations (a total of 97) and the ARBL
algorithm for node 6 over the measurement period (6 weeks) are
shown in Fig. 12. As can be seen from the figure (a), the location
estimates vary considerably, in the order of tens of meters, when the
different reference combinations are used. However, the densest area of
estimates is quite close to the true location for node 6. This implies that
the usage of lateration can result in very accurate estimates in the right
conditions, that is, when the ranging estimates and the localization
geometry are good enough. Therefore, the location estimates with the
ARBL algorithm shown in Fig. 12(b) are exceptionally accurate and
precise; the error is less than 2 m for node 6, on average, without any
major deviations.

The localization errors of unknown node 6 over the 6 weeks of
measurement data are illustrated in Fig. 13(a) and (b), both highlight-
ing different aspects. The localization errors of the combinations (daily
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mean + SD), lateration with nearest-neighbors (NN(4)) approach (daily
mean), and the ARBL algorithm (daily mean) are shown in Fig. 13(a).
As can be seen from the figure, the localization errors vary considerably
between different reference node combinations, as well as temporally.
This results from the combined effect of different ranging errors and
localization geometry. What stands out in the figure is the clear benefit
of the proposed algorithm. On average, it can reduce the localization
error substantially compared to single combinations; the error is much
smaller than the mean error of the combinations. In addition, for the
ARBL algorithm, the variation in the errors is quite small for node 6.
For node 6, the error of the nearest-neighbors approach (NN(4)) is also
quite good, but the variation of daily mean is high.

The mean localization errors of each reference node combina-
tion, the nearest-neighbors approach (NN(4)), and the ARBL algorithm
computed over the measurement periods (6 weeks) are presented in
Fig. 13(b). The data in the figure shows the obvious variation in the
localization error depending on the reference nodes used. This signifies
the importance of appropriate reference node selection. On average, it
seems that the bigger the number of reference nodes, the smaller the
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Table 6

Absolute and Relative Localization Errors (LEs) based on 6 weeks of data.

Computer Networks 210 (2022) 108865

Absolute LE [m] Relative LE [R]

LE [m]
Average of nodes” Average of nodes”
LE of combinations’, Mean + SD 34.50 + 35.71 0.43 +0.45
Max 284.12 3.55
Min 7.63 0.10
n 96-97¢ 96-97¢
Lateration, avg. of k-node combinations
3 REFS (%, ), Mean + SD 21.70 +5.02 0.27 +0.06
4 REFS (%,7), Mean + SD 18.67 +3.65 0.23 +0.05
5 REFS (x,7), Mean + SD 19.12 +£3.25 0.24 +0.04
6 REFS (%, ), Mean + SD 18.90 + 3.06 0.24 +0.04
All (%,7), Mean + SD 19.33 +3.79 0.24 +0.05
Lateration with nearest-neighbors approach (NN(k))
Lateration with NN(3), Mean + SD 19.44 +20.49 0.24 +0.26
Lateration with NN(4), Mean + SD 17.28 +3.37 0.22 +0.04
Lateration with NN(5), Mean + SD 18.53 +£3.59 0.23 +£0.04
Lateration with NN(6), Mean + SD 20.64 +3.19 0.26 + 0.04
ARBL, Mean + SD 1548 +3.19 0.19 +0.04
aNodes 1-8.
bAverage LE of each combination over 6 weeks of data.
¢One or two collinear combination(s) excluded.
localization error (the mean and the standard deviation). Nevertheless, 1 = T . . :
a few very good combinations can be found using only three reference
nodes. Despite the large variation between the combinations, the ARBL
algorithm seems to find the good combinations with a high probability 0.8} 1
and produces fairly accurate and precise location estimates. For node
6, the localization error of the ARBL algorithm is smaller than the
localization error of any single combination. Also NN(4) achieves good 0.6 T
accuracy in this case. E
The results presented above are taken as an example of one node ©
that has quite optimal yet realistic localization geometry. The average 04 1
localization errors of the unknown nodes (nodes 1 —8) are summarized
in Table 6, using all the combinations. The localization errors are 0.2 e I REFS xyumg
presented as the absolute metric and relative to the estimated radio “Ti NN(4) 1
range. The estimated radio range is 80 m for all the nodes in the ngiﬂ
computations (approximately the same as the maximum link distance in . . . T 2 T -
the setup). We discuss only the absolute localization errors, as they are 0 0 5 10 15 20 %5 30

comparable to relative errors. It can be seen from the data in Table 6
that the localization error of the ARBL algorithm is 15.48 + 3.19 m
when averaged over all the nodes (1.47 + 0.95 m for node 6). It is
much smaller than the average error of combinations, 34.50 + 35.71 m,
and smaller than the error of the lateration with the best nearest-
neighbor approach NN(4), 17.28 + 3.37 m. For node 6, the localization
error of the ARBL algorithm is even smaller than the mean localization
error of the best single combination, 2.49 m, while it is about twice
as big as the average best combination, 7.63 m, when taking all the
nodes into account. On average, the ARBL algorithm reduced the mean
localization error by 55% compared to the combinations’ average error
(15.48 m vs. 34.50 m). This shows the clear advantage of the proposed
algorithm over the random selection of reference nodes. Also, the
nearest-neighbors approach resulted in quite a good results; the best
one was NN(4) on average. However, this particular scenario was quite
challenging for both.

Furthermore, the cumulative distribution function (CDF) of the
localization error for the ARBL algorithm compared to the average
coordinates of the 4-node combinations, and to the nearest-neighbors
approach (NN(4)) for node 6 is illustrated in Fig. 14. For node 6, the
localization error of the ARBL algorithm was within 1.29 m in 50% of
the cases, and within 2.35 m in 90% of the cases. It is clearly the best
candidate and quite close to the theoretical optimal value, by which
we assume that a node is able to pick every time the best combination
(of all k-node combinations, k = 3, ..., 6) with the minimum localization
error. The corresponding 50th and 90th percentiles when averaged over
all the nodes are shown in Table 7. In that case, the corresponding

Localization error [m]

Fig. 14. Cumulative distribution function (CDF) of the localization error for node 6.
The dashed line illustrates the optimal case, by which we assume that every time the
reference combination with a minimum localization error was used in localization. The
different behavior of NN(4) approach in is due to its location estimates are distributed
in two clusters; one close to the true location, the other farther from it.

50th and 90th percentile errors were 15.23 m and 19.71 m, respectively.
Although considerably worse than for node 6, they are still better than
those of nearest-neighbor approach and the average coordinates of k-
node combinations. This highlights the importance of feasible reference
node selection.

In summary, these results show that the proposed algorithm can
produce quite accurate location estimates under varying ranging errors
and localization geometry. These conditions are often inevitable when
range-based trilateration is applied in real outdoor environments, par-
ticularly in the case of RSSI-based ranging. Moreover, the algorithm
is computationally low cost, and can be implemented in resource-
constrained sensor nodes by using the available ranging technique(s)

that meet(s) the given requirements.

8. Discussion and conclusion

It is well-known that RSSI-based ranging is an error-prone distance
estimation technique. Combined with lateration which is sensitive to
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Table 7
50th and 90th Percentiles of Localization Error (LE).

LE [m] 50th Percentile”
Average of nodes®

90th Percentile”
Average of nodes®

Lat., avg. of k-combinations

3 REFS (x, 7) 21.50 27.97
4 REFS (%, 7)) 18.60 23.15
5 REFS (%, ) 19.05 23.02
6 REFS (%, ) 18.80 22.58
Lateration with NN(k)

NN(3) 16.89 20.82
NN(4) 16.68 21.28
NN(5) 18.72 22.36
NN(6) 20.80 24.47
ARBL 15.23 19.71
Optimal® 3.52 6.16

aNodes 1-8.

bThe number of samples n = 1008.
¢The combinations with a minimum LE.

erroneous distance estimates and localization geometry, RSSI-based
ranging may lead to substantial localization errors depending on the
reference nodes used, as was demonstrated in this experiment. This
holds true for range-based techniques in general. In varying environ-
mental and weather conditions, achieving location estimates that are
accurate and precise is challenging. As a solution, we proposed an ARBL
algorithm that is based on reference node selection. The algorithm aims
to find the best reference node combinations for an unknown node
at a given time and space based on the geometry of the reference
triangles and ranging errors, and employs them to compute the node’s
location estimate. The results indicate that the localization error of the
ARBL algorithm is considerably smaller than the average error of the
single combinations, and that it outperforms the often used nearest-
neighbors technique, as well as EATL [18] and RNST [19] algorithms
with the applied simulation parameters. The algorithm can adapt to
changing conditions and find the best reference node combinations for
a particular case very successfully. For the practical implementation,
the ARBL algorithm can be implemented in resource-constrained WSN
nodes with limited processing, memory, and communication capabili-
ties. The ARBL algorithm is practicable as it can be assumed that there
are five reference nodes in most WSNs at a minimum, thus providing
enough combinations for the algorithm.

The proposed algorithm is virtually range-based and independent
of the ranging technique employed. Although RSSI was used for range
estimation in this study (for the empirical data), distance estimates
could be obtained using any other ranging technique, such as ToA
or TDoA, if available. Naturally, the ranging technique affects the
localization accuracy. Furthermore, the algorithm can be applied in
multihop cases where an unknown node is out of the reference nodes’
radio range. In that case, the distances to the reference nodes could
be estimated, for example, based on the shortest paths. Alternatively,
localization could be performed iteratively and cooperatively so that
an unknown node will become a reference after it is localized, or by
extending trilateration using the shadow edges, as in [45].

Despite the promising results, there is always room for improve-
ment. One possible way would be to incorporate more location estima-
tion techniques (e.g., Min-max) in the ARBL algorithm to mitigate the
shortcomings of lateration, or use different trilateration techniques that
are more robust to noisy distance estimates (e.g., weighted techniques).
Furthermore, additional studies are needed to evaluate the performance
of the algorithm in multihop situations, for example. Minimizing the
costs of the algorithm (e.g., in the ranging phase) in addition to the
localization error is also an aspect for future studies.

As stated in the literature (e.g., in [2,5,11,46]), one algorithm is
not suitable or the best option for all possible scenarios and conditions.
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The choice of the algorithm depends mostly on the specific application
scenario, thus requiring a combination of techniques to handle various
situations [2]. However, developing techniques and algorithms that can
adapt to different scenarios and changing conditions without requiring
separate algorithms for each is important.

In conclusion, in this paper we set out to find ways to improve the
quality of range-based localization for low-cost WSN nodes in varying
outdoor conditions. We first analyzed the effect of ranging error and
localization geometry on localization error based on simulations. As a
solution, we proposed an ARBL algorithm that is based on reference
node selection, and employs multiple reference node combinations
to find the best ones to compute the final location estimate. The
evaluation results show that the proposed algorithm reduced the lo-
calization error considerably. These promising findings indicate that
achieving reasonable localization accuracy using range-based local-
ization for low-cost, resource-constrained WSN nodes is possible by
employing applicable techniques and information. The findings also
provide new insights into anchor- and range-based localization that
may be useful for future studies.

CRediT authorship contribution statement

Jari Luomala: Conceptualization, Methodology, Software, Formal
analysis, Writing — original draft, Writing — review & editing. Ismo
Hakala: Conceptualization, Methodology, Formal analysis, Writing —
review & editing, Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work was partially supported by the Finnish Cultural Founda-
tion, Central Ostrobothnia Regional fund.

References

[1] J. Yick, B. Mukherjee, D. Ghosal, Wireless sensor network survey, Comput. Netw.
52 (2008) 2292-2330, https://doi.org/10.1016/j.comnet.2008.04.002.

[2] T.J. Chowdhury, C. Elkin, V. Devabhaktuni, D.B. Rawat, J. Oluoch, Advances on
localization techniques for wireless sensor networks: A survey, Comput. Netw.
110 (2016) 284-305, https://doi.org/10.1016/j.comnet.2016.10.006.

[31 W. Dargie, C. Poellabauer, Fundamentals of Wireless Sensor Networks: The-
ory and Practice, in: Wiley Series on Wireless Communications and Mobile
Computing, John Wiley & Sons Ltd., 2010.

[4] LF. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, A survey on sensor
networks, IEEE Commun. Mag. 40 (8) (2002) 102-114, https://doi.org/10.1109/
MCOM.2002.1024422.

[5] A. Boukerche, H.A.B.F. Oliveira, E.F. Nakamura, A.A.F. Loureiro, Localization
systems for wireless sensor networks, IEEE Wirel. Commun. 14 (6) (2007) 6-12,
https://doi.org/10.1109/MWC.2007.4407221.

[6] A. Mesmoudi, M. Feham, N. Labraoui, Wireless sensor networks localization
algorithms: A comprehensive survey, Int. J. Comput. Netw. Commun. (IJCNC) 5
(6) (2013) 45-64, https://doi.org/10.5121/ijenc.2013.5603.

[7]1 N.A. Alrajeh, M. Bashir, B. Shams, Localization techniques in wireless sensor
networks, Int. J. Distrib. Sens. Netw. 2013 (2013) 9, https://doi.org/10.1155/
2013/304628.

[8] G. Han, H. Xu, T.Q. Duong, J. Jiang, T. Hara, Localization algorithms of
wireless sensor networks: a survey, Telecommun. Syst. 52 (2013) 2419-2436,
https://doi.org/10.1007/5s11235-011-9564-7.

[9] L. Cheng, C. Wu, Y. Zhang, H. Wu, M. Li, C. Maple, A survey of localization
in wireless sensor network, Int. J. Distrib. Sens. Netw. 2012 (2012) 12, https:
//doi.org/10.1155/2012/962523.

[10] A.K. Paul, T. Sato, Localization in wireless sensor networks: A survey on algo-
rithms, measurement techniques, applications and challenges, J. Sens. Actuator
Netw. 6 (4) (2017) https://doi.org/10.3390/jsan6040024.

[11] K. Langendoen, N. Reijers, Distributed localization in wireless sensor networks:
a quantitative comparison, Comput. Netw. 43 (4) (2003) 499-518.


https://doi.org/10.1016/j.comnet.2008.04.002
https://doi.org/10.1016/j.comnet.2016.10.006
http://refhub.elsevier.com/S1389-1286(22)00074-3/sb3
http://refhub.elsevier.com/S1389-1286(22)00074-3/sb3
http://refhub.elsevier.com/S1389-1286(22)00074-3/sb3
http://refhub.elsevier.com/S1389-1286(22)00074-3/sb3
http://refhub.elsevier.com/S1389-1286(22)00074-3/sb3
https://doi.org/10.1109/MCOM.2002.1024422
https://doi.org/10.1109/MCOM.2002.1024422
https://doi.org/10.1109/MCOM.2002.1024422
https://doi.org/10.1109/MWC.2007.4407221
https://doi.org/10.5121/ijcnc.2013.5603
https://doi.org/10.1155/2013/304628
https://doi.org/10.1155/2013/304628
https://doi.org/10.1155/2013/304628
https://doi.org/10.1007/s11235-011-9564-7
https://doi.org/10.1155/2012/962523
https://doi.org/10.1155/2012/962523
https://doi.org/10.1155/2012/962523
https://doi.org/10.3390/jsan6040024
http://refhub.elsevier.com/S1389-1286(22)00074-3/sb11
http://refhub.elsevier.com/S1389-1286(22)00074-3/sb11
http://refhub.elsevier.com/S1389-1286(22)00074-3/sb11

J. Luomala and I. Hakala

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

A. Savvides, H. Park, M.B. Srivastava, The bits and flops of the N-hop multi-
lateration primitive for node localization problems, in: Proceedings of the 1st
ACM International Workshop on Wireless Sensor Networks and Applications,
WSNA’02, Atlanta, GA, USA, 2002, pp. 112-121, https://doi.org/10.1145/
570738.570755.

K. Bannister, G. Giorgetti, S.K. Gupta, Wireless sensor networking for “hot”
applications: Effects of temperature on signal strength, data collection and lo-
calization, in: The Fifth Workshop on Embedded Networked Sensors, HotEmNets
’08, Charlottesville, VA, USA, 2008.

H. Wennerstrom, F. Hermans, O. Rensfelt, C. Rohner, L. Nordén, A long-term
study of correlations between meteorological conditions and 802.15.4 link per-
formance, in: 2013 IEEE International Conference on Sensing, Communications
and Networking, SECON, New Orleans, LA, USA, 2013, https://doi.org/10.1109/
SAHCN.2013.6644981.

J. Luomala, 1. Hakala, Effects of temperature and humidity on radio signal
strength in outdoor wireless sensor networks, in: M. Ganzha, L. Maciaszek, M.
Paprzycki (Eds.), Proceedings of the 2015 Federated Conference on Computer
Science and Information Systems, Vol. 5, FedCSIS 2015, £.6dZ, Poland, in: ACSIS,
2015, pp. 1247-1255, https://doi.org/10.15439/2015F241.

J. Luomala, I. Hakala, Analysis and evaluation of adaptive RSSI-based ranging
in outdoor wireless sensor networks, Ad Hoc Netw. 87 (2019) 100-112, https:
//doi.org/10.1016/j.adhoc.2018.10.004.

Z. Yang, Y. Liu, Quality of trilateration: Confidence-based iterative localization,
IEEE Trans. Parallel Distrib. Syst. 21 (5) (2010) 631-640, https://doi.org/10.
1109/TPDS.2009.90.

Y. Fan, X. Qi, B. Yu, L. Liu, A distributed anchor node selection algorithm based
on error analysis for trilateration localization, Math. Probl. Eng. 2018 (2018) 12,
https://doi.org/10.1155/2018/7295702.

G. Han, D. Choi, W. Lim, Reference node placement and selection algorithm
based on trilateration for indoor sensor networks, Wirel. Commun. Mob. Comput.
2009 (9) (2009) 1017-1027, https://doi.org/10.1002/wem.651.

G. Mao, B. Fidan, B.D. Anderson, Wireless sensor network localization techniques,
Comput. Netw. 51 (10) (2007) 2529-2553, https://doi.org/10.1016/j.comnet.
2006.11.018.

A. Pal, Localization algorithms in wireless sensor networks: Current approaches
and future challenges, Netw. Protoc. Algorithms 2 (1) (2010) 45-73, https:
//doi.org/10.5296/npa.v2i1.279.

S. Tian, X. Zhang, X. Wang, P. Sun, H. Zhang, A selective anchor node localiza-
tion algorithm for wireless sensor networks, in: 2007 International Conference
on Convergence Information Technology, ICCIT 2007, Gyeongju, South Korea,
2007, pp. 358-362, https://doi.org/10.1109/1CCIT.2007.145.

H. Nomura, H. Ichikawa, Y. Kawakita, Reference node selection for range-based
localization using hierarchical clustering, in: 2018 IEEE 4th World Forum on
Internet of Things, WF-IoT, Singapore, Singapore, 2018, pp. 140-143, https:
//doi.org/10.1109/WF-10T.2018.8355228.

X. Yan, Q. Luo, Y. Yang, S. Liu, H. Li, C. Hu, ITL-MEPOSA: Improved trilateration
localization with minimum uncertainty propagation and optimized selection of
anchor nodes for wireless sensor networks, IEEE Access 7 (2019) 53136-53146,
https://doi.org/10.1109/ACCESS.2019.2911032.

D. Lieckfeldt, J. You, D. Timmermann, An algorithm for distributed beacon
selection, in: Sixth Annual IEEE International Conference on Pervasive Computing
and Communications, PerCom,Hong Kong, China, 2008, pp. 318-323, https:
//doi.org/10.1109/PERCOM.2008.78.

D. Lieckfeldt, J. You, D. Timmermann, Distributed selection of references for
localization in wireless sensor networks, in: Proceedings of the 5th Workshop
on Positioning, Navigation and Communication 2008, WPNC’08, Hannover,
Germany, 2008, pp. 31-36, https://doi.org/10.1109/WPNC.2008.4510354.

A. Bel, J.L. Vicario, G. Seco-Granados, Node selection for cooperative local-
ization: Efficient energy vs. Accuracy trade-off, in: 2010 5th International
Symposium on Wireless Pervasive Computing, ISWPC, Modena, Italy, 2010, pp.
307-312, https://doi.org/10.1109/ISWPC.2010.5483734.

A. Bel, J.L. Vicario, G. Seco-Granados, Real-time path loss and node selection
for cooperative localization in wireless sensor networks, in: 2010 IEEE 21st
International Symposium on Personal, Indoor and Mobile Radio Communica-
tions Workshops, Istanbul, Turkey, 2010, pp. 283-288, https://doi.org/10.1109/
PIMRCW.2010.5670380.

A. Bel, J.L. Vicario, G. Seco-Granados, Localization algorithm with on-line path
loss estimation and node selection, Sensors 11 (7) (2011) 6905-6925, https:
//doi.org/10.3390/5110706905.

S. Hadzic, J. Rodriguez, Utility based node selection scheme for cooperative
localization, in: 2011 International Conference on Indoor Positioning and In-
door Navigation, uimaraes, Portugal, 2011, https://doi.org/10.1109/IPIN.2011.
6071914.

17

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Computer Networks 210 (2022) 108865

S. Hadzic, J. Bastos, J. Rodrigues, Reference node selection for cooperative
positioning using coalition formation games, in: 2012 9th Workshop on Posi-
tioning, Navigation and Communication, Dresden, Germany, 2012, pp. 105-108,
https://doi.org/10.1109/WPNC.2012.6268747.

N. Patwari, J.N. Ash, S. Kyperountas, A.O. Hero III, R.L. Moses, N.S. Correal,
Locating the nodes: Cooperative localization in wireless sensor networks, IEEE
Signal Process. Mag. 22 (4) (2005) 54-69, https://doi.org/10.1109/MSP.2005.
1458287.

H. Karl, A. Willig, Protocols and Architectures for Wireless Sensor Networks,
John Wiley & Sons Ltd., 2006.

A. Savvides, W.L. Garber, R.L. Moses, M.B. Srivastava, An analysis of error
inducing parameters in multihop sensor node localization, IEEE Trans. Mob.
Comput. 4 (6) (2005) 567-577.

J. Zhao, W. Xi, Y. He, Y. Liu, X.-Y. Li, L. Mo, Z. Yang, Localization of wireless
sensor networks in the wild: Pursuit of ranging quality, IEEE/ACM Trans. Netw.
21 (1) (2013) 311-323, https://doi.org/10.1109/TNET.2012.2200906.

G. Mao, B.D. Anderson, B. s Fidan, Path loss exponent estimation for wireless
sensor network localization, Comput. Netw. 51 (10) (2007) 2467-2483, https:
//doi.org/10.1016/j.comnet.2006.11.007.

C. Bettstetter, On the minimum node degree and connectivity of a wireless
multihop network, in: MOBIHOC’02, Lausanne, Switzerland, 2002, pp. 80-91.
D. Bartlett, Essentials of Positioning and Location Technology, Cambridge
University Press, 2013.

N. Levanon, Lowest GDOP in 2-D scenarios, IEE Proc.-Radar, Sonar Navig. 147
(3) (2000) 149-155.

1. Hakala, J. Luomala, Peer-to-peer cooperative GNSS-based localization for
stationary reference nodes in wireless sensor networks, in: 2017 International
Conference on Localization and GNSS, ICL-GNSS, Nottingham, UK, 2017, https:
//doi.org/10.1109/ICL-GNSS.2017.8376241.

MATLAB - The language of technical computing, URL http://www.mathworks.
se/products/matlab/.

Zigbit 2.4 GHz wireless modules - ATZB-24-A2/B0 datasheet, 2009, Atmel,
http://www.atmel.com.

Low power 2.4 GHz transceiver for ZigBee, IEEE 802.15.4, 6loWPAN, RF4ce and
ISM applications - AT86rf230 datasheet, 2009, Atmel, http://www.atmel.com.
Datasheet SHT7x (SHT71, SHT75) - humidity and temperature sensor IC, version
5, 2011, Sensirion, http://www.sensirion.com.

G. Oliva, S. Panzieri, F. Pascucci, R. Setola, Sensor networks localization:
Extending trilateration via shadow edges, IEEE Trans. Automat. Control 60 (10)
(2015) 2752-2755, https://doi.org/10.1109/TAC.2015.2404253.

J. Luomala, I. Hakala, Towards adaptive localization in wireless sensor networks,
in: 2012 Ubiquitous Positioning, Indoor Navigation, and Location Based Ser-
vice, UPINLBS, Helsinki, Finland, 2012, https://doi.org/10.1109/UPINLBS.2012.
6409778.

Jari Luomala is a researcher at the University of Jyvaskyld,
Kokkola University Consortium Chydenius. He received
the M.Sc. degree in mathematical information technology
from the University of Jyvaskyld, Finland, in 2011. He
is currently pursuing the Ph.D. degree in software and
communications engineering at the University of Jyvéskyla.
His current research interests include localization algorithms
and techniques for wireless sensor networks.

Ismo Hakala is a professor of computer science at the
Kokkola University Consortium Chydenius (KUC), University
of Jyvéskyld, Finland. He received his M.Sc. (1989), Ph.
Lic. (1992), and Ph.D. (1997) degrees in mathematics at
the University of Oulu, Finland. He joined at the University
of Jyvaskyla in 1999. He is currently the head of Informa-
tion Technology Unit at the KUC and leads the research
group which is focusing on intelligent and autonomous sen-
sor systems with application on environmental monitoring,
healthcare and smart cities. His current research interests
lie in wireless sensor networks with emphasis on data
processing, localization algorithms, network management,
middleware, and the design and performance evaluation of
wireless sensor systems.


https://doi.org/10.1145/570738.570755
https://doi.org/10.1145/570738.570755
https://doi.org/10.1145/570738.570755
http://refhub.elsevier.com/S1389-1286(22)00074-3/sb13
http://refhub.elsevier.com/S1389-1286(22)00074-3/sb13
http://refhub.elsevier.com/S1389-1286(22)00074-3/sb13
http://refhub.elsevier.com/S1389-1286(22)00074-3/sb13
http://refhub.elsevier.com/S1389-1286(22)00074-3/sb13
http://refhub.elsevier.com/S1389-1286(22)00074-3/sb13
http://refhub.elsevier.com/S1389-1286(22)00074-3/sb13
https://doi.org/10.1109/SAHCN.2013.6644981
https://doi.org/10.1109/SAHCN.2013.6644981
https://doi.org/10.1109/SAHCN.2013.6644981
https://doi.org/10.15439/2015F241
https://doi.org/10.1016/j.adhoc.2018.10.004
https://doi.org/10.1016/j.adhoc.2018.10.004
https://doi.org/10.1016/j.adhoc.2018.10.004
https://doi.org/10.1109/TPDS.2009.90
https://doi.org/10.1109/TPDS.2009.90
https://doi.org/10.1109/TPDS.2009.90
https://doi.org/10.1155/2018/7295702
https://doi.org/10.1002/wcm.651
https://doi.org/10.1016/j.comnet.2006.11.018
https://doi.org/10.1016/j.comnet.2006.11.018
https://doi.org/10.1016/j.comnet.2006.11.018
https://doi.org/10.5296/npa.v2i1.279
https://doi.org/10.5296/npa.v2i1.279
https://doi.org/10.5296/npa.v2i1.279
https://doi.org/10.1109/ICCIT.2007.145
https://doi.org/10.1109/WF-IoT.2018.8355228
https://doi.org/10.1109/WF-IoT.2018.8355228
https://doi.org/10.1109/WF-IoT.2018.8355228
https://doi.org/10.1109/ACCESS.2019.2911032
https://doi.org/10.1109/PERCOM.2008.78
https://doi.org/10.1109/PERCOM.2008.78
https://doi.org/10.1109/PERCOM.2008.78
https://doi.org/10.1109/WPNC.2008.4510354
https://doi.org/10.1109/ISWPC.2010.5483734
https://doi.org/10.1109/PIMRCW.2010.5670380
https://doi.org/10.1109/PIMRCW.2010.5670380
https://doi.org/10.1109/PIMRCW.2010.5670380
https://doi.org/10.3390/s110706905
https://doi.org/10.3390/s110706905
https://doi.org/10.3390/s110706905
https://doi.org/10.1109/IPIN.2011.6071914
https://doi.org/10.1109/IPIN.2011.6071914
https://doi.org/10.1109/IPIN.2011.6071914
https://doi.org/10.1109/WPNC.2012.6268747
https://doi.org/10.1109/MSP.2005.1458287
https://doi.org/10.1109/MSP.2005.1458287
https://doi.org/10.1109/MSP.2005.1458287
http://refhub.elsevier.com/S1389-1286(22)00074-3/sb33
http://refhub.elsevier.com/S1389-1286(22)00074-3/sb33
http://refhub.elsevier.com/S1389-1286(22)00074-3/sb33
http://refhub.elsevier.com/S1389-1286(22)00074-3/sb34
http://refhub.elsevier.com/S1389-1286(22)00074-3/sb34
http://refhub.elsevier.com/S1389-1286(22)00074-3/sb34
http://refhub.elsevier.com/S1389-1286(22)00074-3/sb34
http://refhub.elsevier.com/S1389-1286(22)00074-3/sb34
https://doi.org/10.1109/TNET.2012.2200906
https://doi.org/10.1016/j.comnet.2006.11.007
https://doi.org/10.1016/j.comnet.2006.11.007
https://doi.org/10.1016/j.comnet.2006.11.007
http://refhub.elsevier.com/S1389-1286(22)00074-3/sb37
http://refhub.elsevier.com/S1389-1286(22)00074-3/sb37
http://refhub.elsevier.com/S1389-1286(22)00074-3/sb37
http://refhub.elsevier.com/S1389-1286(22)00074-3/sb38
http://refhub.elsevier.com/S1389-1286(22)00074-3/sb38
http://refhub.elsevier.com/S1389-1286(22)00074-3/sb38
http://refhub.elsevier.com/S1389-1286(22)00074-3/sb39
http://refhub.elsevier.com/S1389-1286(22)00074-3/sb39
http://refhub.elsevier.com/S1389-1286(22)00074-3/sb39
https://doi.org/10.1109/ICL-GNSS.2017.8376241
https://doi.org/10.1109/ICL-GNSS.2017.8376241
https://doi.org/10.1109/ICL-GNSS.2017.8376241
http://www.mathworks.se/products/matlab/
http://www.mathworks.se/products/matlab/
http://www.mathworks.se/products/matlab/
http://www.atmel.com
http://www.atmel.com
http://www.sensirion.com
https://doi.org/10.1109/TAC.2015.2404253
https://doi.org/10.1109/UPINLBS.2012.6409778
https://doi.org/10.1109/UPINLBS.2012.6409778
https://doi.org/10.1109/UPINLBS.2012.6409778

	Adaptive range-based localization algorithm based on trilateration and reference node selection for outdoor wireless sensor networks
	Introduction
	Related work
	Anchor- and range-based trilateration localization algorithms
	Reference node selection algorithms

	Theoretical background
	RSSI-based ranging
	Lateration
	Factors affecting localization accuracy
	Distance estimation error
	Localization geometry


	Localization error analysis
	Simulation setup
	Effects of ranging error and localization geometry on localization error

	Adaptive range-based localization algorithm based on trilateration and reference node selection
	Algorithm description
	Selecting reference combinations
	Evaluating reference triangles
	Computing initial location estimates
	Computing the final location estimate

	Implementation issues
	Selecting reference combinations
	Evaluating reference triangles
	Computing initial location estimates
	Computing the final location estimate

	Localization efficiency and scalability

	Performance evaluation by simulation
	Simulation data and methods
	Simulation results

	Performance evaluation by experimental measurement
	Experimental setup and data collection
	Experimental data and methods
	Experimental results

	Discussion and conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


