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Abstract
We prove that sub-Riemannian manifolds are infinitesimally Hilbertian (i.e., the associated
Sobolev space is Hilbert) when equipped with an arbitrary Radon measure. The result fol-
lows from an embedding of metric derivations into the space of square-integrable sections
of the horizontal bundle, which we obtain on all weighted sub-Finsler manifolds. As an
intermediate tool, of independent interest, we show that any sub-Finsler distance can be
monotonically approximated from below by Finsler ones. All the results are obtained in the
general setting of possibly rank-varying structures.

Keywords Infinitesimal Hilbertianity · Sobolev space · Sub-Riemannian manifold ·
Sub-Finsler manifold

Mathematics Subject Classification (2010) 53C23 · 46E35 · 53C17 · 55R25

1 Introduction

General overview In the last two decades, weakly differentiable functions over metric
measure spaces have been extensively studied and have played a fundamental role in the
development of abstract calculus in the nonsmooth setting (see, e.g., [13, 14, 18]). The
definition of Sobolev space we adopt in this paper is the one introduced in [10], which is
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equivalent to the notions proposed in [5, 8, 24]. At this level of generality, however, Sobolev
calculus might not be fully satisfactory from a functional-analytic viewpoint. For instance,
not only the Sobolev space can fail to be Hilbert (consider the Euclidean space endowed
with the L∞-norm and the Lebesgue measure), but it can be also non-reflexive (as shown
in [2, Proposition 7.8]). In view of this, the class of infinitesimally Hilbertian metric mea-
sure spaces (i.e., whose associated Sobolev space is Hilbert) is particularly relevant. These
spaces enjoy nice features, among which the strong density of boundedly-supported Lips-
chitz functions in the Sobolev space (as proven in [4]); we refer to the introduction of [21]
for an account of the several benefits of working within this class of spaces.

A strictly related concept is that of universally infinitesimally Hilbertian metric space,
that is to say, a metric space that is infinitesimally Hilbertian with respect to whichever
Radon measure. The interest in this property is mainly motivated by the study of metric
structures that are important from a geometric perspective, but do not carry any ‘canonical’
measure (such as sub-Riemannian manifolds that are not equiregular). The purpose of this
paper is to prove the following claim:

All sub-Riemannian manifolds are universally infinitesimally Hilbertian.

The goal will be achieved by building an isometric embedding of the ‘analytic’ space of
derivations over any weighted sub-Finsler manifold (which provide us with a synthetic
notion of vector field, linked to the Sobolev calculus) into the ‘geometric’ space of sections
of the horizontal bundle. The abstract differential structure of the space under consideration
and the behaviour of its (purely metric) tangent spaces are – a priori – unrelated, thus the
role of the above-mentioned embedding result is to bridge this gap, showing that Sobolev
functions are suitable to capture the fiberwise Hilbertianity of the horizontal bundle. As
an intermediate tool, of independent interest, we prove that a sub-Finsler distance can be
monotonically approximated from below by Finsler distances.

We would like to point out that the universal infinitesimal Hilbertianity is a non-trivial
property already in the case of the Euclidean space R

n: unless the measure under consid-
eration is the Lebesgue measure Ln (or some measure μ � Ln having smooth density), it
is not clear how one can characterise the Sobolev space over (Rn, | · |, μ). For example, if
the support of μ is totally disconnected, then the Sobolev space is trivial (in the sense that
every 2-integrable function is Sobolev and has null weak gradient), thus it does not carry any
information from the structure of the underlying space; cf. [5, Remark 4.12] for an instance
of this phenomenon.

Outline of the paper We consider a (generalised) sub-Finsler manifold (M, E, σ, ψ). This
means that M is a smooth connected manifold, while E is a smooth vector bundle over M
equipped with a continuous metric σ : E → [0,+∞) (as in Definition 3.7) and ψ : E →
TM is a bundle morphism; moreover, a Hörmander-like condition is required to hold, cf.
Definition 4.1. Whenever it holds that for every x ∈ M the norm σ |Ex on the fiber Ex

is induced by a scalar product that smoothly depends on x, we say that (M, E, σ, ψ) is
a (generalised) sub-Riemannian manifold. This notion of sub-Riemannian manifold is the
most general one that we have in the literature (see, e.g., [1]).

The horizontal bundle HM is obtained by ‘patching together’ the horizontal fibers Dx :=
ψ(Ex), which form a continuous distribution on M (in the sense of Theorem 3.2). We then
define a generalised metric ρ : TM → [0, +∞] over the tangent bundle (cf. Definition 3.4
for this term) as

ρ(x, v) = ‖v‖x := inf
{
σ(u)

∣∣ u ∈ Ex, (x, v) = ψ(u)
}
, for every (x, v) ∈ TM.
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Observe that the finiteness domain of ρ(x, ·) coincides with the horizontal fiber Dx for
every x ∈ M. The space M can be made into a metric space by considering the Carnot–
Carathéodory distance: given any two points x, y ∈ M, we define dCC(x, y) as the length
of the shortest path among all horizontal curves (i.e., tangent to HM) joining x and y. Here,
the length of a horizontal curve is computed with respect to the generalised metric ρ. See
Definition 4.3 for the details.

Let us now fix a non-negative Radon measure μ on (M, dCC), say that μ is finite (for
simplicity). We may consider two (completely different in nature) notions of vector field
over (M, dCC, μ):

• The space Der2,2(M; μ) of L2-derivations having divergence in L2 (in the sense of
[10]). These are linear functionals acting on Lipschitz functions and taking values
into the space of Borel functions over M, that satisfy a suitable Leibniz rule and a
locality property. The Sobolev space W 1,2(M, dCC, μ) is then obtained in duality with
Der2,2(M; μ), as described in Definition 2.4. The whole Section 2 is devoted to the key
results about L2-derivations.

• The space L2(HM; μ) of 2-integrable sections of the horizontal bundle; see Definition
4.7. Whenever M is a sub-Riemannian manifold, the elements of L2(HM; μ) satisfy
a pointwise parallelogram rule (thanks to geometric considerations, see Remark 4.8).
Nevertheless, it is not clear – a priori – how to deduce from this information that the
metric measure space (M, dCC, μ) is infinitesimally Hilbertian.

The main result of the paper aims at providing a relation between Der2,2(M;μ) and
L2(HM; μ): the former space is isometrically embeddable into the latter one. The precise
statement is:

Theorem 1.1 (Embedding theorem) Let (M, E, σ, ψ) be a sub-Finsler manifold with dCC
complete. Let μ be a finite, non-negative Borel measure on (M, dCC). Then there exists a
unique linear operator I : Der2,2(M; μ) → L2(HM; μ) such that

dHf (x)
[
I(b)(x)

] = b(f )(x) holds for μ-a.e. x ∈ M,

for every b ∈ Der2,2(M;μ) and f ∈ C1
c (M) ∩ LIP(M). Moreover, the operator I satisfies

∥∥I(b)(x)
∥∥

x
= |b|(x) for μ-a.e. x ∈ M,

for every b ∈ Der2,2(M;μ).

As a consequence, sub-Riemannian manifolds are universally infinitesimally Hilbertian:

Theorem 1.2 (Infinitesimal Hilbertianity of sub-Riemannian manifolds) Let (M, E, σ, ψ)

be a sub-Riemannian manifold with dCC complete. Let μ be a non-negative Radon measure
on (M, dCC). Then the metric measure space (M, dCC, μ) is infinitesimally Hilbertian.

The proof of the embedding result (Theorem 1.1) builds upon the following key
ingredients:

a) The Carnot–Carathéodory distance dCC can be written as pointwise limit of an increas-
ing sequence of Finsler distances; cf. Theorem 5.1. This property follows from the
results we develop in Section 3, where we show that the sub-Finsler metric ρ (or,
more generally, any generalised metric as in Definition 3.4) can be approximated from
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below by Finsler ones. This technical statement can be achieved by exploiting the lower
semicontinuity of ρ, as done in Lemma 3.8.

b) The pointwise norm of a given derivation can be recovered by just considering its
evaluation at smooth 1-Lipschitz functions. More precisely, we can find a sequence
(fn)n ⊆ C1

c (M) of 1-Lipschitz functions (with respect to dCC) such that the identity
|b| = supn b(fn) holds μ-a.e. for every b ∈ Der2,2(M; μ). This representation for-
mula is obtained by combining item a) above with an approximation result for Finsler
manifolds proven in [21].

c) Any derivation b ∈ Der2,2(M; μ) can be represented by a suitable measure π on the
space of continuous curves in M, as granted by the metric version [22] of Smirnov’s
superposition principle for normal 1-currents; see Theorem 2.8. The presence of
such a measure π is an essential tool in the construction of the embedding map
I : Der2,2(M; μ) → L2(HM; μ), which preserves the pointwise norm of all vector
fields as a consequence of item b).

Comparison with previous works The results of the present paper enrich the list of met-
ric spaces that are known to be universally infinitesimally Hilbertian, which previously
consisted of:

i) Euclidean spaces [15], see also [12],
ii) Riemannian manifolds [21],

iii) Carnot groups [21],
iv) Hilbert spaces [23],
v) locally CAT(κ)-spaces [11].

Let us now briefly comment on the main differences and analogies between the technique
we exploit here and the previous approaches. To the best of our knowledge, the strategy
proposed in [15, 21, 23] does not carry over to the framework of sub-Riemannian manifolds.
In the classes of spaces i), ii), iii), iv), a fact which plays a fundamental role is that – thanks
to a convolution argument – any Lipschitz function f (with respect to the relevant distance)
can be approximated by smooth functions whose local Lipschitz constant is sufficiently
close to that of f . In the context of sub-Riemannian manifolds, a relevant result in this
direction is given by [17, Proposition 11.10], but still it does not seem to be sufficient for
our purposes, as a more local estimate would be needed.

However, a different approach has been developed in [11] in order to overcome the
lack of smoothness of the spaces in v). The proof in the sub-Riemannian case is inspired
by the ideas introduced in [11]: indeed, the universal infinitesimal Hilbertianity of CAT
spaces stems – similarly to what described above – from an embedding result, which in turn
relies upon Smirnov’s superposition principle and a representation formula for the point-
wise norm of derivations. While the former is available on any metric measure space, the
latter requires an ad hoc argument for the sub-Riemannian setting. This makes a significant
difference with [11]: on CAT spaces, distance functions from given points are 1-Lipschitz
and everywhere have some form of differentiability, thus they are suitable candidates for
the representation formula; on sub-Riemannian manifolds, on the contrary, this is no longer
true, whence we need to find an alternative way to show that there is plenty of smooth 1-
Lipschitz functions that are μ-a.e. differentiable (where μ is an arbitrary measure). Most of
the present paper is actually dedicated to addressing this last point. Once the representation
formula is at disposal, the proof of the embedding result closely follows along the lines of
[11, Theorem 6.2].
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2 Derivations and Sobolev Calculus onMetric Measure Spaces

We recall here the notions of derivation and Sobolev space that have been proposed by S. Di
Marino in [10]. For our purposes, a metric measure space is a triple (X, d,m), where (X, d)

is a complete and separable metric space, while m ≥ 0 is a locally finite Borel measure on
(X, d).

We call LIP(X) or LIPd(X) the space of real-valued Lipschitz functions on (X, d), while
LIPbs(X) or LIPd

bs(X) stand for the set of elements of LIP(X) with bounded support. The
(global) Lipschitz constant of f ∈ LIP(X) is denoted by Lip(f ) or Lipd(f ), while the
functions lip(f ) : X → [0, +∞) and lipa(f ) : X → [0,+∞) are defined as

lip(f )(x) := lim
y→x

∣∣f (y) − f (x)
∣∣

d(y, x)
, lipa(f )(x) := inf

r>0
Lip

(
f |Br (x)

)

whenever x ∈ X is an accumulation point, and lip(f )(x) = lipa(f )(x) := 0 elsewhere.
We say that lip(f ) and lipa(f ) are the local Lipschitz constant and the asymptotic Lipschitz
constant of the function f , respectively. The vector space of all (equivalence classes up to
m-a.e. equality of) real-valued Borel functions on X is denoted by L0(m).

A derivation on (X, d,m) is a linear map b : LIPbs(X) → L0(m) with these two
properties:

a) LEIBNIZ RULE. The identity b(fg) = f b(g) + g b(f ) holds for every f, g ∈
LIPbs(X).

b) WEAK LOCALITY. There exists a function G ∈ L0(m) such that
∣∣b(f )

∣∣ ≤ G lipa(f )

is satisfied in the m-a.e. sense for every f ∈ LIPbs(X).

The pointwise norm |b| := ess sup
{
b(f )

∣∣ f ∈ LIPbs(X), Lip(f ) ≤ 1
}

is the minimal
function (in the m-a.e. sense) that can be chosen as G in item b) above.

Definition 2.1 (The space Der2,2(X;m)) Let (X, d,m) be a metric measure space. Then we
denote by Der2,2(X;m) the space of all derivations b on (X, d,m) such that |b| ∈ L2(m)

and whose distributional divergence can be represented as a function in L2(m), i.e., there
exists a (uniquely determined) function div(b) ∈ L2(m) such that

∫
b(f ) dm = −

∫
f div(b) dm for every f ∈ LIPbs(X).

The space Der2,2(X;m) is a module over the commutative ring LIPbs(X) and is a Banach
space when endowed with the norm Der2,2(X;m) � b �→ ‖b‖2,2 := ( ∫ |b|2 dm +
∫

div(b)2 dm
) 1

2 .

Lemma 2.2 Let (X, d,m) be a metric measure space and b ∈ Der2,2(X;m). Let (fn)n ⊆
LIPbs(X) be a sequence with supn Lip(fn) < +∞ that pointwise converges to some limit
f ∈ LIPbs(X). Then

∫
ϕ b(fn) dm −→

∫
ϕ b(f ) dm for every ϕ ∈ LIPbs(X).

Proof See item (1) of [11, Lemma 5.4].
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It will be convenient to work with the following representation formula for the pointwise
norm of the elements of Der2,2(X;m).

Proposition 2.3 Let (X, d,m) be a metric measure space. Let b ∈ Der2,2(X;m) be given.
Fix a countable dense set (xk)k ⊆ X. For any j, k ∈ N, let ηjk : X → [0, 1 − 1/j ] be a
boundedly-supported Lipschitz function such that ηjk = 1 − 1/j on Bj (xk) and Lip(ηjk) ≤
1/j2. Then it holds that

|b| = ess sup
j,k∈N

b
(
(d(·, xk) ∧ j) ηjk

)
in the m-a.e. sense. (2.1)

Proof It follows from [11, Proposition 5.5].

By duality with Der2,2(X;m), it is possible to introduce a notion of Sobolev space
W 1,2(X, d,m).

Definition 2.4 (Sobolev space) Let (X, d,m) be a metric measure space. Then we say that
a function f ∈ L2(m) belongs to the Sobolev space W 1,2(X, d,m) provided there exists a
continuous morphism Lf : Der2,2(X;m) → L1(m) of LIPbs(X)-modules such that

∫
Lf (b) dm = −

∫
f div(b) dm for every b ∈ Der2,2(X;m).

The map Lf is uniquely determined. Furthermore, there exists a function G ∈ L2(m)

such that ∣∣Lf (b)
∣∣ ≤ G |b| m-a.e. for every b ∈ Der2,2(X;m).

The minimal such function G (in the m-a.e. sense) is called 2-weak gradient of f and is
denoted by |Df | or |Df |m. Then W 1,2(X, d,m) is a Banach space when equipped with the
norm

‖f ‖W 1,2(X,d,m) :=
(∫

|f |2 dm +
∫

|Df |2 dm

)1/2

for every f ∈ W 1,2(X, d,m).

Remark 2.5 Let (X, d,m) be a metric measure space. Consider the (not necessarily com-
plete) norm Der2,2(X;m) � b �→ ‖b‖2 := ( ∫ |b|2 dm

)1/2. Call B the dual space of(
Der2,2(X;m), ‖ · ‖2

)
. Given any function f ∈ W 1,2(X, d,m), we define the element

Lf ∈ B as

Lf (b) :=
∫

Lf (b) dm for every b ∈ Der2,2(X;m). (2.2)

Then it holds the map W 1,2(X, d,m) � f �→ Lf ∈ B is linear and ‖Lf ‖
B

= ∥∥|Df |∥∥
L2(m)

is satisfied for every f ∈ W 1,2(X, d,m), as proven in [11, Proposition 5.10].

The following definition – which has been introduced in [14] – plays a key role in this
paper.

Definition 2.6 (Infinitesimal Hilbertianity) We say that a metric measure space (X, d,m)

is infinitesimally Hilbertian provided W 1,2(X, d,m) is a Hilbert space.

The following result provides a sufficient condition for the infinitesimal Hilbertianity to
hold.
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Proposition 2.7 Let (X, d,m) be a metric measure space. Suppose that

|b + b′|2 + |b − b′|2 = 2 |b|2 + 2 |b′|2 m-a.e. for every b, b′ ∈ Der2,2(X;m). (2.3)

Then (X, d,m) is infinitesimally Hilbertian.

Proof By integrating Eq. 2.3 we see that the norm ‖·‖2 on Der2,2(X;m) (defined in Remark
2.5) satisfies the parallelogram rule, whence the dual space B of

(
Der2,2(X;m), ‖ · ‖2

)
is a

Hilbert space. Therefore, we know from Remark 2.5 that for every f, g ∈ W 1,2(X, d,m) it
holds that

∥∥|D(f + g)|∥∥2
L2(m)

+ ∥∥|D(f − g)|∥∥2
L2(m)

= ‖Lf +g‖2
B

+ ‖Lf −g‖2
B

= ‖Lf + Lg‖2
B

+ ‖Lf − Lg‖2
B

= 2 ‖Lf ‖2
B

+ 2 ‖Lg‖2
B

= 2
∥∥|Df |∥∥2

L2(m)
+ 2

∥∥|Dg|∥∥2
L2(m)

,

which proves that W 1,2(X, d,m) is a Hilbert space, as required.

Finally, we conclude the subsection by reporting the following consequence of the metric
version of Smirnov’s superposition principle, which has been proven by E. Paolini and E.
Stepanov in [22].

Theorem 2.8 (Superposition principle) Let (X, d,m) be a metric measure space with m

finite. Let b ∈ Der2,2(X;m). Then there exists a finite, non-negative Borel measure π on
C

([0, 1], X
)
, concentrated on the set of non-constant Lipschitz curves on X having constant

speed, such that
∫

g b(f ) dm =
∫∫ 1

0
g(γt ) (f ◦ γ )′t dt dπ(γ ), (2.4a)

∫
g |b| dm =

∫∫ 1

0
g(γt ) |γ̇t | dt dπ(γ ) (2.4b)

for every f, g ∈ LIPbs(X).

Proof Combine [11, Theorem 4.9] with [11, Lemma 6.1].

3 Monotone Approximation of GeneralisedMetrics

3.1 Set-up and Auxiliary Results

We begin with some classical definitions. A norm n defined on a finite-dimensional vector
space V is said to be smooth provided it is of class C∞ on V \ {0}. In addition, we say that
n is strongly convex if the Hessian matrix of n2 at any vector v ∈ V \{0} is positive definite.
With the notation W ≤ V we intend that W is a vector subspace of V .

By smooth manifold we shall always mean a connected differentiable manifold of class
C∞. Given a smooth manifold M and a smooth vector bundle (E, π) over M, we say that
a function F : E → [0, +∞) is a Finsler metric over E if it is continuous, it is smooth
on the complement of the zero section, and F |Ex is a strongly convex norm on the fiber
Ex := π−1(x) for every x ∈ M.

By Finsler metric on M we mean a Finsler metric F over the tangent bundle TM. In this
case, we also say that the couple (M, F ) is a Finsler manifold. (In the literature, (M, F ) is
often referred to as a reversible Finsler manifold; cf., for instance, the monograph [7].)
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Definition 3.1 (Generalised norm) Let V be a vector space. Then a function n : V →
[0, +∞] is said to be a generalised norm if there exists a vector subspace D(n) �= {0} of V

such that n|D(n) is a norm on D(n) and n(v) = +∞ holds for every v ∈ V \ D(n).

Theorem 3.2 (Definition of continuous distribution) Let M be a smooth manifold and let
(E, π) be a smooth vector bundle over M. Let {Vx}x∈M be a family of vector spaces such
that Vx ≤ Ex for all x ∈ M. Then the following conditions are equivalent:

i) Given x̄ ∈ M and v̄ ∈ Vx̄ , there exists a continuous section v of E, defined on some
neighbourhood U of x̄, such that v(x̄) = v̄ and v(x) ∈ Vx for every x ∈ U .

ii) Given x̄ ∈ M, there exist finitely many continuous sections v1, . . . , vk of E, defined
on some neighbourhood U of x̄, such that Vx = span

{
v1(x), . . . , vk(x)

}
for every

x ∈ U .
iii) Given x̄ ∈ M, there exist a neighbourhood U of x̄, a smooth vector bundle Ẽ over U ,

and a continuous vector bundle morphism ψ : Ẽ → E|U , such that Vx = ψ(Ẽx) for
all x ∈ U .

If the above conditions are satisfied, we say that {Vx}x∈M is a continuous distribution (of
possibly varying rank) over M. Moreover, we can assume that k and the rank of Ẽ are at
most d 22·5n−1, where d is the rank of E and n is the dimension of M.

Proof The real novelty of the theorem is the implication i) =⇒ ii).
i) =⇒ ii) Suppose item i) holds. Given a point x̄ ∈ M, we can choose an open set U ′ ⊆ R

n

containing 0 and a map ϕ : U ′ → M satisfying ϕ(0) = x̄ that is a homeomorphism with its
image. Possibly shrinking U ′, we can assume there exists a Finsler metric F over E|U , where
U := ϕ(U ′). Fix any radius λ > 0 such that B̄λ(0) ⊆ U ′ and call K := ϕ

(
B̄λ(0)

) ⊆ U . For
any i = 1, . . . , d we set Ci := {x ∈ K : dim Vx ≤ i}. In order to prove ii), it would be
enough to find some finite families F1 ⊆ . . . ⊆ Fd of continuous sections of E|K such that
for any i = 1, . . . , d it holds that

Vx = Fi (x) := span
{
v(x)

∣∣ v ∈ Fi

}
for every x ∈ Ci,

Fi (x) ≤ Vx and dimFi (x) ≥ i for every x ∈ K \ Ci .

We build F1, . . . ,Fd via a recursive argument. Suppose to have already defined F1, . . . ,Fi

for some i < d . Notice that item i) grants that the function M � x �→ dim Vx is lower
semicontinuous, thus Ci is a compact set. For any j ∈ N we define the compact set Kj ⊆ K

as

Kj := ϕ

({
y ∈ B̄λ(0)

∣∣∣∣
λ

2j+1
≤ dist

(
ϕ−1(Ci), y

) ≤ λ

2j−1

})
.

Observe that
⋃

j∈N Kj = K \ Ci and that K̊j ∩ K̊j ′ = ∅ for all j, j ′ ∈ N such that |j − j ′|
is even.

Let j ∈ N be fixed. For any x ∈ Kj , we choose a vector w̄x ∈ Vx such that F(w̄x) = 1
and dim

(
Fi (x) + R w̄x

) ≥ i + 1. By item i), we can find a neighbourhood Wx ⊆ U

of x and a continuous section wx of E|Wx , such that wx(x) = w̄x and wx(z) ∈ Vz for
all z ∈ Wx . Possibly shrinking Wx , we can further assume that 0 < F

(
wx(z)

) ≤ 2 and
dim

(
Fi (z)+Rwx(z)

) ≥ i +1 hold for every point z ∈ Wx . By compactness of Kj , we can
thus find an open covering W1, . . . , Wm ⊆ U of Kj and continuous sections w1, . . . , wm of
E|W1 , . . . , E|Wm , respectively, such that 0 < F

(
wι(x)

) ≤ 2 and dim
(
Fi (x) + Rwι(x)

) ≥
i + 1 for every ι = 1, . . . , m and x ∈ Wι. By Lebesgue’s number lemma, there exists r > 0
such that any ball in R

n of radius r centered at ϕ−1(Kj ) is entirely contained in one of the
sets ϕ−1(W1), . . . , ϕ

−1(Wm). Choose a maximal r-separated subset S of ϕ−1(Kj ), i.e., S is
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maximal among all subsets satisfying |p − q| ≥ r for every p, q ∈ S with p �= q. Note that
S is a finite set by compactness of ϕ−1(Kj ). For any p ∈ S, call Gp := ϕ

(
Br(p)

)
and pick

ι(p) ∈ {1, . . . , m} such that Gp ⊆ Wι(p). By definition of S, it holds that Kj ⊆ ⋃
p∈S Gp .

Moreover, given any p ∈ S we have that the balls
{
Br/2(q) : q ∈ S \ {p}, |p − q| <

2r
}

are pairwise disjoint and contained in B5r/2(p) \ Br/2(p), whence accordingly #
{
q ∈

S \ {p} : |p − q| < 2r
} ≤ 5n − 1 for all p ∈ S. Therefore, we can take a partition

S = S1 ∪ . . . ∪ S5n with the property that Gp ∩ Gq = ∅ whenever � = 1, . . . , 5n and
p, q ∈ S� satisfy p �= q. Given � = 1, . . . , 5n and p ∈ S�, we can pick a continuous
function ψp : K → [0, 1] satisfying ψp = 0 on Kj \ Gp and ψp > 0 on Kj ∩ Gp . For any
multi-index α = (α2, . . . , α5n) ∈ {−1, 1}5n−1, we define

vjα(x) :=
∑

p∈S1

ψp(x) wι(p)(x) +
5n∑

�=2

α�

∑

p∈S�

ψp(x) wι(p)(x) for every x ∈ Kj .

Notice that F
(
vjα(x)

) ≤ 2 · 5n for every α ∈ {−1, 1}5n−1 and x ∈ Kj . For any j ∈ N we
fix a continuous functions ηj : K → [0, 1] such that ηj = 0 on K \ K̊j and ηj > 0 on K̊j .
Then we set

F ′
i+1 :=

{ ∑

j even

ηj

2j
vjα ±

∑

j odd

ηj

2j
vjβ

∣∣∣∣ α, β ∈ {−1, 1}5n−1
}

.

Therefore, it follows from the construction that the family Fi+1 := Fi ∪F ′
i+1 of continuous

sections of E|K satisfies dimFi+1(x) ≥ i + 1 for every x ∈ K , as required. Observe also
that #F ′

i ≤ 22·5n−1 for all i = 1, . . . , d , thus the cardinality of F := Fd does not exceed
d 22·5n−1. This proves ii).
ii) =⇒ iii) Suppose item ii) holds. Given a point x̄ ∈ M, pick a neighbourhood U of x̄

and some continuous sections v1, . . . , vk of E|U such that Vx = span
{
v1(x), . . . , vk(x)

}

for every x ∈ U . Let us define Ẽ := U × R
k and the continuous vector bundle morphism

ψ : Ẽ → E|U as

ψ(x, λ) :=
k∑

i=1

λi vi(x) for every x ∈ U and λ = (λ1, . . . , λk) ∈ R
k .

Therefore, we conclude that ψ(Ẽx) = span
{
v1(x), . . . , vk(x)

} = Vx for all x ∈ U , thus
proving iii).
iii) =⇒ i) Suppose item iii) holds. Fix x̄ ∈ M and v̄ ∈ Vx̄ . There exist a smooth vector
bundle Ẽ over some neighbourhood U ′ of x̄ and a continuous vector bundle morphism
ψ : Ẽ → E|U ′ such that Vx = ψ(Ẽx) for all x ∈ U ′. Choose any w̄ ∈ Ẽx̄ for which
ψ(w̄) = v̄. Then we can find a neighbourhood U ⊆ U ′ of x̄ and a continuous section w of
Ẽ|U such that w(x̄) = w̄. Now let us define v(x) := ψ

(
w(x)

)
for every x ∈ U . Therefore, it

holds that v is a continuous section of E|U such that v(x̄) = v̄ and v(x) ∈ Vx for all x ∈ U ,
thus proving i).

Remark 3.3 As already observed during the proof of Theorem 3.2, the function M � x �→
dim Vx is lower semicontinuous whenever {Vx}x∈M is a continuous distribution over M.

Definition 3.4 (Generalised metric) Let M be a smooth manifold, (E, π) a smooth vec-
tor bundle over M. Then a generalised metric over E is a lower semicontinuous function
ρ : E → [0,+∞] having the following properties:
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i) ρx := ρ|Ex is a generalised norm on Ex for every x ∈ M.
ii) The family

{
D(ρx)}x∈M is a continuous distribution.

In the case E = TM, we just say that ρ is a generalised metric on M.

Let us fix some notation: given any vector subspace V ≤ R
d , we denote by V ⊥ its

orthogonal complement (with respect to the Euclidean norm). We denote by S
d−1 the

Euclidean unit sphere in R
d , i.e., the set of all points x = (x1, . . . , xd) ∈ R

d such that
x2

1 + . . . + x2
d = 1, while x · y stands for the Euclidean scalar product between x ∈ R

d and
y ∈ R

d . Finally, given a metric space (X, d) and two compact non-empty sets A, B ⊆ X,
we shall denote by dH (A, B) the Hausdorff distance between A and B, i.e.,

dH (A,B) := max

{
sup
x∈A

inf
y∈B

d(x, y), sup
y∈B

inf
x∈A

d(x, y)

}
. (3.1)

Lemma 3.5 Let {0} �= V ≤ R
d be given. Let ‖ · ‖ be a norm on V . Fix a constant λ > 0

and a norm ‖ · ‖′ on R
d such that ‖v‖′ < ‖v‖ for all v ∈ V \ {0}. Then there exists a norm

n on Rd such that the following properties are satisfied:

n(v) = ‖v‖ for every v ∈ V,

n(v) > ‖v‖′ for every v ∈ R
d \ {0},

n(v) ≥ λ for every v ∈ V ⊥ ∩ S
d−1.

Proof Call λ′ := λ + max
{‖v‖′ : v ∈ S

d−1
}

and k := dim V . Fix any orthonormal basis
e1, . . . , ed of Rd (equipped with the Euclidean norm) such that e1, . . . , ek is a basis of V .
Hence, we define the norm n on R

d as follows: given any α = (α1, . . . , αd) ∈ R
d , we set

n(α1 e1 + . . . + αd ed) := ‖α1 e1 + . . . + αk ek‖ + λ′ ∣∣(αk+1, . . . , αd)
∣∣. (3.2)

It directly follows from its very definition that the norm n satisfies n(v) = ‖v‖ for every
v ∈ V and n(v) = λ′ > λ for every v ∈ V ⊥ ∩ S

d−1. Finally, for any choice of α =
(α1, . . . , αd) ∈ R

d with (αk+1, . . . , αd) �= 0 we have that

n(α1 e1 + . . . + αd ed) = ‖α1 e1 + . . . + αk ek‖ + λ′ ∣∣(αk+1, . . . , αd)
∣∣

≥ ‖α1 e1 + . . . + αk ek‖′ + λ′ ∣∣(αk+1, . . . , αd)
∣∣

> ‖α1 e1 + . . . + αk ek‖′ +
∥∥∥∥

αk+1 ek+1 + . . . + αd ed∣∣(αk+1, . . . , αd)
∣∣

∥∥∥∥

′ ∣∣(αk+1, . . . , αd)
∣∣

≥ ‖α1 e1 + . . . + αd ed‖′,

thus completing the proof of the statement.

In the following results, we shall consider the trivial bundle M × R
d over M. Given any

x ∈ M, a vector subspace of the fiber of M × R
d at x is of the form {x} × V , for some

vector subspace V ≤ R
d . For simplicity, we will always implicitly identify {x} × V with

the vector space V itself.

Lemma 3.6 Let M be a smooth manifold and ρ a generalised metric over M × R
d . Fix

x̄ ∈ M and any norm ‖ · ‖ on Rd . Call Vx := D(ρx) for every x ∈ M and k := dim Vx̄ . Then
for any ε > 0 there exists a neighbourhood U of x̄ such that

dH (Vx̄ ∩ S
d−1, Vx ∩ S

d−1) ≤ ε for every x ∈ U with dim Vx = k,
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where the Hausdorff distance dH is computed with respect to the norm ‖ · ‖.
Proof Since {Vx}x∈M is a continuous distribution, we can find a neighbourhood U ′ of x̄

and some continuous maps v1, . . . , vk′ : U ′ → R
d such that Vx = span

{
v1(x), . . . , vk′(x)

}

for all x ∈ U ′. Up to relabelling, we can assume that v1(x̄), . . . , vk(x̄) constitute a basis
of Vx̄ . Then there is a neighbourhood U ⊆ U ′ of x̄ such that v1(x), . . . , vk(x) are linearly
independent for all x ∈ U . Define Wx := span

{
v1(x), . . . , vk(x)

}
for every point x ∈ U .

Let us apply a Gram–Schmidt orthogonalisation process to the vector fields v1, . . . , vk , with
respect to the Euclidean norm | · |:

w1(x) := v1(x)
∣∣v1(x)

∣∣ ,

w2(x) := v2(x) − (
v2(x) · w1(x)

)
w1(x)

∣∣v2(x) − (
v2(x) · w1(x)

)
w1(x)

∣∣ ,

...

wk(x) := vk(x) − ∑k−1
i=1

(
vk(x) · wi(x)

)
wi(x)

∣∣vk(x) − ∑k−1
i=1

(
vk(x) · wi(x)

)
wi(x)

∣∣

for every x ∈ U . Therefore, the resulting continuous maps w1, . . . , wk : U → R
d satisfy

wi(x) · wj(x) = δij for every i, j = 1, . . . , k and x ∈ U,

Wx = span
{
w1(x), . . . , wk(x)

}
for every x ∈ U .

Fix any C > 0 such that ‖v‖ ≤ C |v| for all v ∈ R
d . Possibly shrinking U , we can assume

that ∣∣wi(x̄) − wi(x)
∣∣ ≤ ε

C
√

k
for every i = 1, . . . , k and x ∈ U . (3.3)

Since
{ ∑k

i=1 qi wi(x) : q = (q1, . . . , qk) ∈ Q
k ∩ S

k−1
}

is dense in Wx ∩ S
d−1 for all

x ∈ U , we have

dH (Wx̄ ∩ S
d−1, Wx ∩ S

d−1)
(3.1)≤ sup

q∈Qk∩Sk−1

∥∥∥∥

k∑

i=1

qi

(
wi(x̄) − wi(x)

)
∥∥∥∥

≤ C sup
q∈Qk∩Sk−1

( k∑

i=1

q2
i

)1/2( k∑

i=1

∣∣wi(x̄) − wi(x)
∣∣2

)1/2
(3.3)≤ ε

for every x ∈ U . The statement follows by noticing that Wx = Vx if x ∈ U satisfies
dim Vx = k.

Definition 3.7 (Continuous metric) Let M be a smooth manifold. Let (E, π) be a smooth
vector bundle over M. Then a continuous metric σ over E is a continuous function σ : E →
[0, +∞) such that σ |Ex is a norm on the fiber Ex for every point x ∈ M.

Lemma 3.8 Let M be a smooth manifold, ρ a generalised metric over M × R
d . Call Vx :

= D(ρx) for every x ∈ M. Fix x̄ ∈ M and two constants ε, λ > 0. Let σ be a continuous
metric over M × R

d such that σ(x, v) < ρ(x, v) for every x ∈ M and v ∈ R
d \ {0}. Then

there exist a smooth, strongly convex norm n on R
d and a neighbourhood U of x̄ such that

the following properties hold:

i)
∣∣n(v) − ρ(x̄, v)

∣∣ ≤ ε for every v ∈ Vx̄ ∩ S
d−1.

ii) σ(x, v) < n(v) < ρ(x, v) for every x ∈ U and v ∈ R
d \ {0}.
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iii) dim Vx̄ = min
{

dim Vx : x ∈ U
}
and

n(v) ≥ λ for every x ∈ D and v ∈ V ⊥
x ∩ S

d−1,

where we set D := {
x ∈ U : dim Vx = dim Vx̄

}
.

Proof We divide the proof into several steps:
STEP 1. Lemma 3.5 grants the existence of a norm n′ on R

d such that

n′(v) = ρ(x̄, v) for every v ∈ Vx̄,

n′(v) > σ(x̄, v) for every v ∈ R
d \ {0},

n′(v) ≥ λ + 1 for every v ∈ V ⊥̄
x ∩ S

d−1. (3.4)

Given that M � x �→ dim Vx is lower semicontinuous, we can find a neighbourhood U ′ of
x̄ such that dim Vx̄ is the minimum of the function U ′ � x �→ dim Vx .
STEP 2. The function S

d−1 � v �→ n′(v) − σ(x̄, v) > 0 is continuous by construction,
thus there exists ε′ ∈ (0, ε) such that σ(x̄, v) < n′(v) − ε′ for all v ∈ S

d−1. Choose any
constant δ > 0 such that (λ + 1)(1 − δ) > λ and δ < ε′/ max

{
n′(v) : v ∈ S

d−1
}
. Pick

also ε′′ ∈ (0, ε′) such that ε′′ < δ min
{
n′(v) : v ∈ S

d−1
}
. Then it holds that

σ(x̄, v) < n′(v) − ε′ < n′(v) − ε′′ < ρ(x̄, v) for every v ∈ S
d−1. (3.5)

Being (x, v) �→ ρ(x, v)−n′(v)+ε′′ lower semicontinuous and (x, v) �→ n′(v)−ε′−σ(x, v)

continuous, we deduce from Eq. 3.5 that there exists a neighbourhood U ′′ ⊆ U ′ of x̄ such
that

σ(x, v) < n′(v) − ε′ < n′(v) − ε′′ < ρ(x, v) for every x ∈ U ′′ and v ∈ S
d−1. (3.6)

Let us define n′′ := (1 − δ) n′. Our choice of δ and ε′′ yields n′(v) − ε′ < (1 − δ) n′(v) <

n′(v) − ε′′ for every v ∈ S
d−1, which together with Eq. 3.6 imply that

σ(x, v) < n′′(v) < ρ(x, v) for every x ∈ U ′′ and v ∈ S
d−1. (3.7)

Moreover, for any v ∈ Vx̄ ∩ S
d−1 it holds n′′(v) > n′(v) − ε′ > ρ(x̄, v) − ε by the first line

of Eq. 3.4.
STEP 3. In light of Eq. 3.7, there exists a constant δ′ > 0 with (λ + 1)(1 − δ) − δ′ > λ such
that

σ(x, v) < n′′(v) − δ′ < n′′(v) + δ′ < ρ(x, v) for every x ∈ U ′′ and v ∈ S
d−1,

n′′(v) − δ′ > ρ(x̄, v) − ε for every v ∈ Vx̄ ∩ S
d−1.

(3.8)

Choose any smooth norm ‖ · ‖ on R
d such that

∣∣‖v‖−n′′(v)
∣∣ ≤ δ′/2 holds for all v ∈ S

d−1,
whose existence follows, e.g., from [16, Theorem 103]. Then let us finally define the sought
norm n as n(v) := ‖v‖ + δ′|v|/2 for every v ∈ R

d . Clearly, it is a smooth and strongly
convex norm by construction. Moreover, it can be immediately checked that n satisfies

∣∣n(v) − n′′(v)
∣∣ ≤ δ′ for every v ∈ S

d−1. (3.9)

Accordingly, by combining Eq. 3.8 with Eq. 3.9 we obtain that

σ(x, v) < n(v) < ρ(x, v) for every x ∈ U ′′ and v ∈ S
d−1,

n(v) > ρ(x̄, v) − ε for every v ∈ Vx̄ ∩ S
d−1.

(3.10)

STEP 4. Observe that Eq. 3.9 and the third line of Eq. 3.4 give

n(v) ≥ (1 − δ) n′(v) − δ′ ≥ (λ + 1)(1 − δ) − δ′ for every v ∈ V ⊥̄
x ∩ S

d−1. (3.11)
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Since M � x �→ Vx is a continuous distribution and (λ + 1)(1 − δ) − δ′ > λ, we deduce
from Eq. 3.11 that for some neighbourhood U ⊆ U ′′ of x̄ we have

n(v) ≥ λ for every x ∈ U with dim Vx = dim Vx̄ and v ∈ V ⊥
x ∩ S

d−1.

Therefore, item iii) is verified (recall the last claim in STEP 1). Finally, we deduce from
Eq. 3.10 that also items i) and ii) hold, thus concluding the proof of the statement.

3.2 The Approximation Result

Let M be a smooth manifold and let ρ be a generalised metric over M × R
d . Calling Vx :=

D(ρx) for every x ∈ M, it holds that M � x �→ dim Vx is a lower semicontinuous function
(recall Remark 3.3), thus for any x ∈ M there exists rx > 0 such that

dim Vx = min
{

dim Vy

∣∣ y ∈ Brx (x)
}
.

Let us define
Gn := {

x ∈ M
∣∣ rx ≥ 1/n

}
for every n ∈ N. (3.12)

Observe that for any point x ∈ M there exists n̄ ∈ N such that x ∈ ⋂
n≥n̄ Gn.

Proposition 3.9 Let M be a smooth manifold. Let d be any distance on M that induces the
manifold topology. Fix a generalised metric ρ over M × R

d . Then there exists a sequence
(Fn)n of Finsler metrics over M × R

d such that the following properties are satisfied:

a) Fn−1(x, v) < Fn(x, v) < ρ(x, v) for every n ∈ N, x ∈ M, and v ∈ R
d \ {0}.

b) Given any n ∈ N, it holds that

Fn(x, v) ≥ n for every x ∈ Gn and v ∈ V ⊥
x ∩ S

d−1,

where Vx := D(ρx) for all x ∈ M and the set Gn is defined as in Eq. 3.12.
c) For any n ∈ N there exists a countable set Sn ⊆ M such that

∣∣Fn(z, v) − ρ(z, v)
∣∣ ≤ 1

n
for every z ∈ Sn and v ∈ Vz ∩ S

d−1.

d) Given any n ∈ N, x ∈ Gn, and v ∈ R
d , there exists a point z ∈ Sn ∩ B1/n(x) such that

Fn(x, v) ≥ Fn(z, v) and dH (Vz ∩ S
d−1, Vx ∩ S

d−1) <
1

n
,

where the Hausdorff distance dH is computed with respect to the norm Fn(z, ·) + | · |.

Proof We recursively define the Finsler metrics Fn : M × R
d → [0, +∞). Suppose to

have already defined F0, . . . , Fn−1 for some n ∈ N, where F0 := 0. By using Lemma 3.6,
Lemma 3.8, and the paracompactness of M, we can find a family

{
(Un

i , zn
i , nn

i ) : i ∈ N
}

such that:

i) {Un
i }i∈N is a locally finite, open covering of M, and diam(Un

i ) < 1/n for every i ∈ N.
ii) zn

i ∈ Un
i and dim Vzn

i
= min{dim Vx : x ∈ Un

i } for every i ∈ N.

iii) Given any i ∈ N, we have that nn
i is a smooth, strongly convex norm on R

d that
satisfies

Fn−1(x, v) < nn
i (v) < ρ(x, v) for every x ∈ Un

i and v ∈ R
d \ {0}.

iv)
∣∣nn

i (v) − ρ(zn
i , v)

∣∣ ≤ 1/n for every i ∈ N and v ∈ Vzn
i
∩ S

d−1.
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v) Calling Dn
i

:= {
x ∈ Un

i : dim Vx = dim Vzn
i

}
for all i ∈ N, we have that nn

i (v) ≥ n

for every x ∈ Dn
i and v ∈ V ⊥

x ∩ S
d−1.

vi) Given any i ∈ N, it holds that

dH (Vzn
i
∩ S

d−1, Vx ∩ S
d−1) <

1

n
for every x ∈ Dn

i ,

where dH is intended with respect to nn
i + | · |.

Choose a partition of unity {ϕn
i : i ∈ N} ⊆ C∞(M) subordinated to {Un

i : i ∈ N} such
that ϕn

i (zn
i ) = 1 for every i ∈ N. Let us define

Fn(x, v) :=
∑

i∈N
ϕn

i (x) nn
i (v) for every x ∈ M and v ∈ R

d .

Since each norm nn
i is smooth and strongly convex, it can be readily checked that Fn is a

Finsler metric over M × R
d . Let us then conclude by verifying that Fn satisfies the desired

properties:
a) It follows from iii) that Fn−1(x, v) < Fn(x, v) < ρ(x, v) for all x ∈ M and

v ∈ R
d \ {0}.

b) Fix any point x ∈ Gn. We claim that for any i ∈ N with x ∈ Un
i , it holds that x ∈ Dn

i .
Indeed, we know that rx ≥ 1/n by definition of Gn, whence it holds Un

i ⊆ Brx (x) by i)
and accordingly dim Vx = dim Vzn

i
by ii). This shows that x ∈ Dn

i , thus proving the above
claim.

Fix v ∈ V ⊥
x ∩ S

d−1. Therefore, we deduce from the previous claim and v) that
∑

i∈N
ϕn

i (x) =
∑

i∈N:
x∈Dn

i

ϕn
i (x) = 1 and Fn(x, v) =

∑

i∈N:
x∈Dn

i

ϕn
i (x) nn

i (v) ≥ n.

Define Sn := {zn
i : i ∈ N}. Notice that Fn(z

n
i , ·) = nn

i for any i ∈ N, whence iv) gives c).

Fix n ∈ N, x ∈ Gn, and v ∈ R
d . Since the family {i ∈ N : x ∈ Un

i } is finite, we can find
j ∈ N such that x ∈ Un

j and Fn(z
n
j , v) = min

{
Fn(z

n
i , v) : i ∈ N, x ∈ Un

i

}
. Consequently,

Fn(x, v) =
∑

i∈N:
x∈Un

i

ϕn
i (x) nn

i (v) =
∑

i∈N:
x∈Un

i

ϕn
i (x) Fn(z

n
i , v) ≥ Fn(z

n
j , v).

Moreover, as in the proof of item b) we deduce that x ∈ Dn
j . Therefore, we know from item

vi) that dH (Vzn
j

∩ S
d−1, Vx ∩ S

d−1) < 1/n, where dH is taken with respect to nn
j + | · | =

Fn(z
n
j , ·) + | · |. Notice also that zn

j ∈ B1/n(x), as diam(Un
j ) < 1/n by i). This gives the

statement.

Lemma 3.10 Let M, ρ, and (Fn)n be as in Proposition 3.9. Then it holds that Fn(x, v) ↗
ρ(x, v) for every x ∈ M and v ∈ R

d .

Proof It clearly suffices to prove that Fn(x, v) ↗ ρ(x, v) for any fixed x ∈ M and v ∈
S

d−1.
CASE 1. Assume v ∈ Vx := D(ρx). We argue by contradiction: suppose there is t > 0 such
that

Fn(x, v) ≤ ρ(x, v) − t for every n ∈ N. (3.13)
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Fix any distance d on M that induces the manifold topology. Since the function ρ is lower
semicontinuous by definition, we can find r > 0 such that

ρ(y, w) ≥ ρ(x, v) − t

2
for every (y,w) ∈ M × R

d with d(x, y), |v − w| < r . (3.14)

Choose any n̄ ∈ N such that 1/n̄ < min{r, t/4} and x ∈ ⋂
n≥n̄ Gn, with Gn defined as

in Eq. 3.12. Fix any n ≥ n̄. Item d) of Proposition 3.9 grants the existence of a point
z ∈ Sn ∩B1/n(x) and a vector wz ∈ Vz ∩S

d−1 such that Fn(x, v) ≥ Fn(z, v) and Fn(z, v −
wz) + |v − wz| ≤ 1/n. Moreover, item c) of Proposition 3.9 ensures that Fn(z,wz) ≥
ρ(z, wz) − 1/n. All in all, we conclude that

Fn(x, v) ≥ Fn(z, v) ≥ Fn(z, wz)− 1

n
≥ ρ(z, wz)− 2

n

(3.14)≥ ρ(x, v)− t

2
− 2

n
> ρ(x, v)− t,

which is in contradiction with Eq. 3.13. This proves that Fn(x, v) ↗ ρ(x, v) in the case
v ∈ Vx .
CASE 2. Assume v /∈ Vx . Choose those elements v′ ∈ Vx , w ∈ V ⊥

x ∩ S
d−1, and β > 0 for

which v = v′ + β w. Fix any n̄ ∈ N with x ∈ ⋂
n≥n̄ Gn. Then item b) of Proposition 3.9

yields Fn(x,w) ≥ n for all n ≥ n̄. Taking into account item a) of Proposition 3.9, this gives

Fn(x, v) ≥ β Fn(x,w) − Fn(x, v′) ≥ βn − ρ(x, v′) n−→ +∞ = ρ(x, v).

Therefore, the statement is proven.

Theorem 3.11 (Approximation of generalised metrics) Let M be a smooth manifold. Let ρ
be a generalised metric on M. Then there exists a sequence (Fn)n of Finsler metrics on M
such that

Fn(x, v) ↗ ρ(x, v) for every x ∈ M and v ∈ TxM. (3.15)

Proof Let us denote d := dim M. Since M is paracompact (and second countable), we can
find a locally finite, open covering (Mi )i∈N of M such that the tangent bundle TM admits
a local trivialisation ψi : TMi → Mi × R

d for every i ∈ N. Fix any partition of unity
(ϕi)i ⊆ C∞(M) subordinated to (Mi )i . Given any i ∈ N, we can apply Proposition 3.9
and Lemma 3.10 to obtain a sequence (F̃ i

n)n of Finsler metrics over Mi × R
d such that

F̃ i
n(x, ṽ) ↗ (ρ ◦ ψ−1

i )(x, ṽ) as n → ∞ for every x ∈ Mi and ṽ ∈ R
d . Therefore, let us

define Fn : TM → [0, +∞) as

Fn(x, v) :=
∑

i∈N
ϕi(x) (F̃ i

n ◦ ψi)(x, v) for every x ∈ M and v ∈ TxM.

It can be readily checked that (Fn)n is a sequence of Finsler metrics on M satisfying
Eq. 3.15.

Remark 3.12 Under some additional assumptions, we can actually improve the statement
of Theorem 3.11: if we further suppose that ρx |D(ρx) is a Hilbert norm for every x ∈ M,
then there exists a sequence (gn)n of Riemannian metrics on M such that

√
(gn)x(v, v) ↗ ρ(x, v) for every x ∈ M and v ∈ TxM.

This fact can be proven by slightly modifying (actually, simplifying) the arguments we
discussed in the present section. More precisely, it is sufficient to notice that in this case
the norm n defined in Eq. 3.2 is induced by a scalar product, and to omit STEP 3 from the
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proof of Lemma 3.8 (just defining n := n′′). Another proof of this result can be found in
[19, Proof of Corollary 1.5].

4 Sub-Finsler Manifolds

4.1 Definitions andMain Properties

In this subsection we recall the notion of sub-Finsler manifold and its main properties. The
following material is taken from [20, Section 3.1], see also [6].

Given a smooth manifold M, we denote by Vec(M) the space of all smooth vector fields
on M. Moreover, we define the map Der : C

([0, 1], M
) × [0, 1] → TM as

Der(γ, t) :=
{

(γt , γ̇t )

(γt , 0)

if γ̇t ∈ Tγt M exists,
otherwise.

(4.1)

It is well-known that Der is a Borel map. For any v, w ∈ Vec(M), we denote by [v, w] ∈
Vec(M) the Lie brackets of v and w. Given any subset F of Vec(M), we define the space
Lie(F) ⊆ Vec(M) as the Lie algebra generated by the family F , i.e.,

Lie(F) := span
{
[v1, . . . , [vj−1, vj ] . . .]

∣∣∣ j ∈ N, v1, . . . , vj ∈ F
}

.

We set Liex(F) := {
v(x) : v ∈ Lie(F)

} ≤ TxM for every x ∈ M. We say that the family
F satisfies the Hörmander condition provided Liex(F) = TxM holds for every x ∈ M.

Definition 4.1 (Sub-Finsler manifold) Let M be a smooth manifold. Then a triple (E, σ, ψ)

is said to be a sub-Finsler structure on M provided the following properties hold:

i) E is a smooth vector bundle over M,
ii) σ is a continuous metric over E,

iii) ψ : E → TM is a morphism of smooth vector bundles such that the family D of
smooth horizontal vector fields on M, which is defined as

D := {
ψ ◦ u

∣∣ u is a smooth section of E
} ⊆ Vec(M),

satisfies the Hörmander condition.

The quadruple (M, E, σ, ψ) is said to be a generalised sub-Finsler manifold (or just a sub-
Finsler manifold, for brevity). If (Ex, σ |Ex ) is a Hilbert space for every x ∈ M and the family
of squared norms (σ |Ex )

2 smoothly depends on x, then (M, E, σ, ψ) is called a generalised
sub-Riemannian manifold (or just a sub-Riemannian manifold).

The family D of smooth horizontal vector fields is a finitely-generated module over
C∞(M). The continuous distribution {Dx}x∈M associated with (M, E, σ, ψ) is defined as

Dx := {
v(x)

∣∣ v ∈ D
} ≤ TxM for every x ∈ M.

We say that r(x) := dimDx ≤ dim M is the rank of the sub-Finsler structure (E, σ, ψ) at
x ∈ M.

Given any point x ∈ M and any vector v ∈ Dx , we define the quantity ‖v‖x as

‖v‖x := inf
{
σ(u)

∣∣ u ∈ Ex, (x, v) = ψ(u)
}
. (4.2)
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Therefore, it holds that ‖ · ‖x is a norm on Dx . Furthermore, if (E, σ, ψ) is a sub-
Riemannian structure on M, then each norm ‖ · ‖x is induced by some scalar product
〈·, ·〉x .

Definition 4.2 (Horizontal curve) Let (M, E, σ, ψ) be a sub-Finsler manifold. Let
γ : [0, 1] → M be a continuous curve such that for any t̄ ∈ [0, 1] there exist δ > 0 and a
chart (U, φ) of M such that γ (I ) ⊆ U and φ ◦ γ |I : I → R

dim M is Lipschitz, where we
set I := (t̄ − δ, t̄ + δ) ∩ [0, 1]. Then the curve γ is said to be horizontal provided there is
an L∞-section u of the pullback bundle γ ∗E – i.e., a map [0, 1] � t �→ u(t) ∈ Eγt that is
measurable and essentially bounded – such that

(γt , γ̇t ) = ψ
(
u(t)

)
holds for a.e. t ∈ [0, 1].

The sub-Finsler length of the curve γ is defined as �CC(γ ):= ∫ 1
0 ‖γ̇t‖γt

dt .

Definition 4.3 (Carnot–Carathéodory distance) Let (M, E, σ, ψ) be a sub-Finsler manifold.
Fix any x, y ∈ M. Then we define the Carnot–Carathéodory distance between x and y as

dCC(x, y) := inf
{
�CC(γ )

∣∣∣ γ is a horizontal curve in M such that γ0 = x and γ1 = y
}

.

(4.3)

Theorem 4.4 (Chow–Rashevskii) Let (M, E, σ, ψ) be a sub-Finsler manifold. Then dCC is
a distance on M that induces the manifold topology.

The metric space (M, dCC) is complete if and only if B̄r (x) is compact for all x ∈ M and
r > 0.

Proposition 4.5 Let (M, E, σ, ψ) be a sub-Finsler manifold. Let γ : [0, 1] → M be a curve
in M. Then γ is dCC-Lipschitz if and only if it is horizontal. Moreover, in such case it holds
that

‖γ̇t‖γt
= lim

h→0

dCC(γt+h, γt )

|h| for a.e. t ∈ [0, 1].

4.2 Structure of the Horizontal Bundle

Let (M, E, σ, ψ) be a sub-Finsler manifold, whose associated distribution is denoted by
{Dx}x∈M. Then we define the horizontal bundle HM as

HM :=
⊔

x∈M

Dx .

Moreover, we define the function ρ : TM → [0, +∞] as

ρ(x, v) :=
{ ‖v‖x

+∞
if (x, v) ∈ HM,

otherwise.
(4.4)

Lemma 4.6 Let (M, E, σ, ψ) be a sub-Finsler manifold. Then the function ρ defined in
Eq. 4.4 is a generalised metric on M. In particular, the horizontal bundle HM is a Borel
subset of TM.

Proof First of all, observe that x �→ D(ρx) = Dx is a continuous distribution by Theorem
3.2. With this said, we only have to prove that the function ρ is lower semicontinuous. To
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this aim, let us fix a sequence
{
(xn, vn)

}
n∈N∪{∞} ⊆ TM such that (xn, vn) → (x∞, v∞).

We claim that
ρ(x∞, v∞) ≤ lim

n→∞
ρ(xn, vn). (4.5)

Without loss of generality, we can assume that limn ρ(xn, vn) < +∞. For any n ∈ N

choose an element un ∈ Exn such that ψ(un) = (xn, vn) and σ(un) ≤ ρ(xn, vn) + 1/n.
Moreover, pick a subsequence (nk)k with limk ρ(xnk

, vnk
) = limn ρ(xn, vn). Therefore, it

holds that
{
σ(unk

)
}
k∈N is bounded, thus there exists u∞ ∈ Ex∞ such that (possibly passing

to a not relabelled subsequence) we have unk
→ u∞. Note that ψ(u∞) = limk ψ(unk

) =
limk(xnk

, vnk
) = (x∞, v∞) by continuity of ψ . Consequently, by using the continuity of σ

and the definition of ρx∞ we conclude that

ρ(x∞, v∞) ≤ σ(u∞) = lim
k→∞ σ(unk

) ≤ lim
k→∞ ρ(xnk

, vnk
) + 1

nk

= lim
n→∞

ρ(xn, vn),

which proves the claim Eq. 4.5. Hence, the statement is finally achieved.

A vector field v : M → TM is said to be a section of HM provided v(x) ∈ Dx for every
x ∈ M. We say that a section v of HM is Borel provided it is Borel measurable as a map
from M to TM.

It immediately follows from Lemma 4.6 that

M � x �−→ ∥∥v(x)
∥∥

x
∈ R is a Borel function, for every Borel section v of HM.

The space of Borel sections of HM is a vector space with respect to the usual pointwise
operations.

Definition 4.7 (The space L2(HM; μ)) Let (M, E, σ, ψ) be a sub-Finsler manifold. Let μ

be a non-negative Borel measure on (M, dCC). Then we define the space L2(HM; μ) as the
set of (equivalence classes up to μ-a.e. equality of) all Borel sections v of the horizontal
bundle HM such that M � x �→ ∥∥v(x)

∥∥
x

∈ R belongs to L2(μ). The space L2(HM; μ) is
an L∞(μ)-module with respect to the natural pointwise operations, thus in particular it is a
vector space.

Remark 4.8 (Pointwise parallelogram identity) Let (M, E, σ, ψ) be a sub-Riemannian
manifold. Given that each space

(
Dx, ‖ · ‖x

)
is Hilbert, we readily deduce that

∥∥v(x) + w(x)
∥∥2

x
+ ∥∥v(x) − w(x)

∥∥2
x

= 2
∥∥v(x)

∥∥2
x

+ 2
∥∥w(x)

∥∥2
x

holds for μ-a.e. x ∈ M,

for every v, w ∈ L2(HM; μ).

Given any smooth function f ∈ C∞(M), we denote by df its differential, which is a
smooth section of the cotangent bundle T∗M. Then the horizontal differential dHf of f is
defined as

dHf (x) := dxf |Dx ∈ D∗
x for every x ∈ M. (4.6)

Lemma 4.9 Let (M, E, σ, ψ) be a given sub-Finsler manifold. Then there exists a countable
family of functions C ⊆ C∞

c (M) such that
{
dHf (x) : f ∈ C

}
is dense in D∗

x for every
x ∈ M.

Proof Call n := dim M. By Lindelöf lemma we know that there exists an open covering
(�j )j∈N of M with the following property: for every j ∈ N there exist some functions

f
j

1 , . . . , f
j
n ∈ C∞

c (M) such that dxf
j

1 , . . . , dxf
j
n is a basis of T∗

xM for every x ∈ �j .
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Consequently, dHf
j

1 (x), . . . , dHf
j
n (x) generate D∗

x for every x ∈ �j . Calling Vj the Q-

linear subspace of C∞
c (M) generated by f

j

1 , . . . , f
j
n , one clearly has that

{
dHf (x) : f ∈

Vj

}
is dense in D∗

x for every x ∈ �j . Therefore, the countable family of functions C :=⋃
j∈N Vj fulfills the required properties.

Lemma 4.10 Let (M, E, σ, ψ) be a sub-Finsler manifold. Let f ∈ C1
c (M). Then f ∈

LIP(M) and ∥∥dHf (x)
∥∥∗

x
≤ lip(f )(x) for every x ∈ M. (4.7)

Proof Lipschitzianity of f can be proven by arguing, e.g., as in [1, Lemma 3.16]. To show
Eq. 4.7, let v ∈ Dx and ε > 0 be fixed. We know from Eq. 4.2 that there exists u ∈ Ex

such that (x, v) = ψ(u) and σ(u) ≤ ‖v‖x + ε. Choose a smooth section η of E such
that η(x) = u. Since ψ ◦ η is a smooth vector field on M, there exists a smooth solution
γ : [0, δ′] → M to the ODE

{
γ̇t = (ψ ◦ η)(γt ) for every t ∈ [0, δ′],
γ0 = x.

Being η ◦ γ continuous, we can find δ ∈ (0, δ′) such that σ
(
η(γt )

) ≤ σ(u) + ε for every
t ∈ [0, δ]. Moreover, again by Eq. 4.2 we have that ‖γ̇t‖γt

≤ σ
(
η(γt )

)
for all t ∈ [0, δ].

Combining the previous estimates we get that ‖γ̇t‖γt
≤ ‖v‖x + 2 ε for every t ∈ [0, δ].

Therefore, we conclude that

dHf (x)[v] = dxf (γ̇0) = limt↘0
f (γt )−f (x)

t
≤ lip(f )(x) limt↘0

dCC(γt ,γ0)
t

(4.3)≤ lip(f )(x) limt↘0
1
t

∫ t

0 ‖γ̇s‖γs
ds ≤ lip(f )(x)

(‖v‖x + 2 ε
)
.

Letting ε ↘ 0 we see that dHf (x)[v] ≤ lip(f )(x) ‖v‖x for all v ∈ Dx , whence Eq. 4.7
follows.

5 Main Result: Infinitesimal Hilbertianity of Sub-RiemannianManifolds

5.1 Derivations onWeighted Sub-Finsler Manifolds

The aim of this subsection is to provide an alternative to the representation formula Eq. 2.1
for the pointwise norm of a derivation (with divergence) over a weighted sub-Finsler man-
ifold M. We would like to express the pointwise norm of a derivation b as the essential
supremum of the functions b(f ), where f varies in a countable family of 1-Lipschitz
smooth functions. Given that the distance functions dCC(·, x̄) from fixed points x̄ ∈ M
are not smooth (thus in particular not almost everywhere differentiable with respect to an
arbitrary measure on M), a new representation formula is needed.

The following result states that any Carnot–Carathéodory distance can be (monotoni-
cally) approximated by distances associated to suitable Finsler metrics. A word on notation:
given a Finsler metric F on a manifold M, we denote by dF the induced distance on M.

Theorem 5.1 Let (M, E, σ, ψ) be a sub-Finsler manifold. Then there exists a sequence
(Fn)n of Finsler metrics on M such that dFn(x, y) ↗ dCC(x, y) holds for every x, y ∈ M.

Proof Define ρ as in Eq. 4.4 and consider a sequence (Fn)n of approximating Finsler met-
rics as in Theorem 3.11. Let x, y ∈ M be fixed. Let γ : [0, 1] → M be a curve joining x

and y that is Lipschitz when read in charts (i.e., as in Definition 4.2). Calling �Fn the length
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functional associated to Fn, it holds that �Fn(γ ) ≤ �Fn+1(γ ) ≤ �CC(γ ) for every n ∈ N, thus
by taking the infimum over γ we deduce that dFn(x, y) ≤ dFn+1(x, y) ≤ dCC(x, y). Given
any n ∈ N, by definition of dFn we find a constant-speed Lipschitz curve γ n : [0, 1] → M,
where the target is endowed with dFn , such that

�Fn(γ
n) ≤ dFn(x, y) + 1

n
. (5.1)

Fix n ∈ N. The above considerations yield

�Fn(γ
i) ≤ �Fi

(γ i)
(5.1)≤ dFi

(x, y) + 1

i
≤ dCC(x, y) + 1 for every i ≥ n.

This shows that (γ i)i≥n is an equiLipschitz family of curves (with respect to dFn ). By
combining Arzelà–Ascoli theorem with a diagonalisation argument, we thus obtain a curve
γ : [0, 1] → M, which is Lipschitz with respect to each distance dFn , such that (up to a not
relabelled subsequence)

lim
i→∞ sup

t∈[0,1]
dFn(γ

i
t , γt ) = 0 for every n ∈ N. (5.2)

Since �Fn is lower semicontinuous under uniform convergence of curves, we deduce from
Eq. 5.2 that

�Fn(γ ) ≤ lim
i→∞

�Fn(γ
i) ≤ lim

i→∞
�Fi

(γ i)
(5.3)≤ lim

i→∞ dFi
(x, y) for every n ∈ N. (5.3)

Therefore, by using the monotone convergence theorem we obtain that
∫ 1

0
ρ(γt , γ̇t ) dt = lim

n→∞

∫ 1

0
Fn(γt , γ̇t ) dt = lim

n→∞ �Fn(γ )
(5.3)≤ lim

i→∞ dFi
(x, y) ≤ dCC(x, y) < +∞,

which implies that the curve γ is horizontal and satisfies �CC(γ ) = dCC(x, y) =
limn dFn(x, y).

Although not strictly needed for our purposes, let us point out an immediate well-known
consequence (already proven in [19]) of the previous theorem.

Corollary 5.2 Let (M, E, σ, ψ) be a sub-Riemannian manifold. Then there exists a
sequence (gn)n of Riemannian metrics on M such that dgn(x, y) ↗ dCC(x, y) holds for
every x, y ∈ M.

Proof It follows from Theorem 5.1 by taking Remark 3.12 into account.

We shall also need the ensuing approximation result for real-valued Lipschitz functions
that are defined on a Finsler manifold.

Lemma 5.3 Let (M, F ) be a Finsler manifold. Let f ∈ LIPbs(M) be given. Then there
exists a sequence (fn)n ⊆ C1

bs(M) with supn Lip(fn) ≤ Lip(f ) such that fn → f uniformly
on M.

Proof We call C := maxM |f |. We know (for instance, from [21, Theorem 2.6]) that for
any n ∈ N there exists a function gn ∈ C1

bs(M) such that Lip(gn) ≤ Lip(f ) + 1/n and
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|gn − f | ≤ 1/n on M. Set cn := Lip(f )/
(
Lip(f ) + 1/n

)
and fn := cn gn. Therefore

fn ∈ C1
bs(M), Lip(fn) ≤ Lip(f ), and

|fn−f |≤|fn−gn|+|gn−f |=(1−cn)|gn|+|gn−f |≤ |f | + 1/n

n Lip(f ) + 1
+ 1

n
≤ C + 1

n Lip(f ) + 1
+ 1

n
,

thus accordingly fn → f uniformly on M, as required.

For a complete study of limits of sub-Finsler structures in the Lipschitz category we point
out the recent preprint [6].

We are now in a position to prove a representation formula for the pointwise norm of
derivations on weighted sub-Finsler manifolds, by combining the above two results with
Proposition 2.3.

Theorem 5.4 Let (M, E, σ, ψ) be a sub-Finsler manifold such that dCC is complete. Let
μ ≥ 0 be a finite Borel measure on (M, dCC). Then there exists a countable family F ⊆
C1

c (M) ∩ LIP(M) such that Lip(f ) ≤ 1 for every f ∈ F and

|b| = ess sup
f ∈F

b(f ) μ-a.e. for every b ∈ Der2,2(M; μ).

Proof Fix a dense sequence (xk)k ⊆ M. Theorem 5.1 grants the existence of a sequence
(Fi)i of Finsler metrics on M such that dFi

↗ dCC pointwise on M × M. Choose a fam-
ily {ηjk}j,k∈N of cut-off functions with these properties: given j, k ∈ N, we have that
ηjk : M → [0, 1 − 1/j ] is a boundedly-supported Lipschitz function (with respect to dF1 )

such that ηjk = 1 − 1/j on B
dCC
j (xk) and LipdF1 (ηjk) ≤ 1/j2. Observe that for any

i, j, k ∈ N it holds that

LipdFi

(
(dFi

(·, xk) ∧ j) ηjk

) ≤ LipdFi

(
dFi

(·, xk) ∧ j
)

max
M

|ηjk | + LipdFi (ηjk) max
M

∣∣dFi
(·, xk) ∧ j

∣∣

≤ 1 − 1

j
+ j LipdF1 (ηjk) ≤ 1.

Therefore, Lemma 5.3 guarantees the existence of a function fijk ∈ C1
c (M)∩ LIPdFi (M)

that satisfies LipdFi (fijk) ≤ 1 and

∣∣(dFi
(x, xk) ∧ j) ηjk(x) − fijk(x)

∣∣ ≤ 1

i
for every x ∈ M.

Define F := {fijk : i, j, k ∈ N}. Note that F ⊆ C1
c (M) ∩ LIPdCC(M) and

supf ∈F LipdCC(f ) ≤ 1, as LipdCC(fijk) ≤ LipdFi (fijk) ≤ 1 for all i, j, k ∈ N. Now let us
call

n(b) := ess sup
f ∈F

b(f ) for every b ∈ Der2,2(M;μ). (5.4)

Since b(f ) ≤ |b| LipdCC(f ) ≤ |b| holds μ-a.e. for all f ∈ F , we deduce that n(b) ≤ |b|
holds μ-a.e. as well. To prove the converse inequality, fix ε > 0. Proposition 2.3 grants the
existence of a Borel partition (Ajk)j,k of M such that

∑
j,k

χAjk
b
(
(dCC(·, xk) ∧ j) ηjk

) ≥
|b| − ε in the μ-a.e. sense. Fix j, k ∈ N and choose a sequence (ϕn)n ⊆ LIPdCC

bs (M) with
ϕn ≥ 0 converging to χAjk

strongly in L2(μ). Given that limi fijk(x) = (dCC(x, xk) ∧
j) ηjk(x) for every x ∈ M, Lemma 2.2 yields
∫

ϕn b
(
(dCC(·, xk)∧j) ηjk

)
dμ= lim

i→∞

∫
ϕn b(fijk) dμ

(5.4)≤
∫

ϕn n(b) dμ for every n ∈ N,
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thus by letting n → ∞ we deduce that
∫

Ajk

|b| dμ − ε μ(Ajk) ≤
∫

Ajk

b
(
(dCC(·, xk) ∧ j) ηjk

)
dμ ≤

∫

Ajk

n(b) dμ.

By summing over j, k ∈ N we get that
∫ |b| dμ − ε μ(M) ≤ ∫

n(b) dμ. By letting ε ↘ 0
we finally conclude that

∫ |b| dμ ≤ ∫
n(b) dμ, which forces the μ-a.e. equality |b| = n(b),

as desired.

5.2 Embedding Theorem and its Consequences

This subsection is devoted to our main result, namely Theorem 1.1, which states that the
space of derivations Der2,2(M;μ) associated with a weighted sub-Finsler manifold M can
be isometrically embedded into the space L2(HM; μ) of all ‘geometric’ 2-integrable sec-
tions of the horizontal bundle HM. For the reader’s convenience, we also recall here the
statement.

Theorem 5.5 (Embedding theorem) Let (M, E, σ, ψ) be a sub-Finsler manifold with dCC
complete. Let μ be a finite, non-negative Borel measure on (M, dCC). Then there exists a
unique linear operator I : Der2,2(M; μ) → L2(HM; μ) such that

dHf (x)
[
I(b)(x)

] = b(f )(x) holds for μ-a.e. x ∈ M, (5.5)

for every b ∈ Der2,2(M;μ) and f ∈ C1
c (M) ∩ LIP(M). Moreover, the operator I satisfies

∥∥I(b)(x)
∥∥

x
= |b|(x) for μ-a.e. x ∈ M, (5.6)

for every b ∈ Der2,2(M;μ).

Proof We divide the proof into several steps:
BOREL REGULARITY. We aim to prove that any section I(b) of HM satisfying Eq. 5.5 is

(equivalent to) a Borel section. Given any x̄ ∈ M, we can find an open neighbourhood � of
x̄ and some functions f1, . . . , fn ∈ C∞

c (M) such that dxf1, . . . , dxfn is a basis of T∗
xM for

all x ∈ �. Since each function � � x �→ dxfi

[
I(b)(x)

]
is equivalent to a Borel function by

Eqs. 4.6 and 5.5, we deduce that I(b) is equivalent to a Borel section of HM on �. By Lin-
delöf lemma we can cover M with countably many sets � with this property, whence I(b)

is equivalent to a Borel section of HM.
INTEGRABILITY. The property Eq. 5.6 ensures that each Borel section I(b) belongs to
L2(HM; μ), since |b| ∈ L2(μ) by assumption.
UNIQUENESS. Fix b ∈ Der2,2(M; μ) and pick C ⊆ C1

c (M) ∩ LIP(M) as in Lemma 4.9.
Then by writing Eq. 5.5 for every function f ∈ C we deduce that the element I(b)(x) ∈ Dx

is uniquely determined for μ-a.e. x ∈ M, thus the operator I is unique.
LINEARITY. Let b, b′ ∈ Der2,2(M; μ) and λ, λ′ ∈ R be given. Then Eq. 5.5 ensures that

dHf (x)
[
λ I(b)(x) + λ′ I(b′)(x)

] = λ dHf (x)
[
I(b)(x)

] + λ′ dHf (x)
[
I(b′)(x)

]

= λ b(f )(x) + λ′ b′(f )(x) = (λ b + λ′ b′)(f )(x)

for every f ∈ C1
c (M) ∩ LIP(M) and μ-a.e. x ∈ M. By uniqueness, we conclude that I is

linear.
EXISTENCE. Let b ∈ Der2,2(M; μ) be fixed. Consider its associated measure π as in The-
orem 2.8. Define the measure π̂ := π ⊗ L1 on C

([0, 1], M
) × [0, 1], where L1 stands
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for the restriction of the Lebesgue measure L1 to the interval [0, 1]. The evaluation map
e : C

([0, 1], M
) × [0, 1] → M, i.e.,

e(γ, t) := γt for every γ ∈ C
([0, 1], M

)
and t ∈ [0, 1],

is continuous. Therefore, it makes sense to consider the finite Borel measure ν := e∗π̂
on M. An application of the disintegration theorem [3, Theorem 5.3.1] provides us with a
weakly measurable family {π̂x}x∈M of Borel probability measures on C

([0, 1], M
) × [0, 1]

such that

π̂x is concentrated on e−1({x}) for ν-a.e. x ∈ M, (5.7a)
∫

�(γ, t) dπ̂(γ, t) =
∫ (∫

�(γ, t) dπ̂x(γ, t)

)
dν(x) for every � ∈ L1(π̂). (5.7b)

Since π -a.e. curve γ is horizontal by Proposition 4.5, we have that γ̇t ∈ Dγt holds for π̂-a.e.
(γ, t) by Fubini theorem. Consider the Borel map Der : C

([0, 1], M
)×[0, 1] → TM defined

in Eq. 4.1. Then we know from Eq. 5.7a that for ν-a.e. x ∈ M the measure nx := Der∗π̂x can
be viewed as a Borel probability measure on Dx . Therefore, for any function g ∈ LIPbs(M)

we have that

∫
g |b| dμ

(2.4b)=
∫∫ 1

0
g(γt ) |γ̇t | dt dπ(γ ) =

∫
g
(
e(γ, t)

)
ρ
(
Der(γ, t)

)
dπ̂(γ, t)

(5.7b)=
∫ (∫

g
(
e(γ, t)

)
ρ
(
Der(γ, t)

)
dπ̂x(γ, t)

)
dν(x)

=
∫

g(x)

( ∫

Dx

‖v‖x dnx(v)

)
dν(x), (5.8)

where the function ρ is defined as in Eq. 4.4. Let us set �(x) := ∫
Dx

‖v‖x dnx(v) for ν-a.e.
x ∈ M. The measurability of � is granted by the fact that {π̂x}x∈M is a weakly measurable
family of measures. Moreover, by the arbitrariness of g ∈ LIPbs(M) we deduce from Eq. 5.8
that |b|μ = �ν. In particular � ∈ L1(ν), which implies that

∫

Dx

‖v‖x dnx(v) < +∞ for ν-a.e. x ∈ M. (5.9)

Given that π is concentrated on non-constant Lipschitz curves having constant speed, we
also have that γ̇t �= 0 for π̂-a.e. (γ, t), or equivalently that ρ ◦ Der > 0 in the π̂-a.e. sense.
Hence Eq. 5.8 ensures that �(x) = ∫

ρ ◦ Der dπ̂x > 0 holds for ν-a.e. point x ∈ M, which
together with the identity |b|μ = �ν imply that ν � μ. The Bochner integral

∫
Dx

v dnx(v)

is well-posed for ν-a.e. point x ∈ M by Eq. 5.9, therefore it makes sense to define

I(b)(x) := dν

dμ
(x)

∫

Dx

v dnx(v) ∈ Dx for μ-a.e. x ∈ M,

where dν
dμ

stands for the Radon–Nikodým derivative of ν with respect to μ. Now fix g ∈
LIPbs(M) and f ∈ C1

c (M) ∩ LIP(M). We call df : TM → R the smooth map (x, v) �→
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dxf [v]. Therefore
∫

g b(f ) dμ
(2.4a)=

∫∫ 1

0
g(γt ) (f ◦ γ )′t dt dπ(γ ) =

∫
g
(
e(γ, t)

)
df

(
Der(γ, t)

)
dπ̂(γ, t)

(5.7b)=
∫ (∫

g
(
e(γ, t)

)
df

(
Der(γ, t)

)
dπ̂x(γ, t)

)
dν(x)

=
∫

g(x)

( ∫

Dx

dxf [v] dnx(v)

)
dν(x).

Since g ∈ LIPbs(M) is arbitrary, we deduce that b(f )(x) = dν
dμ

(x)
∫
Dx

dxf [v] dnx(v)

holds for μ-a.e. point x ∈ M. Being the map dxf |Dx : Dx → R linear and continuous, we
conclude that

b(f )(x) = dν

dμ
(x)

∫

Dx

dxf [v] dnx(v) = dxf

[
dν

dμ
(x)

∫

Dx

v dnx(v)

]
= dxf

[
I(b)(x)

]

= dHf (x)
[
I(b)(x)

]

is satisfied for μ-a.e. x ∈ M, thus proving Eq. 5.5.
ISOMETRY. Let b ∈ Der2,2(M; μ) be fixed. We deduce from the μ-a.e. identity |b| = � dν

dμ

that
∥∥I(b)(x)

∥∥
x
= dν

dμ
(x)

∥∥∥∥

∫

Dx

v dnx(v)

∥∥∥∥
x

≤ dν

dμ
(x)

∫

Dx

‖v‖x dnx(v)=|b|(x) for μ-a.e. x ∈ M.

In order to prove the converse inequality, pick a countable family F ⊆ C1
c (M) ∩ LIP(M)

as in Theorem 5.4. Therefore, for any f ∈ F it holds that

b(f )(x)
(5.5)= dHf (x)

[
I(b)(x)

]≤∥∥dHf (x)
∥∥∗

x

∥∥I(b)(x)
∥∥

x

(4.7)≤ Lip(f )
∥∥I(b)(x)

∥∥
x
≤ ∥∥I(b)(x)

∥∥
x

for μ-a.e. x ∈ M, whence |b|(x) = (
ess supf ∈F b(f )

)
(x) ≤ ∥∥I(b)(x)

∥∥
x

holds for μ-a.e.
point x ∈ M. This completes the proof of Eq. 5.6.

Finally, we conclude by expounding how to deduce from Theorem 5.5 that all sub-
Riemannian manifolds are universally infinitesimally Hilbertian. This is the content of the
following result, which has been already stated in Theorem 1.2.

Theorem 5.6 (Infinitesimal Hilbertianity of sub-Riemannian manifolds) Let (M, E, σ, ψ)

be a sub-Riemannian manifold with dCC complete. Let μ be a non-negative Radon measure
on (M, dCC). Then the metric measure space (M, dCC, μ) is infinitesimally Hilbertian.

Proof Let x̄ ∈ spt(μ) be fixed. We define Bn := B̄n(x̄) and μn := μ|Bn for every n ∈ N.
We know from [14, Proposition 2.6] and [9, Theorem 7.2.5] that for any n ∈ N it holds that

f ∈ W 1,2(M, dCC, μ) =⇒ f ∈ W 1,2(M, dCC, μn) and |Df |μn = |Df |μ μn-a.e..
(5.10)

This ensures that, in order to prove that (M, dCC, μ) is infinitesimally Hilbertian, it is
enough to show that W 1,2(M, dCC, μn) is a Hilbert space for every n ∈ N. Given that μn is
a finite measure, we can apply Theorem 5.5 and Remark 4.8 to deduce that

|b + b′|2 + |b − b′|2 = 2 |b|2 + 2 |b′|2 μ-a.e. for every b, b′ ∈ Der2,2(M;μ).

Hence (M, dCC, μn) is infinitesimally Hilbertian by Proposition 2.7. The statement is
achieved.
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Remark 5.7 Given a sub-Finsler manifold (M, E, σ, ψ) equipped with a non-negative
Radon measure μ, it is not necessarily true that W 1,2(M, dCC, μ) is a Hilbert space. Never-
theless, we can still deduce from Theorem 5.5 that W 1,2(M, dCC, μ) is reflexive, as we are
going to explain.

First of all, it can be readily checked that L2(HM; μ) is a reflexive Banach space if
endowed with the norm L2(HM; μ) � v �→ ( ∫ ∥∥v(x)

∥∥2
x

dμ(x)
)1/2. Calling B the dual of(

Der2,2(M; μ), ‖ · ‖2
)
, where the norm ‖ · ‖2 is defined as in Remark 2.5, we deduce from

Theorem 5.5 that B is a reflexive Banach space. Consequently, the product space L2(μ)×B

is reflexive as well. Define Lf ∈ B for every f ∈ W 1,2(M, dCC, μ) as in Eq. 2.2. Observe
that Remark 2.5 grants that the linear operator

W 1,2(M, dCC, μ) −→ L2(μ) × B,

f �−→ (f,Lf )

is an isometry. Therefore, we can finally conclude that W 1,2(M, dCC, μ) is reflexive, as
claimed.

We also point out that, by slightly adapting the arguments we carried out in the paper,
it is possible to deal with any exponent p ∈ (1,∞) and to show that W 1,p(M, dCC, μ) is
reflexive.
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limits. arXiv:2111.06789 (2021)

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2111.06789


E. Le Donne et al.

7. Bao, D., Chern, S.-S., Shen, Z.: An Introduction to Riemann-Finsler Geometry, Vol. 200 of Graduate
Texts in Mathematics. Springer, New York (2000)

8. Cheeger, J.: Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal. 9,
428–517 (1999)

9. Di Marino, S.: Recent advances on BV and Sobolev Spaces in metric measure spaces. PhD Thesis (2014)
10. Di Marino, S.: Sobolev and BV spaces on metric measure spaces via derivations and integration by parts.

arXiv:1409.5620 (2014)
11. Di Marino, S., Gigli, N., Pasqualetto, E., Soultanis, E.: Infinitesimal Hilbertianity of locally CAT(κ)-

spaces. J. Geom. Anal. 31, 7621–7685 (2021)
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