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Abstract
We prove that if P(D) is some constant coefficient partial differential operator and f
is a scalar field such that P(D) f vanishes in a given open set, then the integrals of f
over all lines intersecting that open set determine the scalar field uniquely everywhere.
This is done by proving a unique continuation property of fractional Laplacians which
implies uniqueness for the partial data problem. We also apply our results to partial
data problems of vector fields.

Keywords Inverse problems · X-ray tomography · Vector field tomography · Region
of interest tomography · Unique continuation

Mathematics Subject Classification 44A12 · 46F12 · 58A10

1 Introduction

Let f be a scalar field and V ⊂ R
n a nonempty open set where n ≥ 2. We study the

following partial data problem in X-ray tomography: can we say something about f if
we know the integrals of f over all lines intersecting V ? Especially, we are interested
in the uniqueness problem which can be formulated in terms of the X-ray transform
X0 as follows: if X0 f = 0 on all lines which intersect V , does it follow that f = 0? In
general, the answer is “no” [30] and one has to put some conditions on f |V . We prove
that if there is some constant coefficient partial differential operator P(D) such that
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P(D) f |V = 0 and X0 f = 0 on all lines intersecting V , then f = 0. This generalizes
a recent partial data result in [21]. As a special case we obtain that if f is for example
polynomial or (poly)harmonic in V , then f is uniquely determined by its partial X-ray
data.

The partial data result is proved byusing a unique continuation property of fractional
Laplacian (−�)s . We prove that if s ∈ (−n/2,∞) \ Z and there is some constant
coefficient partial differential operator P(D) such that P(D) f |V = (−�)s f |V = 0,
then f = 0. This generalizes earlier results about unique continuation of fractional
Laplacians [6, 15]. The unique continuation of (−�)s implies a unique continuation
result for the normal operator N0 of the X-ray transform X0, and the uniqueness
for the partial data problem follows directly from the unique continuation of N0.
This approach which uses the unique continuation of the normal operator in proving
uniqueness for partial data problems was also used in [6, 21, 22].

We also study partial data problems of vector fields. Let F be a vector field
and denote by dF its exterior derivative or curl which components are (dF)i j =
∂i Fj − ∂ j Fi . We prove that if there are some constant coefficient partial differential
operators Pi j (D) such that Pi j (D)(dF)i j |V = 0 and the integrals of F over all lines
intersecting V vanish, then F must be a potential field (F is the gradient of some scalar
field). This is a generalization of a recent result in [22]. The partial data result is proved
by using a relation between the normal operator of the X-ray transform of scalar fields
and the normal operator of the X-ray transform of vector fields (see lemma 4.4). This
allows one to reduce the partial data problem for the vector field F to partial data
problems for the scalar fields (dF)i j . As a special case analogous to the scalar result,
we obtain that if F is for example componentwise polynomial or (poly)harmonic in V ,
then the solenoidal part of F is uniquely determined by the partial X-ray data of F .

The partial data problems we study have a relation to the region of interest (ROI)
tomography [4, 24, 25, 30, 47]. Themain goal in such imaging problems is to determine
the attenuation inside a small part of a human body (region of interest) by using only the
X-ray data on lines which go through the ROI. This for example reduces the needed X-
ray dosewhich is given to the patient.Our results imply that if the attenuation f satisfies
P(D) f |V = 0 for some open subset V of theROI and some constant coefficient partial
differential operator P(D), then f is uniquely determined by its partial X-ray data
on lines which intersect the ROI. Note that f is uniquely determined not only in the
ROI but also outside the ROI. Concrete examples of admissible functions are listed in
Sect. 1.2 below. In general, f does not have to be smooth and it can have singularities
in the ROI. We also note that our proof for uniqueness does not give stability for the
partial data problem. Especially, outside the ROI we have invisible singularities which
cannot be seen by the X-ray data and the reconstruction of such singularities is not
stable (see remark 1.5 and [26, 35, 36]).

Similar ROI tomography problems can be studied in the case of vector fields. In
vector field tomography the usual objective is to determine the velocity field of a
fluid flow using acoustic travel time or Doppler backscattering measurements [31,
32, 40]. Assuming that the velocity of the fluid flow is much smaller than the speed
of the propagating signal one can linearize the problem. Linearization then leads
to the X-ray transform of the velocity field. Our results imply that if the velocity
field F satisfies Pi j (D)(dF)i j |V = 0 for some open subset V of the ROI and some
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constant coefficient partial differential operators Pi j (D), then the solenoidal part of F
is uniquely determined everywhere by the partial X-ray data of F on lines intersecting
the ROI. The examples of admissible vector fields are the same as in the scalar case,
only interpreted componentwise. As in the scalar case, F can have singularities in the
ROI, and our proof does not give stability for the partial data problem (since it is based
on reduction to the scalar case).

The article is organized as follows. InSect. 1.1we introduce our notation, inSect. 1.2
we give examples of admissible functions, in Sect. 1.3 we give our main theorems and
in Sect. 1.4 we discuss some related results. We go through the theory of distributions
and the X-ray transform in Sect. 2, and study the space of admissible functions in
Sect. 3. Finally, we prove our main results in Sect. 4.

1.1 Notation

We quickly go through the notation used in our main theorems. More detailed infor-
mation about distributions and the X-ray transform of scalar and vector fields can be
found in Sect. 2.

We denote by f a scalar field. The set O ′
C (Rn) is the space of rapidly decreas-

ing distributions and the space E ′(Rn) ⊂ O ′
C (Rn) consists of compactly supported

distributions. The subset C∞(Rn) ⊂ O ′
C (Rn) is the set of all continuous functions

which decay faster than any polynomial at infinity. We let X0 be the X-ray transform
of scalar fields and it maps a function to its line integrals (see equations (8) and (10)).
The normal operator is N0 = X∗

0X0 where X∗
0 is the adjoint of X0 (see equations (11)

and (14)).
We denote by F a vector field. The notation F ∈ (E ′(Rn))n means that F =

(F1, . . . , Fn) where Fi ∈ E ′(Rn) for all i = 1, . . . , n. The exterior derivative of F is
written in components as (dF)i j = ∂i Fj − ∂ j Fi . For scalar fields φ the notation dφ
denotes the gradient ofφ.We let X1 be theX-ray transform of vector fieldswhichmaps
a vector field to its line integrals (see equations (16) and (17)). The normal operator
is N1 = X∗

1X1 where X∗
1 is the adjoint of X1 (see equations (18) and (21)).

We let Hr (Rn) be the fractional L2-Sobolev space of order r ∈ R and H−∞(Rn) =⋃
r∈R Hr (Rn). We define the fractional Laplacian as (−�)s f = F−1(|·|2s f̂ ) where

f̂ = F( f ) is the Fourier transform of f and F−1 is the inverse Fourier transform.
The fractional Laplacian (−�)s is well-defined in O ′

C (Rn) for all s ∈ (−n/2,∞) \ Z

and in Hr (Rn) for all s ∈ (−n/4,∞) \ Z.

1.2 Admissible Functions

We denote by P the set of all polynomials in R
n with complex coefficients with the

convention that the zero polynomial P ≡ 0 does not belong toP . A polynomial P ∈ P
of degree m ∈ N induces a constant coefficient partial differential operator P(D) of
order m ∈ N by setting P(D) = ∑

|α|≤m aαDα where aα ∈ C, Dα = Dα1
1 · · · Dαn

n ,
Dj = −i∂ j andα = (α1, . . . , αn) ∈ N

n is amulti-index such that |α| = α1+. . .+αn .
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The set of admissible functions AV is defined as

AV = { f ∈ H−∞(Rn) : P(D) f |V = 0 for some P ∈ P} (1)

where V ⊂ R
n is some nonempty open set. Examples of admissible functions include

functions f ∈ H−∞(Rn) such that

• f is polyharmonic in V , i.e. (−�)k f |V = 0 for some k ∈ N.
• f is polynomial in V .
• f is of the form f (x) = eix ·ξ0 in V where ξ0 ∈ C

n is a zero of P ∈ P .
• f is independent of one of the variables x1, . . . , xn in V .
• f satisfies the wave equation (∂2t − �) f = 0 in V .

For convex sets V and a fixed P ∈ P the linear span of solutions of the
form q(x)eix ·ζ is dense in the space of all smooth solutions of P(D)g = 0 in V
(see [18,Theorem 7.3.6] and a more general result [19,Theorem 10.5.1]).

If P(D) is a hypoelliptic operator, then the condition P(D) f |V = 0 already implies
that f is smooth in V (see [19, 29]). Basic examples of hypoelliptic operators are
elliptic operators such as integer powers of Laplacians ((−�)k where k ∈ N) and also
the non-elliptic heat operator ∂t −�. However, there are non-smooth distributions f |V
which satisfy the condition P(D) f |V = 0 for some P ∈ P and therefore f can have
singularities in V . For example, the wave operator ∂2t − � is not hypoelliptic and has
non-smooth weak solutions. Another example of a non-hypoelliptic operator is the
partial derivative ∂xi : if f |V is independent of xi , then the behaviour with respect to
the other variables can be singular.

1.3 Main Results

In this section we give our main theorems. The proofs of the results can be found in
Sect. 4.

Our main theorem is the following unique continuation result for the fractional
Laplacian.

Theorem 1.1 Let n ≥ 1, s ∈ (−n/4,∞) \ Z and f ∈ AV where V ⊂ R
n is some

nonempty open set. If (−�)s f |V = 0, then f = 0. If f ∈ O ′
C (Rn) ∩ AV , then the

claim holds for s ∈ (−n/2,∞) \ Z.

Theorem 1.1 generalizes the result in [6] (see lemma 4.1) where one assumes that
(−�)s f |V = f |V = 0. In fact, theorem 1.1 is proved by reducing the claim to the
case treated in [6,Theorem 1.1] (see Sect. 4). The meaning of the condition f ∈ AV is
discussed in Sect. 3 (see remark 3.3). When s ∈ (−n/2,−n/4] \ Z, we need to have
f ∈ O ′

C (Rn) so that (−�)s f is well-defined and we can use lemma 4.1 in the proof
of theorem 1.1.

For compactly supported distributions we get a slightly stronger result.

Theorem 1.2 Let n ≥ 2, s ∈ (−n/2,∞) \ Z and f ∈ E ′(Rn) ∩AV where V ⊂ R
n is

some nonempty open set. If ∂β((−�)s f )(x0) = 0 for some x0 ∈ V and all β ∈ N
n,

then f = 0.
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From the unique continuation of fractional Laplacians we immediately obtain the
following unique continuation result for the normal operator of the X-ray transform of
scalar fields. The reason is that the normal operator can be written as N0 = (−�)−1/2

up to a constant factor (see Sect. 2.2).

Theorem 1.3 Let n ≥ 2 and f ∈ E ′(Rn) ∩AV or f ∈ C∞(Rn) ∩AV where V ⊂ R
n

is some nonempty open set. If N0 f |V = 0, then f = 0.

Theorem 1.3 is a generalization of the result in [21] where one assumes N0 f |V =
f |V = 0. When f ∈ E ′(Rn) ∩ AV , we could replace the assumption N0 f |V = 0
with the requirement that N0 f vanishes to infinite order at some point x0 ∈ V (see
theorem 1.2). In order to use theorem 1.1 in the case s = −1/2 and n ≥ 2, and
to guarantee that N0 f is well-defined, we need to have f ∈ E ′(Rn) ⊂ O ′

C (Rn) or
f ∈ C∞(Rn) ⊂ O ′

C (Rn) in theorem 1.3.
The unique continuation of N0 implies uniqueness for the following partial data

problem.

Theorem 1.4 Let n ≥ 2 and f ∈ E ′(Rn) ∩AV or f ∈ C∞(Rn) ∩AV where V ⊂ R
n

is some nonempty open set. If X0 f = 0 on all lines intersecting V , then f = 0.

Theorem 1.4 generalizes theorem 1.2 in [21], where one assumes f |V = 0, to
the case P(D) f |V = 0 for some P ∈ P . The case where f is polynomial in V is
previously known in two dimensions [24, 47].

It is important to notice that from the vector space structure of admissible func-
tionsAV it follows that theorem 1.4 is indeed a uniqueness result: if f1 and f2 satisfy
P1(D) f1|V = P2(D) f2|V = 0 for some P1, P2 ∈ P and X0 f1 = X0 f2 on all lines
intersecting V , then f1 = f2 (see proposition 3.4 and remark 3.5 for more details).
Especially, the equality of the X-ray data on all lines intersecting V implies that the
scalar fields are equal everywhere even though f1 and f2 a priori can have very different
behaviour in V since P1(D) can be different from P2(D).

Remark 1.5 Our proof for theorem 1.4 gives only uniqueness but not stability for
the partial data problem. In theorem 1.4 we eventually have to assume that f is
not supported in V since otherwise we would have P(D) f = 0 everywhere and
therefore f = 0 without assuming anything about the X-ray data (see the proof of
theorem 1.1). When f is supported outside V we do not have access to all singularities
of f via the X-ray data, i.e. we have invisible singularities outside V . It is known that
the recovery of such invisible singularities is not stable [26, 35, 36].

Remark 1.6 Similar results as in theorems 1.3 and 1.4 also hold for the d-plane trans-
form Rd when d is odd (see corollaries 1 and 2 on page 646 in [6]). The d-plane
transform Rd takes a scalar field and integrates it over d-dimensional affine planes
where 0 < d < n. The case d = 1 corresponds to the X-ray transform and d = n − 1
to the Radon transform. The normal operator of the d-plane transform is the com-
position Nd = R∗

dRd where R∗
d is the adjoint of Rd and it can be expressed as

Nd = (−�)−d/2 up to a constant factor (see [6, 17]). Hence Nd admits the same
unique continuation property as in theorem 1.1 for functions in E ′(Rn) ∩ AV or
C∞(Rn) ∩ AV provided d is odd. The unique continuation of Nd then implies a
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similar uniqueness result as in theorem 1.4 for a partial data problem of the d-plane
transformRd when d is odd.

From the unique continuation of fractional Laplacians we also obtain a partial
data result for the X-ray transform of vector fields. The normal operators satisfy the
relationship d(N1F) = N0(dF) up to a constant factor (see lemma 4.4). Hence the
unique continuation and partial data problems of vector fields can be reduced to the
corresponding problems for scalar fields, namely the components (dF)i j .

The next theorems generalize the results in [22] where the authors assume that
dF |V = 0 instead of (dF)i j ∈ AV .

Theorem 1.7 Let n ≥ 2 and F ∈ (E ′(Rn))n such that (dF)i j ∈ AV for all
i, j = 1, . . . , n where V ⊂ R

n is some nonempty open set. If ∂β(d(N1F))(x0) = 0
componentwise for some x0 ∈ V and all β ∈ N

n, then F = dφ for some φ ∈ E ′(Rn).

Theorem 1.8 Let n ≥ 2 and F ∈ (E ′(Rn))n such that (dF)i j ∈ AV for all
i, j = 1, . . . , n where V ⊂ R

n is some nonempty open set. If X1F = 0 on all
lines intersecting V , then F = dφ for some φ ∈ E ′(Rn).

In light of the decomposition F = F s + dφ of a vector field into a solenoidal part
and a potential part, the conclusion F = dφ of theorem 1.8 can be recast as F s = 0.
Therefore theorem 1.8 can be seen as a solenoidal injectivity result in terms of partial
data (see [22] and [34, 42]). Theorem 1.8 holds also for vector fields F ∈ (S (Rn))n

which components are Schwartz functions since in that case (dF)i j ∈ C∞(Rn)∩AV .

1.4 Related Results

There are some earlier unique continuation and partial data results for scalar and vector
fields. The partial data problem for scalar fields has a unique solution if f |V vanishes
[4, 21, 25], f |V is polynomial or piecewise polynomial [24, 25, 47] or f |V is real
analytic [24]. A recent partial data result in two dimensions with attenuated X-ray
data on an arc can be found in [13]. A complementary result is the Helgason support
theorem: if the integrals of f vanish on all lines not intersecting a given compact
and convex set, then f has to vanish outside that set [17, 43]. The normal operator
of the X-ray transform of scalar fields has a unique continuation property under the
assumptions N0 f |V = f |V = 0 [21]. This is a special case of a more general unique
continuation property of fractional Laplacians [6, 15]. There are also partial data and
unique continuation results for the d-plane transform of scalar fields when d is odd,
including the X-ray transform as a special case d = 1 (see [6] and remark 1.6).

The partial data problem of vector fields is known to be uniquely solvable up
to potential fields, if dF |V = 0 [22]. Similarly, the normal operator of the X-ray
transform of vector fields has a unique continuation property under the assumptions
N1F |V = dF |V = 0 [22]. There are other partial data results for vector fields where
one knows the integrals of F over lines which are parallel to a finite set of planes
[23, 39, 41] or which intersect a certain type of curve [9, 37, 45]. There is also a
Helgason-type support theorem for vector fields: if the integrals of F vanish on all
lines not intersecting a given compact and convex set, then dF vanishes outside that
set [22, 43].
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The normal operator of scalar fields, the normal operator of vector fields and the
fractional Laplacian all admit stronger versions of the unique continuation property
(see [6, 11, 12, 14, 21, 22, 38, 48] and theorems 1.2 and 1.7). Other applications
of unique continuation of fractional Laplacians include fractional inverse problems.
Especially, the unique continuation of (−�)s is used to prove uniqueness for different
versions of the fractional Calderón problem (see e.g. [1, 2, 5–7, 15]).

2 The X-Ray Transform and Distributions

In this section we define the X-ray transform of scalar and vector fields, and introduce
the distribution spaces we use in our main theorems. The basic theory of distributions
and Sobolev spaces can be found in [16, 18, 28, 29, 44] and the X-ray transform is
treated for example in [30, 42, 43].

2.1 Distributions and Sobolev Spaces

The function spaces needed to state our theorems were described in Sect. 1.1.
We let E(Rn) be the space of smooth functions, S (Rn) is the Schwartz space

and D(Rn) is the space of compactly supported smooth functions. We equip all these
spaces with their standard topologies. The corresponding duals are denoted by E ′(Rn),
S ′(Rn) and D′(Rn). Elements in E ′(Rn) are identified with distributions of compact
support and elements inS ′(Rn) are called tempered distributions.

We define the space of rapidly decreasing distributions O ′
C (Rn) ⊂ S ′(Rn) as

follows: f ∈ O ′
C (Rn) if and only if f̂ ∈ OM (Rn) where f̂ = F( f ) is the

Fourier transform of tempered distributions. Here OM (Rn) is the space of poly-
nomially growing smooth functions, i.e. f ∈ OM (Rn) if f and all its derivatives
are polynomially bounded. We note that the Fourier transform is an isomorphism
F : S ′(Rn) → S ′(Rn) and also an isomorphism F : L2(Rn) → L2(Rn). We have
the inclusions E ′(Rn) ⊂ O ′

C (Rn) ⊂ S ′(Rn) ⊂ D′(Rn). As a special case we have
S (Rn) ⊂ C∞(Rn) ⊂ O ′

C (Rn) where C∞(Rn) is the set of all continuous functions
which decay faster than any polynomial at infinity.

The fractional L2-Sobolev space of order r ∈ R is defined as

Hr (Rn) = { f ∈ S ′(Rn) : 〈·〉r f̂ ∈ L2(Rn)} (2)

where 〈ξ 〉 = (1 + |ξ |2)1/2. The space Hr (Rn) is equipped with the norm

‖ f ‖Hr (Rn) =
∥
∥
∥〈·〉r f̂

∥
∥
∥
L2(Rn)

(3)

and Hr (Rn) becomes a separable Hilbert space for every r ∈ R. It follows that
the spaces are nested, i.e. Hr (Rn) ↪→ Ht (Rn) continuously when r ≥ t . One can
isomorphically identify H−r (Rn) with the dual (Hr (Rn))∗ for all r ∈ R. We define
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the following spaces

H∞(Rn) =
⋂

r∈R
Hr (Rn), H−∞(Rn) =

⋃

r∈R
Hr (Rn). (4)

It holds thatO ′
C (Rn) ⊂ H−∞(Rn) ⊂ S ′(Rn) andS (Rn) ⊂ H∞(Rn). Further, using

the Sobolev embedding one can see that H∞(Rn) = C∞
L2(R

n) where f ∈ C∞
L2(R

n)

if f is smooth and f and all its derivatives belong to L2(Rn) (see [16,Theorem 6.12]).
The fractional Laplacian is defined as

(−�)s f = F−1(|·|2s f̂ ) (5)

where F−1 is the inverse Fourier transform of tempered distributions. It follows
that (−�)s f is well-defined as a tempered distribution for f ∈ O ′

C (Rn) when
s ∈ (−n/2,∞)\Z, and for f ∈ Hr (Rn)when s ∈ (−n/4,∞)\Z (see [6,Section2.2]).
We have that (−�)s : Hr (Rn) → Hr−2s(Rn) is continuous whenever s ∈ (0,∞) \Z

and (−�)s also admits a Poincaré-type inequality for s ∈ (0,∞)\Z (see [6]).We note
that (−�)s is a non-local operator in contrast to the ordinary Laplacian (−�). The
non-locality implies a unique continuation property (see theorem 1.1 and lemma 4.1)
which cannot hold for local operators.

We also use local versions of distributions and fractional Sobolev spaces. Let 
 ⊂
R
n be an open set and r ∈ R. We denote by D(
), D′(
) etc. the test function and

distribution spaces defined in 
. We define the local Sobolev space Hr (
) as

Hr (
) = {g ∈ D′(
) : g = f |
 for some f ∈ Hr (Rn)}. (6)

In other words, the space Hr (
) consists of restrictions of distributions f ∈ Hr (Rn).
The local Sobolev space is equipped with the quotient norm

‖g‖Hr (
) = inf{‖ f ‖Hr (Rn) : f ∈ Hr (Rn) such that f |
 = g}. (7)

ThenHr (
)becomes a separableHilbert space and the restrictionmap |
 : Hr (Rn) →
Hr (
) is continuous. If r ≥ t , then Hr (
) ↪→ Ht (
) continuously. One can also
isomorphically identify H−r (
) as the dual (H̃r (
))∗ for every r ∈ R where H̃r (
)

is the closure of D(
) in Hr (Rn) (see [3] and [28]). If r ≥ 0, then Hr (
) ⊂ Wr (
)

whereWr (
) is the Sobolev-Slobodeckij spacewhich is defined by usingweak deriva-
tives of L2-functions (see [28] for a precise definition). If 
 is a Lipschitz domain,
then we have the equality Hr (
) = Wr (
) for all r ≥ 0.

More generally, we define the vector-valued test function space (D(Rn))n by say-
ing that ϕ ∈ (D(Rn))n if and only if ϕ = (ϕ1, . . . , ϕn) and ϕi ∈ D(Rn) for all
i = 1, . . . , n. A sequence converges to zero in (D(Rn))n if and only if all its
components converge to zero inD(Rn). We then define the space of vector-valued dis-
tributions (D′(Rn))n by saying that F ∈ (D′(Rn))n if and only if F = (F1, . . . , Fn)
where Fi ∈ D′(Rn) for all i = 1, . . . , n. The duality pairing is defined as
〈F, ϕ〉 = ∑n

i=1 〈Fi , ϕi 〉. The test function spaces (E(Rn))n and (S (Rn))n , and the
corresponding distribution spaces (E ′(Rn))n and (S ′(Rn))n are defined analogously.
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The elements in (E ′(Rn))n are called compactly supported vector-valued distributions.
Vector-valued distributions are a special case of currents (continuous linear functionals
in the space of differential forms, see [8,Section III]).

For F ∈ (D′(Rn))n we define the exterior derivative or curl of F as a matrix which
components are (dF)i j = ∂i Fj − ∂ j Fi . It follows from the Poincaré lemma (see e.g.
[27,Theorem 2.1] and lemma 4.2) that if dF = 0, then F = dφ for some φ ∈ D′(Rn)

where dφ is the distributional gradient of φ.

2.2 The X-Ray Transform of Scalar Fields

Let f ∈ D(Rn) be a scalar field. The X-ray transform X0 is defined as

X0 f (γ ) =
∫

γ

f ds (8)

where γ is an oriented line in R
n . When we parameterize the set of all oriented lines

with the set


 = {(z, θ) : θ ∈ Sn−1, z ∈ θ⊥} (9)

the X-ray transform becomes

X0 f (z, θ) =
∫

R

f (z + sθ)ds, f ∈ D(Rn). (10)

The adjoint or back-projection X∗
0 is defined as

X∗
0ψ(x) =

∫

Sn−1
ψ(x − (x · θ)θ, θ)dθ, ψ ∈ E(
). (11)

One then sees that X0 : D(Rn) → D(
) and X∗
0 : E(
) → E(Rn) are continuous

maps. Using duality we can define X0 : E ′(Rn) → E ′(
) and X∗
0 : D′(
) → D′(Rn)

by requiring that

〈X0 f , ϕ〉 = 〈 f , X∗
0ϕ〉, f ∈ E ′(Rn), ϕ ∈ E(
) (12)

〈X∗
0ψ, η〉 = 〈ψ, X0η〉, ψ ∈ D′(
), η ∈ D(Rn), (13)

where 〈·, ·〉 is the dual pairing.
The normal operator is N0 = X∗

0X0 and it can be expressed as the convolution

N0 f (x) = 2( f ∗ |·|1−n)(x). (14)

Using duality the normal operator extends to a map N0 : E ′(Rn) → D′(Rn) and the
convolution formula holds in the sense of distributions. The normal operator can be
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seen as the fractional Laplacian (−�)−1/2 up to a constant factor and we have the
reconstruction formula

f = c0,n(−�)1/2N0 f (15)

where c0,n is a constant which depends on dimension. Both X0 and N0 are also defined
for functions f ∈ C∞(Rn).

2.3 The X-Ray Transform of Vector Fields

Let F ∈ (D(Rn))n be a vector field. The X-ray transform X1 is defined as

X1F(γ ) =
∫

γ

F · ds (16)

where γ is an oriented line. Using the parametrization 
 for oriented lines (see equa-
tion (9)) we have

X1F(z, θ) =
∫

R

F(z + sθ) · θds, F ∈ (D(Rn))n . (17)

We define the adjoint X∗
1 as the vector-valued operator

(X∗
1ψ)i (x) =

∫

Sn−1
θiψ(x − (x · θ)θ, θ)dθ, ψ ∈ E(
). (18)

One sees that X1 : (D(Rn))n → D(
) and X∗
1 : E(
) → (E(Rn))n are continuous

and by duality we can define X1 : (E ′(Rn))n → E ′(
) and X∗
1 : D′(
) → (D′(Rn))n

by setting

〈X1F, ϕ〉 = 〈
F, X∗

1ϕ
〉
, F ∈ (E ′(Rn))n, ϕ ∈ E(
) (19)

〈
X∗
1ψ, η

〉 = 〈ψ, X1η〉 , ψ ∈ D′(
), η ∈ (D(Rn))n . (20)

We define the normal operator as N1 = X∗
1X1 and it can be expressed in terms of

convolution

(N1F)i =
n∑

j=1

2xi x j
|x |n+1 ∗ Fj . (21)

The normal operator extends to a map N1 : (E ′(Rn))n → (D′(Rn))n by duality and
the convolution formula holds in the sense of distributions. One has the reconstruction
formula for the solenoidal part F s in the solenoidal decomposition F = F s + dφ (see
for example [42, 43])

F s = c1,n(−�)1/2N1F (22)
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where c1,n is a constant dependingondimension and (−�)1/2 operates componentwise
on N1F . Both X1 and N1 are also defined for vector fields F ∈ (S (Rn))n .

3 Partial Differential Operators and Admissible Functions

In this section we introduce constant coefficient partial differential operators and also
study the space of admissible functionsAV in more detail. A comprehensive treatment
of constant coefficient partial differential operators can be found in Hörmander’s book
[19].

Let us denote by P the set of all polynomials in R
n with complex coefficients

excluding the zero polynomial P ≡ 0. A polynomial P ∈ P of degree m ∈ N can
be identified with the constant coefficient partial differential operator P(D) of order
m ∈ N as

P(D) =
∑

|α|≤m

aαD
α, aα ∈ C, (23)

where Dα = Dα1
1 · · · Dαn

n , Dj = −i∂ j and α = (α1, . . . , αn) ∈ N
n is a multi-index

such that |α| = α1 + . . . + αn . In fact, using the Fourier transform one sees that

P̂(D) = P(ξ) =
∑

|α|≤m

aαξα (24)

where ξ ∈ R
n and ξα = ξα1 · · · ξαn . The polynomial P(ξ) is also known as the

full symbol of P(D). If g ∈ D′(
) where 
 ⊂ R
n is an open set, then one can

define the distributional derivative P(D)g ∈ D′(
) by duality. Further, it holds
that P(D) : Hr (
) → Hr−m(
) is continuous with respect to the quotient norm
[29,Theorem 12.15] (see equation (7)).

The set of admissible functions AV which we use in our main theorems can be
written as the union

AV =
⋃

P∈P
r∈R

Hr
P,V (Rn) (25)

where V ⊂ R
n is some nonempty open set and Hr

P,V (Rn) = { f ∈ Hr (Rn) :
P(D) f |V = 0}. We note that AV ⊂ H−∞(Rn). The following proposition implies
that the sets Hr

P,V (Rn) in the union (25) are also Hilbert spaces.

Proposition 3.1 The subsetHr
P,V (Rn) ⊂ Hr (Rn) is a separable Hilbert space for all

r ∈ R, P ∈ P and nonempty open set V ⊂ R
n.

Proof Clearly Hr
P,V (Rn) is a linear subspace of Hr (Rn). Let fk ∈ Hr

P,V (Rn) be
a sequence such that fk → f in Hr (Rn). Then by the continuity of the restriction
map |V : Hr (Rn) → Hr (V ) we have that fk |V → f |V in Hr (V ). From the conti-
nuity of P(D) : Hr (V ) → Hr−m(V ) we obtain that 0 = P(D) fk |V → P(D) f |V
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in Hr−m(V ), implying that f ∈ Hr
P,V (Rn). ThereforeHr

P,V (Rn) is a closed subspace
of the separable Hilbert space Hr (Rn) and hence itself a separable Hilbert space. ��

Remark 3.2 We note that in the smooth case we have that EP,V (Rn) = { f ∈ E(Rn) :
P(D) f |V = 0} ⊂ E(Rn) is a closed subspace of E(Rn) and hence a Fréchet space.
More generally, D′

P,V (Rn) = { f ∈ D′(Rn) : P(D) f |V = 0} ⊂ D′(Rn) is sequen-
tially closed inD′(Rn) under the weak∗ convergence. These two facts follow from the
continuity of P(D) : E(Rn) → E(Rn) and P(D) : D′(Rn) → D′(Rn) with respect to
the standard topologies. More topological properties of kernels of constant coefficient
partial differential operators can be found in [46].

Remark 3.3 The interpretation of the condition f ∈ AV is the following. If f ∈ AV ,
then there is some r ∈ R and some P ∈ P such that f ∈ Hr (Rn) and P(D) f |V = 0.
The distributional derivatives commutewith restrictions, i.e. P(D) f |V = P(D)( f |V )

where f |V ∈ D′(V ). Since f ∈ Hr (Rn) we see that f |V is not only a distribution
but in addition f |V ∈ Hr (V ) for some r ∈ R. Therefore the existence of r ∈ R

and P ∈ P for which P(D) f |V = 0 means that f |V ∈ Hr (V ) and f |V is a weak
solution to some homogeneous constant coefficient partial differential equation. In
other words, f |V satisfies

∑

|α|≤m

aαD
α( f |V ) = 0, f |V ∈

⋃

r∈R
Hr (V ), (26)

for some coefficients aα ∈ C and some integer m ∈ N.

The following proposition is important in the uniqueness of the partial data problem.

Proposition 3.4 The set AV ⊂ H−∞(Rn) is a vector space for every nonempty open
set V ⊂ R

n.

Proof Let f1, f2 ∈ AV and λ ∈ C. This means that f1 ∈ Hr1(Rn), f2 ∈ Hr2(Rn)

and P1(D) f1|V = P2(D) f2|V = 0 for some r1, r2 ∈ R and P1, P2 ∈ P . It follows
that f1 + λ f2 ∈ Hr (Rn) where r = min{r1, r2} since the spaces Ht (Rn), t ∈ R,
are nested vector spaces. We also have that P1(D)P2(D)( f1 + λ f2)|V = 0 since the
distributional derivatives commute P1(D)P2(D) = P2(D)P1(D). This implies that
f1 + λ f2 ∈ AV , i.e. AV is a linear subspace of the vector space H−∞(Rn) ⊂ S ′
(Rn). ��

Remark 3.5 The vector space structure of AV is important since it implies that the
partial data resultswe have proved in this article are indeed uniqueness results. Namely,
if f1, f2 ∈ E ′(Rn) ∩ AV (or f1, f2 ∈ C∞(Rn) ∩ AV ) such that X0 f1 = X0 f2 on all
lines intersecting V , then f1 − f2 ∈ E ′(Rn) ∩AV (or f1 − f2 ∈ C∞(Rn) ∩AV ) and
X0( f1− f2) = 0 on all lines intersecting V . Theorem1.4 then implies that f1− f2 = 0,
i.e. the solution to the partial data problem is unique.
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4 Proofs of theMain Theorems

In this section we prove our main theorems. We need a few auxiliary results. The first
one is a unique continuation result for fractional Laplacians and the second one is the
Poincaré lemma for compactly supported vector-valued distributions.

Lemma 4.1 ([6,Theorem 1.1]) Let n ≥ 1, s ∈ (−n/4,∞)\Z and u ∈ Ht (Rn) where
t ∈ R. If (−�)su|V = 0 and u|V = 0 for some nonempty open set V ⊂ R

n, then
u = 0. The claim holds also for s ∈ (−n/2,−n/4] \ Z if u ∈ O ′

C (Rn).

Lemma 4.2 (Poincaré lemma) Let U ∈ (E ′(Rn))n such that dU = 0. Then there is
φ ∈ E ′(Rn) such that U = dφ.

The proof of lemma 4.2 can be found for example in [20, 27]. The third lemma is
a known result about the zero set of multivariate polynomials.

Lemma 4.3 ([33,Lemma on p.1]) Let Q = Q(x) be a non-zero multivariate polyno-
mial of order m ∈ N

Q(x) =
∑

|α|≤m

bαx
α =

∑

|α|≤m

bαx
α1
1 · · · xαn

n , bα ∈ C, (27)

where α = (α1, . . . , αn) ∈ N
n is a multi-index such that |α| = α1 + . . . + αn. Then

the set ZQ = {x ∈ R
n : Q(x) = 0} has Lebesgue measure zero.

Lemma 4.3 is proved in [33] for real coefficients but the result holds also for complex
coefficients by splitting bα ∈ C to its real and imaginary parts. We note that the
set ZQ is Zariski closed but not the whole space R

n . From the coarseness of the
Zariski topology (i.e. there are relatively few closed sets) one can already deduce that
the set ZQ must be small in topological sense (see e.g. [10,Chapter 15.2]).

The next lemma shows how the normal operator of the X-ray transform of vector
fields is related to the normal operator of scalar fields (see also [22,Proof of theorem
1.1]).

Lemma 4.4 Let F ∈ (E ′(Rn))n. Then d(N1F) = (n − 1)−1N0(dF) holds componen-
twise where N0 acts on the components (dF)i j ∈ E ′(Rn).

Proof The normal operator has the expression

(N1F)i =
n∑

j=1

2xi x j
|x |n+1 ∗ Fj . (28)

Rewrite the kernel as

2xi x j
|x |n+1 = 2

n − 1

(

δi j |x |1−n − ∂i (x j |x |1−n)

)

(29)
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which implies that

(N1F)i = 2

n − 1

(
1

2
N0Fi −

n∑

j=1

x j |x |1−n ∗ ∂i Fj

)

. (30)

Calculating the components of d(N1F) we obtain

∂k(N1F)i − ∂i (N1F)k = 1

n − 1
N0(∂k Fi − ∂i Fk). (31)

This means that d(N1F) = (n − 1)−1N0(dF) where N0 acts componentwise on dF ,
giving the claim ��

Now we are ready to prove our results. We start with the main theorem.

Proof of theorem 1.1 Let f ∈ AV and s ∈ (−n/4,∞) \ Z. This means that f ∈
Hr (Rn) for some r ∈ R and P(D) f |V = 0 for some constant coefficient partial
differential operator P(D) of order m ∈ N and nonempty open set V ⊂ R

n . In
particular, we have f ∈ S ′(Rn) such that f̂ = 〈·〉−r g where g ∈ L2(Rn) and hence
f̂ ∈ L1

loc(R
n) is a locally integrable function. Using the properties of the Fourier

transformwe see that P(D)((−�)s f ) = (−�)s(P(D) f ) because P(D) has constant
coefficients. Since P(D) is a local operator we obtain the conditions P(D) f |V =
(−�)s(P(D) f )|V = 0. Now P(D) : Hr (Rn) → Hr−m(Rn) is continuous (see e.g.
[29,Theorem 12.7]) and we have P(D) f ∈ Hr−m(Rn). We can use lemma 4.1 for
P(D) f to obtain that P(D) f = 0 as a tempered distribution. Taking the Fourier
transform this is equivalent to that P(ξ) f̂ (ξ) = 0 almost everywhere where P(ξ) is
a multivariate polynomial of order m ∈ N. Since P(ξ) �= 0 almost everywhere by
lemma 4.3, we have that f̂ = 0 almost everywhere and so f = 0 as claimed.

Let then f ∈ O ′
C (Rn) ∩ AV and s ∈ (−n/2,∞) \ Z. Using the same arguments

as above we obtain that P(D) f |V = (−�)s(P(D) f )|V = 0 for some constant
coefficient partial differential operator P(D) and nonempty open set V ⊂ R

n . We
know that f ∈ O ′

C (Rn) is equivalent to that f̂ ∈ OM (Rn). It follows from the Leibnitz

product rule for multivariable functions that F(P(D) f )(ξ) = P(ξ) f̂ (ξ) ∈ OM (Rn)

since P(ξ) is polynomial and the derivatives of f̂ are polynomially growing. This
is equivalent to that P(D) f ∈ O ′

C (Rn) and we can use lemma 4.1 to deduce that
P(D) f = 0 as a tempered distribution. The rest of the proof is completed as above
using the Fourier transform and the fact that P(ξ) �= 0 almost everywhere. ��
Remark 4.5 In the proof of theorem 1.1 we used the fact that f ∈ Hr (Rn) implies
that f̂ ∈ L1

loc(R
n) is a locally integrable function. For example, if P(D) = −�,

then P(D) f = 0 implies |ξ |2 f̂ (ξ) = 0 and hence spt( f̂ ) ⊂ {0}. This means that f̂
is a linear combination of derivatives of the delta distribution, but there is no such
non-zero combination in L1

loc(R
n). In other words, a non-zero function in H−∞(Rn)

cannot be a polynomial on the whole space R
n , which for a tempered distribution is

equivalent with the Fourier transform being supported at the origin. The restriction
of f ∈ H−∞(Rn) to an open set V ⊂ R

n can be a polynomial; compare this to the
examples given in Sect. 1.2.
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The rest of the results are then direct consequences of theorem 1.1.

Proof of theorem 1.2 By the assumptions we have that f ∈ E ′(Rn) satisfies
P(D) f |V = 0 for some constant coefficient partial differential operator P(D) and
∂β((−�)s f )(x0) = 0 for some x0 ∈ V and all β ∈ N

n . Since all the derivatives
of (−�)s f vanish at x0 and the partial derivatives and fractional Laplacian commute,
we obtain that

0 = (P(D)∂β)((−�)s f )(x0) = ∂β((−�)s(P(D) f ))(x0). (32)

Now P(D) f ∈ E ′(Rn) and we can use corollary 4 on page 652 in [6] to obtain that
P(D) f = 0. The claim then follows as in the proof of theorem 1.1. ��
Proof of theorem 1.3 If f ∈ E ′(Rn) ∩ AV or f ∈ C∞(Rn) ∩ AV , then also f ∈
O ′
C (Rn) ∩AV . Since N0 = (−�)−1/2 up to a constant factor and n ≥ 2 we have that

−1/2 ∈ (−n/2,∞) \ Z and we can use theorem 1.1 to obtain that f = 0. ��
Proof of theorem 1.4 The assumption X0 f = 0 on all lines intersecting V implies that
N0 f |V = 0. Since we also assume that f ∈ E ′(Rn) ∩ AV or f ∈ C∞(Rn) ∩ AV we
obtain f = 0 by theorem 1.3. ��
Proof of theorem 1.7 By lemma 4.4 we have d(N1F) = N0(dF) componentwise up
to a constant factor. Therefore ∂β(N0(dF)i j )(x0) = 0 for some x0 ∈ V , all β ∈ N

n

and all i, j = 1, . . . , n. Now by locality of the exterior derivative (dF)i j ∈ E ′(Rn) ∩
AV . Since N0 = (−�)−1/2 up to a constant factor we can use theorem 1.2 for the
components (dF)i j to obtain that dF = 0. Finally lemma 4.2 implies that F = dφ
for some φ ∈ E ′(Rn). ��
Proof of theorem 1.8 The assumption X1F = 0 on all lines intersecting V implies that
N1F |V = 0. Especially d(N1F) vanishes to infinite order at some point in V and we
can use theorem 1.7 to deduce that F = dφ for some φ ∈ E ′(Rn). ��
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