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Abstract

Strain has been known to modify the electric and optical properties of graphene.
This phenomenon has attracted interest to modifying graphene properties using
specific forms of strains (known as strain-engineering), and measuring strain in
graphene. In this thesis, I present a calculation of the optical properties of strained
graphene, where the effects of strain can be seen in the optical conductivity and thus
the reflectivity of graphene.

To do this, I use the tight-binding model to obtain the Dirac Hamiltonian of the
charge carriers in graphene. Then I deduce the effects of in-plane strain as a pseudo-
magnetic field potential and use this result to add strain as a perturbation to the
Hamiltonian of pristine graphene.

Using the perturbed Hamiltonian, I calculate the optical conductivity of graphene
for a specific strain field with a y-component that is periodic in x. I obtain the opti-
cal conductivity numerically for different amplitudes of the strain, and use them to
find the reflectivity.

The results indicate that the effects of strain on reflectivity can be measured exper-
imentally, and that such measurements can reveal information about the amplitude
and period of the strain.

Mousa, Amr
Master’s thesis
Department of Physics, University of Jyväskylä, 2021, 50 pages.
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1 Introduction

In 2004, Graphene was the first atomically-thin material discovered [1], and it has
since been subject of active research due to its interesting electric and mechanical
qualities. Graphene consists of a single layer of carbon atoms arranged in a hexago-
nal lattice. In spite of its extremely small thickness, graphene is an extremely strong
material with respect to its resilience to strain. Experiments have confirmed the
extremely high intrinsic breaking strength graphene is theorized to have [2].

In addition to its strength, graphene has attracted interest due to its electrical prop-
erties. Electron transport in graphene has been shown to obey Dirac’s equation; the
relativistic equation for fermions. Experiments confirmed [3] that charge carriers
in graphene behave like Dirac fermions with zero rest mass (or effective mass), and
a constant speed c = 106 m/s analogous to the speed of light at which massless
particles travel in vacuum.

Optical properties of graphene are also interesting; experiments measuring the opti-
cal response of graphene have confirmed the theoretical prediction (which I outline
below) that the transparency of graphene depends directly on the fine-structure
constant α [4].

While this is true for pristine graphene, studying the optical response of graphene
under strain is the main goal of this study. Interest in strained graphene have given
rise to the field of strain-engineering in graphene which is the study of modifying the
electric and optical properties of graphene using strain [5]. This has had applications
such as strain-sensors where graphene is used to measure strain on surfaces [6], as
well as the possibility of graphene becoming superconducting under strain [7].

In this thesis, I study the effect of in-plane strain on the conductivity and reflectiv-
ity of graphene, and present numerical calculations for the case of periodic strain.
In Chapter 2, I introduce Bloch’s theorem along with the graphene lattice. I then
briefly explain the tight-binding model and use it to show the reciprocal lattice and
the Dirac Hamiltonian for graphene.

In Chapter 3, I introduce strain and show that the displacement of atoms in the
lattice has an effect that can be treated like a pseudo-magnetic field. Then I show
the gauge freedom of the strain field where some strain profiles correspond to the
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same electron dispersion and therefore the same electronic properties.

In Chapter 4, I discuss a specific strain profile, namely strain in the y-direction
that is periodic in the x-direction. I arrive at the Hamiltonian for Dirac fermions
in graphene under the given strain. Then, in Chapter 5, I deduce the expressions for
the optical conductivity and reflectivity.

Chapter 6 outlines the numerical methods used to calculate the optical conductiv-
ity and reflectivity using the Hamiltonian obtained in chapter 4 and the equations
arrived at in chapter 5, and present the results from the numerics.
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2 Graphene basics

In order to study the optical properties of graphene as well as the effects of strain
on them, we must first study the lattice of pristine graphene. In this chapter, I in-
troduce the graphene hexagonal lattice and the tight-binding model which is used to
find the energy eigenstates, the dispersion relation and finally express the Hamilto-
nian of the graphene charge carriers as massless Dirac fermions.

2.1 Bloch’s theorem

In solids, atoms organize in crystals as they form chemical bonds with neighbouring
atoms; since the atoms’ nuclei are much more massive than electrons, they can be
mostly treated as stationary. In the lattice they provide a periodic potential for the
electrons. An important result dealing with periodic potentials is Bloch’s theorem,
which states that solutions to the Schrödinger equation in periodic potentials must
be of the form [8]

ψk(r) = uk(r)eik·r, (1)

where
uk(r + T ) = uk(r), (2)

where k is the wave vector and T is any lattice vector. A lattice vector is a vector
that expresses the translational symmetry of the lattice such that for any point r on
the lattice, the atomic arrangement looks the same at a point r′ given by

r′ = r + T. (3)

Any lattice vector can be expressed in terms of the basis lattice vectors a1, and a2 in
the form

T = u1a1 + u2a2, (4)

where u1 and u2 are integers, and a choice of basis vectors is shown in figure 1 below.
Then for the wave function we have the condition

ψk(r + T ) = uk(r + T )eik·reik·T = ψk(r)eik·T , (5)
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and functions with this property are known as Bloch Functions. Bloch’s theorem is
used below for both pristine graphene and periodically strained graphene.

2.2 The graphene lattice

x
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3
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y

Figure 1. Hexagonal lattice of graphene
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The graphene lattice shown in Fig. 1 has a honeycomb shape with the nearest-
neighbor distance a ≈ 1.42Å [9]. The elementary cell consists of two atoms A and B,
connected by the nearest-neighbor vectors

δ1,2 = ∓
√

3a
2 ûx −

a

2 ûy, δ3 = aûy, (6)

as shown in the figure. The lattice vectors connecting elementary cells are a1, and a2,
where

a1 = a

2(
√

3, 3) a2 = a

2(−
√

3, 3). (7)

Using the lattice vectors and nearest-neighbor vectors, we can infer the interac-
tions between lattice sites and construct a model for describing the dynamics of the
charge carriers in graphene; so next, this model is described along with the resulting
Hamiltonian.

2.2.1 Tight-binding model

An approximation often used to treat electrons in graphene is the tight-binding
approximation where the wave functions of electrons bound to free atoms are con-
sidered and modified as atoms are brought closer together into the lattice [8]. Given
the electronic wave functions φ, the tight-binding Hamiltonian is

H(r) =
∑
m,n

∫
dV φ∗(r + rm)Hφ(r + rn) (8)

for all atom sites m and n. It should be noted that the volume integral above is
two-dimensional in graphene. Including only the nearest-neighbor atoms is a good
approximation. In this case we have the Hamiltonian for one A atom

H(r) =
3∑
j

∫
dV = φ∗(r)Hφ(r + δj) (9)

The term
∫
dV φ∗(r)Hφ(r + δj) = −γ0 is the same for all j as long as δj’s have the

same magnitude, due to the symmetry of the lattice. The Hamiltonian can now be
written in terms of γ0, known as the hopping parameter, and electronic creation and
destruction operators in the form

Ĥg(R) = −γ0
∑
R

3∑
j=1

ψ̂†(R)ψ̂(R + δj) + h.c. (10)
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where ûx, ûy are the basis vectors as shown in figure 1, and the R sum runs over all
lattice sites. Then we can write the Fourier transform of the wave functions

ψ(R) = 1√
N

∑
k

e−ik·Rck,A, (11)

and
ψ(R + δj) = 1√

N

∑
k

e−ik·Re−ik·δjck,B, (12)

where ck,A/B, and c†k,A/B are the destruction/creation operators for electrons in A/B
sites, and N is the number of lattice sites.

Using equations (11) and (12), we can re-write the Hamiltonian as

Ĥg = −γ0
1
N

∑
R

∑
k,k′

c†k,Ae
iR·(k−k′)(

3∑
j=1

e−ik·δj)ck′,B + h.c. (13)

Since ∑
R

eiR·(k
′−k) = Nδkk′ ,

we have
Ĥg =

∑
k

ck,A[−γ0(
3∑
j=1

e−ik·δj)]c†k,B + h.c. (14)

Defining γk as

γk = −γ0(
3∑
j=1

e−ik·δj)

= −γ0e
−ikya[1 + ei(kx

√
3

2 a+ky 3
2a) + ei(−kx

√
3

2 a+ky 3
2a)]

= −γ0e
−ikya[1 + 2eiky 3

2a cos
(
kx

√
3

2 a

)
],

(15)

we can re-write equation (14) as

Ĥg =
∑
k

(
c†k,A c†k,B

) 0 γk

γ∗k 0

ck,A
ck,B

 . (16)

Defining the matrix Hg =
 0 γk

γ∗k 0

, we can write the characteristic equation

(Hg − εkI) = 0. (17)
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This has the solutions
εk = ±|γk|, (18)

which gives us the equation for the eigenenergies

εk = ∓γ0

√√√√1 + 4 cos2

(
kx

√
3

2 a

)
+ 4 cos

(
kx

√
3

2 a

)
cos

(
ky

3
2a
)
. (19)

Given the eigenenergies, the Hamiltonian can be expressed in the form of an expan-
sion around specific eigenenergies and eigenstates. In the next section I express the
Hamiltonian as an expansion up to first order around the zero energy states known
as momentum valleys.

2.3 Dirac hamiltonian in graphene

2.3.1 Reciprocal lattice

The reciprocal lattice is the momentum-space equivalent of the given position-space
lattice, with the condition that for the reciprocal lattice basis vectors b1 and b2 we
have [8]

ai · bj = 2πδij. (20)

From equations (19) and (15) the values of k for which εk = 0 are given by solving
the equation

γk = 0 (21)

which gives us

eiky
3
2a cos kx

√
3

2 a = −1
2 . (22)

Since the right hand side is real, then eiky 3
2a = ±1, which implies

ky = n
2
3aπ, (23)

where n = 0,±1, ±2,±3, . . . . Then we have cos kx
√

3
2 a = ±1

2 , which implies

kx = m
2

3
√

3a
π. (24)

where m = ±1, ±2,±4,±5, . . . , i.e. m is a non-zero integer not divisible by 3, and is
even when n is even and odd when n is odd, in order to maintain the sign in equa-
tion (21). This gives the reciprocal lattice with lattice points K = 2π

3a ( 1√
3 ,1), and

K ′ = 2π
3a (− 1√

3 ,1) (equivalent to points A and B in position space) as shown in figure
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2.

It is easily verified that reciprocal lattice vectors

b1 = 2π
3a ( 3√

3
,1), b2 = 2π

3a (− 3√
3
,1), (25)

and the lattice vectors given in equation (6) satisfy the condition (20). The same is
true for points K + v1b1 + v2b2 and K ′ + v1b1 + v2b2 for any integers v1 and v2.

Next, we expand the Hamiltonian to linear order in momentum around K. Since

γk = −γ0e
−ikya[1 + 2eiky 3

2a cos (kx
√

3
2 a)],

we have
∂

∂kx
γk(K) = −γ0α

3
2a,

while
∂

∂ky
γk(K) = iγ0α

3
2a,

where α = e−i
2π
3 .

Similarly we get
∂

∂kx
γ∗k(K) = −γ0α

∗3
2a,

and
∂

∂ky
γ∗k(K) = −iγ0α

∗3
2a.

Then we have

Ĥk
g ≈ −γ0

3
2a
 0 α[(kx −Kx)− i(ky −Ky)]
α∗[(kx −Kx) + i(ky −Ky)] 0

 ,
since we can remove the phase α with a unitary transformation, we can reduce the
Hamiltonian to the form

Ĥk
g ≈ −γ0

3
2a
 0 (kx −Kx)− i(ky −Ky)

(kx −Kx) + i(ky −Ky) 0

 ,
Equation (2.3.1) can be written as

Ĥk
g ≈ vFσ · (k −K),

8
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K

K

K’

K

x

y

Figure 2. Reciprocal lattice
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or using the shorthand notation q = k −K

Ĥk
g ≈ vFσ · q, (26)

where σ =
(
σx σy

)
are the Pauli matrices, k =

(
kx ky

)
, and vF = −γ0

3
2a. In a

similar way, expanding around K ′ gives

Ĥk′

g ≈ γ0
3
2a
 0 (kx −K ′x) + i(ky −K ′y)

(kx −K ′x)− i(ky −K ′y) 0



Ĥk′

g ≈ −vFσ∗ · q, (27)

where q = k −K ′ here. The corresponding eigenstates for electrons and holes are [9]

ψ
(K)
e,h (q) = 1√

2

 e−i
θ
2

±ei θ2 ,

 (28)

where θ is the angle of the momentum in polar coordinates (i.e. ~q = (q cos θ, q sin θ)),
while for the K ′ valley, we have [9]

ψ
(K′)
e,h (q) = 1√

2

 ei
θ
2

±e−i θ2

 . (29)

It is easy to confirm that these are eigenstates of the Hamiltonian in equations (26),
and (27), with eigenenergies

ε = ±vfq. (30)

Given the description of the electron/hole states and the Hamiltonian, it is now
possible to introduce a perturbation to the Hamiltonian corresponding to the strain
profile. In the next section, I study the effect of strain on the Hamiltonian.
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3 Strain in graphene

Strain in graphene is often measured with the help of Raman spectroscopy, i.e. de-
tecting inelastic photon scattering from graphene [6]. In this section, I describe a
different approach where strain can be recognised through its effects on the optical
properties of monolayer graphene. This is done by first demonstrating that the effect
of strain on graphene can be represented as an electromagnetic pseudo-vector, and
then finding the forms of strain which would have no effect on the optical properties
of graphene. In this thesis, I concentrate on in-plane strain.

3.1 Strain as a pseudo-magnetic field

Applying strain to a graphene sheet changes the inter-atomic spacing and thus modi-
fies the hopping parameters such that they are no longer the same for all neighbour-
ing atoms. The displacement field

u(x,y) = (ux(x,y), uy(x,y)) (31)

denotes the x and y displacements of a lattice site from its original position before
strain. Then the hopping parameters up to the first order in the displacement vec-
tors become [10]

γn = γ0(1− β δ
i
nδ

j
n

a2 uij), (32)

where δin is the ith component of the nearest neighbour vectors δi defined above,
β = ∂ log γ0

∂ log a is the Grüneisen parameter, and uij = 1
2(∂iuj + ∂jui) is the strain tensor.

The Einstein summation notation is used whenever an index is repeated as a lower
and upper index. Equation (15) becomes

γk = −γ0(1− β δ
i
nδ

j
n

a2 uij)(
3∑
j=1

e−ik·δj) = γ
′

k + γ̃k, (33)

where γ′k is the value for non-strained graphene while γ̃k is the extra term. For the
point K = 2π

3a ( 1√
3 ,1) we get

γ̃K =
3∑

n=1
γ0
β

a2 δ
i
nδ

j
nuije

−iK·δn . (34)
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To evaluate γ̃k, we note that
K · δ1 = −2π

3
K · δ2 = 0

K · δ3 = 2π
3 .

(35)

Then we get

γ̃K = γ0
β

a2 [uxx(
3
4a

2)(ei 2π
3 +1)]+[uyy

1
4a

2(ei 2π
3 +1+4e−i 2π

3 )]+[2uxy
√

3
4 a2(ei 2π

3 −1)]. (36)

Using the fact that
ei
−2π

3 + 1 + ei
2π
3 = 0,

we get
γ̃K = −γ0β

3
4[(uxx − uyy)e−i

2π
3 − 2uxy

1√
3

(ei 2π
3 + 1)]. (37)

Realizing that
1√
3

(ei 2π
3 − 1) = −ie−i 2π

3 ,

we can write γ̃K as
γ̃K = −γ0

3
2a(Ax − iAy)e−i

2π
3 , (38)

and the full addition to the Hamiltonian due to strain is

H̃(K) = vF (σ · ~A)α (39)

where
~A = β

2a((uxx − uyy), (−2uxy)), (40)

and
α = e−i

2π
3 (41)

is the same term that appears in the original Hamiltonian. Similarly for K ′ =
2π
3a (− 1√

3 ,1), and keeping in mind that

K ′ · δ1 = 0

K ′ · δ2 = −2π
3

K ′ · δ3 = 2π
3 ,

(42)

we get
γ̃′K = −γ0

3
2a(Ax + iAy)ei

2π
3 , (43)

12



and the strain contribution to the Hamiltonian is

H̃(K′) = vF (σ∗ · (− ~A))α∗ (44)

Since again we remove the same term α by a unitary transformation, the Hamilto-
nian expressed in equation (26), is modified by strain to

Ĥk
g ≈ vFσ · (q + A), (45)

while equation (27) becomes

Ĥk′

g ≈ −vFσ∗ · (q −A). (46)

From equations (45), and (46) we conclude that strain modifies the Hamiltonian by
adding the vector ~A to the K points and − ~A to K ′ points; aside from the changing
signs, ~A resembles the minimal substitution of the electromagnetic vector potential,
but since the vector changes sign depending on the valley, it is referred to as pseudo-
vector potential.

3.2 Gauge freedom of a general strain field

Similar to the gauge freedom in electromagnetic fields, the pseudo magnetic field
resulting from strain in graphene is invariant under certain transformations of the
strain field. Since the pseudo-magnetic field is given by

B = ~∇× ~A, (47)

then adding the gradient of any function Φ to ~A does not change the pseudo-magnetic
field, since

~∇×∇Φ = 0. (48)

When we use the pseudo-magnetic field to make inferences about the strain in
graphene, it should be taken into account that certain forms of strain cannot be
detected in this way. We start by assuming the general transformations

ux −→ ux + a,

13



uy −→ uy + b,

where ux is the x-displacement, and uy the y-displacement of the atoms at a given
position, and a and b are some scalar functions of position. Requiring that a and b
leave the pseudo-magnetic field invariant gives the conditions on the freedom of the
strain field.

Using the gauge freedom of the pseudo-vector potential, where adding a divergence
of a function Φ does not affect the pseudo-magnetic field

Ax −→ Ax + ∂xΦ,

Ay −→ Ay + ∂yΦ,

and given that the transformed electromagnetic pseudo-vector due to the trans-
formed strain is

Ax = β

2a(∂xux − ∂yuy + [∂xa− ∂yb]) (49)

Ay = − β

2a(∂xuy + ∂xuy + [∂xb+ ∂ya]), (50)

we get the conditions
∂xa− ∂yb = ∂xΦ, (51)

−∂xb− ∂ya = ∂yΦ, (52)

for some function Φ(x,y).

In the following calculation, I assume that the strains in the x and y directions are
independent of one another, and so equations (51) and (52) can be solved separately
for a and b.

3.2.1 Invariance under ux transformations

For the ux component of the strain, equations (51) and (52) are

∂xΦ1 = ∂xa, (53)

and
∂yΦ1 = −∂ya. (54)

14



Aplying ∂y to equation (53), and ∂x to equation (54) gives

∂x∂yΦ1 = ∂x∂ya, (55)

and
∂x∂yΦ1 = −∂x∂ya, (56)

from (55) and (56) we get
∂x∂ya = 0,

which gives the solution for a as

a(x,y) = f1(x) + f2(y). (57)

Therefore, the pseudo-magnetic field is invariant under displacements of atoms in the
x-direction which vary in the x or y directions independently.

3.2.2 Invariance under uy transformations

For the invariance of an independent uy component, the equations (51) and (52) are
reduced to

∂xΦ2 = −∂yb, (58)

and
∂yΦ2 = −∂xb. (59)

Applying ∂y to both sides of equation (58), and ∂x to both sides of (59) gives

∂y∂xΦ2 = −∂y∂yb, (60)

and
∂y∂xΦ2 = −∂x∂xb. (61)

Therefore, from equations (60) and (61), we get

∂y∂yb = ∂x∂xb. (62)

Writing b in terms of its Fourier transformation

b =
∫
e−i(kx+qy)b̃(k,q)dkdq,

15



and from equation (62) we get that

k = ±q,

so
b =

∫
e−ik(x+y)b̃(k)dk +

∫
e−ik(x−y)b̃(k)dk.

This means that b is an arbitrary function of (x+y) or (x−y), so we write the general
form of b similar to equation (57) as

b(x,y) = g1(x+ y) + g2(x− y). (63)

Therefore the Hamiltonian is invariant under displacements of atoms in the y-direction
which vary in the x+ y or x− y directions independently.

3.2.3 Invariant strain fields

From equations (57) and (63), we conclude that a strain field where the displace-
ment in the x direction is independent along lines parallel to the x and y axes, while
displacement in the y direction is the same along the lines x+ y = c and x− y = c for
any constant c. Figure 3 below shows such lines of equal strain for the strain field
leaving the pseudo-magnetic field invariant. In addition, it is clear that strain fields
where uxx = uyy and uxy = 0 amount to a volume change of the graphene sheet but
does not produce a pseudo-magnetic field.

16



Lines of Equal x-displacement Lines of Equal y-displacement

Figure 3. Lines showing the "lines of equal displacement" of the x and y strain vectors for a
strain field leaving the pseudo-magnetic field invariant
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4 Periodic strain

4.1 Periodic strain in Graphene

Periodic strain can arise in graphene due to the mismatch between the graphene
lattice and the substrate lattice [11]. In addition, patterns of periodic strain may
also appear in optical forging experiments as a concentrated laser beam creates rip-
ples in the graphene sheet [12]. In the following discussion, the optical response of
periodically strained graphene is studied by adding the strain as an electromagnetic
vector according to equation (44) to the Hamiltonian obtained in (26). We begin by
assuming a displacement vector in the y-direction which is periodic in x. In what
follows we assume that the period of the strain is much larger than the graphene
lattice constant, which allows us to ignore the periodicity of the variables qx, and
qy in unstrained graphene, and consider the Hamiltonian as a periodic function in x
only.

The strain field
u = (0, β′ sin 2πx

L
), (64)

is periodic in the x-direction with period L with amplitude β, and it results in the
pseudo-magnetic vector potential

A = (0,−2πβ′
L

cos 2πx
L

).

For simplicity we define β = 2πβ′

A = (0,−β
L

cos 2πx
L

). (65)

With the pseudo-magnetic vector potential (65), we get the Hamiltonian

H = vF

∫
dx[q̂xσx + q̂yσy + β

L
cos (2πx

L
)σy], (66)

With the limit of continuous momenta and periodic strain given in equation (66),
the Hamiltonian is periodic in the x-direction with period L. In the next section, I
use Bloch’s theorem to simplify the Hamiltonian above for use in calculations.
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4.2 Bloch’s theorem for supercells

Given the periodicity of the strain, we can use Bloch’s theorem to write the full
wave function in the form

ψk(r) =
∑
Gn

C(Gn)ei(qx+Gn)xei(qyy), (67)

where Gn = 2πn
L
. The Hamiltonian in equation (66) can be written in the same basis

as (67) to give

H(k) = vF
∑
Gn

[(qx +Gn)σx + qyσy]δm,n + βσy
2L [δm,n+1 + δm,n−1], (68)

The result in equation (68) expresses the Hamiltonian in terms of an infinite matrix
with the first term giving the diagonal components and the second for off-diagonal
components. The off-diagonal components represent the coupling between different
super-cells in momentum space, which couples each cell m to neighboring cells m± 1.
In what follows, I solve the spectrum of equation (68) numerically. In the numerics
I use only a finite number of components as the coupling with further cells becomes
less and less important.
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5 Optical properties

5.1 Optical conductivity

In this section I calculate the optical conductivity in graphene by considering a small
perturbation which represents electromagnetic radiation. The section follows the
derivation in Katsnelson’s textbook [9].

Let
H = H0 + V. (69)

Here V is a small perturbation depending on time as

V (r,t) = V (r)e−iωt+δt

where δ > 0 is infinitesimally small. Then the change in the density matrix elements
due to V is

δρ
′

nm = fn − fm
Em − En − (ω + iδ)Vnm, (70)

where fi = f(Ei) is the Fermi function of the ith energy level, and Vnm = 〈m|V |m〉.
A perturbation on the expectation value of an observable A is δAe−iωt+δt where

〈δA〉 = Tr
{
Aρ

′} =
∑
m,n

fn − fm
Em − En − (ω + iδ)VnmAmn. (71)

Considering the perturbation due to an oscillating electric field which represents the
incident light, the potential is given by

V = ~r · ~E (72)

where we use natural units in which the electron charge e = 1. Here ~E = Ee−iωt+δt,
and r is the position vector, which is expressed in the momentum space as

~r = i~∇k. (73)

The current operator is defined as the electric charge multiplied by the time-derivative
of the position operator, which can be evaluated by the Heisenberg equation of mo-
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tion to give [9]
~j = e

d~r

dt
= ie[Ĥ, r̂], (74)

and the conductivity is defined as

σαβ = jα
Eβ

. (75)

Using equations (71) and (75), the conductivity can be defined as

σαβ =
∑
m,n

fn − fm
Em − En − (ω + iδ) 〈n| rβ |m〉 〈m| jα |n〉 . (76)

Using the definition of j in equation (74), we get

〈m| jα |n〉 = i 〈m| [H,rα] |n〉 = i(Em − En) 〈m| rα |n〉 .

Therefore we can write the position matrix element as

〈m| rα |n〉 = −i 〈m| jα |n〉(Em − En) . (77)

Then substituting (77) in (76) gives

σαβ = −i
∑
m,n

fn − fm
Em − En + (ω + iδ)

1
Em − En

〈n| jβ |m〉 〈m| jα |n〉 , (78)

and we finally get the equation for the diagonal component of optical conductiv-
ity

σxx = −i
∑
m,n

fn − fm
Em − En − (ω + iδ)

1
Em − En

| 〈n| jx |m〉 |2.

Since jx = vFσx in graphene [9],we get

σxx = −iv2
F

∑
m,n

fn − fm
Em − En − (ω + iδ)

1
Em − En

| 〈n|σx |m〉 |2. (79)

It is possible now to calculate the optical conductivity for graphene by diagonalis-
ing the Hamiltonian given in equation (68), and substituting its eigenenergies and
eigenstates in (79).
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5.2 Reflectivity

In this section, I calculate the reflectivity of a graphene sheet as a function of its
optical conductivity. To calculate the reflectivity, I write the Maxwell’s equations
for a plane-wave electromagnetic radiation crossing perpendicularly to the graphene
sheet suspended in vacuum as shown in figure 4. The following calculation expands
the results given in [13] to consider different angles of incidence.

z

graphene sheet

incident light

reflected light

transmitted light

z<0

z>0

n

B
t

B
i Br

θ2

θ1

x

Figure 4. Light incident over graphene sheet
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Assuming the light has s-polarisation and setting the electric field in the y-direction,
the boundary conditions at z = 0 are

n× (E1 − E2) = 0, (80)

and
n× (B1 −B2) = µ0j, (81)

where E1, B1, are the fields in z < 0, while E2, B2 are the fields in z > 0, n is the
unit vector in the z direction, µ0 is the vacuum permeability, and j is the electric
current. The boundary conditions can be written in components as

Ei − Er = Et, (82)

where Ei, Er, and Et are the incident, reflected and transmitted electric fields re-
spectively, and

(Bi +Br) cos θ1 = Bt cos θ2 + µ0σE
t, (83)

where Bi, Br, and Bt are the incident, reflected and transmitted magnetic fields
respectively. In the last step we used equation (75). The Faraday equation in compo-
nent form at z > 0 is

−∂zEt
y = −∂tBt

x

∂xE
t
y = −∂tBt

z,
(84)

which, for plane waves, becomes

−Et
ykz = −ωBt

x

Et
ykx = −ωBt

z.
(85)

Since ω2 = (k2
x + k2

z) = k2 and |Et| = Et
y, we get

∣∣∣Et
∣∣∣ =

∣∣∣Bt
∣∣∣, (86)

while for z < 0 we have

−kz(Ei
y + Er

y) = −ω(Bi
x +Br

x)

kx(Ei
y + Er

y) = −ω(Bi
z +Br

z),
(87)

from which we get ∣∣∣Ei + Er
∣∣∣ =

∣∣∣Bi +Br
∣∣∣. (88)
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Using equations (86) and (88), equation (83) is written as

(Ei + Er) cos θ1 = (µ0σ(ω) + cos θ2)Et, (89)

using equation (82), this becomes

2Er cos θ1 = [σ(ω)
ε0

+ cos θ2 − cos θ1]Et, (90)

where in the last step we used that k = ω, and µ0 = 1
ε0
. We now write the reflected

electric field as

Er =
σ(ω)
ε0

+ cos θ2 − cos θ1

2 cos θ1
Et, (91)

which means that the incident field is given by

Ei =
σ(ω)
ε0

+ cos θ2 + cos θ1

2 cos θ1
Et. (92)

The reflectivity, which is defined as

R = |E
r|2

|Ei|2
(93)

is given by

R = |σ(ω) + ε0(cos θ2 − cos θ1)|2

|σ(ω) + ε0(cos θ2 + cos θ1)|2
. (94)

Here ε0 = α
4π ≈

137
4π , where α is the fine structure constant, since we set e = c = h̄ =

1.

When the media on both sides of the sheet are vacuum, we can set θ1 = θ2 ≡ θ, and
we get the result

R = |σ(ω)|2

|σ(ω) + 2ε0(cos θ)|2
. (95)

Similarly for p-polarisation, the reflectivity of graphene suspended in vacuum is
given by

R = |σ(ω)|2

|σ(ω) + 2ε0|2
. (96)

Using equations (79), (95), and (96), we can calculate the conductivity and reflectiv-
ity of strained graphene suspended in vacuum.
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5.3 Conductivity and reflectivity of pristine graphene

Equation (79) should give the value of optical conductivity for pristine (i.e. non-
strained) graphene; in this section I confirm that substituting the eigenvalues and
eigenstates given in equations (28), (29), and (29) into (79) gives the value for opti-
cal conductivity for pristine graphene given in the literature, then I substitute that
value into equation (95) to calculate the reflectivity of pristine graphene. For pris-
tine graphene, we have for each momentum vector a hole-state and electron-state
with energies

En,m = ±vF q,

and to simplify we can calculate here the last term of equation (79) in the K valley
as

| 〈n|σx |m〉 |2 = | 1√
2

e−i θ2
ei
θ
2

σx 1√
2
(
ei
θ
2 −e−i θ2

)
|2

= [12(−e−iθ + eiθ)]2

= sin2 θ,

where the same result also applies for states in the K ′ valley. Then we substitute
this into (79) and get

σxx = −iv2
F

∫ dqdθ

(2π)2 q
1

(2E − ω)− iδ
1

2E | 〈n|σx |m〉 |
2

= v2
F

∫ dqdθ

(2π)2 q
δ − i(2E − ω)
(2E − ω)2 + δ2

1
2E sin2 θ.

Taking δ −→ +0, and noting that

δ

(2E − ω)2 + δ2 −→ πδ(2E − ω) (97)

we get
Re{σxx} = πv2

F

∫ dqdθ

(2π)2 qδ(2E − ω) 1
2E sin2 θ. (98)

We can now perform the change of variables

q = E

vF

dq = dE

vF
,
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to find
Re{σxx} = v2

Fπ

4π2v2
F

∫
dEdθδ(2E − ω) E2E sin2 θ

= 1
8π

∫
dEdθδ(2E − ω) sin2 θ

= 1
8π

∫
dθ sin2 θ = 1

8
Multiplying by 2 to account for both valleys gives the final result

Re{σxx} = 1
4 = σ0, (99)

which agrees with the known results for pristine graphene [4], [9]. Using the re-
sult from (99), and given that in the chosen system of natural units we have ε0 =

1
4πα

e2

h̄
= 1

4πα , we get the reflectivity for perpendicular light

R =
|14 |

2

|14 + 1
2πα |2

. (100)

It is simplified to

R =
|12πα|

2

|12πα + 1|2 =
1
4π

2α2

(1
2πα + 1)2 , (101)

which agrees with the known result for the reflectivity of graphene [4]. In the fol-
lowing section, the same results are calculated numerically in order to confirm the
validity of other calculations that include strain with different amplitudes added to
the Hamiltonian.
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6 Calculations

6.1 Numerical methods

6.1.1 Energy scale

The Hamiltonian in equation (68) can be written in terms of dimensionless variables
with the prefactor vF

2L , so that the matrix itself does not depend on the period of
the strain, and the calculation remains independent of the energy scale. This allows
for considering the energy scale and different periods of the strain after the calcu-
lation, rather than needlessly complicating calculations with an additional variable
parameter (namely L). The Hamiltonian thus becomes

H(k) = vF
2L

∑
Gn

[(q̃x + G̃n)σx + q̃yσy]δm,n + βσy[δm,n+1 + δm,n−1], (102)

where
q̃ = q ∗ 2L

G̃n = 4πn
(103)

are dimensionless variables. Similarly I define the dimensionless variables

Ẽ = E
2L
vF

T̃ = T
2L
vF

ω̃ = ω
2L
vF
.

(104)

Now, equation (79) can be expressed in the form

σxx(ω̃) = −i
∑
m,n

∫ dq̃xdq̃y
(2π)2

1
Ẽm − Ẽn − (ω̃ + iδ)

fn − fm
Ẽm − Ẽn

| 〈n|σx |m〉 |2, (105)

where the q̃x integral is over one momentum-space super-cell. Equation (105) shows
that for the calculation of the optical conductivity, the energy scale only shows in
re-scaling the frequency.
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6.1.2 Momentum valleys

Equation (102) only includes one momentum valley, but to find the value of σxx
from equation (105), we need to sum σ(K)

xx and σ(K′)
xx . However, the fact that

H(K) = −H∗(K′), (106)

implies that
σ(K)
xx = σ(K)

xx , (107)

and the result is simply
σxx = 2σ(K)

xx . (108)

This analytical result is also confirmed numerically by finding the eigenvalues and
eigenstates for both momentum valleys, and ensuring that

ψ(K)
n − ψ(K′)

n

∗ = 0,

Ẽ(K′)
n + Ẽ(K′)

n = 0,
(109)

hold for different values of β. The numerical checks confirmed that this is true for
all values of β included.

6.1.3 Parameters

The main free parameters to be selected for the calculation are the energy level
cutoff corresponding to the number of elements to include from the infinite sum in
equation (102), the momentum cutoff which correspond to the dq̃y integral limits in
equation (105), and the energy levels m,n to include in the sum in (105) .

• Momentum cutoff and energy levels to sum over

The y-momentum cutoff and the energy levels n,m in equation (105) are re-
lated to the frequencies of the incident light; since the conservation of energy
implies that the energy difference Ẽm − Ẽn does not exceed the highest energy
of the incident photons ω̃, then given the maximum frequency ω̃max, we may
select q̃y ∈ [−1

2 ω̃max,
1
2 ω̃max], while the highest energy level m to include in the

sum could be selected such that Ẽm(q̃y = 0) − Ẽ−m(q̃y = 0) = ω̃max. Figure 5
shows the energy as a function of q̃y with q̃x = 0 for different values of β, while
figure 6 shows the energy as a function of q̃x with q̃y = 0 for the first two levels
(i.e. m,n = 0,±1) for different values of β.
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β=10 β=20

β=2

Figure 5. Plot of Ẽ as a function of q̃y at q̃x = 0 for energy levels n = 0,± 1

β=0β=0

β=10 β=20

β=2

Figure 6. Plot of Ẽ as a function of q̃x at q̃y = 0 for energy levels n = 0,± 1
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The plots indicate that for ω̃max = 20, q̃y ∈ [−40,40] should cover the energy
differences of interest up to β = 20, and I have selected these values for the
integral. I have also selected n,m ∈ 0,± 1,± 2,± 3,± 4,± 5.

• Hamiltonian matrix elements

Since the Hamiltonian given in equation (102) has an infinite number of ele-
ments as m,n = 0,±1,± 2,.., a cutoff N such that m,n = 0,±1,± 2,..±N must
be chosen before it can be used numerically. To select the correct cutoff, I have
calculated the expected improvement in accuracy from adding one more term
by finding the difference the eigenvalues from cutoffs N and N + 1. The change
in energy by increasing the cutoff is denoted δẼ, and I define it as the average
energy difference between corresponding energy levels i = ±1,± 2,..± 5 which is
maximized with respect to momentum.

δẼ = Ẽ(N + 1,i)− Ẽ(N,i). (110)

Figure 7 shows δẼ for values of N = 5,6,7,8,9,10 at different strain amplitudes
β. As expected, the value goes to zero as β diminishes, but for higher values
of β, N = 8 appears to be the optimal value where an increase in N does not
significantly improve the accuracy.

5 6 7 8 9 10
N

0

1

2

3

4

5

6

7

8 =2
=10
=20
=30

Figure 7. Improved accuracy for increasing the energy cutoff for each N
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• Low energy limit

Equation (105) implies that as q̃x, q̃y −→ 0, the term 1
Ẽm−Ẽn

−→ ∞, which
dominates for higher values of β due to the bands flattening. To avoid in-
finities coming up in calculations for higher values of β, I have used two ap-
proaches independently and checked that they give matching results, and that
for pristine graphene σxx approaches σ0.

The first approach is to set a minimum value for the frequency (e.g ω̃min = 2.5),
so that transitions with low energy are not significant, and terms with energy
difference below a certain threshold can be ignored (e.g ignore terms with
Ẽm − Ẽn < ∆Emin = 0.1).

The second approach is to assume a finite temperature (T̃ = ∆Emin used
above) that is sufficiently small to give similar results to the zero-temperature
case, but where the Fermi function can be continuous, and we can replace the
expression

fn − fm
Ẽm − Ẽn

Ẽm−Ẽn<Emin−−−−−−−−→ − ∂f
∂Ẽ

(Ẽm) (111)

which is finite at non-zero temperatures. Figure 8 shows that for both ap-
proaches σxx approaches σ0 for pristine graphene as expected, and they give
the same results. The same is true for β 6= 0, as the figures show below; fig-
ure 9 shows the agreement of the results from both methods for β = 2, and
5, while figures 10, and 11 shows that the results of the two approaches can
diverge for higher β, but converge again as T̃ , and Emin have smaller values.
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Figure 8. Optical conductivity calculated using both approaches for pristine graphene
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Figure 9. Optical conductivity calculated using both approaches for β = 5 (left), and β = 2
(right)
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Figure 10. Optical conductivity calculated using both approaches for β = 10 at Ẽmin = T̃ =
0.1 (top) and Ẽmin = T̃ = 0.05 (bottom)
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Figure 11. Optical conductivity calculated using both approaches for β = 20 at Ẽmin = T̃ =
0.05 (top) and Ẽmin = T̃ = 0.005 (bottom)
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6.2 Results

6.2.1 Conductivity

First, I calculated the conductivity of pristine graphene and compared it with the
known value of σ0 [13] [9]. Figure 12 shows σxx/σ0 for pristine graphene (i.e. at
β = 0). Note that the comparison is only for the real value of σxx, since this is the
value to which the known value of σ0 refers [9].

Figure 12. Optical conductivity calculated for bare graphene.
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Figure 13. Optical conductivity calculated for bare graphene with higher momentum resolu-
tion compared to δ.
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Then, I calculate the conductivity for strained graphene with different values of β
shown in figure 14. At low values of ω̃, the conductivity of bare graphene is lower
than σ0, but that effect should be expected for non-zero temperature [13]. The effect
of temperature is confirmed in my calculations as shown in the results in figure 15.
In the case of zero temperature, a similar effect is caused by ignoring low energy
transitions, which can affect the result for low values of ω̃ due to the inaccuracy
involved in the frequency represented by the complex component δ.

It should be noted that part of the inaccuracies at ω̃ close to zero, as well as the
oscillation of the value of σxx for low values of β are numerical artifacts, possibly
due to the ignoring of low-energy transitions and the discretization of the momen-
tum respectively. The latter point is confirmed by calculating the conductivity for
bare graphene at different momentum resolutions and corresponding values of the
imaginary component of frequency δ; as shown in figure 13, the oscillations disap-
pear when ∆q is sufficiently smaller than δ. Finally, the fact that the value of σxx/σ0

approaches 1, but is not exactly 1 is due to the various approximations taken, es-
pecially taking a cutoff N for energy and limiting the energy levels to sum over, as
described in the parameters section above.
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Figure 14. Optical conductivity calculated for strained graphene at different amplitude of
strain β
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Figure 15. Optical conductivity for bare graphene at different temperatures.
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The results also show similar behaviour of σxx at lower values of β, while the devia-
tion from bare graphene appears to be continuous as the strain increases.

6.2.2 Reflectivity

Given the conductivity, the reflectivity can be calculated directly from equation
(95). However, to get results that correspond to real values of frequency, values of
the strain period L must be assumed. Figure 16 shows reflectivity of bare graphene
as a function of ω̃ for perpendicular light (θ=0). The result should be compared
with the value in equation (101) which has R ≈ 1.310−4. The calculated reflectivity
approaches that value as ω̃ increases, however at lower frequencies the imaginary
component of the conductivity is higher, leading to a higher reflectivity.
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Figure 16. Reflectivity of bare graphene.
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Figure 17 shows the same result for weakly strained graphene (β = 2), which shows
only a small deviation from the reflectivity of bare graphene. Figure 18 shows the
reflectivity of strained graphene for values of β = 5,10, and 20, for perpendicular
light. Finally, figure 19 shows the reflectivity for graphene strained at β = 20 for
different angles of incident light with s-polarisation. Since ω = ω̃ ∗ vF2L , changing the
strain period amounts only to re-scaling the x-axis for reflectivity.
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Figure 17. Reflectivity of strained graphene with β = 2.

41



2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
R

1e 3
=5
=10
=20

Figure 18. Reflectivity of strained graphene at θ = 0.

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
0

2

4

6

8

R

1e 3
=0
=30
=60

Figure 19. Reflectivity of s-polarised for graphene strained at β = 20.
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Due to the imaginary component of conductivity, the calculated reflectivity for
pristine graphene appears higher at ω̃ < 7 but then approaches the correct value.
The same effect appears for strained graphene. Luckily, the interesting peaks due
to strain arise at higher values of ω̃, which suggests they are unaffected by these
inaccuracies, and experiments can still look for such peaks at ω̃ > 7 for strained
graphene.

The patterns for conductivity shown in figure 14 can be explained using the energy
spectra in figures 5 and 6; as the bands become flatter with higher values of β, the
energy differences between energy bands tend to become more uniform. In figures 20,
and 21, the bands for various energy levels are shown, and as the density of states
becomes higher near qy = 0, the energy differences near this point becomes more
significant and show up as a peak in the plot of conductivity. The figures show a
pattern where the peaks become narrower, higher, and closer to the values of ∆E
as the value of β becomes higher; this should be expected since the flattening of the
bands becomes stronger as the amplitude of the strain increases.
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Figure 20. Energy levels at β = 10 as functions of qx (top left) and qy (top right). σ/σ0 for a
higher range of ω̃ for β = 10 (bottom)

44



15.5

33.0

15.1

32.6

y

Figure 21. Energy levels at β = 20 as functions of qx (top left) and qy (top right). σ/σ0 for a
higher range of ω̃ for β = 20 (bottom)
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7 Conclusion

The reasonable agreement of the calculated conductivity for bare graphene with the
known value of σ0, as well as the continuous deviation from that value as the strain
increases give good support to the obtained results. Numerical artifacts such as the
value for conductivity of pristine graphene approaching σ0 but not exactly equalling
it, as well as the oscillation of the values at low values of β can all be varied with
the selected parameters in the calculation.

The effect on the real component of conductivity at low values of ω̃ for bare graphene
can be expected at non-zero temperatures [13], and also has a contribution from the
calculation method selected to avoid the divergence at low frequencies. A similar
effect should be expected for strained graphene as explained above. Thus results for
low frequencies that were influenced by the omission of low energy differences can be
omitted.

The results for reflectivity follow directly from the conductivity, though they are
related to the absolute value of the optical conductivity rather than the real compo-
nent. The predicted values for reflectivity can be tested experimentally for different
values of the period of strain L and angle of incidence θ. The artificial increase in
reflectivity at low frequencies does not interfere with the peaks, which even for β = 5
appear at higher frequencies; this suggests that such artifacts should not signifi-
cantly influence the predictions for the location, height, and width of the peaks, so
it remains possible to test them experimentally. The effect of strain on reflectivity
may be amplified by varying the angle of incidence in the case of s-polarised light;
as shown above, a higher angle of incidence amplifies the conductivity peaks which
could make them easier to detect experimentally.

Since the aim was to find whether it is possible to detect strain in graphene using
its optical properties, the results indicate that, especially for higher amplitudes of
strain, it is possible to detect the change in graphene’s reflectivity due to strain. The
period of the strain can be seen in the scaling of the frequency, while the maximum
value for the conductivity/reflectivity is an indicator of the strain amplitude.

The calculations show a relationship between flat bands, which result from strain,
and the optical conductivity and reflectivity. Measurements of reflectivity at dif-
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ferent strain amplitudes may be used to verify and test the accuracy and possible
limitations of these predictions.

As expected, the value of the conductivity shows higher peaks for flat bands at
higher strain amplitudes. It is reasonable to expect higher and sharper peaks at
higher values of strain due to the energy bands flattening; this can be experimentally
verified by measuring the reflectivity for higher strain amplitudes.

Since I study in-plane strain here, an obvious way to expand upon the current re-
sults is to calculate the same results for out-of-plane strain, as well as the combined
effect of in-plane and out-of-plane strain. In addition, different forms of periodic
strain can be calculated other than the cos-shaped strain presented here.
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