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ABSTRACT In today’s data-driven world, decision makers are facing many conflicting objectives. Since
there is usually no solution that optimizes all objectives simultaneously, the aim is to identify a solution with
acceptable trade-offs. Interactive multiobjective optimization methods are iterative processes in which a hu-
man decision maker repeatedly provides one’s preferences to request computing new solutions and compares
them. With these methods, the decision maker can learn about the problem and its limitations. However,
advanced optimization software usually offer simple visualization tools that can be significantly improved.
On the other hand, current approaches for multiobjective optimization from the visualization community
provide superior visualization tools but lack advanced optimization. In this paper, we introduce a new
term, interactivize, for integrating interactive multiobjective optimization and interactive visualization and
present an interactivized approach supporting decision makers in visually steering interactive multiobjective
optimization methods. We integrate state-of-the-art interactive visualization with the process of interactive
multiobjective optimization in a visual analytics solution that significantly improves the analysis workflow
of decision makers, like comparing selected solutions and specifying new preferences during the iterative
solution process. To realize the new interactivized approach, we combine a coordinated multiple views
system with DESDEO, an open-source software framework for interactive multiobjective optimization. We
demonstrate our interactivized approach on a river pollution problem.

INDEX TERMS Visual analytics, Multiple criteria decision making, Interactive optimization.

I. INTRODUCTION

TYPICAL real-world optimization problems are multi-
objective by nature, which means that their optimal

solutions represent trade-offs between the conflicting objec-
tives considered [1]. Since the goodness of the solutions
is evaluated by multiple conflicting objectives, the number
of so-called Pareto optimal solutions, where no objective
can be improved without impairing some other one, can be
very large (even infinite). Furthermore, these solutions are
mathematically incomparable, which means that selecting
one to be implemented requires additional information from
a human decision maker (DM) to identify the most preferred
trade-offs. A DM is an expert in the problem domain, who
can express preferences related to the conflicting objectives
considered.

There are many ways of finding a satisfactory solution
for a multiobjective optimization problem. The term opti-
mization has, however, a different meaning for people with
distinct research backgrounds. The visual analytics commu-
nity has provided many examples of exploration and analysis
of complex multiobjective problems, often without actually
optimizing but rather selecting from a pre-computed set of
solutions (see, e.g., [2], [3]). In other words, the objectives are
used to choose the most preferred solution after a sufficient
sampling of the decision variable space has been done (a
posteriori methods). On the other hand, the multiobjective
optimization community advances optimization methods that
conduct calculations to systematically find improved values
of the objective functions to get Pareto optimal solutions.
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In addition, the DM can be involved either before, after, or
during the optimization process. Interestingly, although there
are visual analytics systems that combine the two approaches
(optimization and visual), only a few visual analytics ap-
proaches adequately support the multiobjective optimization
community. As mentioned, preferences of a human DM
in visual analytics approaches are typically asked after the
optimization process, which means that many of the pre-
computed solutions are not used later as they obviously are
not practically relevant and, thus, not interesting for the DM.

In this paper, we focus on finding the solution with the
most preferred trade-offs by using interactive multiobjective
optimization methods [1], [4]. So far, implementations of
interactive multiobjective optimization methods have mostly
concentrated on how optimization is performed, and the
interaction between the DM and the method has received
very little attention [5]. The term interactive here means that
a human DM steers the solution process interactively and
iteratively by evaluating the solutions computed so far and
giving preference information so that the solutions to be gen-
erated in the following iteration would be more preferred. It is
important to stress out that the methods are called interactive
because a user (i.e., a DM) interacts with the optimization
method itself in an iterative process. Usually, the interaction
with the method is simple (e.g., including a text terminal or
a single view). Thus, interactive multiobjective optimization
provides an application area for visual analytics, which has
not yet been properly studied [5], [6]. To avoid confusion
with a DM interacting with visualizations, we use the term
interactive visual analysis when we mean the latter one.

We introduce a new approach, where interactive visual
analysis is integrated into the process of interactive mul-
tiobjective optimization. In other words, existing solutions
are evaluated and new solutions are computed iteratively,
fully utilizing visualization techniques to support the DM in
steering the solution process. We introduce the term inter-
activize here to reflect including the interactive nature from
both the optimization and the visualization fields. Therefore,
we interactivize interactive multiobjective optimization and,
thus, we call this an interactivized approach. As the method
combines computational methods with human-in-the-loop
approaches, and relies heavily on interactive visualization it
represents a typical visual analytics system. Visual analytics
is "the science of analytical reasoning facilitated by interac-
tive visual interfaces" [7]. It combines strengths of humans
and computers in order to solve complex problems which
are hard to formally specify and solve automatically. Our
contribution is fourfold and can be summarized as follows:

1) A widely applicable interactivized approach for a DM
to steer the multiobjective optimization process to-
wards the most preferred solution.

2) Detailed task abstraction and requirements for design
of the new interactivized approach that are applicable
in many domains.

3) Suggestions for improvements of visualization tech-
niques in order to support the interactivized approach

by efficiently specifying preferences, exploring a set
of Pareto optimal solutions, and visualizing additional
metrics that help in decision making.

4) Demonstrating a possible realization of the new ap-
proach by integration of a coordinated multiple views
(CMV) system with an open-source interactive mul-
tiobjective optimization framework. Comparison to a
state-of-the-art interactive multiobjective optimization
approach.

We provide detailed tasks abstraction and requirements
analysis for interactivized interactive multiobjective opti-
mization. These tasks and requirements can be used in any
domain when designing and implementing an interactive
multiobjective optimization system. We also demonstrate our
interactivized approach through a usage scenario dealing
with a decision problem related to the pollution of a river
[8]. When compared to a state-of-the-art interactive mul-
tiobjective optimization system, our approach enables the
DM to analyze the optimized solutions in a more compre-
hensive way by using enhanced CMV systems. Therefore,
specifying preferences for improving the solutions already
computed becomes easier and more focused through learn-
ing about already computed solutions. Note that trade-offs
between Pareto optimal solutions become harder and harder
to comprehend with an increasing number of objectives to be
optimized.

In our interactivized approach, we rely on the optimization
algorithm to suggest only solutions that are close to the
DM’s preferences to save computational resources and, at the
same time, reduce the cognitive load in evaluating a huge
number of solutions. In other words, we allow the DM to
focus on analyzing practically relevant solutions to find the
most preferred one. Ultimately, this helps the DM better
understand the consequences of the decisions in relation to
the conflicting objectives.

The structure of the paper is the following. First, the basics
of multiobjective optimization in brief is given in Section II
and the related work is described in Section III. The proposed
approach is then introduced in section IV. A visual analytics
system design for our interactivized approach is introduced
in Section V, and an example implementation is described in
Section VI. The proposed interactivized approach is demon-
strated in Section VII with a river pollution problem, and the
lessons learned are discussed in Section VIII. Finally, Section
IX concludes the paper and gives some future research ideas.

II. MULTIOBJECTIVE OPTIMIZATION

In the following section, we provide background information
on multiobjective optimization and describe basic workflow
and corresponding tasks for interactive multiobjective opti-
mization.
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A. BASICS OF MULTIOBJECTIVE OPTIMIZATION
We consider multiobjective optimization problems of the
following form:

minimize {f1(x), . . . , fk(x)}
subject to x ∈ S

(1)

with k (≥ 2) (conflicting) objective functions fi : S → R
to be minimized simultaneously. The decision variable vec-
tors (or decision variables, for short) x = (x1, . . . , xn)

T

belong to the nonempty feasible set S ⊂ Rn defined by
constraint functions in the decision space. Besides decision
vectors, we are interested in objective vectors consisting of
objective (function) values f(x) = (f1(x), . . . , fk(x))

T in
the objective space and the image of the feasible set is called a
feasible objective set. Because the dimension of the objective
space is often lower than that of the decision space, special
attention is usually paid to visualizing objective vectors (see,
e.g., [1]).

A decision variable vector is called non-dominated within
a given set of decision variable vectors if none of the cor-
responding objective vector components can be improved
without impairing any of the others. In that case, we say
that the corresponding objective vector is non-dominated. If
a decision vector is non-dominated within all the feasible
decision vectors, it is called Pareto optimal. The ranges of
the objective values among the set of Pareto optimal solutions
are often shown to the DM as supporting information. These
ranges are defined by the ideal and nadir vectors representing
the best and worst values for each objective, respectively.

We can classify multiobjective optimization methods ac-
cording to the role of the DM in the solution process: i) a
priori methods, where the DM specifies preferences before
optimization, ii) a posteriori methods, where DM specifies
preferences after optimization, and iii) interactive methods,
where steps of specifying preferences and optimization alter-
nate [1]. In this paper, we concentrate on interactive methods
(see, e.g., [1], [4]), where the DM takes an active part in
the solution process and directs it with one’s preferences
to find the most preferred solution. In this paper, an impor-
tant concept is an iteration of an interactive method which
consists of the DM specifying preferences and an optimizer
returning solutions reflecting those preferences. Further, an
interactive method consists of a series of iterations until the
DM has found a most preferred solution. As mentioned,
the strengths of interactive methods include computational
efficiency when only solutions of interest to the DM are
generated and cognitive efficiency while the DM needs to
consider only limited amounts of information at a time. Fur-
thermore, an important aspect is the DM learning about the
trade-offs involved and the feasibility of preferences, which
increases the DM’s confidence in the most preferred solution.
Because the preferences expressed by the DM during the
solution process affect the generated solutions, (s)he is not
restricted by the pre-generated solutions as in a posteriori
methods. A posteriori methods need a rapidly increasing
number of solutions as the number of objective functions

increases to get a good representation of the Pareto optimal
solutions, and still the set will be sparse.

B. INTERACTIVE MULTIOBJECTIVE OPTIMIZATION

Different types of preferences are used in various multiob-
jective optimization methods. However, we can characterize
many interactive methods by the following steps: a) show
general information about the problem to initialize the solu-
tion process, b) ask for preference information from the DM,
c) generate solution(s) reflecting the preferences and show
them to the DM, and d) continue from b) as long as the DM
wishes. The basic interactive multiobjective optimization
workflow is illustrated in Figure 1.

Interactive methods differ from each other, e.g., in the
types of preference information they apply (see, e.g., [1],
[4], [9]). In this paper, we apply so-called reference points.
By setting their components, the DM indicates desirable
values for each objective function. The reference point is then
included in optimization when new solutions are computed,
thus emphasizing those solutions that have objective values
close to the reference point. It is important to note that since
a DM can freely specify values for the reference point, there
might not exist any solution that matches those due to the
conflicting objectives. Thus, the reference point may not co-
incide with any of the solutions computed. Reference points
have also been found to be cognitively easy to understand
by the DMs since they are directly related to the objective
function values [10].

A workflow for an iterative solution process can be seen
to include four phases [9]. It starts with problem formulation,
where the DM is also involved, but it is not in the scope of
this paper. Then in the learning phase, the DM experiments
with different preferences to see what kind of solutions are
available and learns about the problem and the feasibility of
one’s preferences. In the decision phase, the DM fine-tunes
the region of interest identified so far to pin down the most
preferred solution. Note that it is not always possible to de-
termine when the learning phase ends and the decision phase
begins since the main difference is on the variation of the
provided preference information (wider in the learning phase,
narrower in the decision phase), which might not be easy to
quantify precisely. The decision phase can be followed by a
post-processing phase where the most preferred solution is
further tested before implementation.

When realizing an interactive multiobjective optimization
approach it is essential to support various tasks. There has
not been much work in the literature on task abstraction for
interactive multiobjective optimization. In the paper [11], six
most important interaction techniques to be considered by the
interface designer were identified for a method called Pareto
Navigator [12]. These were on how to i) select the starting
point, ii) elicit preference information, iii) visualize the nav-
igation progress, iv) examine the set of approximated Pareto
optimal solutions, v) ask for real Pareto optimal solutions and
how to examine them, and vi) support the overall decision
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FIGURE 1: Basic workflow of interactive multiobjective
optimization.

making process. However, the tasks iii, iv and v were specific
to Pareto Navigator.

A more general approach was used in [5], where a task
abstraction for interactive multiobjective optimization in gen-
eral was presented. It consists of seven high-level tasks that
the DM faces when solving a multiobjective optimization
problem using an interactive method: compare Pareto opti-
mal solutions, specify preferences, check feasibility of pref-
erences, determine a most preferred solution in a subset of
alternatives, learn about problem characteristics, detect cor-
relations, and post-process the most preferred solution, e.g.,
in terms of sensitivity, robustness or uncertainty. The authors
illustrated how these high-level tasks can be facilitated by
nine low-level visual interaction techniques presented in the
visual analytics literature. A taxonomic categorization into
low-level and high-level tasks allows for a translation of user
tasks into appropriate visual forms and representations. The
previous work characterizing visualization usage has focused
on low-level tasks (see, e.g., [13], [14]) and high-level tasks
(see, e.g., [15], [16]), while only some have concentrated on
both levels (see, e.g., [5], [17]). It is important to note that
the tasks identified in [5] were not used in any visual design
but only an illustration with an existing, general visualization
system is given.

III. RELATED WORK

Our idea is to combine visualization and optimization. We
review how visualization has typically been used in multiob-
jective optimization. We also present previous studies on how
multiobjective optimization, together with visual analytics,
have both been used for decision making.

A. USING VISUALIZATION IN MULTIOBJECTIVE
OPTIMIZATION
In multiobjective optimization, visualization can be used in
different ways to support the DM. A commonly used way
is to visualize individual solutions or solution sets in the
objective space when the DM needs to compare solutions
[18], [19]. This approach is very typical in a posteriori
methods, where the DM is expected to choose the most
preferred one among a (large) set of pre-computed solutions.
The Attribute Explorer [20] and the Influence Explorer [21]
represent pioneering uses of interactive visualization in such
a setup, i.e., in selection from a set of pre-computed multidi-
mensional items, with no possibility to initiate a generation
of new items from the visualization. Visualization of the
solutions becomes much more challenging when the number
of objectives increases since the dimensionality of the data
to be visualized increases [22]. Moreover, the number of
solutions needed to have a good representation of all the
Pareto optimal solutions increases exponentially with respect
to the number of objectives.

Using visualizations to support decision making is espe-
cially important in the context of interactive multiobjective
optimization methods, where the DM is actively involved in
the solution process. A typical way of using visualizations in
interactive methods is to have a single type of visualization,
which the DM can interact with (see, e.g., [23]–[31]). More
versatile options for visualization are available in commercial
process integration and design optimization software like
modeFrontier and Optimus. However, they lack implementa-
tions of interactive multiobjective optimization methods and
are not openly available to use the visualization tools together
with external optimization methods.

B. VISUAL ANALYTICS FOR MULTIOBJECTIVE
OPTIMIZATION
Visual analytics is, in particular, an interactive and iterative
dialog between the analyst and the system [32], through
which the analyst makes observations and derives useful
information to help him/her understand the phenomena in-
vestigated [33]. This is in line with what a DM does by using
interactive methods during an iterative solution process of
finding the most preferred Pareto optimal solution. Some-
times, the analyst and the DM can be the same person but
not necessarily always. In case they are different persons, the
role of the analyst is to support the DM.

Visual analytics has been applied to many domains in
order to analyze large and complex data. Parameter space
exploration is probably the sub-field of visualization, which
is mostly related to multiobjective optimization. Here, the
term parameter is used instead of variable when compared
to the definition given in Section II-A. For example, paper
[34] provides a conceptual framework for visual parameter
space analysis. In many related applications, after sampling
the parameter space (by means of well-known design of
experiments [35] methods), the analyst visually explores
computed solutions and chooses the satisfactory ones.
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In cases when the parameter space is large (with respect to
the number of parameters), it is often not feasible to sample
the whole space densely in advance. To help in this, so-
called Hybrid Visual Steering is introduced in the paper [36],
where automatic optimization based on regression models
and interactive visual simulation steering are combined in
order to guide the analyst through a high dimensional pa-
rameter space. The main focus in Hybrid Visual Steering
is on supporting analysts in parameter space sampling and
communication of uncertainty of regression models for sim-
ulation ensembles. Further, although the method computes
new cases, new data is provided as-is, it is not optimized
and is, thus, clearly different from our focus. In the paper
[37], the authors analyze trade-offs, uncertainty, and sensi-
tivity in the fisheries industry by means of visual analysis.
They use visualization to understand trade-offs of a set of
pre-computed simulations. Finally, the parameter space of
decision trees themselves has been explored [3], [38]. In both
cases, a pre-computed set of decision trees, a well-known
method in decision making, has been analyzed, and the best
performing one selected. Although the user can guide the
sampling of the tree generation parameters in the paper [3] to
investigate local sensitivities, actual optimization algorithms
are not utilized as we do.

So far in the literature, only preliminary steps have been
taken in studying the potential of applying visual analytics
for multiobjective optimization. We start analyzing the pre-
vious work with visual steering, where DM’s preferences
were used to search for the most preferred solution [39].
Although it was not using optimization and relied only on
sampling the decision space, interactive visual analysis was
used to support the DM in giving preferences that were
used to guide further sampling. In the paper [40], a many-
objective visual analytics (MOVA) framework was proposed
as a new approach to the design of complex engineered
systems. MOVA emphasizes learning through optimization
problem reformulation, enabled by visual analytics and a
posteriori multiobjective optimization with a large number of
objectives. In [11], ideas from visual analytics were used in
an incremental user interface development for an interactive
multiobjective optimization method Pareto Navigator [12],
and the task analysis done was specific to that.

The SAGESSE decision support methodology for explor-
ing multidimensional spaces used coordinated multiple views
to support DMs in analyzing solutions with multiple objec-
tives and allowed the DM to guide optimization for improved
solutions [41]. Finally, connections between visual analytics
and interactive optimization were studied in [6], [42]. In [6]
this was done from the perspective of brachytherapy. The
authors derived a problem-solving loop that they connected
to the sense-making loop commonly used in visual analytics
to understand tasks. Their approach is application dependent
and very much tied to brachytherapy except the very general
problem-solving loop.

In [42], the authors concentrate on complex bus networks,
and proposed a visual analytics system for selecting the best

bus routes with respect to several objectives based on a real-
time model that generates Pareto optimal solutions. Their
approach has three stages where they i) explore to find a
non optimal route in the current network, ii) manipulate to
generate several new Pareto optimal routes to replace the non
optimal one, and iii) evaluate the new generated routes to
select the best one. In the second stage, the user can specify
constraints that are taken into account in generation and, in
the third stage, the user can specify ranges for objectives
when selecting the best one. Differences to our paper are
that this is a posteriori approach where user preferences
are involved only in the final selection process but can not
be used to control which kind of Pareto optimal routes are
generated.

Compared to the studies mentioned above, our interac-
tivized approach emphasizes the DM steering the optimiza-
tion process towards the most preferred solution while learn-
ing from already computed solutions and one’s own prefer-
ences. The closest of the mentioned studies to our work is
SAGESSE [41], where parallel coordinates have also been
used as the main view. The main differences are: i) The
preference information assumed from the DM in SAGESSE
(selecting one objective to be optimized and giving bounds
for other objectives) is combined with a fixed method for
computing new Pareto optimal solutions (the ϵ-constrained
method). Our approach uses reference points as preference
information, but how these are used in optimization is not
fixed, enabling the usage of diverse optimization methods
for generating improved solutions. ii) There is no support in
SAGESSE for evaluating the progress of the DM’s preference
information during the solution process. iii) SAGESSE is
not compared to other interactive multiobjective optimization
methods. iv) The authors do not provide a task abstraction or
requirements that could be used in other domains.

IV. INTERACTIVIZED INTERACTIVE MULTIOBJECTIVE
OPTIMIZATION
In this section we present our novel approach to interac-
tive multiobjective optimization. We introduce a compre-
hensive task abstraction with corresponding requirements
which can be used by interactive multiobjective optimization
researchers and system developers. Today, multiobjective
optimization is used in many scientific, engineering, or com-
mercial domains. Many of the solutions used in different
domains will certainly require some customized visualiza-
tions, but all of them will have to provide solutions for tasks
and requirements identified here. Thus, our main goal is to
provide guidelines which will lead to improved interactive
multiobjective optimization systems. As we rely on interac-
tive visualization as the main mean of interaction between a
DM and an optimizer, we call our approach Interactivized
multiobjective optimization. The workflow of the interac-
tivized approach is shown in Figure 2. When compared to
the basic workflow of interactive multiobjective optimization
shown in Figure 1, the interactivized one includes interactive
visual analysis as an integrated part.
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FIGURE 2: Workflow of interactivized interactive multiob-
jective optimization, including the learning, decision, and
post-processing phases. The workflow starts from recogniz-
ing a need for optimization followed by a problem formu-
lation (DM involved). Then, new solutions are generated by
optimization and evaluated by the DM in the interactivized
interactive multiobjective optimization loop. The workflow
is not linear, but one can go back to all the previous phases if
needed (getting back to problem formulation is not supported
by our approach and, thus, indicated with a gray arrow).

In order to design the new interactivized approach, we
followed a participatory design process in close cooperation
between the authors of this paper (visualization experts and
experts of multiobjective optimization). Our design process
can be structured in three phases: inception, design, and
evaluation. During the inception phase, we had numerous
meetings to better understand the multiobjective optimization
experts’ tasks and communicate possibilities for visual anal-
ysis. The inception phase resulted with task abstraction for
interactivized approach. The design phase then led to the de-
tailed requirements for design of an exemplary interactivized
system. Finally, the implemented system has been evaluated
in the evaluation phase.

A. TASKS
We build on the tasks presented in [5]. We use all of them
here except the task post-process the most preferred solution,
since it is highly dependent on the optimization problem con-
sidered. In addition, we introduce two new important tasks
of evaluating the progress of the DM’s evolved preferences
during the iterative solution process and analyzing similar
solutions for detecting local improvements. We present the
tasks in a more general form (compared to [5]) to allow con-
necting them to tasks in other domains [43]. In addition, in
contrast to [5], where only the task analysis was performed,
we here generate requirements from the tasks, use them in
visual analytics system design, and compare the resulting

interactivized approach to a state-of-the-art interactive multi-
objective optimization framework.

We propose the eight tasks shown in Table 1. We give
them a short name, a general description applicable to other
domains, and a specific description of how they are applied
in interactive multiobjective optimization. We also describe
the tasks by answering the six questions as suggested in [43]:
WHY is a task pursued, HOW is a task carried out, WHAT
does a task seek, WHERE in the data does a task operate,
WHEN is a task performed, and WHO is executing a task?
Next, we briefly describe these tasks.

In the first task, the DM compares solutions produced
by the optimization algorithm during the iterative solution
process. Since the solutions represent trade-offs between
the objectives (and cannot be ordered without preferences),
comparing them is not a trivial task and relies on the expertise
of the DM in the problem domain. The second task specifying
preferences is based on the analysis of the solutions com-
puted so far. The preferences given by the DM are used to
steer optimization in finding improved solutions or solutions
of different performance and, thus, can be used to scan the
decision space by using optimization. The preferences can
be totally new, a refinement of the last one, or any of the
earlier ones. When new solutions are computed based on the
preferences, the DM is able to detect correlations between
the conflicting objectives, gain insight, and learn about other
characteristics of the problem like trade-offs or one’s own
preferences. When the DM specifies preferences iteratively,
it is also possible to analyze the progress of the preferences
and see, e.g., whether they are converging or not. After seeing
a promising solution, the DM can analyze similar solutions
to detect local improvements. At the end of the solution
process, the DM needs to choose the most preferred solution
for implementation or further testing.

B. REQUIREMENTS
After the tasks were defined in the inception phase, the
design phase then led to the following detailed requirements
from the experts based on numerous prototypes, which were
validated together:

• R1: Compare multidimensional solutions from one iter-
ation, and between iterations (Task1).

• R2: Compare solutions in the context of selected refer-
ence points (Task1).

• R3: Compare a selected subset of best ranked solutions
(Task1).

• R4: Quickly specify new preferences or adjust earlier
ones, and fine-tune them if needed (Task2).

• R5: Easily change perspective between a single iteration
and multiple iterations (Task3).

• R6: Easily change visual mapping in order to scan
solution characteristics (Task3).

• R7: Provide means to visualize decision variables in
linked views (Task3).

• R8: Analyze dependencies between the values of con-
flicting objectives (Task4).
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TABLE 1: Task abstraction. Each task is given a name, both a general and a specific description and is classified with respect
to six questions.

Name General descrip-
tion

Specific
description

Why is a task pur-
sued?

How is a task carried out? What does a task
seek?

Where in data
is task operat-
ing?

When is
a task
performed?

1.
compare

compare
multidimensional
vectors

compare Pareto op-
timal solutions

compare the solu-
tions shown to gain
insight

visually analyze the so-
lutions shown, no metric
available

identify preference
order within the so-
lutions shown

shown
solutions

during the so-
lution process

2. specify guide sampling for
new data points

specify new prefer-
ences for steering

tell optimizer how
solutions should be
improved

interact with visualizations
or provide numerical values

find preferences to
improve already
computed solutions

preferences at the start and
during the so-
lution process

3. scan sample for new at-
tribute/feature val-
ues not existing be-
fore

compute new
solutions in
the unexplored
areas in the
objective/decision
space

find solutions in un-
explored areas

specify preferences corre-
sponding to potential unex-
plored areas of the solution
space

see solutions in po-
tential areas of the
solution space that
are not yet com-
puted

all solutions during the so-
lution process

4. detect detect correlations
between features

detect correlations
between conflicting
objectives

learn about corre-
lations between the
objectives

visually analyze different
subsets of solutions avail-
able

understand the na-
ture of correlations
among the objective
functions

all solutions during the so-
lution process

5. learn gain insight from
data

learn about problem
characteristics

learn what kind of
solutions are avail-
able for the problem

visually analyze different
subsets of solutions avail-
able and the corresponding
preferences given

understand the po-
tential and limita-
tions of solutions

all solutions
and
preferences

during the so-
lution process

6.
progress

analyze progress of
a sequence of mul-
tidimensional data
points

analyze progress of
DM’s preferences
during the iterative
solution process

see how preferences
have changed dur-
ing the solution pro-
cess

visually analyze the
changes in preference
history

understand how
preferences have
evolved

history of pref-
erences

during the so-
lution process

7. analyze analyze neighbor-
ing solutions to de-
tect local improve-
ments

analyze similar so-
lutions to detect lo-
cal improvements

find local improve-
ments for interest-
ing solutions

visually analyze a given
cluster of solutions; use ad-
ditional metrics

understand
availability of
local improvements

cluster of solu-
tions

during the so-
lution process

8. choose analyze a subset
of data points and
choose best

determine a most
preferred solution in
a subset

find the most pre-
ferred solution

use visualizations in the ob-
jective/decision spaces and
additional metrics to select
the most preferred solution

select the most pre-
ferred solution

potential solu-
tions

during or at
the end of so-
lution process

• R9: Analyze how the DM’s preferences have changed
through the iterations of the solution process (Task6).

• R10: Assess the neighboring solutions of a selected can-
didate by expanding the corresponding cluster. (Task7)

• R11: Reduce the set of candidates for the most preferred
solution, provide details for them, and choose the most
preferred solution (Task8).

These requirements represent a basis for the visualization
design. There are no specific requirements for Task5, learn,
as the whole new approach supports gaining insight by am-
plifying cognition through interactive visual analysis.

V. VISUAL ANALYTICS SYSTEM DESIGN
In this section, we describe an exemplary visual analytics sys-
tem design consisting of optimization and visualization tools.
The design is motivated by analysis tasks and requirements
described above. In the next section, we provide details of
coupling the visualization and the optimization component
into a visual analytics system for the interactivized approach.
We start by describing the optimization methods used, fol-
lowed by the visualization design.

A. OPTIMIZATION METHODS
Interactive multiobjective optimization used in the interac-
tivized approach is based on multiobjective evolutionary
algorithms (MOEAs). The benefits of MOEAs include that
they can be applied to different types of optimization prob-

lems and, while being population-based, they can generate a
set of solutions instead of a single solution for a single op-
timization run [44]. However, it must be noted that MOEAs
produce only non-dominated solutions within the solution set
it generates, and the Pareto optimality of the solutions is not
guaranteed. Originally, MOEAs have been developed as a
posteriori methods, but some of them also take into account
the DM’s preferences in generating desired solutions [45]. In
this paper, we will use an interactive reference vector guided
evolutionary algorithm (interactive RVEA) [46] to generate a
set of solutions corresponding to the reference point given
by the DM. However, our approach is not limited to this
algorithm. Note that the chosen algorithm is able to handle
both achievable and infeasible reference points. Further, the
interactive and iterative nature of the optimization algorithms
used allows the DM to adjust the distribution of the solutions
generated in the areas of interest. The number of solutions
generated at each iteration depends on the parameters of the
interactive RVEA. Typically, the number is quite high (from
tens to few hundreds), and the generated solutions can be
rather similar due to the reference point, so there is a need
to reduce the number before visualizing them to the DM.

One way to select a subset of solutions for visualization is
to use clustering, where the given set is divided into (a given
number of) clusters consisting of similar solutions. After
clustering, the solution closest to a cluster centroid for each
cluster can then be chosen for visualization to represent the
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cluster. Thus, at each iteration, the solutions generated by the
interactive RVEA are clustered first to reduce the number of
similar solutions shown to the DM and, second, to reduce the
total number of solutions shown to the DM to a manageable
yet representative level. The goal of the clustering is thus
to decrease the cognitive burden of the DM. The number
of solutions shown (i.e., the number of clusters) can be set
based on the DM’s desires, or a default number can be set in
case the DM does not want to set it. We use here k-means
as the clustering method but different clustering methods can
be used, instead [47]. If so desired, the DM can see all the
solutions for a selected cluster in the main view (described
later in this section) to look for local improvement for the
chosen solution since none of the solutions in the clusters is
deleted.

B. VISUALIZATION DESIGN
In our example we focus on cases with less than a dozen con-
flicting objectives. Considering more than a dozen conflicting
objectives at once is rarely done in practice, as it becomes
more and more complicated to comprehend the problem as
the number of objectives increases.

In order to provide a good overview of multidimensional
solutions, and to make it easy to specify preferences for
a new iteration to steer the optimization, we have chosen
parallel coordinates as the central view for interaction. On
the one hand, parallel coordinates are well-known in the
multiobjective optimization domain (see, e.g., [18]) and, on
the other hand, they represent a solid basis for answering
requirements, especially those related to comparison (R1-
R3). However, basic parallel coordinates are not sufficient
for all identified tasks and requirements. We propose several
extensions in the view itself as well as some additional
views and corresponding extensions for tasks where they are
required. In addition to the extended parallel coordinates, we
use a scatter plot matrix, a view to show the progress of
preferences, extended box plots view, and several standard
views, such as scatter plots, for example. We extend all views
used to meet our requirements. All our main design decisions
are justified in the following sections.

1) Extended parallel coordinates
In addition to visualizing multidimensional data, parallel
coordinates are often used to specify multidimensional input.
In our case, the DM specifies preferences as a reference
point and, then, the optimization software computes a set
of non-dominated solutions “closest" to the reference point.
The reference point and the set of solutions are depicted
in the parallel coordinates. In order to support requirement
R4, we provide a quick way of specifying a reference point
by clicking corresponding places in the axis of the parallel
coordinates, and, if needed, the DM can enter exact values.

In order to assess the neighboring solutions in a cluster
(requirement R10), we also provide the option to visualize
all solutions covered by one representative solution. Figure 3
shows parallel coordinates with the reference point provided

FIGURE 3: Parallel coordinates are used to specify and show
components of the reference point (blue dots). They also
show representatives of clusters of non-dominated solutions
closest to the reference point (blue lines), and, on demand,
all non-dominated solutions (orange lines) that belong to the
chosen cluster (red line).

FIGURE 4: Four possibilities to depict temporal evolution of
reference points. Top row uses different blue tones (darker is
more recent), and bottom row uses different hues. Only color
can be used (left), color and point size (left middle), position
— points are scattered around axis (right middle), and size
and position (right).

by the DM (blue dots on axis), the representative solutions
(cluster representatives) as computed by optimizer (blue
poly-lines), one of the representative solutions that is selected
for a detailed inspection (red poly-line), and all solutions
that belong to the selected cluster (orange poly-lines). The
minimum and maximum values of the objective functions are
determined based on all the solutions computed.

The DM also has the option to see solutions from one
or more of the previous iterations. Color coding is used to
distinguish individual iterations. We either use constant hue
and vary lightness, or we vary hues for different iterations.
The ability to see solutions from selected iterations only
reduces the cognitive demand, and the DM can concentrate
on analyzing smaller subsets of solutions. The ranges of the
parallel coordinates are adjusted to accommodate all itera-
tions, and not only the visible ones, to preserve consistency
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and ease comparison.
Besides differentiating iterations, it is possible to see the

temporal evolution of the reference points and solutions.
There are several possibilities of how to visualize reference
points so that they can be easily ordered to see the temporal
evolution. As color hues are not easy to order, it would be
better to use lightness or size as a time indicator [48]. We
offer the basic choice to use hues or lightness to display
reference points (and corresponding solutions). In addition,
for each of the two, point size and position can be changed to
augment the perception of the temporal evolution. Figure 4
shows all the options for parallel coordinates. Only two axes
are shown due to space constraints. In the top row, lightness is
used as the main indicator of time, and darker points are more
recent. In addition to lightness only, combinations with point
size (larger points are more recent), position (points on the
right are more recent), or a combination of size and position
are shown. The bottom row shows the same variations but for
hue as the main indicator of time. Hue only, without size or
position, is hardly usable as we cannot order hues. However,
if it is combined, the ordering becomes easy. Depending on
personal preferences and the task to be solved, DMs can
choose different strategies.

Finally, during the optimization process, the DM can select
individual solutions as candidates for the most preferred so-
lution. We provide a way of keeping track of these solutions
(the DM can save them), and displaying them for comparison
at any time during the analysis. Figure 5 illustrates the control
pane for the parallel coordinates. The control pane is an
important part of the view. Besides color coding, the DM also
selects which iterations are shown, can name the iterations,
and exactly specify components of a reference point. Finally,
the control pane is also used for book-keeping of potential
solution candidates. The DM can name and show them at any
time.

The new extensions to the parallel coordinate view make
it the central interface of interactive multiobjective optimiza-
tion. All above-described extensions of the parallel coordi-
nates directly support the following requirements: The DM
can quickly specify a reference point by clicking the axis
in the parallel coordinates (R4). The DM can learn about
the feasibility of one’s own preferences when the given
preferences and the corresponding solutions computed are
color-coded (R2, R5, R6, R9). The DM can assess the
neighboring solutions of a selected candidate by expanding
the corresponding cluster (R10), and the DM can choose
the most preferred solution among saved candidate solutions
(R1-R3, R11).

2) Additional views
Examination of reference points and their temporal evolution
is possible in parallel coordinates, but due to additional
information depicted, it is not always easy to perceive it
efficiently. We provide two additional views to support this
requirement (R9). The box-plot view (Figure 6 left) shows
reference points and descriptive statistics of all solutions per

FIGURE 5: The control pane of the parallel coordinate view
is an important part of the interface. a. The analysis tab shows
iterations and their colors. Each iteration can be shown or
hidden and the DM can name each solution, specify exact
numeric values for reference point components, and set the
color coding. b. The solutions tab lists all solutions that are
selected as interesting.

FIGURE 6: Views to show the temporal evolution of refer-
ence point components. The box plot view on the left shows
them for each iteration along with basic descriptive statistics.
The DM can see relations between computed solutions and
the reference point. On the right, the preference history view
depicts only components of the reference points. Temporal
evolution can be better observed by sacrificing information
on computed solutions.

iteration. The DM can see if there are solutions that are
close to the preferences or not. Note that in this view, we
see it for individual objectives. In the parallel coordinates,
we also see how they are connected, but here we can see
a better overview. The second view is called the preference
history view and it shows the reference points only (Figure 6
right). It clearly depicts the evolution itself, but it does not
show anything about solutions. The color coding is consis-
tent throughout all views, and view parameters (line widths,
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FIGURE 7: a. A scatter plot matrix shows solutions for pairs
of objectives. The colors are the same as in the extended
parallel coordinates. The reference points (circles in the
parallel coordinate plots) are shown as horizontal and vertical
lines in the individual scatter plots. Here only one iteration is
shown. b. Two options that can be used to show histograms
on the diagonal of the matrix.

colors, captions, etc.) can be configured. There is no ultimate
configuration that works all the time, but the DM chooses the
right view depending on the task that is being solved.

In addition to parallel coordinates, a scatter plot matrix is a
view often used in the optimization community. It shows all
possible objective pairs. Besides multidimensional solutions,
we also depict reference points in the scatter plot matrix. In
order to clearly distinguish them from the solutions shown
as points, we use lines to show components of the reference
points. As there are two objectives in each scatter plot,
we need two axis-aligned lines per scatter plot to show
the components (Figure 7a.). Interestingly, we use lines to
show solutions and points to show preferences in the parallel
coordinates, and exactly opposite in the scatter plot matrix.
Such an arrangement particularly supports tasks of detect
and learn: Firstly, the scatter plot matrix allows detecting
correlations between any pair of objectives without the need
of changing anything in the view (R8). Secondly, the same
color coding used in all the views for different iterations helps
gaining insight into the connection between the preferences
and the corresponding solutions. The matrix shows only iter-
ations that are selected in the extended parallel coordinates.

On the matrix diagonal, we depict histograms of individual
objectives. In order to provide different comparisons, we
support two display modes, as shown in Figure 7b. Distribu-
tions of individual iterations are shown either on top of each
other in a bin , or next to each other. It is easier to compare
iteration-wise contribution to bins in the second arrangement,
but the individual bars may become narrow in a case when
many iterations are shown simultaneously.

In order to get a full insight into the solutions, the DM may
also want to visualize the decision variable values in addition

to the objective values. For this, we provide standard views
such as a scatter plot, a histogram, or parallel coordinates,
which can be freely configured (supports R7). Alternatively,
we can use a problem domain-specific visualization of deci-
sion variable values.

As mentioned above, we have realized a solution-based
color coding in all the views in order to reduce the cognitive
load of the DM and to provide a way to easily relate solu-
tions across all views. The default color coding is based on
the iterations, as mentioned before. Further, within a single
iteration, we provide the DM an option to use color coding
based on additional metrics. Here, we have as examples
distance to the related reference point or to the ideal vector.
This coloring helps in differentiating solutions within an
iteration and, thus, supports the DM in choosing a candidate
solution to be saved (R1, R2, R6, R11). It is good to note
that color coding based on the additional metrics can not
be applied for the saved candidate solutions coming from
different iterations with different reference points. The video
which accompanies the paper shows further configuration
possibilities of the interactivized approach.

3) Interaction and linked views
Each of the above-described views suits different require-
ments and shows different aspects of data. We have already
described how the user specifies preferences by clicking on
the parallel coordinate axes, or how all cluster elements
can be shown on mouse-over. In order to fully exploit the
potential of interactive visualizations, we link all the views
into a CMV system [49]. The main idea of the CMV system
is linking&brushing, that is, to allow the user to select a
subset of data in one view (brush) and highlight the brushed
subset in all other views (linking). Let us illustrate this
idea on a simple example. The user brushes relatively low
values of City Tax in the parallel coordinate view by simply
drawing a brush on the corresponding axis (Figure 8a.). This
action selects a subset of all data. Selected solutions are then
highlighted in all other views. In our case, the scatter plot
matrix shows the same data as the parallel coordinates, and
the scatter plot shows two decision variables. The selection
can be refined by another brush.

Figure 8b. shows the case where the user drilled-down
by limiting the selection to the high values of two decision
variables. The two brushes, one in the parallel coordinates
and the other in the scatter plot are combined with the
logical AND operation. The solutions that are not brushed are
depicted in gray to provide context. The exploration process
can be arbitrarily extended by adding additional brushes with
the same or different operators and by modifying existing
brushes. We support axis brushes in the parallel coordinates
and rectangular brushes in the scatter plots. These two types
of brushes are easy to interpret and the user can easily specify
intervals that define a brush.

In order to support quick inspection of solutions we pro-
vide mouse-over highlighting as well. By hovering over
views, the solutions under the cursor are highlighted in all
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views. Figure 9 demonstrates such a case. In addition to the
brushing (note that the user moved the scatter plot brush as
compared to the previous example) the user hovers over the
parallel coordinate plot and the solution under the mouse
cursor is highlighted in red in all views. The video which
accompanies the paper illustrates linking&brushing more
efficiently.

4) Scalability
Increasing the complexity of the data to be visualized in-
creases the difficulty of the decision making process. We
identify three sources of complexity in interactive multi-
objective optimization workflows: the number of objective
functions, the number of iterations, and the number of so-
lutions produced by the optimizer within a single iteration.
We tackle the issue of complexity such that our interactivized
approach is scalable in all three aspects.

Human cognitive capabilities are limited [50] but vary
among DMs. If the number of objectives is higher than the
DM can handle at a time, we provide an option to reduce
the number of objectives shown in each plot. When it comes
to the number of iterations, it naturally depends on the
problem considered and the DM. However, it is typical that
DMs find a satisfying solution in 3–8 iterations [51]. More
iterations may be needed if the DM is focused on exploring
different kinds of solutions. For such cases, we provide the
DM a functionality to select a subset of iterations, which the
DM is interested in, to be displayed in the views. Finally,
scalability for the number of solutions is achieved by giving
the DM an opportunity to decide how many solutions one
wants to consider at a time. Clustering is used for decreasing
the number of solutions shown accordingly, as described in
Section V-A.

5) Configuring views
All the above-described views are parts of the CMV system.
They can be freely configured so the DM can select the views
and their placement to be comfortable working with. From
our experience, we advise to keep the configuration stable.
The DM knows immediately where the views are and what is
shown. The cognitive load is reduced, and full attention can
be paid to the analysis.

Color selection is another important issue. We enable color
coding of the solutions based on iterations or additional
metrics within solutions for a single iteration. In such a
complex color mapping, it is essential to use consistent color
coding across all views.

Based on the visual analytics design described above, and
our observations, we provide an example configuration of a
CMV system that we here refer to simply as a dashboard for
supporting the DM in interactive multiobjective optimization
as shown in Figure 11. The dashboard is divided into two
main parts: the top part is reserved for various views (a.–e.),
and the bottom part provides quantitative information of data
(f.). The extended parallel coordinate view (a.) is the central
view in the analysis workflow. It is placed at the top left

where most of the interaction happens. The scatter plot ma-
trix (b.) next to it provides details on pair-wise correlations.
The progress of the preferences (d.), which is not checked
all the time, is placed on the far right side. The box-plots
(c.) below the scatter plot matrix show descriptive statistics
and reference points from selected iterations. Finally, the
scatter plot (e.) on the right shows selected decision variables.
Consistent color coding is used in all views. We are aware
that this particular configuration is not the only one possible.
However, we propose it as a starting point for DMs that are
not yet familiar with visual analytics.

VI. IMPLEMENTATION
The interactivized approach designed in Section V was im-
plemented by combining the open-source software frame-
work DESDEO [52], [53] for interactive multiobjective op-
timization methods and the CMV system. Next, we briefly
describe our implementation based on these two systems.

The DESDEO software framework is a collection of open-
source Python packages, which make it easy for researchers
to use interactive multiobjective optimization methods, as
well as to develop new ones. These packages have been de-
signed to tackle specific sub-domains of interactive multiob-
jective optimization. Here, we focus on the desdeo-problem
and the desdeo-emo packages. Multiobjective optimization
problems are formulated using the desdeo-problem package.
This package supports the formulation of problems based on
analytical functions, offline data, simulators, or any combi-
nation of them. The instances of the problem, created using
desdeo-problem, can then be used to solve the problem using
the desdeo-emo package. For example, it contains interactive
versions of popular evolutionary algorithms such as RVEA
[54] and NSGA-III [55]. All methods in this package can be
easily experimented with a Jupyter Notebook interface.

The interactive dashboard is implemented as an extension
to ComVis [56], a standard CMV system that supports mul-
tiple composite brushing and freely configurable views. It
is designed for high configurability, i.e., an user can add
or remove different views based on their needs. However,
we provide a default design with a set of configured views
that work well for most problems. It provides an interface
to connect to external Python programs that can be used to
extend available computational possibilities.

The dashboard designed in Section V runs on a client
computer as a stand alone application and communicates
with the server. Computations to generate new solutions
are performed on a dedicated server by utilizing the DES-
DEO framework. This allows detaching the computationally
expensive routines for solving multiobjective optimization
problems from the interactive visual analysis, which can re-
sult in a significant speed-up in computation times if a server
with powerful processing power is used. Such servers are
seldom available to be used through a graphical interface and
are often available as headless servers instead. The interactive
dashboard is utilized to provide a graphical user interface to
these servers, therefore, allowing the DM to easily utilize
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FIGURE 8: Linking&brushing is the key concept of the coordinated multiple views. Three views are used for illustration: a
parallel coordinate view, a scatter plot matrix, and a scatter plot. a. The user draws the axis aligned brush on the City Tax axis in
the top left view. All corresponding solutions are highlighted in all views, while the remaining solutions are shown as context.
b. The user refines the selection by introducing the rectangular brush in the lower left scatter plot. Only solutions that belong
to both brushes are highlighted now.

FIGURE 9: In addition to the composite brushing, when the user hovers over the views, the solutions under the mouse cursor
are highlighted in red in all views.

the computational power offered by the servers for solving
the optimization problems with the various tools available in
DESDEO.

The communication between the client and the server
happens over a TCP/IP connection. TCP/IP has been chosen
because it offers a lossless communication channel, allow-
ing for minimal information loss between the client and
the server. The communication protocol consists of simple
ASCII character strings delivered between the client and the
server over the TCP/IP connection. These messages can then
be easily parsed for relevant information on both the client
and server sides. For instance, the information includes —

but is not limited to — new solutions to the problem (both
the objective and decision variable values), and preference
information in the form of reference points given by the DM.
The connection between a client and a server, alongside an
example of a possible message, is shown in Figure 10.

VII. EVALUATION
Next, we evaluate our interactivized approach by solving a
multiobjective optimization problem related to river pollu-
tion. First, the problem is described, and we refer to it as a
usage scenario as suggested in the paper [57]. By this usage
scenario, we demonstrate the potential of our approach. We
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FIGURE 10: The communication between a client and a
server over a TCP/IP connection conceptualized. The mes-
sage shows an example what the server sends the client when
new solutions are computed.

also compare it to the DESDEO framework with a Jupyter
Notebook interface that represents a state-of-the-art interac-
tive multiobjective optimization tool.

A. PROBLEM DESCRIPTION
The problem considered describes a pollution problem of a
river, where a fishery and a city are polluting water [8]. The
two decision variables represent the proportional amounts
of biochemical oxygen demanding material removed from
water in two treatment plants located after the fishery (BOD
Fishery) and after the city (BOD City). The problem has
five objective functions [58]: 1) maximize water quality in
the fishery (WQ Fish), 2) maximize water quality in the city
(WQ City), 3) maximize fishery return on interest (ROI), 4)
minimize city tax increase (City Tax), and 5) minimize devia-
tion of the treatment plants from optimal operating conditions
(Plant). The constraints for this problem are the lower and
the upper bounds for the two decision variables. The ideal
and nadir vectors of the problem are computed before the
solution process and are thus assumed to be known. Methods
for computing the ideal and nadir points can be found, for
example, in book [1].

B. INTERACTIVE SOLUTION PROCESS
In what follows, we present a usage scenario as an example
of the interactive solution process a DM may go through
when solving the problem considered utilizing the proposed
interactivized approach. From the DM’s point of view, this
process can be divided into three distinct phases as mentioned
in Section IV : (i) the learning phase, (ii) the decision phase,
and (iii) the post-processing phase. The first two phases will
be described in detail, but the post-processing phase is only
briefly discussed at the end of this subsection, as it is not the
main focus of our proposed approach.

As already mentioned, we apply the interactive RVEA
method [46]. The number of representative solutions the
computed solutions are clustered into after each iteration can
be set by the DM or a default value can be used. During
the solution process, the DM is able to expand any of the
representative solutions into the original set of solutions
that they represent. This is to further support the DM by

supplying additional details about the solutions computed
and to provide concrete evidence of the other solutions a
representative solution is covering.
The learning phase The solution process started with a
learning phase where the DM begins to analyze an initial
set of solutions in the objective space. This initial set can
be provided a priori, or it can be computed utilizing RVEA
(which we used in this example). The ideal vector was used
as a reference point when computing the additional metrics
for the initial set of solutions. In this case, the DM chose
the number of solutions to be shown at each iteration to be
five, which was automatically set as the number of clusters
for k-means. Alongside the computed objective vectors, the
server running the DESDEO software also computed the L2

(Euclidean) and the L∞ (Chebyshev) distances to each of
the solutions from both the ideal vector and the reference
point. These distances functioned as additional metrics to aid
the DM in analyzing the available solutions. Additionally,
each solution’s decision variable values were returned as well
since the DM may wish to incorporate information about
those in the decision making process.

The dashboard shown to the DM throughout the solution
process in this usage scenario can be seen in Figure 11.
The solutions computed in different iterations together with
reference points given by the DM are shown in Figure 12.

First iteration. The DM started the solution process by
analyzing the initial set of solutions. In our usage scenario,
the DM initially chose components of the reference point
for the water qualities of the fishery and city close to their
respective ideal values and the remaining three components
close to the middle of the objective ranges. The ranges
are shown on the top and bottom of the axes visible in
the MOO view seen in Figure 11a and also in Figure 12.
The reference point chosen by the DM in the first iteration
was [6.24, 3.35, 3.55, 4.58, 0.24]. By choosing high values
for the water qualities, the DM wished to see what kind of
objective values are achievable for the other objectives when
the environmental perspective is emphasized.

Second iteration. The DM analyzed the new solutions
computed by interactive RVEA based on the given reference
point. From the scatter plot matrix shown in Figure 11b, the
DM noticed that substantial gains can be achieved in ROI by
still keeping the water qualities somewhat high. Therefore,
the DM chose the next reference point to be similar to the pre-
vious one, but with a higher value for ROI and slightly lower
values for the water qualities. The values of the reference
point chosen by the DM were [5.90, 3.10, 4.18, 2.81, 0.17].
By doing so, the DM wished to find a solution with better
economic consequences. The desirable values for water qual-
ities were also impaired in the second reference point to allow
for a wider variety of solutions to be computed with a higher
ROI. This was done because the DM knows that the qualities
are in conflict with ROI.

Third iteration. From the new solutions, the DM noticed
that the fishery’s water quality could be improved from what
was given in the previous reference point while still keeping
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FIGURE 11: A dashboard to support solving a multiobjective optimization problem in an interactivized way. In an iterative
solution process, a DM steers computation of new Pareto optimal solutions by giving preferences using the extended parallel
coordinates. The DM can analyze solutions and one’s own preferences by using CMVs (a. extended parallel coordinates, b.
scatter plot matrix, c. extended box plot, d. preference history view, e. scatter plot, and f. numerical values) and focus on
finding the most preferred trade-offs since all the solutions are candidates for the final one. The optimization server, running in
the background, is not seen here.

ROI high. The DM was satisfied with the trade-offs found
between the first three objectives and wished now to explore
the last two objectives, the city tax increase and the deviation
from the optimal operating conditions in the treatment plants.
The DM wanted to explore the available solutions with high
water quality, a low city tax increase, and a low deviation
from the optimal operating conditions. Thus, the DM set
the ROI to a low value to allow the water quality to reach
high values, the city tax increase to reach low values, and
the operating conditions to deviate as little as possible from
the optimal value. The reference point chosen by the DM
was [6.34, 3.41, 1.73, 5.46, 0.27]. After seeing the solutions
computed in the third iteration, the DM felt satisfied with
the variety of the available solutions and started to converge
toward a final decision.

Moreover, during the learning phase, the DM also had the
option to save solutions of interest for later consideration.
This facilitates the comparison of solutions during or after
the learning phase by allowing the DM to focus on a smaller
subset of solutions, which have already been regarded as
interesting.
The decision phase All the different solutions computed dur-
ing the iterations in the learning phase were stored alongside

the given reference points. The DM was now able to compare
them to find the most satisfying solutions leading to a final
decision. The DM may also explore the preferences given and
their relations by using the preference history view, which
can help the DM to learn about how the preferences have
evolved during the learning phase and potentially even justify
the means that led the DM to a certain final decision. Addi-
tionally, the decision variable values were also available for
the DM to analyze in the scatter plot allowing incorporation
of information about the decision variables in the decision
phase.

The DM then went through the iterations retrospectively
and cross-compared objective vectors of different solutions.
Using one of the computed metrics, the DM can choose to
color-code solutions based on the selected metric within a
single iteration to see, for example, how close a solution is
to a given reference point. As said, the promising solutions
that the DM had saved during the learning phase can not be
colored based on the additional metrics. However, linking
and brushing can be used to further reduce the number of
saved solutions.

In addition to comparing the solutions saved during the
learning phase, the DM is still able to generate new solutions
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by defining additional reference points as in the three iter-
ations described previously. This need could emerge if the
DM wants to see a new solution between some previously
saved solutions. These new reference points are, however,
not defined in an exploratory fashion by the DM like in
the learning phase, but with determination driven by learned
characteristics – e.g., the trade-offs between the objectives.

After the DM had finished comparing different solutions,
(s)he could reach a final decision. In this example, the final
decision had high water qualities, moderate values for ROI
and city tax increase, and a high value for the deviation of the
plants from their optimal operating conditions (correspond-
ing objective values were [6.20, 3.05, 3.40, 4.60, 0.31]). This
decision had a clear focus on the ecological impact of the
treatment plant’s operation while keeping the city tax in-
crease moderate. However, the ROI was low, and the devi-
ation from the optimal operating conditions in the treatment
plants itself was high. Further, because the DM had access to
a selection of different solution candidates and was able to
compare the said solutions, the final decision made could be
regarded as having been made in a systematic fashion, where
adequate attention had been given to different available can-
didate solutions.
Post-processing When analyzing the most preferred solution,
the DM is able to expand the corresponding cluster. By
doing so, (s)he can fine-tune the values of the objectives
and find possibly an even better solution than the one (s)he
had selected in the decision phase. In this example, the DM
decided to explore the individual solutions in the cluster
represented by the most preferred solution. The DM found
a solution among the expanded cluster, which had slightly
better values for the water qualities but also a slightly
worse value for ROI. The solution found had the objective
values [6.22, 3.07, 3.40, 4.57, 0.31] and was deemed more
preferable by the DM when compared to the most preferred
solution made originally in the decision phase. Lastly, it is
important to note that exploring the solutions in a cluster is
possible also during the learning and decision phases and is
therefore not restricted to the post-processing phase.

Moreover, because the most preferred solution related to
the final decision is generated by an evolutionary optimiza-

FIGURE 12: Reference points given and the resulting so-
lutions computed in each iteration presented in the usage
scenario described.

FIGURE 13: The Jupyter Notebook interface. The top cell
shows a reference point provided by the DM to interactive
RVEA. The bottom cell shows interactive RVEA running for
one iteration using the DM’s preferences, and creating the
animated parallel coordinate view. The DM can see solutions
from different iterations by using the slider on the right side
of the visualization.

tion method, which is inherently heuristic, the solution may
not actually be Pareto optimal, as already mentioned. Hence,
the computed solution may be projected to the closest Pareto
optimal one or used as an initial reference point in another
interactive multiobjective optimization method (e.g. from
the desdeo-mcdm package)), which is able to find solutions
closer to the true Pareto optimal set.

C. COMPARISON TO A JUPYTER NOTEBOOK
INTERFACE
A similar interactive process can be conducted using a
Jupyter Notebook interface for the DESDEO framework.
To use this interface (Figure 13), a DM (or an assisting
person) has to be fluent in the Python programming language.
This interface provides an easy mechanism to control the
various aspects of the optimization process. The parameter
values of the optimization methods like interactive RVEA
and the optimization method itself can be easily changed
in DESDEO. The solutions returned by the method can be
visualized in any form desirable to a DM, as long as someone
writes the code for the visualization using suitable libraries
like D3 or Plotly. Here we use Plotly.

The framework offers functionality to provide preferences
and visualize solutions. Preference information can be pro-
vided as a reference point in the format of a Pandas dataframe
by typing within the Jupyter Notebook interface, as shown
in the top cell of Figure 13. The results of each iteration
can be viewed as individual frames of an animated parallel
coordinate view, shown in Figure 13. The DM can choose
to display solutions from individual iterations by moving a

VOLUME 4, 2016 15



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3161465, IEEE Access

Hakanen et al.: Interactivized: Visual Interaction for Better Decisions with Interactive Multiobjective Optimization

slider, and brush solutions in each frame.
The solution process begins in a similar way to using the

interactivized approach. The initial set of solutions is visu-
alized as the first frame of the animated parallel coordinate
view. However, no other views are created and, thus, no
CMVs can be used to assist the DM. Moreover, no additional
metrics like distances from the ideal vector or the reference
point are visualized or shown in any other way. The solutions
are not clustered either, so the DM is provided with all
the solutions generated by interactive RVEA. All of these
combined may make the interaction process cognitively chal-
lenging. Finally, to choose the most preferred solution, the
DM may want to see all the solutions in a single view, which
is not possible with the provided animated parallel coordinate
view, which only shows solutions from one iteration at a time.

VIII. DISCUSSION
As shown in Section VII, our new interactivized approach
provides improved ways for completing the tasks introduced
in Section IV, and it satisfies the requirements described in
Section V-B. We considered our usage scenario both with
our interactivized approach as well as with the Jupyter Note-
book interface for the DESDEO framework that represents
the state-of-the-art in interactive multiobjective optimization.
Next, we describe our findings.

The Jupyter Notebook interface can only use a single visu-
alization at a time that the DM can interact with, as already
mentioned. Bringing the CMV capabilities to a Jupyter Note-
book (or a corresponding implementation of an interactive
multiobjective optimization method) would require lots of
work and, thus, it is not usually done as well as it should be
done. For the other way around, adding modern optimization
algorithms to a state-of-the-art visualization software is also
not straightforward. Our interactivized approach enables the
DM to specify preferences quickly via interactive visual
analysis, while in the Jupyter Notebook interface they have
to be manually typed as numbers. Finally, interactive visual
analysis and computing new solutions with the optimization
methods are done in separate machines as described in Sec-
tion VI, which increases the efficiency of the interactivized
approach and makes the iterative solution process fluent for
the DM, especially for computationally expensive problems.

When writing this paper, we have taken advice from the
reflection paper [57] to avoid many pitfalls in writing design
study papers. In that paper, various pitfalls were identified,
and we have recognized many of those during the progress
of this research. Therefore, we have done our best not to
fall into those. For example, among the authors, we have
both visualization and multiobjective optimization experts
who have collaborated before, and we have been able to
identify relevant tasks that DMs face during the iterative
solution process and, then, created visual design to answer
the requirements arising from the tasks.

During this research, we have verified our hypothesis that
visual analytics can provide improved decision support in
interactive multiobjective optimization. When applying the

new interactivized approach to the usage scenario, clear im-
provements could be identified when compared to the state-
of-the-art in interactive multiobjective optimization. In addi-
tion, the task abstraction described in Section IV provided
both general and specific descriptions for the tasks so that
the visual analytics community can utilize the findings in
some other domain than interactive multiobjective optimiza-
tion. Overall, all four aspects of contribution outlined in the
introduction are supported by our interactivized approach and
related findings.

IX. CONCLUSIONS
We have proposed an interactivized approach by combining
visual analytics and interactive multiobjective optimization
to support decision makers in visually steering the iterative
solution process in interactive multiobjective optimization.
The approach combines a coordinated multiple views system
and a multiobjective optimization software framework. It
includes several extended views, based on the requirements
extracted from the tasks abstracted for interactive multiob-
jective optimization, together with some basic ones. Spe-
cial attention is paid to the user interaction. A powerful
linking&brushing mechanism together with the mouse-over
highlighting and cluster expansion enable efficient explo-
ration, and provide much more possibilities than simple
visualizations with isolated views. The new interactivized
approach was compared to a state-of-the-art multiobjective
optimization system, and the evaluation showed clear im-
provements, especially on how the decision maker can spec-
ify preference information, learn about the problem char-
acteristics, and evaluate the progress of one’s preferences.
Thanks to visual analytics, the solution process is more
comprehensive giving the decision maker better control of it,
and better support to learn about the problem’s characteristics
to make a balanced decision. For future research, we identify
challenges of dealing with different types of preference in-
formation and more versatile means to support the decision
maker in gaining confidence in the most preferred solution
found.

ACKNOWLEDGEMENTS
This work is a part of the thematic research area Deci-
sion Analytics Utilizing Causal Models and Multiobjective
Optimization (DEMO, jyu.fi/demo) at the University of Jy-
vaskyla. VRVis is funded by BMK, BMDW, Styria, SFG,
Tyrol and Vienna Business Agency in the scope of COMET
- Competence Centers for Excellent Technologies (879730)
which is managed by FFG.

REFERENCES
[1] K. Miettinen. Nonlinear Multiobjective Optimization. Kluwer Academic

Publishers, Boston, 1999.
[2] W. Berger and H. Piringer. Interactive visual analysis of multiobjective

optimizations. In Proceedings of 2010 IEEE Symposium on Visual
Analytics Science and Technology, pages 215–216. 2010.

[3] T. Mühlbacher, L. Linhardt, T. Möller, and H. Piringer. TreePOD:
Sensitivity-aware selection of Pareto-optimal decision trees. IEEE Trans-
actions on Visualization and Computer Graphics, 24(1):174–183, 2018.

16 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3161465, IEEE Access

Hakanen et al.: Interactivized: Visual Interaction for Better Decisions with Interactive Multiobjective Optimization

[4] K. Miettinen, J. Hakanen, and D. Podkopaev. Interactive nonlinear multi-
objective optimization methods. In S. Greco, M. Ehrgott, and J. Figueira,
editors, Multiple Criteria Decision Analysis: State of the Art Surveys,
pages 931–980. Springer, New York, 2nd edition, 2016.

[5] J. Hakanen, K. Miettinen, and K. Matković. Task-based visual analytics
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