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ABSTRACT
We study data-driven decision support and formalize a path from data to decision
making. We focus on lot sizing in inventory management with stochastic demand and
propose an interactive multiobjective optimization approach. We forecast demand
with a Bayesian model, which is based on sales data. After identifying relevant
objectives relying on the demand model, we formulate an optimization problem to
determine lot sizes for multiple future time periods. Our approach combines different
interactive multiobjective optimization methods for finding the best balance among
the objectives. For that, a decision maker with substance knowledge directs the
solution process with one’s preference information to find the most preferred solution
with acceptable trade-offs. As a proof of concept, to demonstrate the benefits of
the approach, we utilize real-world data from a production company and compare
the optimized lot sizes to decisions made without support. With our approach, the
decision maker obtained very satisfactory solutions.

KEYWORDS
Inventory management, Data driven optimization, Multicriteria optimization,
Interactive methods, Bayesian models, Demand forecasting, Lot sizing, Pareto
optimality, Decision support

1. Introduction

Uncertainty is always present in businesses and, therefore, support is valuable when
managers must make appropriate decisions, which may involve speculations of future
demand. An example of such a decision is how much and when to order material or
produce it with company’s production capacity taking the stochastic nature of demand
into account. This necessitates flexible lot sizing, which is our interest in this study.

Decision makers (DMs) in the industry are typically balancing between conflicting
decision making objectives like costs, stock value, inventory turnover rates (annual
demand rate divided by average inventory), fill rates (fraction of demand that can
be filled from a stock) (see e.g. Hopp and Spearman 2011; Silver, Pyke, and Thomas
2017) and factors related to production planning when aspiring for both flexibility
and efficiency. Considering all relevant aspects simultaneously is not easy, while the
decisions should both enable good customer service and ensure competitiveness.

There are different approaches for lot sizing depending on planning factors. Among
others, they include the planning horizon (long term or short term), nature of demand
and buyer and supplier relations (see e.g. Rezaei and Davoodi 2011). For planning pur-
poses, Hopp and Spearman 2011 discussed various lot sizing procedures and suggested
that the simplest lot sizing procedure is a lot-for-lot rule. There, production is exactly
what is required in each planning period. Also, the fixed order period is known as a
lot sizing rule. In addition to these, the traditional economic order quantity (EOQ)
(or economic production quantity, EPQ) and its extensions, such as Wagner-Whitin
dynamic lot-sizing procedure, are known as lot sizing procedures.

These traditional methods base on minimizing one objective, namely known costs
and the demand is assumed deterministic. Often, however, real-life demand is stochas-
tic by nature. According to Zipkin 2000, demand and purchasing costs can freely vary
over time. As there are fixed ordering costs in each order, regardless of the magnitude
of the lot size, costs will unnecessarily increase if orders are made too often.

Multiobjective optimization problems have so-called Pareto optimal solutions, where
one objective cannot be improved without impairing at least one of the others. Because
of the conflicting nature of the objectives, there usually are many Pareto optimal solu-
tions with different trade-offs, and some preference information from a DM is needed to
find the most preferred solution. Different multiobjective optimization methods have
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been developed (see e.g. Branke et al. 2008; Miettinen 1999 and references therein).
They can be categorized, for example, by the role of the DM (see Miettinen 1999).
In a priori methods, the DM first specifies hopes, and then a Pareto optimal solution
best matching with them is found. However, it may be difficult to express preferences
before seeing what kind of solutions are available. On the other hand, in a posteriori
methods, a representative set of Pareto optimal solutions is first generated, and then
the DM selects the best of them. Here, it may be demanding to compare many al-
ternative solutions. Interactive methods (Miettinen, Hakanen, and Podkopaev 2016)
overcome the above-mentioned weaknesses. In them, new Pareto optimal solutions are
generated based on the preferences iteratively given by the DM, thus, allowing the
DM to learn about the characteristics of the problem in a guided manner. At the same
time, the DM can learn about the feasibility of one’s preferences.

We claim that applying interactive multiobjective optimization methods has poten-
tial in dynamic lot sizing. The interactive nature of the method means that the DM
actively takes part in the solution process directing it with one’s preference informa-
tion. During the solution process, (s)he sees what kind of solutions are available and
can adjust one’s preferences if needed.

As stated e.g. in Miettinen, Ruiz, and Wierzbicki 2008, one can often identify two
phases in interactive solution processes: a learning phase, where the DM learns to
know the trade-offs among the objectives and the feasibility of one’s preferences and
a decision phase, where the DM fine-tunes the solution found in the learning phase.
For the first time in the literature, we demonstrate how the DM can be supported in
making the most of the two phases by using two different interactive methods. This
means that the DM can switch the method during the solution process. We apply
methods called Nonconvex Pareto Navigator (Hartikainen, Miettinen, and Klamroth
2019) and NIMBUS (Miettinen and Mäkelä 2006) because they support the nature of
the two phases. Furthermore, they were found easy to use by the DM involved in the
case study.

Lot sizing is an example of a problem where data-driven decision support can help
the DM make decisions based on available data. Typically, data is available of inventory
records (current assets) and past sales. However, it is important to consider future
demand. When estimating demand with past sales data, demand forecasts have a lot
of uncertainty. To take this uncertainty into account, we use a Bayesian approach to
model the uncertainty of future demand with a predictive posterior distribution.

This paper proposes how a DM can be supported in lot sizing for multi-period
planning horizon at discrete time points with stochastic demand and conflicting ob-
jectives. Here, a DM is a person who has domain expertise. We call our approach
I-MIPA (Interactive Multiobjective Inventory Planning Approach). It is applicable to
both purchasing lot sizing with deliveries planning and production lot sizing.

We conducted a case study in a Finnish production company to demonstrate the
usability of I-MIPA. We received data collected from the company’s ERP system
consisting of sales (i.e. materialized demand) data. We developed a Bayesian model
for creating forecasts for the demand in the optimization problem. The supply chain
manager of the company acted as the DM and used the interactive approach. Our
study is a proof of concept type demonstrating our structured path from myopic to
tool-informed decision making. The new insight gained demonstrates the value of using
different interactive methods and supporting the DM by active participation in the
lot sizing process.

This research is multidisciplinary as for creating I-MIPA, methods from optimiza-
tion, computer science, mathematics, statistics, economics and logistics were needed.
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This study aims to show how these different methods can be combined into one path
from data to decision making. We can summarize the contribution of this study as
follows:

- We formulate a Bayesian demand model to be used in multiobjective inventory
planning and propose an interactive approach to be applied. As a proof of con-
cept, we demonstrate I-MIPA with a case study involving real-life historical data
and a corresponding DM.

- We describe the entire decision making process from DM’s learning phase to
final solutions.

- I-MIPA allows the DM to select an appropriate demand structure for a specific
stock keeping unit (SKU), switch the interactive method during the solution
process and support optimizing inventory levels in the long term.

In what follows, we first present some background for the complexity of decision
making in organizations involved in supply chains. We also introduce in Section 2 the
main concepts used in this study. In Section 3, we present the main contribution, where
after outlining the main notation, we introduce the Bayesian model used to forecast
future demand and then formulate our multiobjective optimization problem. At the
end of the section, we describe I-MIPA, our multiobjective optimization approach
involving two phases and two interactive methods. In Section 4, we demonstrate the
usefulness of I-MIPA by solving an example case involving real data from a production
company. Finally, we conclude in Section 5.

2. Background

In this section, we introduce literature that is relevant to the approach we are proposing
later. We look at applied models for multiobjective lot sizing and demand forecasting.
We also summarize the two interactive methods that we employ in I-MIPA.

2.1. On literature of multiobjective lot size optimization

As said, traditional lot sizing methods allocate costs to related factors, and then only
costs are minimized. Still, as Bookbinder and Chen 1992 and Srivastav and Agrawal
2017 state, in many cases, it is challenging to allocate long term costs. However, the
DM may have an idea of acceptable targets, such as fill rate (fraction of demand that
can be filled from a stock) based on his/her experience. Therefore, we summarize lot
sizing studies, where multiple objectives have been optimized simultaneously. Our main
selection criteria were as follows: decision variable was lot size, and there were at least
two inventory-related objective functions. Studies whose main scope was production
optimization, supplier selection or pricing, and inventory was of minor importance,
were omitted. As we are focusing on a single DM case, multi-echelon supply chain
optimization was excluded as well. Since we are interested in long term inventory
optimization, so-called newsvendor problems, where SKU will be outdated after one
time period, were also disregarded.

Table 1 gives an overview of the 29 relevant studies. There, the multiobjective
optimization method applied, objective functions and assumed nature of demand are
presented. The columns aggregate key information of each study: category of method
type, demand and objectives. The column Category refers to the type of multiobjective
optimization method (as defined in Section 1) and Pri stands for a priori, Pos for a
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posteriori and Int for interactive methods. The column Demand stands for either
deterministic (Det), stochastic (Sto) or fuzzy (Fuz ) demand. The remaining columns
describe objectives: usually two or three objectives. Typical objectives are inventory
costs (C ), service level (SL) and fill rate (FR), or some variant of those. As other
objectives, I stands for inventory level, Space for warehouse space, Load/Erg. for
ergonomy, Emiss. for transportation emissions and CR for cost risk.

Table 1. Summary of multiobjective optimization methods, demand assumptions and objectives in studies
considered

Source (first author) Category Demand Obj1 Obj2 Obj3
Agrell 1995 Int Sto (normal) C FR
Tsou et al. 2008 Pos Sto (normal) C SL FR
Tsou 2008 Pos Sto (normal) C SL FR
Tsou 2009 Pos Sto (normal) C SL FR
Hopp et al. 2011 (Base Stock) Pri Sto (normal) C FR
Moslemi et al. 2011 Pos Sto (normal) C SL FR
Bouchery et al. 2012 Int Det C Emiss.
Hosseini et al. 2013 Pri Det Profit SL
Kang et al. 2013 Pri Sto (normal) C SL
Cheng et al. 2013 Pos Sto (normal) Load I FR
Gholami-Qadikolaei et al. 2013 Pos Sto (normal) C SL
Mousavi et al. 2014 Pos Det C Space
Cheng et al. 2015 Pos Sto (normal) C SL
Fattahi et al. 2015 Pos Sto (uniform) C SL
Sadeghi et al. 2015 Pos Fuz C Space
Andriolo et al. 2015 Pos Det C Emiss.
Pasandideh et al. 2015 Pos Sto (uniform) C SL
Andriolo et al. 2016 Pos Det C Erg.
Srivastav et al. 2016 Pos Sto (normal) C SL FR
Srivastav et al. 2017 Pos Sto (normal) C SL FR
Tsai et al. 2017 Pos Sto (uniform) C I
Boctor et al. 2018 Pos Det C Space
Srivastav et al. 2018 Pos Sto (Laplace) C FR SL
Battini et al. 2018 Pos Det C Emiss.
Keshavarz et al. 2018 Pos Sto C SL
Garai et al. 2019 Pos Det C Waste
Srivastav et al. 2020 Pos Sto (normal) C SL FR
Khalilpourazari et al. 2020 Pos Det C Space
Konur et al. 2020 Pos Sto C CR

As can be seen, 3 studies applied a priori, 2 interactive and 24 a posteriori methods.
Nine studies assumed deterministic demand, and one approached demand as a fuzzy
variable. Demand was treated as a stochastic parameter in 19 studies, and 17 of them
assumed some exact form, e.g., normal or uniform distribution. Only Keshavarz and
Pasandideh 2018 considered multiple demand distributions, but Tsou 2009 suggested
that different distributions for slow-moving items could be considered in future studies.

Of 29 studies, 28 highlighted economic objectives (costs or profitability), and 19 had
objectives related to customer service (e.g., service level and/or fill rate). Objectives
for efficient inventory planning (e.g., storage space or inventory level) were in the
focus of six studies, whereas four included emissions as objectives and two included

6



ergonomic objectives.
As can be seen, very little attention has been paid in the literature on the advantages

of applying interactive methods or different stochastic demand models for slow-moving
items. Based on these findings, our proposed approach is novel and needed.

2.2. Overview of demand forecasting

As said, demand is usually stochastic and can have different characteristics. Williams
1984 used two measures, intermittence (the mean number of lead times between de-
mands) and lumpiness, to classify different demand types. Syntetos, Boylan, and Cros-
ton 2005 developed the same idea and defined four demand classes:

- smooth (not intermittent and not lumpy),
- slow-moving (intermittent and not lumpy),
- erratic (not intermittent but lumpy) and
- lumpy (intermittent and lumpy).

There are different suggestions in the literature for modeling the stochasticity of
demand at a single time point of interest (e.g., a day, a week or a month). In most of
the traditional inventory control methods, a stochastic demand is assumed to follow a
normal distribution. Other used probability distributions are e.g. Poisson and negative
binomial distributions. From a theoretical point of view, a Poisson distribution arises
from the assumption of independent random orders (Agrawal and Smith 1996). Here,
Poisson is a good candidate for products that customers order only one at a time.
This assumption is no longer valid when one customer orders multiple items at a time.
There exists a theorem (Quenouille 1949) that, if the number of customers follows a
Poisson distribution and the number of items one customer orders follows a logarithmic
distribution, the whole demand follows a negative binomial distribution (NBD). This
makes a negative binomial distribution an attractive candidate for products that may
be ordered more than one at a time.

The central limit theory implies that a normal distribution approximates both Pois-
son and NBD distributions, when the expected value for demand is high (Bagui and
Mehra 2016). From a theoretical point of view, with SKUs that have demand classified
as smooth (and probably also with erratic demand), stochasticity of demand could be
approximated with a normal distribution.

There are many studies where probability distributions have been compared with
real demand data for different demand classifications. Agrawal and Smith 1996 con-
cluded on a retail study that NBD has the best fit to the data with all used demand
classes. In addition, a normal distribution also had a good fit with very high vol-
ume products. Syntetos et al. 2011 fitted probability distributions with a demand of
12463 different SKUs and concluded that NBD and stuttered Poisson distributions
overperformed normal distribution and gamma distribution with all different kinds of
demand classes. A normal distribution also performed well with SKUs with relatively
low inter-demand intervals. Snyder, Ord, and Beamont 2012 recommended NBD for
slow-moving parts in an automobile company.

When using past sales data for predicting demand, a common problem is the lack
of information on lost sales. When there is a realization of zero stock level in data, it
is not always possible to know whether there has been demand that was not matched
with supply. This bias is possible to be estimated statistically, and Agrawal and Smith
1996 showed, how this can be done in the case of NBD.

Demands of time periods close to each other are not always independent of each
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other. For example, if many customers make big orders in June, it is reasonable to
expect no need for that big orders in July. In some other case, a sudden increase
in demand may also indicate high demand for the next time period. These kinds of
autocorrelations can be estimated statistically from past data, and this information
can be utilized for future predictions.

A well-known framework for autocorrelation estimation is ARIMA time series mod-
elling (Box et al. 2015). It also has a seasonal variation extension called SARIMA. A
particular case, ARIMA(0,1,1), is called simple exponentially weighted moving av-
erages (or simple exponential smoothing, SES) and has been popular on demand
forecasting applications (Winters 1960; Box et al. 2015). For intermittent demand,
Croston 1972 developed a forecasting method, where demand is assumed to follow
an SES autocorrelation structure whenever there is demand. Time intervals with no
demand are modelled separately. Shenstone and Hyndman 2005 enriched this with
predictive distributions and confidence intervals. They used a normal distribution but
suggested testing more suitable models for discrete data like Poisson autoregression in
future studies.

2.3. Overview of some interactive multiobjective optimization methods

Typically, real-world problems include several conflicting objectives that should be
optimized simultaneously. Due to the conflicts, instead of a single optimal solution,
there exist several so-called Pareto optimal solutions with different trade-off between
objectives. A solution is Pareto optimal if none of the objectives can be improved
without deteriorating one or more of the others.

As mentioned in the introduction, many methods have been developed for solving
multiobjective optimization problems (see, e.g., Branke et al. 2008; Miettinen 1999
and references therein) and here we apply interactive methods (see e.g., Miettinen
1999; Miettinen, Hakanen, and Podkopaev 2016; Steuer 1986). In them, preference
information obtained from a DM, who knows the problem domain, is used to generate
Pareto optimal solutions that reflect the preferences. Such solutions can be generated
by formulating and solving a subproblem with a single objective function. With the
involvement of the DM, new Pareto optimal solutions are iteratively found. At each
iteration, a solution or some solutions are shown to the DM, who is then asked to
provide preferences to indicate what kind of solutions would be more preferred.

The DM can learn to understand interdependencies among the objectives by taking
part in an interactive solution process. The DM can study the desired number of
Pareto optimal solutions at a time and guide the solution process with one’s preference
information towards solutions of interest. This allows the DM to gain insight into the
problem’s characteristics and adjust one’s preferences accordingly.

In our I-MIPA approach, we employ two types of interactive methods. They were
selected based on discussions with supply chain managers to reflect DM’s needs in the
learning and decision phases (introduced in the introduction) of solution processes.
Other interactive methods can naturally be applied instead if they better support the
DM in question. For the learning phase, we apply the Nonconvex Pareto Navigator
method (Hartikainen, Miettinen, and Klamroth 2019) (extending Pareto Navigator,
Eskelinen et al. 2010), and for the decision phase, the synchronous NIMBUS method
(Miettinen and Mäkelä 2006).

Nonconvex Pareto Navigator is an interactive method for solving nonlinear, com-
putational expensive multiobjective optimization problems. It approximates the set of
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Pareto optimal solution using a pre-generated set of Pareto optimal solutions. The DM
then avoids delays and navigates on the approximated set to gain insight on trade-
offs between objective functions without calculating values of the original objective
functions. Thanks to the approximation, the DM can see real-time movement in the
objective functions while navigating.

In Nonconvex Pareto Navigator, the DM first selects a starting solution and then
provides preferences as desirable objective function values. (S)he can also give bounds
for objectives (not to be exceeded). Then, the method generates a direction towards
which objective function values change from the starting solution when navigating. The
DM can also decide how fast to move, i.e., how long steps the navigation takes. When
navigating, the DM sees in real-time new approximated Pareto optimal solutions and
can stop navigating at any time. Then the DM can either continue from the current
approximated solution towards the same or another direction or select a new starting
point among pre-generated or approximated solutions.

By navigating, the DM can learn about the trade-offs among objectives conveniently,
without waiting times. Nonconvex Pareto Navigator utilizes the PAINT method (Har-
tikainen, Miettinen, and Wiecek 2012) to construct the approximation. Approximated
solutions naturally have some error compared to exact values, but this is acceptable
in the learning phase.

The interactive NIMBUS method utilizes Pareto optimal solutions to the original
problem (no approximations). In NIMBUS, the DM is shown objective function values
calculated at a current Pareto optimal solution xc and asked to indicate what kind of
changes would make it more preferred by classifying objective functions into up to five
classes. (For simplicity, we assume all objectives to be minimized.) The classes are for
functions fi whose values

(1) should be improved from the current value (i ∈ I< ),
(2) should be improved till some aspiration level ẑi < fi(x

c) (i ∈ I≤ ),
(3) are satisfactory at the moment (i ∈ I= ),
(4) are allowed to impair up till a bound εi > fi(x

c) (i ∈ I≥) and
(5) are allowed to change freely for a while i ∈ I�.

Because of Pareto optimality, it is impossible to improve all objectives simultane-
ously: the classification is feasible if both objective(s) to be improved and impaired are
set. The DM provides aspiration levels and bounds if corresponding classes are used.

Based on the classification, up to four single objective subproblems are formulated
and solved to obtain new Pareto optimal solutions. They are shown to the DM, who can
select one of them or some previous solution as a starting point for a new classification.
This iterative process continues until the DM finds the most preferred solution. The
DM can also ask for intermediate solutions between any two Pareto optimal solutions.
For details, see Miettinen and Mäkelä 2006.

After this background information on lot sizing, demand forecasting and interactive
multiobjective optimization methods, we can propose our I-MIPA approach.

3. Multiobjective lot size optimization

We formulate a data-driven inventory management process that applies interactive
multiobjective optimization methods in a new way. Importantly, we do not restrict
the consideration by handling stochasticity with a normal distribution assumption.
Instead, we estimate the probability distribution of future demand based on prior
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knowledge and data.
As said, we propose a decision support approach called I-MIPA. Figure 1 illustrates

a flowchart with different phases. Most of the boxes in the figure contain first a general
description and then an example in italics that elaborates the meaning. This structured
decision making process supports a DM to learn about the problem while solving it.
After all, the target is to improve a company’s performance with better use of the
available information, simultaneously reducing the DM’s workload.

Phases in Figure 1 contain previously unpublished methodology (to our knowledge)
for

- flexible estimation of future stochastic demand with a Bayesian model in Phase
3 and

- interactive guidance for decision making combining Nonconvex Pareto Navigator
and NIMBUS methods in Phase 4.

In other phases, we apply and combine existing methods in the literature, algebra
and probability calculation. This is the first time when the phases of data-driven
multiobjective lot sizing are clearly defined and demonstrated.

3.1. Indicators for a good lot size decision

The overall goal in companies is to maximize profit and return on investments. SKUs
are typically investments as they affect company’s current assets and, therefore, cap-
ital, which is involved in operations. One typical measure is a return on investment
(ROI). It can be calculated as

ROI =
Sales− Costs

Sales
· CapitalTurnoverRate.

As in recent multiobjective lot sizing studies (see Section 2.1), inventory costs and fill
rate (or other service level measurements) are natural choices as indicators of good lot
sizing decisions. Looking at the ROI formula, the connection to these indicators can
be seen: inventory costs are part of the company’s total costs, and sales is a result of
serving customers. We also suggest inventory turnover as an indicator because it is a
proxy to the capital turnover rate. It is of particular importance when physical storage
limitation is of concern or SKU loses value during the inventory planning cycle.

Naturally, variation exists between companies when deciding relevant indicators for
measuring the goodness of lot size decisions and data available may also set limitations.
According to Table 1, storage space or inventory level was optimized in recent studies
instead of inventory turnover and sometimes social or environmental indicators were
included. In our case study in Section 4, inventory costs, fill rate and inventory turnover
are the most relevant indicators for the DM. Thus, they are used in the rest of this
study.

3.2. Bayesian approach for demand estimation

We assume to have sales data available and need predictive distributions for future
demands to handle different future scenarios with probabilities in the optimization.
We are interested in a probability distribution and its parameter uncertainty, which
may imply uncertainty to forecasts. Before choosing the appropriate sales data driven
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Company’s overall
goal, i.e., which
question is to be
answered. E.g.

choose lot size that
meets DM’s needs

Phase 1: Find
available data. E.g.
history sales data

and inventory records

Phase 2: Formulate
indicators for judging

goodness of DM’s
decision given
available data.
E.g. inventory
costs, fill rate,

inventory turnover

Is the data
available
sufficient

to evaluate
the chosen
indicators?

Collect more data
and/or rethink
the indicators

Phase 3: Make
a model based

on the available
data. E.g. estimate

predictive distribution
of future demand

Phase 4: Construct
a multiobjective

optimization problem
using indicators as

objectives and solve
it involving DM’s

preferences. E.g. apply
interactive methods
enabling switches
between methods

Output: Pareto
optimal decision

that satisfies the DM
best. E.g. lot size

yes

no

Figure 1. Flowchart of the I-MIPA approach. General actions followed by more specific actions in italics.
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predicting method, aspects to be considered depending on the nature of the SKU
include

(1) stochasticity of demand given one time interval,
(2) correlation structure of consecutive observations of history sales,
(3) seasonal variation,
(4) trend and stationarity,
(5) possible other information as explanatory variables (e.g., discounts), if available.

All aspects mentioned above can be modelled with a Bayesian model, as shown in the
example case in Section 4. For general use of Bayesian methods in statistical analysis,
Gelman et al. 2013 state:

’A pragmatic rationale for the use of Bayesian methods is the inherent flexibility intro-
duced by their incorporation of multiple levels randomness and the resultant ability to
combine information from different sources, while incorporating all reasonable sources of
uncertainty in inferential summaries. Such methods naturally lead to smoothed estimates
in complicated data structures and consequently have ability to obtain better real-world
answers.’

A Bayesian model can be solved by using simulation methods. For example, for a
function f depending on θ, a vector of unknown parameters to be estimated based on
data x, Gelman et al. 2013 state:

E(f(θ)|x) ≈ 1

S

S∑
s=1

f(θs), (1)

where θs represents a simulated sample from the posterior probability distribution of
θ and S is the total number of simulated samples. In our application, function f can
stand for an indicator in Phase 2 and θ a vector of unknown near future demands in
Phase 3 (in Figure 1).

Gelman et al. 2013 add that the accuracy of the approximation (1) can be improved
by increasing the simulation sample size S. There exist tools (like Stan and PyMC3)
to solve Bayesian models by Markov chain Monte Carlo (MCMC) simulations. This
gives freedom to make modeling choices to best fit the specific application without
strict assumptions, like demand in different time points following normal distribution
independently of each other.

With a Bayesian approach, there are many additional opportunities, e.g. utilizing
DM’s prior information, combining multiple data sources and handling lost sales bias
(described in Section 2.2) within the model. Thus, our choice is a Bayesian model
for estimating the predictive distribution solved by MCMC simulations. We suggest a
flexible framework, where one can adjust a demand model for different SKU’s.

3.3. Multiobjective optimization problem for lot sizing

Here we describe how the Bayesian model for demand can be utilized with the selected
indicators chosen in Section 3.1 to formulate a multiobjective optimization problem
to meet company’s goals and DM’s needs to achieve good ROI. We formulate the
problem based on the lot sizing system used in the case study in Section 4. The main
assumptions are:

- one SKU is considered,
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- lead time is constant,
- demand may be intermittent,
- backorders are not allowed and stock out leads to lost sales.

In what follows, we use the following concepts and notations:

t = a time unit for inventory planning. (In our case study it is a month.)
L = replenishment lead time at time units. We assume it to be fixed.
oc = the length of an optimization cycle in time units. We assume it to be fixed.
T = L+ oc total inventory planning cycle.
A = ordering cost to purchase or produce a lot. We assume it to be fixed.
ct = unit purchase/production cost at time point t, not counting ordering or
inventory costs.
ht = holding cost to carry a unit of inventory from time point t to t+ 1. (In our
case study we set ht = ct

i
12 , where i = interest rate per cost of capital.)

Qt = lot size (order/production quantity) at time point t.
ORDt = indicator, telling whether any order has been made for time point t.
Thus, ORDt = 1, if Qt > 0, otherwise ORDt = 0.
Dt = demand at time point t.
D = vector of future demands within inventory planning cycle (D1, D2, . . . , DT )
It = inventory leftover at the end of time point t = max{It−1 +Qt −Dt, 0}.
USt = unit sales (measured as items) during time period t = min{Dt, It−1 +
Qt} = It−1 +Qt − It.

Decision variables represent lot sizes for inventory optimization for the optimization
cycle as follows:

Q = (QL+1, QL+2, . . . , QT ),

where L is the lead time and T the length of an inventory planning cycle. At the time
point when an order is made, we set t = 1 and the optimization cycle is t ∈ [L+ 1, T ].
In many cases, only the first lot size QL+1 is a final decision, but this approach allows
taking multiple future lot sizes (QL+2, . . . , QT ) into account for making longer-term in-
ventory plans and giving initial information about future needs to production/supplier.

Based on the chosen indicators, we have three objectives to be considered simulta-
neously in decision making. All the objectives are functions of lot size Qt and unknown
demand Dt.

(1) Inventory costs (IC) at month t (involving ordering and holding costs),

ICt = ORDt·A+

(
USt
Dt

USt
2

+ It

)
ht = ORDt ·A+

(
[It−1 +Qt − It]2

2Dt
+ It

)
ht,

(2)
where a uniformly distributed demand is assumed during one time period.

(2) Fill rate (FR) is the fraction of demanded units filled from the stock

FRt =
USt
Dt

=
It−1 +Qt − It

Dt
. (3)
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(3) At the time period t, inventory turnover (IT) is

ITt =
USt

(It−1 +Qt + It)/2
=

It−1 +Qt − It
(It−1 +Qt + It)/2

. (4)

Because the objectives to be optimized depend on the unknown future demand Dt,
we must estimate its predictive distribution as described in Section 3.2. Then we can
optimize expected values of ICt, FRt and ITt. They can be calculated approximately
by replacing the function f in (1) by formulas (2), (3) and (4) in turn. Practically,
this means applying a Bayesian demand model with a MCMC method, calculating
objective function values with all simulated values for Ds = (Ds

1, D
s
2, . . . , D

s
T ), in the

role of θs in (1), and taking an average over S simulated samples. This is described in
more detail in Appendix A.

To summarize what has been covered so far, we have a multiobjective optimization
problem

maximize {E [FR(Q,D)] ,E [IT (Q,D)]} and minimize {E [IC(Q,D)]} (5)

subject to 0 ≤ Qi ≤ ub, i = L+ 1, . . . , T,

where ub is the upper bound for the lot sizes. Here, the expected values E [IC], E [FR]
and E [IT ] are considered in the whole time period [L + 1, T ]. Hence, the subscript t
is not indicated as the optimization cycle can be longer than 1 time unit. Note that
there can be more objective functions that each DM in question may want to consider.

3.4. Interactive Multiobjective Inventory Planning Approach

So far, we have introduced the necessary components and can now present more de-
tailed our I-MIPA approach. It is an inventory planning method under stochastic
demand. It is built on a predictive posterior distribution of near-future demand. Ob-
jective functions that depend on future demand are to be defined based on the practical
needs of the company in question. I-MIPA supports a DM in finding the best lot sizes
by optimizing conflicting objectives simultaneously. The approach is not bound to tra-
ditional inventory models, such as (r,Q), particularly as the time unit for planning
horizon can be selected freely according to user needs, there is no fixed reorder point,
and the lot size can vary.

As mentioned in the introduction, one can often identify two phases in solution pro-
cesses when applying interactive multiobjective optimization methods. In the learning
phase, the DM studies different Pareto optimal solutions to gain insight about trade-
offs among the objectives and the feasibility of one’s preferences. Once the DM has
roughly identified a region of interest, (s)he can move to the decision phase to fine-tune
the solution (or a set of solutions) found in the learning phase. Here we apply different
interactive methods in different phases.

In the learning phase, the main emphasis is on learning about interdependencies
and trade-offs and solutions available. For this, we apply the Nonconvex Pareto Nav-
igator method (Hartikainen, Miettinen, and Klamroth 2019). The NIMBUS method
(Miettinen and Mäkelä 2006) is then applied in the decision phase. Figure 2 gives an
overview of the approach.

At the beginning of the solution process, I-MIPA constructs a pre-generated set of
Pareto optimal solutions, denoted in Figure 2 by squares. Note that the DM is not
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Figure 2. Interactive solution process in I-MIPA showing how the solution set explored by the DM narrows
down towards a most preferred solution

needed in this, but an a posteriori method is applied. An approximation is constructed
from these solutions, on which the DM can navigate using the Nonconvex Pareto
Navigator method. The DM can move in real-time among approximated solutions to
get a rough idea of the trade-offs involved and identify an interesting approximated
solution (or some solutions) as a region of interest, denoted by round-cornered squares
in Figure 2. Since the approximated solutions are not necessarily Pareto optimal to
the original problem, the final solution of Nonconvex Pareto Navigator is projected
to the nearest Pareto optimal solution (see, e.g., Eskelinen et al. 2010) and used as
the starting solution of NIMBUS. The DM then applies NIMBUS to explore Pareto
optimal solutions reflecting one’s preferences to find one which best corresponds to the
preferences (denoted as a star in Figure 2). Then, the whole solution process stops.

Naturally, at any point, the DM can return to the learning phase, that is, to use
Nonconvex Pareto Navigator again to identify another region of interest. The DM does
not have to apply the methods in this order but can switch the method whenever (s)he
likes.

4. The case study

To demonstrate the applicability and usefulness of I-MIPA, we consider a case study
involving a Finnish production company. The company provided real monthly sales
and inventory records data of an industrial SKU for 176 months.
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We use a Bayesian approach for estimating predictive distributions of future de-
mand, as introduced in Section 3.2. We did not have access to sales forecasts or any
other additional information in addition to the data of past sales. Sales data is assumed
to describe the past demand, and the predictions are based on the auto-correlation
structure of demand in the past. The demand was categorized as intermittent, and it
is common to order multiple items simultaneously. Thus, we chose a negative binomial
distribution to model the variability of demand as suggested in Section 2.2. For model-
ing the variation of demand in time, we tested different auto-correlation and seasonal
variation structures. Finally, we chose a Bayesian time series model with a nonsta-
tionary ARIMA(0, 1, 1) process without seasonal variation. Details of this model are
described in Appendix B.

The task of I-MIPA is to support the DM. In our case, the DM (supply chain man-
ager of the company) had to make orders on an item needed in the production process.
The interactive methods had graphical user interfaces to facilitate the communication
between the DM and the methods, i.e., specifying preference information and seeing
corresponding approximated or Pareto optimal solutions.

At the beginning of the solution process, we introduced to the DM interfaces of the
interactive methods applied so that he could familiarize himself with how information
is presented and exchanged. We explained to the DM that there is uncertainty in the
future demand forecasts as they are based on a statistical model. As it would have
been unreasonable to expect him to be familiar with an estimation of a probability
distribution, the uncertainty was described orally. Regardless of the uncertainty, the
DM found the future demand forecasting to be a helpful planning feature. The solution
process was recorded and we also interviewed the DM on his decisions during the
solution process.

As mentioned earlier, the DM in question may have an interest in considering ad-
ditional objectives. Our DM wanted to add QL+1, that is, the lot size of the first time
period for the inventory planning as the fourth objective. (As such, there is no problem
with having one of the decision variables as an objective function if the DM wants to
express preference information for it.) Otherwise, we followed the optimization process
as described in Section 3.3, but we simplified objective function calculations because
of time restrictions. For example, during the optimization process, we assumed that
consecutive future demands are independent of each other.

To compare the results of I-MIPA to what had been done earlier in practice, we
selected some months from the past and applied our approach to support lot sizing
in those months. To ensure the reliability of the study, the DM was not told which
item and time period was considered. Nevertheless, he was informed that the item
represents class B in their ERP system. Thus, he could not connect decisions made
during the solution process to his memory of the real decisions made earlier by him
and, thus, the results were not biased that way.

We selected an item with a rather long delivery time. Furthermore, no minimum
lot size was pre-defined for it, but the maximum in practice was 250. Hence, we could
support the DM in gaining insight into the future consequences of his decisions and
understand the trade-offs between the objectives optimized.

The DM made lot sizing decisions for three months: May, September and December.
For each decision, existing stock of 50 was assumed, based on the long term averages.
The lead time L for the orders was three months, and the optimization cycle was also
set to three months to give the DM information on the demand forecasts for the two
months following the decision month. Even though the decision was made only for the
next lot size (QL+1), suggested values for QL+2 and QL+3 were also shown to the DM
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to inform him about the lot sizes needed to keep the desired IC, FR and IT levels.
This should help him to consider lot sizing as a long term process. For instance, the
DM has to take fixed ordering costs into consideration.

Nonconvex Pareto Navigator requires a pre-generated set of solutions for construct-
ing the approximation to be used. For all three cases, a set of 100 solutions was created
using NSGA-II (Deb et al. 2002).

The DM used a user interface provided by the IND-NIMBUS software (Miettinen
2006; Ojalehto, Miettinen, and Laukkanen 2014) for both Nonconvex Pareto Navigator
and NIMBUS methods. The user interface of the Nonconvex Pareto Navigator method,
used at the beginning of the solution process, is shown in Figure 3. On the left side, the
DM could see the ranges of objective functions in the pre-generated set. In the middle
view, the actual pre-generated set of 100 solutions is shown. From there, the DM
selected the starting point for the navigation and could change the starting solution
at any time. The DM indicated with blue lines the desired objective function values
towards which he wished to navigate. The rightmost view shows the navigation paths
taken. There, the horizontal blue dotted lines represent the current desired objective
function values, which could be dragged with a mouse to another location to change
the values. Alternatively, the DM could specify desired values as numbers on the left
view. Finally, in the bottom view, the DM could control the solution process to start
or stop the navigation or project the selected solution to be Pareto optimal.

Figure 3. User interface of the Nonconvex Pareto Navigator method

The user interface of the NIMBUS method is shown in Figure 4. Here, the DM
could specify preference information by clicking on the horizontal bars representing
each objective function value and its ranges on the left side of the view. The problem
considered has four objectives, two to be minimized and two to be maximized. The
difference is indicated by the placement of the colored parts of the bars (on the left side
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for objectives to be minimized and on the right side for objectives to be maximized).
In other words, the less colour is shown in the bar, the better the current objective
function value is. To be more specific, by clicking different parts of objective function
bars, the DM could indicate how he desired to change the corresponding objective
function values. Alternatively, and the associated values could be given directly as
numbers. When the DM was satisfied with the given preferences, the solution process
was started by pressing the play button at the bottom. The solutions generated are
shown on the right side of the view as reduced bar graphs. At any point, the DM could
choose a solution from the set of generated solutions as a new starting point for the
classification.

Figure 4. User interface of the NIMBUS method

4.1. Solution for May

The solution process conducted by the DM for May is summarized in Tables 2 and 3.
In both tables, Ideal and Nadir are the best and worst objective function values in the
set of Pareto optimal solutions, respectively, that is, the ranges of objective function
values. In Table 2, we outline how Nonconvex Pareto Navigator was applied. In the first
column, we have iteration (Iter) taken by the DM. The navigation generated solutions
in real time, and by an iteration we refer to solutions where the DM stopped the
navigation. The second column (Issue) describes which action the DM took. Here Start.
sol. denotes the solution that the DM selected, Aspir denotes the desired objective
function value provided by the DM and Navigated denotes the approximate solution
where the navigation was stopped. The rest of the columns show the objective function
values for each objective (IC, FR, IT and Lot size), respectively. Note that � as a
desired value means that the DM allowed that particular objective to change freely
and did not provide any desired value for it.

As the lead time was three months, the lot sizing considered in May was made for
August. The turnover target for the company for the month in question was 8.0, and
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the fill rate was expected to be at least 0.9.
To begin with, the DM decided to use the Nonconvex Pareto Navigator method to

be able to see fast how a change in the lot size can affect fill rate and turnover (as
said, a summary of the solution process is shown in Table 2). He selected the solution
(30400.0, 0.96, 2.91, 236) as the first starting solution from the pre-generated Pareto
optimal solutions as it had a reasonable fill rate. As far as preferences are concerned,
he wanted the lot size to decrease to 60 (to study how such a lot size would affect
the company’s inventory turnover and fill rate), while desirable values for fill rate and
turnover were given as 0.9 and 8.0, respectively. At this phase, he did not want to
express preferences for inventory cost. Based on this information, a search direction
was formed by the method, and he then could navigate on the approximated Pareto
optimal set until the inventory turnover reached the target value of 8.0. Then, he
stopped. As the fill rate of 0.73 was not acceptable among the navigated solutions, he
decided to study further those with a lot size 60. As the best of those, he selected the
solution (14100.0, 0.91, 4.75, 60), where the lot size was associated with a low turnover
4.75 and a good fill rate 0.91.

When starting the navigation from (14100.0, 0.91, 4.75, 60), that is, starting itera-
tion 2, he wanted to achieve the desired value of 8.0 for the turnover. As no acceptable
turnover rate could be achieved while maintaining a good fill rate, the DM stopped the
navigation with (5080.0, 0.8, 7.0, 19). Thus, based on the results, the DM concluded
that the lot size of 60 is not acceptable due to its effect on the turnover.

As no acceptable fill rate could be achieved, he decided to start a new navigation
from a solution with the fill rate 0.9 (12900.0, 0.9, 4.91, 58) with the same preference
information as in the previous iteration. The DM continued the navigation until the
inventory turnover reached 6.0. From the approximated solutions found, the DM se-
lected the solution (10300.0, 0.88, 5.34, 57), where the objective values were otherwise
acceptable, but the fill rate should be improved. The DM decided to continue navi-
gating from this solution by allowing the inventory cost to increase till 27340 while
maintaining a good aspiration level 7.0 and giving the desired level 0.92 for the fill
rate. However, this did not lead to a better fill rate.

As the DM learned that his originally preferred objective function values could not
be achieved, he decided to try a different approach from (7540.0, 0.85, 6.17, 28). He
decided to still aim at the fill rate 0.92, but decreased the desired value for turnover to
6.0. Additionally, he set the desired cost as 8000.0 and allowed a large lot size of 100.
From the navigation, the DM selected the solution (10200.0, 0.88, 5.38, 57), which he
regarded as a good enough solution based on the navigations done, even though all
desired values could not be achieved, but he had learnt enough and stopped navigating.

As mentioned earlier, the solutions in the navigation are approximated and, so, as
a next step, the selected solution was projected to be Pareto optimal. The projected
solution was (10200.0, 0.88, 5.37, 55). This Pareto optimal solution is very close to the
approximated one indicating that the approximation error was small. However, it has
a bit smaller inventory turnover and lot size values.

The DM then started to apply the NIMBUS method from the projected solution,
and Table 3 summarizes the solution process. In this table, the notation is similar
to the previous table but relates to the NIMBUS method. That is, Cur. sol. denotes
the current Pareto optimal solutions and Classif denotes the classification information
given by the DM (the symbols were introduced in Section 2.4). Final sol. is the solution
that the DM selected as the final solution of the whole solution process. The starting
solution is shown in Table 3 as the current solution of iteration 1. With NIMBUS, the
DM wanted to improve it further. At first, he tried to improve the fill rate up to 0.92,
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while improving inventory turnover to 6.0 and inventory cost to 10000.0. He allowed
the lot size to change freely. As this did not lead to a desirable solution (and, thus,
the desires seemed too optimistic), at iteration 2, he decided to allow inventory costs
to change freely. As this did not lead to required improvements either, at iteration 3
he decided to approach from another direction.

He concentrated on the turnover rate allowing the fill rate to impair to 0.8, and
hoped the inventory turnover to be 6.0, while the other objectives could change freely.
Now, the turnover did achieve an acceptable value 6.43. As the fill rate 0.83 was
not satisfactory, at iteration 4 the DM decided to restrict the inventory turnover to
the maximum of 6.0 while trying to improve fill rate to 0.9. He also decided to use
the NIMBUS method to generate two different solutions with these preferences to
understand the conflicts between inventory turnover and fill rate better. He obtained
two new solutions, of which he chose (8290.0, 0.86, 6.0, 32) as the final solution.
Here, even though the strategically chosen fill rate value 0.9 could not be achieved,
he decided that a low inventory cost and lot size would allow this. This result can
be seen as a typical example of the Houlihan effect (Burbidge 1995), where the DM
does not act entirely according to the initially set goals. Instead, he learns during the
solution process and is able to achieve a solution that is preferable for him. First, his
main concern was the fill rate. Then, as he learned more during the solution process,
he tried to improve the turnover rate at the expense of total costs. Then, by realizing
that total costs were increasing, he changed his preferences and was willing to sacrifice
in fill rate.

Furthermore, the DM mentioned that I-MIPA helped him to perceive dependencies
between the objectives. Overall, the decisions were much more justified than the ac-
tual ones that had been made without utilizing decision support. Obviously, I-MIPA
facilitated the learning of the DM, which was confirmed by direct verbal feedback from
the DM himself. This is encouraging as with this relatively small amount of effort (1.5
hours totally) put on learning and applying the approach, and the DM could improve
his earlier decisions this much.

Table 2. Solution process with Nonconvex Pareto Navigator for May

Iter Issue IC FR IT Lot size
Ideal 972.0 0.98 9.32 0
Nadir 53700.0.0 0.4 2.13 250

1 Start. sol. 30400.0 0.96 2.91 236
Aspir � 0.9 8.0 60

11 Navigated 3180.0 0.73 8.0 8
2 Start. sol 14100.0 0.91 4.75 60

Aspir 27340.0 0.9 8.0 �
21 Navigated 5080.0 0.8 7.0 19
3 Start. sol. 12900.0 0.9 4.91 58

Aspir 27340.0 0.9 8.0 �
31 Navigated 8288.0 0.85 6.0 32
4 Start. sol 10300.0 0.88 5.34 57

Aspir 27340.0 0.92 7.0 �
41 Navigated 10300.0 0.88 5.34 57
5 Start. sol 7540.0 0.85 6.17 28

Aspir 8000.0 0.92 6.0 100
51 Navigated 10200.0 0.88 5.38 57
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Table 3. Solution process with NIMBUS for May

Iter Issue IC FR IT Lot size
Ideal 972.0 0.98 9.32 0
Nadir 53700.0 0.4 2.13 250

1 Cur. Sol. 10200.0 0.88 5.37 55
Classif I≤=10000 I≤=0.92 I≤=6.0 I�

10400.0 0.88 5.5 40
2 Cur. sol. 10400.0 0.88 5.5 40

Classif I� I≤=0.92 I≤=6.0 I�

10400.0 0.88 5.49 40
3 Cur. sol. 10400.0 0.88 5.49 40

Classif I� I≥=0.8 I≤=6.0 I�

6850.0 0.83 6.43 23
4 Cur. sol. 6850.0 0.83 6.43 23

Classif I� I≤=0.9 I≥=6.0 I�

9570.0 0.87 5.65 38
8290.0 0.86 6.0 32

Final Sol. 8290.0 0.86 6.0 32

4.2. Solution for September

Next, the DM was asked to determine a lot size for September. In this case, eventually,
the DM did not need to apply NIMBUS at all and took, in effect, only a single
navigation step. The solution process is described in Table 4. As previously, he decided
to start with Nonconvex Pareto Navigator to have an idea of what kind of solutions
can be achieved. He chose to start navigating from a solution where the lot size is
0, which lead to a solution (733.0, 0.33, 10.4, 0). From here, he wanted to navigate
towards inventory turnover of 7.0 and fill rate of 0.9. As for the lot size, he set a
desired level 125 and for inventory cost 25910.0. He stopped the navigation when
the turnover reached 7.0. Here, the fill rate was 0.75, which was unacceptable, so he
continued navigating in the same direction until the fill rate was higher than 0.9. He
then stopped the navigation at a solution (25910.0, 0.91, 5.09, 74). He considered that
the inventory turnover around 5 is acceptable, especially, with a lot size of 74.

In his opinion, he was ready to switch the method to NIMBUS and the solution was
then projected to be Pareto optimal. The resulting solution was (19300.0, 0.91, 5.12,
73), which he found better than the approximated solution. He was so satisfied that
he eventually felt no need to apply NIMBUS and selected it as the final solution.

Table 4. Solution process for September

Iter Issue IC FR IT Lot size
Ideal 733.0 0.97 11.2 0
Nadir 51100.0 0.33 2.75 250

1 Start. sol. 733.0 0.33 10.4 0
Aspir 25910.0 0.9 7.0 125

11 Navigated 25910.0 0.91 5.09 74
Final sol. 19300.0 0.91 5.12 73
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4.3. Solution for December

The third task was to decide the lot size for December. A summary of the solution
process, applying the two methods sequentially, is shown in Table 5. This time, the
DM decided that the fill rate should be the most important objective and wanted to
start navigating from the solution (15200.0, 0.9, 5.07, 50), where the fill rate satisfied
the initial strategic level of 0.9.

He decided to keep the fill rate at 0.9 while allowing inventory costs to impair
towards 27000.0. For the inventory turnover, he gave the desired aspiration level of 6.0
and for lot size 125. First, he allowed the navigation to continue until the inventory
turnover was 5.41 and the fill rate had impaired a bit to 0.89. He decided to continue
in the same direction until the turnover reached 5.98, while further impairing the fill
rate. He then selected the approximated solution (10300.0, 0.87, 5.98, 43) and stopped
navigating.

The solution was projected, and again, the projected solution was slightly better
than the approximated one, as shown in Table 5 at iteration 1 with NIMBUS. The
DM decided to further improve the inventory cost to 9500.0, while keeping the fill rate
and the inventory turnover at their current values and allowing the lot size to change
freely. This lead to a more preferred solution, where the lot size was increased to 41.
The DM then decided to see what an effect the initially proposed lot size of 60 would
have while allowing the inventory costs to change freely and improving the others. The
result obtained at iteration 2 was unacceptable, as the fill rate was too low, and the
DM selected the solution of iteration 1 as the most preferred solution and stopped.

One can see the effect of the DM learning in the three solution processes reported.
First, the DM needed more iterations to learn about the trade-offs and what kind of
preferences are feasible. After that, he needed fewer iterations to reach satisfactory
solutions.

Table 5. Solution process with Nonconvex Pareto Navigator and NIMBUS for December

Iter Issue IC FR IT Lot size
Ideal 870.0 0.98 9.91 0
Nadir 53100.0 0.38 2.26 250

1 Start. Sol. 15200.0 0.9 5.07 50
Aspir 27000.0 0.9 6.0 125

11 Navigated 10300.0 0.87 5.98 43
1 Cur. sol. 9770.0 0.87 5.98 36

Classif I≤=9500 I= I= I�

9490.0 0.87 5.97 41
2 Cur. sol. 9490.0 0.87 5.97 41

Classif I� I< I< I≤=60

5220.0 0.75 6.95 60
Final sol. 9490.0 0.87 5.97 41

4.4. Comparison

This section compares the lot sizes obtained using I-MIPA to the lot sizes realized in
the company in the corresponding months. In Table 6, we collect the final I-MIPA
solutions, while the past realized values are shown in Table 7. Furthermore, for com-
parison purposes, we show also EOQ lot sizes in Table 8. Realized and EOQ lot sizes
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Table 6. Lot size decisions and predicted objective values obtained with I-MIPA.

Order Delivery Lot size IC FR IT
May Aug 32 8290.0 0.86 6.00
Sep Dec 73 19300.0 0.91 5.12
Dec Mar 41 9490.0 0.87 5.97

Table 7. Realized lot sizes based on the past actual orders.

Order Delivery Lot size IC FR IT
May Aug 263 13735.0 1.0 6.0
Jun Sep 0 10199.2 1.0 0.0
Jul Oct 0 8694.4 1.0 4.2
Aug Nov 0 5893.8 1.0 5.3
Sep Dec 0 4598.0 1.0 0.0
Oct Jan 0 4138.2 1.0 2.7
Nov Feb 273 14445.6 1.0 1.3
Dec Mar 0 12644.5 1.0 1.6
Jan Apr 0 11035.2 1.0 1.6

are much larger than those calculated with our I-MIPA. Also, deliveries are taking
place more seldom, whereas I-MIPA solutions give smaller lot sizes more often during
the optimization cycle. Thus, DM appreciated the benefits of lower inventory costs
and the turnover rate at the cost of ordering costs.

Table 8 shows that the lot sizes with EOQ are quite similar to those realized lot sizes.
In both cases, fill rate (FR) is always 1 and, thus, inventory turnover rate (IT) is low.
Consequently, inventory costs (IC) are high, which demonstrates trade-offs between
the objectives of lot sizing. With support, the DM was able to reach better IT with
an acceptable FR level.

As said, improvements in objective values could be achieved with I-MIPA. However,
the monthly fill rates are weaker than those realized, but based on the information
gained during the solution process, the DM was willing to compromise fill rates to
reduce inventory costs while obtaining a higher inventory turnover rate. He was able
to make this decision by gaining an understanding of the trade-offs between the ob-
jectives. Using the provided information, the DM could confirm his initial impression
that the fill rate of 1 (i.e., 100%) is not a necessity for this company. It should also be
noted that even though we did not consider warehouse costs, it is obvious that smaller
lot sizes require less space, and therefore, these costs are lower.

Overall, the DM found I-MIPA very useful and said that obtaining new solutions
with Nonconvex Pareto Navigator was intuitive after an initial learning phase. He also
commented that

’...(the interactive approach) seems to be nice, the navigation gives new solutions fast
and they can be easily changed ... I required some learning to understand what to change
and how the system can be guided towards preferences. Learning of this was fast. A similar
approach would be preferable also in future cases. It is better to see how the solution is
found (values around it) in addition to the solution. Seeing the direction gives value here.’

As far as the further applicability of I-MIPA is concerned, the DM commented
that the approach demonstrated well how the conflicts between the objectives cause
limitations. He continued that these tools could be also used more widely. Furthermore,
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Table 8. EOQ lot sizes for comparison with realized orders

Order Delivery Lot size IC FR IT
May Aug 231 12397.4 1.0 6.6
Jun Sep 0 8861.6 1.0 0.0
Jul Oct 0 7356.8 1.0 4.9
Aug Nov 0 4556.2 1.0 6.8
Sep Dec 0 3260.4 1.0 0.0
Oct Jan 0 2800.6 1.0 3.9
Nov Feb 231 11352.4 1.0 1.7
Dec Mar 0 9551.3 1.0 2.2
Jan Apr 0 7942.0 1.0 2.3

he pointed out that tools like this clearly show how sometimes the requirements by
the management may be impossible to be satisfied.

5. Conclusions

We have formalized a general path from data to multiobjective decision making in
lot sizing. In this spirit, we have proposed an interactive approach called I-MIPA to
support data-driven lot sizing in inventory management under stochastic demand. We
have applied a Bayesian approach to forecasting stochastic demand based on the data
and formulated relevant objective functions to be considered simultaneously when
determining lot sizes. Finally, we have proposed to sequentially apply two different
types of interactive multiobjective optimization methods to solve the problem enabling
the DM to switch the method. The idea is to select a method best suited for the phase
of the solution process in question.

As a proof of concept, we have demonstrated the usefulness of I-MIPA with a case
study involving a production company, where the supply chain manager acted as
the DM. For three separate lot size decisions, he first utilized the Nonconvex Pareto
Navigator method, where he could freely study the trade-offs between the objective
functions by navigating on an approximated set of Pareto optimal solutions. Once
the region of interest had been identified, the obtained approximated solution was
then refined using the NIMBUS method, which allowed DM to obtain Pareto optimal
solutions. Thanks to I-MIPA, the DM gained insight to make better and justifiable
decisions.

The studied item represents class B in the company’s item categorization. According
to the DM, quite often, lot sizes in this class are generated on a just-in-case basis, i.e.,
they tend to be bigger than appropriate lots would be. DM’s daily workload typically
explains this, and on the other hand, the idea of over-ordering is often based on old
habits and incomplete information of material need for future demand. By utilizing
the I-MIPA approach, the DM can make proactive decisions and have the courage to
take advantage of more economic stock-keeping through smaller lot sizes.

Among other things, unexpected variation makes supply chain operations compli-
cated and proactive decision making in lot sizing can be a remarkable improvement
for reducing the uncertainty of just-in-case decisions. Thus, the I-MIPA approach can
support the DM in more reliable and accurate information sharing to suppliers and
firm’s own operations, production, procurement and sales. As I-MIPA optimizes mul-
tiple future time periods simultaneously, the supply chain operations can be prepared
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better pre-hand.
In our case, the demand prediction model was designed for one company and one

item as a proof of concept. For future studies, the demand model should be further de-
veloped, including multiple items. Additional data source, such as sales forecasts, may
improve the accuracy of the estimated demand. In real life, there are also variations
e.g. in lead times and production capacity. As stockout situations typically cannot
be identified in real-life sales data, the predictive models may underestimate demand,
which deserves attention in future research work as well. Furthermore, one could study
whether a safety stock should be included to handle unpredictable events.

Finally, I-MIPA should not be restricted to the objectives considered here. One
benefit of using a Bayesian model with MCMC simulations is the possibility to easily
calculate different scenarios for a wide range of objectives that depend on unknown
future demand. Overall, testing I-MIPA with more case studies and more extensive
comparisons are topics of future research.
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Appendix

Appendix A. Expected values for the objectives

We have an approximation for expected value

E [f(Q,D)|X)] ≈ 1

S

S∑
s=1

f(Q,Ds), (A1)

where X is the data of past sales, Q is a vector of lot sizes for the optimization cycle,
and the vector D is the unknown future demand of the whole inventory cycle (lead
time and optimization cycle). With more details, Ds is a simulated sample from the
posterior probability distribution of future demand in each time point in the inventory
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cycle Ds = (Ds
L+1, D

s
L+2, . . . , D

s
T ). By replacing a function f(Q,Ds) with each objec-

tive function, we get formulas to be optimized. With all functions, unit sales is defined
as USt(Qt, Dt) = It−1+Qt−It, where inventory leftover is It = max{It−1+Qt−Dt, 0}.

• For the inventory costs ICt = ORDt ·A+
(
USt

Dt

USt

2 + It

)
ht, the expected value

for the optimization cycle (t ∈ {L+ 1, . . . , T}) is

E [IC(Q,D)|X]

≈ 1

S

S∑
s=1

T∑
t=L+1

[
ORDt ·A+

(
[It−1(Q,Ds) +Qt − It(Q,Ds)]2

2Ds
t

+ It(Q,D
s)

)
ht

]
.

(A2)

• For the fill rate FRt = USt

Dt
, the expected value for the optimization cycle is

E [FR(Q,D)|X] ≈ 1

S

S∑
s=1

∑T
t=L+1 [It−1(Q,Ds) +Qt − It(Q,Ds

t )]∑T
t=L+1D

s
. (A3)

• For the inventory turnover ITt = USt

(It−1+Qt+It)/2 , the expected value for the opti-

mization cycle is

E [IT (Q,D)|X] ≈ 1

S

S∑
s=1

1

oc

T∑
t=L+1

It−1(Q,Ds) +Qt − It(Q,Ds)

(It−1(Q,Ds) +Qt + It(Q,Ds))/2
. (A4)

Appendix B. Bayesian time series model for predicting demand in the
case study

The likelihood distribution as a data generation model is assumed to be a negative
binomial distribution, where the expected value µt varies with time and the dispersion
parameter φ (> 0) is fixed but unknown: Dt ∼ NegBin(µt, φ). With this formulation,
a variance of demand at a time point t can be expressed as V ar(Dt) = µt + µ2

t /φ.
Our statistical modeling idea is to handle the time series of demand as an auto-

correlated sample from a negative binomial distribution and to estimate a predictive
distribution of demand by a Bayesian approach. To be able to use models that are
defined on the whole real scale, a logarithmic transformation is used. The natural
logarithm of µt is assumed to follow an ARIMA(0, 1, 1) process. This is based on a
comparison of different autocorrelation structures for the data. For different ARIMA
models, the model with an autoregressive order p = 0, degree of differencing d = 1
and moving average order q = 1 ends up to smallest information criteria values. This
is true for both the Akaike information criterion and the Bayesian information cri-
terion (Akaike 1978). The state-space representation of the ARIMA(0, 1, 1) process
(Shenstone and Hyndman 2005) is

log(µt) = Zt−t + εt

Zt = Zt−1 + αεt,
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where Zt presents a hidden state at the time point t and random variations εt ∼
N(0, σ2) are independent of each other. For all unknown parameters in the model,
prior distributions have to be defined. As we did not have much knowledge of these
parameters, weakly informative prior distributions with an influence of McElreath
2015 are used. Prior distributions in our application are:

Unknown initial state Z0 ∼ N(0, 10)

Coefficient α ∼ U(0, 1)

Standard error of random variation σ ∼ HalfCauchy(0, 1)

Scale parameter of NegBin distribution φ ∼ HalfCauchy(0, 1).

The model was solved with Hamiltonian Monte Carlo (with the No-U-turn Sam-
pler) simulations (Hoffman and Gelman 2014), with the RStan package version 2.12.1
(Carpenter et al. 2017, R Core Team 2019). The number of post-warmup simulations
was 6000, and the number of warmup simulations was also 6000. The solution is a
sample from predictive posterior distributions p(D1|X), . . . , p(DT |X), where X is the
data of past sales.
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