
This is a self-archived version of an original article. This version
may differ from the original in pagination and typographic details.

Author(s):

Title:

Year:

Version:

Copyright:

Rights:

Rights url:

Please cite the original version:

In Copyright

http://rightsstatements.org/page/InC/1.0/?language=en

Domain Specific Case Tool for ICT-Enabled Service Design

© 2014 IEEE

Published version

Tuunanen, Tuure; Przybilski, Michael

Tuunanen, T., & Przybilski, M. (2014). Domain specific case tool for ICT-enabled service design.
In Proceedings of the 47th Hawaii International Conference on System Sciences (HICSS 2014)
(pp. 955-964). IEEE. Proceedings of the Annual Hawaii International Conference on System
Sciences. https://doi.org/10.1109/HICSS.2014.126

2014

Domain Specific Case Tool for ICT-Enabled Service Design

Tuure Tuunanen
University of Jyväskylä

tuure@tuunanen.fi

Michael Przybilski
University of Helsinki

michael.przybilsk@cs.helsinki.fi

Abstract
One major problem in service design is the limited
availability of information gathered during the
development process. In particular, information on
end-user requirements is difficult for designers,
developers, and maintainers to access. Here, we
provide a mechanism that supports the gathering and
modeling of various types of information throughout
the service and software development life cycle. As
various existing tools focus on a particular part of
the life cycle, essential information is not available,
or it is more difficult to obtain in later stages. The
linkage between information collected in the different
stages is often lost. The implemented tool support
enables the modeling of requirements; the
abstraction of these requirements in the form of the
required system functionalities, which can also be
modeled; and the connection with component-based
software engineering to support the design of ICT-
enabled services.

1. Introduction
Information and communications technology

(ICT)-enabled services are the new frontier for
information systems research. Tuunanen et al. [1] has
defined ICT-enabled services as “systems that enable
value co-creation through the development and
implementation of information and communication
technology enabled processes that integrate system
value propositions with customer value drivers.” As
such, they are accustomed to seeking entertainment
or even pleasure through different kinds of ICT-
enabled services. These services go beyond the well-
known Web-based and digital services, which have
become the focus with smartphone and smart
television apps, as well as different social media
services. The technological applications of such
services will include, for example, hardware-based
sensors and real-time data analytics.

The focal point is that the infusion of ICT to
services and the service-dominant logic thinking [2]
in ICT development is a game changer. This calls
attention to interesting problems that have not yet

been fully studied. More specifically, we see that the
infusion of ICT into the services creates similar
problems that have been already previously faced
with software and information systems development.
One of these challenges is how we can maintain the
connection between users’ needs and goals for the
service and the requirements information that
analysts and developers use to design the service.
 During a typical software and information systems
development process, large amounts of information
are collected, such as end-user requirements from
interviews, software design artifacts, pseudo code, or
test cases. This information is typically collected and
provided in a more abstract form to the next stage,
while the connection to the originating material is
often not maintained any further. In our previous
research [3-5], we have provided a formal approach
for the conversion of verbal and content rich
requirements [5, 6] into systems requirements. This
enabled us to maintain the connection between
information that is gathered during the various stages
of the service and software life cycle,1 and to give,
for example, service and software designers and
developers easy access to the gathered requirements
information. However, the tool support for linking
the requirements and the development life cycle was
not available in the literature.

This paper reports the tool development, which
empowers us to easily model the various
requirements in the form of their “features,”
“outcomes,” and “values” [6]. The tool, additionally,
provides us with the means to bridge the gap between
analysts and developers [7], by enabling the modeling
of service functionalities and software components,
as well as the relationships between these entities.
Thus, our objective is to facilitate co-creation
activities namely between analysts and developers.
We utilized design science research [8] as our
research methodology. Hevner et al. [8] posited that
design science research can be used to develop
constructs, models, methods, and instantiations. Our
research develops an instantiation of a domain
specific case tool for ICT-enabled service design.

1 After this, we use “development life cycle” for this.

2014 47th Hawaii International Conference on System Science

978-1-4799-2504-9/14 $31.00 © 2014 IEEE

DOI 10.1109/HICSS.2014.126

955

Authorized licensed use limited to: Jyvaskylan Yliopisto. Downloaded on March 09,2022 at 13:27:22 UTC from IEEE Xplore. Restrictions apply.

Furthermore, to enable a large number of
developers to take advantage of the modeled
information, we implemented our tool using the Java
programming language and integrated it with the
popular and widely used Eclipse2 IDE (integrated
development environment). Eclipse has the advantage
of being available for a large number of operating
systems and platforms, as well as of supporting most
major programming languages. As it is extremely
flexible, Eclipse can be used not only for software
development, but also for any kind of project. Eclipse
is also the foundation of several other development
platforms, such as the Carbide IDE,3 used for
developing software for mobile phones. This allows
our tool to be used for requirements modeling in all
kinds of projects, for various programming languages
and platforms, and to reach a large number of people
involved in different stages of software development
projects.

The remainder of this article is structured as
follows. In the next section, we provide an overview
of requirements modeling literature, as well as
model-driven development (MDD). In the next
section, we describe the details of the developed tool,
how it can be used to model user requirements, and
how it supports our approach to modeling ICT-
enabled service requirements and bridging the gap
between analysts, designers, and software developers,
based on component-based software engineering [7,
9]. Thereafter, we describe how our tool supports the
development of ICT-enabled services, based on the
modeled requirements. We conclude this paper by
describing our further research and necessary work
on the subject.

2. Background
As our approach is based on providing a connection
between requirements elicitation and more technical
ICT-enabled service design, we next provide a brief
overview of the state-of-the-art requirements
modeling and model-driven development.

2.1 Requirements Modeling
One of the first steps in the development life cycle is
the elicitation of end-user requirements. Academics,
as well as practitioners, are constantly trying to find
better ways to elicit, analyze, and model
requirements. Current trends are moving toward
richer requirements and more complex, multi-
dimensional requirements information [5, 10]. This
allows for a better description of the collected
requirements and a better understanding of the

2 http://www.eclipse.org
3 http://www.forum.nokia.com

intended meaning of complex and ambiguous
answers from end-users.

A prevailing problem is the insufficient
availability of the collected requirements and the
derived information during the later stages of the
development life cycle. Studies by various authors,
such as [11], have shown how to successfully convey
the needs of end users to analysts, but the current
literature offers no straightforward solutions on how
to extend the communication to designers and
developers when using advanced requirements
engineering (RE) methods. Moreover, the current,
more designer-oriented requirement engineering
methods, such as scenarios [12], often start with a
different agenda for requirements elicitation. Instead
of trying to determine the requirements, they
frequently rely on contextual factors of a use-
situation [13] or a scenario of a probable use-
situation. Similarly, another well-used method,
prototyping, usually assumes that it is already
possible to present something to the potential users,
such as a mock-up or a prototype of the application.

Earlier, Peffers and Tuunanen [5] have
demonstrated the efficient use of rich requirements
information in combination with laddering and theme
clustering to elicit end-user requirements and provide
a link between end-users and analysts. In order to
implement the gathered requirements, it is necessary
to find a means of expressing them in such a way that
a computer system can interpret them correctly.
Recent developments in this direction have led to the
increased use of models that can automatically or
with adjustments by developers be converted into a
binary format for a specific platform.

2.2 Model Driven Development
Finding the best level of abstraction for a

particular problem domain is one of the biggest
problems in software development [14]. By
definition, MDD attempts to provide a level of
abstraction that focuses on modeling the behavior of
software entities. As a result, the outcomes of the
MDD approach are not computer programs, but
models [15, 16]. The advantage of this approach is
the possibility of developing and expressing concepts
that are much less bound to the underlying
implementation technology and are much closer to
the problem domain, which makes the models easier
to specify, understand, and maintain. Improving the
process of understanding needs and requirements, as
well as how they map to software by using models,
significantly reduces the risks that come with the
development and implementation of complex
solutions and allows us to find solutions more easily.

956

Authorized licensed use limited to: Jyvaskylan Yliopisto. Downloaded on March 09,2022 at 13:27:22 UTC from IEEE Xplore. Restrictions apply.

Providing a higher level of abstraction is,
however, not always sufficient or desirable. Another
advantage of MDD is the possibility of providing
specifics that we are familiar with and that are
required for specific problem solutions. Thus,
through the use of models, software also becomes
more understandable, as understandability is a direct
function of the expressiveness of the used modeling
form [7, 16].

In MDD, a model attempts to provide all relevant
representations to the real-life system and the
problem. Thus, it is also possible to find an accurate
solution, as the result is produced from the model
using automated tools. This also ensures that, based
on the same model, the result will always be exactly
the same. Using an MDD approach, it is furthermore
possible to correctly predict the interesting (perhaps
even missing), relevant, but less obvious
characteristics of the modeled system. This can be
achieved by further experimentation—for instance,
by executing the model in a computer or by formal
analysis.

While it is still expensive to obtain an accurate
model, the derivation of the computer program is
done automatically. Because supporting programs
performs the actual implementation for a specific
platform, the MDD approach is significantly less
elaborate than other approaches. MDD also provides
the relatively simple adaptation to changes in the
underlying infrastructure and allows the verification
of the developed model at a very early stage of the
development process, thus avoiding unnecessary and
expensive modifications or even partial re-
implementations.

As can be observed from the history of compiler
technology, providing a higher level of abstraction
often comes with an initially higher overhead and
poorer efficiency. As the tools evolve, however, and
become more sophisticated, the overhead is being
continually reduced. In the same way that current
compilers are significantly more efficient than the
average human developer, when using a lower-level
programming language, MDD tools also have the
potential to provide more efficient code than humanly
possible.

Because the outcomes of MDD projects are a set
of models, rather than computer programs, they are
completely independent of a programming language
and its constrictions and limitations [7, 17].
Furthermore, assuming that the same basic
characteristics apply, or provided that the appropriate
support functionality is available, the development of
software based on models is completely independent
of underlying hardware architectures or middleware
functionalities. It also provides complete

independence of the evolution of the model itself,
from the changes in underlying systems.
A key factor in MDD is, however, that programs are
generated automatically from their corresponding
models [18]. Using models merely to document the
developed software not only defies the primary idea
of MDD, but it poses the danger that the models will
not be maintained, particularly as the software
evolves and adapts to new requirements.

In his paper [19], Ambler distinguishes two
current Model Driven Development approaches.
“Generative MDD,” being very much related to the
Object Management Group,4 is a very idealistic
approach, concentrating on sophisticated tools that
allow for the development of advanced and
sophisticated models, which can then be
automatically transformed into software for particular
platforms. Furthermore, it allows exchanges with
other languages and formats, such as the Unified
Modeling Language (UML) and the UML profiles or
the specification language for model transformations
[20].

While generative MDD is heavily based on the
existence of sophisticated tools—first for the
development of models and later on for the
translation into specific code [7, 21]—“agile MDD”
is based on the idea that modeling is a way of
motivating thinking and consideration that is
necessary before the actual implementation, as well
as the tools that support it. Both approaches,
however, take the use of tools into account and are
even, to a greater or lesser extent, dependent on them.

In our previous research [3], we have provided an
approach to transforming collected rich user
requirements to system requirements that designers
and developers can better understand and use. We are
now providing an editor, consisting of a set of tools
that together provide integration with existing
modeling techniques, such as the unified approach,
using UML and component-based software
engineering—see, e.g., [22]. This integration
provides a connection between advanced RE methods
and current design practices, as well as a stronger link
between the analyst and the designer, without
limiting the possibilities of developing radical and
innovative solutions. Furthermore, the approach
enables us to retain the already gained link between
end users and analysts. Additionally, it allows us to
integrate designers and developers, with their
knowledge of the target domain, as well as their
expertise and experience, into the information cycle.

4 http://www.omg.org/

957

Authorized licensed use limited to: Jyvaskylan Yliopisto. Downloaded on March 09,2022 at 13:27:22 UTC from IEEE Xplore. Restrictions apply.

3. Research Methodology
Our paper explores the new service potential of

mobile presence technology in connection with a
research program that was under the auspices of a
larger research project of LTT Research, Inc., a
commercial research firm owned by the Helsinki
School of Economics. The research program included
15 researchers from four continents and some 450
field study participants in Auckland, Helsinki, Hong
Kong, and Las Vegas.

The presence technology allows mobile device
users to share information about their current
availability and status in terms of their own concepts
or those of a presence-based application with
subscribers to that information. For example, a basic
presence service could allow users to publish their
information and share it with others in order to make
mobile communication and services more sensitive
and personal. This information may include the
availability of the subscriber, the preferred means of
communication, the subscriber’s whereabouts, as
well as visual content for self-expression of one’s
emotion, in order to guide other users’
communication decisions while controlling their own
information [23]. Examples of presence information
might include “sleeping,” “in a meeting—leave
voicemail,” “bored—call me,” or “at leisure and
looking for fun.”

Our scientific approach employs design science
research [8]. Design science research complements
both qualitative and quantitative research
methodologies by using the development and design
of artifacts to assist in the formulation of theories.
According to Hevner et al. [8], the artifacts can be
constructs, models, methods, and instantiations.
Peffers et al. [24] extend this notion and reflect upon
the thoughts of van Aken [25] and add that artifacts
could also include social innovations or, as Järvinen
[26] stated, new properties of technical, social, and/or
informational resources. More recently, the topic of
what exactly constitutes a design science theory [27]
has been debated, which will be discussed after
elaborating upon the foundation of our research
methodology.

Design science research methodology (DSRM)
[24] suggests a way to conduct design science
research in information systems. It is comprised of
six phases: (1) identify the problem and motivation;
(2) define the objectives; (3) design; (4) demonstrate;
(5) evaluate; and (6) communicate [24]. The DSRM
starts with the identification of research problem(s)
and the motivation for the research. Based on
evidence, reasoning, and inference, the process
continues toward defining the objectives of a solution
to solve the research problem. This process should be

based upon prior knowledge in the given field of
research. This knowledge is then used to design and
develop an artifact and to create “how-to”
knowledge. Following that, the artifact is used to
solve the pre-described problem. Thus, it is
demonstrated in a suitable context before evaluating
its effectiveness or efficiency. This approach leads to
disciplinary knowledge, which is then communicated
to both academia and industry. Of course, the process
can, and should be, iterative in nature. DSRM has
four possible entry points to the research process. The
first entry point is the traditional problem-centered
initiation, which is similar to qualitative and
quantitative research methodologies. The second is
the objective-centered solution approach, which
enables researchers to approach the research
endeavor by first setting objectives that can be
quantitative or qualitative in order to establish how
the new artifact is expected to support solutions that
achieve the stated objectives. The third entry point is
design-centered, in which initiation can be a result of
an interesting design or development problem. The
fourth entry point is where the design starts with a
research client. Our study takes a solution-based
approach and develops an instantiation of a domain-
specific case tool that addresses the problem of
maintaining the connection between requirements
information and designers and developers.

For requirements data collection and analysis, we
applied a version of the critical success chains
method [6] as part of the field study. It is a user-
centered requirements development method for
discovering and analyzing requirements data based
on user preferences and reasoning for system
applications and attributes from across user groups.
In the following, we describe the general critical
success chains method and its adaption used in this
study.

First, the critical success chains method starts
with an in-depth interviewing technique to elicit and
discover user requirements. This technique is called
laddering. The use of this interviewing technique
does not require that participants have prior
knowledge of the system, firm, or technology [6].
The laddering technique [28] is based on the personal
construct theory [29] and has been widely used in
marketing research [30, 31]. The output of the
laddering interviews are chains of information in the
format of “feature – reasoning – value or goal.”
These chains depict not only the feature-related
requirements of the user, but also the reasoning
behind these and possible goals or values that drive
the user’s behavior.

Second, as part of the interview process, the
interviewees were asked to reflect on their ideas and
also assign a numeric score to indicate how important

958

Authorized licensed use limited to: Jyvaskylan Yliopisto. Downloaded on March 09,2022 at 13:27:22 UTC from IEEE Xplore. Restrictions apply.

these system ideas were to them. The researchers
then carry out a thematic cluster analysis to identify
distinct themes and later group chains from the
gathered data into the identified themes. For each
theme, an interpretive clustering analysis process is
carried out to further aggregate different expressions
for similar ideas, consequences, and values.

Third, to provide a graphical representation of all
chains within a theme, network maps were generated
for each theme. The data collection and its analysis
has been report more in detail in [4]. This research
focuses on reporting how the critical success chains
method can be integrated into model driven
development and more specifically to domain-
specific modeling. For this purpose, we have
developed a custom modeling case tool. In the next
section, we depict the general parts of the tool and
thereafter the actual developed artifact.

4. Modeling
In this section, we first describe the general parts

of the editor that enable us to model the different
aspects of the diagram related to requirements,
functionalities, and software components. Based on
an example taken from a case study on mobile
presence services [3, 4], we then describe the
different parts of the diagram and their modeling
functionalities, in turn.

4.1 Editor
Figure 1 shows the palette of the editor containing

the various modeling tools. The three tools in the first
section of the palette are used for the general
manipulation of the diagram.

The “Select” tool allows for the selection of a
specific object in the diagram. The second tool allows
the user to zoom out of the diagram in order to get a
better overview or to go to a specific section of the
diagram. The user can also zoom in, in order to view
more details and data. The “Note” tool enables the
user to add free-text notes to any part of the diagram.
These notes can also be connected to specific objects
in the diagram. In case the connected object is moved
to another part of the diagram, the connection will be
maintained.

The next section of the palette contains the
different nodes of the diagram that can be created.
The first three tools are used to model the “Features,”
“Outcomes,” and “Values” of a network diagram. A
connection between these notes can be created with
the “Result” relationship tool, which is found in the
third section of the palette and described later.

The next three tools in the palette allow the
modeling of functionalities that can be derived from
features, outcomes, and values. It is possible to add
specific details to these functionalities, as well as
notes that can contain information that has been
provided during the interview process or in the first
part of the requirements modeling. With the
“Implementation/Import” tool, it is possible to link
specific features, outcomes, or values to general
functionalities or specific details.

The last two tools in the second section provide
the connection to component-based software
development. Using the “Component” tool, it is
possible to model a component that will implement a
particular functionality or a detail thereof. The
connection between functionalities or their details
and a component can be modeled using the
“Implementation/Import” tool. This tool also allows
the modeling of import relationships between
different components. In this way, a component that
consists of several sub-components can easily be
modeled. The tool “DeploymentNode” allows the
description of physical nodes on which the
components will be deployed. The deployment of a
component on a node can be specified using the
“Deployment” tool in the last section of the palette.

The last section of the palette contains the
different mechanisms that allow the modeling of
connections between the various diagram objects. As
briefly described above, the “Result” tool allows us
to model how a feature results in one or several
outcome(s), which, in turn, can result in one or
several values. The “Implementation/Import” tool
enables the modeling of the relationships between
different features, outcomes, and values, as well as
their resulting functionalities. It is also used to model
how different functionalities are implemented by
specific components and how components may

Figure 1. The Modeling Tools of the Editor

959

Authorized licensed use limited to: Jyvaskylan Yliopisto. Downloaded on March 09,2022 at 13:27:22 UTC from IEEE Xplore. Restrictions apply.

import other components. The last item in the palette,
the deployment tool, enables the modeling of the
components that are deployed on specific hardware
nodes.

The editor also provides the analyst with a simple
mechanism for specifying general properties of the
model that is being developed, such as a title, the
author’s name and e-mail address, and the creation
and last modification dates. Further information
includes an identifier of the diagram, as well as
further documentation of the modeled case or a link
to it. These properties are shown in Figure 2.

Based on the case study on mobile presence
services [3, 4], we now describe the specific
modeling elements of the editor as they are used
during the typical development life cycle. We start
with the modeling of requirements; as they are
collected in the requirements gathering process, we
show how the derived functionalities are created and
how the components implement these functionalities.

4.2 Requirements
Following the critical success chains method

process, after the interviews with the lead users, it is
necessary to structure the collected requirements. For
this purpose, we distinguish between “Features,”5

“Consequences,” and “Values.”6 Each stimulus that
was provided to the lead user in the interview is
typically modeled in a separate diagram and reflected
in the diagram’s title or documentation. Figure 3
shows an overview of a partial requirements map,

5 “Attributes” in the original critical success chains

methodology
6 “Values/Goals” in the original critical success chains

methodology

titled “City Wanderer,” which was part of one case
study.

Visible on the left side of the diagram—in the
form of blue, rounded rectangles—are some of the
various features that were provided in the interview
and their relationships. As can be seen, different
features may result in one common feature, while one
feature may result in different, more detailed features.

The provided features, in turn, result in different
outcomes, modeled in the form of white trapezoids.
These relationships between features and outcomes,
as well as the relationships between different

outcomes, can also be modeled in the diagram.
The underlying values, as seen by the interviewed

lead user, can also be modeled in the same way.
Values are visualized in the form of yellow ellipses,
while the relationships between outcomes and values,
as well between the different values, are also
modeled as described before.

This way, the tool provides the analyst with a
simple and consistent mechanism for modeling the
various aspects of the gathered requirements.
Furthermore, each feature, outcome, or value also has
a score, describing how important the user considered
a specific feature. This information can also be
modeled in the diagram. Furthermore, it is possible to
maintain a link to the initial source of the information
by providing the source chain or chains, as well as a
reference to the initial interview (e.g., a link to the
audio-file recorded during the interview). This
information provides a link throughout the
development process and makes it possible to further
examine the source of a particular requirement and
related details that might be unclear—e.g., due to
misinterpretation or insufficient modeling.

Figure 2. Properties of the Diagram

960

Authorized licensed use limited to: Jyvaskylan Yliopisto. Downloaded on March 09,2022 at 13:27:22 UTC from IEEE Xplore. Restrictions apply.

4.3 Functionalities
In order to bridge the gap between the analyst and

the developer, we decided that it was necessary to
specify the separate system functionalities that would
be part of a particular user requirement or a set
thereof. These functionalities would serve as an
intermediary between the modeled requirements and
the software components that would implement them.

Our tool allows for the specification of
functionalities on two different levels. On a more
coarse level, it is possible to specify the
functionalities themselves and link them to the
features, outcomes, or results or to the user
requirements that they satisfy. On a more fine-
grained level, it is possible to specify the details of
those coarse functionalities, which can also be related
to specific requirements. Furthermore, these details
can contain specific notes, enabling the analyst to
describe, for example, variations of a specific detail
coming from the interview(s).

Two functionalities that have been derived from
the City Wanderer requirements map and their details
are depicted in Figure 4. Using the tools, described
earlier in Section 4.1, it is easily possible to model
the different functionalities and their relationship to
the requirements. Meta-information, such as the
scoring of the different functionalities, is also
maintained, based on the connection to their
originating requirements. This information can serve
as important data in the decision-making process—
for example, to decide on the functionalities to be
implemented or the order of their implementation.

4.4 Components
Functionalities allow us to bridge the gap

between user requirements and the software that
satisfies these requirements. On the software
engineering side, it is possible to use various
engineering methodologies, such as object-oriented
software development. We decided to use a
component-based software engineering approach and
provide a connection to component diagrams. Figure
5 illustrates the components that implement the
previously modeled “Information Provisioning” and
the “Map” functionalities (see Figure 4).

The meta-data from other parts of the diagram are
also maintained in this stage of the modeling process.
Additional information related to the components—
such as their platform, originating library, or
implementation sources—can also be provided, and
this information is used in the code generation
process. Furthermore, it is possible to model the
components that import other components and
provide a complete application prototype.

In addition, one or several deployment nodes can
be modeled. These nodes can specify details—e.g., of
the hardware on which the components will be
deployed as described in Figure 5.

5. Domain-Specific Case Tool for ICT-
Enabled Service Design

Also visible in Figure 5 is the context menu of the
map view component. This menu contains a
cascading sub-menu, which allows the start of code
generation for either the selected component or the
selected component and all related components (i.e.,

Figure 3. Part of a Requirements Map (actual screen shot of the tool)

961

Authorized licensed use limited to: Jyvaskylan Yliopisto. Downloaded on March 09,2022 at 13:27:22 UTC from IEEE Xplore. Restrictions apply.

connected to the component and its deployment
node). The information on the selected component
and, if chosen, related components, is evaluated and,
together with details of the deployment node, is used
to generate code for the target platform.

To generate code, we currently use Java Emitter
Template (JET) technology, which provides us a
simple means of specifying how the modeled
information should be combined with source code for
different platforms. Depending on the target platform,
it may then be necessary to set up the build
environment, in order to build the generated code,
which can then be run.

While the previously described method is focused
on the elicitation of requirements from wide audience
end users and the derivation of component models
that satisfy these requirements, other requirements for
engineering and development methods may, under
other circumstances, be more suitable. Our editor
was, thus, implemented in such a way that it could
easily be integrated with other tools that support these
engineering methods.

5.1 Integration
The modeled information is stored in two

separate files, which are both in XML format. All
information regarding requirements, functionalities,
or components, as well as their relationships, are kept
in one file, while all graphical information (e.g.,
regarding their layout in the diagram) is kept in a
separate file. While any tools that are also integrated
in the Eclipse IDE can use the provided API, other
tools can use the XML files to access the modeled
information and import the data into their own
format.

5.2 Separate Diagrams
In order to enable the structuring into different

diagrams, we provide a mechanism that allows the
linking of entities in one diagram in another diagram.
In this way, it is possible to not only re-use
information that has already been modeled in one
diagram in another, but also, the information is
updated automatically. Changes in one diagram can
automatically reflect in the related diagrams.

6. Conclusions
Based on the methodology developed in our

previous research [3-5], we now provide a tool that
enables continuous linkages between the various
stages of the service development process, especially
in service design. Based on rich requirements
collected from end-users, we have shown how these
user requirements can be modeled, how they can be
abstracted in the form of functionalities, and how
they result in system requirements. These can, in
turn, be modeled directly in the form of software
components, without losing the connection to
previously collected information. Because this tool is
integrated with the widely used Eclipse IDE,
designers and developers have easy access to data
that was used to derive the original requirements for
their work. Thus, we see that our study contributes to
the model-driven development and domain-specific
modeling literature by offering a tool that integrates
to a popular open source IDE. Some earlier domain-
specific modeling tools were focused more on
tailored software packages, such as MetaEdit+
available from MetaCase, Ltd.—see, e.g., [32].

Based on the gathered information, we were also
able to demonstrate the generation of the prototype

Figure 4. “Information Provisioning” and “Map” Functionalities

962

Authorized licensed use limited to: Jyvaskylan Yliopisto. Downloaded on March 09,2022 at 13:27:22 UTC from IEEE Xplore. Restrictions apply.

code, which can be compiled and run in an emulator
or directly on a target device. This enables analysts to
directly model the requirements and generate a
functional prototype, allowing them to evaluate the
collected requirements. Requirements and the derived
functionalities can also be used to determine which
functionalities are of particular importance for the
end user and, thus, the order in which they should be
implemented. This way, the gathered information can
be used to design and develop a variety of ICT-
enabled services, depending on the user’s needs.
Because connections to all gathered and modeled
information are maintained throughout the
development life cycle, it can also be used in later
iterations. Furthermore, the tool was designed and
developed in such a way that it can be easily
integrated with other tools and used with other
requirements and software engineering techniques.
This ensures a high level of flexibility and also
enables other researchers to evaluate their
methodologies.

Our further research in this area focuses on three
areas. Firstly, we are working on the further
integration of our tool with other requirements in the
engineering and service development methods. This
will help in the refinement and the use of our tool in
other fields of research. Secondly, we feel that the
use of state-of-the-art code generation would provide
a considerably higher impact of the developed tool
and the refined methodology. Our tool is currently
limited to Java code and the generation of basic
prototype services, even though these applications

can be built and deployed immediately. Finally, we
should further focus on the evaluation of the tool in
various ICT-enabled service projects. While we have
used several case studies to develop and evaluate our
tool, a further evaluation in other fields and further
case studies will be beneficial, as would be a gradual
adoption in the industry.

References

[1] T. Tuunanen, M. Myers, and H. Cassab, "A
Conceptual Framework for Consumer
Information Systems Development," Pacific Asia
Journal of the Association for Information
Systems, vol. 2, p. 5, 2010.

[2] S. L. Vargo and R. F. Lusch, "Evolving to a New
Dominant Logic for Marketing," Journal of
Marketing, vol. 68, pp. 1-17, 2004.

[3] M. Przybilski and T. Tuunanen, "From rich user
requirements to system requirements," in
Proceedings of 11th Pacific-Asia Conference on
Information Systems, Auckland, New Zealand,
2007, pp. 561-573.

[4] T. Tuunanen, K. Peffers, C. Gengler, W. Hui, and
V. Virtanen, "Developing Feature Sets for
Geographically Diverse External End Users: A
Call for Value-based Preference Modeling,"
JITTA : Journal of Information Technology
Theory & Application, vol. 8, pp. 41-55, 2006.

[5] K. Peffers and T. Tuunanen, "Planning for IS
applications: a practical, information theoretical
method and case study in mobile financial
services," Information & Management, vol. 42,
pp. 483-511, 2005.

Figure 5. Components that implement the Functionalities, and the Service Application, as well as

their Deployment Node

963

Authorized licensed use limited to: Jyvaskylan Yliopisto. Downloaded on March 09,2022 at 13:27:22 UTC from IEEE Xplore. Restrictions apply.

[6] K. Peffers, C. Gengler, and T. Tuunanen,
"Extending Critical Success Factors Methodology
to Facilitate Broadly Participative Information
Systems Planning," Journal of Management
Information Systems, vol. 20, pp. 51-85, 2003.

[7] R. France and B. Rumpe, "Model-driven
development of complex software: A research
roadmap," in 2007 Future of Software
Engineering, Minneapolis, MN, 2007, pp. 37-54.

[8] A. R. Hevner, S. T. March, and J. Park, "Design
Research in Information Systems Research," MIS
Quarterly, vol. 28, pp. 75-105, 2004.

[9] J. Grudin, "Interactive Systems - Bridging the
Gaps between Developers and Users," Computer,
vol. 24, pp. 59-69, Apr 1991.

[10] R. Daft and R. H. Lengel, "Organizational
Information Requirements, Media Richness and
Structural Design," Management Science, vol. 33,
pp. 554-569, 1986.

[11] J. Bragge, H. Merisalo-Rantanen, and P.
Hallikainen, "Gathering innovative end-user
feedback for continuous development of
information systems: a repeatable and
transferable e-collaboration process,"
Professional Communication, IEEE Transactions
on, vol. 48, pp. 55-67, 2005.

[12] P. Haumer, K. Pohl, and K. Weidenhaupt,
"Requirements elicitation and validation with real
world scenes," IEEE Transactions on Software
Engineering, vol. 24, pp. 1036-1054, Dec 1998.

[13] K. Holtzblatt and H. Beyer, "Making Customer-
Centered Design Work for Teams,"
Communications of the ACM, vol. 36, pp. 93-103,
Oct 1993.

[14] J. Mylopoulos, L. Chung, and E. Yu, "From
Object-Oriented to Goal-Oriented Requirements
Analysis," Communications of the ACM, vol. 42,
pp. 31-37, January 1999.

[15] C. Atkinson and T. Kuhne, "Model-driven
development: a metamodeling foundation,"
Software, IEEE, vol. 20, pp. 36-41, 2003.

[16] B. Selic, "The pragmatics of model-driven
development," Software, IEEE, vol. 20, pp. 19-
25, 2003.

[17] V. Kulkarni and S. Reddy, "Separation of
concerns in model-driven development,"
Software, IEEE, vol. 20, pp. 64-69, 2003.

[18] S. Kelly and J.-P. Tolvanen, Domain-specific
modeling: enabling full code generation: Wiley-
IEEE Computer Society Press, 2008.

[19] S. W. Ambler, "Agile model driven development
is good enough," Software, IEEE, vol. 20, pp. 71-
73, 2003.

[20] C. Bock, "UML without Pictures," Software,
IEEE, vol. 20, pp. 33-35, 2003.

[21] S. Sendall and W. Kozaczynski, "Model
transformation: The heart and soul of model-
driven software development," Software, IEEE,
vol. 20, pp. 42-45, 2003.

[22] D. Moreno-Garcia and J. Estublier, "Model-
driven Design, Development, Execution and
Management of Service-based Applications," in
Services Computing (SCC), 2012 IEEE Ninth
International Conference on, Honolulu, HI, 2012,
pp. 470-477.

[23] Nokia. (2005, 3/9). Staying in Touch With
Presence. Available: http://www.nokia.com

[24] K. Peffers, T. Tuunanen, M. Rothenberger, and S.
Chatterjee, "A Design Science Research
Methodology for Information Systems Research,"
Journal of Management Information Systems,
vol. 24, pp. 45-77, 2007.

[25] J. E. van Aken, "Management research based on
the paradigm of the design sciences: The quest
for field-tested and grounded technological
rules," Journal of Management Studies, vol. 41,
pp. 219-246, 2004.

[26] P. Järvinen, "Action Research is Similar to
Design Science," Quality & Quantity, vol. 41, pp.
37-54, February 2007.

[27] S. Gregor and D. Jones, "The anatomy of a
design theory," Journal of the association of
information systems, vol. 8, pp. 312-335, 2007.

[28] T. J. Reynolds and J. Gutman, "Laddering theory,
method, analysis, and interpretation," Journal of
Advertising Research, vol. 28, pp. 11-31, 1988.

[29] G. A. Kelly, The Psychology of Personal
Constructs. New York: W W Norton &
Company, 1955.

[30] C. E. Gengler, D. J. Howard, and K. Zolner, "A
Personal Construct Analysis of Adaptive Selling
and Sales Experience," Psychology & Marketing,
vol. 12, pp. 287-304, 1995.

[31] C. E. Gengler and T. J. Reynolds, "Consumer
understanding and advertising strategy: analysis
and translation of laddering data," Journal of
Advertising Research, vol. 35, pp. 19-33, 1995.

[32] M. Rossi and T. Tuunanen, "A method and tool
for rapid consumer application development,"
International Journal of Organisational Design
and Engineering, vol. 1, pp. 109-125, 2010.

964

Authorized licensed use limited to: Jyvaskylan Yliopisto. Downloaded on March 09,2022 at 13:27:22 UTC from IEEE Xplore. Restrictions apply.

