
This is a self-archived version of an original article. This version
may differ from the original in pagination and typographic details.

Author(s):

Title:

Year:

Version:

Copyright:

Rights:

Rights url:

Please cite the original version:

In Copyright

http://rightsstatements.org/page/InC/1.0/?language=en

Defining Complexity Factors for Architecture Evaluation Framework

© 2006 IEEE

Published version

Mazhelis, Oleksiy; Lehto, Jari A.; Markkula, Jouni; Pulkkinen, Mirja

Mazhelis, O., Pulkkinen, M., Lehto, J., & Markkula, J. (2006). Defining Complexity Factors for
Architecture Evaluation Framework. In R. H. Sprague (Ed.), Proceedings of the Thirty-Ninth
Annual Hawaii International Conference on System Sciences. Institute of Electrical and
Electronics Engineers Computer Society. IEEE Computer Society.

2006

Defining Complexity Factors
for the Architecture Evaluation Framework

Oleksiy Mazhelis∗, Jari A. Lehto †, Jouni Markkula∗ and Mirja Pulkkinen∗
∗Information Technology Research Institute,

University of Jyväskylä, P.O.Box35, FIN-40014, Jyväskylä, Finland,
Email: {mazhelis,markkula,pulkkinen}@titu.jyu.fi

†Nokia Networks, P.O.Box 407, FIN-00045 Nokia Group
Email: Jari.A.Lehto@nokia.com

Abstract— The design and implementation of telecommuni-
cation systems is an incremental and iterative process, and
system architectures may need to be revised and refined several
times during their lifetime. Formal evaluation facilitates the
identification of the weak points, where improvements are due
in these architectures. In the domain of telecommunications,
such evaluation can be based on the Architecture Evaluation
Framework (AEF).

During the evaluation, a deep understanding of the processes
within a system is needed. Meanwhile, the systems being designed
are usually complex systems encompassing a large number of
components with an intricate pattern of interaction between
them. As a result, it is extremely difficult to understand, predict
and control the behavior of such systems.

Theoretical studies in the field of complex systems describe
potential reasons of system complexity, and explain its possible
outcomes, as reflected in system structure and behavior. This
knowledge may be utilized in architecture evaluation, in order
to deepen the understanding of the interactions imposed by
the architecture, as well as to extend the understanding of the
involved architectural tradeoffs. For this, the complexity factors
should be taken into account during the evaluation. However, no
such factors are involved in the current version of the AEF.

In this paper, the attempt is made to identify how the
knowledge about properties of complex systems could be utilized
for the evaluation of information system architectures. Based on
the theoretical advances in the field of complex systems, a list
of the complexity factors to be included in the AEF is compiled.
These factors are going to be further refined, as the AEF is
employed for evaluating real-world architectures.

I. INTRODUCTION

From a structural viewpoint, a (computer) system can be
defined as “a set of elements and relations among them,
considered as a whole and for which there is a recognized
purpose and capability” [1]. The system elements are referred
to as components. A component may itself be a (sub)system
consisting of a number of components, etc.; this recursion
stops when a component is considered to be atomic, i.e. when
its further decomposition into components is impossible, or is
of no interest [2].

The components comprising a system can be software or
hardware components, or a mixture of both. The system
concept is illustrated in Figure 1, depicting the Mobile Internet
as an example of a system. This system includes a number
of components such as mobile terminals, the network part,
and the content provision part. Each of these components

Fig. 1. An example of a system

represents a system of high complexity, interacting with other
components in order to provide certain capabilities (e.g. voice
communication). As such, these parts are comprised of a num-
ber of components. Network part, for example, is decomposed
into a number of network elements. Each of the network
elements is further decomposed into a number of software
and hardware components (cf. Figure 1).

The set of system components along with the relationships
between these components represent a logical structure of
this system. More than one type of relationships may exist
between the components (e.g., hierarchical decomposition,
data flow, control flow, interaction sequencing), and more
than one systems structure may be used to capture these
relationships. This logical structure or structures, together with
the functional characteristics of the system, can be referred to
as the architecture of the system [1].

The architecture of a system should match well with
the underlying business-drivers (i.e. planned effects on the
market), involve suitable external components, be coherent
with other architectures in a product family, etc. In order to
determine the appropriateness of an architecture with respect
to these requirements, a formal architecture evaluation can
be conducted. The process of evaluation can be based on a
specific evaluation method, such as the Software Architec-
ture Analysis Method (SAAM) and the Architecture Tradeoff
Analysis Method (ATAM) [3]. Recently, building on the ideas
of ATAM, the Architecture Evaluation Framework (AEF) [4]
has been developed. The AEF defines the set of procedures
and tools required for the evaluation of system architectures,
and it is tailored to the domain of telecommunications.

In the evaluation process, a deep understanding is needed of
the processes within the complex system whose architecture

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

10-7695-2507-5/06/$20.00 (C) 2006 IEEE
Authorized licensed use limited to: Jyvaskylan Yliopisto. Downloaded on March 09,2022 at 08:04:02 UTC from IEEE Xplore. Restrictions apply.

is being evaluated. Meanwhile, the contemporary telecom-
munication systems usually encompass a large number of
components with intricate patterns of interaction between
them. Such systems can be considered as complex systems
since [5]:

• The systems are “sufficiently” complex, i.e. they have
a large number of components and interactions between
them. As a result, it is extremely hard or impossible to
know the details of all interactions taking place in the
system.

• On the other hand, interactions between individual com-
ponents may produce non-linear effects. Such non-linear
interactions even in simple systems may be impossible to
model analytically.

Thus, as the complexity of a system grows, it becomes
increasingly difficult to understand and predict the system
behavior.

Theoretical studies in the field of complex systems de-
scribe potential reasons for system complexity, stemming both
from the structural and from the behavioral properties of
the system components and interactions. These studies also
describe possible outcomes of complexity, as reflected in the
system structure and behavior. Such theoretical knowledge
may be highly useful, when a deeper understanding of the
processes within complex systems is needed. Therefore, it
seems plausible that the awareness of complexity-related is-
sues can be utilized in system architecture evaluation, in order
to extend the understanding of the interactions imposed by
the architecture, and the involved architectural tradeoffs (e.g.
whether modifiability is preferred to performance). For this, it
can be advisable to take the complexity factors into account
in the AEF-based evaluation process. However, such factors
are missing in the current version of the AEF.

This study aims at extending the AEF with additional fac-
tors, which would allow to take into account the complexity-
related aspects in the course of architecture evaluation. Those
properties of complex systems, whose analysis is deemed
useful during the architecture evaluation process, will be
considered. Based on the theoretical advances in the field of
complex systems, a preliminary list of the complexity factors
to be included in the AEF is produced. These factors are to
be further refined, as the AEF is employed for evaluating real-
world architectures.

The paper is organized as follows. After a short introduction
of the AEF in Section II, an overview of the theoretical
advances in the field of complex systems is provided in
Section III. After that, in Section IV, a list of the complexity
factors to be included in the AEF is proposed. Finally, Sec-
tion V gives conclusions to the paper.

II. ARCHITECTURE EVALUATION FRAMEWORK

The Architecture Evaluation Framework [4] is intended for
evaluating an architecture from the viewpoint of one or several
business drivers. Besides, the purpose of the framework is to
achieve a deeper, common understanding of the architecture,
and the involved trade-offs, among the stakeholders. The AEF

can be also used to facilitate the checking of the suitability
of external components, evaluating the internal coherence of
a product family, or prioritizing development efforts. The
AEF represents an in-house evaluation framework building on
the ideas of ATAM [3]. The development of the AEF was
justified by two main arguments. First, the framework’s scope
of concerns had to be tailored to the company, and also the
terminology was adapted to the company’s internal vocabulary,
in order to prevent the evaluators from the need for additional
step of learning. Second, the time and efforts required for the
evaluation had to be kept to a minimum, since the framework
will be used in business environments in projects with a limited
time frame. In response to this requirement, the AEF e.g.
excluded an explicit consideration of scenarios. In this section,
a brief summary of the framework is provided; for further
details, the interested reader may consult [4].

According to the AEF, the evaluation starts with the se-
lection of the evaluation team of experts representing the
complete life-cycle of the system, and determining the rel-
evant business drivers. After the business drivers have been
identified, the evaluation proceeds as follows.

First, the hierarchy of the domain-specific factors which
are potentially important from the architectural point of view
is established. The top-level factors in the hierarchy are
generic (e.g. operational efficiency), while leaf-level factors
represent domain-specific factors (e.g. measures of operational
efficiency for the target product). The framework provides the
evaluators with a set of architectural factors; however, the eval-
uation team is supposed to consider these factors and adjust
them to the particular domain of concerns. As a result of the
discussions invoked during this step, a common understanding
of factors among the evaluators should be achieved.

Having identified the factors, their relative importance, or
factor weights, is determined by using the Analytic Hierarchy
Process technique [6]. For each branch and for each level of
the hierarchy, the factors are pair-wise compared with respect
to a specific business driver, and their relative importance
is defined (e.g. factor A is two times more important than
the factor B, with respect to the business driver C). These
values of pair-wise relative importance are subsequently used
to calculate the relative importance coefficients for each factor.
The use of these coefficients makes the framework tolerant
of the presence of less relevant factors. As a result of the
pair-wise comparison, the coefficients corresponding to the
less relevant factors will be assigned low values, virtually
excluding these factors from further use in the evaluation
process. Consequently, the evaluation team may decide to
exclude the factors, to which low importance coefficients were
repeatedly assigned, from the factor hierarchy.

For each of the leaf-level factors, suitable metrics in the
form of specific questions are defined. An example of such
a question may be “what is the mean time between service
interruptions?”. In fact, the leaf-level factors are represented
directly by these questions. The evaluation is performed by
asking the members of the evaluation team to answer these
questions and to evaluate, for each question/factor A, the effect

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

2Authorized licensed use limited to: Jyvaskylan Yliopisto. Downloaded on March 09,2022 at 08:04:02 UTC from IEEE Xplore. Restrictions apply.

that the given answer has on the business driver C being
considered. The effect is evaluated as a real number between
0 (negative effect) and 1 (positive effect), and this value is
assigned to the corresponding metric.

The values of metrics and the values of relative importance
coefficients are used to evaluate the overall appropriateness
score of the architecture. Two alternative architectures can
be compared quantitatively using the obtained scores, or the
architecture being evaluated can be compared with an ideal
one. Finally, a sensitivity analysis is run to evaluate how
sensitive the appropriateness score is to the changes in the
individual factors (importance coefficient).

While complexity-related factors may be of high value for
architecture evaluation, such factors are missing in the current
version of the AEF. Before defining the complexity-related
factors, the theoretical advances in the domain of complex
systems are overviewed in the following section.

III. COMPLEX SYSTEMS

A system is considered as complex, when it displays com-
plex behavior, i.e. when a large number of components and
interactions exist in the system, or “when its elements interact
in a non-linear fashion, such that it is impossible to predict
the behavior of the system as a whole from knowledge of the
elements themselves” [7]. For example, mobile telecommuni-
cation networks represent complex systems that are inherently
difficult to understand, due to a number of factors including
structural complexity, network evolution, connection diversity,
dynamical complexity, and node diversity [8].

While individual events in complex systems have little or no
predictability, taken together these events often form a mass
phenomenon. As a result, at the system level, global patterns
of behavior may appear (referred to as emergent properties).
At the same time, due to high complexity, understanding the
individual interactions and their causations is unlikely; equally,
it is not usually practicable to predict the individual events.
Appearance of these system-level properties referred to as the
emergence phenomenon is an important feature of complex
systems.

Traffic jam can be seen as an example of an emergent
property, which may be induced by a complex interaction
of a large number of motor vehicles. The appearing and
dissolving of traffic jams cannot be explained by analyzing the
properties of the individual vehicles, the internal structure and
organization of their parts. Rather, the interactions between
the vehicles and the environment of their action should be
considered to model the traffic jams with a reasonable degree
of accuracy. In the context of mobile networks, the emergent
phenomenon of network congestion is analogous to the traffic
jam phenomenon. In software systems, system safety is one of
emergent properties arising in the interactions among system
components. Therefore, even if each component’s operation
strictly complies with its specified behavior, the resulting
system-level behavior may still fall into a hazardous state [9].
Similarly, the reuse of a software component may result in a
less safe system as evidenced by the case of the medical linear

accelerator Therac-25 [10] or by the case of the accident with
the spacecraft Ariane 5 [11]. System-level performance and
reliability are examples of emergent properties as well.

In this section, Holland’s theory of complex adaptive sys-
tems, and the studies focused on the properties of complex
networks are overviewed.

A. Holland’s Complex Adaptive Systems theory

John Holland proposed his theory of complex adaptive
systems (CAS) back in 1970s. Often, Holland is called the
founder of the domain of genetic algorithms – in his seminal
book “Adaptation in Natural and Artificial Systems” [12],
he described the mechanisms of reproduction, mutation and
selection, which represent a simplification of natural evolution,
and are widely employed in the variety of genetic algorithms.

According to this theory, system components represent
autonomous agents that interact with each other [13]. These
agents are able to respond locally to stimuli and thereby adapt
to a dynamically changing environment. The agents, through
interaction with other agents, are capable of transmitting
information; consequently, the system as a whole may be
able to learn (adapt or evolve). Below, the properties and
mechanisms commonly found in CAS are described, and the
processes of learning or adaptation are briefly considered.

1) Properties and mechanisms of CAS: Holland postulated
that common to all CAS are four properties (aggregation, non-
linearity, flows, and diversity) and three mechanisms (tagging,
building blocks, and internal models) [14].

a) Aggregation property: The property of aggregation
is manifested in CAS in two ways: as a technique for
constructing models, and as an integration of less complex
behaviors into a more complex behavior [14]. In the first
sense, aggregation refers to the process of simplifying complex
systems by aggregating the properties of system components
into categories. In the second sense, aggregation refers to the
fact that, through interaction, less complex systems aggregate
into more complex systems. As a result of such interaction,
complex large-scale behavior emerges. This effect of an ap-
pearing more complex behavior due to the interaction of less
complex agents is known as the emergence phenomenon.

The emerging more complex systems can be seen as agents
at a higher level, or meta-agents. The properties of meta-agents
(which are the aggregate properties in the first sense above) are
referred to as the emergent properties. An example of such a
meta-agent is an economy, emerging because of the interaction
of a number of participating firms. An example of an emergent
property that the economy has is the gross domestic product.

b) Tagging mechanism: For an agent, the process of
selecting another agent to interact with is not completely
random. Whether a particular (type of) agent to interact with is
selected depends on experiences obtained in past interactions
with agents of this type.

Therefore, a mechanism for differentiating agents of differ-
ent types is needed. According to [14], agents distinguish each
other by using tags, such as flags/banners in the warfare, or
trademarks in commercial interactions.

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

3Authorized licensed use limited to: Jyvaskylan Yliopisto. Downloaded on March 09,2022 at 08:04:02 UTC from IEEE Xplore. Restrictions apply.

By allowing agents to distinguish each other, tags also facil-
itate filtering, specialization, and cooperation between agents,
and by doing so, they facilitate the formation of aggregates.

c) Nonlinearity property: A numerical property is linear
w.r.t. the values of its constituents, if the property’s value is
a linear function of the constituents’ values. Linearity is often
assumed, as it simplifies the analytical solutions. However,
for CAS, this assumption does not hold, i.e. system properties
are nonlinear functions of the constituents’ values. Therefore,
CAS are said to possess the nonlinearity property. As stated
in [14, p. 23], “nonlinear interactions almost always make
the behavior of the aggregate more complex than would be
predicted by summing or averaging”.

The nonlinearity has two implications. First, nonlinear inter-
actions are likely to result in highly complex system behavior
even when the number of interacting agents in the system is
small. Consequently, often no analytical solution can be found
that would relate the system level emergent properties with the
properties of system components/agents. An example of such
a complex behavior is the chaotic behavior of three celestial
bodies under their mutual gravitational attraction known as
the Newtonian three-body problem, or the fluctuation of the
execution time of a program in a multi-task environment due
to the influence of other concurrently running tasks.

Another consequence of nonlinearity is the difficulty and
often impossibility of accurate prediction of the system be-
havior. Unpredictable consequences may occur, because only
an incomplete picture of the system is available, and a tiny
event may trigger a major shift in the system-level behavior.

d) Flows property: The flows represent various interac-
tions between components/agents of a system. A flow could
be thought of as an exchange of resources over a network of
nodes and connectors. For instance, in the Internet, messages
(resources) are exchanged over a network of computer work-
stations (nodes) connected with cables (connectors). Here,
nodes designate the processors/agents, while connectors reflect
the possible interactions between these agents.

The flows in CAS are not fixed; they can vary over time.
Similarly, nodes and connectors can appear and disappear as
agents adapt to their environment.

The flows have a multiplier effect and a recycling effect. The
multiplier effect refers to the effect of propagating changes
through the network. This effect means that an interaction
(an exchange of resources) between two nodes often induces
further interactions with other nodes, resulting in a chain
of changes within the system. As a result, the effect of the
initial change is multiplied during its propagation within the
network. The recycling effect is a special case of multiplier
effect, wherein the change is propagated through cycles in the
network.

e) Diversity property: The existence of an agent depends
on the other agents, i.e. on the agent’s context. Agents of the
same type fill a “niche” of inter-agents interactions; should
this type of agents disappear, the system adapts by generating
a new agent to fill that niche. As a result of such adaptations,
different types of agents appear.

Thus, the diversity of agents is a product of progressive
adaptation – a niche is an opportunity for new interactions,
and agents of various types fill different niches.

f) Internal models mechanism: The internal models cor-
respond to the mechanisms of prediction and anticipation,
which actively determine an agent’s behavior.

Two types of internal models should be distinguished ac-
cording to [14]. The tacit internal models prescribe current
action of an agent under implicit anticipation of a future
desired state. A bacterium e.g. has the tacit internal model that
suggests the movements in the direction of chemical gradient
– it is implicitly assumed that food is located in that direction.

On the other hand, an overt internal model presumes the ex-
istence of a lookahead process, i.e. explicit internal exploration
of possible alternatives, similar to the mental exploration of
possible consequences before making a move in chess.

The model is called effective if it is capable of predicting
future useful consequences. Variants of the internal models un-
dergo progressive adaptations – less effective internal models
are eliminated in the evolutionary process.

g) Building blocks mechanism: The problems, which
people face daily, usually represent complex scenes, and often
a complex scene is faced that has not been encountered
before. To find a solution for a new complex scene, this scene
is decomposed into a number of “reusable” elements, each
of which are already separately tested (e.g. through natural
selection and evolution). These reusable elements represent
building blocks that can be employed in a variety of situations.
Thus, a solution to a new problem can be found by combining
relevant building blocks.

Combinations of building blocks generate the agents’ inter-
nal models considered in the previous subsection [14]. The
process of combining building blocks (and hence the internal
model) advances orders of magnitude faster when the internal
model is overt, as compared against the tacit internal model.

2) Adaptation or Learning: For modeling purposes, an
agent can be described as a set of message-processing rules
in a form of IF-THEN statements. In the process of learn-
ing/adaptation these rules are being changed and replaced with
new ones, by using the procedures of credit assignment and
rule discovery that are outlined below.

a) Adaptation by credit assignment: Credit assignment is
the procedure of assigning and modifying “strength” to each
rule so that the strength would reflect the degree of the rule’s
usefulness from the system point of view.

The strength of a rule is modified according to the past
experiences, obtained after the rule was applied. For each
interaction in which the agent is involved, the agent is assigned
a “credit”. In a chain of interactions, the credit is distributed
along the chain according to the feedback obtained on later
stages of interaction (with the first feedback coming from
the environment). Thus, if a chain of interactions results
in a successful interaction with the system’s environment
(whatever the environment means), the positive feedback from
the environment is distributed backward along the interaction
chain, increasing the strength of the involved rules.

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

4Authorized licensed use limited to: Jyvaskylan Yliopisto. Downloaded on March 09,2022 at 08:04:02 UTC from IEEE Xplore. Restrictions apply.

When several rules simultaneously satisfy the conditions for
interaction, only one of them needs to be selected for the
interaction. For selecting the rule, bidding process is used,
wherein a rule with the biggest bid is selected. The rule’s
bid, in turn, is proportional not only to the strength, but
also to the specificity of the rule, i.e. more specific rules are
preferred, everything else being equal. As a result of the credit
assignment process, a default hierarchy of rules is developed,
where the rules are organized according to their specificity.

b) Adaptation by rule discovery: While the credit as-
signment process allows prioritization of more useful rules
(i.e. more specific rules with higher strength), the process of
rule discovery is aimed at changing the agents’ capabilities by
replacing less useful rules (or parts thereof) with new ones.

The rules are seen as consisting of sets of building blocks.
To modify a rule, two (parent) rules are selected with the
probability proportional to the usefulness of the rule (called
as fitness). The selected rules are crossed over (crossover
operation), i.e. the building blocks, of which parent rules are
composed, are recombined to produce offspring rules. The
offspring rules then undergo a mutation, i.e. their building
blocks are randomly modified to produce new ones. Finally,
the produced offsprings substitute randomly chosen rules in
the agent’s rule set.

The above process of selection, crossing over, and mutation
models the process of natural evolution. Repeated over and
over again, it results in improved fitness of the rules of the
agents comprising the system.

B. Network complexity

While Holland’s theory of complex adaptive systems ad-
dresses in detail the adaptive character of CAS compo-
nents/agents, a number of studies on CAS focus on the
properties of the complex networks of agents’ interactions,
while paying less attention to the properties of the individual
system components/agents.

1) Complex behavior at the “Edge of chaos”: Stuart
Kauffman, when studying evolutionary processes, attempted
to find an answer to the question of what is the relationship
between the average connectedness of genes and the ability of
organisms to evolve. To answer that question, he studied the
behavior of networks of varying degree of connectedness K
defined as the (maximum) number of connections that a net-
work node may have with other nodes. Thus, in the networks
being studied, the behavior (state) of a node depended on the
behavior (state) of up to K connected nodes. Kauffman found
that the behavior of the network is largely determined by the
degree of connectedness rather than by the rules governing the
behavior of individual nodes.

Kauffman also recognized two types of CAS behavior:
ordered (frozen or periodic) and disordered (chaotic). Later,
Langton extended this classification by including the third type
of CAS behavior – complex behavior residing at the transition
point between ordered and disordered behaviors [15].

Thus, according to Langton, the order in the behavior of
CAS can be categorized into three categories: chaotic, frozen

Fig. 2. Islands of stability produced by the complex model of slime in
StarLogo simulator (http://education.mit.edu/starlogo)

or periodic, and complex; furthermore, the order in the system
behavior depends on the degree of connectedness, i.e. on
the number of connections/interactions in the system [5].
At least three types of connectedness can be distinguished
corresponding to distinct types of system behavior:

• Low connectedness. The systems of this type exhibit fixed
or periodic behavior.

• Medium connectedness. The systems with this type of
connectedness are said to reside on an “edge of chaos”.
They exhibit complex behavior, which is illustrated in
Figure 2 in a form of “twinkling islands of stability,
changing shape at their borders”.

• High connectedness. For the systems having high degree
of connectedness, chaotic behavior is normally observed.

Systems with complex behavior have different properties
as compared with those having fixed, periodic, or chaotic
behaviors. The systems with complex behavior can store and
transmit information and therefore can adapt to a changing en-
vironment, while neither the systems with fixed/static behavior
nor the chaotic systems are capable of doing this [15]. This is
due to the fact that complex networks at the edge of complexity
have a relatively small number of stable configurations –
“basins of attractions” [5], and, having been disturbed, they
quickly converge to one of these basins of attraction. A system
at the “edge of complexity”, thus, exhibits a self-organized
order.

2) Small-world networks: During the last decade, increas-
ingly much attention is paid to the structure and behavior
of various networks. However, a significant breakthrough in
this area can be attributed to the research of sociologist
Stanley Milgram who discovered “Six degrees of separation”
in 1960s [16]. According to his study, personal contacts that
people have form a global social network such that arbitrary
two individuals in this network are in average detached from
each other just by a few degrees of separation (six according
to the study). In 1983, Granovetter discovered the so-called
weak links inside social networks, and described the role of
these weak links [17].

The existence of weak links was later employed by Watts
& Strogatz to explain the phenomenon of the small degree of
separation in networks – the so-called small-world phenom-
enon [18]. According to [18], social networks can be quite

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

5Authorized licensed use limited to: Jyvaskylan Yliopisto. Downloaded on March 09,2022 at 08:04:02 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Examples of egalitarian (left) and aristocratic (right) small-world
networks (adopted from [8])

accurately modeled by the so-called small-world networks,
which are neither regular nor completely random.

A small-world network, i.e. the networks with small degree
of separation, can be created by randomly rewiring a small
portion of vertices in a regular network. As more and more
vertices are randomly rewired, the random type of network is
approached. The bigger the proportion of the rewired vertices,
the closer the network to the random network. Formally, a
network is called as a small-world network, if the value of the
mean geodesic (shortest) distance between vertex pairs scales
logarithmically or slower with network size for fixed mean
degree [19].

Within small-world networks, two types of networks can be
identified [20]:

• Egalitarian networks (illustrated in Figure 3 on the left)
have nodes with roughly same number of links;

• Aristocratic networks (a.k.a. scale-free networks illus-
trated in Figure 3 on the right) differ from the egalitarian
networks in that the number of connections the nodes of
a network have follows power low (fat-tail) distribution.
In other words, these networks have hubs with a large
number of connections. Examples of such networks are
the Internet [21] and the World Wide Web [22].

The main properties of small-world networks can be sum-
marized as follows [23], [20], [19]:

Fast information transfer. One of the most important prop-
erties of small-world networks is their high level of connected-
ness (or, equally, low degree of separation), which enables very
high speed of information transfer across the network to be
achieved. This, in turn, allows easy synchronization between
network nodes.

Transitivity. The property of transitivity reflects the pro-
portion of triangles of nodes in the network. In small-world
networks, the value of transitivity is greater than in random
networks (i.e. “the friend of your friend is likely also to be
your friend”).

Clustering. The nodes in these networks are highly clustered
(their local cliquishness is high), i.e. nodes within a cluster are
highly interlinked with each other, while their connectedness
with the nodes of other clusters is lower.

Mixing patterns. Social networks are assortative (the ver-
tices are more likely to be connected if they are of the
same type), while other networks, including technological,

information and biological networks, are disassortative (the
vertices of distinct types are more likely to be connected).

Type of the network to a large degree determines its tipping
point, i.e. the point at which any seemingly insignificant
changes in a single system component are likely to propagate
far throughout the system. Epidemics are an example of such
far reaching changes that can be triggered, if the average
number of other individuals an infected person infects is
greater or equal than one (i.e. the average number of infected
individuals equal one is the tipping point in this example). For
egalitarian small-world networks, the tipping point depends
on the number of random links; the bigger the proportion
of random links, the lower the tipping point. For aristocratic
networks, no tipping point exists, i.e. changes (such as worms
in Internet) always propagate through the network.

Network resilience. Networks are robust to the distraction
of random nodes. In other words, a relatively high proportion
of randomly selected network nodes being excluded from the
network have little effect on the overall connectedness of the
network. At the same time, small-world networks are sensitive
to the (targeted) distraction of weak links. In egalitarian
networks, weak links are the links outside of a cluster of nodes;
in aristocratic networks, weak links are represented by the hubs
with a large number of links. In general, egalitarian networks
are less sensitive to targeted distraction of weak links.

In the evolution process, networks appear as aristocratic
networks. After reaching the saturation point, they are be-
coming egalitarian networks [20]. The following regularities
have been observed in the process of (self-organized) network
evolution [23]:

• Preferred attachment – a new node is connected to the
nodes with probabilities proportional to the number of
connections the nodes have (possibly multiplied with the
fitness of these nodes);

• New links are added between existing nodes, and existing
links are rewired;

• Duplication – parts of the network (building blocks) are
duplicated and subsequently rewired.

Above, various properties of complex systems and networks
have been summarised. In the next section, they are employed
in order to extend the AEF with the complexity-related factors
(questions).

IV. INCLUDING COMPLEXITY ASPECTS INTO THE AEF
FACTOR HIERARCHY

Formal evaluation methods, such as AEF, facilitate the
identification of the weak points in the architecture, for which
improvements are due. In addition to the system components,
the evaluation process should pay attention to the properties
of the system as a whole. Often, analyzing these system-level
properties is challenging as they are a product of interaction
of a number of system components. Complexity theories, as
considering emergent properties of complex systems, may
assist in identifying and analyzing the above system-level
properties during the architecture evaluation.

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

6Authorized licensed use limited to: Jyvaskylan Yliopisto. Downloaded on March 09,2022 at 08:04:02 UTC from IEEE Xplore. Restrictions apply.

Below, we introduce a tentative list of questions, pin-
pointing various complexity-related properties of systems,
which may be potentially important for the evaluation of a
system architecture. These questions are intended to serve as
leaf-level factors in the AEF factor hierarchy. The properties
of complex systems discussed in the previous section are taken
as the basis for the questions. The list in its current form has
been produced by two of the authors, and underwent several
iterations of refinement based on the discussions among the
authors. Further refinement is to be made by merging the
proposed questions with the AEF factor hierarchy and using
the produced hierarchy for evaluating architectures.

As was described in previous sections, system-level proper-
ties are the result of complex interactions between numerous
system components. Therefore, we consider separately the
properties at the component level and at the system level.
The system-level properties are further divided into behavioral
properties (behavioral patterns), which reflect regularities in
behavior at the system level, and the structural properties
(structural patterns) that describe the organization of compo-
nents in the system.

In the remainder of the paper, let X1, X2, . . . , XN de-
note properties of system components that can be measured
quantitatively or qualitatively, and let Y1, Y2, . . . , YM denote
system-level properties that can be measured quantitatively
or qualitatively. For example, X1 and X2 may denote the
reliability (MTBF) of two components, of which the system
is composed, and Y1 may denote the reliability of the system.
The terms “agent” and “node” are used interchangeably with
the term “component”; similarly, “connection” and “link” is
used interchangeably with “interaction”.

A. Properties of components and interactions

The properties of individual components and interactions in-
clude the general properties of CAS described by Holland, and
the properties of the network growth process. The questions
concerning these properties are listed below.

1) Aggregation:
a) Into how many components the system can be decom-

posed?: System-level properties are produced as a result of
the interaction of a number of components. How many com-
ponents are involved in such interactions? E.g., the interaction
of how many components needs to be taken into account to
evaluate the grade of service (at the level of the network
system), or the reliability of a base station (at the level of
network elements)?

b) Is it useful to model the network as a system of
interacting agents?: Here, the agent model implies that no
“commanding officer” is needed in the system. The agents can
act independently, and their behavior depends on the behavior
of other agents as well as on the internal goals and rules of
the agents themselves.

c) In how many interactions are the components involved
(degree of connectedness)?: Interactions between system com-
ponents can be modeled as a network of nodes (components)
and connectors (interactions). A node (component) may be

connected (i.e. may interact) to one or several other nodes.
Can the nodes’ degree of connectedness be described as low,
medium, or high?

d) What is the number of types of interactions?: A
component may interact with a variety of types of components;
furthermore, more than one interface may be employed for
interacting with the same component. In how many types of
interactions (i.e. types of components to interact with and types
of interfaces) are the system components involved?

e) How intensive the inter-component interactions are?:
How often do the components interact? How is the time
between interactions distributed (bursts of interactions vs.
uniform time between interactions)?

2) Nonlinearity:
a) Linear vs. non-linear interactions: Let a system-level

property Y be produced as a result of the interaction of several
components with properties X1, X2, . . . , XN . Can the value of
Y be expressed or accurately approximated as a linear function
of X1, X2, . . . , XN ?

3) Diversity:
a) Among the components with an identical purpose,

how many types of components are available?: There may
be components of different types, which have an identical
function. For example, in a mobile network, different types
of base stations, from cheaper and less reliable to more
expensive and more reliable, may be deployed (or available for
deployment) at the same time. How many types of components
are encountered among those having the same purpose?

4) Flows:
a) Are there chains of interactions (flows)?: The inter-

action between components may trigger further interactions.
Thus, a chain of interactions may result from a single inter-
action; this chain of interactions can be seen as a flow of a
specific resource (e.g. messages in computer networks). At
the level of a computer network, establishing an end-to-end
communication channel and transferring information over this
channel can be seen as an interaction flow.

b) Does the multiplier effect occur in the flows of interac-
tions?: The multiplier effect means that the cumulative effect
of an initial change (interaction) is increased (multiplied) as
the change is propagating through the network. For example, if
a message of length l (in bites), sent over the network, passes
through m hosts before reaching the destination, in total lm
bites are transferred through the network.

c) Does the cycling effect occur in the flows of interac-
tions?: Are there cycles in the chains of interaction? If so,
the recycling effect occurs – the effect of interactions at each
node in the cycle is increased as these interactions are triggered
multiple times.

5) Internal models:
a) Does a component have an internal model, which

i) determines the component’s behavior; and ii) can be
changed according to a feed-back?: The behavior of an agent
(component) can be represented by a set of IF-THEN rules.
Can these rules be automatically modified to better fit to
the agent’s environment (special rules are needed for this

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

7Authorized licensed use limited to: Jyvaskylan Yliopisto. Downloaded on March 09,2022 at 08:04:02 UTC from IEEE Xplore. Restrictions apply.

purpose)? For example, can the rules/policies of call admission
control (CAC) be modified, if the resulting grade of service is
not satisfactory? Are the rules of CAC adapted by taking into
account the typical behavior of a customer group or a specific
customer? Does the CAC take into account the load of the
neighboring base-stations?

6) The way the network of system components evolves:
a) Is the network creation planned (in advance) by the

enterprise, or does it emerge randomly (as a response to
the actions of external actors, e.g. customers): Example of
a planned network is a company LAN, whose structure is
planned and implemented by the company. On the other hand,
the network of WWW pages connected by hyperlinks is an
example of a randomly created network, i.e. the network
created as a result of actions of numerous external agents
(web-masters, visitors of web-pages, etc.).

b) Does the process of network evolution/development
involve preferred attachment?: According to the preferred
attachment principle, a new node is connected to an exist-
ing node with probability proportional i) to the number of
connections the existing nodes already have, and ii) to the
fitness of the existing node (definition of fitness depends on
the application domain).

c) Does the process of network evolution/development
involve adding new links between existing nodes, or rewiring
of existing links?: E.g., in a web-page, a new link may be
added to refer to yet another (existing) favorite web-page. In
turn, rewiring refers to substituting one existing link with an
alternative one, referring to a different web-page.

d) Does the process of network evolution/development
involve duplication of parts of the network with subsequent
rewiring?: An example of duplication is the creation of a
new web-page by using an existing web-page as a template.
Hyperlinks in the new webpage may need to be subsequently
rewired to meet the purposes of the page.

e) Does the process of network evolution/development
involve saturation, i.e. does a limit exist on the number of
connections a node may have?: Base-stations in telecommu-
nications networks have a limited number of radio-channels
they can serve; therefore, there is a maximum number of
channels (saturation point) in these base stations. On the other
hand, a web-page in the WWW network may have practically
unlimited number of connections (hyperlinks) to other web-
pages; thus, no saturation point exists in the WWW network.

B. System-level structural properties

Only the type of the network has been considered as a
system-level structural property.

1) Network type:
a) What is the category, to which the network structure

belongs?: Can the network structure be characterized as:
• Regular – network nodes have the same number of links,

the regular pattern of inter-node links is usually present;
• Random – network nodes are connected randomly;
• Small-world egalitarian – can be seen as regular networks

with a small proportion of connections randomly rewired;
network elements have roughly the same number of links;

• Small-world aristocratic – number of links, which the
nodes have, follows power low; as a result, a few hubs
with a large number of links exist.

b) Can the system be considered as consisting of hi-
erarchically organized modules, i.e. having a (hierarchical)
clustering?: The modular structure of the network implies
that nodes within a module have a high density of links
between them, while a lower density of links exists between
the modules. For example, according to the principles of high-
quality software design [24, p. 218], the system-component
decomposition should result in components with high co-
hesion (the component’s parts are closely inter-linked) and
loose coupling (there should be minimum inter-dependencies
between components). Thus, the decomposition of high quality
represents a modular structure.

C. System-level behavioral properties

The system-level behavioral properties encompass under-
standability, predictability, adaptability, scalability, informa-
tion transfer delays, and fault tolerance and survivability.

1) Understandability:
a) Can one designer comprehend all details of the inter-

faces?: How difficult is it for the designer to keep in mind
the purposes and likely outcomes of invoking the functionality
declared by interfaces?

b) Can one designer understand the causation of inputs?:
An input results in a chain of processing, proceeding through
a number of interfaces, and involving numerous conditional
statements. Can the designer understand how a particular input
will be processed, and/or identify what input(s) may have
produced a particular result?

c) Is the analytical solution describing the relationships
between system-level properties and components’ properties
available?: Let a system-level property Y be produced as
a result of interaction of several components with properties
X1, X2, . . . , XN . Can the value of Y be expressed or accu-
rately approximated as a function of X1, X2, . . . , XN ?

2) Predictability (as reflected in specific system-level para-
meters):

a) How well the (system level) response to events can
be predicted?: An input results in a chain of processing,
proceeding through a number of interfaces, and involving
numerous conditional statements. Can the designer predict
what effect a particular input will have on the system?

b) Does the system exhibit simple (fixed or periodic)
behavior?: In a system with simple behavior, external events
do not induce far-reaching effects on the system. Usually,
only the state of the nodes receiving/processing the events
are changing. Having processed the events, the system is in a
(new) equilibrium state.

c) Is system behavior chaotic?: Chaotic behavior means
that any external event induces endless chains of process-
ing and interaction between nodes. An equilibrium state is
achieved after extremely long time, or not achieved at all.

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

8Authorized licensed use limited to: Jyvaskylan Yliopisto. Downloaded on March 09,2022 at 08:04:02 UTC from IEEE Xplore. Restrictions apply.

d) Does the system exhibit complex behavior at the
“Edge of chaos”?: A system at the “Edge of chaos” responds
to external influences with a series of adaptations, including
processing within nodes and interaction between nodes. As a
result, one of few equilibrium states, referred to as basins of
attractions, is (re-)achieved. Contrary to the simple behavior,
the complex behavior implies that a relatively small number
of equilibrium states exist.

e) Is the network continuously changing (from the service
point of view) in its structure? Is the network preserving its
structure to some extent?: Ad-hoc networks are an example
of the networks wherein the structure is not preserved but it
changes continuously. On the other hand, the network of routes
in Internet has a relatively stable structure; however, it changes
as routers update their routing tables.

f) Is the network continuously changing (from the service
point of view) in its behavior? Is the network preserving its
behavior in some respect?: Many parameters of networks,
such as the network load in telecommunications networks, are
continuously changing. Still, some regularities in behavior can
be identified – e.g., peaks in network load during rush hours.

g) Can global patterns of behavior be identified?:
The above regularity in the load of the telecommunications
network represents one example of the global patterns of
behavior (emergent property). Network stagnation and network
disintegration into a set of isolated islands are other examples
of global behavioral patterns. The existence of such patterns
cannot be understood by analyzing system components only,
without paying attention to interactions between them.

h) Are there “islands of stability” in the system?: Can
regions with relatively stable values of specific properties be
identified in the system? For example, might subsets of routers
with relatively stable routing tables be found in the network
of Internet routers?

3) Adaptability:
a) Has the system the property of learning or adapting?:

Can the system adapt, in order to better fit to a changing
environment, as a result of i) modifying internal models of
system components/agents and ii) interaction between these
components. E.g. can the rate of interrupted calls be preserved
low, even when the behavior of customers changes dramati-
cally, by making the CAC rules modifiable according to the
load of serving a base station and the loads of the neighboring
base stations?

b) Who fulfils the requirements of adaptation?: The
adaptation can be done automatically, or it may require
a human operator to make the necessary changes. In the
context of CAC, automatic adaptation would mean that new
rules/policies for CAC are generated, tested, and applied
automatically. Human-operator-facilitated adaptation, on the
other hand, implies that the creation of new rules/policies, and
enforcing them, is done by a human.

4) Scalability:
a) Does the system extension process involve a major

redesign? Or is the possibility for extension built-in into the

design?: Is it necessary to make changes into an existing
system before it can be extended?

b) Can the extension be done automatically based on
the “changing environment”? Or does it require human inter-
vention for planning and implementing?: E.g. can auxiliary
server be added automatically (transparently and instantly) to
the server pool on demand, in order to balance out the load
during peaks of service requests? Similarly, may an additional
base-station be added in the area with increased load?

c) Is the modularity (hierarchical clustering) of the sys-
tem preserved in the process of growth?: In software systems,
for example, the high cohesion and loose coupling of system
components (which reflect system modularity) should be pre-
served during the extension of the system.

5) Information transfer delays:
a) Is there a long delay in the information transfer due

to a high degree of separation (hops) between nodes?:
Delays depend on the network structure, amongst other things.
Among networks of the same size, small-world networks have
a smaller degree of separation, i.e. smaller average path length
between nodes, than the networks with regular or random
structure. As a result, shorter delays are usually observed in
small-world networks than in regular or random networks.

6) Fault tolerance and survivability:
a) Is the network tolerant to the destruction (unavailabil-

ity) of randomly selected nodes?: Does the network remain
connected after a significant part of its nodes (randomly
chosen) are excluded, or does it disintegrate into a set of
unconnected “islands”? Similarly, does the network’s degree of
separation regress rapidly, as the number of (randomly chosen)
nodes excluded from the network grows?

b) Is the network tolerant to the destruction (unavailabil-
ity) of highly-connected nodes (hubs)?: In case a network has
nodes with higher number of connections (hubs), does this
network remain connected after a part of hubs are excluded,
or does it disintegrate into a set of unconnected “islands”?
Similarly, does the network’s degree of separation regress
rapidly, as the number of hubs excluded from the network
grows?

D. Further refinement of the list

The above list of questions (factors) needs to be refined by
excluding less relevant factors and, possibly, by augmenting
the list with additional ones. In order to assess the relevance of
a factor, the experience of the experts involved in the process
of architecture evaluation can be used. During the evaluation,
irrelevant factors will be filtered out automatically, since small
values of relative importance are likely to be assigned to
them. Eventually, those factors, to which small importance is
repeatedly assigned by the experts, can be excluded from the
list, or substituted with other ones.

V. CONCLUSION

An architecture of a complex system is seen appropriate
when it meets a set of requirements such as fitting the under-
lying business-drivers and coherence with other architectures

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

9Authorized licensed use limited to: Jyvaskylan Yliopisto. Downloaded on March 09,2022 at 08:04:02 UTC from IEEE Xplore. Restrictions apply.

in a product family. In order to determine the appropriateness
of such architecture, an evaluation of it may be performed. As
a result of the evaluation, the tradeoffs involved in the archi-
tecture are revealed, and the match between the architecture
and its business drivers is assessed.

For the evaluation process to succeed, it is crucial to attain a
deep understanding of the processes within the system among
the stakeholders involved in the evaluation. However, a large
number of components and interactions between them, which
are usually present in telecommunication system architectures,
results in complex systems that are highly difficult to conceive,
making the evaluation of these architectures extremely diffi-
cult.

A formal evaluation method, such as AEF, can be employed
in order to support the evaluation process to some extent. The
AEF supplies the evaluation team with a number of questions
concerning properties of the architecture and their relative
importance. By answering these questions, the appropriateness
score of the architecture can be evaluated. However, in the
current version of the AEF, complexity-related issues are not
directly taken into account.

In this study, an attempt has been made to augment the list
of questions available in the AEF with additional questions
addressing various aspects of system complexity. The paper
suggests a list of complexity-related questions that can be
potentially useful for architecture evaluation. The selection of
the questions was based on the analysis of available studies in
the domain of complex systems. These studies were juxtaposed
with the system domain the AEF is created for. However,
assessing whether these questions are indeed relevant from the
architectural point of view is assigned to the experts. While
using the AEF extended with complexity-related questions,
they can judge the relevance and the relative importance
of these questions, which thus remains a subject for future
research.

ACKNOWLEDGMENT

This research work presented in this paper was done in
MODPA research project (http://www.titu.jyu.fi/
modpa) at the Information Technology Research Institute,
University of Jyväskylä. MODPA project was financially
supported by the National Technology Agency of Finland
(TEKES) and industrial partners Nokia, SysOpen Digia,
SESCA Technologies, Tieturi, Metso Paper, and Trusteq.

REFERENCES

[1] L. A. Difford, E. M. Dwyer, E. Gray, J. J. Logan, R. P. Mullinax, H. E.
Thiess, J. D. Weigel, and S. A. Zaveler, “American national standard
dictionary of information technology (ANSDIT),” National Committee
for Information Technology Standards (NCITS), American National
Standards Institute (ANSI),” Working draft document, 1999, available
at http://www.incits.org/tc home/k5htm/WD.htm, read 12.06.2005.

[2] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts
and taxonomy of dependable and secure computing,” IEEE Transactions
on Dependable and Secure Computing, vol. 1, no. 1, pp. 11–33, 2004.

[3] P. Clements, R. Kazman, and M. Klein, Evaluating Software Architec-
tures: Methods and Case Studies. Addison Wesley Longman, 2001.

[4] J. A. Lehto and P. Marttiin, “Experiences in system architecture evalua-
tion: A communication view for architectural design,” in Proceedings of
the 38th Annual Hawaii International Conference on System Sciences
2005 (HICSS ’05), 2005.

[5] J. S. Lansing, “Complex adaptive systems,” Annual Review of Anthro-
pology, vol. 32, pp. 183–204, 2003.

[6] E. Forman and M. A. Selly, Decision By Objectives – How to Convince
Others that You are Right. World Scientific Press, 2001.

[7] A. C. Gatrell, “Complexity theory and geographies of health: a critical
assessment,” Social Science & Medicine, vol. 60, pp. 2661–2671, 2005.

[8] S. H. Strogatz, “Exploring complex networks,” Nature, vol. 410, pp.
268–276, 2001.

[9] N. G. Leveson, “Safety as a system property,” Communications of the
ACM, vol. 38, no. 11, p. 146, November 1995.

[10] N. Leveson and C. Turner, “An investigation of the therac-25 accidents,”
IEEE Computer, vol. 26, no. 7, pp. 18–41, July 1993.

[11] N. G. Leveson, “Role of software in spacecraft accidents,” Journal of
Spacecraft and Rockets, vol. 41, no. 4, pp. 564–575, July-August 2004.

[12] J. Holland, Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control and Artificial Intelligence.
Univ. of Michigan Press, 1975.

[13] M. Lyons, I. Adjali, D. Collings, and K. Jensen, “Complex systsems
models for strategic decision making,” BT Technology Journal, vol. 21,
no. 2, pp. 11–27, 2003.

[14] J. Holland, Hidden order: how adaptation builds complexity. Addison-
Wesley Publishing Company, Inc., 1995.

[15] C. G. Langton, “Computation at the edge of chaos,” Physica D, vol. 42,
pp. 12–37, 1990.

[16] S. Milgram, “The small-world problem,” Psychology Today, vol. 1, pp.
60–67, 1967.

[17] M. Granovetter, “The strength of weak ties: A network theory revisited,”
Sociological theory, vol. 1, pp. 203–233, 1983.

[18] D. J. Watts and S. H. Strogatz, “Collective dynamics of small-world
networks,” Nature, vol. 393, pp. 440–442, 1998.

[19] M. E. J. Newman, “The structure and function of complex networks,”
SIAM REVIEW, vol. 45, no. 2, pp. 167–256, May 2003.

[20] M. Buchanan, Nexus: Small words and groundbreaking science of
networks. W. W. Norton & Company, Inc., 2002.

[21] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On power-law relation-
ships of the internet topology,” in Proceedings of the conference on
Applications, technologies, architectures, and protocols for computer
communication, 1999, pp. 251–262.

[22] R. Albert and A.-L. Barabasi, “Statistical mechanics of complex net-
works,” Review of modern physics, vol. 74, pp. 47–96, 2002.

[23] A.-L. Barabasi, Linked. Plume, Penguin Group (USA) Inc., 2003.
[24] I. Sommerville, Software engineering, 5th ed. Harlow: Addison-Wesley,

1998.

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

10Authorized licensed use limited to: Jyvaskylan Yliopisto. Downloaded on March 09,2022 at 08:04:02 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

