
This is a self-archived version of an original article. This version
may differ from the original in pagination and typographic details.

Author(s):

Title:

Year:

Version:

Copyright:

Rights:

Rights url:

Please cite the original version:

In Copyright

http://rightsstatements.org/page/InC/1.0/?language=en

Computing Requirements : Cognitive Approaches to Distributed Requirements
Engineering

© 2012 IEEE

Published version

Hansen, Sean W.; Robinson, William N.; Lyytinen, Kalle J.

Hansen, S. W., Robinson, W. N., & Lyytinen, K. J. (2012). Computing Requirements : Cognitive
Approaches to Distributed Requirements Engineering. In 2012 45th Hawaii international
conference on system sciences : (HICSS 2012) Maui, Hawaii, 4-7 January 2012 (pp. 5224-5233).
IEEE Computer Society’s Conference Publishing Services (CPS). Proceedings of the Annual Hawaii
International Conference on System Sciences. https://doi.org/10.1109/HICSS.2012.172

2012

Computing Requirements: Cognitive Approaches to Distributed
Requirements Engineering

Sean W. Hansen

Rochester Institute of Technology
shansen@saunders.rit.edu

William N. Robinson
Georgia State University
wrobinson@cis.gsu.edu

Kalle J. Lyytinen
Case Western Reserve University

kalle@case.edu

Abstract

We present a study of on the goal-oriented
modeling of RE processes executed by a practicing
systems development team. The research combines an
empirical case study of RE practices with the
evaluation and simulation capability of i* modeling.
Our analysis focuses on a system implementation
project at a mid-size U.S. university and applies the
theory of distributed cognition to generate a range of
design insights for goal identification and process
enhancement.

1. Introduction

Since its inception in the 1970s, the bulk of

requirements engineering (RE) research has focused on
mechanisms for requirements specification –
documenting and formally encoding software
requirements. This orientation emphasizes the
generation of models that are complete, consistent, and
which support downstream design tasks. Despite this
persistent focus, RE has remained challenged facet of
software development, engendering significant
impediments to project success and failing to live up to
its original expectations [3, 20, 53].

Importantly, the strong orientation towards
specification correctness and completeness is closely
tied to traditional sequential development approaches.
The recent success of less conventional methodologies,
most notably in open source software development
[OSSD; 48] and agile development [21, 39] highlight
the potential of approaches that rely on natural
language, lightweight documentation, constant
intertwining of requirements and design, and ongoing
discussions of requirements for bringing about better
outcomes.

In this article, we suggest that one of the pitfalls of
the traditional approaches to RE is that scholars have
rarely analyzed how requirements actually get
computed as an ongoing cognitive activity within a
complex and distributed socio-technical system.

Furthermore, researchers have given meager attention
to how properties of such a cognitive system either
impede or enable ‘effective’ computation of
requirements for the artifact being designed. In this
paper we seek to address this oversight by proposing a
socio-technical model to analyze and account for RE as
a distributed cognitive process. We base our treatment
primarily on Hutchin’s [24] theory of distributed
cognition. We contend that in any RE undertaking a
socio-technical system consisting of people and
artifacts engages in an ongoing computation of a
varying requirement set through tasks of requirements
identification, specification, negotiation, and
validation.

In developing a distributed process model we
outline how the set of requirements is determined using
a set of requirements-oriented meta-goals (i.e.,
organizational goals, general RE goals, and the goals
of effective distributed cognitive work environments),
the system properties that are represented in a
requirement sets, and the goals for a system design
process. We outline how the satisfaction of goals at
different levels can be analyzed using goal-oriented i*
models [60, 61]. These models enable us to determine
how specific meta-requirements for RE systems can be
derived for an effective requirements computation
process based on the theory of distributed cognition.
We use scenarios from a relatively complex RE case
study involving the adoption, modification, and
implementation of an ERP system within a university
context. Our analysis demonstrates how the use of
socio-technical computational model can help identify
pitfalls in the ongoing process and reveal reasons for
observed positive and less positive outcomes. Based on
this analysis we discuss reasons why open source or
agile development processes may experience higher
success rates in light of the developed model of
requirements computation. Several recommendations
for future research on requirements engineering are
outlined.

2012 45th Hawaii International Conference on System Sciences

978-0-7695-4525-7/12 $26.00 © 2012 IEEE

DOI 10.1109/HICSS.2012.172

5224

2012 45th Hawaii International Conference on System Sciences

978-0-7695-4525-7/12 $26.00 © 2012 IEEE

DOI 10.1109/HICSS.2012.172

5224

Authorized licensed use limited to: Jyvaskylan Yliopisto. Downloaded on March 09,2022 at 08:30:14 UTC from IEEE Xplore. Restrictions apply.

2. Requirements Engineering

For the present study, two facets of RE research

warrant a brief discussion: 1) a general overview of
approaches to RE, and 2) goal-oriented RE. We offer
therefore background of RE research for engaging in
the present discussion on RE tasks and goal oriented
modeling. We introduce next theoretical foundations
related to distributed cognition used in this study.

2.1. Traditional Approaches to RE

A wide array of textbooks and reviews are

available, advising practitioners on the effective
approaches to RE [e.g., 11, 23, 29, 50]. By
comparison, a relatively small percentage of the
literature has focused on advancing a theoretical or
empirical understanding of how requirements are
discovered, defined, negotiated, and managed, and why
these processes are so difficult [30]. Moreover, the
prescriptive modeling and process methodologies have
seldom been subjected to empirical scrutiny [55].

As Hansen et al. [19] note, most research
approaches to RE betray a number of assumptions
about requirements and the role stakeholders. These
assumptions include beliefs that 1) RE facets (e.g.,
elicitation, specification) can be distinguished in an
unproblematic manner, 2) distinct information system
components and functionality can be readily
delineated, 3) ISD projects are time-bounded efforts
for the creation of an artifact that is “complete” at
some point in time, and 4) designers can be regarded as
an outside party in the application domain [19].

To illustrate the tenacity of these assumptions
underlying established approaches to RE, we next
briefly review the ways in which the field has been
segmented. Just as RE represents one facet of ISD, so
too have RE processes been divided into a number of
distinct discourses. While researchers have posited
anywhere from two to seven primary requirements
tasks [12], a widely-employed categorization of the RE
process suggests three core facets: 1) elicitation, 2)
specification, and 3) validation & verification [38].
Requirements elicitation is generally framed as the first
component of a design effort – the process by which a
designer determines what organizational or customer
needs must be addressed by the proposed artifact [16,
33, 38]. While a variety of terms (e.g., discovery,
determination, identification) has been used to indicate
this facet of the design, the label of elicitation is most
commonly employed, reflecting the assumption that
knowledge about requirements fundamentally rests
with users and must be teased out by the designer.

Requirements specification is the process by which
the design team acquires, abstracts, and represents the

requirements for a design effort [38, 55]. In this
context, modeling refers to the creation of abstracted
representations of the real world through the use of
established and formalized symbol systems [41]. The
resulting specification represents a transition point
where the needs of stakeholders are extended with
functional and technical implications that flow from
them. A specification must support ease of
interpretation and understanding by all stakeholders,
while presenting a sufficient foundation for the
subsequent technical development. No subject has
received more attention within the RE literature than
requirements modeling and formulation of formal
notation techniques for the specification [53]. In fact, it
has been argued that modeling lies at the heart of the
RE undertaking [5].

Requirements validation and verification ensure
that the requirements are 1) of high quality, 2) address
the users’ needs, 3) are appropriate for the design
effort, and 4) have no inconsistencies or errors [4].
Validation and verification address questions of
whether or not the designers have conducted the RE
processes effectively and the degree to which the
specifications will support a productive design effort.

Through the strict segmentation of requirements
processes and a focus on related solutions RE
researchers have tended to promote a techno-centric
approach to RE tasks [37, 49]. For example, during
specification the primacy of the designer’s perspective
on the development process has been reinforced [19].
This has led to a heavy emphasis on formal notation
systems and modeling approaches within the RE
research [53].

2.2. Goal-oriented RE

A recent extension to the development of modeling
frameworks has been to relate approaches or to
formulate modes that describe, guide, or organize RE
tasks using system ontologies, notations, processes, or
goals [31]. An important element in this trend is the
emergence of goal-oriented requirements engineering
(GORE) [46, 43, 62, 10, 52]. The GORE research
focuses on modeling the objectives, or goals under
which a system development effort is undertaken [52].
Consequently, several GORE languages have been
developed such as i* [59, 61], GRL [60, 1], KAOS [54,
10], and Tropos [7, 42]. A GORE approach allows also
for the identification of distinct types of system goals,
such as the distinction between functional (i.e., relating
to services that system will provide) and non-
functional (i.e., relating to quality characteristics or
constraints to which the system must conform) goals
[52].

52255225

Authorized licensed use limited to: Jyvaskylan Yliopisto. Downloaded on March 09,2022 at 08:30:14 UTC from IEEE Xplore. Restrictions apply.

3. Theory of Distributed Cognition

Distributed cognition (DCog) is a branch of

cognitive science pioneered by Edwin Hutchins and his
colleagues in the 1990s [22, 24, 26, 25, 27, 28]. The
central tenet of theory asserts that cognitive processes,
such as memory, decision making, and reasoning, are
not limited to the mental states of an individual. The
development of the theory was motivated by research
on teams engaged in complex tasks. In these settings
information processing activities are not localized to
individuals, but are distributed across members.
Furthermore, a significant portion of the cognitive
workload is “shouldered” by the technical artifacts
employed by group members.

By conceptualizing cognition as “the propagation
of representational state across representational media”
[24: p. 118], distributed cognition expands the unit of
cognitive analysis from that of the individual to that of
the entire team attending to a specific task. With this
fundamental shift in perspective on cognitive activity,
the theory lends itself to at least three significant
assertions [25]: 1) the thought process is distributed
among members of social groups, 2) cognition
employs both internal and external structures, and 3)
cognitive processes are distributed over time.

The DCog theory contends that cognitive processes
are distributed across members of a group. Each
member may play a specific role with respect to the
processing of information and the initiation of
cognitive action. This idea of social distribution has
obvious ramifications for the study of distributed RE
processes. Nearly all software design efforts are
executed through a team structure [18]. Moreover, one
essential characteristic of development teams is the
diversity of knowledge [8, 36, 57]. While addressing
complex design challenges teams must bring together
individuals from a wide variety of technical and
functional domains. The cognitive task of arriving at
stable requirements set, which we referred above as the
computation of requirements, cannot be localized to
any one of these participants, such as a designer (as is
often assumed). Rather, it resides in the holistic
process of cognitive computation that enables
requirements to emerge as a quality of the social
system.

The second implication of distributed cognition is
that cognitive processes intertwine internal and
external structure. While traditional cognitive
perspectives focus on the internal states of mind, a
DCog approach highlights the ways in which
individuals and groups integrate external material
elements of the environment as part of their thought
processes. The distribution of cognitive activity
through the use of external structure is readily apparent

in prevailing RE practice. Indeed, the development of
formal models in RE can be seen as creating external
structures that support subsequent cognitive processes
necessary to design. Some of these representations can
be materialized in CASE tools that support and
integrate cognitive processes embedded in
requirements capture and software design [34, 56].
Consequently, existing artifacts serve as a significant
external source of computing design requirements –
setting the initial conditions which both enable and
constrain design [2, 63, 19].

Finally, DCog theory contends that cognitive
processes may be distributed not only in social and
spatial terms, but also with respect to time- i.e.
cognition is path dependent. Earlier actions influence
the cognitive processes enacted later. Temporal
distribution of cognition is present in any context
where heuristics have been formulated for generating
appropriate cognitive activity. Design efforts draw
heavily upon requirements and artifacts inherited from
earlier projects. For example, formal information
architectures (e.g., enterprise and product
architectures) often act as a mechanism to ensure
consistency across multiple designs [19]. An extensive
literature on requirements reuse suggests multiple
approaches to distribute requirements computation
over time [9, 35, 44]. In addition, some researchers
have investigated temporal distribution of requirements
while emphasizing iteration and evolution [e.g., 2, 14,
32].

 The three facets of distributed cognition (i.e.,
social distribution, the use of external structure, and
temporal extension) have often been highlighted in
isolation. Naturally, they are closely linked in practice:
the distribution of cognition over time implies the use
of both social transmission (e.g., project team
interaction) and material artifacts (i.e., legacy systems,
enterprise architecture) to support memory. Similarly,
socially-distributed cognitive processes are likely to
employ both internal and external structures during
individually-intensive cognitive tasks. In all we posit
that theory of DCog offers a fruitful lens for assessing
the ways in which requirements computation is
distributed across individuals, organizations, and
artifacts in today’s design environments.

4. Research Approach

The present study leverages two complementary

research approaches. The initial phase of research was
centered on a case study of a complex systems
development project. The case analysis provides us the
grounding for the identification of development goals
that inform a distributed cognitive perspective. In the
second phase of the research, we build upon the case to

52265226

Authorized licensed use limited to: Jyvaskylan Yliopisto. Downloaded on March 09,2022 at 08:30:14 UTC from IEEE Xplore. Restrictions apply.

develop a simulation of goal satisfaction using a
GORE/i* modeling tool.

4.1. Case Study Design

As noted DCog processes form an emerging

phenomenon that is not subject to straightforward
manipulation. Accordingly, a case study approach is
warranted to provide an occasion for rich exploration
of the practical activities of designers and other
stakeholders during RE [13, 58]. Indeed, for this very
reason, case studies have been a favored approach for
empirical work in RE research [17, 45]. Indeed, several
scholars have employed the case studies in their
attempts to generate rich theory-yielding insights about
RE processes and outcomes [64].

Therefore, we conducted an exploratory case study
of RE-related cognition within a development team
focusing on the modification and implementation of a
large enterprise resource planning (ERP) system at a
mid-size university in the Midwestern U.S. The case
inquiry was conducted in accordance with prevailing
case study field procedures, including the development
of a case study protocol prior to data collection,
triangulation using multiple sources of evidence, and
the maintenance of a chain of evidence [58]. The data
collection included interviews, direct observation of
project interactions, and documentary review (e.g.,
specification documents, customization requests,
business process models, design mock-ups). Interview
transcripts and observational field notes were coded
using Atlas.ti. The coding centered on a thematic
analysis of the data [6] and was conducted conforming
to principles of grounded theory [15, 51]. This
included constant comparison and open, axial, and
selective coding. Our approach differs from some
interpretations of grounded theory in that the final
analysis was informed by constructs from RE research,
such as goal differentiation, and the DCog theory.

4.2. Case Summary: University SIS Project

In 2006, a mid-sized Midwestern U.S. university

initiated the acquisition, customization, and
implementation of the PeopleSoft Student Information
System (SIS) ERP. The SIS Project was intended to
integrate all student information and student-facing
administrative functions across the university’s nine
distinct schools. Key functions supported by the
envisioned platform included admissions, financial aid,
course selection and enrollment, grading, degree
tracking, and transcript management. The initial roll-
out of the system was completed in fall 2008, with
additional functionality rolled out over the course of
the subsequent academic year. The installation of the

SIS platform was considered a successful effort,
including the management of platform requirements.

The organization is a mid-size private university.
The university serves nearly 10,000 students (4,200
undergraduate, 2,200 graduate, and 3,500 professional
students) across seven distinct schools. Traditionally,
each school managed its own student records, with
some aggregation of basic student information in the
university’s legacy student information system.
Different administrative functions were managed using
a collection of distinct software applications. The SIS
Project was undertaken in an effort to integrate various
student-related data sources and functions across the
entire university.

The SIS was the third phase of a broader ERP
installation program. The university had selected
Oracle’s PeopleSoft platform as the ERP package. In
2005 and 2006, the university had rolled out two
installations of the platform, covering the Financial and
Human Capital Management components. The SIS was
the final major installation necessary for the
achievement of a comprehensive enterprise-level
information system serving the university.

4.3. Simulation

In the second phase of the research, we built upon

the case analysis findings to analyze the interplay of
various goal types and the RE-oriented activities of the
SIS project team. Specifically, we created goal-
oriented models of the SIS development process using
an Eclipse-based i* star modeling tool, jUCMNav [40,
47]. These models incorporated the requirements
processes identified in the case analysis as well as the
goal taxonomy developed from the initial analysis.
The jUCMNav tool was used to create a model of
mutual dependencies between requirements tasks and
identified goals. The models were then used to conduct
a series of simulations to assess the impact of variable
execution of requirements tasks on goals at varying
levels.

4.4. Goal Model Evaluation

Simulating the evaluation of goal models involves

four steps. The first step is to specify goal models from
common perspectives [1]. We did so for general
project goals, SIS-specific project goal, requirements
engineering goals, and distributed cognition goals. A
portion of the distributed cognition goals model is
shown in Figure 1. (With regard to goal modeling, you
may ignore the tasks that are associated with the goals
at the bottom of the figures). Each model includes
goals and relationships as identified in the literature.

52275227

Authorized licensed use limited to: Jyvaskylan Yliopisto. Downloaded on March 09,2022 at 08:30:14 UTC from IEEE Xplore. Restrictions apply.

Although incomplete, the models represent the most
relevant goals for the problem.

Each oval represents a softgoal, while the links
represent contributions that are positive (+) or negative
(-) to the satisfaction of the goal at the arrowhead.
Goal satisfaction is calculated by propagating values
through the goal graph according to the specified node
satisfaction value and the weighted contributions [1].

The models include quantitative numbers that
indicate the contributions goals have on each other. We
chose to model subgoals as totaling 100 percent
contribution to allow us to analyze the relative
influence of goals and their realized tasks. It implies a
complete decomposition. However, our model is
incomplete. When a new contributing goal is added,
then the contributions are modified to reestablish their
aggregation to 100 percent.

The project specific (SIS) model provides a place
to add goals that are not common to most projects.
Thus, the modeling is a combination of:

1. Creating a project specific (SIS) model for project
specific goals.

2. Linking the project specific goals to the existing
(pre-defined) goal models

3. Adding project specific tasks and linking them to
new project goal model and the existing (pre-
defined) goal models

The second step is to specify goal models for the
problem. We did so for the SIS project. The model
consists of a goal model and a task model. The third
step is to specify scenarios for the problem. The
variable tasks that we considered are based on
observations of the SIS case. These tasks are associated
with the goal models. The final step is to evaluate the
impact that each scenario has on the goal models. We
take this up in the following section on Findings.

5. Findings

Given the two-phase structure of the research

effort, we report the findings for each phase separately.
As noted above, the design and execution of the
simulation phase of the research built upon the findings
from the case analysis phase.

5.1. SIS Project RE Activities

The University SIS project supported a number of
findings regarding both the nature of the RE tasks
pursued and the goals implicit in the processes. The
SIS project reflected both higher-level design
processes focused on the discovery, specification, and
validation of project requirements and lower-level
tasks variably employed within the broader RE-

oriented processes. At the higher-level, the project
employed a four-stage process for progressive
elaboration of user requirements. Importantly, our
findings revealed that the processes were not executed
in a universal manner – i.e., some RE-oriented
activities were omitted or bypassed at various times.
This variable execution of tasks is relevant for our later
simulation of RE outcomes.

Interactive design and prototyping. The initial
effort at requirements discovery in the SIS project was
called the Interactive Design and Prototyping (IDP)
process. The IDP process sought to inform key
stakeholders about the functionality of PeopleSoft and
to elicit statements of need for customization or
modification. Thus, IDP was at its core a gap analysis.
The IDP process consisted of JAD-style focus group
discussions scheduled with each of the over 100
functional offices on campus. The IDP sessions
included the project leadership, functional area leads,
and technical experts, and focused on the input of
office personnel regarding the appropriateness of the
PeopleSoft system for their business functions. The
result of each session was the articulation of desired
modifications.

Interactive engagement with users. While not
formally labeled by the project team, the second core
RE task focused on iterative discussion between
project functional leads/consultants and user
representatives for distinct business units or schools.
We have labeled this process Iterative Engagement
with Users (IEU). The IEU discussions centered on
review of the document developed as part of the IDP
process and discussion of specific functional
modifications desired by the users. As an outcome of
the IEU process, the functional leads/ consultants
developed a Preliminary Specification Document and
submitted it for review and validation by the users. As
the name implies, the IEU process was repeated until
users felt that their desired modifications were
appropriately captured

Structured walkthrough. Consensus around
specifications and change requests on the part of the
project team members was achieved through the third
RE task, Structured Walkthrough. The walkthroughs
were attended by the leadership of the project team,
including the Project Director; Functional, Technical,
and Project Management Leads; the consulting Project
Manager and lead functional and technical consultants;
and training team representatives. No users, functional
SMEs, or technical experts were in attendance. During
the walkthroughs, a specification developer would
guide the participants through a detailed discussion of
a requested change. Questions were raised and debated
by the entire project team. The walkthroughs generally
resulted in one of three outcomes: 1) the specification

52285228

Authorized licensed use limited to: Jyvaskylan Yliopisto. Downloaded on March 09,2022 at 08:30:14 UTC from IEEE Xplore. Restrictions apply.

was accepted and the Technical Lead took
responsibility for scheduling modifications, 2) the
discussion raised sufficient problems with the current
status of the specification so that a decision was made
to revise the specification, or 3) the specification was
tabled for later discussion.

Design review. The final core RE task employed
on the SIS project was the Design Review. In Design
Review, a technical developer or consultant met with
user representatives to review a proposed resolution.
Generally, this task centered on review of solution
prototype that the developer had created based on the
specification accepted by the project team leadership.
If users are satisfied with resolution, then developers
would proceed to final implementation of the
modification. Conversely, if users desired additional
changes to the proposed resolution, then the developer
pursued additional prototyping of the solution until
satisfaction was achieved. Importantly, of tall the RE
tasks outlined, Design Review was the most variable,
with the option of prototyping and review left largely
to the discretion of individual developers.

Ancillary RE Tasks. In addition to the four high-
level RE activities, the SIS project entailed several
detail-level RE tasks that were again variably executed
over the course of requirements determination.
Observed lower-level tasks included the following:
• Business Process Modeling: The development of

business process models for distinct schools or
individual business units. When executed, the
business process modeling was generally associated
with the IDP process, and intended to support an
understanding of a business unit’s current state.

• Scenario Development: The generation of multiple
scenarios for design modifications. This task was
most commonly observed in the structured
walkthrough process, and provided a mechanism for
the design team to explore users’ stated requirements
at a deeper level.

• Mock-ups: The creation of mock-ups or “throw-
away” prototypes to illustrate modification options.
This rapid prototyping was generally employed as a
requirements validation technique and most
frequently associated with the Design Review
process.

As noted above, all of these RE activities (both
higher-level formal processes and detailed tasks) were
variably executed on the SIS project. We did not
observe any “hard” rules for when a given activities
would or would not be executed; rather, the execution
of RE tasks appeared to largely reflect individual
preferences or design expertise.

5.2. A Goal Taxomony for the SIS Project

In addition to illustrating the different types of RE
tasks executed, the analysis of the SIS case revealed
the distinct categories of goals that were relevant to the
design effort. Specifically, we identified four distinct
categories of goals within the SIS project:
• Common project goals: This class of goals

represented project objectives that are relevant for
almost all IT implementation projects. These goals
largely relate to the project management triple
constraint of time, cost, and quality/functionality.

• Idiosyncratic project goals: In this class of goals, we
identified objectives that appear to be specific to the
SIS project or projects of a similar focus.

• RE goals: These are goals associated with
commonly-held measures of requirements quality.

• DCog Goals: Perhaps most criticality for the present
analysis, we identified a number of goals that are
implied by the application of DCog theory. These
are characteristics of a cognitive system that will
support system effectiveness and robustness,
ensuring that the socio-technical system (i.e., people
and supporting artifacts) can react to changing
conditions and reconfigure its computational
structure when necessary (e.g., if a given individual
or artifact is removed).

A summary of the resulting goal taxonomy is
provided in Table 1.

Table 1. Summary of SIS Goal Taxonomy

Goals Descriptions

Common Project Goals
System
adoption

Ensuring that users accept and use the
functionality provided in the system

Minimize
duration

Seeking adherence to project timelines
and positive schedule variance

Maximize
implemented
functionality

Implemented as much system
functionality as possible within time and
budgetary constraints

Minimize
project costs

Managing the project budget to ensure
cost effective implementation

Accuracy of
status reporting

Keeping executive management
informed about the status of the project

Supporting
collaboration

Ensuring effective collaborative work
among project team members

Idiosyncratic Project Goals
Minimize
platform
modifications

Keeping modifications of the platform
to the minimum required for desired
functional support

Training
effectiveness

Ensuring that users were adequately
trained for system use

Ensure
integration

Achieving data integration between the
vendor platform and legacy systems

52295229

Authorized licensed use limited to: Jyvaskylan Yliopisto. Downloaded on March 09,2022 at 08:30:14 UTC from IEEE Xplore. Restrictions apply.

Minimize
process
changes

Limiting business process changes to
those that were absolutely necessary for
effective system use

RE Goals
Completeness Ensuring that all substantial

requirements are identified and
addressed in the design

Consistency Ensuring that requirements did not
conflict with one another

Adequacy Ensuring that requirements will meet
the information needs of stakeholders

Clarity Avoiding ambiguous requirements (i.e.,
competing interpretations)

Correctness Ensuring that stated requirements
actually reflect the intent of users

Traceability Ensuring that requirements can be
traced to both relevant business
objectives and designed features

DCog Goals
Maintaining
common
knowledge

Creating common understanding of
system requirements and business
process; knowledge redundancy

Clarity of
processes

Ensuring that project team members
know the processes for requirements
identification and incorporation

Transparency
of action

Enabling team members to “see" what
others members of the system are doing

Common
language

Reinforcing shared mechanisms for
communicating requirements

Temporal
distribution

Embedding requirements knowledge in
artifacts; requirements reuse

5.2. Simulation Results

Having established a goal taxonomy for the SIS
project, we used the jUCMNav tool to create an i*
model of the SIS project. The resulting i* models
incorporated the goals identified, their inter-
relationship, and their impact on the RE-oriented tasks
executed on the project (see Sections 4.4. and 5.1.).
Importantly, the tool also enabled us to model the
relationships between the goals themselves. While
length restrictions prohibit a full presentation of the
models generated, Figure 1 presents a portion of the
distributed cognitive goals model for illustration.

In addition to modeling the relationships between
goals, the jUCMNav tool enabled goal model
evaluation based on the four-step process outlined in
Section 4.4. For the simulation exercise, we focused on
the RE-tasks observed to be most variable in the SIS
case: design review, mock-up generation, business
process modeling, and individual specification review
for structured walkthroughs.

Here we evaluate the impact that each scenario has
on the goal models. Table 2 summarizes the values for
the root nodes of the three goal models, indicating how

Figure 1. Goal scenario of DCog goal
satisfaction derived from SIS task satisfaction

much the perspectives are satisfied by each scenario.
(Note: The SIS-specific goal model links into the other
three models, so the evaluation is reflected in the three
other models). Figure 1 illustrates the DCog goal
model for one scenario (No Design Review). The value
of the goal analysis is in the relative impact that
different scenarios have on goal satisfaction.

In reviewing Table 2, each row represents a
scenario. In the first row, all tasks are included in the
development process, while the last row represents no
tasks in the development process. The intervening rows
show results for the other scenarios evaluated. The
scenario “Except Design Review” includes all tasks
except the design review task. Notice that its average
evaluation of the three root nodes is 58%, which is the
lowest average evaluation. Thus, this scenario has the
greatest impact on the development process, according
to the goal models.

Table 2. Goal satisfaction values of scenarios

Scenarios

System
Adoption
<<PM>>

Maintain
Common
Knowl.

<<DC>>

Reqs.
adequacy
<<RE>> Avg.

All 100% 100% 100% 100%
Except Design
Review 46% 75% 52% 58%

Except BPM 100% 91% 88% 93%
Except Ind. Spec.
Review 100% 92% 95% 96%

Except Scenarios 100% 92% 95% 96%
Except UI
Mockups 100% 98% 97% 98%

No Tasks 0% 0% 0% 0%

52305230

Authorized licensed use limited to: Jyvaskylan Yliopisto. Downloaded on March 09,2022 at 08:30:14 UTC from IEEE Xplore. Restrictions apply.

6. Discussion and Conclusions

This research presents the initiation of a broader

program of study focusing on the role of distributed
cognitive processes in the practice of contemporary
information systems design. While the study represents
a proof-of-concept around the modeling of distributed
cognitive dynamics in formal goal models, we believe
it suggests several significant contributions to RE
research and practice.

First, the study combines the empirical insights of
in situ case analysis with the simulation and goal
evaluation capabilities of i* modeling. In this way, the
study illustrates the potential for reorienting RE
research from a purely prescriptive outlook to one
grounded in the experiences of practicing IS designers.

Secondly, the research extends the theory of
distributed cognition through a focus on the practical
design principles (i.e., DCog goals) that can be derived
from the theory’s application as an analytical tool. By
applying the theory to an existing IS design context
and deriving distinct goals implied by its perspective
on socio-technical cognitive systems, we have
generated a series of preliminary concepts for
subsequent IS development process design and a
mechanism for evaluation of their relative efficacy.

Third, the research calls attention to the value of
analyzing RE as a socio-technical process which must
be approached with an eye to the intricate web of
interactions between diverse social actors and the
artifacts which they employ. This systems-oriented
perspective offers us insights for both addressing
persistent challenges to effective RE and capitalizing
on opportunities for greater innovation and design
breakthroughs.

Finally, the combined case analysis and goal-
oriented modeling approach creates a common basis
for evaluation of distinct IS development methods. The
analysis and modeling process outlined here may be
extended to the evaluation of emergent approaches,
such as OSSD and agile development. In particular, we
are interested in modeling the different computational
structures that are implied by these diverse approaches
to IS design.

8. References

[1] D. Amyot, "Introduction to the user requirements
notation: Learning by example", Computer Networks, 42
(2003), pp. 285-301.

[2] A. Antón and C. Potts, "The use of goals to surface
requirements for evolving systems", Proceedings of the 20th
international conference on Software engineering (1998), pp.
157-166.

[3] A. Aurum and C. Wohlin, Requirements Engineering:
Setting the Context, in A. Aurum and C. Wohlin, eds.,
Engineering and Managing Software Requirements,
Springer-Verlag, Berlin, Germany, 2005, pp. 1-15.
[4] B. Boehm, "Verifying and validating software
requirements and design specifications", IEEE Software, 1
(1984), pp. 75-88.

[5] A. Borgida, S. Greenspan and J. Mylopoulos,
"Knowledge Representation as the Basis for Requirements
Specifications", IEEE Computer, 18 (1985), pp. 82-91.

[6] R. E. Boyatzis, Transforming qualitative information:
Thematic analysis and code development, Sage Publications,
Inc, Thousand Oaks, CA, 1998.

[7] J. Castro, M. Kolp and J. Mylopoulos, "Towards
requirements-driven information systems engineering: the
Tropos project", Information Systems, 27 (2002), pp. 365-
389.

[8] B. Curtis, H. Krasner and N. Iscoe, "A field study of the
software design process for large systems", Communications
of the ACM, 31 (1988), pp. 1268-1287.

[9] J. Cybulski, Patterns in software requirements reuse,
Third Australian Conference on Requirements Engineering
(ACRE’98), Geelong, Australia, 1998, pp. 135–153.

[10] A. Dardenne, A. van Lamsweerde and S. Fickas, "Goal-
Directed Requirements Acquisition", Science of Computer
Programming, 20 (1993), pp. 3-50.

[11] A. Davis, S. Overmyer, K. Jordan, J. Caruso, F.
Dandashi, A. Dinh, G. Kincaid, G. Ledeboer, P. Reynolds, P.
Sitaram, A. Ta and M. Theofanos, Identifying and measuring
quality in a software requirements specification, Proceedings
of the First International Software Metrics Symposium, IEEE
Computer Society, Los Alamitos, CA, 1993, pp. 141–152.

[12] M. Dorfman, Software Requirements Engineering, in R.
H. Thayer and M. Dorfman, eds., Software Requirements
Engineering, IEEE Computer Society Press, 1997, pp. 7-22.

[13] K. Eisenhardt, "Building Theories from Case Study
Research", Academy of Management Review, 14 (1989), pp.
532-550.

[14] N. A. Ernst, J. Mylopoulos and Y. Wang, Requirements
Evolution and What (Research) to Do about It, in K. J.
Lyytinen, P. Loucopoulos, J. Mylopoulos and W. Robinson,
eds., Design Requirements Engineering: A Ten-Year
Perspective, Springer-Verlag, Heidelberg, Germany, 2009,
pp. 186-214.

[15] B. G. Glaser and A. L. Strauss, Discovery of Grounded
Theory: Strategies for Qualitative Research, Aldine
Publishing Company, Chicago, IL, 1967.

52315231

Authorized licensed use limited to: Jyvaskylan Yliopisto. Downloaded on March 09,2022 at 08:30:14 UTC from IEEE Xplore. Restrictions apply.

[16] J. Goguen and C. Linde, "Techniques for Requirements
Elicitation", Requirements Engineering, 93 (1993), pp. 152-
164.

[17] O. Gotel and A. Finkelstein, Extended requirements
traceability: results of an industrial case study, Third IEEE
International Symposium on Requirements Engineering,
IEEE Press, Annapolis, MD, USA, 1997, pp. 169-178.

[18] P. J. Guinan, J. G. Cooprider and S. Faraj, "Enabling
Software Development Team Performance During
Requirements Definition: A Behavioral Versus Technical
Approach", Information Systems Research, 9 (1998), pp.
101-125.

[19] S. Hansen, N. Berente and K. J. Lyytinen, Requirements
in the 21st Century: Current Practice & Emerging Trends, in
K. J. Lyytinen, P. Loucopoulos, J. Mylopoulos and W.
Robinson, eds., Design Requirements Engineering: A Ten-
Year Perspective, Springer-Verlag, Heidelberg, Germany,
2009, pp. 44-87.

[20] A. Hickey and A. Davis, "Elicitation technique
selection: how do experts do it?", Requirements Engineering
Conference, 2003. Proceedings. 11th IEEE International
(2003), pp. 169-178.

[21] J. Highsmith and A. Cockburn, "Agile software
development: The business of innovation", Computer, 34
(2001), pp. 120-127.

[22] J. Hollan, E. Hutchins and D. Kirsh, "Distributed
Cognition: Toward a New Foundation for Human-Computer
Interaction Research", ACM Transactions on Computer-
Human Interaction, 7 (2000), pp. 174-196.

[23] E. Hull, K. Jackson and J. Dick, Requirements
Engineering, Springer-Verlag, London, UK, 2005.

[24] E. Hutchins, Cognition in the Wild, MIT Press,
Cambridge, MA, 1995.

[25] E. Hutchins, Distributed Cognition, International
Encyclopedia of the Social & Behavioral Sciences, Elsevier,
Ltd., 2000.

[26] E. Hutchins, "How a Cockpit Remembers Its Speed",
Cognitive Science, 19 (1995), pp. 265-288.

[27] E. Hutchins, The technology of team navigation, in J.
Galegher, R. Kraut and C. Egido, eds., Intellectual
teamwork: social and technical bases of collaborative work,
Lawrence Erlbaum Assoc., Hillsdale, NJ, 1990.

[28] E. Hutchins and T. Klausen, Distributed Cognition in an
Airline Cockpit, in Y. Engestrom and D. Middleton, eds.,
Cognition and Communication at Work, Cambridge
University Press, New York, 1996, pp. 15-34.

[29] M. Jackson, Software Requirements & Specifications: A
Lexicon of Practice, Principles and Prejudices, ACM
Press/Addison-Wesley Publishing Co., New York, NY, 1995.

[30] M. Jarke, J. Bubenko, C. Rolland, A. Sutcliffe and Y.
Vassilou, Theories underlying requirements engineering: An
overview of NATURE at Genesis, IEEE International
Symposium on Requirements Engineering (ISRE'93), IEEE
Computer Society, San Diego, CA, 1993, pp. 19-31.

[31] M. Jarke, R. Klamma and K. Lyytinen, Metamodeling,
in M. A. Jeusfeld, M. Jarke and J. Mylopoulos, eds.,
Metamodeling for Method Engineering, MIT Press,
Cambridge, MA, 2009, pp. 43-88.

[32] M. Jarke, K. Pohl, S. Jacobs, J. Bubenko, P. Assenova,
P. Holm, B. Wangler, C. Rolland, V. Plihon and J. Schmitt,
Requirements engineering: An integrated view of
representation, process, and domain, in I. Sommerville and
M. Paul, eds., Proceedings of the 4th European Software
Engineering Conference (ESEC'93), Springer-Verlag,
Garmisch-Partenkirchen, Germany, 1993, pp. 100-114.

[33] G. Kotonya and I. Sommerville, Requirements
Engineering: Processes and Techniques, John Wiley & Sons,
New York, NY, 1998.

[34] P. Kruchten, The Rational Unified Process: An
Introduction, Pearson Education, Boston, MA, 2003.

[35] W. Lam, J. A. McDermid and A. J. Vickers, "Ten steps
towards systematic requirements reuse", Requirements
Engineering, 2 (1997), pp. 102-113.

[36] N. Levina and E. Vaast, "The Emergence of Boundary
Spanning Competence in Practice: Implications for
Implementation and Use of Information Systems", MIS
Quarterly, 29 (2005), pp. 335-363.

[37] M. Loomes and S. Jones, Requirements engineering: A
perspective through theory-building, Third International
Conference on Requirements Engineering (ICRE'98), IEEE
Computer Society, Colorado Springs, CO 1998, pp. 100-107.

[38] P. Loucopoulos and V. Karakostas, System
Requirements Engineering, McGraw-Hill, Inc., New York,
NY, 1995.

[39] R. Martin, Agile Software Development: Principles,
Patterns, and Practices, Prentice Hall PTR Upper Saddle
River, NJ, 2003.

[40] G. Mussbacher and D. Amyot, Goal and scenario
modeling, analysis, and transformation with jUCMNav,
Proceedings of the 31st International Conference on
Software Engineering (ICSE'09) IEEE, Vancouver, BC,
2009, pp. 431-432.

[41] J. Mylopoulos, "Information Modeling in the Time of
the Revolution", Information Systems, 23 (1998), pp. 127-
155.

52325232

Authorized licensed use limited to: Jyvaskylan Yliopisto. Downloaded on March 09,2022 at 08:30:14 UTC from IEEE Xplore. Restrictions apply.

[42] J. Mylopoulos, J. Castro and M. Kolp, Tropos: A
framework for requirements-driven software development, in
J. Brinkkemper and A. Solvberg, eds., Information Systems
Engineering: State of the Art and Research Themes,
Springer-Verlag, Springer-Verlag, Berlin, Germany, 2000,
pp. 261-273.

[43] J. Mylopoulos, L. Chung and B. Nixon, "Representing
and using nonfunctional requirements: A process-oriented
approach", IEEE Transactions on Software Engineering, 18
(1992), pp. 483-497.

[44] B. Nuseibeh and S. Easterbrook, Requirements
Engineering: A Roadmap, Proceedings of the conference on
The future of Software engineering, ACM Press New York,
NY, USA, Limerick, Ireland, 2000, pp. 35-46.

[45] B. Ramesh and M. Jarke, "Toward reference models for
requirements traceability", IEEE Transactions on Software
Engineering, 27 (2001), pp. 58-93.
[46] W. N. Robinson, "Integrating multiple specifications
using domain goals", ACM SIGSOFT Software Engineering
Notes, 14 (1989), pp. 219-226.

[47] J. F. Roy, J. Kealey and D. Amyot, Towards integrated
tool support for the User Requirements Notation, in R.
Gotzhein and R. Reed, eds., System Analysis and Modeling:
Language Profiles, Springer-Verlag, Berlin, DE, 2006, pp.
198-215.

[48] W. Scacchi, "Free/open source software development:
Recent research results and methods", Advances in
Computers, 69 (2007), pp. 243-295.

[49] I. Sommerville, "Systems engineering for software
engineers", Annals of Software Engineering, 6 (1998), pp.
111-129.

[50] I. Sommerville and P. Sawyer, Requirements
Engineering: A Good Practice Guide, John Wiley & Sons,
Inc. New York, NY, USA, 1997.

[51] A. L. Strauss and J. Corbin, Basics of qualitative
research: Grounded theory procedures and techniques, Sage,
Newbury Park, CA, 1990.

[52] A. van Lamsweerde, Goal-Oriented Requirements
Engineering: A Guided Tour, Proceedings of the 5th IEEE
International Symposium on Requirements Engineering,
IEEE, Toronto, Ontario, 2001, pp. 249-263.

[53] A. van Lamsweerde, "Requirements Engineering in the
Year 00: A Research Perspective", Proceedings of the 22nd
international conference on Software engineering (2000), pp.
5-19.

[54] A. van Lamsweerde, R. Darimont and E. Letier,
"Managing conflicts in goal-driven requirements
engineering: Managing inconsistency in software

development", IEEE Transactions on Software Engineering,
24 (1998), pp. 908-926.

[55] I. Vessey and S. A. Conger, "Requirements
Specification: Learning Object, Process, and Data
Methodologies", Communications of the ACM, 37 (1994),
pp. 102-113.
[56] I. Vessey and A. P. Sravanapudi, "CASE tools as
collaborative support technologies", Communications of the
ACM, 38 (1995), pp. 83-95.

[57] D. B. Walz, J. J. Elam and B. Curtis, "Inside a Software
Design Team: Knowledge Acquisition, Sharing, and
Integration", Communications of the ACM, 36 (1993), pp.
63-77.

[58] R. K. Yin, Case Study Research: Design and Methods,
SAGE Publications, Thousand Oaks, CA, 2009.

[59] E. Yu, Towards modelling and reasoning support for
early-phase requirements engineering, Proceedings of the
Third IEEE International Symposium on Requirements
Engineering (ISRE'97), IEEE Computer Society, Annapolis,
MD, 1997, pp. 226-235.

[60] E. Yu and J. Mylopoulos, Why Goal-Oriented
Requirements Engineering, Proceedings of the 4th
International Workshop on Requirements Engineering:
Foundations of Software Quality, Pisa, Italy, 1998, pp. 15-
22.

[61] Y. Yu, J. Leite and J. Mylopoulos, From goals to
aspects: Discovering aspects from requirements goal models,
Proceedings of the 12th IEEE International Requirements
Engineering Conference (RE'04), Kyoto, Japan, 2004, pp.
38-47.

[62] K. Yue, What does it mean to say that a specification is
complete?, Proceedings of the Fourth International
Workshop on Software Specification and Design (IWSSD-4),
Monterey CA, 1987.

[63] J. Zachman, "Enterprise Architecture: The Issue of the
Century", Database Programming and Design, 10 (1997), pp.
44-53.

[64] P. Zave, "Classification of research efforts in
requirements engineering", ACM Computing Surveys, 29
(1997), pp. 315-321.

52335233

Authorized licensed use limited to: Jyvaskylan Yliopisto. Downloaded on March 09,2022 at 08:30:14 UTC from IEEE Xplore. Restrictions apply.

