This is a self－archived version of an original article．This version may differ from the original in pagination and typographic details．

Author（s）：ALICE Collaboration

Title：Measurement of the Cross Sections of $\equiv 0 \mathrm{c}$ and $\overline{\mathrm{E}}+\mathrm{c}$ Baryons and of the Branching－ Fraction Ratio BR（三Oc $\rightarrow \equiv-\mathrm{e}+\mathrm{ve}) / \mathrm{BR}(\equiv 0 \mathrm{c} \rightarrow \bar{\Xi}-\pi+$ ）in pp Collisions at $\mathrm{V} s=13 \mathrm{TeV}$

Year： 2021

Version：Published version

Copyright：© 2021 CERN

Rights：CC BY 4.0

Rights url：https：／／creativecommons．org／licenses／by／4．0／

Please cite the original version：

ALICE Collaboration．（2021）．Measurement of the Cross Sections of 三Oc and ミ＋c Baryons and of the Branching－Fraction Ratio BR（三Oc $\rightarrow \equiv-\mathrm{e}+\mathrm{ve}) / \mathrm{BR}(\equiv 0 c \rightarrow \equiv-\pi+$ ）in pp Collisions at $\mathrm{Vs}=13 \mathrm{TeV}$ ． Physical Review Letters，127（27），Article 272001.
https：／／doi．org／10．1103／PhysRevLett．127．272001

Measurement of the Cross Sections of Ξ_{c}^{0} and Ξ_{c}^{+}Baryons and of the Branching-Fraction Ratio $\operatorname{BR}\left(\Xi_{c}^{0} \rightarrow \Xi^{-} e^{+} \nu_{e}\right) / \operatorname{BR}\left(\Xi_{c}^{0} \rightarrow \Xi^{-} \pi^{+}\right)$in $p p$ Collisions at $\sqrt{s}=13 \mathrm{TeV}$

S. Acharya et al.*
(A Large Ion Collider Experiment Collaboration)

(Received 2 August 2021; revised 18 October 2021; accepted 19 November 2021; published 28 December 2021)

Abstract

The p_{T}-differential cross sections of prompt charm-strange baryons Ξ_{c}^{0} and Ξ_{c}^{+}were measured at midrapidity ($|y|<0.5$) in proton-proton ($p p$) collisions at a center-of-mass energy $\sqrt{s}=13 \mathrm{TeV}$ with the ALICE detector at the LHC. The Ξ_{c}^{0} baryon was reconstructed via both the semileptonic decay $\left(\Xi^{-} e^{+} \nu_{e}\right)$ and the hadronic decay $\left(\Xi^{-} \pi^{+}\right)$channels. The Ξ_{c}^{+}baryon was reconstructed via the hadronic decay $\left(\Xi^{-} \pi^{+} \pi^{+}\right)$channel. The branching-fraction ratio $\operatorname{BR}\left(\Xi_{c}^{0} \rightarrow \Xi^{-} e^{+} \nu_{e}\right) / \mathrm{BR}\left(\Xi_{c}^{0} \rightarrow \Xi^{-} \pi^{+}\right)=1.38 \pm$ 0.14 (stat) ± 0.22 (syst) was measured with a total uncertainty reduced by a factor of about 3 with respect to the current world average reported by the Particle Data Group. The transverse momentum $\left(p_{T}\right)$ dependence of the Ξ_{c}^{0} - and Ξ_{c}^{+}-baryon production relative to the D^{0} meson and to the $\Sigma_{c}^{0,+,++}$ - and $\Lambda_{c}^{+}{ }^{-}$ baryon production are reported. The baryon-to-meson ratio increases toward low p_{T} up to a value of approximately 0.3 . The measurements are compared with various models that take different hadronization mechanisms into consideration. The results provide stringent constraints to these theoretical calculations and additional evidence that different processes are involved in charm hadronization in electron-positron ($e^{+} e^{-}$) and hadronic collisions.

DOI: 10.1103/PhysRevLett.127.272001

Measurements of heavy-flavor hadron production in high-energy proton-proton ($p p$) collisions provide important tests of quantum chromodynamics (QCD). The cross sections of heavy-flavor hadrons are usually computed using the factorization approach as a convolution of three factors [1]: (i) the parton distribution functions of the incoming protons, (ii) the hard-scattering cross section at partonic level, and (iii) the fragmentation function of heavy quarks into a given heavy-flavor hadron. The D - and B-meson cross sections in $p p$ collisions at several center-of-mass energies at the LHC [2-7] are described within uncertainties by perturbative QCD calculations [812], which use fragmentation functions tuned on $e^{+} e^{-}$data, over a wide range of transverse momentum $\left(p_{T}\right)$. Measurements of Λ_{c}^{+}-baryon production at midrapidity in $p p$ collisions at the center-of-mass energy $\sqrt{s}=5.02$ and 7 TeV were reported by the ALICE and CMS Collaborations in Refs. [13-15]. The measured Λ_{c}^{+} / D^{0} ratio is higher than previous measurements in $e^{+} e^{-}$[16-18] and $e^{-} p[19,20]$ collisions. A similar observation was drawn from the measurement of the inclusive Ξ_{c}^{0}-baryon

[^0]production at midrapidity in $p p$ collisions at $\sqrt{s}=$ 7 TeV [21].

PYTHIA8.2 tunes including string formation beyond the leading-color approximation [22] and a statistical hadronization model (SHM) [23] including a set of higher-mass charm-baryon states as prescribed by the relativistic quark model (RQM) and from lattice QCD [24,25] qualitatively describe the measured $\Sigma_{c}^{0,+,++} / D^{0}$ and Λ_{c}^{+} / D^{0} cross section ratios $[15,26]$, but underestimate the Ξ_{c}^{0} / D^{0} ratio [21]. The observed enhancement of the charm-baryon production can also be explained by model calculations considering hadronization of charm quarks via coalescence in addition to the fragmentation in $p p$ collisions [27,28]. The increased yield of charm baryons makes it mandatory to include their contribution for an accurate measurement of the $c \bar{c}$ production cross section in $p p$ collisions at the LHC [29].

In this Letter, the measurements of the cross sections of the prompt (i.e., produced directly in the hadronization of charm quarks and in the decays of directly produced excited charm states) charm-strange baryons Ξ_{c}^{0} and Ξ_{c}^{+} at midrapidity $(|y|<0.5)$ in $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$ are reported. The Ξ_{c}^{0} baryon was reconstructed via the decay channels $\Xi^{-} e^{+} \nu_{e}, \mathrm{BR}=(1.8 \pm 1.2) \%$ and $\Xi^{-} \pi^{+}$, $\mathrm{BR}=(1.43 \pm 0.32) \%$ [30] together with their charge conjugates in the interval $1<p_{T}<12 \mathrm{GeV} / c$. The Ξ_{c}^{+} baryon was reconstructed via the decay channel $\Xi^{-} \pi^{+} \pi^{+}$, $\mathrm{BR}=(2.86 \pm 1.21 \pm 0.38) \% \quad$ [31], together with its charge conjugate, in the interval $4<p_{T}<12 \mathrm{GeV} / c$.

The ratio $\operatorname{BR}\left(\Xi_{c}^{0} \rightarrow \Xi^{-} e^{+} \nu_{e}\right) / \operatorname{BR}\left(\Xi_{c}^{0} \rightarrow \Xi^{-} \pi^{+}\right)$was also measured. In the following, the notation Ξ_{c} is used to refer to both Ξ_{c}^{0} and Ξ_{c}^{+}states, if not differently specified.

A description of the ALICE detector and its performance are reported in Refs. [32,33]. The data used for these analyses were recorded with a minimum-bias trigger, based on coincident signals in the two scintillator arrays (V0) located on both sides of the interaction vertex. Offline selections, based on the V0 and Silicon Pixel Detector signals [3], were applied to remove background from beam-gas collisions. Pileup events (less than 1\% [34]) containing multiple primary vertices were rejected. Only events with a reconstructed primary vertex position within $\pm 10 \mathrm{~cm}$ in the longitudinal direction from the nominal center of the detector were used. With these requirements, $1.9 \times 10^{9} p p$ events were selected, corresponding to an integrated luminosity of $\mathcal{L}_{\mathrm{int}}=32.08 \pm 0.51 \mathrm{nb}^{-1}$ [34].

Charged-particle tracks and particle-decay vertices were reconstructed in the central barrel using the inner tracking system (ITS) and the time projection chamber (TPC), which are located inside a solenoidal magnet of field strength 0.5 T . The hadron (electron) selection criteria are the same as those reported in Ref. [3] ([21]). Particle identification (PID) was performed using the information on the energy loss $(d E / d x)$ through the TPC gas, and with the flight-time measurement of the time-of-flight detector [35]. The Ξ^{-}baryons were reconstructed from the decay chain $\Xi^{-} \rightarrow \pi^{-} \Lambda, \quad \mathrm{BR}=(99.887 \pm 0.035) \%$, followed by $\Lambda \rightarrow \pi^{-} p, \mathrm{BR}=(63.9 \pm 0.5) \%$ [30]. The Ξ^{-}and Λ baryons were reconstructed by exploiting their characteristic decay topologies as reported in Refs. [21,36].

For the measurements in the hadronic decay channels, pions were selected according to the criteria described in Ref. [29]. The Ξ_{c} candidates were reconstructed combining one or two pions, with the correct electric charge, to the selected Ξ baryon. A Kalman-Filter vertexing algorithm [37] was used for the reconstruction of the $\Xi_{c}^{0} \rightarrow \Xi^{-} \pi^{+}$ decay channel. The package allows us to set constraints on the mass and on the production point of the reconstructed particles, using also information about the errors of daughter particle trajectories improving reconstruction accuracy of the mother particle. The mass constraint improves the mass and momentum reconstruction of the particle, while the production point constraint helps to determine whether the particle is coming from a certain vertex. These constraints were applied to each vertex and particle (Λ and Ξ) in the decay chain reconstruction. In the case of the Ξ_{c}^{+}baryon, the mean-proper lifetime $c \tau=132 \mu \mathrm{~m}$ [30] was exploited. The Ξ_{c}^{+}secondary vertex was reconstructed using only two pions having the samesign charge, because the reconstructed Ξ trajectory has a much worse resolution when propagated to the primary vertex. Selections on the cosine of the pointing angle of the Ξ_{c}^{+}to the primary vertex, the distance of closest approach between the two decay pions, and the decay length of the
reconstructed secondary vertex were applied. For the Ξ_{c}^{0} baryon analysis, a multivariate technique based on the adaptive boosted decision tree (BDT) algorithm in the Toolkit for Multivariate Data Analysis (TMVA) [38] was used. The BDT algorithm was trained using reconstructed signal candidates obtained by simulating $p p$ collisions with PYTHIA8.2 [39] and propagating the generated particles through the detector using the GEANT3 transport code [40], including a realistic description of the detector response and alignment during the data taking period. The background candidates were taken from data by selecting candidates with invariant mass in the intervals $2.17<M<$ $2.39 \mathrm{GeV} / c^{2}$ and $2.55<M<2.77 \mathrm{GeV} / c^{2}$. The model was trained independently for each p_{T} interval with input variables related to the Ξ^{-}decay topology and to the PID information of the decay tracks. The Ξ_{c} raw yields were obtained from fits to the candidate invariant-mass distributions. The signal peak was modeled with a Gaussian and the background was described by a linear function.

The $\Xi_{c}^{0} \rightarrow \Xi^{-} e^{+} \nu_{e}$ analysis was performed using the technique reported in Ref. [21]. The Ξ_{c}^{0} candidates were defined from opposite-sign charge $e \Xi$ pairs with an opening angle smaller than 90°. In order to reject electrons from photon conversions occurring in the detector material, the electron-candidate tracks are required to have associated hits in the two innermost layers of the ITS [41,42]. Further rejection of background electrons originating from Dalitz decays of neutral mesons and photon conversions was performed using a technique based on the invariant mass of $e^{+} e^{-}$pairs [43,44]. The electron (positron) candidates were paired with opposite-sign charge tracks from the same event and are rejected if they form at least one $e^{+} e^{-}$pair with an invariant mass smaller than $50 \mathrm{MeV} / \mathrm{c}^{2}$. A correction for the misidentification probability was implemented, estimated to be 2% by applying the algorithm to same-sign charge $e^{ \pm} e^{ \pm}$pairs. The background in the $e^{+} \Xi^{-}$ pair distribution is estimated by exploiting the fact that Ξ_{c}^{0} baryons decay into $e^{+} \Xi^{-} \bar{\nu}_{e}$, but not into $e^{-} \Xi^{-} \bar{\nu}_{e}$, while most of the background sources contribute equally to both samples. The yield of same-sign charge pairs is therefore used to estimate the background. The Ξ_{c}^{0} raw yield was then obtained by subtracting the distribution of same-sign charge $e \Xi$-pairs from the distribution of opposite-sign charge pairs, and integrating the invariant-mass distribution for $M(e \Xi)<2.5 \mathrm{GeV} / c^{2}$. The procedure was verified with PYTHIA8.2 [39] simulations and the GEANT3 transport code. A similar procedure was adopted by the ARGUS and CLEO Collaborations [45,46]. The same-sign charge pairs also contain a contribution from $\Xi_{b}^{0,-} \rightarrow e^{-} \Xi^{-} \bar{\nu}_{e} X$ decays not present in the distribution of opposite-sign charge pairs, leading to an oversubtraction. It was corrected for based on the assumptions reported in Ref. [21] and ranges from 1\% to 4%, depending on p_{T}. The p_{T} distribution of $e^{+} \Xi^{-}$pairs was corrected for the missing momentum of the undetected neutrino using the Bayesian unfolding technique [47]
implemented in the RooUnfold package [48]. Additional information on the unfolding procedure is reported in the additional material [49].

The raw yields were divided by the acceptance-timesefficiency for prompt hadrons, $(\text { acc } \times \varepsilon)_{\text {prompt }}$, and were corrected for the beauty feed-down contribution. The $(\text { acc } \times \varepsilon)_{\text {prompt }}$ corrections were obtained from a Monte Carlo simulation with the same configuration of the one used for the BDT training. The simulated $\Xi_{c} p_{T}$ distributions were modified by a two step iterative procedure in order to mimic data. In the first step, the Ξ_{c} reconstruction efficiency is obtained with the p_{T} distribution generated with PYTHIA8.2. This $(\operatorname{acc} \times \varepsilon)_{\text {prompt }}$ is then used to calculate a first estimate of the $\Xi_{c}^{0} p_{T}$-differential spectrum. This first estimate is used to reweight the simulated $\Xi_{c} p_{T}$ distributions, which is then used for the final computation of the $(\operatorname{acc} \times \varepsilon)_{\text {prompt }}$. The $(\operatorname{acc} \times \varepsilon)_{\text {prompt }}$ increases with p_{T} from 0.6% to 12% depending on the particle and decay channel. The contribution from beauty feed down to the measured Ξ_{c} yields was subtracted. The cross section of feed down Ξ_{c} is calculated from the one of Λ_{c}^{+}originating from Λ_{b}^{0} decays (as described in Ref. [15]) and scaled by the fraction of Ξ_{b} decaying in a final state with a Ξ_{c}, which is taken to be about 50% from the PYTHIA8.2 generator [39], and by the ratio of the measured p_{T}-differential yields of inclusive Ξ_{c} and prompt Λ_{c}^{+} baryons. This procedure relies on the assumptions that the p_{T} shape of the cross sections of feed down Λ_{c}^{+}and Ξ_{c} are similar, and that the ratio $\Xi_{c} / \Lambda_{c}^{+}$is the same for inclusive and feed-down baryons. The prompt fraction ($f_{\text {prompt }}$) decreases with increasing p_{T} and it ranges from 0.99 at low p_{T} to 0.93 at high p_{T}. To obtain the prompt Ξ_{c} cross sections, the corrected yields were divided by a factor of 2 to obtain the particle-antiparticle averaged yields, by the BR , by the widths of the p_{T} and y intervals considered, and by $\mathcal{L}_{\text {int }}$, as shown in Eq. (1).
$\frac{d^{2} \sigma^{\Xi_{c}^{0}}}{d p_{T} d y}=\frac{1}{\mathrm{BR}} \times \frac{1}{2 \Delta y \Delta p_{T}} \times \frac{f_{\text {prompt }} \times N_{\mathrm{raw}}^{\Xi_{+}^{0}+\bar{\Xi}_{c}^{0}}}{(\mathrm{acc} \times \varepsilon)_{\text {prompt }}} \times \frac{1}{\mathcal{L}_{\text {int }}}$.
Systematic uncertainties were estimated considering several sources. For the hadronic decay channels, the systematic uncertainty on the raw-yield extraction was evaluated by repeating the fit of the invariant-mass distribution with varied fit interval, functional form of the background contribution, and width of the Gaussian function used to describe the signal peak. For the Ξ_{c}^{0} in the semileptonic decay channel, the raw-yield extraction systematic uncertainty was estimated by varying the selection criteria on the opening angle and on the invariant mass of the pair. The systematic uncertainties were defined as the RMS of the distribution of the signal yields obtained from these variations. The relative uncertainty on raw-yield extraction ranges from 7% to 11% depending on the p_{T}.

The uncertainty on the track reconstruction efficiency was evaluated by varying the track-selection criteria and by comparing the probability to prolong the tracks from the TPC to the ITS hits in data and simulations. A 5\% (7\%) uncertainty was assigned for the $\Xi_{c}^{0}\left(\Xi_{c}^{+}\right)$. The uncertainty on the selection efficiency originates mainly from imperfections in the description of the detector response and alignment in the simulation. It was estimated from the ratios of the corrected yields obtained by varying the BDT and topological selections applied; an uncertainty ranging from 2% to 5% was assigned. The systematic uncertainty due to the shape of the $\Xi_{c} p_{T}$ distributions used for the calculation of $(\text { acc } \times \varepsilon)_{\text {prompt }}$ was estimated by considering different p_{T} shapes in the simulation, obtained by varying the weights mentioned above within their uncertainty [21] and it amounts to 1% for $p_{T}<3 \mathrm{GeV} / c$. The systematic uncertainty on the subtraction of feed down from beautyhadron decays was evaluated as in Ref. [15] and additionally by scaling up the $\Xi_{c} / \Lambda_{c}^{+}$ratio by a conservative factor of 2 and scaling it down to the $\Xi_{b}^{-} / \Lambda_{b}^{0}$ ratio measured by the LHCb Collaboration [50], important in the case that $\operatorname{BR}\left(\Xi_{b}^{0} \rightarrow \Xi_{c}^{-} X\right)$ is the same as $\operatorname{BR}\left(\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} X\right)$. The assigned uncertainty ranges from 1% to 9% depending on p_{T}. Additional uncertainties related only to the Ξ_{c}^{0} semileptonic decay channel were estimated as follows. The uncertainties related to the unfolding procedure were estimated by varying the number of iterations of the algorithm, the p_{T} range and the widths of the p_{T} intervals used in the Bayesian unfolding procedure, and the unfolding method itself to the singular value decomposition [51], and ranges from 2% to 12% depending on p_{T}. The systematic uncertainty related to the oversubtraction due to the Ξ_{b} contribution in the same-sign charge $e \Xi$ pairs was estimated by scaling the assumed Ξ_{b} momentum distribution by a conservative 50% [52]. A maximum of 2% uncertainty was assigned at high p_{T}. A 2% uncertainty was assigned to account for possible differences in the acceptance of $e^{+} \Xi^{-}$pairs in data and simulation, which is evaluated by performing the measurement in different rapidity intervals between $|y|<0.5$ and 0.8 . The cross sections have an additional global normalization uncertainty due to the uncertainties on the integrated luminosity [34] and the BRs $[30,31]$.

The Ξ_{c}^{0} measurements in the two decay channels agree within statistical and uncorrelated systematic uncertainties [49]. The results from the two decay channels were combined to obtain a more precise measurement of the prompt p_{T}-differential Ξ_{c}^{0}-baryon cross section. The tracking and feed-down systematic uncertainties were propagated as correlated between the two measurements. Figure 1 shows the average of the cross sections, computed considering as weights the inverse square of the relative statistical and p_{T}-uncorrelated systematic uncertainties [53]. The prompt Ξ_{c}^{+}-baryon cross section, also shown in

FIG. 1. Cross sections of prompt Ξ_{c}^{0} (full circles) and Ξ_{c}^{+}(open circles) baryons as a function of p_{T} in $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$. The error bars and empty boxes represent the statistical and systematic uncertainties, respectively. The systematic uncertainties on the BR are shown as shaded boxes.

Fig 1 , is compatible within the uncertainties with the Ξ_{c}^{0} measurement.

The p_{T}-integrated cross sections in the measured p_{T} interval for the Ξ_{c} are $d \sigma_{p p, 13 \mathrm{TeV}}^{\Xi_{0}^{0}} /\left.d y\right|_{|y|<0.5} ^{\left(1<p_{T}<12 \mathrm{GeV} / c\right)}=$ 149.6 ± 20.8 (stat) ± 35.6 (syst) ± 2.4 (lumi) $\mu \mathrm{b}$ and $d \sigma_{p p, 13 \mathrm{TeV}}^{\Xi_{c}^{+}} /\left.d y\right|_{|y|<0.5} ^{\left(4<p_{T}<12 \mathrm{GeV} / c\right)}=14.9 \pm 2.0($ stat $) \pm$ 6.6 (syst) ± 0.2 (lumi) $\mu \mathrm{b}$. In calculating the p_{T} integrated cross section and the ratio of the branching fractions, the systematic uncertainty related to unfolding, for the $\Xi_{c}^{0} \rightarrow \Xi^{-} e^{+} \nu_{e}$, was considered as p_{T} uncorrelated and the other uncertainties as fully p_{T} correlated. For the hadronic decay channels, the uncertainty related to the rawyield extraction was considered p_{T} uncorrelated, because the
signal-over-background ratio is observed to largely vary as a function of p_{T}, while the others as fully p_{T} correlated. The p_{T} -integrated Ξ_{c}^{0} cross section at midrapidity was obtained by extrapolating the visible cross section to the full p_{T} range. The p_{T} dependence of the Catania model [28], which better describes the shape of the measured cross section with respect to other model calculations as seen in Fig. 2, was used to calculate the extrapolation factor, which is $1.29_{-0.08}^{+0.12}$. The systematic uncertainty was estimated considering calculations [22,23,27] that describe the shape of the cross section in the measured p_{T} interval. The p_{T}-extrapolated cross section for the Ξ_{c}^{0} is $d \sigma_{p p, 13 \mathrm{TeV}}^{\Xi_{c}^{0}} /\left.d y\right|_{|y|<0.5}=193.6 \pm$ 26.9 (stat) ± 46.1 (syst) ± 3.1 (lumi) $)_{-12.0}^{+17.5}$ (extrap) $\mu \mathrm{b}$.

The measurement of the Ξ_{c}^{0}-baryon cross sections, not corrected by the BRs, in the two different decay channels allowed the computation of the $\operatorname{BR}\left(\Xi_{c}^{0} \rightarrow \Xi^{-} e^{+} \nu_{e}\right) /$ $\operatorname{BR}\left(\Xi_{c}^{0} \rightarrow \Xi^{-} \pi^{+}\right)$ratio. The p_{T}-dependent ratio of the two measurements, which was observed to be flat in p_{T} [49], was averaged over p_{T} using the inverse uncorrelated relative uncertainties as weights [53]. The final systematic uncertainty on the ratio was obtained by summing in quadrature the p_{T}-correlated and uncorrelated systematic uncertainties. The measured ratio is $\operatorname{BR}\left(\Xi_{c}^{0} \rightarrow \Xi^{-} e^{+} \nu_{e}\right) /$ $\operatorname{BR}\left(\Xi_{c}^{0} \rightarrow \Xi^{-} \pi^{+}\right)=1.38 \pm 0.14$ (stat) ± 0.22 (syst). The result is consistent with the global average reported by the PDG (1.3 ± 0.8) [30] and has a total uncertainty reduced by a factor of 3 . The result is also consistent with the one released by the Belle Collaboration [54].

Figure 2 (left) shows the Ξ_{c} / D^{0} ratios measured as a function of p_{T}. The systematic uncertainties related to the track-reconstruction efficiency, feed-down subtraction, and luminosity were propagated as correlated in the ratio. The observed p_{T} dependence of the Ξ_{c} / D^{0} ratio is similar to what was measured for the Λ_{c}^{+} / D^{0} ratio [15], while the

FIG. 2. Left panel: Ξ_{c}^{0} / D^{0} and Ξ_{c}^{+} / D^{0} ratios as a function of p_{T} in $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$. Right panel: $\Xi_{c}^{0} / \Lambda_{c}^{+}$and $\Xi_{c}^{0,+} / \Sigma_{c}^{0,+,++}$ ratio as a function of p_{T}. The error bars and empty boxes represent the statistical and systematic uncertainties, respectively. The systematic uncertainties on the BR are shown as shaded boxes. The measurements are compared with model calculations (see text for detail).
Ξ_{c} / D^{0} ratio is generally lower. This result provides strong indications that the fragmentation functions of baryons and mesons differ significantly. The PYTHIA8.2 event generator with the Monash tune [39], and tunes that implement color reconnection (CR) beyond the leading-color approximation [22], which lead to an increased baryon production, were compared to the measurements. The Monash tune significantly underestimates the data by a factor of 23-43 in the low- p_{T} region and by a factor of about 5 in the highest p_{T} interval. All three CR modes give a similar magnitude and p_{T} dependence of Ξ_{c} / D^{0}, and although they predict a larger baryon-to-meson ratio with respect to the Monash tune, they still underestimate the measured Ξ_{c} / D^{0} ratio by a factor $4-9$ for $p_{T}<4 \mathrm{GeV} / c$. The measured Ξ_{c} / D^{0} ratio was also compared to a SHM [23] that includes additional excited charm-baryon states not yet observed but predicted by the RQM [24] and by lattice QCD [25]. While this model describes the Λ_{c}^{+} / D^{0} and $\Sigma_{c}^{0,+,++} / D^{0}$ ratios [15,26], it underestimates the Ξ_{c} / D^{0} ratio. The measured ratios were also compared with models that include hadronization via coalescence. In the quark (re-)combination mechanism (QCM) [27], the charm quark can pick up a comoving light antiquark or two comoving quarks to form a single-charm meson or baryon. The model does not describe the Ξ_{c} / D^{0} ratio. The Catania model $[28,55]$ implements charm-quark hadronization via both coalescence and fragmentation, and it is the model that is closer to the measured ratio over the full p_{T} interval.

The $\Xi_{c}^{0} / \Lambda_{c}^{+}$and $\Xi_{c}^{0,+} / \Sigma_{c}^{0,+,++}[26]$ cross section ratios are reported in the right panel of Fig. 2. The tracking, feed down, and luminosity systematic uncertainties were propagated as correlated. The $\Xi_{c}^{0} / \Lambda_{c}^{+}$ratio is approximately 0.5 and within the current uncertainties there is no significant p_{T} dependence. All the PYTHiA8. 2 tunes, as well as the QCM, Catania, and the $\mathrm{SHM}+\mathrm{RQM}$ models, do not describe the measured ratio. To compute the $\Xi_{c}^{0,+} / \Sigma_{c}^{0,+,++}$, the Ξ_{c}^{0} was summed with the Ξ_{c}^{+}for $p_{T}>$ $4 \mathrm{GeV} / c$ and scaled by a factor of 2 in the interval $2<p_{T}<4 \mathrm{GeV} / c$. The ratio is at approximately 2 and it is compatible with the Monash tune, which underestimates by a similar amount the $\Xi_{c}^{0,+}$ and $\Sigma_{c}^{0,+,++}$ cross sections [21,26]. The PYTHiA8. 2 tunes with CR and the SHM + RQM calculation also underestimate the measurement. The QCM model shows an almost flat value at unity, largely underestimating the measured ratio. The Catania model describes the data within the uncertainties.

In summary, measurements of the prompt charm-strange baryons Ξ_{c}^{+}and Ξ_{c}^{0} at midrapidity in $p p$ collisions at $\sqrt{s}=$ 13 TeV were presented. The results pose important constraints to models of charm-quark hadronization in $p p$ collisions. Finally, the ratio $\operatorname{BR}\left(\Xi_{c}^{0} \rightarrow \Xi^{-} e^{+} \nu_{e}\right) / \mathrm{BR}\left(\Xi_{c}^{0} \rightarrow\right.$ $\Xi^{-} \pi^{+}$) was measured with a total uncertainty reduced by a factor 3 with respect to the global average reported by the PDG [30].

The ALICE Collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration gratefully acknowledges the resources and support provided by all Grid centers and the Worldwide LHC Computing Grid (WLCG) Collaboration. The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: A. I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation (ANSL), State Committee of Science and World Federation of Scientists (WFS), Armenia; Austrian Academy of Sciences, Austrian Science Fund (FWF): [M 2467-N36] and Nationalstiftung für Forschung, Technologie und Entwicklung, Austria; Ministry of Communications and High Technologies, National Nuclear Research Center, Azerbaijan; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Financiadora de Estudos e Projetos (Finep), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and Universidade Federal do Rio Grande do Sul (UFRGS), Brazil; Ministry of Education of China (MOEC), Ministry of Science \& Technology of China (MSTC) and National Natural Science Foundation of China (NSFC), China; Ministry of Science and Education and Croatian Science Foundation, Croatia; Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Cubaenergía, Cuba; Ministry of Education, Youth and Sports of the Czech Republic, Czech Republic; The Danish Council for Independent Research I Natural Sciences, the VILLUM FONDEN and Danish National Research Foundation (DNRF), Denmark; Helsinki Institute of Physics (HIP), Finland; Commissariat à l'Energie Atomique (CEA) and Institut National de Physique Nucléaire et de Physique des Particules (IN2P3) and Centre National de la Recherche Scientifique (CNRS), France; Bunde sministerium für Bildung und Forschung (BMBF) and GSI Helmholtzzentrum für Schwerionenforschung GmbH, Germany; General Secretariat for Research and Technology, Ministry of Education, Research and Religions, Greece; National Research, Development and Innovation Office, Hungary; Department of Atomic Energy Government of India (DAE), Department of Science and Technology, Government of India (DST), University Grants Commission, Government of India (UGC) and Council of Scientific and Industrial Research (CSIR), India; Indonesian Institute of Science, Indonesia; Istituto Nazionale di Fisica Nucleare (INFN), Italy; Institute for Innovative Science and Technology, Nagasaki Institute of Applied Science (IIST), Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) and Japan Society for the Promotion of Science (JSPS) KAKENHI, Japan; Consejo Nacional de Ciencia (CONACYT) y Tecnología, through Fondo de Cooperación Internacional en Ciencia y

Tecnología (FONCICYT) and Dirección General de Asuntos del Personal Academico (DGAPA), Mexico; Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; The Research Council of Norway, Norway; Commission on Science and Technology for Sustainable Development in the South (COMSATS), Pakistan; Pontificia Universidad Católica del Perú, Peru; Ministry of Education and Science, National Science Centre and Warsaw University of Technology ID-UB Project Excellence Initiative, Poland; Korea Institute of Science and Technology Information and National Research Foundation of Korea (NRF), Republic of Korea; Ministry of Education and Scientific Research, Institute of Atomic Physics and Ministry of Research and Innovation and Institute of Atomic Physics, Romania; Joint Institute for Nuclear Research (JINR), Ministry of Education and Science of the Russian Federation, National Research Centre Kurchatov Institute, Russian Science Foundation and Russian Foundation for Basic Research, Russia; Ministry of Education, Science, Research and Sport of the Slovak Republic, Slovakia; National Research Foundation of South Africa, South Africa; Swedish Research Council (VR) and Knut \& Alice Wallenberg Foundation (KAW), Sweden; European Organization for Nuclear Research, Switzerland; Suranaree University of Technology (SUT), National Science and Technology Development Agency (NSDTA) and Office of the Higher Education Commission under NRU project of Thailand, Thailand; Turkish Energy, Nuclear and Mineral Research Agency (TENMAK), Turkey; National Academy of Sciences of Ukraine, Ukraine; Science and Technology Facilities Council (STFC), United Kingdom; National Science Foundation of the United States of America (NSF) and United States Department of Energy, Office of Nuclear Physics (DOE NP), USA.
[1] J. C. Collins, D. E. Soper, and G. F. Sterman, Heavy particle production in high-energy hadron collisions, Nucl. Phys. B263, 37 (1986).
[2] S. Acharya et al. (ALICE Collaboration), Measurement of D^{0}, D^{+}, D^{*+} and D_{s}^{+}production in $p p$ collisions at $\sqrt{s}=5.02 \mathrm{TeV}$ with ALICE, Eur. Phys. J. C 79, 388 (2019).
[3] S. Acharya et al. (ALICE Collaboration), Measurement of beauty and charm production in $p p$ collisions at $\sqrt{s}=$ 5.02 TeV via non-prompt and prompt D mesons, J. High Energy Phys. 05 (2021) 220.
[4] A. M. Sirunyan et al. (CMS Collaboration), Nuclear modification factor of D^{0} mesons in $\mathrm{Pb}-\mathrm{Pb}$ collisions at $\sqrt{s_{\mathrm{NN}}}=5.02 \mathrm{TeV}$, Phys. Lett. B 782, 474 (2018).
[5] V. Khachatryan et al. (CMS Collaboration), Measurement of the B^{+}Production Cross Section in $p p$ Collisions at $\sqrt{s}=7 \mathrm{TeV}$, Phys. Rev. Lett. 106, 112001 (2011).
[6] S. Chatrchyan et al. (CMS Collaboration), Measurement of the B^{0} Production Cross Section in $p p$ Collisions at $\sqrt{s}=7 \mathrm{TeV}$, Phys. Rev. Lett. 106, 252001 (2011).
[7] S. Chatrchyan et al. (CMS Collaboration), Measurement of the strange B meson production cross section with $J / \psi \phi$ decays in $p p$ collisions at $\sqrt{s}=7 \mathrm{TeV}$, Phys. Rev. D 84, 052008 (2011).
[8] G. Kramer and H. Spiesberger, Study of heavy meson production in $p-\mathrm{Pb}$ collisions at $\sqrt{s_{\mathrm{NN}}}=5.02 \mathrm{TeV}$ in the general-mass variable-flavour-number scheme, Nucl. Phys. B925, 415 (2017).
[9] I. Helenius and H. Paukkunen, Revisiting the D-meson hadroproduction in general-mass variable flavour number scheme, J. High Energy Phys. 05 (2018) 196.
[10] M. Cacciari, M. Greco, and P. Nason, The p_{T} spectrum in heavy flavor hadroproduction, J. High Energy Phys. 05 (1998) 007.
[11] M. Cacciari, S. Frixione, N. Houdeau, M. L. Mangano, P. Nason, and G. Ridolfi, Theoretical predictions for charm and bottom production at the LHC, J. High Energy Phys. 10 (2012) 137.
[12] B. A. Kniehl, G. Kramer, I. Schienbein, and H. Spiesberger, $\Lambda_{c}^{ \pm}$production in $p p$ collisions with a new fragmentation function, Phys. Rev. D 101, 114021 (2020).
[13] A. M. Sirunyan et al. (CMS Collaboration), Production of Λ_{c}^{+}baryons in proton-proton and lead-lead collisions at $\sqrt{s_{\mathrm{NN}}}=5.02 \mathrm{TeV}$, Phys. Lett. B 803, 135328 (2020).
[14] S. Acharya et al. (ALICE Collaboration), Λ_{c}^{+}production in $p p$ collisions at $\sqrt{s}=7 \mathrm{TeV}$ and in $p-\mathrm{Pb}$ collisions at $\sqrt{s_{\mathrm{NN}}}=5.02 \mathrm{TeV}$, J. High Energy Phys. 04 (2018) 108.
[15] S. Acharya et al. (ALICE Collaboration), Λ_{c}^{+}Production and Baryon-To-Meson Ratios in $p p$ and $p-\mathrm{Pb}$ Collisions at $\sqrt{s_{\mathrm{NN}}}=5.02 \mathrm{TeV}$ at the LHC, Phys. Rev. Lett. 127, 202301 (2021).
[16] H. Albrecht et al. (ARGUS Collaboration), Observation of the Charmed Baryon Λ_{c} in $e^{+} e^{-}$Annihilation at 10 GeV , Phys. Lett. B 207, 109 (1988).
[17] P. Avery et al. (CLEO Collaboration), Inclusive production of the charmed baryon Λ_{c} from $e^{+} e^{-}$annihilations at $\sqrt{s}=10.55 \mathrm{GeV}$, Phys. Rev. D 43, 3599 (1991).
[18] L. Gladilin, Fragmentation fractions of c and b quarks into charmed hadrons at LEP, Eur. Phys. J. C 75, 19 (2015).
[19] S. Chekanov et al. (ZEUS Collaboration), Measurement of charm fragmentation ratios and fractions in photoproduction at HERA, Eur. Phys. J. C 44, 351 (2005).
[20] H. Abramowicz et al. (ZEUS Collaboration), Measurement of charm fragmentation fractions in photoproduction at HERA, J. High Energy Phys. 09 (2013) 058.
[21] S. Acharya et al. (ALICE Collaboration), First measurement of Ξ_{c}^{0} production in $p p$ collisions at $\sqrt{\mathbf{s}}=7 \mathrm{TeV}$, Phys. Lett. B 781, 8 (2018).
[22] J. R. Christiansen and P. Z. Skands, String formation beyond leading colour, J. High Energy Phys. 08 (2015) 003.
[23] M. He and R. Rapp, Charm-Baryon production in protonproton collisions, Phys. Lett. B 795, 117 (2019).
[24] D. Ebert, R. N. Faustov, and V. O. Galkin, Spectroscopy and Regge trajectories of heavy baryons in the relativistic quarkdiquark picture, Phys. Rev. D 84, 014025 (2011).
[25] R. A. Briceno, H.-W. Lin, and D. R. Bolton, Charmedbaryon spectroscopy from lattice QCD with $N_{f}=2+1+$ 1 flavors, Phys. Rev. D 86, 094504 (2012).
[26] S. Acharya et al. (ALICE Collaboration), Measurement of prompt D^{0}, Λ_{c}^{+}, and $\Sigma_{c}^{0,++}(2455)$ production in $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$, arXiv:2106.08278.
[27] J. Song, H.-h. Li, and F.-1. Shao, New feature of low p_{T} charm quark hadronization in $p p$ collisions at $\sqrt{s}=7 \mathrm{TeV}$, Eur. Phys. J. C 78, 344 (2018).
[28] V. Minissale, S. Plumari, and V. Greco, Charm hadrons in $p p$ collisions at LHC energy within a coalescence plus fragmentation approach, Phys. Lett. B 821, 136622 (2021).
[29] S. Acharya et al. (ALICE Collaboration), Measurement of D-meson production at mid-rapidity in $p p$ collisions at $\sqrt{s}=7 \mathrm{TeV}$, Eur. Phys. J. C 77, 550 (2017).
[30] P. Zyla et al. (Particle Data Group), Review of particle physics, Prog. Theor. Exp. Phys. 2020, 083C01 (2020).
[31] Y. Li et al. (Belle Collaboration), First measurements of absolute branching fractions of the Ξ_{c}^{+}baryon at Belle, Phys. Rev. D 100, 031101 (2019).
[32] B. Abelev et al. (ALICE Collaboration), Performance of the ALICE Experiment at the CERN LHC, Int. J. Mod. Phys. A 29, 1430044 (2014).
[33] K. Aamodt et al. (ALICE Collaboration), The ALICE experiment at the CERN LHC, J. Instrum. 3, S08002 (2008).
[34] S. Acharya et al. (ALICE Collaboration), ALICE 2016-20172018 luminosity determination for $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$, Technical Report No. ALICE-PUBLIC-2021-005, CERN, 2021, https://cds.cern.ch/record/2776672.
[35] J. Adam et al. (ALICE Collaboration), Determination of the event collision time with the ALICE detector at the LHC, Eur. Phys. J. Plus 132, 99 (2017).
[36] S. Acharya et al. (ALICE Collaboration), Multiplicity dependence of (multi-)strange hadron production in proton-proton collisions at $\sqrt{s}=13 \mathrm{TeV}$, Eur. Phys. J. C 80, 167 (2020).
[37] I. Kisel, I. Kulakov, and M. Zyzak, Standalone first level event selection package for the CBM experiment, IEEE Trans. Nucl. Sci. 60, 3703 (2013).
[38] A. Hocker et al., TMVA-Toolkit for multivariate data analysis, arXiv:physics/0703039.
[39] T. Sjöstrand, S. Ask, J. R. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna, S. Prestel, C. O. Rasmussen, and P. Z. Skands, An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191, 159 (2015).
[40] R. Brun, F. Bruyant, F. Carminati, S. Giani, M. Maire, A. McPherson, G. Patrick, and L. Urban, GEANT: Detector Description and Simulation Tool; Oct 1994 (CERN Program Library. CERN, Geneva, 1993), https://cds.cern.ch/ record/1082634, Long Writeup W5013.
[41] S. Acharya et al. (ALICE Collaboration), Measurements of low- p_{T} electrons from semileptonic heavy-flavour hadron
decays at mid-rapidity in $p p$ and $\mathrm{Pb}-\mathrm{Pb}$ collisions at $\sqrt{s_{\mathrm{NN}}}=2.76 \mathrm{TeV}$, J. High Energy Phys. 10 (2018) 061.
[42] S. Acharya et al. (ALICE Collaboration), Measurement of electrons from semileptonic heavy-flavour hadron decays at midrapidity in $p p$ and $\mathrm{Pb}-\mathrm{Pb}$ collisions at $\sqrt{s_{\mathrm{NN}}}=5.02 \mathrm{TeV}$, Phys. Lett. B 804, 135377 (2020).
[43] S. Acharya et al. (ALICE Collaboration), Centrality and transverse momentum dependence of inclusive J / ψ production at midrapidity in $\mathrm{Pb}-\mathrm{Pb}$ collisions at $\sqrt{s_{\mathrm{NN}}}=5.02 \mathrm{TeV}$, Phys. Lett. B 805, 135434 (2020).
[44] S. Acharya et al. (ALICE Collaboration), Inclusive J / ψ production at mid-rapidity in $p p$ collisions at $\sqrt{s}=5.02 \mathrm{TeV}$, J. High Energy Phys. 10 (2019) 084.
[45] H. Albrecht et al. (ARGUS Collaboration), Observation of Ξ_{c}^{0} semileptonic decay, Phys. Lett. B 303, 368 (1993).
[46] J. P. Alexander et al. (CLEO Collaboration), First Observation of $\Xi_{c}^{+} \rightarrow \Xi^{0} e^{+} \nu_{e}$ and an Estimate of the $\Xi_{c}^{+} / \Xi_{c}^{0}$ Lifetime Ratio, Phys. Rev. Lett. 74, 3113 (1995); Erratum, Phys. Rev. Lett. 75, 4155 (1995).
[47] G. D'Agostini, A multidimensional unfolding method based on Bayes' theorem, Nucl. Instrum. Methods Phys. Res., Sect. A 362, 487 (1995).
[48] T. Adye, Unfolding algorithms and tests using RooUnfold, in PHYSTAT 2011 (CERN, Geneva, 2011), pp. 313-318 [arXiv:1105.1160].
[49] See Supplemental Material at http://link.aps.org/supplemental/ 10.1103/PhysRevLett.127.272001 for examples of invariantmass distributions; for the correlation matrix; for the raw yields before and after the unfolding procedure; and for the comparison of the production cross section between semileptonic and hadronic decays.
[50] R. Aaij et al. (LHCb Collaboration), Measurement of the mass and production rate of Ξ_{b}^{-}baryons, Phys. Rev. D 99, 052006 (2019).
[51] A. Hocker and V. Kartvelishvili, SVD approach to data unfolding, Nucl. Instrum. Methods Phys. Res., Sect. A 372, 469 (1996).
[52] S. Chatrchyan et al. (CMS Collaboration), Measurement of the Λ_{b} cross section and the $\bar{\Lambda}_{b}$ to Λ_{b} ratio with $\mathrm{J} / \psi \Lambda$ decays in $p p$ collisions at $\sqrt{s}=7 \mathrm{TeV}$, Phys. Lett. B 714, 136 (2012).
[53] M. Bonamente, Statistics and Analysis of Scientific Data, Graduate Texts in Physics (Springer-Verlag, New York, 2013), https://www.springer.com/gp/book/9781489994806.
[54] Y. B. Li et al. (Belle Collaboration), Measurements of the Branching Fractions of Semileptonic Decays $\Xi_{c}^{0} \rightarrow \Xi^{-} \ell^{+} \nu_{\ell}$ and Asymmetry Parameter of $\Xi_{c}^{0} \rightarrow \Xi^{-} \pi^{+}$Decay, Phys. Rev. Lett. 127, 121803 (2021).
[55] S. Plumari, V. Minissale, S. K. Das, G. Coci, and V. Greco, Charmed hadrons from coalescence plus fragmentation in relativistic nucleus-nucleus collisions at RHIC and LHC, Eur. Phys. J. C 78, 348 (2018).

S. Acharya, ${ }^{143}$ D. Adamová, ${ }^{98}$ A. Adler ${ }^{76}$ J. Adolfsson, ${ }^{83}$ G. Aglieri Rinella, ${ }^{35}$ M. Agnello, ${ }^{31}$ N. Agrawal, ${ }^{55}$ Z. Ahammed, ${ }^{143}$ S. Ahmad, ${ }^{16}$ S. U. Ahn, ${ }^{78}$ I. Ahuja, ${ }^{39}$ Z. Akbar, ${ }^{52}$ A. Akindinov, ${ }^{95}$ M. Al-Turany,${ }^{110}$ S. N. Alam,,${ }^{41}$ D. Aleksandrov, ${ }^{91}$ B. Alessandro, ${ }^{61}$ H. M. Alfanda, ${ }^{7}$ R. Alfaro Molina, ${ }^{73}$ B. Ali, ${ }^{16}$ Y. Ali, ${ }^{14}$ A. Alici, ${ }^{26}$

N. Alizadehvandchali, ${ }^{127}$ A. Alkin, ${ }^{35}$ J. Alme, ${ }^{21}$ T. Alt, ${ }^{70}$ L. Altenkamper, ${ }^{21}$ I. Altsybeev, ${ }^{115}$ M. N. Anaam, ${ }^{7}$ C. Andrei, ${ }^{49}$ D. Andreou, ${ }^{93}$ A. Andronic, ${ }^{146}$ M. Angeletti, ${ }^{35}$ V. Anguelov, ${ }^{107}$ F. Antinori, ${ }^{58}$ P. Antonioli, ${ }^{55}$ C. Anuj, ${ }^{16}$ N. Apadula, ${ }^{82}$ L. Aphecetche,,${ }^{117}$ H. Appelshäuser, ${ }^{70}$ S. Arcelli, ${ }^{26}$ R. Arnaldi, ${ }^{61}$ I. C. Arsene, ${ }^{20}$ M. Arslandok, ${ }^{107,148}$ A. Augustinus, ${ }^{35}$ R. Averbeck, ${ }^{110}$ S. Aziz, ${ }^{80}$ M. D. Azmi, ${ }^{16}$ A. Badalà, ${ }^{57}$ Y. W. Baek, ${ }^{42}$ X. Bai, ${ }^{110,131}$ R. Bailhache, ${ }^{70}$ Y. Bailung, ${ }^{51}$ R. Bala, ${ }^{104}$ A. Balbino, ${ }^{31}$ A. Baldisseri, ${ }^{140}$ B. Balis, ${ }^{2}$ M. Ball, ${ }^{44}$ D. Banerjee, ${ }^{4}$ R. Barbera, ${ }^{27}$ L. Barioglio, ${ }^{25,108}$ M. Barlou, ${ }^{87}$ G. G. Barnaföldi, ${ }^{147}$ L. S. Barnby, ${ }^{97}$ V. Barret, ${ }^{137}$ C. Bartels, ${ }^{130}$ K. Barth,${ }^{35}$ E. Bartsch, ${ }^{70}$ F. Baruffaldi, ${ }^{28}$ N. Bastid, ${ }^{137}$ S. Basu, ${ }^{83}$ G. Batigne, ${ }^{117}$ B. Batyunya, ${ }^{77}$ D. Bauri, ${ }^{50}$ J. L. Bazo Alba, ${ }^{114}$ I. G. Bearden, ${ }^{92}$ C. Beattie, ${ }^{148}$ I. Belikov,,${ }^{139}$ A. D. C. Bell Hechavarria, ${ }^{146}$ F. Bellini, ${ }^{26,35}$ R. Bellwied, ${ }^{127}$ S. Belokurova, ${ }^{115}$ V. Belyaev, ${ }^{96}$ G. Bencedi, ${ }^{71}$ S. Beole, ${ }^{25}$
A. Bercuci, ${ }^{49}$ Y. Berdnikov, ${ }^{101}$ A. Berdnikova, ${ }^{107}$ D. Berenyi, ${ }^{147}$ L. Bergmann, ${ }^{107}$ M. G. Besoiu, ${ }^{69}$ L. Betev,,${ }^{35}$ P. P. Bhaduri, ${ }^{143}$ A. Bhasin, ${ }^{104}$ I. R. Bhat, ${ }^{104}$ M. A. Bhat, ${ }^{4}$ B. Bhattacharjee,,${ }^{43}$ P. Bhattacharya, ${ }^{23}$ L. Bianchi, ${ }^{25}$ N. Bianchi, ${ }^{53}$ J. Bielčík, ${ }^{38}$ J. Bielčíková, ${ }^{98}$ J. Biernat, ${ }^{120}$ A. Bilandzic, ${ }^{108}$ G. Biro, ${ }^{147}$ S. Biswas, ${ }^{4}$ J. T. Blair, ${ }^{121}$ D. Blau,,${ }^{91}$ M. B. Blidaru,,${ }^{110}$ C. Blume, ${ }^{70}$ G. Boca,,${ }^{29,59}$ F. Bock, ${ }^{99}$ A. Bogdanov, ${ }^{96}$ S. Boi, ${ }^{23}$ J. Bok, ${ }^{63}$ L. Boldizsár, ${ }^{147}$ A. Bolozdynya, ${ }^{96}$ M. Bombara, ${ }^{39}$ P. M. Bond, ${ }^{35}$ G. Bonomi, ${ }^{59,142}$ H. Borel, ${ }^{140}$ A. Borissov, ${ }^{84}$ H. Bossi,,${ }^{148}$ E. Botta, ${ }^{25}$ L. Bratrud, ${ }^{70}$ P. Braun-Munzinger,,${ }^{110}$ M. Bregant, ${ }^{123}$ M. Broz, ${ }^{38}$ G. E. Bruno,,${ }^{34,109}$ M. D. Buckland, ${ }^{130}$ D. Budnikov, ${ }^{111}$ H. Buesching, ${ }^{70}$ S. Bufalino, ${ }^{31}$ O. Bugnon, ${ }^{117}$ P. Buhler, ${ }^{116}$ Z. Buthelezi, ${ }^{74,134}$ J. B. Butt, ${ }^{14}$ S. A. Bysiak, ${ }^{120}$ D. Caffarri, ${ }^{93}$ M. Cai, ${ }^{7,28}$ H. Caines, ${ }^{148}$ A. Caliva, ${ }^{110}$ E. Calvo Villar, ${ }^{114}$ J. M. M. Camacho, ${ }^{122}$ R. S. Camacho, ${ }^{46}$ P. Camerini, ${ }^{24}$ F. D. M. Canedo, ${ }^{123}$ F. Carnesecchi, ${ }^{26,35}$ R. Caron, ${ }^{140}$ J. Castillo Castellanos, ${ }^{140}$ E. A. R. Casula, ${ }^{23}$ F. Catalano, ${ }^{31}$ C. Ceballos Sanchez, ${ }^{77}$ P. Chakraborty, ${ }^{50}$ S. Chandra, ${ }^{143}$ S. Chapeland,,${ }^{35}$ M. Chartier, ${ }^{130}$ S. Chattopadhyay, ${ }^{143}$ S. Chattopadhyay, ${ }^{112}$ A. Chauvin, ${ }^{23}$ T. G. Chavez, ${ }^{46}$ C. Cheshkov, ${ }^{138}$ B. Cheynis, ${ }^{138}$ V. Chibante Barroso, ${ }^{35}$ D. D. Chinellato, ${ }^{124}$ S. Cho, ${ }^{63}$ P. Chochula, ${ }^{35}$ P. Christakoglou, ${ }^{93}$ C. H. Christensen, ${ }^{92}$ P. Christiansen, ${ }^{83}$ T. Chujo, ${ }^{136}$ C. Cicalo, ${ }^{56}$ L. Cifarelli, ${ }^{26}$ F. Cindolo, ${ }^{55}$ M. R. Ciupek, ${ }^{110}$ G. Clai, ${ }^{55 b}$ J. Cleymans, ${ }^{126, \dagger}$ F. Colamaria, ${ }^{54}$ J. S. Colburn, ${ }^{113}$ D. Colella, ${ }^{34,54,109,147}$ A. Collu, ${ }^{82}$ M. Colocci, ${ }^{26,35}$ M. Concas, ${ }^{61, \mathrm{c}}$ G. Conesa Balbastre, ${ }^{81}$ Z. Conesa del Valle, ${ }^{80}$ G. Contin, ${ }^{24}$ J. G. Contreras, ${ }^{38}$ M. L. Coquet, ${ }^{140}$ T. M. Cormier, ${ }^{99}$ P. Cortese, ${ }^{32}$ M. R. Cosentino, ${ }^{125}$ F. Costa, ${ }^{35}$ S. Costanza, ${ }^{29,59}$ P. Crochet, ${ }^{137}$ R. Cruz-Torres, ${ }^{82}$ E. Cuautle, ${ }^{71}$ P. Cui, ${ }^{7}$ L. Cunqueiro, ${ }^{99}$ A. Dainese, ${ }^{58}$ F. P. A. Damas,,${ }^{117,140}$ M. C. Danisch, ${ }^{107}$ A. Danu, ${ }^{69}$ I. Das, ${ }^{112}$ P. Das, ${ }^{89}$ P. Das, ${ }^{4}$ S. Das, ${ }^{4}$ S. Dash,,${ }^{50}$ S. De, ${ }^{89}$ A. De Caro, ${ }^{30}$ G. de Cataldo, ${ }^{54}$ L. De Cilladi, ${ }^{25}$ J. de Cuveland, ${ }^{40}$ A. De Falco, ${ }^{23}$ D. De Gruttola, ${ }^{30}$ N. De Marco, ${ }^{61}$ C. De Martin, ${ }^{24}$ S. De Pasquale, ${ }^{30}$ S. Deb,,${ }^{51}$ H. F. Degenhardt, ${ }^{123}$ K. R. Deja, ${ }^{144}$ L. Dello Stritto, ${ }^{30}$ S. Delsanto, ${ }^{25}$ W. Deng, ${ }^{7}$ P. Dhankher, ${ }^{19}$ D. Di Bari, ${ }^{34}$ A. Di Mauro, ${ }^{35}$ R. A. Diaz, ${ }^{8}$ T. Dietel, ${ }^{126}$ Y. Ding, ${ }^{7,138}$ R. Divià, ${ }^{35}$ D. U. Dixit, ${ }^{19} \emptyset$. Djuvsland, ${ }^{21}$ U. Dmitrieva, ${ }^{65}$ J. Do, ${ }^{63}$ A. Dobrin, ${ }^{69}$ B. Dönigus, ${ }^{70}$ O. Dordic,,${ }^{20}$ A. K. Dubey, ${ }^{143}$ A. Dubla, ${ }^{93,110}$ S. Dudi, ${ }^{103}$ M. Dukhishyam, ${ }^{89}$ P. Dupieux, ${ }^{137}$ N. Dzalaiova, ${ }^{13}$ T. M. Eder, ${ }^{146}$ R. J. Ehlers, ${ }^{99}$ V. N. Eikeland, ${ }^{21}$ D. Elia, ${ }^{54}$ B. Erazmus, ${ }^{117}$ F. Ercolessi, ${ }^{26}$ F. Erhardt, ${ }^{102}$ A. Erokhin, ${ }^{115}$ M. R. Ersdal, ${ }^{21}$ B. Espagnon, ${ }^{80}$ G. Eulisse, ${ }^{35}$ D. Evans, ${ }^{113}$ S. Evdokimov, ${ }^{94}$ L. Fabbietti, ${ }^{108}$ M. Faggin, ${ }^{28}$ J. Faivre, ${ }^{81}$ F. Fan, ${ }^{7}$ A. Fantoni, ${ }^{53}$ M. Fasel, ${ }^{99}$ P. Fecchio, ${ }^{31}$ A. Feliciello, ${ }^{61}$ G. Feofilov, ${ }^{115}$ A. Fernández Téllez, ${ }^{46}$ A. Ferrero, ${ }^{140}$ A. Ferretti, ${ }^{25}$ V. J. G. Feuillard,${ }^{107}$ J. Figiel, ${ }^{120}$ S. Filchagin, ${ }^{111}$ D. Finogeev, ${ }^{65}$ F. M. Fionda, ${ }^{21,56}$ G. Fiorenza,,${ }^{35,109}$ F. Flor, ${ }^{127}$ A. N. Flores, ${ }^{121}$ S. Foertsch, ${ }^{74}$ P. Foka, ${ }^{110}$ S. Fokin, ${ }^{91}$ E. Fragiacomo, ${ }^{62}$ E. Frajna, ${ }^{147}$ U. Fuchs,,${ }^{35}$ N. Funicello, ${ }^{30}$ C. Furget, ${ }^{81}$ A. Furs, ${ }^{65}$ J. J. Gaardhøje, ${ }^{92}$ M. Gagliardi, ${ }^{25}$ A. M. Gago, ${ }^{114}$ A. Gal, ${ }^{139}$ C. D. Galvan, ${ }^{122}$ P. Ganoti, ${ }^{87}$ C. Garabatos, ${ }^{110}$ J. R. A. Garcia, ${ }^{46}$ E. Garcia-Solis, ${ }^{10}$ K. Garg, ${ }^{117}$ C. Gargiulo, ${ }^{35}$ A. Garibli, ${ }^{90}$ K. Garner, ${ }^{146}$ P. Gasik, ${ }^{110}$ E. F. Gauger, ${ }^{121}$ A. Gautam, ${ }^{129}$ M. B. Gay Ducati, ${ }^{72}$ M. Germain, ${ }^{117}$ J. Ghosh, ${ }^{112}$ P. Ghosh, ${ }^{143}$ S. K. Ghosh, ${ }^{4}$ M. Giacalone, ${ }^{26}$ P. Gianotti, ${ }^{53}$ P. Giubellino, ${ }^{61,110}$ P. Giubilato, ${ }^{28}$ A. M. C. Glaenzer, ${ }^{140}$ P. Glässel, ${ }^{107}$ D. J. Q. Goh, ${ }^{85}$ V. Gonzalez, ${ }^{145}$ L. H. González-Trueba, ${ }^{73}$ S. Gorbunov, ${ }^{40}$ M. Gorgon, ${ }^{2}$ L. Görlich, ${ }^{120}$ S. Gotovac, ${ }^{36}$ V. Grabski, ${ }^{73}$ L. K. Graczykowski, ${ }^{144}$ L. Greiner, ${ }^{82}$ A. Grelli, ${ }^{64}$ C. Grigoras, ${ }^{35}$ V. Grigoriev, ${ }^{96}$ A. Grigoryan, ${ }^{1, \dagger}$ S. Grigoryan, ${ }^{1,77}$ O. S. Groettvik, ${ }^{21}$ F. Grosa,,${ }^{35,61}$ J. F. Grosse-Oetringhaus, ${ }^{35}$ R. Grosso, ${ }^{110}$ G. G. Guardiano, ${ }^{124}$ R. Guernane, ${ }^{81}$ M. Guilbaud, ${ }^{117}$ K. Gulbrandsen, ${ }^{92}$ T. Gunji, ${ }^{135}$ A. Gupta, ${ }^{104}$ R. Gupta, ${ }^{104}$ I. B. Guzman, ${ }^{46}$ S. P. Guzman, ${ }^{46}$ L. Gyulai, ${ }^{147}$ M. K. Habib, ${ }^{110}$ C. Hadjidakis, ${ }^{80}$ G. Halimoglu, ${ }^{70}$ H. Hamagaki, ${ }^{85}$ G. Hamar, ${ }^{147}$ M. Hamid, ${ }^{7}$ R. Hannigan, ${ }^{121}$ M. R. Haque,,${ }^{89,144}$ A. Harlenderova, ${ }^{110}$ J. W. Harris, ${ }^{148}$ A. Harton, ${ }^{10}$ J. A. Hasenbichler, ${ }^{35}$ H. Hassan, ${ }^{99}$ D. Hatzifotiadou, ${ }^{55}$ P. Hauer, ${ }^{44}$ L. B. Havener, ${ }^{148}$ S. Hayashi, ${ }^{135}$ S. T. Heckel, ${ }^{108}$ E. Hellbär, ${ }^{70}$ H. Helstrup, ${ }^{37}$ T. Herman, ${ }^{38}$ E. G. Hernandez, ${ }^{46}$ G. Herrera Corral, ${ }^{9}$ F. Herrmann, ${ }^{146}$ K. F. Hetland, ${ }^{37}$ H. Hillemanns, ${ }^{35}$ C. Hills, ${ }^{130}$ B. Hippolyte, ${ }^{139}$ B. Hofman, ${ }^{64}$ B. Hohlweger, ${ }^{93,108}$ J. Honermann, ${ }^{146}$ G. H. Hong, ${ }^{149}$ D. Horak, ${ }^{38}$ S. Hornung, ${ }^{110}$ A. Horzyk, ${ }^{2}$ R. Hosokawa, ${ }^{15}$ P. Hristov, ${ }^{35}$ C. Huang, ${ }^{80}$ C. Hughes, ${ }^{133}$ P. Huhn, ${ }^{70}$ T. J. Humanic, ${ }^{100}$ H. Hushnud, ${ }^{112}$ L. A. Husova, ${ }^{146}$ A. Hutson, ${ }^{127}$ D. Hutter, ${ }^{40}$ J. P. Iddon, ${ }^{35,130}$ R. Ilkaev, ${ }^{111}$ H. Ilyas, ${ }^{14}$ M. Inaba,,${ }^{136}$ G. M. Innocenti, ${ }^{35}$ M. Ippolitov,,${ }^{91}$ A. Isakov, ${ }^{38,98}$ M. S. Islam,,${ }^{112}$ M. Ivanov, ${ }^{110}$
V. Ivanov, ${ }^{101}$ V. Izucheev, ${ }^{94}$ M. Jablonski, ${ }^{2}$ B. Jacak, ${ }^{82}$ N. Jacazio, ${ }^{35}$ P. M. Jacobs, ${ }^{82}$ S. Jadlovska, ${ }^{119}$ J. Jadlovsky, ${ }^{119}$ S. Jaelani, ${ }^{64}$ C. Jahnke, ${ }^{123,124}$ M. J. Jakubowska, ${ }^{144}$ M. A. Janik, ${ }^{144}$ T. Janson, ${ }^{76}$ M. Jercic,,${ }^{102}$ O. Jevons, ${ }^{113}$ F. Jonas, ${ }^{99,146}$ P. G. Jones, ${ }^{113}$ J. M. Jowett,,${ }^{35,110}$ J. Jung, ${ }^{70}$ M. Jung, ${ }^{70}$ A. Junique, ${ }^{35}$ A. Jusko, ${ }^{113}$ J. Kaewjai, ${ }^{118}$ P. Kalinak, ${ }^{66}$ A. Kalweit, ${ }^{35}$
V. Kaplin, ${ }^{96}$ S. Kar, ${ }^{7}$ A. Karasu Uysal, ${ }^{79}$ D. Karatovic, ${ }^{102}$ O. Karavichev, ${ }^{65}$ T. Karavicheva, ${ }^{65}$ P. Karczmarczyk, ${ }^{144}$ E. Karpechev, ${ }^{65}$ A. Kazantsev,,${ }^{91}$ U. Kebschull, ${ }^{76}$ R. Keidel, ${ }^{48}$ D. L. D. Keijdener, ${ }^{64}$ M. Keil, ${ }^{35}$ B. Ketzer, ${ }^{44}$ Z. Khabanova, ${ }^{93}$ A. M. Khan, ${ }^{7}$ S. Khan, ${ }^{16}$ A. Khanzadeev, ${ }^{101}$ Y. Kharlov, ${ }^{94}$ A. Khatun, ${ }^{16}$ A. Khuntia, ${ }^{120}$ B. Kileng, ${ }^{37}$ B. Kim, ${ }^{17,63}$ D. Kim, ${ }^{149}$ D. J. Kim, ${ }^{128}$ E. J. Kim, ${ }^{75}$ J. Kim, ${ }^{149}$ J. S. Kim,,${ }^{42}$ J. Kim, ${ }^{107}$ J. Kim, ${ }^{149}$ J. Kim, ${ }^{75}$ M. Kim, ${ }^{107}$ S. Kim, ${ }^{18}$ T. Kim, ${ }^{149}$ S. Kirsch, ${ }^{70}$ I. Kisel, ${ }^{40}$ S. Kiselev,,${ }^{95}$ A. Kisiel, ${ }^{144}$ J. P. Kitowski, ${ }^{2}$ J. L. Klay, ${ }^{6}$ J. Klein, ${ }^{35}$ S. Klein, ${ }^{82}$ C. Klein-Bösing, ${ }^{146}$ M. Kleiner, ${ }^{70}$ T. Klemenz, ${ }^{108}$ A. Kluge, ${ }^{35}$ A. G. Knospe, ${ }^{127}$ C. Kobdaj, ${ }^{118}$ M. K. Köhler, ${ }^{107}$ T. Kollegger, ${ }^{110}$ A. Kondratyev, ${ }^{77}$ N. Kondratyeva, ${ }^{96}$ E. Kondratyuk, ${ }^{94}$ J. Konig, ${ }^{70}$ S. A. Konigstorfer, ${ }^{108}$ P. J. Konopka, ${ }^{2,35}$ G. Kornakov, ${ }^{144}$ S. D. Koryciak, ${ }^{2}$ L. Koska, ${ }^{119}$ A. Kotliarov, ${ }^{98}$ O. Kovalenko, ${ }^{88}$ V. Kovalenko, ${ }^{115}$ M. Kowalski, ${ }^{120}$ I. Králik, ${ }^{66}$ A. Kravčáková, ${ }^{39}$ L. Kreis, ${ }^{110}$ M. Krivda, ${ }^{66,113}$ F. Krizek, ${ }^{98}$ K. Krizkova Gajdosova, ${ }^{38}$ M. Kroesen, ${ }^{107}$ M. Krüger, ${ }^{70}$ E. Kryshen, ${ }^{101}$ M. Krzewicki, ${ }^{40}$ V. Kučera, ${ }^{35}$ C. Kuhn, ${ }^{139}$ P. G. Kuijer,,${ }^{93}$ T. Kumaoka, ${ }^{136}$ D. Kumar, ${ }^{143}$ L. Kumar, ${ }^{103}$ N. Kumar, ${ }^{103}$ S. Kundu, ${ }^{35,89}$ P. Kurashvili, ${ }^{88}$ A. Kurepin, ${ }^{65}$ A. B. Kurepin, ${ }^{65}$ A. Kuryakin, ${ }^{111}$ S. Kushpil, ${ }^{98}$ J. Kvapil, ${ }^{113}$ M. J. Kweon, ${ }^{63}$ J. Y. Kwon, ${ }^{63}$ Y. Kwon, ${ }^{149}$ S. L. La Pointe, ${ }^{40}$ P. La Rocca, ${ }^{27}$ Y. S. Lai, ${ }^{82}$ A. Lakrathok, ${ }^{118}$ M. Lamanna, ${ }^{35}$ R. Langoy, ${ }^{132}$ K. Lapidus, ${ }^{35}$ P. Larionov, ${ }^{53}$ E. Laudi, ${ }^{35}$ L. Lautner,,${ }^{35,108}$ R. Lavicka, ${ }^{38}$ T. Lazareva, ${ }^{115}$ R. Lea, ${ }^{24,59,142}$ J. Lee, ${ }^{136}$ J. Lehrbach, ${ }^{40}$ R. C. Lemmon,,${ }^{97}$ I. León Monzón, ${ }^{122}$ E. D. Lesser, ${ }^{19}$ M. Lettrich,,${ }^{35,108}$ P. Lévai, ${ }^{147}$ X. Li, ${ }^{11}$ X. L. Li, ${ }^{7}$ J. Lien, ${ }^{132}$ R. Lietava, ${ }^{113}$ B. Lim, ${ }^{17}$ S. H. Lim, ${ }^{17}$ V. Lindenstruth, ${ }^{40}$ A. Lindner, ${ }^{49}$ C. Lippmann, ${ }^{110}$ A. Liu, ${ }^{19}$ J. Liu, ${ }^{130}$ I. M. Lofnes, ${ }^{21}$ V. Loginov, ${ }^{96}$ C. Loizides, ${ }^{99}$ P. Loncar, ${ }^{36}$ J. A. Lopez, ${ }^{107}$ X. Lopez, ${ }^{137}$ E. López Torres, ${ }^{8}$ J. R. Luhder, ${ }^{146}$ M. Lunardon, ${ }^{28}$ G. Luparello, ${ }^{62}$ Y. G. Ma, ${ }^{41}$ A. Maevskaya, ${ }^{65}$ M. Mager, ${ }^{35}$ T. Mahmoud, ${ }^{44}$ A. Maire, ${ }^{139}$ M. Malaev, ${ }^{101}$ Q. W. Malik, ${ }^{20}$ L. Malinina, ${ }^{77, d}$ D. Mal'Kevich,,${ }^{95}$ N. Mallick, ${ }^{51}$ P. Malzacher, ${ }^{110}$ G. Mandaglio, ${ }^{33,57}$ V. Manko, ${ }^{91}$ F. Manso, ${ }^{137}$ V. Manzari, ${ }^{54}$ Y. Mao, ${ }^{7}$ J. Mareš, ${ }^{68}$ G. V. Margagliotti, ${ }^{24}$ A. Margotti, ${ }^{55}$ A. Marín, ${ }^{110}$ C. Markert, ${ }^{121}$ M. Marquard, ${ }^{70}$ N. A. Martin, ${ }^{107}$ P. Martinengo, ${ }^{35}$ J. L. Martinez, ${ }^{127}$ M. I. Martínez, ${ }^{46}$ G. Martínez García, ${ }^{117}$ S. Masciocchi, ${ }^{110}$ M. Masera, ${ }^{25}$ A. Masoni, ${ }^{56}$ L. Massacrier, ${ }^{80}$ A. Mastroserio, ${ }^{54,141}$ A. M. Mathis, ${ }^{108}$ O. Matonoha, ${ }^{83}$ P. F. T. Matuoka, ${ }^{123}$ A. Matyja, ${ }^{120}$ C. Mayer, ${ }^{120}$ A. L. Mazuecos, ${ }^{35}$ F. Mazzaschi, ${ }^{25}$ M. Mazzilli, ${ }^{35}$ M. A. Mazzoni, ${ }^{60}$ J. E. Mdhluli, ${ }^{134}$ A. F. Mechler, ${ }^{70}$ F. Meddi, ${ }^{22}$ Y. Melikyan, ${ }^{65}$ A. Menchaca-Rocha, ${ }^{73}$ E. Meninno, ${ }^{30,116}$ A. S. Menon, ${ }^{127}$ M. Meres, ${ }^{13}$ S. Mhlanga, ${ }^{74,126}$ Y. Miake, ${ }^{136}$ L. Micheletti, ${ }^{25,61}$ L. C. Migliorin, ${ }^{138}$ D. L. Mihaylov, ${ }^{108}$ K. Mikhaylov, ${ }^{77,95}$ A. N. Mishra, ${ }^{147}$ D. Miśsowiec, ${ }^{110}$ A. Modak, ${ }^{4}$ A. P. Mohanty, ${ }^{64}$ B. Mohanty, ${ }^{89}$ M. Mohisin Khan, ${ }^{16}$ Z. Moravcova, ${ }^{92}$ C. Mordasini, ${ }^{108}$ D. A. Moreira De Godoy, ${ }^{146}$ L. A. P. Moreno, ${ }^{46}$ I. Morozov, ${ }^{65}$ A. Morsch, ${ }^{35}$ T. Mrnjavac, ${ }^{35}$ V. Muccifora, ${ }^{53}$ E. Mudnic, ${ }^{36}$ D. Mühlheim, ${ }^{146}$ S. Muhuri, ${ }^{143}$ J. D. Mulligan, ${ }^{82}$ A. Mulliri, ${ }^{23}$ M. G. Munhoz, ${ }^{123}$ R. H. Munzer, ${ }^{70}$ H. Murakami, ${ }^{135}$ S. Murray, ${ }^{126}$ L. Musa, ${ }^{35}$ J. Musinsky, ${ }^{66}$ C. J. Myers, ${ }^{127}$ J. W. Myrcha, ${ }^{144}$ B. Naik ${ }^{50,134}$ R. Nair,,${ }^{88}$ B. K. Nandi, ${ }^{50}$ R. Nania, ${ }^{55}$ E. Nappi, ${ }^{54}$ M. U. Naru, ${ }^{14}$ A. F. Nassirpour, ${ }^{83}$ A. Nath, ${ }^{107}$ C. Nattrass, ${ }^{133}$ A. Neagu, ${ }^{20}$ L. Nellen, ${ }^{71}$ S. V. Nesbo, ${ }^{37}$ G. Neskovic,,${ }^{40}$ D. Nesterov, ${ }^{115}$ B. S. Nielsen, ${ }^{92}$ S. Nikolaev, ${ }^{91}$ S. Nikulin,,${ }^{91}$ V. Nikulin, ${ }^{101}$ F. Noferini, ${ }^{55}$ S. Noh, ${ }^{12}$ P. Nomokonov, ${ }^{77}$ J. Norman, ${ }^{130}$ N. Novitzky, ${ }^{136}$ P. Nowakowski, ${ }^{144}$ A. Nyanin, ${ }^{91}$ J. Nystrand, ${ }^{21}$ M. Ogino, ${ }^{85}$ A. Ohlson, ${ }^{83}$ V. A. Okorokov, ${ }^{96}$ J. Oleniacz, ${ }^{144}$ A. C. Oliveira Da Silva, ${ }^{133}$ M. H. Oliver, ${ }^{148}$ A. Onnerstad, ${ }^{128}$ C. Oppedisano, ${ }^{61}$ A. Ortiz Velasquez, ${ }^{71}$ T. Osako, ${ }^{47}$ A. Oskarsson,,${ }^{83}$ J. Otwinowski, ${ }^{120}$ K. Oyama, ${ }^{85}$ Y. Pachmayer, ${ }^{107}$ S. Padhan, ${ }^{50}$ D. Pagano, ${ }^{59,142}$ G. Paićć, ${ }^{71}$ A. Palasciano, ${ }^{54}$ J. Pan, ${ }^{145}$ S. Panebianco, ${ }^{140}$ P. Pareek, ${ }^{143}$ J. Park, ${ }^{63}$ J. E. Parkkila, ${ }^{128}$ S. P. Pathak, ${ }^{127}$ R. N. Patra, ${ }^{35,104}$ B. Paul,${ }^{23}$ J. Pazzini, ${ }^{59,142}$ H. Pei, ${ }^{7}$ T. Peitzmann, ${ }^{64}$ X. Peng, ${ }^{7}$ L. G. Pereira, ${ }^{72}$ H. Pereira Da Costa, ${ }^{140}$ D. Peresunko, ${ }^{91}$ G. M. Perez, ${ }^{8}$ S. Perrin, ${ }^{140}$ Y. Pestov, ${ }^{5}$ V. Petráček, ${ }^{38}$ M. Petrovici, ${ }^{49}$ R. P. Pezzi, ${ }^{72}$ S. Piano, ${ }^{62}$ M. Pikna, ${ }^{13}$ P. Pillot, ${ }^{117}$ O. Pinazza,,${ }^{35,55}$ L. Pinsky, ${ }^{127}$ C. Pinto,${ }^{27}$ S. Pisano, ${ }^{53}$ M. Płoskoń, ${ }^{82}$ M. Planinic, ${ }^{102}$ F. Pliquett, ${ }^{70}$ M. G. Poghosyan, ${ }^{99}$ B. Polichtchouk, ${ }^{94}$ S. Politano, ${ }^{31}$ N. Poljak, ${ }^{102}$ A. Pop, ${ }^{49}$ S. Porteboeuf-Houssais, ${ }^{137}$ J. Porter, ${ }^{82}$ V. Pozdniakov, ${ }^{77}$ S. K. Prasad, ${ }^{4}$ R. Preghenella, ${ }^{55}$ F. Prino, ${ }^{61}$ C. A. Pruneau, ${ }^{145}$ I. Pshenichnov, ${ }^{65}$ M. Puccio, ${ }^{35}$ S. Qiu, ${ }^{93}$ L. Quaglia, ${ }^{25}$ R. E. Quishpe, ${ }^{127}$ S. Ragoni, ${ }^{113}$ A. Rakotozafindrabe, ${ }^{140}$ L. Ramello, ${ }^{32}$ F. Rami, ${ }^{139}$ S. A. R. Ramirez, ${ }^{46}$ A. G. T. Ramos, ${ }^{34}$ T. A. Rancien, ${ }^{81}$ R. Raniwala, ${ }^{105}$ S. Raniwala, ${ }^{105}$ S. S. Räsänen, ${ }^{45}$ R. Rath, ${ }^{51}$ I. Ravasenga, ${ }^{93}$ K. F. Read, ${ }^{99,133}$ A. R. Redelbach, ${ }^{40}$ K. Redlich, ${ }^{88, e}$ A. Rehman,,${ }^{21}$ P. Reichelt, ${ }^{70}$ F. Reidt, ${ }^{35}$ H. A. Reme-ness, ${ }^{37}$ R. Renfordt, ${ }^{70}$ Z. Rescakova, ${ }^{39}$ K. Reygers,,${ }^{107}$ A. Riabov, ${ }^{101}$ V. Riabov, ${ }^{101}$ T. Richert, ${ }^{83,92}$ M. Richter, ${ }^{20} \mathrm{~W}$. Riegler, ${ }^{35}$ F. Riggi, ${ }^{27}$ C. Ristea, ${ }^{69}$ S. P. Rode, ${ }^{51}$ M. Rodríguez Cahuantzi, ${ }^{46}$ K. Røed, ${ }^{20}$ R. Rogalev,,${ }^{94}$ E. Rogochaya, ${ }^{77}$ T. S. Rogoschinski, ${ }^{70}$ D. Rohr, ${ }^{35}$ D. Röhrich, ${ }^{21}$ P. F. Rojas, ${ }^{46}$ S. Rojas Torres, ${ }^{38}$ P. S. Rokita, ${ }^{144}$ F. Ronchetti, ${ }^{53}$ A. Rosano, ${ }^{33,57}$ E. D. Rosas, ${ }^{71}$ A. Rossi, ${ }^{58}$ A. Rotondi, ${ }^{29,59}$ A. Roy, ${ }^{51}$ P. Roy, ${ }^{112}$ S. Roy, ${ }^{50}$ N. Rubini, ${ }^{26}$ O. V. Rueda, ${ }^{83}$ R. Rui, ${ }^{24}$ B. Rumyantsev, ${ }^{77}$ P. G. Russek, ${ }^{2}$ A. Rustamov, ${ }^{90}$
E. Ryabinkin, ${ }^{91}$ Y. Ryabov, ${ }^{101}$ A. Rybicki, ${ }^{120}$ H. Rytkonen, ${ }^{128}$ W. Rzesa, ${ }^{144}$ O. A. M. Saarimaki, ${ }^{45}$ R. Sadek, ${ }^{117}$ S. Sadovsky, ${ }^{94}$ J. Saetre, ${ }^{21}$ K. Šafařík, ${ }^{38}$ S. K. Saha, ${ }^{143}$ S. Saha, ${ }^{89}$ B. Sahoo, ${ }^{50}$ P. Sahoo, ${ }^{50}$ R. Sahoo, ${ }^{51}$ S. Sahoo, ${ }^{67}$ D. Sahu, ${ }^{51}$ P. K. Sahu, ${ }^{67}$ J. Saini, ${ }^{143}$ S. Sakai, ${ }^{136}$ S. Sambyal, ${ }^{104}$ V. Samsonov, ${ }^{96,101, \dagger}$ D. Sarkar, ${ }^{145}$ N. Sarkar, ${ }^{143}$ P. Sarma ${ }^{43}$ V. M. Sarti, ${ }^{108}$ M. H. P. Sas, ${ }^{148}$ J. Schambach, ${ }^{99,121}$ H. S. Scheid, ${ }^{70}$ C. Schiaua, ${ }^{49}$ R. Schicker, ${ }^{107}$ A. Schmah, ${ }^{107}$ C. Schmidt,,${ }^{110}$ H. R. Schmidt, ${ }^{106}$ M. O. Schmidt, ${ }^{107}$ M. Schmidt, ${ }^{106}$ N. V. Schmidt, ${ }^{70,99}$ A. R. Schmier, ${ }^{133}$ R. Schotter, ${ }^{139}$ J. Schukraft, ${ }^{35}$ Y. Schutz, ${ }^{139}$ K. Schwarz, ${ }^{110}$ K. Schweda, ${ }^{110}$ G. Scioli, ${ }^{26}$ E. Scomparin, ${ }^{61}$ J. E. Seger, ${ }^{15}$ Y. Sekiguchi, ${ }^{135}$ D. Sekihata, ${ }^{135}$ I. Selyuzhenkov, ${ }^{96,110}$ S. Senyukov, ${ }^{139}$ J. J. Seo, ${ }^{63}$ D. Serebryakov, ${ }^{65}$ L. Šerkšnyte, ${ }^{108}$ A. Sevcenco, ${ }^{69}$ T. J. Shaba, ${ }^{74}$ A. Shabanov, ${ }^{65}$ A. Shabetai, ${ }^{117}$ R. Shahoyan, ${ }^{35}$ W. Shaikh, ${ }^{112}$ A. Shangaraev, ${ }^{94}$ A. Sharma, ${ }^{103}$ H. Sharma, ${ }^{120}$ M. Sharma, ${ }^{104}$ N. Sharma, ${ }^{103}$ S. Sharma, ${ }^{104}$ O. Sheibani, ${ }^{127}$ K. Shigaki, ${ }^{47}$ M. Shimomura, ${ }^{86}$ S. Shirinkin, ${ }^{95}$ Q. Shou, ${ }^{41}$ Y. Sibiriak, ${ }^{91}$ S. Siddhanta, ${ }^{56}$ T. Siemiarczuk, ${ }^{88}$ T. F. Silva, ${ }^{123}$ D. Silvermyr, ${ }^{83}$ G. Simonetti, ${ }^{35}$ B. Singh, ${ }^{108}$ R. Singh,,${ }^{89}$ R. Singh,,${ }^{104}$ R. Singh,,${ }^{51}$ V. K. Singh,,${ }^{143}$ V. Singhal, ${ }^{143}$ T. Sinha, ${ }^{112}$ B. Sitar, ${ }^{13}$ M. Sitta, ${ }^{32}$ T. B. Skaali, ${ }^{20}$ G. Skorodumovs,,${ }^{107}$ M. Slupecki, ${ }^{45}$ N. Smirnov, ${ }^{148}$ R. J. M. Snellings, ${ }^{64}$ C. Soncco, ${ }^{114}$ J. Song, ${ }^{127}$ A. Songmoolnak, ${ }^{118}$ F. Soramel, ${ }^{28}$ S. Sorensen, ${ }^{133}$ I. Sputowska, ${ }^{120}$ J. Stachel, ${ }^{107}$ I. Stan, ${ }^{69}$ P. J. Steffanic, ${ }^{133}$ S. F. Stiefelmaier, ${ }^{107}$ D. Stocco, ${ }^{117}$ I. Storehaug, ${ }^{20}$ M. M. Storetvedt, ${ }^{37}$ C. P. Stylianidis, ${ }^{93}$ A. A. P. Suaide, ${ }^{123}$ T. Sugitate, ${ }^{47}$ C. Suire, ${ }^{80}$ M. Suljic, ${ }^{35}$ R. Sultanov, ${ }^{95}$ M. Šumbera, ${ }^{98}$ V. Sumberia, ${ }^{104}$ S. Sumowidagdo, ${ }^{52}$ S. Swain, ${ }^{67}$ A. Szabo, ${ }^{13}$ I. Szarka, ${ }^{13}$ U. Tabassam, ${ }^{14}$ S. F. Taghavi, ${ }^{108}$ G. Taillepied, ${ }^{137}$ J. Takahashi, ${ }^{124}$ G. J. Tambave, ${ }^{21}$ S. Tang, ${ }^{7,137}$ Z. Tang, ${ }^{131}$ M. Tarhini, ${ }^{117}$ M. G. Tarzila, ${ }^{49}$ A. Tauro, ${ }^{35}$ G. Tejeda Muñoz, ${ }^{46}$ A. Telesca, ${ }^{35}$ L. Terlizzi, ${ }^{25}$ C. Terrevoli, ${ }^{127}$ G. Tersimonov, ${ }^{3}$ S. Thakur, ${ }^{143}$ D. Thomas, ${ }^{121}$ R. Tieulent, ${ }^{138}$ A. Tikhonov, ${ }^{65}$ A. R. Timmins,,${ }^{127}$ M. Tkacik, ${ }^{119}$ A. Toia, ${ }^{70}$ N. Topilskaya, ${ }^{65}$ M. Toppi, ${ }^{53}$ F. Torales-Acosta, ${ }^{19}$ T. Tork, ${ }^{80}$ A. Trifiro, ${ }^{33,57}$ S. Tripathy,,${ }^{55,71}$ T. Tripathy ${ }^{50}$ S. Trogolo, ${ }^{28,35}$ G. Trombetta, ${ }^{34}$ V. Trubnikov, ${ }^{3}$ W. H. Trzaska, ${ }^{128}$ T. P. Trzcinski, ${ }^{144}$ B. A. Trzeciak, ${ }^{38}$ A. Tumkin, ${ }^{111}$ R. Turrisi, ${ }^{58}$ T. S. Tveter, ${ }^{20}$ K. Ullaland, ${ }^{21}$ A. Uras, ${ }^{138}$ M. Urioni, ${ }^{59,142}$ G. L. Usai, ${ }^{23}$ M. Vala, ${ }^{39}$ N. Valle, ${ }^{29,59}$ S. Vallero, ${ }^{61}$ N. van der Kolk, ${ }^{64}$ L. V.R. van Doremalen, ${ }^{64}$ M. van Leeuwen, ${ }^{93}$ P. Vande Vyvre, ${ }^{35}$ D. Varga, ${ }^{147}$ Z. Varga, ${ }^{147}$ M. Varga-Kofarago, ${ }^{147}$ A. Vargas,,${ }^{46}$ M. Vasileiou, ${ }^{87}$ A. Vasiliev, ${ }^{91}$ O. Vázquez Doce, ${ }^{108}$ V. Vechernin, ${ }^{115}$ E. Vercellin, ${ }^{25}$ S. Vergara Limón, ${ }^{46}$ L. Vermunt, ${ }^{64}$ R. Vértesi, ${ }^{147}$ M. Verweij, ${ }^{64}$ L. Vickovic, ${ }^{36}$ Z. Vilakazi, ${ }^{134}$ O. Villalobos Baillie, ${ }^{113}$ G. Vino, ${ }^{54}$ A. Vinogradov, ${ }^{91}$ T. Virgili, ${ }^{30}$ V. Vislavicius,,${ }^{92}$ A. Vodopyanov, ${ }^{77}$ B. Volkel, ${ }^{35}$ M. A. Völkl, ${ }^{107}$ K. Voloshin, ${ }^{95}$ S. A. Voloshin, ${ }^{145}$ G. Volpe, ${ }^{34}$ B. von Haller, ${ }^{35}$ I. Vorobyev,,${ }^{108}$ D. Voscek, ${ }^{119}$ J. Vrláková, ${ }^{39}$ B. Wagner, ${ }^{21}$ C. Wang, ${ }^{41}$ D. Wang, ${ }^{41}$ M. Weber, ${ }^{116}$ R. J. G. V. Weelden, ${ }^{93}$ A. Wegrzynek, ${ }^{35}$ S. C. Wenzel,,${ }^{35}$ J. P. Wessels, ${ }^{146}$ J. Wiechula, ${ }^{70}$ J. Wikne, ${ }^{20}$ G. Wilk, ${ }^{88}$ J. Wilkinson, ${ }^{110}$ G. A. Willems, ${ }^{146}$ B. Windelband, ${ }^{107}$ M. Winn, ${ }^{140}$ W. E. Witt, ${ }^{133}$ J. R. Wright, ${ }^{121}$ W. Wu, ${ }^{41}$ Y. Wu, ${ }^{131}$ R. Xu, ${ }^{7}$ S. Yalcin, ${ }^{79}$ Y. Yamaguchi, ${ }^{47}$ K. Yamakawa, ${ }^{47}$ S. Yang, ${ }^{21}$ S. Yano, ${ }^{47,140}$ Z. Yin, ${ }^{7}$ H. Yokoyama, ${ }^{64}$ I.-K. Yoo, ${ }^{17}$ J. H. Yoon, ${ }^{63}$ S. Yuan, ${ }^{21}$ A. Yuncu, ${ }^{107}$ V. Zaccolo, ${ }^{24}$ A. Zaman,,${ }^{14}$ C. Zampolli, ${ }^{35}$ H. J. C. Zanoli, ${ }^{64}$ N. Zardoshti, ${ }^{35}$ A. Zarochentsev, ${ }^{115}$ P. Závada,,${ }^{68}$ N. Zaviyalov, ${ }^{111}$ H. Zbroszczyk, ${ }^{144}$ M. Zhalov, ${ }^{101}$ S. Zhang, ${ }^{41}$ X. Zhang, ${ }^{7}$ Y. Zhang, ${ }^{131}$ V. Zherebchevskii, ${ }^{115}$ Y. Zhi, ${ }^{11}$ D. Zhou, ${ }^{7}$ Y. Zhou, ${ }^{92}$ J. Zhu, ${ }^{7,110}$ Y. Zhu, ${ }^{7}$ A. Zichichi, ${ }^{26}$ G. Zinovjev, ${ }^{3}$ and N. Zurlo ${ }^{59,142}$
(A Large Ion Collider Experiment Collaboration)

${ }^{1}$ A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation, Yerevan, Armenia
${ }^{2}$ AGH University of Science and Technology, Cracow, Poland
${ }^{3}$ Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, Kiev, Ukraine
${ }^{4}$ Bose Institute, Department of Physics and Centre for Astroparticle Physics and Space Science (CAPSS), Kolkata, India
${ }^{5}$ Budker Institute for Nuclear Physics, Novosibirsk, Russia
${ }^{6}$ California Polytechnic State University, San Luis Obispo, California, USA
${ }^{7}$ Central China Normal University, Wuhan, China
${ }^{8}$ Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Havana, Cuba
${ }^{9}$ Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City and Mérida, Mexico
${ }^{10}$ Chicago State University, Chicago, Illinois, USA
${ }^{11}$ China Institute of Atomic Energy, Beijing, China
${ }^{12}$ Chungbuk National University, Cheongju, Republic of Korea
${ }^{13}$ Comenius University Bratislava, Faculty of Mathematics, Physics and Informatics, Bratislava, Slovakia
${ }^{14}$ COMSATS University Islamabad, Islamabad, Pakistan
${ }^{15}$ Creighton University, Omaha, Nebraska, USA
${ }^{16}$ Department of Physics, Aligarh Muslim University, Aligarh, India

${ }^{17}$ Department of Physics, Pusan National University, Republic of Korea
${ }^{18}$ Department of Physics, Sejong University, Seoul, Republic of Korea
${ }^{19}$ Department of Physics, University of California, Berkeley, California, USA
${ }^{20}$ Department of Physics, University of Oslo, Oslo, Norway
${ }^{21}$ Department of Physics and Technology, University of Bergen, Bergen, Norway
${ }^{22}$ Dipartimento di Fisica dell'Università "La Sapienza" and Sezione INFN, Rome, Italy
${ }^{23}$ Dipartimento di Fisica dell'Università and Sezione INFN, Cagliari, Italy
${ }^{24}$ Dipartimento di Fisica dell'Università and Sezione INFN, Trieste, Italy
${ }^{25}$ Dipartimento di Fisica dell'Università and Sezione INFN, Turin, Italy
${ }^{26}$ Dipartimento di Fisica e Astronomia dell'Università and Sezione INFN, Bologna, Italy
${ }^{27}$ Dipartimento di Fisica e Astronomia dell'Università and Sezione INFN, Catania, Italy
${ }^{28}$ Dipartimento di Fisica e Astronomia dell'Università and Sezione INFN, Padova, Italy
${ }^{29}$ Dipartimento di Fisica e Nucleare e Teorica, Università di Pavia, Pavia, Italy
${ }^{30}$ Dipartimento di Fisica 'E.R. Caianiello' dell'Università and Gruppo Collegato INFN, Salerno, Italy
${ }^{31}$ Dipartimento DISAT del Politecnico and Sezione INFN, Turin, Italy
${ }^{32}$ Dipartimento di Scienze e Innovazione Tecnologica dell'Università del Piemonte Orientale and INFN Sezione di Torino, Alessandria, Italy
${ }^{33}$ Dipartimento di Scienze MIFT, Università di Messina, Messina, Italy
${ }^{34}$ Dipartimento Interateneo di Fisica 'M. Merlin' and Sezione INFN, Bari, Italy
${ }^{35}$ European Organization for Nuclear Research (CERN), Geneva, Switzerland
${ }^{36}$ Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, Split, Croatia
${ }^{37}$ Faculty of Engineering and Science, Western Norway University of Applied Sciences, Bergen, Norway
${ }^{38}$ Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic
${ }^{39}$ Faculty of Science, P.J. Šafárik University, Košice, Slovakia
${ }^{40}$ Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
${ }^{41}$ Fudan University, Shanghai, China
${ }^{42}$ Gangneung-Wonju National University, Gangneung, Republic of Korea
${ }^{43}$ Gauhati University, Department of Physics, Guwahati, India
${ }^{44}$ Helmholtz-Institut für Strahlen- und Kernphysik, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
${ }^{45}$ Helsinki Institute of Physics (HIP), Helsinki, Finland
${ }^{46}$ High Energy Physics Group, Universidad Autónoma de Puebla, Puebla, Mexico
${ }^{47}$ Hiroshima University, Hiroshima, Japan
${ }^{48}$ Hochschule Worms, Zentrum für Technologietransfer und Telekommunikation (ZTT), Worms, Germany
${ }^{49}$ Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania
${ }^{50}$ Indian Institute of Technology Bombay (IIT), Mumbai, India
${ }_{51}^{51}$ Indian Institute of Technology Indore, Indore, India
${ }^{52}$ Indonesian Institute of Sciences, Jakarta, Indonesia
${ }^{53}$ INFN, Laboratori Nazionali di Frascati, Frascati, Italy
${ }^{54}$ INFN, Sezione di Bari, Bari, Italy
${ }^{55}$ INFN, Sezione di Bologna, Bologna, Italy
${ }^{56}$ INFN, Sezione di Cagliari, Cagliari, Italy
${ }^{57}$ INFN, Sezione di Catania, Catania, Italy
${ }^{58}$ INFN, Sezione di Padova, Padova, Italy
${ }^{59}$ INFN, Sezione di Pavia, Pavia, Italy
${ }^{60}$ INFN, Sezione di Roma, Rome, Italy
${ }^{61}$ INFN, Sezione di Torino, Turin, Italy
${ }^{62}$ INFN, Sezione di Trieste, Trieste, Italy
${ }^{63}$ Inha University, Incheon, Republic of Korea
${ }^{64}$ Institute for Gravitational and Subatomic Physics (GRASP), Utrecht University/Nikhef, Utrecht, Netherlands
${ }^{65}$ Institute for Nuclear Research, Academy of Sciences, Moscow, Russia
${ }^{66}$ Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovakia
${ }^{67}$ Institute of Physics, Homi Bhabha National Institute, Bhubaneswar, India
${ }^{68}$ Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
${ }^{69}$ Institute of Space Science (ISS), Bucharest, Romania
${ }^{70}$ Institut für Kernphysik, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
${ }^{71}$ Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Mexico City, Mexico
${ }^{72}$ Instituto de Física, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
${ }^{73}$ Instituto de Física, Universidad Nacional Autónoma de México, Mexico City, Mexico
${ }^{74}$ iThemba LABS, National Research Foundation, Somerset West, South Africa
${ }^{75}$ Jeonbuk National University, Jeonju, Republic of Korea

[^1]${ }^{135}$ University of Tokyo, Tokyo, Japan
${ }^{136}$ University of Tsukuba, Tsukuba, Japan
${ }^{137}$ Université Clermont Auvergne, CNRS/IN2P3, LPC, Clermont-Ferrand, France
${ }^{138}$ Université de Lyon, CNRS/IN2P3, Institut de Physique des 2 Infinis de Lyon, Lyon, France
${ }^{139}$ Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France, Strasbourg, France
${ }^{140}$ Université Paris-Saclay Centre d'Etudes de Saclay (CEA), IRFU, Départment de Physique Nucléaire (DPhN), Saclay, France
${ }^{141}$ Università degli Studi di Foggia, Foggia, Italy
${ }^{142}$ Università di Brescia, Brescia, Italy
${ }^{143}$ Variable Energy Cyclotron Centre, Homi Bhabha National Institute, Kolkata, India
${ }^{144}$ Warsaw University of Technology, Warsaw, Poland
${ }^{145}$ Wayne State University, Detroit, Michigan, USA
${ }^{146}$ Westfälische Wilhelms-Universität Münster, Institut für Kernphysik, Münster, Germany
${ }^{147}$ Wigner Research Centre for Physics, Budapest, Hungary
${ }^{148}$ Yale University, Connecticut, USA
${ }^{149}$ Yonsei University, Seoul, Republic of Korea

${ }^{\text {a }}$ Deceased.
${ }^{\mathrm{b}}$ Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Bologna, Italy. ${ }^{\text {c }}$ Dipartimento DET del Politecnico di Torino, Turin, Italy.
${ }^{\mathrm{d}}$ M.V. Lomonosov Moscow State University, D.V. Skobeltsyn Institute of Nuclear, Physics, Moscow, Russia. ${ }^{\mathrm{e}}$ Institute of Theoretical Physics, University of Wroclaw, Poland.

[^0]: *Full author list given at the end of the article.
 Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

[^1]: ${ }^{76}$ Johann-Wolfgang-Goethe Universität Frankfurt Institut für Informatik, Fachbereich Informatik und Mathematik, Frankfurt, Germany
 ${ }^{77}$ Joint Institute for Nuclear Research (JINR), Dubna, Russia
 ${ }^{78}$ Korea Institute of Science and Technology Information, Daejeon, Republic of Korea
 ${ }^{79}$ KTO Karatay University, Konya, Turkey
 ${ }^{80}$ Laboratoire de Physique des 2 Infinis, Irène Joliot-Curie, Orsay, France
 ${ }^{81}$ Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS-IN2P3, Grenoble, France
 ${ }^{82}$ Lawrence Berkeley National Laboratory, Berkeley, California, USA
 ${ }^{83}$ Lund University Department of Physics, Division of Particle Physics, Lund, Sweden
 ${ }^{84}$ Moscow Institute for Physics and Technology, Moscow, Russia
 ${ }^{85}$ Nagasaki Institute of Applied Science, Nagasaki, Japan
 ${ }^{86}$ Nara Women's University (NWU), Nara, Japan
 ${ }^{87}$ National and Kapodistrian University of Athens, School of Science, Department of Physics, Athens, Greece
 ${ }^{88}$ National Centre for Nuclear Research, Warsaw, Poland
 ${ }^{89}$ National Institute of Science Education and Research, Homi Bhabha National Institute, Jatni, India
 ${ }^{90}$ National Nuclear Research Center, Baku, Azerbaijan
 ${ }^{91}$ National Research Centre Kurchatov Institute, Moscow, Russia
 ${ }^{92}$ Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
 ${ }^{93}$ Nikhef, National institute for subatomic physics, Amsterdam, Netherlands
 ${ }^{94}$ NRC Kurchatov Institute IHEP, Protvino, Russia
 ${ }^{95}$ NRC «Kurchatov» Institute-ITEP, Moscow, Russia
 ${ }^{96}$ NRNU Moscow Engineering Physics Institute, Moscow, Russia
 ${ }^{97}$ Nuclear Physics Group, STFC Daresbury Laboratory, Daresbury, United Kingdom
 ${ }^{98}$ Nuclear Physics Institute of the Czech Academy of Sciences, Řež u Prahy, Czeech Republic
 ${ }^{99}$ Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
 ${ }^{100}$ Ohio State University, Columbus, Ohio, USA
 ${ }^{101}$ Petersburg Nuclear Physics Institute, Gatchina, Russia
 ${ }^{102}$ Physics department, Faculty of science, University of Zagreb, Zagreb, Croatia
 ${ }^{103}$ Physics Department, Panjab University, Chandigarh, India
 ${ }^{104}$ Physics Department, University of Jammu, Jammu, India
 ${ }^{105}$ Physics Department, University of Rajasthan, Jaipur, India
 ${ }^{106}$ Physikalisches Institut, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
 ${ }^{107}$ Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
 ${ }^{108}$ Physik Department, Technische Universität München, Munich, Germany
 ${ }^{109}$ Politecnico di Bari and Sezione INFN, Bari, Italy
 ${ }^{110}$ Research Division and ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
 ${ }^{111}$ Russian Federal Nuclear Center (VNIIEF), Sarov, Russia
 ${ }^{112}$ Saha Institute of Nuclear Physics, Homi Bhabha National Institute, Kolkata, India
 ${ }^{113}$ School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
 ${ }^{114}$ Sección Física, Departamento de Ciencias, Pontificia Universidad Católica del Perú, Lima, Peru
 ${ }^{115}$ St. Petersburg State University, St. Petersburg, Russia
 ${ }^{116}$ Stefan Meyer Institut für Subatomare Physik (SMI), Vienna, Austria
 ${ }^{117}$ SUBATECH, IMT Atlantique, Université de Nantes, CNRS-IN2P3, Nantes, France
 ${ }^{118}$ Suranaree University of Technology, Nakhon Ratchasima, Thailand
 ${ }^{119}$ Technical University of Košice, Košice, Slovakia
 ${ }^{120}$ The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland
 ${ }^{121}$ The University of Texas at Austin, Austin, Texas, USA
 ${ }^{122}$ Universidad Autónoma de Sinaloa, Culiacán, Mexico
 ${ }^{123}$ Universidade de São Paulo (USP), São Paulo, Brazil
 ${ }^{124}$ Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
 ${ }^{125}$ Universidade Federal do ABC, Santo Andre, Brazil
 ${ }^{126}$ University of Cape Town, Cape Town, South Africa
 ${ }^{127}$ University of Houston, Houston, Texas, USA
 ${ }^{128}$ University of Jyväskylä, Jyväskylä, Finland
 ${ }^{129}$ University of Kansas, Lawrence, Kansas, USA
 ${ }^{130}$ University of Liverpool, Liverpool, United Kingdom
 ${ }^{131}$ University of Science and Technology of China, Hefei, China
 ${ }^{132}$ University of South-Eastern Norway, Tonsberg, Norway
 ${ }^{133}$ University of Tennessee, Tennessee, USA
 ${ }^{134}$ University of the Witwatersrand, Johannesburg, South Africa

