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ABSTRACT 

Punnonen, Eeva-Liisa 
Ultrastructural studies on cellular autophagy. Structure of limiting 
membranes and route of enzyme delivery 
Jyvaskyla: University of Jyvaskyla, 1993. 77p. 
(Biological Research Reports from the University of Jyvaskyla, 
ISSN 0356-1062; 31) 
ISBN 951-680-928-6 
Tiivistelma: Hienorakennetutkimus solujen autofagosytoosista. Kalvojen 
rakenne ja entsyymikuljetuksen reitti. 
Diss. 

In autophagy, a portion of cytoplasm is first segregated into a membrane­
bound vacuole which then acquires lysosomal enzymes. The present study 
investigated: 1) the structure of autophagic-vacuole membranes in Ehrlich 
ascites cells and mouse hepatocytes; 2) the role of microtubules in autophagy 
in Ehrlich ascites cells; and 3) the route of enzyme delivery to autophagic 
vacuoles in cultured rat fibroblasts. 

The density of membrane particles in freeze-fracture replicas reflects 
the protein content of membranes. In hepatocytes, the membranes of early 
vacuoles were devoid of particles, whereas those in ascites cells contained 
particles. In both cell types, however, particle density was higher in later vac­
uoles. The membranes of nascent vacuoles were weakly labelled with fil­
ipin, which detects cholesterol, whereas those of the later vacuoles were 
heavily labelled. The increase in protein and cholesterol content may be as­
sociated with enzyme delivery, since the lysosomal membranes were rich in 
protein and cholesterol. The microtubule inhibitor vinblastine accumulated 
later autophagic vacuoles in Ehrlich ascites cells. Thus, microtubule disrup­
tion did not prevent the entry of lysosomal enzymes into nascent vacuoles. 
Since the rate of proteolysis did not increase, the accumulation must have 
been caused by retarded degradation in later vacuoles. 

In fibroblasts, mannose 6-phosphate receptor (MPR), which serves as 
a receptor for lysosomal enzymes, and cathepsin L, a lysosomal proteinase, 
were detected in early autophagic vacuoles. Inhibitors of MPR-mediated 
transport did not prevent cathepsin L delivery. Thus, the enzyme is not 
transported directly from the trans-Golgi. On the other hand, studies with 
endocytic markers showed that autophagic vacuoles fused with late endo­
somes. Acidification of the vacuoles occurred concomitantly with cathepsin 
L delivery, but the inhibition of acidification did not prevent the transport of 
cathepsin L. This suggests that in fibroblasts late endosomes are an impor­
tant source of lysosomal enzymes and perhaps also proton pumps for au­
tophagic vacuoles. 

Key words: Autophagy; endocytosis; electron microscopy; cytochemistry; im­
munocytochemistry. 
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1 INTRODUCTION 

Subcellular components are degraded and resynthesized, "turned over", 
many times during the life span of a cell. The degradation is a central 
mechanism in the regulation of the cellular metabolism. Two mecha­
nisms take care of the turnover, the lysosomal and the non-lysosomal 
pathways (Knowles & Ballard 1976, Hershko & Ciechanover 1982, 
Ciechanover 1987). Autophagy is the major pathway for the lysosomal 
degradation of intracellular components. Non-lysosomal degradation 
occurs either in the cytoplasm through the selective ubiquitin-mediated 
pathway (Finley & Varshavsky 1985, Hershko & Ciechanover 1992) or in 
the endoplasmic reticulum (Klausner & Sitia 1990). These pathways de­
grade abnormal and short-lived proteins and newly-synthesized incor­
rectly folded or assembled proteins, respectively. The main part of intra­
cellular proteolysis occurs in lysosomes: more than 90% of long-lived 
proteins and a large proportion of short-lived proteins are degraded via 
autophagy (Bohley & Seglen 1992). Autophagic proteolysis is a non-se­
lective process: to a certain extent any intracellular protein can be de­
graded in autophagic vacuoles. Autophagy participates in the regulation 
of cellular homeostasis: it increases under starvation conditions and dur­
ing cessation of growth (Hendil 1981, Seglen & Bohley 1992). 
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2 REVIEW OF LITERATURE 

2.1 The lysosomal system in mammalian cells 

Almost every cell has a digestive compartment known as the lysosomal 
system (reviewed by de Duve & Wattiaux 1966, de Duve 1983, Pfeifer 
1987). It degrades both intracellular and extracellular material in mem­
brane-bound acidic vacuoles by means of lysosomal hydrolytic enzymes. 
The first step in the digestion is the engulfment or sequestration (or seg­
r egation) of the material destined to be degraded into a membrane­
bound closed vacuole. If the sequestrated material is intracellular, the 
process is called autophagy. Engulfment of extracellular material is 
called endocytosis (engulfment of soluble material) or phagocytosis (en­
gulfment of particles). Figure 1 summarizes the stages of sequestration in 
lysosomal degradation. Next, the vacuole becomes acidic and acquires 
hydrolytic enzymes, by fusing with vesicles belonging to the lysosomal 
system, and degradation begins. Degradation products either diffuse, or 
are transported, through the lysosomal membrane into the cytoplasm 
where they are used for the needs of the cell (Pisoni & Thoene 1991). The 
degradation of the segregated material sometimes remains incomplete, 
and partially degraded material accumulates inside the lysosomal vesi­
cle. In this case, the vesicle becomes a residual body. Some cells are able 
to discharge the contents of residual bodies from the cell (Marzella & 
Glaumann 1980a, Tang et al. 1988), whereas in other cell types residual 
bodies accumulate in the cytoplasm and form lipofuscin pigment (Young 
1982). 
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Autophagy Endocytosls Phagocytosis 

FIGURE 1. The sequestration stages in autophagocytosis, endosytosis and phago­
cytosis. Endosomes and phagosomes form from the plasma membrane (PM), 
whereas autophagosomes are formed by an intracellular membrane. 

Iysosomal enzymes are able to degrade proteins, lipids, carbohy­
drates and nucleic acids (Tappel 1969). The pH-optimum of most lysoso­
mal enzymes is 4-5 (Tappel 1969, Bohley & Seglen 1992), which corre­
sponds to the intralysosomal pH (Ohkuma & Poole 1978, Tycko & 
Maxfield 1982). Lysosomal proteolysis is usually initiated by endopepti­
dases, which are rate-limiting, and continued by exopeptidases. 
Cathepsins D and L are the main lysosomal endopeptidases (Bohley & 
Seglen 1992). Cathepsin L is probably obligatory for the initiation of lyso­
somal proteolysis (Furuno et al. 1985, Kopitz et al. 1990, Kominami et al. 
1991). The concentration of proteases in lysosomes is high, which ex­
plains the rapid degradation (half-life less than 10 min) of proteins in 
lysosomes. In contrast to this, the half-life of lysosomal enzymes is very 
long, lasting from a few days to several weeks (Bohley & Seglen 1992). 

All lysosomal enzymes are glycoproteins. The transport of soluble 
enzymes to lysosomes is mediated by a mannose 6-phosphate recognition 
marker (Hickman & Neufeld 1972, Pfeffer 1991), whereas membrane-as­
sociated enzymes are transported by a mannose 6-phosphate -indepen­
dent manner (Tsuji et al. 1988, Waheed et al. 1988, Ginsel & Fransen 1991, 
Rijnboutt et al. 1991). Cathepsins B and L, and acid phosphatase are ex­
amples of soluble and membrane-associated lysosomal enzymes, respec­
tively. The polypeptide chains of the enzymes are synthesized on mem­
brane-bound ribosomes of the rough endoplasmic reticulum (RER) and 
translocated into the lumen of the RER (reviewed by von Figura & 
Hasilik 1986, Conner et al. 1987, Kornfeld & Mellman 1989, Hasilik 1992). 
In the RER lumen, the polypeptide chains are glycosylated, and, in case 
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of soluble enzymes, mannose 6-phosphate residues are linked to them. A 
preformed oligosaccharide containing glucose, mannose and N-acetyl­
glucosamine is first linked to selected asparagine residues. The oligosac­
charide is then modified by removal of glucose and mannose residues. 
The synthesis of mannose 6-phosphate occurs after transport to the cis­
Golgi. First, N-acetylglucosamine 1-phosphate is transferred to one or 
more mannose residues. Then, N-acetylglucosamine residue is removed 
to generate mannose 6-phosphate. The enzyme precursors are then 
transported to the trans-Golgi, where the molecules are recognized by 
specific mannose 6-phosphate receptors (reviewed by von Figura & 
Hasilik 1986, Goldberg 1987, Kornfeld & Mellman 1989, Hasilik 1992). 

Two different receptors for mannose 6-phosphate have been 
characterized. One has a molecular weight of 215 kDa (Sahagian et al. 
1981, Goldberg et al. 1983), and the other of 46 kDa (Hoflack & Kornfeld 
1985). The larger receptor (MPR) is known to transport newly synthe­
sized enzymes, by means of small clathrin-coated vesicles which bud 
from the trans-Golgi network (TGN), into a prelysosomal compartment 
(PLC) (Griffiths et al. 1988). As the pH in the PLC is below 6, the enzymes 
dissociate from the MPRs and the receptors are recycled back to the TGN 
(Duncan & Kornfeld 1988, Goda & Pfeffer 1988). A small proportion of 
lysosomal enzymes is secreted under normal conditions (Neufeld et al. 
1975, Creek & Sly 1984). MPR also mediates the endocytosis of exoge­
nous lysosomal enzymes by recycling between the plasma membrane and 
the PLC (von Figura & Hasilik 1986, Kornfeld & Mellman 1989, Pfeffer 
1991). The functions of the smaller mannose 6-phosphate receptor are 
less well known, but it has been suggested to mediate the secretion of 
lysosomal enzymes (Chao et al. 1990). Lysosomes presumably bud off or 
mature from the PLC (Griffiths 1989). The PLC contains significant 
amounts of MPR and lysosomal enzymes (Griffiths et al. 1988). 
Furthermore, the PLC accumulates endocytic markers (Griffiths et al. 
1988, 1990, Griffiths 1989). Mature lysosomes, in contrast, do not contain 
MPR (Sahagian & Neufeld 1983, Geuze et al. 1984a, von Figura et al. 
1984). After transport to the PLC and lysosomes, most lysosomal en­
zymes are proteolytically processed. Proteolytic processing usually acti­
vates the enzymatically inactive precursor molecules (Hasilik 1992). 

qrsosomal membrane proteins and membrane-associated en­
zymes are targeted to lysosomes by a mannose 6-phosphate independent 
manner. The targeting signal has been located to the cytoplasmic tail of 
the proteins. Fusion of the cytoplasmic tail of a human lysosomal mem­
brane glycoprotein, h-lamp-1, to a cell surface reporter glycoprotein 
caused transport of the chimeric protein to the lysosomal membrane 
(Williams & Fukuda 1990). Similarly, the cytoplasmic tail of acid phos­
phatase, when linked to hemagglutinin, a cell surface protein, was suffi­
cient to target the chimera to lysosomes (Peters et al. 1990). 

A selective signal-mediated uptake of proteins into lysosomes 
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from the cytoplasm has been described. In fibroblasts under serum depri­
vation, lysosomal degradation of certain microinjected proteins in­
creased twofold (Dice et al. 1990). The increased degradation was found 
to be selective for proteins containing peptide sequences related to Lys­
Phe-Glu-Arg-Gln. The proteins are transported into lysosomes, probably 
directly through the lysosomal membrane, by an unknown mechanism 
mediated by a 70 kDa heat shock protein (Chiang et al. 1989, Dice 1990). 

The membranes bordering the the lysosomal organelles are resis­
tant to hydrolysis by the lysosomal enzymes, as well as capable of the 
acidification of the organellar lumen and transportation of the degrada­
tion products out of the organelles (reviewed by Lloyd & Forster 1986, 
Forster & Lloyd 1988, Pisoni & Thoene 1991). Several glycoproteins of 
the lysosomal membrane have been characterized, and they are all heav­
ily glycosylated and sialylated (Chen et al. 1985, Lewis et al. 1985, 
Granger et al. 1990). An ATP-driven proton pump, vacuolar-type H+­
ATPase (Moriyama & Nelson 1989, Yoshimori et al. 1991), and several 
amino acid transporters (Pisoni & Thoene 1991), have also been identi­
fied. 

The classical lysosome concept (reviewed by de Duve & Wattiaux 
1966) assumed that primary lysosomes bud from the trans-Golgi appara­
tus. As these primary lysosomes acquired degradable material from the 
autophagic or endocytic route, they were thought to mature into sec­
ondary lysosomes. The terms primary and secondary lysosome are not 
used in the new concept of the lysosomal system. L ysosomes are defined 
as MPR negative, hydrolase positive vesicles which form the terminal 
degradative compartment in the cells (Kornfeld & Mellman 1989). The 
current lysosomal concept is schematically presented in Figure 2. 

2.2 Endocytosis 

The endocytic pathway has been extensively studied (reviewed by 
Goldstein et al. 1985, Pastan & Willingham 1985, Gruenberg & Howell 
1989, Smythe & Warren 1991). Several model systems have been charac­
terized biochemically and morphologically, e.g. the endocytosis of low 
density lipoprotein and its receptor (Goldstein & Brown 1974, Anderson 
et al. 1982, Brown et al. 1983), adsorptive endocytosis of Semliki Forest 
virus (Marsh & Helenius 1980, Kielian et al. 1986), endocytosis of trans­
ferrin and its receptor (Bleil & Bretscher 1982, Ciechanover et al. 1983, 
Harding et al. 1983, Hopkins & Trowbridge 1983, Klausner et al. 1983), 
epidermal growth factor and its receptor (Dunn & Hubbard 1984), 
asialoglycoproteins and their receptor (Wall et al. 1980, Geuze et al. 
1984b), lysosomal enzymes and MPR (Gabel & Foster 1986, Woods et al. 
1989), and protein toxins (Sandvig et al. 1989). Cell-free assays have also 
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FIGURE 2. Schematic drawing of the lysosomal and endosomal systems in a 
non-polarized cell. Lysosomal enzymes are packaged in the trans-Golgi network 
(TGN) into clathrin-coated vesicles and transported into the prelysosomal com­
partment (PLC). The mannose 6-phosphate receptors recycle back to the TGN 
(blank arrow). Lysosomes (LYS) either mature from or bud off the PLC. In endo­
cytosis, extracellular molecules enter the cytoplasm in clathrin-coated or un­
coated vesicles ( CV) which bud from the plasma membrane (PM). The vesicles 
transport endocytosed material into vesicular-tubular early endosomes (EE). 
Several receptors mediating endocytosis of various ligands recycle from early 
endosomes back to the plasma membrane (arrow). MPRs mediating endocytosis 
of lysosomal enzymes recycle to the plasma membrane from the PLC (blank ar­
rows). The endocytosed material is transported in putative endocytic carrier 
vesicles ( ECV) to the PLC, and from there, to lysosomes. Alternatively, early en­
dosomes may mature into the PLC. 

been developed for different stages in the endocytic pathway (Gruenberg 

& Howell 1986, Braell 1987, Goda & Pfeffer 1989, Mullock et al. 1989). 
Receptor-mediated uptake of soluble molecules occurs via 

clathrin-coated pits, which bud from the plasma membrane and form 
coated vesicles. Coated vesicles lose their coat and then fuse with the 
early endosomal compartment located at the cell periphery. There is also 
evidence that non-coated vesicles may participate in the transfer of ma­
terial to early endosomes (Tran et al. 1987, Hansen et al. 1991). In the 
mildly acidic early endosomes, many receptors dissociate from their lig­
ands. The receptors are recycled back to the cell surface, and ligands 
transported to lysosomes for degradation. From early endosomes, the 
internalized material is transported to perinuclear late endosomes, 
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which correspond to the PLC (Griffiths et al. 1988, Schmid et al. 1988, 
Woods et al. 1989), and finally to mature lysosomes. The pH is 6.0-6.3 in 
early endosomes (Kielian et al. 1986, Sipe & Murphy 1987, Yamashiro & 
Maxfield 1987), and below 5.3 in late endosomes (Schmid et al. 1989). 

Three models of the mechanism of endocytic transfer have been 
presented. According to the vesicular shuttling model, early and late en­
dosomes are preexisting compartments of the cells, and materials are 
transported from early to late endosomes in shuttling vesicles 
(Gruenberg et al. 1989, Griffiths & Gruenberg 1991). The maturation 
model suggests that coated vesicles derived from the plasma membrane 
lose their coat and fuse together to form an early endosome. Early endo­
somes then mature into late endosomes and lysosomes by gradually re­
ceiving lysosomal proteins and releasing the recycling vesicles back to the 
plasma membrane (Murphy 1991, Stoorvogel et al. 1991, Dunn & 
Maxfield 1992). The third model suggests that internalized material 
moves along a continuous endosomal reticulum from the cell periphery 
to the perinuclear region (Hopkins et al. 1990). Transport between the 
plasma membrane and early endosomes does not require intact micro­
tubules, whereas transport from early endosomes to the PLC does 
(Gruenberg & Howell 1989, Gruenberg et al. 1989). Along the endocytic 
pathway, the PLC is the first organelle with a significantly acidic pH and 
large amounts of lysosomal enzymes and lysosomal membrane proteins 
(Griffiths et al. 1988). The endocytic pathway is schematically presented 

in Figure 2. 

2.3 Molecular mechanisms of vesicle-mediated transport 

The original proposal of vesicle-mediated transport was made by Palade 
(1975). Small, short-lived vesicles bud from the donor compartment, are 
targeted to the acceptor compartment, and then rapidly fuse with its 
membrane. The molecular mechanisms of membrane traffic have been 
extensively studied during recent years using cell-free assays and yeast 
genetics (reviewed by Gruenberg & Clague 1992, Pryer et al. 1992, 
Schekman 1992). Vesicle-mediated transport is dependent on ATP and cy­
tosolic proteins. A number of these proteins have been identified. These 
include small GTP-binding proteins, proteins forming the coats of trans­
port vesicles, i.e. clathrin in the TGN and plasma membrane and COPs 
(coat proteins) in the Golgi apparatus (W aters et al. 1991), and proteins 
obligatory for the fusion of vesicles with the target membrane. N-ethyl­
maleimide-sensitive factor (NSF), and soluble NSF attachment proteins 
(SNAPs) are necessary for the fusion of intra-Golgi transport vesicles 
with the acceptor membrane (Ord et al. 1989, Clary et al. 1990). NSF 
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may also have a role in other stages of vesicular transport (Rothman & 
Ord 1992). 

Small monomeric GTP-binding proteins (20-25 kDa) regulate 
both coated and uncoated vesicle-mediated transport (Rexach & 
Schekman 1991, Schekman 1992). Originally, the yeast gene SEC4, en­
coding a protein necessary for the targeting or fusion of secretory vesi­
cles to the plasma membrane, was found to encode a small GTP-binding 
protein homologous to the ras proto-oncogene product (Salminen & 
Novick 1987, Bourne et al. 1990). Homologous genes were then detected 
in mammalian cells. The proteins, known as rab proteins, were originally 
cloned from a rat brain library (Touchot et al. 1987). In addition, ADP-ri­
bosylation factor (ARP), a member of another small GTP-binding protein 
subfamily (Bourne et al. 1990), participates in vesicle transport in the 
Golgi apparatus (Stearns et al. 1990). 

In mammalian cells, rab proteins have been localized to the cyto­
plasmic face of specific intracellular compartments (reviewed by Goud & 
McCaffrey 1991, Gruenberg & Clague 1992). The proteins are also found 
free in the cytoplasm. Rabl and rab2 are located in the cis-Golgi, rab4 
and rab5 in the plasma membrane and early endosomes, rab6 in the cis 
and medial Golgi, and rab7 in the PLC. The association of rab proteins 
with the specific organelles or compartments is mediated by a signal 
within the carboxyl-terminal hypervariable domain (Chavrier et al. 
1991). The highly restricted intracellular distribution of rab proteins sug­
gests that different proteins may act at each stage in the vesicular trans­
port. Rab5 was found to be necessary for the homotypic fusion of early 
endosomes in a cell-free assay (Gorvel et al. 1991). It was also shown to 
regulate transport from the plasma membrane to early endosomes in cul­
tured cells (Bucci et al. 1992). Further, mutant forms of rabl and rab2 
were found to inhibit transport from the ER to the Golgi apparatus 
(Tisdale et al. 1992). 

Small GTP-binding proteins undergo a conformational switch 
when GDP is exchanged for GTP. The switch is reversed during GTP hy­
drolysis (Bourne et al. 1990). This can be used to introduce vectoriality to 
the transport processes via the regulation of nucleotide exchange and 
GTP hydrolysis. Possible regulators are proteins known to interact with 
rab proteins, e.g. guanine nucleotide releasing factor (GRF) and GTPase 
activating protein (GAP) (Bourne et al. 1990). In addition, protein phos­
phorylation may regulate the activity of rab proteins (Bailly et al. 1991). 
The actual mechanism by which small GTP-binding proteins participate 
in membrane transport is not understood but it has been proposed that 
they ensure the unidirectional delivery of vesicles to their targets. A 
model for the SEC4 function in yeast has been suggested (Walworth et al. 
1989). According to this model, GDP bound to SEC4 is first exchanged for 
GTP. The GTP-bound conformation of SEC4 then recognizes an attach­
ment site in a secretory vesicle. An effector protein on the plasma mem-
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brane then recognizes the complex, and this leads to exocytosis. SEC4 is 
then released from the effector by a mechanism which requires GTP hy-
drolysis. 

2.4 Autophagy 

2.4.1 Mechanisms of autophagic sequestration 

In the first stage of autophagy, a flattened membrane sack surrounds a 
portion of cytoplasm and forms a closed vacuole around it. The resulting 
vacuole is known as an autophagosome, and it is surrounded by two sep­
arate membranes (Arstila & Trump 1968, Ericsson 1969b). In the second 
stage, the autophagosome acquires lysosomal enzymes, by fusing with 
vesicles earlier assumed to be lysosomes (Arstila & Trump 1968, 1969, 
Ericsson 1969a, Deter 1971). After this stage, the vacuole is called an au­
tolysosome. The term autophagic vacuole refers to an autophagosome 
or autolysosome. 

In addition to autophagy or macroautophagy which was de­
scribed above, two other types of autophagic sequestration have been 
observed: microautophagy and crinophagy. In microautophagy, lyso­
somes "endocytose" portions of cytoplasm by forming invaginations in 
their limiting membranes. These invaginations are internalized as in­
tralysosomal vesicles (Ahlberg et al. 1982, Mortimore et al. 1983, de Waal 
et al. 1986). Alternatively, the whole lysosome may flatten and wrap itself 
around a portion of cytoplasm (Sakai & Ogawa 1982, Sakai et al. 1989a). 
In crinophagy, storage granules of the regulated secretory pathway fuse 
with lysosomes directly, without being sequestrated into macroau­
tophagosomes (Glaumann et al. 1981, Poole et al. 1981, Ahlberg et al. 
1987a). The term 'autophagy' is usually used to refer to macroautophagy. 
Figure 3 summarizes the three types of autophagic sequestration. 

Macroautophagic segregation is a nonselective bulk process 
(Hopgood et al. 1988, Rogers & Rechsteiner 1988, Kopitz et al. 1990). This 
means that any cytoplasmic constituents can be degraded by autophagy 
at least to a certain extent (Seglen & Bohley 1992). Results arguing for a 
selective autophagic degradation (Lardeux & Mortimore 1987, Luiken et 
al. 1992) are most probably dealing with either non-lysosomal degrada­
tion, or the microautophagic pathway (reviewed by Seglen & Bohley 
1992). 
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FIGURE 3. The mechanisms of autophagic sequestration. In macroautophagy, a 
portion of cytoplasm is first segregated into an autophagosome, a double-mem­
brane bound vacuole devoid of lysosomal enzymes. This vacuole acquires en­
zymes by fusing with lysosomal vesicles which leads to degradation of the inner 
limiting membrane and the segregated cytoplasm. In microautophagy, lyso­
somes internalize small parts of the cytoplasm by a process equivalent to endo­
cytosis. In crinophagy, secretory storage granules fuse directly with lysosomes. 

2.4.2 Significance of autophagy 

After the autophagic pathway of degradation had been discovered (re­
viewed by de Duve & Wattiaux 1966), it was first considered to be mainly 
associated with sublethal cell injury and cell death (reviewed by Ericsson 
1969a, Lockshin & Beaulaton 1981), while having little physiological 
significance. Newer studies have, however, revealed that autophagy is 
the major pathway for the continuous turnover of cytosolic components 
and organelles, and it has significant roles in both cellular metabolic 
homeostasis and growth control (reviewed by Ericsson 1969a, Glaumann 
et al. 1981, Marzella et al. 1981, Hirsimaki et al. 1983, Henell & 
Glaumann 1984, Marzella & Glaumann 1987, Mortimore & Poso 1987, 
Seglen & Bohley 1992). 

Deprivation of nutrients increases the rate of protein degrada­
tion in cells. Increased autophagy has been shown to be the cause of this 
enhanced degradation (Mortimore & Ward 1981, Schworer et al. 1981, 
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Lee et al. 1989, Balavoine et al. 1990). Under nutrient deprivation, about 
4%/h of cytoplasmic components are degraded by autophagy in isolated 
hepatocytes (Seglen & Bohley 1992). Moreover, autophagy is also in­
volved in the basal protein degradation which occurs under normal nu­
tritional conditions (Mortimore & Ward 1981, Furuno et al. 1982, Hutson 
& Mortimore 1982, Kominami et al. 1983, Henell & Glaumann 1984, 
1985, Heydrick et al. 1991). Under these conditions, 1.34%/h of cytoplasm 
is segregated into autophagic vacuoles in hepatocytes (Henell & 
Glaumann 1985). Some studies have suggested that microautophagy 
may be the main autophagic pathway under basal conditions 
(Mortimore et al. 1983, de Waal et al. 1986, Mortimore & Poso 1987). 

The autophagic pathway degrades both short and long-lived pro­
teins (Ahlberg et al. 1985, Henell et al. 1987). It has been estimated that 
autophagy accounts for 70% and 90% of the degradation of short and 
long-lived proteins, respectively (Marzella & Glaumann 1987, Bohley & 
Seglen 1992). The remaining 30% and 10% of protein degradation occurs 
in the cytoplasm and ER (Knowles & Ballard 1976, Klausner & Sitia 1990, 
Hershko & Ciechanover 1992). Direct evidence has also been presented 
to show that proteins of the ER, glucosidase II (Lucocq et al. 1986), cy­
tochrome P450 and NADPH-cytochrome P450 reductase (Masaki et al. 
1987), as well as a cytosolic protein, aspartate aminotransferase (Sato et 
al. 1988), are degraded in autolysosomes. 

In most animal cell types and tissues, the major reason for in­
creased amount of protein during growth is a decreased rate of protein 
degradation, as the rate of protein synthesis remains unchanged 
(Scomik & Botbol 1987). The slower rate of protein degradation has been 
shown to be due to decreased autophagy (Hendil 1981, Papadopoulos & 
Pfeifer 1987, Tessitore et al. 1987, 1988, Pfeifer et al. 1988, Tayek et al. 
1988, Rosenwald 1990). In addition, the volume density of autophagic 
vacuoles has been found to be lower in several growing tissues as com­
pared with corresponding non-growing tissues (Pfeifer 1979, Dammrich 
& Pfeifer 1983, Bahro et al. 1987, Muller et al. 1987, Jurilj & Pfeifer 1990, 
de Almeida Barbosa et al. 1992, Han et al. 1992). In some types of muscu­
lar dystrophy, increased autophagic degradation in myocytes may be the 
cause of muscle degeneration (Kominami et al. 1987, Kalimo et al. 1988). 

The regulation of growth rate and of autophagy is altered in 
transformed cells. In general, transformed cell lines posses a lower rate 
of protein degradation than their normal counterparts (Gunn et al. 1977, 
Knecht et al. 1984, Ahlberg et al. 1987b, Ballard 1987). In particular, au­
tophagic degradation responds differently to amino-acid deprivation; 
only a slight increase occurs in transformed cells as compared with cor­
responding normal cells (Schwarze & Seglen 1985, Ballard 1987, Yucel et 
al. 1989). In vivo, reduced autophagic degradation may give the trans­
formed cells an anabolic advantage and increase their relative growth 
rate (Schwarze & Seglen 1985, Ahlberg et al. 1987b). 
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2.4.3 Origin and structure of the limiting membranes of macro­
autophagic vacuoles 

The origin of the membranes which form new autophagosomes has been 
the subject of long debate. Ashford and Porter (1962) and Pfeifer (1971) 
proposed that the membranes are synthesized de novo in the cytoplasm. 
However, most studies suggest that the segregating cisternae are de­
rived from preexisting cytoplasmic membranes (reviewed by Hirsimaki 
et al. 1983, Marzella & Glaumann 1987). The memI?ranes of autophago­
somes have been studied using ultrastructural, cytochemical, and im­
munocytochemical methods, which are summarized below. 

ER is the most studied candidate for autophagosome membranes. 
In ultrastructural studies, continuities of ER cisternae with the limiting 
membranes of autophagic vacuoles have been reported (Novikoff & Shin 
1978), or membranes resembling cisternae of rough ER have been ob­
served to form new autophagosomes (Marzella & Glaumann 1980a, Yu 
& Marzella 1988). Morphological studies have also revealed that the 
two membranes bordering nascent autophagosomes belong to the endo­
plasmic or thin membrane class (5-7 nm) (Arstila & Trump 1968, Ericsson 
1969b). During the maturation of the autophagic vacuole, the inner 
membrane thickens; later, the outer membrane also thickens. Next, the 
inner membrane disappears, probably as a result of digestion by lysoso­
mal enzymes (Arstila & Trump 1968, Marzella & Glaumann 1980a). 

Cytochemical methods have been used to detect ER marker en­
zymes on the membranes of autophagosomes. Low levels of inosine 
diphosphatase and glucose 6-phosphatase activities were detected on 
the membranes of some double-membrane limited autophagic vacuoles 
in rat liver (Arstila & Trump 1968, Ericsson 1969b, Gray et al. 1981), but 
not in mouse liver (Hirsimaki & Reunanen 1980, Reunanen & Hirsimaki 
1983) or rat Leydig cells (Tang et al. 1988). In mouse exocrine pancreas, 
some autophagic vacuoles showed weak lipase activity (Reunanen et al. 
1988a). In these cells, lipase is a marker of the ER and Golgi apparatus. 

Immunocytochemical studies on the origin of autophagosome 
membranes in rat liver have also been conducted. Dunn (1990a) reported 
that antibodies produced against RER integral membrane proteins (14, 
25 and 40 kDa), ribophorin II, and secretory proteins (albumin and 
alpha

2µ
-globulin) labelled 35-79% of the membranes of nascent au­

tophagic vacuoles. However, Furuno et al. (1990) did not observe car­
boxyesterase El, a microsomal marker, or albumin, in these membranes. 
In addition, Yamamoto et al. (1990a) did not observe cytochrome P-450 
on the autophagosome membranes. These conflicting results have been 
interpreted to suggest that autophagosomes are formed by modified, ri­
bosome-free portions of ER (Ericsson 1969b, Dunn 1990a, Furuno et al. 
1990). 
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Some studies have suggested that mature Golgi cisternae may 
form new autophagosomes (Frank & Christensen 1968, Jaeken & 
Thines-Sempoux 1981). In cell types which have a well developed Golgi 
apparatus, autophagic vacuoles have been observed to arise from acid­
phosphatase positive cisternae presumably belonging to the Golgi-asso­
ciated membrane reticulum, GERL (Novikoff et al. 1971, Decker 1974, 
Paavola 1978, Bouldin et al. 1981) which probably corresponds to the 
TGN. 

The most recent model for the origin of membranes was present­
ed by Seglen (1987). According to this model, autophagosomes are 
formed by a specific organelle called a phagophore. Seglen describes 
phagophores as "condensed, non-sequestering structures in the cyto­
plasm or at various stages of spreading, eventually forming the walls of 
the autophagosomes" (Seglen & Bohley 1992). So far, the phagophore 
has been characterized by morphological methods only (Seglen 1987). 
However, some cytochemical results by other groups can be interpreted 
to support this model. Lectin binding experiments have revealed that 
phagophore and autophagosome membranes contain complex oligosac­
charides which can originate only from some post-Golgi source 
(Willemer et al. 1990, Y amamoto et al. 1990b). In addition, Yamamoto et 
al. (1990a) reported that antibodies produced against antigens of au­
tophagic vacuoles labelled the phagophore and autophagosome mem­
branes but not the ER membranes. Seglen interpreted the presence of ER 
markers in autophagosomes as an indication of a direct transport path­
way from the ER to nascent autophagosomes (Seglen & Bohley 1992). 

Osmium and other impregnation techniques have been used to 
detect lipid and carbohydrate components in the membranes of au­
tophagic vacuoles. Unbuffered OsO 

4 
stains the cisternae at the forming 

face of the Golgi apparatus, and ER in some cells (reviewed by Hirsimaki 
et al. 1983). Unbuffered OsO

4 
also heavily stains the cavity between the 

two membranes of nascent autophagic vacuoles (Arstila et al. 1972, 
McDowell 1974, Hirsimaki & Reunanen 1980, Reunanen et al. 1988a), but 
not the membranes of older vacuoles (Hirsimaki & Reunanen 1980, 
Reunanen et al. 1988a). A similar staining pattern of the membranes of 
autophagic vacuoles was observed using uranyl-lead-copper impregna­
tion and imidazole-buffered OsO

4 
staining (Reunanen et al. 1985, 1988a). 

The latter technique stains unsaturated fatty acids (Angermiiller & 
Fahimi 1982). The inner surface of the autophagic-vacuole membrane 
also has more anionic sites, revealed by the binding of cationic ferritin, 
than the other cellular membranes (Sakai et al. 1989b). Using impregna­
tion techniques which stain carbohydrates, Neiss (1986) showed that all 
single-membrane, and some double-membrane, limited autophagic vac­
uoles carry a coat of glycoconjugates on the inner surface of the limiting 
membrane. Lysosomal vesicles also carried this coat. 

Freeze-fracture studies have revealed that, compared with other 
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cellular membranes, the membranes of double-membrane limited au­
tophagic vacuoles contain only few intramembrane particles (Rez & 
Meldolesi 1980, Hirsimaki et al. 1982). Intramembrane particles are 
structures visible in freeze-fracture replicas, and they presumably corre­
spond to membrane proteins (Rash et al. 1981). Furthermore, the limiting 
membranes of older, single-membrane limited vacuoles contain more 
particles than the early vacuoles, but still considerably less than other 
cellular membranes (Rez & Meldolesi 1980). 

In summary, in spite of several studies, the origin of autophago­
some membranes remains unknown. However, studies have revealed 
several structural characteristics of the membranes bordering au­
tophagosomes and later autophagic vacuoles. Autophagosome mem­
branes differ from the other cellular membranes in several cytochemical 
stainings. In addition, the composition of the membranes changes during 
the maturation of autophagic vacuoles. 

2.4.4 Acquisition of lysosomal enzymes into autophagosomes 

According to early ultrastructural and cytochemical studies, autophago­
somes were suggested to acquire lysosomal enzymes by fusing with pri­
mary or secondary lysosomes (de Duve & Wattiaux 1966, Arstila & 
Trump 1968, 1969, Jaeken & Thines-Sempoux 1981). Biochemical and 
morphometric studies on subcellular fractions (Deter 1971) and intact 
cells (Ishikawa et al. 1983) as well as the labelling of secondary lysosomes 
with electron-dense markers (Ericsson 1969a, Deter 1975, Tang et al. 
1988) proved that fusion between autophagosomes and endosomes or 
lysosomes occurred frequently. However, enzyme delivery has not yet 
been characterized according to the new lysosomal concept. 

The stages in the delivery of lysosomal enzymes to autophagic 
vacuoles have been studied using acid-phosphatase cytochemistry and 
immunocytochemistry to localize several lysosomal hydrolases. The en­
zyme activity first appears between the two limiting membranes, pre­
sumably as a result of fusion between a lysosomal vesicle and the outer 
limiting membrane (Arstila & Trump 1968, Hirsimaki & Reunanen 1980, 
Dunn 1990b, Furuno et al. 1990). Next, enzyme activity appears in the 
matrix of the vacuoles (Arstila et al. 1972), probably due to digestion of 
the inner limiting membrane. 

The average half-life of an autophagic vacuole is 6-9 min 
(Schworer et al. 1981, Kovacs 1983, Papadopoulos & Pfeifer 1986, Kovacs 
et al. 1987). The products of degradation cross the limiting membrane 
and enter the cytoplasm where they are used for energy production or 
the synthesis of new macromolecules (Gahl 1989). Proteins are degraded 
faster than lipids (Henell et al. 1983). Undegraded material may accumu-
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late in autophagic vacuoles which then become residual bodies. The lyso­
somal degradation of phagocytosed mitochondria or microsomes in 
Kupffer cells leads to the accumulation of lipid-laden residual bodies 
(Glaumann et al. 1975a, b). 

2.4.5 Energy requirements of autophagy 

Autophagy has long been known to be energy-dependent (Shelburne et 
al. 1973, Sakai & Ogawa 1982). The energy requirements of the different 
stages in the autophagic pathway have been studied. Overall autophagic 
degradation was shown to be ATP-dependent (Plomp et al. 1987, 1989). 
Since the pH optimum of most lysosomal enzymes is acidic (Tappel 1969), 
the sequestrated cytoplasm must become acidic before the degradation 
begins. The energy requirements of autophagic degradation may be due 
to an ATP-dependent proton pump which acidifies the contents of the 
vacuoles (Schneider 1983, Ahlberg & Glaumann 1985, Ohkuma 1987, 
Plomp et al. 1987, Schellens & Meijer 1991). 

In isolated hepatocytes, autophagic sequestration was shown to 
be inhibited by partial ATP depletion (Schellens et al. 1988, 1990). 
Interestingly, different results were reported for Ehrlich ascites cells. In 
these cells, partial ATP depletion led to an accumulation of acid phos­
phatase -negative autophagosomes, suggesting that the formation of 
new autophagosomes was not inhibited, whereas the delivery of lysoso­
mal enzymes and the maturation of these vacuoles were (Reunanen & 
Nykanen 1988, Reunanen et al. 1991). All the stages in vesicle-mediated 
transport in yeast and animai ceiis appear to be ATP-dependent (re­
viewed by Pryer et al. 1992). It is probable, therefore, that the enzyme de­
livery stage in autophagy is also dependent on metabolic energy. 

2.4.6 Physiological regulation of autophagy 

The physiological regulation of autophagy is mainly exerted during the 
first stage, sequestration. Amino acids are the most prominent regulators 
(reviewed by Mortimore & Poso 1987, Mortimore 1987, Seglen 1987). 
Deprivation of amino acids has been shown to induce (Mitchener et al. 
1976, Mortimore & Schworer 1977), and a physiological mixture of 
amino acids, to inhibit (Seglen et al. 1980, Kovacs et al. 1981) the forma­
tion of new autophagosomes. Leucine probably has a special role; it was 
found to be indispensable for the maximum inhibition of lysosomal pro­
tein degradation induced by the complete mixture of amino acids 
(Mortimore 1987, Seglen 1987, Caro et al. 1989). Furthermore, leucine 



23 

and histidine were found to be the most effective inhibitors of autophagic 
segregation in isolated hepatocytes (Seglen & Gordon 1984). 
Asparagine, instead, was found to inhibit the fusion between autophago­
somes and lysosomes (Gordon & Seglen 1988, H0yvik et al. 1991). 

The pancreatic hormones insulin and glucagon regulate au­
tophagy in vivo. Insulin inhibits (Pfeifer 1978, Pfeifer & Warmuth-Metz 
1983), and glucagon stimulates (Ashford & Porter 1962, Arstila & Trump 
1968), the formation of new autophagic vacuoles. In cultured fibroblasts, 
deprivation of serum and growth factors increases the lysosomal degra­
dation of cytosolic proteins (Auteri et al. 1983, Slot et al. 1986, Ballard 
1987). In addition, adrenaline and other adrenergic agonists inhibit au­
tophagic sequestration in isolated hepatocytes (Gordon et al. 1991). In 
vivo, circadian variation of autophagic degradation occurs in many tis­
sues (Pfeifer & Strauss 1981, de Waal et al. 1986). The second messenger 
cyclic AMP and protein phosphorylation have been shown to regulate se­
questration (Holen et al. 1991, 1992). Both cyclic AMP and ocadaic acid, a 
protein phosphatase inhibitor, suppressed autophagic segregation. 
Interestingly, the activity of some rab proteins may also be inhibited by 
phosphorylation (Bailly et al. 1991, Pryer et al. 1992). 

2.4.7 Experimental inhibition of autophagy 

Autophagy can be inhibited by various drugs, and these have been widely 
applied in studies on the mechanisms and regulation of autophagy. 
Inhibitors exist for the sequestration, enzyme delivery and degradation 
stages. Gordon and Seglen (1982) have developed a biochemical method 
to measure the different stages of the autophagic pathway. A radioac­
tively labelled saccharide, sucrose or raffinose, is first introduced into the 
cytoplasm of electropermeabilized isolated hepatocytes. After resealing, 
the accumulation of the non-hydrolyzable sugar in sedimentable vesicles 
(autophagic vacuoles) can then be measured from homogenates or elec­
trodisrupted cells. Delivery of lysosomal hydrolases to the sugar-con­
taining vesicles can be measured using lactose which is degraded in lyso­
somes (H0yvik et al. 1986). 

Seglen and Gordon (1982, 1984) found a specific inhibitor of au­
tophagic sequestration, 3-methyladenine. This drug as good as com­
pletely prevents the formation of new autophagosomes in isolated hepa­
tocytes (Seglen et al. 1986). In fibroblasts, 3-methyladenine inhibits both 
autophagic and endocytic protein degradation (Hendil et al. 1990). 
Phalloidin, a stabilizer of F-actin filaments, has also been shown to hin­
der autophagosome formation (Ueno et al. 1990). Cycloheximide 
(Kovacs et al. 1975, Kovacs 1983) and amino acids (Seglen & Gordon 
1984) have also been used to inhibit autophagic segregation. 
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A reduction in temperature blocks the formation of new au­
tophagosomes. No significant sequestration occurs below +20°C (Kovacs 
& Kovacs 1980, Gordon et al. 1987). Several transport blocks also exist 
on the exocytic and endocytic pathways (Kuismanen & Saraste 1989). 
Newly-synthesized proteins are not transported from the TGN to the 
cell surface below +20°C (Saraste & Kuismanen 1984). At +15°C, the pro­
teins accumulate in a compartment between the ER and Golgi apparatus 
(Kuismanen & Saraste 1989). On the endocytic pathway, the transport of 
endocytic markers from early endosomes to the PLC is blocked at +20°C 
(Dunn et al. 1980, Marsh et al. 1986). 

In 1974, the microtubule inhibitor vinblastine was found to induce 
an accumulation of autophagic vacuoles both in vivo and in vitro (Arstila 
et al. 1974, Hirsimaki et al. 1975, Kovacs et al. 1975). The accumulation 
was generally thought to be due to an increase in the formation of new 
autophagosomes. Five years later, Marzella and Glaum_ann (1980b) and 
Kovacs et al. (1982) found that vinblastine inhibited protein degradation. 
Hence, Kovacs et al. (1982) proposed that vinblastine acts by inhibiting 
the fusion between autophagosomes and lysosomes, which leads to the 
accumulation of the former. Vinblastine was indeed found to increase the 
half-life of autophagic vacuoles from 6 to 27 min in several tissues 
(Kovacs et al. 1988, Kovacs & Rez 1989). Vinblastine has also been found 
to prevent the degradation of autophaged lactose microinjected into iso­
lated hepatocytes (H0yvik et al. 1986). In hepatocytes, vinblastine accu­
mulates mainly double-membrane limited autophagic vacuoles 
(Hirsimaki & Pilstrom 1982). In contrast, in Ehrlich ascites cells and 3T3 
fibroblasts vinblastine causes an accumulation mainly of older, single­
membrane-limited autophagic vacuoles (Reunanen & Nykanen 1988, 
Miettinen & Reunanen 1991). Furthermore, two other microtubule in­
hibitors, nocodazole and griseofulvin, cause no accumulation of au­
tophagic vacuoles or lysosomes in Ehrlich ascites cells (Reunanen et al. 
1988b). These results suggest that microtubule depolymerization does not 
prevent lysosomal enzyme delivery in all cell types. 

The degradation of autophagically segregated material can be 
retarded by using enzyme inhibitors or drugs which affect the lysosomal 
pH. Leupeptin, an inhibitor of lysosomal cysteine proteinases, inhibits 
protein degradation and induces accumulation of autophagic vacuoles 
(Furuno et al. 1982, Henell & Glaumann 1984). Chloroquine is a lysoso­
motropic agent; it accumulates in lysosomes and raises their pH. The 
carboxylic ionophore monensin also raises the lysosomal pH (Seglen 
1983). These drugs also accumulate autophagic vacuoles in cells (Wisner­
Gebhart et al. 1980, Grinde 1983). Bafilomycin A 1, a specific inhibitor of 
vacuolar-type H+-ATPase, has also been shown to inhibit lysosomal 
degradation (Yoshimori et al. 1991). 
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2.5 Non-lysosomal degradation 

2.5.1 Degradation in the ER 

Newly-synthesized proteins fold and assemble in the RER lumen. 
Folding is assisted by the ER luminal proteins, protein disulfide iso­
merase (PDI) and immunoglobulin binding protein (BiP). However, im­
properly folded and incompletely assemled proteins are degraded before 
they reach the Golgi apparatus (reviewed by Klausner & Sitia 1990, Sitia 
& Meldolesi 1992, Hauri & Schweizer 1992). Incompletely assembled T­
cell receptor subunits were degraded in transfected fibroblasts in a pre­
Golgi compartment by a pathway which was insensitive to drugs inhibit­
ing lysosomal degradation (Lippincott-Schwartz et al. 1988). In perme­
abilized cells, ER degradation occurred in the absence of cytosol and ATP, 
both prerequisites for vesicle-mediated transport, which suggests that 
the degradation occurs in the ER itself (Stafford & Bonifacino 1991). The 
newly-discovered compartment between the ER and Golgi, intermediate 
or salvage compartment (Schweizer et al. 1990, Saraste & Svensson 
1991), may be the site of final pre-Golgi degradation (Wikstrom & Lodish 
1991). ER degradation also regulates cholesterol biosynthesis. The rate­
limiting enzyme of cholesterol biosynthesis, 3-hydroxy-3-methylglutaryl 
coenzyme A reductase, is rapidly degraded when the cholesterol level is 
high. As the cholesterol level falls, the half-life of the enzyme increases 
(Gil et al. 1985, Klausner & Sitia 1990). 

Proteins may also be sent from the ER directly for lysosomal 
degradation. Insoluble protein aggregates accumulating in the RER 
lumen in pancreatic acinar cells after CoC1

2 
treatment were sequestrat­

ed, surrounded by the RER membrane, in autophagosomes and degraded 
lysosomally (Tooze et al. 1990). However, similar protein aggregates in­
duced in thyroid hormone -secreting cells were degraded by a hitherto 
unknown process. The RER cistern containing aggregates first shed its 
ribosomes, then acquired lysosomal membrane proteins, and finally lyso­
somal enzymes (Noda & Farquhar 1992). 

2.5.2 Ubiquitin-mediated degradation 

Ubiquitin is a 76 -amino acid protein found in all eucaryotic cells. The 
bulk of abnormal and short-lived regulatory proteins are degraded in the 
cytoplasm by a ubiquitin-mediated route (reviewed by Finley & 
Varshavsky 1985, Jentsch et al. 1990, Hershko & Ciechanover 1992). 
Proteins are first linked to one or more ubiquitin molecules by three A TP -
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dependent cytoplasmic enzymes. The selectivity of ubiquitination is based 
on the amino-terminal residue of the proteins (Bachmair et al. 1986). The 
conjugated proteins are then degraded by a specific ATP-dependent pro­
tease complex (Hershko & Ciechanover 1992). 

Recent studies have revealed that ubiquitin-protein conjugates 
are enriched in the lysosomal vesicles of fibroblasts (Doherty et al. 1989, 
Laszlo et al. 1990, Lenk et al. 1992). The morphological results suggest 
that the conjugates may be taken into the lysosomes by microautophagy 
(Laszlo et al. 1990). However, it is not clear whether the enrichment is 
due to selective uptake or retarded degradation (Ueno & Kominami 
1991). It was only recently that cells containing a thermolabile mutant of 
the ubiquitin -activating enzyme, El, were found to be defective in stress­
induced degradation of intracellular proteins at a restrictive tempera­
ture (Gropper et al. 1991). In ultrastructural studies, these cells were ob­
served to posses large numbers of acidic autophagic vacuoles which con­
tained lysosomal enzymes but were presumably unable to mature into 
residual bodies (Lenk et al. 1992). The result thus suggests that El or pro­
tein ubiquitination may be associated with autophagic degradation. 
These results indicate a possible connection between the lysosomal and 
ubiquitin-mediated degradation pathways. 
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3 AIM OF THE STUDY 

The aim of the present study was to investigate, using electron micro­
scopical methods, the maturation of autophagosomes into autolyso­
somes, in particular to elucidate the structure of the limiting membranes 
and the route of lysosomal enzyme delivery. The specific topics were as 
follows: 

1. Membrane protein and cholesterol content of the membranes
of autophagosomes, autolysosomes, residual bodies and lysosomes in 
Ehrlich ascites cells (I) and mouse hepatocytes (II). 

2. Effect of the microtubule inhibitor vinblastine on autophagy in
Ehrlich ascites cells (III). 

3. Roles of the cation-independent mannose 6-phosphate recep­
tor and acidification in the delivery of lysosomal enzymes to autophago­
somes in cultured rat fibroblasts (IV, V). 

4. Roles of the the prelysosomal compartment and trans-Golgi
network in the delivery of lysosomal enzymes to autophagosomes in cul­
tured rat fibroblasts (V). 
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4 SUMMA RY OF MATERIALS AND 

METHODS 

4.1 Experimental animals 

Male (II) or female (I, III; culturing of Ehrlich ascites cells) NMRI mice, 
2-5 months old and weighing 22-40 g, were used in the experiments. The
animals were starved for 17 h before the cell fractionation experiments
(II). Vinblastine was used to accumulate autophagic vacuoles in hepato­
cytes (II), and was administered to mice intraperitoneally (50 mg/kg) 2 or
3 h before decapitation.

4.2 Cell lines 

Ehrlich ascites cells were grown in the peritoneal cavities of NMRI mice 
for 6 or 7 days (I, III). Fibroblasts isolated from rat embryos were used 
for the experiments between cell generations 5 and 10 (IV, V). The cells 
were cultured (+37°C, 10% CO2) in Dulbecco's modified Eagle's medium
(DMEM) containing 10% fetal calf serum (FCS). Subconfluent and 
growing cultures were used for the electron microscopy and cell fraction­
ation, and immunofluorescence experiments, respectively. 
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4.3 Endocytic markers 

The markers were diluted in serum-free DMEM containing 25 mM 
Hepes buffer, pH 7.4 (IV, V). Rat fibroblasts were incubated with cation­
ized ferritin (CF) (100-250 µg/ml) at +4°C for 10 min to allow attachment 
to the plasma membrane. The cells were then rinsed with phosphate­
buffered saline (PBS) and chased for 5 min - 6 h at +37°C to allow inter­
nalization of CF. BSA-coated gold particles (14 nm) were prepared ac­
cording to Slot and Geuze (1985). Gold particles (OD520 

was 0.5) were 
added to the cells for 2 h. The cells were then rinsed with PBS and either 
fixed immediately or chased for 2 or 24 h at +37°C. For the electron mi­
croscopy, the cells were incubated with HRP (10 mg/ml) at +37°C for 15-
120 min. The cells were then rinsed with PBS and either fixed immediate­
ly or chased for 15 min - 4 h. For the cell fractionation experiments, the 
cells were incubated with HRP (2-4 mg/ml) at +37°C for 5 min, washed 
on ice with ice-cold PBS containing BSA and finally with PBS, and chased 
in serum-free DMEM at +37°C for 0-60 min. 

4.4 Microscopical methods 

4.4.1 Conventional electron microscopy and lipid cytochemistry 

The samples were fixed in 1-2.5% glutaraldehyde in phosphate or ca­
codylate buffer, pH 7.4 or 7.5, and post-fixed in 1 % OsO 

4 
(I, II, IV, V). In 

III, Ehrlich ascites cells were fixed in a mixture of 1 % OsO 
4 

and 4% glu­
taraldehyde (1+1). The samples were then dehydrated in a series of 
ethanol and embedded in Epon (LX-112). Thin sections were cut, mount­
ed on copper grids and stained with uranyl acetate and lead citrate. 

Membrane cholesterol was detected using filipin (100-300 µg/m]) 
which was added to the fixation medium (I, II) (Elias et al. 1979). 
Unsaturated fatty acids were detected with imidazole-buffered 2% OsO

4 

(I) (Angermiiller & Fahimi 1982).

4.4.2 Freeze fracture 

For freeze-fracture, Ehrlich ascites cells (I) and mouse liver samples (II) 
were fixed as described above, infiltrated with glycerol, frozen in liquid 
Freon 22 cooled with liquid nitrogen, and freeze-fractured at -120°C. 
The platinum shadowing was performed at an angle of 40° or 45°. 
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For the determination of intramembrane particle density, the sur­
face area of each membrane fracture face was determined by point 
counting from printed photomicrographs (final magnification was 
X127,750 in I and X80,000 in II). Particle diameters were measured from 
the micrographs using a measuring magnifier. The magnification was 
calibrated using a calibration grid (Balzers, crossed lines grating, 54,000 
lines per inch). 

4.4.3 Acid-phosphatase and HRP cytochemistry 

Acid phosphatase was demonstrated (V) using the modified lead-based 
method of Barka and Anderson (1962) with sodium-�-glycerophosphate 
as substrate (Miettinen & Reunanen 1991). 

Endocytosed HRP was visualized as described in Griffiths et al. 
(1989) using 0.01 % hydrogen peroxide and 0.1 % diaminobenzidine in 0.05 
M Tris-HCl buffer, pH 7.4, at room temperature for 4-8 min. 

4.4.4 Morphometric methods 

Morphometric analysis of subcellular fractions (II) and Ehrlich ascites 
cells (III) was performed by point counting (Weibel 1969). In II, thin sec­
tions were cut from the organelle fractions. The volume fractions of dif­
ferent organelles were determined from printed photomicrographs (final 
magnification was X26,000). In III, diapositives were prepared from the 
micrographs (primary magnification was XS,000). Calculations were 
performed by projecting the diapositives onto a double-square test lattice 
(Weibel & Bolender 1973). Stereological estimates were expressed as vol­
ume densities and related to the cytoplasmic volume. The number of pro­
files per unit area was determined by counting the vacuoles occurring on 
the tested area. Mean cell diameter was measured from light-micro­
scopic sections cut from the LX-112 blocks. This was used to estimate 
mean cell volume. 

4.4.5 Cryosectioning and immunoelectron microscopy 

The monolayers of rat fibroblasts (IV, V) were fixed in 4% paraform­
aldehyde, 0.1 % glutaraldehyde, 0.01 % azide, and 7.5% sucrose in PBS at 
room temperature for 60 min. The cells were then infiltrated with 2.1 M 
sucrose, and frozen in liquid nitrogen. Ultrathin frozen sections were cut 
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at -90°C as described in Griffiths et al. (1984). Double immunolabelling of 
the sections was carried out according to Geuze et al. (1981) and 
Tokuyasu (1986) using protein A-coated gold particles of two sizes (5 or 6 
and 10 nm in diameter) prepared according to Slot and Geuze (1985). The 
labelled sections were contrasted and embedded on ice in·0.3% uranyl ac­
etate in 1.5% methylcellulose. 

For quantitation of labelling, early autophagic vacuoles were mi­
crographed from the best sections of each sample. The number of gold 
particles per vacuole (IV) or square micro metre (V) was calculated from 
micrographs printed at a final magnification of X65,000. The size of the 
autophagic vacuole profiles and the intensity of the background labelling 
over the nucleus were determined by point counting. 

4.4.6 Immunofluorescence 

Fibroblasts were fixed (IV, V) in 4% paraformaldehyde in PBS, at room 
temperature for 45 min. The cells were permeabilized with Triton X-100 
and incubated in 5% fetal calf serum in PBS for 15 min and then with the 
primary antibodies in the same solution for 60 min. After rinsing, the cells 
were incubated with a fluorescently labelled secondary antibody for 30 
min. The monolayers were mounted in glycerol containing para­
phenylenediamine. 

4.4.7 Antibodies 

The following antibodies were used (IV, V): gammaglobulin fraction of a 
rabbit antiserum against bovine cation-independent mannose 6-phos­
phate receptor (Marjomaki et al. 1990); rabbit antiserum against dinitro­
phenol (ICN ImmunoBiologicals); and rabbit antiserum against mouse 
cathepsin L (the generous gift of Dr. Michael Gottesman, National 
Cancer Institute, Bethesda, MD, USA; Gottesman & Gabral 1981). The 
specificities of the antibodies against the 215 kDa MPR and cathepsin L 
were verified with immunoblotting (Marjomaki et al. 1990, and unpub­
lished results from the present study). Normal rabbit serum, normal rab­
bit IgG (Dakopatts), or rabbit antiserum against bovine serum albumin 
(Bio Yeda) were used as control antibodies. Anti-rabbit IgG-FITC was 
used as a secondary antibody in immunofluorescence stainings. 
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4.5.1 Isolation of autophagic vacuoles and lysosomes 

Autophagic vacuoles were isolated from the livers of vinblastine-injected 
mice, and lysosomes from the livers of untreated mice (II). The fractiona­
tions were made from the mitochondrial-lysosomal and light mitochon­
drial fractions, respectively, using discontinuous metrizamide gradients 
(Wattiaux et al. 1978, Wattiaux & Wattiaux-de Coninck 1983, Marzella et 
al. 1982). The fractions were characterized biochemically and morpho­
metrically. Marker enzyme activities for lysosomes (acid phosphatase), 
ER (glucose 6-phosphatase), plasma membrane (S'nucleotidase), and mi­
tochondria (succinate dehydrogenase) were assayed. 

4.5.2 Subcellular fractionation 

Post nuclear supernatants of fibroblasts were prepared (V) and mixed 
with 27% Percoll as described in Griffiths et al. (1990). The gradients 
were centrifuged at +4°C for 120 min at 30,000 g. Fractions of 0.5 ml 
were then collected beginning from the bottom of the tubes. Marker en­
zymes for lysosomes and the PLC ( j3-hexosaminidase and tartrate-in­
hibitable acid phosphatase) and HRP (endosytic marker) were assayed 
from the fractions. MPR (marker of the PLC) was detected by im­
munoblotting. 

4.5.3 Protein degradation 

Proteins of Ehrlich ascites cells (III) were labelled by injecting [14C]valine 
i.p. into the mice (2 µCi/10 g) 24 h before the experiments. Unlabelled va­
line was included in the incubation medium to prevent reincorporation of
[14C]valine. Protein degradation was expressed as the net release of
acid-soluble radioactivity during the incubation period (Seglen et al.
1979). It was calculated as a percentage of total protein-incorporated ra­
dioactivity (Seglen 1978) at the beginning of incubation.
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4.5.4 Immunoblotting 

Fibroblasts (V) were lysed and extracted in a buffer containing 0.05 M 
Tris-HCl, pH 7.4, 0.5% Triton X-100, 0.05% SDS. The samples were sep­
arated in polyacrylamide gel electrophoresis, and proteins were trans­
ferred electrophoretically to nitrocellulose. The blots were immunola­
belled for cathepsin L or MPR, using biotin-conjugated anti-rabbit IgG 
and either streptavidin or Extravidin conjugated alkaline phosphatase. 
Alkaline phosphatase was visualized with nitro blue tetrazolium and 5-
bromo-4-chloro-3-indolylphosphate. 

4.5.5 Metabolic labelling and immunoprecipitation 

Fibroblasts were treated with methionine-free minimum essential medi­
um containing 10% FCS dialyzed against PBS, and 10 mM Hepes, pH 
7.4, for 15 min, and then metabolically labelled with [35S] methionine in 
the same medium for 30 min. The cells were then chased in serum-free 
minimum essential medium containing 1.5 mg/ ml nonradioactive me­
thionine for 1 or 2 h. After chasing, the dishes were placed on ice, and the 
cells were lysed and extracted in a buffer containing 0.05 M Tris-HCl, pH 
7.4, 0.150 M NaCl, 1 % Triton X-100, 0.05% SDS, 1 mM EDTA. Cathepsin 
L was immunoprecipitated from the cell extracts and chase media, using 
cathepsin L antiserum and protein A-Sepharose. The latter was washed 
in a buffer containing 0.05 mM Tris-HCl, pH 7.4, 0.150 mM NaCl, 0.5% 
Triton X-100, 0.1 % SDS, 1 mg/ml BSA, and finally in the same buffer 
without BSA. The samples were then mixed with gel sample buffer, re­
duced, and separated in polyacrylamide gels. The gels were dried under 
a vacuum and exposed to X-ray film. 

4.6 Statistical methods 

Student's t-test and analysis of variance were used for testing signifi­
cances between the means in the morphometric analysis (III). G-test of 
independence, chi-square test of homogeneity, Kruskal-Wallis one way 
analysis of variance and Mann-Whitney U-test were used in the quanti­
tation of immunolabelling (IV, V). 
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5 REVIEW OF THE RESULTS 

5.1 Structure of the autophagic-vacuole membrane in 
Ehrlich ascites cells and hepatocytes 

Ehrlich ascites cells and mouse hepatocytes are both well characterized 
models for studies on autophagy (Hirsimaki et al. 1975, Hirsimaki & 
Pilstrom 1982). The structure of the membranes of early and later au­
tophagic vacuoles and lysosomes was compared in the present study (I, 
II). Freeze fracture technique was used to visualize membrane surfaces. 
Autophagic vacuoles were accumulated using vinblastine in Ehrlich as­
cites cells (0.1 mM, 30 min; I) and mouse hepatocytes (50 mg/kg, 2 or 3 h; 
II). Early autophagic vacuoles were accumulated in Ehrlich ascites cells 
with iodoacetate (2.5 mM), an inhibitor of glycolysis (I) (Hirsimaki et al. 
1984, Reunanen & Nykanen 1988). Lysosome-rich subcellular fractions of 
liver were used to study lysosomal membranes. 

\1nblastine caused an accumulation of autophagic vacuoles in 
Ehrlich ascites cells (I) and mouse hepatocytes (II). In Ehrlich ascites cells, 
the vacuoles consisted mainly of older, single-membrane limited forms, 
whereas in mouse hepatocytes, both double- and single-membrane limit­
ed forms were found. Iodoacetate raised the number of double-mem­
brane limited vacuoles in Ehrlich ascites cells. The membranes of these 
vacuoles sometimes showed attached ribosomes (I, Fig. 2a). In freeze­
fracture replicas, early autophagic vacuoles were defined as round vac­
uoles in which an inner membrane parallel with the outer one was clear­
ly visible (I, Figs 3a, Sa; II, Fig. la-d). Later vacuoles were more irregu­
lar-shaped and possessed only some remnants of the inner membranes 
(I, Figs 3b-e, 4c, Sc; II, Fig. 2a-c). In replicas of Ehrlich ascites cells, small 
round vesicles were also observed (I, Figs 3d, e, ad). Their size and shape 
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suggested that they correspond to electron-dense residual body -type 
vacuoles (I, Fig. 2d). Lysosomes were difficult to identify in replicas made 
of intact liver tissue. Therefore, replicas of isolated lysosomes were used. 

5.1.1 Unsaturated fatty acids and cholesterol 

Imidazole-buffered OsO 4 was used to detect unsaturated fatty acids
(Angermiiller & Fahimi 1982) in Ehrlich ascites cells (I). Positive staining 
is observed in thin sections as increased electron density. Membrane 
cholesterol was specifically labelled using filipin (I, II), which induces 
characterictic membrane deformations by forming complexes with unes­
terified cholesterol (Elias et al. 1979). Positive labelling is observed in thin 
sections and freeze-fracture replicas as 20-30 nm pits and protrusions. 
The molar ratio of cholesterol to phospholipids must be at least 1 :20 to 
produce visible lesions (Elias et al. 1979). Because filipin penetrated the 
tissue blocks poorly, subcellular fractions were used for the filipin la­
belling of liver organelles (II). 

Imidazole-buffered OsO 4 stained the membranes of early, dou­
ble-membrane limited autophagic vacuoles in Ehrlich ascites cells. 
Curved cistemae of ER (possibly in the process of sequestrating cyto­
plasm) were also stained. The membranes of older, single-membrane 
limited vacuoles were not stained (I, Fig. la-c). 

Filipin labelling was studied in thin sections and freeze-fracture 
replicas (I, II). The membranes of some double-membrane limited au­
tophagic vacuoles did not show any filipin labelling. Since in thin sections 
the contents of these vacuoles appeared unaltered, the vacuoles were 
judged to be nascent (I, Figs 2a, b, 4a; II, Fig. Sa). However, the mem­
branes of most, both double- and single-membrane limited, vacuoles 
were labelled by filipin. The membranes visible inside the vacuoles were 
also often labelled (I, Figs 2c, 3a-e, 4b, c; II, Figs Sb, 6a, b). In Ehrlich as­
cites cells, the membranes of the putative residual bodies were labelled 
weakly or not at all (I, Figs 2d, 3e, 4d), whereas the membranes of isolat­
ed mouse-liver lysosomes were labelled heavily (II, Fig. 7a, b).Thus, the 
content of unsaturated fatty acids appeared to decrease from early to 
later autophagic vacuoles, whereas the cholesterol content increased. 

5.1.2 Membrane proteins: intramembrane particles in freeze-fracture 
replicas 

The occurrence of membrane proteins was studied by counting the densi­
ty of intramembrane particles in freeze-fracture replicas. These corre-
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spond to membrane proteins (Rash et al. 1981, Borovyagin et al. 1985). 
The approximate protein content in different membranes can thus be 

. compared. The freeze-fracture nomenclature was established by Branton 
et al. in 1975. The fracture face which remains attached to the cytoplasm 
is called the protoplasmic or P face, and the other fracture face remain­
ing attached to the organelle lumen is the exoplasmic or E face. The den­
sity of intramembrane particles was counted on the membranes of 
iodoacetate-induced double-membrane limited, and single-membrane 
limited, vacuoles as well as on the ER in Ehrlich ascites cells (I, Table 1), 
and on the membranes of double-membrane limited vacuoles and isolat­
ed lysosomes in mouse liver (II, Table 3). Table 1 presents a summary of 
the membrane particle densities in autophagic vacuoles and lysosomes. 

TABLE 1. Intramembrane particle densities (no/µm2±SE) on the membranes of 
autophagic vacuoles and lysosomes. 

Ehrlich ascites 
cells 

PF 
EF 

Hepatocytes 
PF 
EF 

Early AVs 

2526±237 

2502±200 

328±53 

310±41 

Later AVs 

2783±160 

Lysosomes 

1440±42 

688±31 

AV, autophagic vacuole; PF, P face; EF, E face. In Ehrlich ascites cells, the P-face 
density of early A Vs and E-face density are from iodoacetate-treated cells. The E -
face density was not calculated separately for early and later AVs. 

In Ehrlich ascites cells, the membranes of double-membrane limit­
ed autophagic vacuoles showed uniformly distributed intramembrane 
particles on their P fracture face (I, Fig. Sb). The membranes of these vac­
uoles resembled those of the ER (I, Fig. Sa, b).Older, apparently single­
membrane limited vacuoles contained more particles on their P fracture 
face (I, Fig. Sc). Moreover, the P-face particles were larger in the older 
vacuoles than in the early ones. The percentage of particles over 7 nm in 
diameter was 27 and 43- 49% in the early and later vacuoles, respectively 
(I, Table 1). The limiting membranes also showed intramembrane parti-
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des on their E fracture faces (I, Fig. Sd, e). However, the membranes of 
the putative residual body -type vacuoles were usually particle-free (I, 
Figs 4d, Sf). 

In mouse hepatocytes and autophagic-vacuole fractions, the 
membranes of all autophagic vacuoles contained only few or no in­
tramembrane particles. The membranes of double-membrane limited 
vacuoles were usually completely particle-free (II, Fig. la, b, d). 
Sometimes, fusion profiles of particle-rich vesicles and smooth au­
tophagic vacuoles were observed (II, Fig. le). The membranes of appar­
ently single-membrane limited, irregular-shaped vacuoles usually 
showed some particles (II, Fig. 2a-c). The membranes of ER contained 
more particles than the autophagic vacuoles (II, Fig. 3). Many uniformly 
distributed particles were also visible on the membranes of isolated lyso­
somes (II, Fig. 4a-d). Thus, the density of intramembrane particles ap­
pears to increase as autophagic vacuoles mature into degradative lyso­
somal vacuoles. The size of the particles also increases simultaneously. 

5.2 Microtubules and autophagy in Ehrlich ascites cells 

The aim was to study the role of microtubules in the delivery of lysoso­
mal enzymes to autophagic vacuoles. Microtubules were disrupted with 
vinblastine. Electron-microscopic morphometry was used to study 
whether vinblastine accumulated autophagosomes or autolysosomes in 
Ehrlich ascites cells, and whether leucine and histidine (the amino acids 
which inhibit sequestration, Seglen & Gordon 1984), as well as 3-methy­
ladenine (a specific inhibitor of segregation, Seglen et al. 1986), were able 
to prevent the accumulation (III). 

The cells were divided into six groups, and a preincubation of 30 
min was performed before vinblastine addition (0.1 mM): 

1) No additions;
2) Preincubation without additions, incubation with vinblastine;
3) Both incubations with leucine and histidine (10 mM each);
4) Both incubations with 3-methyladenine (20 mM);
5) As group 3, but incubation including vinblastine; and
6) As group 4, but incubation including vinblastine.

Aliquots of 1-3 ml were taken from the cell suspensions after 2, 30, 60, 
and 120-min incubations for the electron microscopy, and after 0 and 120-
min incubations for the measurement of protein degradation. 

The criteria used to classify the autophagic-lysosomal vacuoles in 
the morphometric analysis are described in III under Results and in Fig. 
1. Double-membrane limited autophagosomes were surrounded by two
membranes and contained morphologically intact cytoplasm (III, Fig.
lA); electron-lucent vacuoles (later autophagic vacuoles) were surround-
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ed by a single membrane and contained partially degraded cytoplasmic 
material (III, Fig. lB-D); and dense vacuoles (residual body -type vac­
uoles) were limited by a single membrane and contained electron-dense 
material (III, Fig. lD, E). 

\1nblastine significantly increased the cytoplasmic volume density 
and number of electron-lucent vacuoles in 30 and 60 min, respectively. 
The number of autophagosomes remained at the control level. After a 
120-min incubation, the volume density and number of dense vacuoles
were both significantly smaller in the vinblastine-treated cells as com­
pared with the control cells. Leucine and histidine significantly retarded
but did not prevent the vinblastine-induced accumulation of electron-lu­
cent vacuoles. However, 3-methyladenine prevented the accumulation
almost completely (III, Tables I, II). The viability (nigrosin staining) and
volume of the cells did not change during the 120-min incubation (III,
Table III).

Protein degradation was measured to detect the degradation of 
cytoplasmic material in autophagic vacuoles. Degradation was mea­
sured as a release of radioactive valine from prelabelled long-lived en­
dogenous proteins. The results of the measurements are presented in III, 
Table IV. Vinblastine slightly inhibited the rate of protein degradation but 
the change was statistically insignificant. Thus, although vinblastine ac­
cumulated later autophagic vacuoles, the rate of protein degradation did 
not increase. This suggests that the accumulation was caused by retarded 
degradation in the later autophagic vacuoles. 

5.3 MPR, acidification, and cathepsin L delivery 
to autophagic vacuoles in fibroblasts 

The aim was to study the route of enzyme delivery to autophagosomes. 
Cryoimmuno elecron microscopy was used to detect MPR which recycles 
between the PLC and TGN in the multiple delivery cycles of lysosomal 
enzymes. In fibroblasts, over 90% of MPR is located in the PLC in steady 
state (Griffiths et al. 1988, 1990). Cathepsin L, a lysosomal proteinase, 
was used as a marker of the PLC and mature lysosomes. Acidic compart­
ments were labelled using an acidotropic amine, 3-(2,4-dinitroanilino)-
3'-amino-N-methyl-dipropylamine (DAMP), (100 µM, 30 min) which can 
be detected immunocytochemically with anti-dinitrophenol (Anderson et 
al. 1984). Cultured fibroblasts were used because the role of MPR in en­
zyme delivery in these cells is well documented (von Figura & Hasilik 
1986, Griffiths et al. 1988). Cationized ferritin (CF) was used as a marker 
of adsorptive endocytosis. 

The experiments (IV) were performed to answer three questions: 
firstly, whether the enzymes are delivered to early autophagic vacuoles 
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by MPR-positive or negative vesicles; secondly, whether enzyme delivery 
occurs simultaneously with acidification; and thirdly, whether acidifica­
tion is obligatory for enzyme delivery. To induce autophagy, the cells 
were incubated in a serum-free medium for 30 min (Mitchener et al. 
1976). 

5.3.1 Distribution of MP� cathepsin Land DAMP in fibroblasts 

The most intense labelling for MPR, cathepsin L and DAMP was found in 
vesicles which contained tightly-packed lamellar or concentric mem­
brane figures or tubular-vesicular membrane material (IV, Fig. la, b).The 
vesicles were also often positive for endocytosed CF (IV, Fig. lb), and 
thus correspond to the PLC. The Golgi stacks were usually not labelled, 
whereas tubules and vesicles associated with the stacks occasionally con­
tained MPR, cathepsin L (IV, Fig. le) and DAMP (not shown). Cathepsin 
L, DAMP and occasional MPR labelling were also found in more elec­
tron-dense vesicles (IV, Fig. la, d) which contained large amounts of the 
endocytic marker (IV, Fig. ld). These structures correspond to mature 
lysosomes. 

5.3.2 MP� cathepsin Land DAMP labelling in autophagic vacuoles 

Early autophagic vacuoles were frequently observed in fibroblasts incu­
bated in a serum-free medium for 30 min (IV, Fig. 2a-c), but only rarely in 
those incubated with 10% serum. In cryosections, early autophagic vac­
uoles were identified as round, oval or irregular-shaped vesicles con­
taining material closely resembling the surrounding cytoplasm (Iv, Figs 3, 
4a-f). The limiting membranes of the vacuoles were poorly visible or dif­
ficult to distinguish from the membrane structures in the surrounding cy­
toplasm. Usually, an electron-translucent layer was visible between the 
limiting membrane and contents (IV, Figs 3, 4a-f). Thus, since the double 
limiting membrane is poorly recognizable and ribosomes are not visible 
at all in cryosections, the only available marker for the identification of 
autophagic vacuoles was, as stated above, 'material resembling the cyto­
plasm' inside the vacuoles. 

Immunolabelling for MPR, cathepsin L and DAMP was observed 
in the early autophagic vacuoles (IV, Table 1; Figs 3, 4a-d). About one­
fifth (21-24%) of the vacuoles showed moderate to weak labelling for 
both MPR and cathepsin L, DAMP and cathepsin L, or DAMP and MPR. 
The rest of the early vacuoles showed weak labelling for one only of the 
antibodies used in the double labelling experiments, or were unlabelled. 
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In cryosections, endocytosed ferritin (10-min binding and 3-h uptake) 
was not observed in the early autophagic vacuoles. The results suggest 
that at least part of cathepsin L in autophagic vacuoles originates from 
the MPR-positive compartments, i.e. the PLC or TGN. 

5.3.3 Effect of monensin on the labelling of early autophagic vacuoles 

To study the role of acidification in the delivery of cathepsin L to au­
tophagic vacuoles, monensin (10 µM) was used to raise the pH of acidic 
organelles (Seglen, 1983). Immunofluorescence staining showed that 
DAMP did not accumulate in fibroblasts when monensin was present in 
the medium (IV, Fig. Sb). However, the presence of monensin during the 
induction of autophagy did not change the labelling of early autophagic 
vacuoles for MPR and cathepsin L (IV, Table 1; Fig. 4e). Monensin treat­
ment raised the proportion of early autophagic vacuoles labelled for 
cathepsin L but not for DAMP. However, monensin treatment did not 
change the number of particles detecting MPR or cathepsin L in au­
tophagic vacuoles (IV, Table 2; Fig. 4f). Thus, acidification is not obligato­
ry for cathepsin L delivery. 

5.4 Endosomes and enzyme delivery to autophagic 
vacuoles in fibroblasts 

The role of the PLC in enzyme delivery was studied using endocytic 
markers (V). The cells were labelled with a marker and chased for vary­
ing time periods. Autophagy was induced by incubation in serum-free 
DMEM for 1 or 2 h before fixation (before, during and/ or after the en­
docytosis). Leupeptin (250 µM), an inhibitor of cysteine proteinases, was 
added to the serum-free DMEM for some of the culture dishes. This fa­
cilitated the morphological identification of autophagic vacuoles. 

Three different endocytic markers were used: CF as a marker of 
non-selective adsorptive endocytosis; colloidal gold particles coated with 
bovine serum albumin (BSA-gold) as a particulate marker of fluid-phase 
endocytosis; and horseradish peroxidase (HRP) as a soluble marker of 
fluid-phase endocytosis. CF and BSA-gold are readily visible in thin sec­
tions, whereas HRP was visualized by a cytochemical staining for perox­
idase activity. The labelling protocols necessary to chase the markers into 
autophagic vacuoles were first established using Epon-embedded speci­
mens. The subcellular locations of the markers with these protocols were 
then determined by cryoimmunoelectron microscopy (CF and BSA-gold) 
or cell fractionation (HRP). 
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5.4.1 Cationized ferritin 

Autophagic vacuoles did not contain CF when the cells were chased for 
5-15 min after the 10-min labelling at +4°C, and only occasionally after a
30-45 min chase. CF was frequently found in autophagic vacuoles after a
chase of 1-6 h (V, Fig. lA-D). The subcellular localization of CF was stud­
ied after chases of 1, 2 and 3 h. Cryosections were prepared and double­
labelled for MPR and cathepsin L. After internalization for 1 h, CF was
found in the PLC (MPR-enriched, cathepsin L -positive structure) as well
as in peripheral vesicles lacking MPR and cathepsin L (V, Fig. 2A) which
probably correspond to early endosomes. Most lysosomes (cathepsin L -
positive and MPR-negative vesicles) did not contain CF (V, Fig. 2B). With
longer internalization periods, more CF accumulated in lysosomes (V,
Fig. 2C). After a 3-h internalization, CF was present in many PLC pro­
files as well as in lysosomes (IV, Fig. 1 b, d).

5.4.2 BSA -coated gold particles 

Gold particles were detected in a few autophagic vacuoles after a 2-h 
uptake at +37°C (V, Fig. 3A), and more frequently after a 2-h uptake fol­
lowed by a 2 or 24-h chase (V, Fig. 3B, C). Acid phosphatase, a marker of 
the TGN, PLC and lysosomes, was demostrated cytochemically. In all 
uptake-chase experiments, BSA-gold was detected in both acid phos­
phatase -positive and negative vesicles, and both were observed in fu­
sion profiles with autophagic vacuoles (V, Fig. 3A-C). Earlier studies 
have shown that protein-coated gold particles are transported to the 
PLC in 2 h in fibroblasts (Griffiths et al. 1988). In cryosections labelled for 
MPR and cathepsin L, BSA-gold was found in both the PLC and lyso­
somes after both 2 and 24-h chase periods. 

In some experiments, the PLC and lysosomes were first labelled 
with BSA-gold (2-h uptake and 24-h chase), and early endosomes were 
then labelled with CF (10-min binding and 15-min chase). In these condi­
tions, the two markers were never observed inside the same vesicles. 
BSA-gold was detected in autophagic vacuoles whereas CF was not. 

5.4.3 Horseradish peroxidase 

HRP activity was not detected in autophagic vacuoles after a 15-min in­
ternalization (V, Fig. 4A) but was found in small tubules and vesicles lo­
cated in the periphery of the cells. After 30-min uptake with or without a 
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15-min chase, HRP was found in a few autophagic vacuoles (V, Fig. 4B,
C).After internalization for 30-120 min and a 1-h chase, HRP was fre­
quently detected in autophagic vacuoles (V, Fig. 4D). With this labelling
protocol, the number of HRP-positive autophagic vacuoles increased
with longer internalization periods (when HRP filled an increasing pro­
portion of the endosomal/lysosomal compartments). HRP-positive vesi­
cles were frequently detected in contact with early autophagic vacuoles
containing morphologically unaltered cytoplasm (V, Fig. 4E, F).
However, the reaction product masked the contents of most later au­
tophagic vacuoles and made them difficult to identify (V, Fig. 4B).

The transport of HRP from endosomes to lysosomes was fol­
lowed using cell fractionation of the post-nuclear supernatants on 
Percoll gradients (V, Fig. 5). In fibroblasts, since the bulk of MPR is locat­
ed in the PLC (Griffiths et al. 1988), the location of MPR in the gradient· 
indicates the PLC. MPR (215 kDa) was detected by immunoblotting from 
the pooled fractions (V, Fig. 5B). f>-Hexosaminidase, which is located in 
lysosomes and to a lesser extent in the PLC, and acid phosphatase, which 
is located in the TGN, PLC and lysosomes, were also measured (V, Fig. 
5A). The results showed that HRP reached the PLC in 30 min, at the same 
time as it was first detected in autophagic vacuoles. After 30-120 min of 
internalization, followed by a 1-h chase, when many autophagic vac­
uoles were HRP-positive, HRP would localize to both the PLC and lyso­
somes (V, Fig. 5C-E). 

5.5 TGN and cathepsin L delivery to autophagic 
vacuoles in fibroblasts 

To study whether MPRs transport newly-synthesized cathepsin L direct­
ly from the TGN to autophagosomes (V), two inhibitors of MPR-mediat­
ed transport, tunicamycin (2 µg/ml) and chloroquine (50 µM), were used. 
Tunicamycin inhibits the glycosylation of lysosomal enzymes, thus pre­
venting synthesis of the mannose 6-phosphate recognition marker (Imort 
et al. 1983). Chloroquine prevents the dissociation of enzymes from the 
receptors in the PLC, presumably by raising the pH in acidic organelles 
(Seglen 1983, Kornfeld & Mellman 1989). Occupied receptors accumulate 
in large vacuolar endosomes which can be detected by immunofluores­
cence staining (Brown et al. 1984). Both drugs prevent MPR-mediated 
targeting of lysosomal enzymes from the TGN to the lysosomal system: 
tunicamycin by preventing the binding of enzymes to MPRs, and chloro­
quine by causing a deficiency of free receptors. In both cases, the enzymes 
are secreted via the constitutive secretory pathway as unprocessed pre­
cursors. 
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The effect of tunicamycin on the glycosylation of cathepsin L was 
studied by immunoblotting and metabolic labelling followed by immuno­
precipitation (V, Fig. 6). Immunoblotting of cathepsin L from the control 
cells revealed the three forms of the enzyme: the 39-kDa precursor, the 
30-kDa intermediate, and the 25-kDa mature form (V, Fig. 6A, lane 1 in
cells) (Gal et al. 1985). Unglycosylated 36-kDa precursor was detected in
both cell extracts and culture medium after a 3-h tunicamycin treatment
(V, Fig. 6A, lane 2 in cells and medium). Immunoprecipitation of metaboli­
cally labelled cathepsin L showed that, after a 150-min preincubation in
the presence of tunicamycin, only the unglycosylated precursor of
cathepsin L was synthesized during a 30-min pulse in the presence of the
drug (V, Fig. 6B, lane 2). This precursor remained unglycosylated after a
1-h chase in the presence of tunicamycin. It was not processed into the
mature form, but secreted into the medium (V, Fig. 6B, lane 5 in cells and
medium). The results thus showed that tunicamycin treatment was effec­
tive.

Chloroquine treatment (3 h) was shown to accumulate MPRs in 
large vacuolar endosomes, indicating that it prevented the dissociation 
of ligands from the receptors (V, Fig. 7A, B) (Brown et al. 1984, Braulke et 
al. 1987). Moreover, metabolic labelling experiments showed that 
chloroquine prevented the processing of cathepsin L into the intermedi­
ate and mature forms (V, Fig. 6B, lanes 3, 6, 8). 

The cells were preincubated with the drugs in a complete culture 
medium for 3 h to chase newly-synthesized cathepsin L out of the TGN, 
after which autophagy was induced, in the presence of the drugs, in a 
serum-free medium for 1 h. Autophagic vacuoles were not observed in 
Epon sections cut from cells treated with either tunicamycin or chloro­
quine in a serum-containing culture medium for 3 h. When the treatments 
were continued for 1 h in a serum-free medium, both early and later au­
tophagic vacuoles were observed. The labelling densities of these au­
tophagic vacuoles for MPR and cathepsin L were determined using dou­
ble-labelled cryosections. Since only nascent autophagic vacuoles can be 
identified in cryosections, it is most probable that the counted vacuoles 
were only formed after the 3-h preincubation. MPR and cathepsin L la­
belling of autophagic vacuoles was similar in both control cells and cells 
treated with either tunicamycin or chloroquine (V, Table 1; Fig. 8A-C). 
The results suggest that MPRs do not transport cathepsin L directly from 
the TGN to autophagic vacuoles. In stead, the enzyme may be transport­
ed from the PLC. 
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6.1 Structure of the autophagic-vacuole membrane 

According to the results of the present (I, II) studies and our previous re­
port (Reunanen et al. 1985), the following model can be proposed for the 
maturation of the membranes of autophagic vacuoles. Imidazole­
buffered OsO 4 staining showed that the membranes of nascent vacuoles 
contain a lot of unsaturated fatty acids in both Ehrlich ascites cells (I) and 
mouse hepatocytes (Reunanen et al. 1985). However, the content of these 
lipids decreases as the vacuoles mature into autolysosomes. According to 
filipin labelling, the opposite occurs in the cholesterol content of the 
membranes. The membranes of nascent autophagosomes appear to con­
tain little cholesterol, but the amount of cholesterol rapidly increases, be­
fore the inner membrane disappears. The membranes of autolysosomes 
appear to contain much cholesterol in both Ehrlich ascites cells and 
mouse hepatocytes, as do the membranes of dense lysosomes in mouse 
liver. However, the membranes of electron-dense vesicles in Ehrlich as­
cites cells (putative residual bodies) contain little cholesterol. 

Three possible sources can be proposed for the additional choles­
terol in the membranes of autophagic vacuoles: (i) the fusion of choles­
terol-rich membranes of lysosomal vesicles with the vacuoles; (ii) choles­
terol liberated from the segregated organelles by cholesterol-ester 
hydrolase (Slotte & Ekman 1986); and (iii) the insertion of newly-synthe­
sized cholesterol into the membrane. The first alternative is possible, at 
least in hepatocytes. In Ehrlich ascites cells, cholesterol is presumably re­
moved from the membranes of residual bodies and reutilized in the cyto­
plasm. 
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In Ehrlich ascites cells, the membranes of early (iodoacetate-in­
duced) autophagic vacuoles contain many intramembrane particles, sug­
gesting that the membranes are rich in protein. Some of these mem­
branes also possess attached ribosomes, strongly suggesting that the 
membranes originate from the rough ER. In mouse hepatocytes, on the 
other hand, the membranes of early autophagic vacuoles contain little 
protein. We never observed ribosomes on these membranes. This discrep­
ancy may be due to differences in the putative change of membrane com­
position during autophagic sequestration (Ericsson 1969b, Dunn 1990a). 
The partial ATP depletion induced by iodoacetate in Ehrlich ascites cells 
may also have caused some differences. In both Ehrlich ascites cells and 
hepatocytes, however, the protein content probably increases as the vac­
uoles mature into autolysosomes. In hepatocytes, this increase may be 
due to protein-rich lysosomes fusing with the autophagic vacuoles. 

Interestingly, comparable changes in the filipin labelling and den­
sity of intramembrane particles have been observed during phagocytosis 
in Dictyostelium (Favard-Sereno et al. 1981). The filipin labelling and 
particle density and size increased soon after phagosome closure. This 
transformation was suggested to be related to the presence of lysosomal 
enzymes. This implies that the changes are universal and probably have 
some functional significance. 

Cholesterol and unsaturated fatty acids have a significant influ­
ence on the fluidity and permeability of membranes, on membrane fu­
sion, and in regulating the activity of membrane-bound enzymes (Chen 
et al. 1978, Whetton et al. 1983, Presti 1985, Hagve 1988, Minocha et al. 
1988, Roerdink et al. 1989). Cholesterol protects membrane phospho­
lipids against hydrolysis by phospholipase A

2 
(Fisher et al. 1983). It is pos­

sible that high content of unsaturated fatty acids is necessary to produce 
sufficient fluidity to the membrane during sequestration. Further, the 
higher cholesterol content in older autophagic vacuoles and lysosomes 
may protect the limiting membranes of the vacuoles against hydrolysis. 

Intramembrane particles have long been associated with mem­
brane proteins (Robertson 1981). Direct evidence has also been presented 
to support this hypothesis, using an immunocytochemical labelling of 
membrane particles (Rash et al. 1981) and reconstituted microsomal 
membranes (Borovyagin et al. 1985). For the proteins in lysosomal mem­
branes, various carrier functions have been proposed (Lloyd & Forster 
1986). The lysosomal proton pump (Dell'antone 1988, Moriyama et al. 
1984) and amino acid transport system (Bernar et al. 1986) have been 
characterized. It is possible that the particle density on the membranes of 
autophagic vacuoles increases with the insertion into the membranes of 
different carrier proteins, whose function would be e.g. to acidify the 
contents or transfer the degradation products into the cytoplasm. 
Lysosomal membrane glycoproteins (lgp120, LIMP I and LIMP V) have 
been detected in the membranes of autophagic vacuoles (Dunn 1990b). 
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These may protect the membrane against hydrolytic enzymes. In order to 
get more specific information on the structure and function of autophag­
ic-vacuole membranes in the future, the membranes should be purified, 
the lipids analyzed, and the proteins characterized biochemically. 

6.2 Vinblastine and autophagy in Ehrlich ascites cells 

Vinblastine caused later autophagic vacuoles alone to accumulate in 
Ehrlich ascites cells. The number of autophagosomes remained at the 
control level (III). Acid phosphatase activity has also been detected in au­
tophagic vacuoles accumulated during vinblastine treatment (Reunanen 
& Nykanen 1988). Consequently, in Ehrlich ascites cells, vinblastine does 
not prevent the entry of lysosomal hydrolases into autophagosomes. 
However, 0.1 mM vinblastine caused an aggregation of tubuline subunits 
into paracrystals (I, Fig. lb). This indicates that the treatment did disrupt 
the microtubules. The results thus cast doubt on the importance of micro­
tubules in the transport of lysosomal enzymes into autophagosomes in 
Ehrlich ascites cells. 

Since vinblastine induced the accumulation of advanced au­
tophagic vacuoles which contained partially degraded material while 
not increasing the rate of protein degradation (III), the accumulation 
must have been caused by retarding degradation in the electron-lucent 
vacuoles. This suggests that microtubules may be necessary for the deliv­
ery of some components obligatory for degradation in autophagic vac­
uoles. 

Leucine and histidine significantly retarded but did not prevent 
the vinblastine-induced accumulation of electron-lucent vacuoles. The 
rate of protein degradation was only slightly (non-significantly) lower in 
the Leu+His and vinblastine-treated cells than in the cells treated only 
with vinblastine (III). Histidine is presumably metabolized in Ehrlich as­
cites cells (Doolan & Ward 1987). However, as estimated from the results 
of these authors, only about 20% of the His could have been metabolized 
during the 120-min incubation. After this decrease, the concentration of 
His would still have been about 8 mM, which is about 60 times the con­
centration in mouse intraperitoneal fluid (Doolan & Ward 1987). In con­
clusion, since the segregation inhibitors Leu and His could not prevent 
the accumulation of autophagic vacuoles in the presence of vinblastine, 
the results suggest that vinblastine also stimulated the formation of new 
autophagosomes. Similar results were reported by Kovacs et al. (1988) 
and Oliva et al. (1992) for hepatocytes and pancreatic acinar cells. 

In the presence of 3-methyladenine, vinblastine did not increase 
the volume density of autophagic vacuoles. Furthermore, the slight 
(non-significant) inhibitory effects of 3-methyladenine and vinblastine on 
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protein degradation were cumulative (III). This is in agreement with re­
sults showing that these drugs inhibit different stages in the autophagic 
degradation pathway: vinblastine inhibits the maturation of autophagic 
vacuoles, and 3-methyladenine inhibits the formation of new au­
tophagosomes ·(Seglen & Gordon 1982, 1984). The results of the present 
study suggest that 3-methyladenine inhibits autophagic sequestration by 
a mechanism which is more vinblastine-resistant than the inhibitory 
mechanisms of Leu and His. In accordance with this, H0yvik et al. (1986) 
found that 3-methyladenine prevented, in isolated hepatocytes, vinblas­
tine-induced [ 14C]lactose accumulation in autophagic vacuoles. 

6.3 MPR, TGN and cathepsin L delivery to autophagic 
vacuoles in fibroblasts 

Many of the early autophagic vacuoles (43-47%) were unlabelled in the 
cryosections double-labelled for MPR and cathepsin L (IV). These vac­
uoles can be classified as autophagosomes, i.e., newly-formed vacuoles 
which have not yet received lysosomal markers. This result supports the 
view that autophagosomes are formed by a membrane which has no 
degradative enzymes (Arstila & Trump 1968). 

The double labelling of MPR and cathepsin L in the early au­
tophagic vacuoles showed that the occurrence of cathepsin L was depen­
dent on the presence of MPR (IV, Table 1, G-test of independence). In 
steady state, only slightly more vacuoles were positive for cathepsin L 
(39-44%) than for MPR (32-36%). These results suggest that considerable 
amounts of MPR and cathepsin L are delivered simultaneously - per­
haps by a common transport route - to autophagosomes. The presence 
of MPR in the autophagic vacuoles casts doubt on the classical theory 
that enzymes are delivered to autophagosomes solely by fusion with ma­
ture lysosomes, since the lysosomes were essentially devoid of MPRs (IV, 
Fig. ld; V,  Figs 2B, SA, B).Tooze et al. (1990) also found MPR and lysoso­
mal enzymes in autophagic vacuoles in guinea pig pancreas. However, in 
rat liver, MPRs were absent from the majority of autophagic vacuoles 
(Dunn 1990b). The different results probably reflect differences in the ki­
netics of MPR recycling during enzyme delivery, or in the role of MPR in 
enzyme targeting (reviewed by Pfeffer 1988), in different tissues. 

To study whether MPRs target enzymes to autophagosomes di­
rectly from the TGN, tunicamycin and chloroquine were used (V) to in­
hibit MPR-mediated transport of newly-synthesized lysosomal enzymes 
(Imort et al. 1983, Seglen 1983, Nishimura et al. 1988). Tunicamycin and 
chloroquine did not prevent the delivery of cathepsin L or MPR to early 
autophagic vacuoles. The results thus suggest that no or only trace 
amounts of lysosomal enzymes are transported to autophagic vacuoles 
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by MPRs directly from the TGN. In accordance with our result, Dunn 
(1990b) and Lawrence & Brown (1992) reported that tunicamycin did not 
prevent enzyme delivery to autophagic vacuoles in hepatocytes. 

6.4 PLC and enzyme delivery to autophagic vacuoles 
in fibroblasts 

Since MPR and cathepsin L were not transported directly from the TGN, 
the PLC was the most probable source. The fusion of the PLC with au­
tophagic vacuoles was studied with endocytic markers (V). 

No endocytic markers (CF or HRP) were detected in autophagic 
vacuoles after short internalization periods (5-15 min). In these condi­
tions, CF and HRP were found in structures closely resembling early en­
dosomes by morphology, i.e. in small vesicles and tubules in the cell pe­
riphery. Several earlier studies have also reported that HRP is localized 
exclusively in early endosomes after a 15-min uptake (Griffiths et al. 
1989, 1990, Ludwig et al. 1991). Thus, our results indicate that early endo­
somes do not fuse with autophagic vacuoles in rat fibroblasts. In accor­
dance with our results, Tooze et al. (1990) and Gordon et al. (1992) found 
that early endosomes did not fuse with autophagic vacuoles in guinea 
pig pancreatic acinar cells and rat hepatocytes, respectively. 

The endocytic markers were first detected in autophagic vacuoles 
after internalization and chase periods long enough to allow transport 
of the markers to the PLC. Furthermore, the CF or BSA-gold -positive 
structures observed to fuse with autophagic vacuoles were often mor­
phologically similar to the PLC, i.e., were rich in internal membranes (V, 
Figs lA-D; 2A; 3B, C; Griffiths et al. 1988). In addition, both acid phos­
phatase -positive and negative endosomes (vesicles containing BSA­
gold) were observed in fusion profiles with autophagic vacuoles. The 
PLC has been reported to contain both acid-phosphatase positive and 
negative regions, whereas lysosomes are all acid phosphatase -positive 
(Griffiths et al. 1990). Finally, the longer chase periods (which tended to 
chase more endocytic marker to lysosomes) did not raise the number of 
marker-positive autophagic vacuoles, whereas the longer internaliza­
tion periods (which tended to fill the whole PLC in the cells) clearly did 
so. Continuous uptake of HRP for 1 h has been found to completely fill 
the PLC of fibroblasts. However, HRP began to significantly fill the lyso­
somes only after a 2-h uptake (Ludwig et al. 1991). In conclusion, the PLC 
seems to be the meeting point of the autophagic and endocytic pathways 
in cultured rat fibroblasts. The PLC has been shown to be capable of dy­
namic fusion and fission events (Deng et al. 1991). It has earlier been re­
ported as the meeting point of the apical and basolateral endocytic path­
ways in MDCK cells (Parton et al. 1989) as well as of the phagocytic and 
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endocytic pathways in macrophages (Rabinowitz et al. 1992). 
Even after a 24-h chase, BSA-gold was found in both the PLC and 

MPR-negative lysosomes. The inability to chase BSA-gold out of the PLC 
has also been observed by others (Griffiths et al. 1990, Deng et al. 1991). 
The fluid-phase marker HRP has also been found to exit the PLC very 
slowly (Ludwig et al. 1991). It is possible that some kind of recycling oc­
curs between the PLC and lysosomes (Deng et al. 1991). Taken together, it 
is difficult to label lysosomes without concomitant labelling of the PLC. 
Therefore, our results do not exclude the possibility that also lysosomes 
may fuse with autophagic vacuoles in fibroblasts. 

The present results suggest that the first enzymes and MPRs may 
be transported to autophagic vacuoles from peripheral parts of the PLC. 
Firstly, CF (which was mainly detected in large vacuolar parts of the 
PLC) was not detected in early autophagic vacuoles in cryosections, al­
though low levels of cathepsin L and MPR were present (IV). Only 
nascent autophagic vacuoles (containing morphologically intact cyto­
plasm) could be identified in cryosections. Secondly, CF and BSA-gold 
were observed in autophagic vacuoles containing partially degraded cy­
toplasm, and they appeared to enter in large, complex structures (V). By 
contrast, HRP was also found in early autophagic vacuoles containing 
morphologically intact cytoplasm (V). Figures such as 4D-F in V suggest 
that HRP may be transported in small vesicles or tubules (50-150 nm in 
diameter). These vesicular-tubular profiles most likely belong to the PLC 
which consists of reticular and vacuolar regions (Griffiths et al. 1988). 
Therefore, it is possible that the first lysosomal enzymes and MPRs are 
transported to autophagic vacuoles in small PLC-derived vesicles or 
tubules which are reached by HRP but not by the less sensitive markers 
CF and BSA-gold. Later autophagic vacuoles may arise by fusion with 
the larger vacuolar parts of the PLC). This fusion would form more com­
plex structures containing internal membranes. The final degradation of 
the cytoplasmic material may occur in these complex structures, or the 
material may be transported to lysosomes for degradation. 

Tooze et al. (1990) reported that in exocrine pancreas early au­
tophagic vacuoles first received endocytosed HRP which was proposed 
to originate from the endocytic route immediately after early endosomes. 
The vacuoles then received lysosomal cathepsins and MPR. Gordon et 
al. (1992) reported that in isolated rat hepatocytes, the fluid-phase endo­
cytic markers entered autophagic vacuoles before the degradation of cy­
toplasmic material began. Taken together, the fluid-phase endocytic 
route seems to fuse with autophagic vacuoles before the bulk of lysoso­
mal enzymes is delivered from the PLC (V, Tooze et al. 1990). In hepato­
cytes, in contrast, the bulk of lysosomal enzymes seems to be delivered by 
fusion with mature lysosomes (Lawrence & Brown 1992). However, the 
first proteolytic enzymes and MPRs are probably delivered to autophagic 
vacuoles earlier in fibroblasts (IV, V) than in exocrine pancreas and liver. 
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6.5 Acidification and cathepsin L delivery to autophagic 
vacuoles in fibroblasts 

In early autophagic vacuoles, the occurrence of cathepsin L and MPR 
were dependent on the presence of DAMP (IV, Table 1, G-test of indepen­
dence). Furthermore, the proportions of vacuoles positive for cathepsin L 
(39-44%) and DAMP (42%) were equal. This suggests that in fibroblasts, 
acidification begins simultaneously with the delivery of the enzyme. In 
guinea pig pancreas, DAMP accumulation began and acid phosphatase 
activity appeared prior to the delivery of cathepsins D and B (Tooze et al. 
1990). And further, in rat liver, DAMP accumulation was extensive before 
the delivery of cathepsin L (Dunn 1990b). 

In the present study (IV), the inhibition of acidification by mon­
ensin treatment was not able to prevent the delivery of cathepsin Lor 
MPR to autophagosomes. Monensin at a concentration of 10 µM has 
been shown to raise the pH of acidic organelles in one minute 
(Yamashiro & Maxfield 1987). Therefore, since autophagy was induced 
in the presence of the drug, it is unlikely that any enzymes could have 
been delivered to early autophagic vacuoles before the drug had raised 
the pH. The result thus suggests that acidification is not an obligatory 
step before the delivery of lysosomal enzymes to autophagosomes in fi­
broblasts. FIGURE 3 presents a summary of the autophagic pathway in 
fibroblasts. 
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FIGURE 3. Schematic summary of autophagy in rat fibroblasts. Autophago­
somes are formed by membranes which contain no lysosomal enzymes. The 
first lysosomal enzymes and proton pumps may be delivered from the reticular 
parts of the PLC. Later, the autophagic vacuoles deliver their contents to vacuo­
lar parts of the PLC. The term 'autolysosome' is omitted since 'lysosomes' are 
defined to be MPR-negative (Kornfeld & Mellman 1989). The cytoplasmic mate­
rial may be degraded in the PLC, or be transported to lysosomes for degradation. 
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The maturation of autophagic vacuoles was studied with electron micro­
scopical methods in Ehrlich ascites cells, mouse hepatocytes and rat fi­
broblasts. The results show the following. 

1. In Ehrlich ascites cells and mouse hepatocytes, the membranes
of nascent autophagic vacuoles contained little cholesterol, whereas the 
membranes of older, double- and single-membrane limited vacuoles 
were cholesterol-rich (I, II). The membranes of mouse-liver lysosomes 
were also rich in cholesterol, whereas those of residual bodies in Ehrlich 
ascites cells were not. The additional cholesterol in the membranes of 
later autophagic vacuoles may be derived from cholesterol-rich lyso­
somes or other vesicles fusing with the vacuoles. 

2. The density of membrane proteins (intramembrane particles)
on the membranes of nascent autophagic vacuoles was high in Ehrlich 
ascites cells and low in mouse hepatocytes (I, II). In both cell types, how­
ever, the density was higher in later vacuoles. Mouse-liver lysosomes 
were very protein-rich. The increase in particle density in autophagic 
vacuoles may be associated with the delivery of lysosomal enzymes, and 
may also be due to the insertion of structural proteins and proton pumps 
into the membrane. 

3. In Ehrlich ascites cells, disruption of microtubules by vinblastine
caused an accumulation of later autophagic vacuoles (III). Hence, vin­
blastine did not prevent the entry of lysosomal enzymes into autophago­
somes. Thus, the accumulation must have been caused by retarded 
degradation in the later vacuoles. Since the segregation inhibitors Leu 
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and His could not prevent the vinblastine-induced accumulation of au­
tophagic vacuoles, vinblastine also stimulated the formation of new au­
tophagosomes. However, 3-methyladenine inhibited autophagic segre­
gation by a vinblastine-resistant mechanism. 

4. Cathepsin L was delivered together with MPR into au­
tophagosomes in rat fibroblasts (IV). Inhibitor studies with tunicamycin 
and chloroquine showed that cathepsin L was not transported by MPRs 
directly from the trans-Golgi network (V). Experiments with endocytic 
markers showed that autophagic vacuoles fused with the PLC (V). The 
results thus suggest that cathepsin Land MPR are transported to au­
tophagosomes from the PLC. 

5. Autophagic vacuoles were acidified simultaneously as they ac­
quired cathepsin Land MPR in fibroblasts (IV) . Inhibition of acidification 
did not prevent the delivery of cathepsin L. This suggests that the enzyme 
and proton pump both originate from the PLC, and that acidification is 
not obligatory for enzyme delivery. 
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Yhteenveto 

Hienorakennetutkimus solujen autofagosytoosista. 
Kalvojen rakenne ja entsyymikuljetuksen reitti 

Pääosa solun organellien ja sytoplasman rakenneosien hajotuksesta 
tapahtuu autofagosytoosin välityksellä. Autofagisen hajotuksen nopeus 
kuuluu tekijöihin, joilla solut säätelevät kasvunopeuttaan. Autofagisen 
vakuolin muodostuessa litistynyt kalvopussi kiertyy rakkulaksi ja sulkee 
sisäänsä osan sytoplasmaa. Näin muodostuu kaksoiskalvon ympäröimä 
rakkula. Tähän rakkulaan kuljetetaan lysosomaalisia hajottavia entsyy­
mejä, ja sen sisältö hajoaa pieniksi molekyyleiksi, jotka voidaan kuljettaa 
takaisin sytoplasmaan. Tässä tutkimuksessa selvitettiin autofagisten 
vakuolien kypsymiseen liittyviä tapahtumia Ehrlich ascites-soluissa, hii­
ren maksassa sekä viljellyissä rotan fibroblasteissa. Tärkeimmät tulokset 
olivat seuraavat. 

1. Vastamuodostuneiden autofagisten vakuolien kalvot sisälsivät
vähän kolesterolia sekä Ehrlich ascites -soluissa että hiiren maksasoluis­
sa. Vakuolien kypsyessä kalvojen kolesterolipitoisuus kuitenkin kasvoi. 
Hiiren maksasolujen lysosomien kalvoissa oli myös paljon kolesterolia. 
Autofagisten vakuolien kalvot voivat saada kolesterolia vakuoleihin 
yhtyvien lysosomaalisten vesikkeleiden kalvoista. 

2. Autofagisten vakuolien kalvoissa oli paljon proteiineja (kalvo­
partikkeleita) Ehrlich ascites -soluissa, kun taas hiiren maksasolujen 
vakuolien kalvoissa oli hyvin vähän kalvopartikkeleita. Molemmissa so­
lutyypeissä proteiinien määrä kuitenkin kasvoi vakuolien kypsyessä. 
Hiiren maksan lysosomien kalvoissa oli myös paljon proteiineja. Auto­
fagisten vakuolien kalvojen proteiinilisäys saattaa liittyä lysosomaalis­
ten entsyymien kuljetukseen: kaivoihin kuljetetaan lysosomaalisia kalvo­
proteiineja ja protonipumppuja. 

3. Mikrotubulusten hajottaminen vinblastiinilla aiheutti osittain
hajonnutta sytoplasman materiaalia sisältävien autofagisten vakuolien 
kerääntymisen Ehrlich ascites -soluihin. Varhaisvaiheisten vakuolien 
määrä ei lisääntynyt. Tämä osoittaa, että mikrotubulusten puuttuminen 
ei estänyt lysosomaalisten entsyymien kuljetusta vakuoleihin. V akuolien 
kerääntyminen johtui ilmeisesti entsyymien toiminnan viivästymisestä; 
mahdollisesti jonkin hajotuksessa tarvittavan tekijän kuljetus estyi. 
Leusiini ja histidiini (jotka estävät autofagisten vakuolien muodostu­
misen) eivät kyenneet estämään vinblastiinin aiheuttamaa vakuolien 
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kertymistä. Tämä viittaa siihen, että vinblastiini myös indusoi uusien 
vakuolien muodostumista. 3-metyyliadeniini kuitenkin esti uusien 
vakuolien muodostumisen myös vinblastiinin läsnäollessa. 

4. Huomattava osa katepsiini L:stä (lysosomaalinen entsyymi)
kuljetettiin autofagisiin vakuoleihin samanaikaisesti mannoosi-6-fos­
faattireseptorin (MPR) kanssa rotan fibroblasteissa. Inhibiittorikokeet 
tunikamysiinillä ja klorokiinilla kuitenkin osoittivat, että katepsiini L:ää 
ei kuljetettu suoraan trans-Golgista autofagisiin vakuoleihin. Endo­
sytoosimerkkiaineiden avulla voitiin osoittaa, että autofagiset vakuolit 
yhtyivät myöhäisten endosomien kanssa. Tulokset viittaavat siihen, että 
suuri osa katepsiini L:stä kuljetetaan autofagisiin vakuoleihin myöhäi­
sistä endosomeista. 

5. Autofagiset vakuolit muuttuivat happamiksi samanaikaisesti
kun niihin kuljetettiin katepsiini L ja MPR rotan fibroblasteissa. 
Entsyymin kuljetus ei estynyt vaikka pH:n lasku estettiin monensiinilla. 
Tämä viittaa siihen, että sekä entsyymi että protonipumppu tulevat 
myöhäisistä endosomeista ja että pH:n lasku ei ole entsyymin kuljetuksen 
edellytys. 
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