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Preface 

The origin of this presentation is optimization - searching for the optimal solution, 
selection and decision. Optimization problems occur, for example, in everyday life 
when buying things (like a house or a television) or selecting a means of transport to 
work, in engineering when designing focussing systems, spacecraft structures, bridges, 
robots, or camera lenses, in economics when planning production systems or pricing 
products, and in environmental control when managing pollution problems. What 
is common in most of those optimization problems is that they have several at least 
partly conflicting criteria to be taken into consideration at the same time. A number of 
different goals are desired to attain simultaneously. In this case, methods of traditional 
(single objective) optimization are not enough, but we need new ways of thinking, 
new concepts, and new methods. 

A general term in this presentation for problems with multiple criteria is multiple 

criteria optimization problems. They can be divided into two distinct parts according 
to [MacCrimmon, 1973]. The classes are called multiattribute decision analysis and 
multiobjective optimization, according to the properties of the feasible region. In mul­

tiattribute decision analysis the set of feasible alternatives is discrete, predetermined 
and finite. Specific and current examples of multiattribute problems are the selection 
of the locations of power plants and dumping places. In multiobjective optimization 

problems the feasible alternatives are not explicitly known in advance. There are an 
infinite number of them and they are represented by decision variables restricted by 
constraint functions. These problems can be called continuous. In this case, one has 
to generate the alternatives before they can be valuated. A short collection of history, 
basic ideas and references handling both of the classes has been gathered in [Dyer, 
Fishburn, Steuer, Wallenius, Zionts, 1992]. 

We have devoted this presentation solely to multiobjective optimization. The field 
of multiple criteria optimization is so extensive that there is a reason to restrict the 
handling. As far as multiattribute decision analysis is concerned we refer to the 
monographs [Keeney, Raiffa, 1976] and [Hwang, Yoon, 1981]. More references with 
seventeen major methods in the area with simple examples can be found in the latter 
monograph. A review of research in multiobjective optimization and multiattribute 
decision analysis, problems and future directions has been collected in the paper 
[Korhonen, Moskowitz, Wallenius, 1992]. It contains short descriptions of many con­
cepts and areas of multiple criteria optimization and decision making, which are not 
included in this presentation. 

A large number of application areas of multiobjective optimization have been pre­
sented in the literature. A good conception of the possibilities and the importance of 
multiobjective optimization can be comprehended from the fact that over 500 papers 
describing different applications have been listed in [White, 1990] (from the peri­
od 1955-1986). They cover, for example, problems of agriculture, banking, health 
service, energy, industry, water and wildlife. 

Even though we have restricted ourselves to handling only multiobjective optimiza­
tion problems, it is still a wide research area and we must further cut off several topics. 
Such special types of multiobjective optimization problems are those where the feasi­
ble decision variables must have integer values (multiple criteria integer programming) 
or 0-1 values, trajectory optimization problems (where the multiple criteria have mul­
tiple observation points), multiple criteria networks ( e.g., best path problems, where 
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several parameters, such as, cost and distance, are attached to each arc), multiple cri­
teria transportation networks (handled in [Current, Min, 1986] and [Current, Marsh, 
1993]) and multiple criteria dynamic programming (treated in [Li, Haimes, 1989]). 

One more topic not handled here are problems where there are uncertainties in­
volved. They can be divided into stochastic and fuzzy problems. In stochastic pro­
gramming it is usually assumed that uncertainty is due to a lack of information about 
prevailing states and that this uncertainty only concerns the occurrence of states and 
not the definition of states, results, or criteria themselves. A problem containing 
random variables on some probability space as coefficients is called a stochastic pro­
gramming problem (handled, e.g., in the monographs [Stancu-Minasian, 1984] and 
[Guddat, Guerra Vasquez, Tammer, Wendler, 1985]). When decision making takes 
place in an environment in which the goals, constraints, and consequences of pos­
sible actions are not precisely known, it is called "decision in fuzzy environments" 
(handled, e.g., in [Kacprzyk, Orlovski, 1987]). We assume here that the problems are 
deterministic, that is, the outcome of any feasible decision vector is known for certain. 

The aim of this presentation has been twofold. The first of the basic objectives has 
been to provide an extensive, up-to-date, self-contained and consistent survey and 
review of the literature and the state-of-the-art around multiobjective optimization. 
The second aim has been to create new methodology for nondifferentiable multiobjec­
tive optimization. Moreover, we propose a new way to solve certain state-constrained 
problems of optimal control. By applying the new algorithms, improved solutions are 
obtained for them. 

The amount of the literature on multiobjective optimization is immense. In addition 
to several monographs, a lot of journal papers and conference proceedings have been 
published. The most important source when searching for them has been the Math­
Sci Disc database on CD-ROM. For practical reasons the searches have been limited 
to include English material and the main interest has been in publications after the 
year 1980. Almost 1000 papers and monographs have been examined while prepar­
ing this presentation. About half of them are cited and listed in the bibliography. 
The monographs [Cohon, 1978], [Hwang, Masud, 1979], [Chankong, Haimes, 1983(b )], 
[Osyczka, 1984], [Sawaragi, Nakayama, Tanino, 1985], [Yu, 1985] and [Steuer, 1986] 
have given a general basis for this presentation and they provide an extensive view 
on the area of multiobjective optimization. Further, noteworthy monographs on the 
topic are [Rietveld, 1980], [Zeleny, 1982] and [Vinr.ke, Hl�2]. A signifkant. part. of the 
latter reference deals with multiattribute decision analysis, though. The monograph 
[Ringuest, 1992] mostly treats behavioural aspects of multiobjective optimization. 
Tl1e n1unugravh:; [Jahu, 198G(a)] auJ [Luc, 1989] handle theoretical aspects exten­
sively. 

Theory and methods for multiobjective optimization have mainly been developed 
during the last three decades. Here we do not go deeply into the history as the 
origin and the achievements of this research field from 1776 to 1960 have been widely 
handled in [Stadler, 1979]. 

At the beginning of this presentation, important concepts and definitions of mul­
tiobjective optimization are put forward. In addition, several theoretical aspects 
are handled. For example, analogous optimality conditions for differentiable and 
nondifferentiable problems are considered. The whole presentation through we keep 
to problems involving only finite-dimensional Euclidean spaces. In [Dauer, Stadler, 
1986], there is a survey on multiobjective optimization in infinite-dimensional spaces. 

The state-of-the-art of the method development is portrayed by describing a number 
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of different methods and introducing their good and weak properties with references 
to extensions and applications. The methods are classified into four classes according 
to the role of a (single) decision maker in the solution process. The class of interactive 
methods contains most methods and it is handled most extensively. The basic em­
phasis when selecting methods to be included has been in nonlinear problems. Only 
such linear methods have made the exception that contain some.specially interesting 
ideas or have played an important role in the method development in general. In 
connection with every method described, some comments of the author have been 
collected under the title "concluding remarks". 

Despite the fact that only multiobjective optimization problems are handled, it 
does not mean that some of the method types presented were not applicable to mul­
tiattribute decision analysis. Nevertheless, most of the methods have been designed 
only for either of the problem types exploiting certain special characters. 

In addition to describing solution methods, we introduce some existing software 
packages. Compared with the great amount of methods, there are only relatively few 
implementations widely known and available. Only such programs that have been 
available to the author for testing are presented. Some practical experiences of each 
software package are collected at the end of its description. Some of the programs 
included are capable of solving only linear multiobjective optimization problems. 

As computers and monitors have developed, the graphical illustration has increased 
in importance and has also become easier to realize. Here we gather some ways of 
graphical illustration and some matters to be taken into consideration. 

There are a number of complex problems in the area of optimal control that have 
been widely solved and treated in different connections at the University of Jyviiskyla. 
They contain nondifferentiable functions and are of multiob jective nature. Originally, 
they were solved (e.g., in [Haslinger, Neittaanmaki, 1988] and [Laitinen, 1989]) by 
first scalarizing the multiple objective functions into one by some simple method (like 
summing up all the functions) and then regularizing the nondifferentiabilities into a 
differentiable form. After discretization, the problems could be solved by traditional, 
differentiable single objective optimization methods. However, both scalarization and 
regularization simplify the problem and cause errors in the models. 

The first step in trying to make the treatment more accurate was to leave the regu­
larization and employ nondifferentiable analysis and nondifferentiable methods. Such 
treatment has been presented, for example, in [Makela, 1990], [Makela, Neittaanmaki, 
1992] and [Neittaanmaki, Tiba, 1994]. Anyway, the scalarization still remained. In 
the scalarization, the relative importances of the criteria are not usually known in ad­
vance and the method of summing up the criteria is artificial. As some of the criteria 
originate from technological constraints, the summing may bring about inaccuracies 
and the solution may be irrelevant in a technological sense. For this reason, it is 
important to use interactive methods, where the user can direct the solution process 
into a desirable direction. 

The reason for not treating the problems as multiobjective optimization problems 
earlier was the small number of suitable methods capable of handling nondifferentiable 
functions. This impression was confirmed while examining the literature. It turned 
out that nondifferentiable multiobjective optimization problems have thus far been 
treated relatively little and there is still room for new methods. 

After this reasoning it was logical that the efforts of creating new multiobjective 
methods and thus fulfilling the second aim of this presentation directed towards non­
differentiable problems. We introduce here two new interactive multiobjective opti-
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mization methods, called subgradient GDF method and NIMBUS method, applica­
ble also to nondifferentiable problems. These two methods are very different. Even 
the starting points in their development have been different. The subgradient GDF 
method is based on an existing method for differentiable problems, whereas the NIM­

BUS method has been founded on an approach of nondifferentiable calculus with 

special interest in the easiness of use. We illustrate the methods by some numerical 
examples. Finally, we consider and solve two optimal control problems involving mul­

Liµle uornliffereuLiaLle oLjedive functions, namely a model of an elastic string and a 
process of continuous casting of steel. 

After presenting a set of different solution methods, some comparison is in or­
der. Naturally, no absolute order of superiority can be given but some points can be 

brought up. We present brief summaries of some comparisons available in the litera­
ture. Moreover, we handle the important question of selecting a method. In addition 
to considering some significant factors, we present a decision tree for aiding in the 

selection. The tree contains some basic assumptions of the methods with different 

ways of exchanging information between the method and its user. Also a table on 
a subjective basis comparing some features of the interactive methods described is 
presented. 

The aim has been to collect a consistent and self-contained presentation of multiob­

jective optimization starting from some basic results and moving ahead towards the 
challenges of the future. Even many simple theorems are proved for the convenience 
of the reader and to lay firm cornerstones for the continuation. However, to keep the 
text at a reasonable length, some of the proofs have been omitted, but appropriate 
references in the literature are indicated. 

The contents of this thesis have been arranged as follows. The basic concepts and 
notations of multiobjective optimization are presented in Chapter 1. Some related 
theorems are stated and optimality conditions are considered. A solid, conceptual ba­
sis for the continuation is created. Chapter 2 introduces some theoretical background 
and several solution methods. The methods are divided into four classes according to 
the role of the decision maker. Some of the methods are depicted in more detail , some 
in general outline and some just mentioned. Appropriate references to the literature 
are always pointed out. Some comments on the methods described are collected as 

concluding remarks. At the end of the chapter two new methods, the subgradient 
GDF method and the NIMBUS method, are introduced. 

Some computer implementations are reported in Chapter 3. Practical experiences 
with each software package are also given. Chapter 4 is devoted to graphical illustra­
tion. Potentialities and restrictions of graphics are handled and some clarifying figures 
are enclosed. Comparison of the methods is the topic of Chapter 5. Summaries of 
some published comparisons are stated and some outlines for selecting an appropriate 
method are suggested. Also a tree diagram containing all the methods that have been 
described in some detail in this presentation is announced. The chapter ends with a 
comparative table of the interactive methods handled. 

Results on numerical test examples of the subgradient GDF and the NIMBUS 
method are depicted in Chapter 6. Two optimal control problems are the topic of 
Chapter 7. First, they are briefly introduced with references to a more thorough 
treatment. Then the solution processes by the subgradient GDF method and the 
NIMBUS method are presented. Future directions are charted in Chapter 8, and 
finally, some conclusions are drawn in Chapter 9. 
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Notation and Symbols 

Rn n-dimensional Euclidean space
s feasible region page 1 
X decision vector page 1 
f; objective function page 1 
k number of objective functions page 1 
f vector of objective functions page 1 
z feasible criterion region page 1 
z criterion vector page 1 
llxll Euclidean norm page 2 
dist(x, E) Euclidean distance function page 2 
B(x, 8) open ball page 2 
conv E convex hull of set E page 2 
int E interior of set E
v' fi(x) gradient of fi at x page 3 
d J;(x) partial derivative of fi subject to x; page 3 d Xi 

ordering cone page 5 
z reference point page 7 
u value function Definition 1.4.1 
z* ideal criterion vector Definition 1.5.1 
znad nadir point page 9 
>.;j trade-off rate Definition 1.7.3 
ffiij marginal rate of substitution Definition 1.7.4 
8f1(x) subdifferential of fi at x Definition 1.11.3 
� subgradient Definition 1.11.3 
v'xU(f(x*)) gradient of U with respect to x at f(x*) 
8x U(f(x*)) subdifferential of U with respect to x at f(x*) 
p number of alternative criterion vectors 
z** utopian vector page 87 
Sz achievement (scalarizing) function page 94 
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1. Concepts and Theoretical Considerations

We begin by laying a conceptual and theoretical basis for the presentation. First, 
we present the deterministic, continuous problem formulation and some general nota­
tions. Then we introduce several concepts and definitions of multiobjective optimiza­
tion as well as their interconnections. The concepts and terms used in the literature 
around multiobjective optimization have not completely been fixed. The terminology 
in this presentation is just a part and partly slightly different from the prevailing 
terminology. In some cases, only one of the existing consistent terms is employed. 
Somewhat different definitions for concepts are presented, for example, in [Zionts, 
1989]. 

To deepen the theoretical basis, we handle optimality conditions for differentiable 
and nondifferentiable multiobjective optimization problems. We also briefly touch the 
topics of sensitivity analysis and stability. 

Throughout the presentation, even some simple results are proved for the conve­
nience of the reader. If the idea of the proof is based on some reference, it is mentioned 
in the context. If some proof can be directly found as such in the literature, it is not 
repeated here. Instead, appropriate references are indicated. This is also in order to 
keep the text at a reasonable length. 

Even though multiobjective optimization methods are presented in the Chapter 2, 
we emphasize as early as now that the methods and the theory of single objective 
optimization are presumed to be known. Multiobjective optimization problems are 
usually solved by scalarization. Scalarization means that the problem is converted 
into a single (scalar) or a family of single objective optimization problems, that is, 
the new problem has a real-valued objective function possibly depending on some 
parameters. After the problem has been scalarized, the widely developed theory and 
methods for single objective optimization can be used. 

1.1. Problem Setting and General Notations 

In this presentation we study a multiobjective optimization problem of the form 

(1.1.1) 
mm1m1ze {fi(x), fz(x), ... , fk(x)}
subject to x E S,

where we have k (� 2) objective functions f;: Rn -+ R. We denote the vector 
of objective functions by f(x) = (fi(x),fz(x), ... ,fk(x)f. The decision variable
vectors x = ( x1, x2, ... , Xn f belong to the ( nonempty) feasible region (set) S, which 
is a subset of the decision variable space R

n
. We do not yet fix the form of the 

constraint functions forming S, but refer to S in general. The word "minimize" means 
that we want to minimize all the objective functions simultaneously. If there is no 
conflict between the objective functions, then a solution can be found in which every 
objective function attains its optimum. In this case, no special methods are needed. 
To avoid such trivial cases we suppose that there does not exist a single solution which 
is optimal with respect to every objective function. This means that the objective 
functions are at least partly conflicting. They may also be noncommensurable. 

1 



In the following, we denote the image of the feasible region by Z (= f(S)). It is a 
subset of the criterion space R k. The elements of Z are called criterion vectors and 
denoted by z = (z1,z2, .. ,,zkf, where z; = f;(x ) for all i = 1, ... ,k are criterion 
values. 

For clarity and simplicity of the treatment we suppose that all the objective func­
tions are to be minimized. If an objective function f; is to be_ maximized, it is 
equivalent to minimize the function -f;. 

First, we present some general concepts and notations. We use bold face arnl 
superscripts for vectors, for example, x1 and subscripts for components of vectors, for 
example, x1. All the vectors here are supposed to be column vectors. For two vectors, 
x and y E Rn, the notation xT 

y denotes their scalar product and the inequality x :S y

means that x; :S Yi for all i = 1, ... , n. 
The Euclidean norm of a vector X E Rn is denoted by llx ll = o=;=l 

x;) 112. The
Euclidean distance function between a point x and a set Eis denoted by dist(x, E) =
infyEE llx - YII- The symbol B(x, 8) denotes an open ball with centre x and radius 
8 > 0, B(x, 8) = {y E Rn I llx - YII < 8}.

The sum :Z:::�=l /3; xi is called a convex combination of the vectors x1
, . . . , xn E E, if 

/3i 2: 0 for all i and :Z:::�=l /3; = 1. A convex hull of a set EC Rn, denoted by conv (E), 
is a set of all the convex combinations of vectors in E. A set E C Rn is a cone if 
/3x EE whenever x E E and /3 2: 0. A negative of a cone is -E = {-x E Rn Ix EE}. 
A cone E is said to be pointed if it satisfies En -E = {O}. 

It is said that d E Rn is a feasible direction emanating from x E E if there exists 
a* > 0 such that x + ad E E for 0 :S a:: :S a*. In some connections, we assume that 
the feasible region S is formed of inequality constraints. An inequality constraint is 
said to be active at some point if it is fulfilled as an equality at that point. 

In the following, we present some types of multiobjective optimization problems. 

Definition 1.1.2. When all the objective and the constraint functions are linear, 
then the multiobjective optimization problem is called linear. In brief, it is an MOLP 
(multiobjective linear programming) problem. 

A large variety of solution techniques have been created so that they take into 
account the special characteristics of the MOLP problems. This presentation concen­
trates on cases where nonlinear functions are included and, thus, methods for non­
linear problems are needed. Methods and details of MOLP problems are mentioned 
only incidentally. (Some pitfalls and misunderstandings in linear multiobjective opti­
mization are presented in [Korhonen, Wallenius, 1989( a )]. Suggestions to avoid them 
are also given.) 

Before we define convex multiobjective optimization problems, we briefly state that 
a function f;: Rn -+ R is convex if for all x1, x2 E Rn is valid that f;(/3x1 + (1 -
/3)x2 ) :S /3fi(x1 ) + (1 - /3)f;(x2 ) for all 0 :S /3 :S 1, and a set S E Rn is convex if 
x

1
, x

2 E S implies that f3x1 
+ (1 - /3)x2 E S for all O :S /3 :S 1. 

Definition 1.1.3. The multiobjective optimization problem is convex if all the ob­
jective functions f; (i = 1, ... , k) and the feasible region S are convex. 

A convex multiobjective optimization problem is an important concept in the con­
tinuation. We shall also need related concepts, quasiconvex and pseudoconvex func­
tions. The pseudoconcavity of a function calls for differentiability. For complete­
ness, we write down the definitions of differentiable and continuously differentiable 
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functions. A function Ji: Rn -, R is differentiable at x* if J;(x* + d) - f;(x*) =
V f;(x*)T d + lldll c:(x*, d), where V Ji(x*) is the gradient of Ji at x* and c:(x*, d)-, 0 
as lldll -, 0. In addition, Ji is continuously differentiable at x* if all of its partial 
derivatives d 1�x*) (j = 1, . .. , n ), that is, all the components of the gradient are 
continuous at x*.

Now we can define quasiconvex and pseudoconvex functions. A function Ji: Rn -, 
R is quasiconvex if Ji(f3x1 +(1-(3)x2 )::; max [Ji(x1 ), f;(x2 )] for all O::; (3 ::;  1 and for 
all x1

, x
2 E Rn. Let f; be differentiable. Then it is pseudoconvex if for all x1

, x
2 E Rn 

such that V J;(x1 f (x2 - x1 ) 2:: 0, we have J;(x2 ) 2:: J;(x1 ).
The definition of convex functions can be modified for concave functions by replac­

ing "::;" by "2:". Correspondingly, the definition of quasiconvex functions becomes 
appropriate for quasiconcave functions by the exchange of "::;" to "2:" and "max" to 
"min". In the definition of pseudoconvex functions we replace "2:" by "::;" to get the 
definition for pseudoconcave functions. Notice that if a function Ji is quasiconcave, 
all of its level sets { x E Rn I Ji ( x) 2: a} are convex. 

An important class of problems in this presentation are also nondifferentiable mul­
tiobjective optimization problems. 

Definition 1.1.4. The multiobjective optimization problem is nondifferentiable if
some of the objective functions J; (i = 1, ... , k) or the constraint functions forming
the feasible region S are nondifferentiable.

Special concepts and properties of nondifferentiable functions are introduced in 
Section 1.11, in the context where nondifferentiability is handled. 

1.2. Pareto Optimality and Efficiency 

In this section, we handle a crucial concept in optimization, namely optimality. Be­
cause of the conflictness and possible noncommensurability of the objective functions, 
it is not possible to find a single solution that would be optimal to all the objectives 
simultaneously. Multiobjective optimization problems are in a sense ill-defined. There 
is no natural ordering in the criterion space because it is only partially ordered (mean­
ing that, for example, (1, 1 f can be said to be less than (3, 3f, but how to compare 
(1, 3f and (3, 1 f ). This is always true when vectors are compared in real spaces 
(see also [Chankong, Haimes, 1983(b)], pp. 65-67). 

Anyway, a part of the criterion vectors can be extracted for examination. Such 
vectors are those in which none of the components can be improved without deteri­
orating at least one of the other components. In 1881, F. Edgeworth presented this 
definition in [Edgeworth, 1987]. However, the definition is called Pareto optimality 
after a French-Italian (welfare) economist Vilfredo Pareto ([Pareto, 1964, 1971]), who 
in 1896 developed it further. (In [Stadler, 1988(a)], the term Edgeworth-Pareto opti­
mality is used for the above-mentioned reason.) T. C. Koopmans was one of the first 
to employ the concept of Pareto optimality in [Koopmans, 1971] in 1951. A more 
formal definition of Pareto optimality is the following. 

Definition 1.2.1. A decision vector x* E S is Pareto optimal if there does not
exist another decision vector x E S such that f;(x) ::; fi(x*) for all i = 1, . . .  , k and 
fi(x) < fi(x*) for at least one objective function Ji. 
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A criterion vector z* E Z is Pareto optimal if there does not exist another criterion 
vector z E Z such that z; '.S z; for all i = 1, ... , k and Zj < zJ for at least one com­
ponent Zj; or equivalently, z* is Pareto optimal if the decision vector corresponding 
to it is Pareto optimal. 

In the example of Figure 1, a feasible region S C R3 and its· image, a feasible 
criterion region Z C R2

, are illustrated. The fat line contains all the Pareto optimal 
criterion vectors. The vector z* is an example of them. 

� 

Figure 1. The sets S and Z and the Pareto optimal criterion vectors. 

In addition to Pareto optimality, several other terms are sometimes used for the 
optimality concept described above. These terms are, for example, noninferiority, 
efficiency and nondominance. Differing from this practice, a more general meaning is 
given to efficiency later. In this presentation, Pareto optimality is used in general as 
a concept of optimality, unless stated otherwise. 

Definition 1.2.1 introduces a so-called global Pareto optimality. Another important 
concept is a so-called local Pareto optimality. 

Definition 1.2.2. A decision vector x* E S is a locally Pareto optimal solution if 
there exists 8 > 0 such that x* is Pareto optimal in Sn B(x*, 8). 

Naturally, any globally Pareto optimal solution is locally Pareto optimal. In the 
following, we show that in convex multiobjective optimization problems any locally 
Pareto optimal solution is also globally Pareto optimal. (This result has been handled 
also, e.g., in [Censor, 1977].) 

Theorem 1.2.3. Let the multiobjective optimization problem be convex. Then 
every locally Pareto optimal solution is also globally Pareto optimal. 

Proof. Let x* E S be locally Pareto optimal. Thus there exist some 8 > 0 and 
a neighbourhood B(x*, 8) of x* such that there is no x E Sn B(x*, 8) for which 
f;(x) '.S f;(x*) for all i = 1, ... , k and for at least one index j is fi(x) < fi(x*). 

Let us assume that x* is not globally Pareto optimal. In this case, there exists 
some other point x0 E S such that 

(1.2.4) f;(x0 ) '.S f;(x*) for all i = 1, ... , k and fi(x0 ) < fi(x*) for some j. 
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Let us define x = {3x0 

+ (1- {J)x*, where O < /3 < 1 is selected such that x E B(x*, 5). 
The convexity of S implies that x E S.

By the convexity of the objective functions and employing (1.2.4), we obtain fi(x) ::; 
/3f;(x0) + (1 - /3)f;(x*)::; {Jf;(x*) + (1- {J)fi(x*) = fi(x*) for every i. Because x* is 
locally Pareto optimal and x E B(x*,5), it has to be fi(x) = fi(x*) for all i. 

On the other hand, f;(x*) :S /3f;(x0) + (1 - {J)fi(x*) for ever-y i. Because f3 > 0, 
we can divide by it and obtain fi(x*) :S f;(x0) for all i. According to the assumption 
(1.2.4), we have i}(x*) > i}(x0 ) for some j. Here we have a contradiction. Thus, x* 
is globally Pareto optimal. I 

For briefness, we shall usually speak only about Pareto optimality in the sequel. 
In practice we, however, have computationally available only locally Pareto optimal 
solutions unless some additional requirement, such as convexity, is fulfilled. 

It is also possible to define optimality in a multiobjective context in more general 
ways. Let us have a pointed convex cone D defined in R k. This cone D is called 
an ordering cone and it is used to induce a partial ordering on Z. Let us have two 
criterion vectors, z1 and z2 E Z. A criterion vector z1 dominates z2

, that is, z1 ::;D z2 

if z2 
- z1 ED and z1 #- z2

, that is, z2 
- z1 ED\ {O}. The same can also be put as 

z2 E z1 
+ D and z1 #- z2

, that is, z2 E z1 
+ D \ {O} as illustrated in Figure 2 . 

• 2
z 

Figure 2. Domination property induced by a cone D. 

Now we can present the following definition of optimality which is alternative to 
the previous ones. When some ordering cone is used in defining the optimality, then 
the term efficiency is used in this presentation. 

Definition 1.2.5. Let D be a pointed convex cone. A decision vector x* E S is 
efficient (with respect to D) if there does not exist another decision vector X E s 
such that f(x) '.SD f(x*). 

A criterion vector z* E Z is efficient if there does not exist another criterion vector 
z E Z such that z '.SD z*. 

This definition means that a vector is efficient (nondominated) if it is not dominated 
by any other feasible vector. The definition above can be formulated in many ways. 
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For short, we present alternative forms of Definition 1.2.5 only for its latter part. If 
we substitute �D for its definition, we have: A criterion vector z* E Z is efficient 
if there does not exist another criterion vector z E Z such that O -=J z* - z E D or 
z* - z ED\ {O} (see [Corley, 1980] or [Yu, 1985]). 

Other equivalent formulations are, for instance, z* E Z is efficient if (Z - z*) n
(-D) = {O} (see [Weidner, 1988] and [Pascoletti, Serafini, 1984]), if (z* - .D) n Z = 0, 
where D = D \ {O} (see [Wierzbicki, 1986(b)] and [Tapia, Murtagh, 1989]), or if 
(z* - D) n Z = z* (see [Chen, 1984] and [Jahn, 1987]). 

Different notions of efficiency have been gathered in [Ester, Troltzsch, 1986). Several 
auxiliary problems are there provided to obtain efficient solutions. 

Remark. The above definitions are equivalent to Pareto optimality if D = Ri (see 
Figure 1). 

When Pareto optimality (or efficiency) is defined with the help of ordering cones, 
it is trivial to verify that Pareto optimal ( and efficient) criterion vectors always lie on 
the boundary of the feasible criterion region Z. 

Instead of a cone D, which is constant for all criterion vectors, we can use a point­
to-set map D from Z into R k to represent the domination structure. This convex 
cone D(z) is dependent on the current criterion vector. For details of ordering cones, 
see [Yu, 1974] and [Sawaragi, Nakayama, Tanino, 1985]. 

In the following, we mostly settle for handling Pareto optimality. Some extensions 
related to efficiency are only mentioned. 

1.3. Decision Maker 

There are usually a lot (infinite number) of Pareto optimal ( or efficient) solutions. 
We can speak about a set of Pareto optimal solutions or a Pareto optimal set. This set 
can be nonconvex and nonconnected. Mathematically, every Pareto optimal solution 
is equally good to be a solution of the multiobjective optimization problem. However, 
it is generally desirable to obtain just one vector as a solution. Selecting one vector 
out of the set of Pareto optimal solutions needs information that is not contained in 
the objective functions. This is why - compared with single objective optimization -
a new element is added in multiobjective optimization. 

We need a decision maker to make the selection. The decision maker is a person ( or 
a group of persons) who is supposed to have better insight into the problem and who 
can express preference relations between different solutions. Usually, the decision 
maker is responsible for the final solution. Solving a multiobjective optimization 
problem calls for the cooperation of the decision maker and an analyst. By an analyst
we here mean a person or a computer program responsible for the mathematical side 
of the solution process. The analyst generates information for the decision maker 
to consider and the solution is selected according to the preferences of the decision 
maker. 

In this presentation, it is assumed that we have a single decision maker or a unani­
mous group of decision makers. In Chapter 2, solution methods are classified accord­
ing to the role of the decision maker in the solution process. In some methods, various 
assumptions are made concerning the preference structure and behaviour of the de­
cision maker. Generally, group decision making calls for negotiations and specific 
methods (see, for example, [Yu, 1973) and [Keeney, Raiffa, 1976]). 
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Various kinds of information is asked from the decision maker. Among such infor­
mation may be, for example, desirable or acceptable levels in the values of the ob­
jective functions, which are called aspiration levels. The point in the criterion space 
consisting of aspiration levels is called a reference point and denoted by z. These 
criterion values (allowed to be feasible or not) are of special interest and importance 
to the decision maker. 

By solving a multiobjective optimization problem we here mean finding a feasible 
decision vector such that it is Pareto optimal and satisfies the needs and requirements 
of the decision maker. Such a solution is called a final solution. 

This presentation does not concentrate on the problems of decision making, which 
is a research area of its own. Interesting topics in this area are, for instance, deci­
sion making with incomplete information and habitual domains. The first-mentioned 
matter is handled in [Weber, 1987]. Reasons for incomplete information are, for ex­
ample, lack of knowledge, time pressure and fear of commitment. A habitual domain 
is defined in [Yu, 1991] as a set of ways of thinking, judging, and responding, as well 
as knowledge and experience on which they are based. Yu stresses that in order to 
make effective decisions it is important to expand and enrich the habitual domains of 
the decision makers. Several ways of carrying this out are presented in the reference. 

1.4. Value Function 

It is usually assumed that the decision maker makes decisions based on some kind 
of an underlying function. This function is called a value function. 

Definition 1.4.1. A function U: Rk -+ R representing the preferences of the 
decision maker among the criterion vectors is called a value function. 

Let z
1 and z2 E Z be two different criterion vectors. If U(z1 ) > U(z2 ), then the 

decision maker prefers z1 to z2 . If U(z1 ) = U(z2), then the decision maker finds the 
criterion vectors equally desirable, that is, they are indifferent. 

It must be pointed out that the value function is totally a decision maker-dependent 
concept. Different decision makers may have different value functions for the same 
problem. Sometimes the term "utility function" is used instead of the value function. 
Here we follow the common way of speaking about value functions in deterministic 
problems. The term "utility function" is reserved for stochastic problems ( which are 
not included in this presentation). See [Keeney, Raiffa, 1976] for more discussion 
about both of the terms. 

If we had at our disposal the mathematical expression of the decision maker's value 
function, the multiobjective optimization problem would be simple to solve. The value 
function would just be maximized by some method of single objective optimization. 
The value function would offer a total (complete) ordering of the criterion vectors. 
However, there are several reasons why this seemingly easy way is not generally used 
in practice. The most important reason is that it is extremely difficult, if not im­
possible, for a decision maker to specify mathematically the function behind her or 
his preferences. Secondly, even if the function were known, it could be difficult to 
optimize because of its possible complicated nature. An example of such situations is 
the nonconcavity of the value function. In this case, only a local maximum may be 
found instead of a global one. In addition, it is reminded in [Steuer, Gardiner, 1991] 
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that it is not necessarily only positive that optimizing the value function results in 
a single solution. After specifying the value function, the decision maker may have 
doubts about its validity. This is why (s)he may want to explore different alternatives 
before selecting the final solution. 

Even though value functions are seldom explicitly used in solving multiobjective 
optimization problems, they are very important in the development of solution meth­
ods and as a theoretical background. In many multiobjective optimization methods, 
the value function is supposed to be known implicitly and the decision maker is sup­
posed to make selections on its basis. In several methods, convergence results are 
obtained by setting some assumptions, for example, quasiconcavity on the implicit 
value function. 

Usually, the value function is assumed to be monotonically ( componentwise) de­
creasing. It means that the preference of the decision maker does not decrease if the 
value of some objective function decreases while all the other objective values remain 
unchanged (i.e., less is preferred to more). This assumption is justified in [Rosenthal, 
1985] by stressing that "Clearly, under the monotonicity assumption a rational deci­
sion maker would never deliberately select a dominated point. This is probably the 
only important statement in multiobjective optimization that can be made without 
the possibility of generating some disagreement." 

However, there are exceptions to this situation. Rosenthal mentions as an (maxi­
mization) example the deer population, where more deer are usually preferred to fewer 
for aesthetic and recreational reasons, but not in the case when the deer population 
is large enough to remove all the forest undergrowth. 

A fact to keep in mind is that a monotone (value) function may be nonconcave. It 
is illustrated, for instance, in [Steuer, 1986], pp. 154-155. 

The following theorem presents an important result about the solutions of compo­
nentwise decreasing value functions. 

Theorem 1.4.2. Let the value function U: Rk 
-t R be componentwise decreasing. 

Let U attain its maximum at z* E Z. Then z* is Pareto optimal. 

Proof. Let z* E Z be a maximal solution of a componentwise decreasing value 
function U. Let us assume that z* is not Pareto optimal. Then there exists a criterion 
vector z E Z such that Zi ::; zt for all i = 1, . . .  , k and Zj < zJ for at least one index 
j. Because U is componentwise decreasing, we have U(z) > U(z*). Thus U does not
attain its maximum at z*. This contradiction implies that z* is Pareto optimal. I

Theorem 1.4.2 gives a relationship between Pareto optimal solutions and value func­
tions. To have an impression about the relationship between efficient solutions and 
value functions let us consider a pseudoconcave value function U. Pseudoconcavity 
means that whenever VU(z1 f (z2 - z1 ) ::; 0, we have U(z2 ) ::; U(z1 ). Now we can 
define an ordering cone as a map D( z) = { d E R k I VU ( z f d ::; 0}. This ordering 
cone can be used to determine efficient solutions. Notice that if we have a value func­
tion, we can derive its domination structure, but not generally in reverse. See [Yu, 
1974] for an example. 

Some references handling the existence of value functions are listed in [Stadler, 
1979]. Different value functions are also presented. Different properties and forms of 
value functions are widely treated in [Hemming, 1978]. 

The way a final solution was earlier defined means that a solution is final if it max­
imizes the decision maker's value function. Sometimes another concept, a satisficing 
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solution, is distinguished. Satisficing solutions are connected with so-called satisficing 
decision making. Satisficing decision making means that the decision maker does not 
intend to maximize any general value function but tries to achieve certain aspirations. 
A solution which satisfies all the aspirations of the decision maker is called a satis­
ficing solution. In a most extreme case, one can define a solution to be satisficing 
independent of whether it is Pareto optimal or not. Here we, however, always assume 
that a satisficing solution is Pareto optimal ( or at least weakly Pareto optimal, see 
Definition 1. 6 .1). 

1.5. Ranges of the Pareto Optimal Set 

Let us for a while investigate the ranges of the Pareto optimal solutions. An 
optimistic estimate is called an ideal criterion vector. 

Definition 1.5.1. The components z[ of the ideal criterion vector z* E Rk a.re 
obtained by minimizing each of the objective functions individually subject to the 
constraints, that is, 

for i = 1, ... , k. 

minimize f; ( x) 

subject to x E S, 

It is obvious that if the ideal criterion vector were feasible (z* E Z), it would be the 
solution of the multiobjective optimization problem. This is not possible in general 
since there is a conflict among the objectives. Even though the ideal criterion vector 
is not attainable, it can be considered a reference point, something to go for. From 
the ideal criterion vector we obtain the lower bounds of the Pareto optimal set for 
each objective function. 

The upper bounds of the Pareto optimal set, the components of a so-called nadir 
point, znad are much more difficult to obtain. They can be estimated from a payoff 
table. A payoff table is formed by using the decision vectors obtained when calculating 
the ideal criterion vector. On the ith row of the payoff table there are the values of all 
the objective functions calculated at the point where f; obtained its minimal value. 
So, z[ is at the main diagonal of the table. The maximal value of the ith column in 
the payoff table is selected as an estimate of the upper bound of the ith objective over 
the Pareto optimal set. Notice that the criterion vectors in the rows of the payoff 
table are Pareto optimal if they are unique. 

The black points in Figure 3 represent ideal criterion vectors, and the grey ones are 
nadir points. The nadir point may be feasible or not, as illustrated in Figure 3. The 
Pareto optimal set is represented by the fat lines. 

Weistroffer has presented examples in [Weistroffer, 1985] to illustrate the fact that 
the estimates from the payoff table are not necessarily equal to the real components 
of the nadir point. The difference between the complete Pareto optimal set and the 
subset of the Pareto optimal set bounded by the ideal criterion vector and the up­
per bounds obtained from the payoff table in linear cases is explored also in [Reeves, 
Reid, 1988]. It is proposed that relaxing (increasing) the approximated upper bounds 
by a relatively small tolerance should improve the approximation, although it is ad hoe 
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Figure 3. Ideal criterion vectors and nadir points. 

in nature. Some linear multiobjective optimization problems are also studied in [Is­
ermann, Steuer, 1988]. It is examined how many of the Pareto optimal extreme 
solutions are above the upper bounds obtained from the payoff table. Three methods 
for determining the exact nadir point in a linear case are suggested. None of them 
is especially economical computationally. In [Dessouky, Ghiassi, Davis, 1986], three 
heuristics are presented to calculate the nadir point when the problem is linear. For 
nonlinear problems, there is no constructive method for calculating the nadir point. 
Anyway, the payoff table may be used as a rough estimate as long as its robustness 
is kept in mind. Because of the above-described difficulty of calculating the actual 
nadir point, we usually refer to the approximate nadir point as znad in what follows. 

It is possible that (some) objective functions are unbounded, for instance, from 
below. In this case some caution is in order. In multiobjective optimization problems 
this does not necessarily mean that the problem is formulated incorrectly. There 
may still exist Pareto optimal solutions. However, if, for instance, some component 
of the ideal criterion vector is unbounded and it is replaced by a small but finite 
number, methods utilizing the ideal criterion vector may not be able to overcome the 
replacement. 

The ranges of the Pareto optimal set are of interest also in [Benson, Sayin, 1994]. 
The authors deal with the maximization of a linear function over the Pareto optimal 
set of an MOLP problem. 

1.6. Weak Pareto Optimality 

In addition to Pareto optimality, other related concepts are widely used. They are 
weak and proper Pareto optimality. The relationship between these concepts is that 
the properly Pareto optimal set is a subset of the Pareto optimal set which is a subset 
of the weakly Pareto optimal set. 

A vector is weakly Pareto optimal if there does not exist any other vector for which 
all the components are better. In a more formal way it means the following. 

Definition 1.6.1. A decision vector x* E S is weakly Pareto optimal if there does 
not exist another decision vector x ES such that f;(x) < fi(x*) for all i = l, ... , k. 
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A criterion vector z* E Z is weakly Pareto optimal if there does not exist another 
criterion vector z E Z such that z; < z; for all i = 1, ... , k; or equivalently, if the 
decision vector corresponding to it is weakly Pareto optimal. 

The fat line in Figure 4 represents the set of weakly Pareto optimal criterion vectors. 
The fact that the Pareto optimal set is a subset of the weakly Pareto optimal set can 
also be seen in the figure. The Pareto optimal criterion vectors are situated along the 
line between the black points. 

z 

weakly Pareto
..e-- optimal set

/ Pareto optimal
set/

z 1 

Figure 4. Weakly Pareto optimal points. 

If the set Z of criterion vectors is ordered by an ordering cone D, weakly efficient 
vectors may be characterized in the following way. A criterion vector z* E Z is weakly 
efficient if (Z - z*) n (-int(D)) = 0 (see (Sawaragi, Nakayama, Tanino, 1985]), or if 
(z* - int(D)) n Z = 0 (see [Jahn, 1987] and [Wierzbicki, 1986(b)]), where int(D) 
denotes the interior of the cone D. 

The connectedness of the sets of Pareto optimal and weakly Pareto optimal solutions 
has not been widely treated. The Pareto optimal set of an MOLP problem is proved to 
be connected in (Steuer, 1986]. It is stated in [Warburton, 1983] as a generally known 
fact that the Pareto optimal set is connected in convex multiobjective optimization 
problems. Warburton shows that if the feasible region is convex and compact and the 
objective functions are quasiconvex, then the set of weakly Pareto optimal solutions 
is connected. The connectedness of the Pareto optimal set is guaranteed for a certain 
subclass of quasiconvex functions. Also a noncompact case is studied in [Warburton, 
1983). Connectedness of the sets of weakly efficient and efficient points is studied in 
(Helbig, 1990(a)]. 

Although weakly Pareto optimal solutions are important for theoretical consider­
ations, they are not always useful in practice, because of the big size of the weakly 
Pareto optimal set. A more restricting concept than Pareto optimality is proper Pare­
to optimality. To clarify its practical meaning and for other further purposes we first 
define trade-offs and marginal rates of substitution. 
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1. 7. Trade-Off and Marginal Rate of Substitution

A trade-off reflects the ratio of change in the values of the objective functions
concerning the increment of one objective function that occurs when the value of 
some other objective function decreases. 

Definition 1.7.1. (From [Chankong, Haimes, 1983(b)]) Let x1 and x2 E 5 be

two decision vectors and let (f1(x1 ), ... ,fk(x1 ))T and (fi(x2), ... ,fk(x2 )f be the
corresponding criterion vectors, respectively. We denote the ratio of change between 

the functions f; and Ji by

where fi(x1) - fi(x2 ) # 0. 
Now, A;j is called a partial trade-off involving f; and fj between x1 and x2 if 

f1(x1 ) = fz(x2 ) for all l = l, ... ,k, l # i,j. If fz(x1 ) # fz(x2 ) for at least one
l = l, ... ,k, and l # i,j, then A;j is called a total trade-off involving f; and fj 

between x1 and x2
. 

Notice that in the case of two objective functions there is no difference between 
partial and total trade-offs. If partial trade-offs are presented to the decision maker, 
(s)he can compare changes in two objective functions at a time. This is usually more
comfortable than comparing several objectives. If the points x1 and x2 are Pareto
optimal, then there always exist some objective functions f; and Ji for which the
trade-off is negative. A concept related to the trade-off is the trade-off rate.

Definition 1. 7 .2. Let x* E 5 be a decision vector and let d* be a feasible direction
emanating from x*. The total trade-off rate at x* involving f; and Ji along the
direction d* is given by 

If d* is a feasible direction so that there exists a > 0 satisfying fz(x* +ad*)= fz(x*)
for all l # i,j and for all O :S a :S a, then the corresponding Aij is called a partial

trade-off rate. 

Remark. If the objective functions are continuously differentiable, then

'vf;(x*)Td* 
Aij = 

V fi(x*)Td*'

where the denominator differs from zero. 

For continuously differentiable objective functions we can alternatively give the 
following definition. 
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Definition 1. 7.3. Let the objective functions be continuously differentiable and let
x* E S be a decision vector. Then a partial trade-off rate at x* involving f; and Ji is
given by 

( *) df;(x*) 
>-.;1 = >-.;1 x = dfi(x*)" 

Notice that the trade-off is defined mathematically and the decision maker cannot 
affect it. If we take into consideration the opinions of the decision maker, we can 
define indifference curves and marginal rates of substitution. 

It is said that two feasible solutions are situated on the same indifference curve

( or isopreference curve) if the decision maker finds them equally desirable, that is, 
neither of them is preferred to the other one. This means that indifference curves are 
contours of the underlying value function. There may also be a "wider" indifference 
band. Then we do not have any well-defined boundary between preferences, but a 
band where indifference occurs. This concept is studied in [Passy, Levanon, 1984]. 

For any two solutions on the same indifference curve there is a trade-off involving a 
certain increment in the value of one objective function (Ji) that the decision maker 
is willing to tolerate in exchange for a certain amount of decrement for some other 
objective function (Ji) while the preferences of the two solutions remain the same. 
This is called a marginal rate of substitution. This kind of trading between different 
solutions is characteristic of multiobjective optimization problems when moving from 
one Pareto optimal solution to another. The marginal rate of substitution (sometimes 
also called indifference trade-off) is the negative of the slope of the tangent to the 
indifference curve at a certain point. 

Definition 1.7.4. A marginal rate of substitution m;1 = mi1(x*) (i,j = 1, ... , k,
i =f. j) represents the preferences of the decision maker at a decision vector x* E S. It
is the amount of decrement in the value of the objective function f; that compensates
to the decision maker the increment in the value of the objective function f1 by one
unit, while the values of all the other objectives remain unaltered.

Notice that in the definition the starting and the resulting criterion vectors lie on the 
same indifference curve. 

It can be stated that a final solution of a multiobjective optimization problem is a 
Pareto optimal solution where the indifference curve is tangent to the Pareto optimal 
set. This tangency condition means finding an indifference curve intersecting the 
feasible criterion region that is farthest to the southwest. Figure 5 illustrates this 
property. 

Remark. H the partial derivatives exist, then 

(1.7.5) 
··( *) _ dU(f(x*))/dU(f(x*))

m,J x -
d Ji d Ji 

· 

If the Pareto optimal set is smooth (that is, at every Pareto optimal point there 
exists a unique tangent), we can have the following result. When one examines the 
definition of a trade-off rate at some point, one sees that it is the slope of the tangent 
of the Pareto optimal set at that point. We can also define that when a Pareto optimal 
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Figure 5. The final solution. 

solution is a final solution, then the tangents of the indifference curve and the Pareto 
optimal set coincide at it, that is, -m;j = Aij for all i, j = 1, ... , k, i -=/- j. Thus with 
the help of the negative of the marginal rate of substitution and trade-off rate one 
can get a local linear approximation of the indifference curve and the Pareto optimal 
set, respectively. 

Usually, one of the objective functions is selected to be a reference function when 
trade-offs and marginal rates of substitution are treated. The trade-offs and the 
marginal rates of substitution are generated with respect to it. In the notations 
above, f; is the reference function. When cooperating with decision makers, it is 
important to select the reference function in a meaningful way. Important criteria in 
the selection are, for example, that the reference function is in familiar units or that 
it is dominant. 

1.8. Proper Pareto Optimality 

Kuhn and Tucker were the first to notice that some of the Pareto optimal solutions 
had undesirable properties (see [Kuhn, Tucker, 1951]). They introduced so-called 
properly Pareto optimal solutions. The idea of properly Pareto optimal solutions 
is that unbounded trade-offs between objectives are not allowed. Pareto optimal 
solutions may be divided into properly and improperly Pareto optimal solutions. 
Practically, a properly Pareto optimal solution with very high or very low trade-offs 
does not essentially differ from a weakly Pareto optimal solution. 

There exist several definitions for proper Pareto optimality. The idea is easiest to 
understand from the definition of Geoffrion. 

Definition 1.8.1. (From [Geoffrion, 1968]) A decision vector x* E S is properly 
Pareto optimal if it is Pareto optimal and if there is some real number M > 0 such 

that for each i and each x E S satisfying f;(x) < f;(x*), there exists at least one Ji 
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such that f1(x*) < fi(x) and

In other words, a solution is properly Pareto optimal if there is at least one pair of 
objectives for which a finite decrement of the other objective is -possible only at the 
expense of some reasonable increment of the other objective. 

A method for obtaining all the properly Pareto optimal solutions satisfying pre­
scribed trade-offs in a convex case is proposed in [Geromel, Ferreira, 1991]. Also 
upper estimates for properly Pareto optimal solutions are given. 

Durier has studied in [Durier, 1988] the relationships between Pareto optimal and 
properly Pareto optimal sets in a convex case. He, for example, concludes that if 
the set of properly Pareto optimal solutions is closed, then the two sets are equal. 
A property called a locally flat surface, which guarantees the very same equality in 
convex and differentiable problems, is presented in [Zhou, Mokhtarian, Zlobec, 1993]. 

Results about Pareto optimal and properly Pareto optimal solutions have been 
gathered in [Gal, 1986]. In [Chew, Choo, 1984], it is proved in that every Pareto 
optimal solution is also properly Pareto optimal for a nonlinear problem involving 
only pseudolinear functions (i.e., differentiable functions which are also pseudoconvex 
and pseudoconcave). The results of Chew and Choo can be considered special cases 
of more general results in [Weir, 1990]. In [Gulati, Islam, 1990], it is shown that 
the preceding result can be generalized by assuming quasiconvexity of the active 
constraints ( of the form g(x) ::; 0) with some regularity properties. Pseudolinearity is 
extended by defining semilocally pseudolinear functions in [Kaul, Lyall, Kaur, 1988]. 
We shall present some results about the relationships between Pareto optimal, weakly 
and properly Pareto optimal solutions in the context of solution methods in Chapter 
2. 

Next, we introduce c:-proper Pareto optimality, which is easy to illustrate graphi­
cally. 

Definition 1.8.2. (From [Wierzbicki, 1980(b)]) A decision vector x* E S and the
corresponding criterion vector z* E Z are c:-properly Pareto optimal if

Z n (z* - R! \ {O}) = 0, 

where R! = {z E Rk I dist(z,Ri)::; cllzll} and c > 0 is a predetermined scalar. 

The set of c:-properly Pareto optimal solutions is depicted in Figure 6 and denoted 
by a fat line. The solutions are obtained by intersecting the feasible criterion region 
with a blunt cone. The end points of the Pareto optimal curve, z1 and z2

, have also 
been marked to ease the comparison. 

An interesting thing with c-properly Pareto optimal solutions is that the trade-offs 
are bounded between c and 1/c. We return to this definition in Section 2.19. Now 
we continue by the original definition of Kuhn and Tucker. 

Kuhn and Tucker derived also necessary and sufficient conditions for proper Pareto 
optimality in [Kuhn, Tucker, 1951]. Those conditions will be presented in the next 
section. 

The feasible region is now supposed to consist of inequality constraints. So we as­
sume that S = {x E Rn I g(x) = (g1(x),g2(x), . . .  ,gm(x))T ::; O}. In addition, all the 
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Figure 6. €-properly Pareto optimal solutions. 

objective and the constraint functions are supposed to be continuously differentiable. 
Thus this definition is not applicable to nondifferentiable multiobjective optimization 
problems. 

Definition 1.8.3. (From [Kuhn, Tucker, 1951)) A decision vectorx* ES is properly 
Pareto optimal if it is Pareto optimal and if there does not exist any vector d E Rn 

such that 

for all i = 1, ... , k, for some j

and 

for all l satisfying g1(x*) = 0. 

A comparison of the definitions of Kuhn and Tucker and Geoffrion is presented in 
[Geoffrion, 1968]. Several practical examples are given in [Tamura, Arai, 1982] to 
illustrate the fact that properly Pareto optimal solutions according to the definitions 
of Geoffrion and Kuhn and Tucker (and one more definition by Klinger, see [Klinger, 
1967)) are not necessarily consistent. Also conditions under which proper Pareto 
optimality in the sense of Kuhn and Tucker implies proper Pareto optimality in the 
sense of Geoffrion are proved. Conditions for the reverse result are given and proved, 
for example, in [Sawaragi, Nakayama, Tanino, 1985]. More mathematical results 
concerning the properties and relationships of the definitions of Geoffrion, Kuhn and 
Tucker and Klinger are given in [White, 1983(a)]. 

Borwein, Benson and Henig have defined proper efficiency when a closed convex 
cone is used as an ordering cone. Even those definitions are not equivalent with each 
other. However, for instance, the definitions of Geoffrion and Benson are equal when 
D = Ri ( see [Benson, 1983)). All the fi'�e definitions ( excluding that of Klinger's) are 
presented and compared in [Sawaragi, Nakayama, Tanino, 1985]. In [Henig, 1982(b )], 
necessary and sufficient conditions for the existence of properly efficient solutions are 
given. A new kind of proper efficiency, called super efficiency, is presented in [Borwein, 
Zhuang, 1989, 1991]. 

In the following, proper Pareto optimality is understood in the sense of Geoffrion's 
definition unless stated otherwise. 
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1.9. Existence of Pareto Optimal Solutions 

Let us have a look at the existence of Pareto optimal and properly Pareto optimal 
solutions. The procedures presented can also be used to test a feasible decision vector 
for Pareto optimality and to find an initial Pareto optimal solution. 

Specific results for MOLP problems are presented in [Ecker, Kouada, 1975]. General 
problems are examined in [Wendell, Lee, 1977] by relying on duality theory and 
generalizing the results of Ecker and Kouada into nonlinear problems. The treatment 
is based on an auxiliary problem 

(1.9.1) 

k 

infimum Lf;(x) 
i=l 

subject to f(x) � f(x) 

X Es, 

where x is any vector in S and the optimal objective function value is denoted by 
ef>(x). 

Theorem 1.9.2. Let a decision vector x* E S be given. The vector x* is Pareto 
optimal if and only if ef>(x*) = :Z:::�=l 

J;(x*). 

Proof. See [Wendell, Lee, 1977]. 

When studying the (primal) problem (1.9.1) and its dual, a duality gap is said to 
occur if the optimal value of the primal problem is not equivalent to the optimal value 
of the dual problem. 

Theorem 1.9.3. Let a decision vector x E S be given and suppose that ef>(x) = -oo. 
Then some x* E S is Pareto optimal only if there is a duality gap between the primal 
(1.9.1) and its dual problem at x*.

Proof. See [Wendell, Lee, 1977]. 

The significance of Theorem 1.9.3 is that precluding duality gaps the nonexistence 
of Pareto optimal points is characterized by the condition that ef>(x) = -oo for some 
x E S. It can also be proved that if a multiobjective optimization problem is convex 
and if ef>(x) = -oo for some x E S, then no properly Pareto optimal solutions exist. 
See the details in [Wendell, Lee, 1977]. 

Also in [Benson, 1978], the existence of Pareto optimal and properly Pareto optimal 
solutions is investigated. The results can be combined into the following theorem. 

Theorem 1.9.4. Let a decision vector x* ES be given. Solve the problem 

(1.9.5) 

k 

maximize L c:; 
i=l 

subject to f;(x) + c:; = f;(x*) for all i = l, .. . , k, 
c; 2: 0 for all i = l, . .. , k, 
X ES. 

17 



(1) The vector x* is Pareto optimal if and only if the problem (1.9.5) bas an
optimal objective function value of zero.

(2) If the problem (1.9.5) bas a finite nonzero optimal objective function value
obtained at a point x, then x is Pareto optimal.

(3) If the multiobjective optimization problem is convex and if tne problem (1.9.5)
does not have a finite optimal objective function value, then the set of properly
Pareto optimal solutions is empty.

( 4) If in addition to the conditions in (3 ), the set { z E R k I z ::; f( x) for some
x E S} is closed, then the Pareto optimal set is empty.

Proof. See [Benson, 1978] or [Chankong, Haimes, 1983(b)], pp. 151-152. 

The auxiliary problems (1.9.1) and (1.9.5) can also be used to produce Pareto 
optimal solutions from weakly Pareto optimal solutions. However, in some practical 
problems it is very expensive to carry out these additional optimizations. 

Several ways of determining the Pareto optimality of a particular point in an MOLP 
problem are presented in [Eiselt, Pederzoli, Sandblom, 1987]. They all apply to special 
situations. The existence of Pareto optimal solutions when there is an infinite number 
of objective functions is considered in [Alekseichik, Naumov, 1981]. 

The existence and characterization of efficient solutions with respect to ordering 
cones are studied in [Henig, 1982(a)]. The existence of efficient solutions in linear 
spaces is treated in [Borwein, 1983]. In addition, the existence of weakly and properly 
efficient (in the sense of Borwein) and efficient solutions in the presence of ordering 
cones is studied in [Jahn, 1986(b)]. The existence of efficient solutions is studied in 
[Cambini, Martein, 1994] by introducing so-called quasi-D-bounded sets. 

A phenomenon called complete efficiency is studied in [Benson, 1991]. Complete 

efficiency occurs when every feasible decision vector of a multiobjective optimiza­
tion problem is Pareto optimal. Tests are presented to check for complete efficiency 
in linear and nonlinear cases. A significant saving of computational efforts can be 
attained if the problem is tested for complete efficiency before it is solved. If the 
problem is completely efficient, no time, effort and special machinery for generating 
a part or all of the Pareto optimal solutions is needed. To Benson's knowledge, no 
solution algorithm first checks for complete efficiency. Benson reminds that nobody 
has yet studied the frequency of completely efficient problems among multiobjective 
optimization problems. He points out that it may be more common than one can 
think, especially when the feasible region S has no interior. An example of such prob­
lems are transportation problems. Complete efficiency is also treated in [Weidner, 
1990]. 

In [Benson, 1983], Benson examines conditions for the situation when there always 
exists an efficient solution that is superior to any nonefficient solution, that is, for each 
x E S and corresponding z E Z there e_xists an efficient point x* and corresponding 
z* such that z - z* E D, where D is the ordering cone. This is called a domination 

property. The results of Benson are corrected and necessary and sufficient conditions 
for the domination property to hold are supplied in [Luc, 1984(a)]. The domination 
property and its sufficient conditions are treated in [Henig, 1986]. It is demonstrated 
that efficiency, proper efficiency, and the domination property are equivalent under 
convexity. The domination property in infinite dimensional spaces and for the sum 
of two sets is handled in [Luc, 1990]. 
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In the sequel, we present optimality conditions for multiobjective optimization prob­
lems. Because the conditions are different for differentiable and nondifferentiable 
problem, they are handled separately. 

1.10. Optimality Conditions 

Optimality conditions are an important sector in optimization. As elsewhere in 
this presentation, we restrict the treatment also here to finite dimensional Euclidean 
spaces. We consider problems of the form 

(1.10.1) 
m1mm1 ze {!1 (x), fz(x), ... , fk(x)}

subject to x ES= {x E Rn I g(x) = (g1(x),g2(x), ... ,gm(x)f � O}. 

We denote the set of active constraints at a point x* by J(x*) = {j E {l, ... , m} 
gj(x*) = O}. We assume in this section that the objective and the constraint functions 
are continuously differentiable. In Section 1.11, we handle nondifferentiable functions. 

The presentation is mainly based on the results stated in [Kuhn, Tucker, 1951), 
[Da Cunha, Polak, 1967), [Marusciac, 1982) and [Simon, 1986). The theorems are 
here presented in a simplified form when compared to the general practice in the 
literature. For this reason, the proofs have been modified. At first, we present a 
necessary condition of the Fritz John-type. 

Theorem 1.10.2. Let the objective and the constraint functions of the problem
(1.10.1) be continuously differentiable. A necessary condition for a decision vector
x* E S to be Pareto optimal is that there exist vectors 0 � A E R k and 0 � µ E Rm 

for which (A,µ) #-(0, 0) such that

k m 

(1) L ,\;V'j;(x*) + L µ/\7 gj(x*) = 0
i=l j=l 

(2) µj gj(x*) = 0 for all j = 1, ... , m.

Proof. See, for instance, [Da Cunha, Polak, 1967). 

We do not present the proof here because it is quite extensive. The theorem can be 
considered a special case of the corresponding theorem for nondifferentiable problems, 
which is proved in Section l.l l. For convex problems, necessary optimality conditions 
can be derived by using separating hyperplanes. This has been realized, for example, 
in [Zadeh, 1963). A separation theorem is also employed in the proof of the general 
case in [Da Cunha, Polak, 1967). 

The difference between the Fritz John and Karush-Kuhn-Tucker-type optimality 
conditions in single objective optimization is that the multiplier(,\) of the objective 
function is assumed to be positive in the latter case. This eliminates degeneracy 
since it implies that the objective function plays its important role in the optimality 
conditions. To guarantee the positivity of ,\, some regularity has to be assumed 
from the problem. Different regularity conditions exist and they are called constraint

qualifications. 

In the multiobjective case it is equally important that all the multipliers of the ob­
jective functions are not equal to zero. From several different constraint qualifications 
we here present a so-called Kuhn-Tucker constraint qualification. 
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Definition 1.10.3. Let the constraint functions gj of the problem (1.10.1) be contin­
uously differentiable. The problem satisfies the Kuhn-Tucker constraint qualification 

at x* ES if for any d E Rn such that v'gj(x*f d :SO for all j E J(x*), there exists a
function a: [0, 1]---+ Rn which is continuously differentiable at 0, and some real scalar
a > 0, such that

a(O) = x*, g(a(t)) :SO for all O :St :S 1 and a'(O) = ad.

Before we can continue, we write down a so-called Motzkin's theorem of the alter­
native. It will be needed in the proof of the following necessary condition. 

Theorem 1.10.4. (Motzkin's theorem) Let A and C be given matrices, where 
A contains at least one element. Then either the system of inequalities

Ax< 0, Cx :S 0

has a solution x, or the system

has a solution CA,µ), but never both. 

Proof. See, for example, [Mangasarian, 19 69], pp. 28-29.

Theorem 1.10.5. Let the assumptions of Theorem 1.10.2 be satisfied with the 
Kuhn-Tucker constraint qualification. Then Theorem 1.10.2 is valid with the addition 
that A =f. 0.

Proof. Let x* be Pareto optimal. The idea of this proof is to apply Theorem 1.10.4.
For this reason we prove that there does not exist any d E Rn such that

(1.10.6)
v' f;(x*f d < 0 for all i = 1, ... , k, and

v'gj(x*f d :SO for all j E J(x*).

Let us on the contrary assume that there exists some d* E Rn satisfying (1.10.6).
Then from the Kuhn-Tucker constraint qualification we know that there exists a
function a: [0, 1]---+ Rn which is continuously differentiable at 0 and some real scalar
a> 0 such that a(O) = x*, g(a(t)) :SO for all O :St :S 1 and a'(O) = ad*. 

Because the functions f; are continuously differentiable, we can approximate f; ( a( t))
linearly as

f;( a(t)) = f;(x*) + v' f;(x*f (a(t) - x*) + lla(t) - x* ll<p(a(t), x*) 

= f;(x*) + v'f;(x*f(a(t)- a(O)) + lla(t)- a(O)ll<p(a(t),a(O)) 

= f;(x*) + tv' f;(x*f ( 
a(O + t� -

a(O)
) + lla(t) - a(O)ll<p(a(t), a(O)),

where <p( a( t), a(O)) ---+ 0 as Ila( t) - a(O)II ---+ 0. As t ---+ 0 tends Ila( t) - a(O)II to zero
and we have a(o+t

�
-a(O) 

= a'(O) = ad*.
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After utilizing the assumption v' fi(x*f d* < 0 for all i = 1, ... , k (and t � 0), we 
have J;(a(t)) < fi(x*) for all i for a sufficiently small t. This contradicts the Pareto 
optimality of x*.

Thus we have proved the statement (1.10.6). Now we conclude from Theorem 1.10.4 
that there exists multipliers A; � 0 for i E {1, ... , k }, ,\ f= 0, and µj � 0 for j E J(x*) 
such that �7

=1 
,\;v'f;(x*) + �

jEJ(x*) µ/vgi(x*) = 0. We obtain the statement (1) 
of Theorem 1.10.2 by setting µi = 0 for all j E {1, ... , m} \ J(x*). 

If g j ( x*) < 0 for some j, then according to the above setting µ j = 0 and the 
equalities (2) of Theorem 1.10.2 follow. I 

A sort of similar proof basically but different in realization is presented in [Marus­
ciac, 1982]. 

Constraint qualifications based on the linear independence of gradient vectors have 
been stated in [Da Cunha, Polak, 19 67]. A collection of other constraint qualifica­
tions has been gathered in [Simon, 1986]. A new constraint qualification for convex 
problems has been introduced in [Zhou, Mokhtarian, Zlobec, 1993). 

Corollary 1.10.7. The conditions of Theorems 1.10.2 and 1.10.5 are also necessary 
for a decision vector x* E S to be weakly Pareto optimal.

If the multiobjective optimization problem is convex, then we can state the following 
sufficient condition for Pareto optimality. Let us first recall the sufficient condition of 
optimality in the single objective case. 

Theorem 1.10.8. A sufficient condition for a point x* E Rn to be a (global)
minimum of the problem 

(1.10.9) 
mm1m1ze f; ( x)

subject to g(x) = (g1(x),g2(x), ... ,g m (x)f :S 0, 

where the functions f;: Rn -+ Rand gr Rn -+ R, j = 1, ... , m, are continuously
differentiable and convex, is that there exist multipliers 0 :S µ E Rm such that

m 

(1) v'f;(x*) + Lµiv'g1(x*) = 0 
j=l 

(2) µigi(x*) = 0 for all j = 1, ... , m.

Proof. See, for example, [Simon, 1986). 

Theorem 1.10.10. Let the problem (1.10.1) be convex. A sufficient condition for 
a decision vector x* E S to be a Pareto optimal solution of the problem (1.10.1) is
that there exist multipliers 0 < ,\ E R k and 0 :S µ E Rm such that

k m 

(1) L A;v' f;(x*) + L µjv'gj(x*) = 0 
i=l j=l 

(2) µig1(x*) = 0 for all j = 1, ... , m.

Proof. Let the vectors ,\ and µ be such that the conditions stated are satisfied. We 
define a function F: Rn -+ Ras F(x) = �7

= 1 
,\;f;(x), where x E S. Trivially Fis 
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convex because all the functions f; are and l > 0. Now we have, from the statements
(1) and (2), that v' F(x*)+ I:;: 1 µj v' 9j(x*) = 0 and µjgj(x*) = 0 for all j = l, . . .  , m.
Thus, according to Theorem 1.10.8, a sufficient condition for F to attain its minimum
at x* is satisfied. So F(x*) :S F(x) for all x E S. In other words, 

(1.10.11) 

for all x ES. 

k k 

L >-;J;(x*) s; L >-;J;(x)
i=l i=l 

Let us assume that x* is not Pareto-optimal. Then there exists some point x E S
such that f;(x) '.S f;(x*) for all i and for at least one index j is fi(x) < fi(x*).

Because every A; was assumed to be positive, we have I:7=
1 >-di(x) < I:7

=1 
>-;J;(x*).

This is a contradiction with the inequality (1.10.11) and x* is thus Pareto optimal. I 

Notice that because the multiobjective optimization problem is assumed to be con­
vex, Theorem 1.10.10 provides a sufficient condition for global Pareto optimality. This 
was proved in Theorem 1.2.3. 

Theorem 1.10.12. The condition stated in Theorem 1.10.10 is sufficient for a deci­
sion vector x* E S to be a weakly Pareto optimal solution of the problem (1.10.1) for
0 '.S l E Rk with l =/: 0. 

Proof. The proof is a straightforward modification of the proof of Theorem 1.10.10. 

The convexity assumption in Theorem 1.10.10 can be relaxed. The stated sufficient 
condition is also valid if the objective functions are pseudoconvex and the constraint 
functions are quasiconvex at x*. This extension is handled, for example, in [Marusciac, 
1982] and [Simon, 1986]. 

Second-order optimality conditions (presuming twice continuously differentiable ob­
jective and constraint functions) have been examined substantially less than the first­
order optimality conditions. Second-order necessary conditions for Pareto optimality 
are handled in [Simon, 1986], and necessary and sufficient conditions for Pareto and 
weakly Pareto optimal solutions are presented in [Wang, 1991]. 

If an ordering cone D is used in defining efficiency, then the optimality conditions 
are similar to those presented above except for the multipliers A;. Now they are
not only nonnegative real scalars but belong to a dual cone D*, where D* = {l E 
R k I lT y � 0 for all y E D}. Because of the close resemblance, we do not handle 
optimality conditions separately for efficiency here. For details see, for example, 
[Chen, 1984] and [Luc, 1989]. 

For completeness we also present the original necessary optimality condition for­
mulated for proper Pareto optimality (in the sense of Kuhn and Tucker) as stated by 
Kuhn and Tucker. To begin with, we write down Tucker's theorem of the alternative, 
which will be utilized in the proof. 

Theorem 1.10.13. (Tucker's theorem) Let A and C be given matrices, where A 
contains at least one element. Then either the system of inequalities 

Ax s; 0, Ax =/: 0, Cx s; 0
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has a solution x, or the system

AT'+CT,,=0, '>0 >OA ,- A , µ_ 

has a solution (l,µ), but never both. 

Proof. The proof is similar to the proof of Theorem 1.10.4. 

Theorem 1.10.14. A necessary condition for a decision vector x* E S to be a 
properly Pareto optimal solution (in the sense of Kuhn and Tucker) of the problem
(1.10.1) is that there exist vectors O < l E Rk and O � µ E Rm such that

k m 

(1) I:,V\7f;(x*) + Lµ/\7gJ(x*) = 0
i=l j=l 

Proof. Let x* be properly Pareto optimal (in the sense of Kuhn and Tucker). Then, 
from the definition we know that there does not exist any vector d E Rn such that 
v'f;(x*f d � 0for alli = 1, ... ,k, v'fJ(x*)Td < 0for some indexj, and v'g1(x*)Td �
0 for all l E J(x*). Then, from Theorem 1.10.13 we know that there exist multipliers 
A;> 0 for i E {l, .. . ,k} and µj � 0 for j E J(x*) such that I:�=

1
.A;v'li(x*) +

I:jEJ(x•) µjv'gj(x*) = 0. We obtain the statement ( 1) by setting µj = 0 for all 
j E {1, ... , m} \ J(x*).

If g j ( x*) < 0 for some j, then according to the above setting µ j = 0 and the 
equalities (2) follow. I 

It is proved in [Geoffrion, 1968] and [Sawaragi, Nakayama, Tanino, 1985] that if 
the Kuhn-Tucker constraint qualification (Definition 1.10.3) is satisfied at a decision 
vector x* E S, then the condition in Theorem 1.10.1 4 is also necessary for x* to be 
properly Pareto optimal in the sense of Geoffrion. 

Theorem 1.10.15. Hthe problem (1.10.1) is convex, then the condition in Theorem 
1.10.14 is also sufficient for a decision vector x* E S to be properly Pareto optimal
(in the sense of Kuhn and Tucker).

Proof. See [Sawaragi, Nakayama, Tanino, 1985], p. 90. 

Necessary and sufficient conditions for proper Pareto optimality in the sense of 
Geoffrion are presented in [Gulati, Islam, 1990] for pseudolinear objective and quasi­
convex constraint functions. 

1.11. Nondifferentiable Optimality Conditions 

In this section, we no longer necessitate differentiability but put forward nondiffer­
entiable counterparts for the optimality conditions presented in Section 1.10. Usually, 
when the assumption of continuous differentiability is given up, functions are supposed 
to be locally Lipschitzian. 
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Definition 1.11.1. A function f;: Rn -+ R is locally Lipschitzian at a point 
x* E Rn if there exist scalars K > 0 and 8 > 0 such that 

A function is here called nondifferentiable if it is locally Lipschitzian ( and not neces­
sarily continuously differentiable). 

In every other way the multiobjective optimization problem to be solved is still of 
the form 

(1.11.2) 
mm1m1ze {fi(x), h(x), ... , fk(x)} 

subject to x ES= {x E Rn I g(x) = (g1(x),g2(x), ... ,gm(x)f � 0}.

According to Rademacher's Theorem (see, e.g., [Federer, 1969]), we know that a 
locally Lipschitzian function, defined in an open set, is differentiable almost every­
where in that set. The set, where a function f; is not differentiable, is denoted here 
by n f;. In the sequel, we employ the concept subdifferential as defined by Clarke in 
[Clarke, 1983]. It corresponds to the gradient in the differentiable case. 

Definition 1.11.3. Let the function f;: Rn -+ R be locally Lipschitzian at a point 
x* E Rn . The set 

is called a subdifferential of the function f; evaluated at the point x*. In addition, 
the vectors� E of;(x*) are called subgradients. 

In the following we briefly present several properties of subdifferentials without any 
proofs. 

Theorem 1.11.4. If the functions f;: Rn -+ R, i = 1, ... , k, are locally Lipschitzian 
at the point x* E Rn , then we have for real scalars w; 

If the functions f; are convex, then the inclusion is valid as equality. 

Proof. See, for example, [Makela, Neittaanmaki, 1992], p. 39. 

Theorem 1. 11.5. Let the functions f; : Rn -+ R, i = 1, ... , k, be locally Lips­
chitzian at the point x* E Rn. Then the function f: Rn -+ R

f(x*) = max f;(x*)l'.','.19 

is also locally Lipschitzian at x*. In addition, 

8f(x*) c conv{of;(x*) Ii E I(x*)},
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where I(x*) C {1, ... , k} denotes the set of indices i for which f(x*) = f;(x*).

Proof. See, for example, [Makela, Neittaanmaki, 1992], pp. 47-49. 

Theorem 1.11.6. If the function f;: Rn --+ R is locally Lipschitzian at the point
x* E Rn and attains its local minimum at x*, then

0 E of;(x*). 

If the function f; is convex, then the condition is also sufflcient.

Proof. See, for example, [Makela, Neittaanmaki, 1992], pp. 70-71. 

Theorem 1.11.7. A necessary condition for a point x* E Rn to be a local minimum
of the problem 

(1.11.8) 
mm1m1ze f; ( x) 

subject to g(x) = (g1(x),g2(x), ... ,gm(x)f :SO, 

where the functions f;: Rn --+ R and g j: Rn --+ R, j = 1, ... , m, are locally Lips­
chitzian at x*, is that there exist multipliers O :S >. E R and 0 :S µ E Rm for which
(>.,µ) i= (0,0) such that

m 

(1) 0 E >.oJ;(x*) + L µjOgj(x*)
j=l 

(2) µjgj(x*) = 0 for all j = l, ... , m.

Proof. See, for example, [Clarke, 1983], pp. 228-230, or [Kiwiel, 1985( c)], p. 16. 

Now we have gathered a collection of tools for continuation and we can handle 
the actual optimality conditions. The presentation is mainly based on the references 
[Minami, 1980-81, 1981, 1983], [Kanniappan, 1983], [Wang, 1984], [Dolezal, 1985] 
and [Craven, 1989]. The theorems are here presented in a simplified form when 
compared to the general practice in the literature. For this reason, the proofs have 
been modified. 

Theorem 1.11.9. Let the objective and the constraint functions of the problem
(1.11.2) be locally Lipschitzian at a point x* E S. A necessary condition for the
point x* to be a Pareto optimal solution of the problem (1.11.2) is that there exist
multipliers O :S .X E Rk and O :S µ E Rm for which C�.,µ) i= (0, 0) such that

k m 

(1) 0 EL >.;of;(x*) + L µjOgj(x*)
i=l j=l 

(2) µigi(x*) = 0 for all j = l, ... , m.

Proof. Because it is assumed that (.X,µ) i= (0, 0), we can normalize the multipliers to 
sum up to one. We shall here prove a stronger condition, where I:7=1 >.; + I:j=l 

µj 
= 

1. 
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Let x* E S be Pareto optimal. At first we define an additional function F: Rn 
-t R 

by 
F(x) = max[fi(x)- f;(x*),gj(x)] 

z,J 

and show that for all x E Rn is 

(1.11.10) F(x) 2: 0.

Let us on the contrary assume that for some x0 E Rn is F(x0 ) < 0. Then 9j(x0) < 0 
for all j = 1, . .. , m and the point is thus feasible for the problem (1.11.2). In addition, 
f; ( x0 ) < f; ( x*) for all i = 1, . . .  , k, which contradicts the Pareto optimality of x*. 
Thus (1.11.10) must be true. 

Noting that the point x* is feasible to the problem (1.11.2), we have g(x*) � 0. 
This implies F(x*) = 0. Combining this fact with the property (1.11.10), we know 
that F attains its (global) minimum at x". As all the functions f; and 9i are locally 
Lipschitzian at x*, likewise is F (according to Theorems 1.11.4 and 1.11.5). We 
deduce from Theorem 1.11.6 that OE 8F(x*). 

Let us denote, for short, hi(x) = fi(x) - fi(x*) for all i = 1, . . .  , k. Note that 

(1.11.11) 8hi(x*) C 8fi(x*), 

applying Theorem 1.11.4. 
We designate the set of indices i for which F(x*) = hi(x*) by J(x*) C {l, . . .  , k} 

and the set of indices j for which F(x*) = gj(x*) by J(x*) C {l, . . .  , m}. Now we 
can employ Theorem 1.11.5 and obtain 

0 E conv {8hi(x*), 8gj(x*) Ii E I(x*), j E J(x*)}. 

Employing (1.11.11) and the definition of a convex hull, we know that there exist 
vectors � and p of real multipliers for which ,\i 2: 0 for all i E J(x*), µj 2: 0 for all 
j E J(x*) and LiEJ(x•) Ai+ LjEJ(x•) µj = 1, such that

0 E L A;8f;(x*) + L µi8gj(x*). 
iEJ(x•) jEJ(x•) 

Now we can set Ai = 0 for all i E {l, . . .  ,k} \ I(x*) and µj = 0 for all j E 
{ 1, . . .  , m} \ J ( x*). The statement ( 1) follows from this setting. 

The part (2) is trivial. If 9j(x*) < 0 for some j, then j E {l, . . .  , m} \ J(x*) and 
we have µj = 0. This completes the proof. I 

Theorem 1.11.9 can also be proved employing first some scalarization method and 
then Theorem 1.11.7 for the resulting single objective optimization problem. A rea­
soning based on results concerning the £-constraint method ( to be presented in Section 
2.3 in Theorem 2.3.3) is sketched in (Kanniappan, 1983]. There the multiobjective 
optimization problem is assumed to be convex but the proof is valid for nonconvex 
problems, too. 

Next, we examine some constraint qualifications more closely. It is obvious that 
they differ from the differentiable case. 

Notice that when the necessary optimality conditions are derived, for example, with 
the help of the £-constraint problem, it is easy to generalize constraint qualifications 
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from single objective optimization into the multiobjective case. One just assumes 
that both the original constraints and the possible additional constraints satisfy some 
constraint qualification. This has been expressed in [Dolezal, 1985]. The constraint 
qualifications used there are those of calmness and Mangasarian-Fromovitz. 

In the following theorem a so-called Cottle constraint qualification is used. Different 
constraint qualifications are presented, for example, in [Ishizuka,- Shimizu, 1984]. 

Definition 1.11.12. Let the objective and the constraint functions of the problem 
(1.11.2) be locally Lipschitzian at a point x* E S. The problem (1.11.2) satisfies 
a Cottle constraint qualification at x* if either 9J(x*) < 0 for all j = 1, ... , m, or 
0 � conv{8g1(x*) I g1(x*) = O}. 

Assuming the Cottle constraint qualification, we obtain the following necessary 
condition for Pareto optimality. 

Theorem 1.11.13. Let the assumptions of Theorem 1.11.9 be satisfied with the 
Cottle constraint qualification. Then Theorem 1.11.9 is valid with the addition that 
A# o.

Proof. The proof of Theorem 1.11.9 is here valid up till the observation OE 8F(x*) 
and the definition of the surrogate function h;. We prove also this theorem in a 
stronger form, where the multipliers sum up to one. 

From the definition of F we know that 

(1.11.14) F(x*) = h;(x*) ( = 0) 

for all i = 1, ... , k. We continue by first assuming that g1(x*) < 0 for all j = 1, . . .  , m. 
In this case, F(x*) > g1(x*) for all j. Now we can apply Theorem 1.11.5 and obtain 

0 E conv{8h;(x*) Ii= 1, .. . ,k}. 

Next we can apply (1.11.11) to eliminate the surrogate functions h;. From the 
definition of a convex hull we know that there exists a vector O :S A E R k of multipliers 
for which I::�=l Ai = 1 (thus A# 0) such that 

k 

0 EI: Ai8fi(x*).
i=l 

We obtain the statement to be proved (denoted by (1) in Theorem 1.11.9) by setting 
µJ = 0 for all j = 1, . . .  , m. 

On the other hand, if there exists some index j such that gj(x*) = 0, we denote 
the set of such indices by J(x*). By the Cottle constraint qualification we know that 

(1.11.15) 0 � conv {8g1(x*) I j E J(x*)}.

In this case, we have from (1.11.14) and Theorem 1.11.5 the result 

0 E conv { 8h;(x*), 8g1(x*) Ii= 1, . . .  , k, j E J(x*)}.
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Applying (1.11.11) and the definition of a convex hull, we know that there exist 
multipliers A; 2: 0, i E {l, ... ,k}, and µj 2'. 0, j E J(x*) for which I:7==1,\; +

I:jEJ(x•) µj = 1, and by the assumption (1.11.15) especially l #- 0, such that

k 

0 EL A;of;(x*) + L µiogj(x*).
i==l jEJ(x•) 

Again, we obtain the statement to be proved by setting µ j = 0 for all j E { 1, . . .  , m} \ 
J(x*). 

The proof of part (2) is the same as in Theorem 1.11.9. I 

Corollary 1.11.16. The conditions of Theorems 1.11.9 and 1.11.13 are also nec­
essary for a decision vector x* E S to be a weakly Pareto optimal solution of the 
problem (1.11.2). 

If we assume the multiobjective optimization problem to be convex and l > O, we 
get a sufficient condition. 

Theorem 1.11.17. Let the problem (1.11.2) be convex with locally Lipschitzian 
functions. A sufficient condition for a decision vector x* E S to be a Pareto optimal 
solution of the problem (1.11.2) is that there exist multipliers O < l E R k and 
0 '.S µ, E Rm such that 

k m 

(1) 0 EL >.;of;(x*) + L µjOgj(x*)
i==l j==l 

(2) µjgj(x*) = 0 for all j = 1, ... , m.

Proof. To start with, we define an additional function F: Rn - R by F(x) =

I:7==1 ,\;f;(x) + :z:=7=1 µjgj(x), where the multipliers,\; and µj satisfy the assumptions 
above. Because the functions f; and gj are convex, l > 0 and µ, 2'. 0, then also Fis 
convex, and 8F(x) = I:7==1 A;Of;(x) + I:j==l µjOgj(x) (as stated in Theorem 1.11.4). 

From the assumption (1) we know that 0 E 8F(x*), and, according to Theorem 
1.11.6, the point x* is a (global) optimum of F. This implies that for any x0 E Rn, 
especially any x0 satisfying g(x0 ) '.S 0, the following is valid: 

0 '.S F(x0 ) - F(x*)

k m k m 

= L ,\;f;(xo) + L µjgj(xo

) - L ,\;f;(x*) - L µjgj(x*).
i==l j==l i==l j==l 

Employing the assumption (2), the fact that g(x0

) '.S 0 and µ, 2'. 0, we obtain 

(1.11.18) 

for any x0 E S.

k k 

L ,\;f;(x*) '.SL ,\;f;(xo) 
i==l i==l 
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Let us assume that x* is not Pareto-optimal. Then there exists some feasible x such 
that f;(x) :'.S fi(x*) for all i and for at least one index j is fi(x) < fi(x*). Because 

every Ai was assumed to be positive, we have I:7=1 
A;f;(x) < I:7=1 

A;j;(x*). This is
a contradiction with the inequality (1.11.18) and x* is thus Pareto optimal. I 

Theorem 1.11.19. The condition stated in Theorem 1.11.17 is· suflicient for a deci­
sion vector x* E S to be a weakly Pareto optimal solution of the problem (1.11.2) for 
0 :'.SAE Rk with A-:/= 0. 

Proof. The proof is a trivial modification of the proof of Theorem 1.11.17. 

Finally, we introduce one more constraint qualification. It can only be applied to 
convex problems and it will be needed in connection with one of the multiobjective 
optimization methods, in Section 2.23. It is called a Slater constraint qualification. 
It is independent of the differentiability of the functions involved. 

Definition 1.11.20. Let the problem (1.11.2) be convex. The problem (1.11.2) 
satisfies the Slater constraint qualification if there exists some x with gj(x) < 0 for 
all j = l, . . .  , m. 

Necessary optimality conditions for Pareto optimality in those nondifferentiable 
problems where the objective functions are fractions of convex and concave functions 
are formulated in [Bhatia, Datta, 1985]. 

If an ordering cone D is used in defining efficiency, then the optimality conditions 
are similar to those presented above except the multipliers Ai (just as in the differ­
entiable case). The multipliers belong to the dual cone D* = {A E R k I AT y 2: 
0 for ally E D}. Because of the similarity, we do not present here separate opti­
mality conditions for efficiency. Necessary and sufficient conditions for efficiency and 
weak efficiency are handled in [Wang, 1984]. In [Craven, 1989] and [El Abdouni, 
Thibault, 1992], necessary conditions for weak efficiency in normed spaces and Ba­
nach spaces, respectively, are presented. The objective and the constraint functions 
are still assumed to be locally Lipschitzian. 

Direct counterparts of optimality conditions for proper Pareto optimality in the 
sense of Kuhn and Tucker, presented in Section 1.10, cannot be stated in the non­
differentiable case. The reason is that the definition of Kuhn and Tucker assumes 
continuous differentiability. However, a sufficient condition for proper Pareto opti­
mality (in the sense of Geoffrion) when the objective and the constraint functions are 
compositions of convex, locally Lipschitzian functions are formulated in [Jeyakumar, 
Yang, 1993]. This treatment naturally includes ordinary convex, locally Lipschitzian 
functions. The authors also present necessary conditions for weak Pareto optimality 
and sufficient conditions of their own for Pareto optimality in problems with convex 
composite functions. 

1.12. More Optimality Conditions 

Many necessary and sufficient conditions for ( weak, proper, or) Pareto optimality 
( or efficiency) have been suggested. They are based on different kind of assumptions 
on the properties and form of the problem. Many of them are based on some kind of 
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scalarization of the original problem and conditions are set to both the objective func­
tions and the scalarization parameters ( some of such conditions are presented in the 
following chapter in connection with the scalarization methods). In this presentation, 
we settle for a closer handling of the Fritz John and the Karush-Kuhn-Tucker-type 
conditions, presented in the two earlier sections. For an interested reader we list some 
other references. 

Necessary conditions for proper and improper Pareto optimality in the sense of 
Kuhn and Tucker are derived with the help of cones in [Tamura, Arai, 1982]. Geoffrion 
was in [Geoffrion, 1968] the first to give basic characterization of properly Pareto 
optimal solutions in terms of a scalar problem, called a weighting problem (see Section 
2.2). He extended the results by a comprehensive theorem into necessary and sufficient 
conditions for local and global proper Pareto optimality. The treatment of Geoffrion's 
is closely followed in [Chou, Hsia, Lee, 1985], where properly Pareto optimal solutions 
are characterized for multiobjective optimization problems with set-valued functions. 

In [Chankong, Haimes, 1982], the authors have modified the optimality conditions 
of Kuhn and Tucker for Pareto optimality to be suitable with certain solution methods 
(the c:-constraint method and the jth Lagrangian problem, see Section 2.3). Chankong 
and Haimes also propose optimality conditions for proper Pareto optimality (in the 
sense of Geoffrion) with the c:-constraint method. In [Benson, Morin, 1977], necessary 
and sufficient conditions are given for a Pareto optimal solution to be properly Pareto 
optimal. This is done with the help of the jth Lagrangian problem. Necessary and 
sufficient conditions for Pareto optimality with convex and differentiable functions 
partly based on the c:-constraint problem are proved in [Zlobec, 1984]. 

Necessary and sufficient conditions for Pareto optimality and proper Pareto opti­
mality are proved with the help of duality theory and an auxiliary problem (1.9.1) 
(presented in Section 1.9) in [Wendell, Lee, 1977]. However, it is stated that nonlin­
ear problems do not generally satisfy the conditions developed. In such cases Pareto 
optimal solutions have to be tested for proper Pareto optimality on a point-by-point 
basis. 

In [Gulati, Islam, 1988], linear fractional objective functions and generalized convex 
constraints are handled. Necessary conditions of the Karush-Kuhn-Tucker-type are 
presented for Pareto optimal solutions and conditions under which Pareto optimal 
solutions are properly Pareto optimal are stated. Necessary and sufficient conditions 
for Pareto optimality for nonlinear fractional objective functions with nonlinear con­
straints are proved in [Lee, 1992]. In [Benson, 1979], Benson gives a necessary and 
sufficient condition for a point to be Pareto optimal when there are two concave 
objective functions (problem of maximization) and a convex feasible set. 

The following references deal with conditions for efficiency, where the criterion space 
is ordered by an ordering cone. 

In [Zubiri, 1988], necessary and sufficient conditions are proved for weak efficiency 
in Banach spaces with the help of a weighted L00-norm (see Section 2.7). Several 
necessary and sufficient conditions for efficient, weakly efficient and properly efficient 
solutions (in the sense of Borwein) in real topological linear spaces have been gathered 
in [Jahn, 1985]. Necessary and sufficient optimality conditions of the Karush-Kuhn­
Tucker-type are derived in [Hazen, 1988] for the cases when preferences are and are 
not representable by cones. 

Let us finally briefly mention some further references handling nondifferentiable 
cases. Necessary and sufficient conditions for Pareto optimality and proper Pareto 
optimality are derived in [Bhatia, Aggarwal, 1992] by the weighting method and 
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Dini derivatives (instead of subdifferentials introduced by Clarke). The functions in 
the problem are supposed to be nondifferentiable such that the objective functions 
are pseudoconcave and the constraint functions are quasiconvex. Also some duality 
results are provided. 

Optimality conditions based on optimization theory of Dubovitskii and Milyutin 
presuming certain convexity assumptions are presented in [Censor, 1977] for Pareto 
optimality in Rn and in [Minami, 1981] for weak Pareto optimality in a linear topo­
logical space. No differentiability assumptions are needed. Necessary and sufficient 
conditions for weak, proper and Pareto optimality in finite dimensional normed spaces 
are presented in [Staib, 1991] under different assumptions. 

1.13. Sensitivity Analysis and Stability 

The last subject to be mentioned in this chapter is sensitivity analysis. Sensitivity 
analysis studies situations when the input parameters defining the multiobjective 
optimization problem change or have errors. In sensitivity analysis, an answer is 
sought to the question how much the parameters can be altered and varied without 
affecting the solution. More justification for sensitivity analysis is provided in [Rarig, 
Haimes, 1983]. 

Given a family of parametrized multiobjective optimization problems, a set-valued 
perturbation function is defined in [Tanino, 1990] such that it associates to each pa­
rameter value the set of Pareto optimal points of the perturbed feasible region. The 
behaviour of the perturbation function is analyzed both qualitatively and quantitave­
ly. By stability we mean the study of various continuity properties of the perturbation 
function of a family of parametrized optimization problems, that is, qualitative anal­
ysis. By sensitivity we mean the study of the derivatives of the perturbation function, 
that is, quantitative analysis. 

In general multiobjective optimization problems, plenty of attention has been paid 
to the stability of the preference structure of the decision maker. In these cases, it 
is usually assumed that the partial ordering of the criterion space is induced by an 
ordering cone. 

Stability and sensitivity analysis are wide areas of research, and we do not intend 
to go into details here. Instead, we refer to, for example, [Tanino, Sawaragi, 1980], 
[Ester, 1984], [Papageorgiou, 1985], [Lucchetti, 1985], [Craven, 1988] and [Tanino, 
1988( a), (b ), 1990] for further analysis. 

In MOLP problems, sensitivity analysis is usually applied to changes in the matrix 
of objective function coefficients, the vector of the right-hand sides of the constraints 
or the matrix of constraint coefficients. These matters are considered, for example, in 
[Deshpande, Zionts, 1980], [Gal, Leberling, 1981], [Fiala, 1983], [Bolintineanu, Craven, 
1992] and [Antunes, CHmaco, 1992]. The last-mentioned paper handles the problem 
through scalarization (i.e., weighting method). 

Changes that occur in the solution of an MOLP problem, if the number of objective 
functions, the number of variables or the number of constraint functions is altered are 
examined in [Eiselt, Pederzoli, Sandblom, 1987]. This is an interesting topic also for 
nonlinear problems, because an objective function may be forgotten from the model 
and it is good to know how this can affect the solution obtained. As an example 
we can mention that if a convex objective function is added to a convex multiobjec­
tive optimization problem, all weakly Pareto optimal solutions remain weakly Pareto 
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optimal (see [Lowe, Thisse, Ward, Wendell, 1984]). The corresponding result is not 
always valid for Pareto optimal solutions. A counterexample can be found in [Steuer, 
1986) on page 179. A corollary regarding the generation of the weakly Pareto optimal 
set of a convex problem as a union of such Pareto optimal sets where subsets of the 
objective functions are used, is proved in [Lowe, Thisse, Ward, Wendell, 1984). 

Duality theory for nonlinear multiobjective optimization problems has been present­
ed, for example, in [Bitran, 1981], [Luc, 1984(b), 1987], [Nakayama, 1984, 1985(b)), 
[Gopfert, 1986] and [Weir, 1987], for convex problems in [Martinez-Legaz, Singer, 
1987], and for more general convex-like problems in [Wang, Li, 1992) and [Preda, 
1992). An overview of duality theory for linear and nonlinear cases has been gath­
ered in [Nakayama, 1985(c)). Some regularity results for multiobjective optimization 
problems are presented in [Martein, 1989]. 

Finally, we state that an excellent presentation about stability and duality in mul­
tiobjective optimization can be found in [Sawaragi, Nakayama, Tanino, 1985). More 
than a third of the contents of the monograph handles these topics. 
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2. Methods for Multiobjective Optimization

Generating Pareto optimal solutions is an important phase in multiobjective opti­
mization, and mathematically the problem is considered to be solved when the Pareto 
optimal set is found. The term vector optimization is sometimes used to denote the 
problem of identifying the Pareto optimal set. However, this is not always enough. 
We want to obtain just one solution. This means that we must find a way to order the 
Pareto optimal solutions in a complete order. This is why we need a decision maker 
and her or his preference structure. In this chapter, we present several methods for 
solving multiobjective optimization problems. Usually, this means finding a Pareto 
optimal solution that satisfies the decision maker best. 

We are not here going to interfere with the formulation of a real-life phenomenon 
into a mathematically well-defined problem. We just emphasize that a proper for­
mulation is important. For example, forgetting or misspelling an objective function 
may affect the Pareto optimal set. Several critical things to keep in mind in the for­
mulation are listed in [Nijkamp, Rietveld, Spronk, 1988]. From among them we find 
sufficient representativity of the objective functions and precision of information. 

In most methods we are interested in the criterion space instead of the decision 
variable space. One reason for this is that the dimension of the criterion space is usu­
ally considerably smaller than the dimension of the decision variable space. Another 
reason is that decision makers are more interested in the criterion values. 

In general, multiobjective optimization problems are solved by scalarization. The 
most important exception for this are the MOLP problems. Some simplex-based 
solution methods have been created so that they can handle multiple objectives as 
they are without any scalarization to find Pareto optimal extreme points. Several 
authors have proposed different modifications of simplex tableaus into multiobjective 
simplex tableaus, see, for example, [Philip, 1972], [Evans, Steuer, 1973], [Zeleny, 1974], 
[Yu, Zeleny, 1975] and [Ignizio, 1985(b)]. Yu and Zeleny also propose a method for 
determining the whole Pareto optimal set. This is done after the Pareto optimal 
extreme solutions have been found by the multiobjective simplex method. Here we 
shall not examine the simplex variations more but we continue with scalarization 
methods. 

As mentioned in Section 1.1, scalarization means converting the problem into a 
single or a family of single objective optimization problems with a real-valued objective 
function depending possibly on some parameters. This enables the use of the theory 
and methods of scalar optimization. The fundamental thing is that the optimal 
solutions of multiobjective optimization problems can be characterized as solutions 
of certain single objective optimization problems. For some scalarization methods 
the Pareto optimality of the solutions is guaranteed (see, for example, [Wierzbicki, 
1986(b )]). Scalarizing functions usually depend on some auxiliary parameters. Some 
numerical difficulties may appear if the single objective optimization problem has 
feasible solutions only with very few parameter values or it is not solvable with all 
the parameter values. Thus the seemingly promising idea of simplifying the problem 
into single objective optimizations has also its weaknesses. 

In [Sawaragi, Nakayama, Tanino, 1985], three requirements are set on a scalarizing 
function: 

(1) It can cover any Pareto optimal solution.
(2) Every solution is Pareto optimal.
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If the scalarizing function is based on aspiration levels, then, in addition 

(3) Its solution is satisficing if the aspiration levels used are feasible.

Unfortunately, there is no scalarizing function that can satisfy all the three require­
ments. 

An important fact to keep in mind is that standard routines for single objective 
optimization problems can only find local optima. This is why only locally Pareto 
optimal solutions are 11s11ally obtained and handled when dealing with scalarizing func­
tions. Global Pareto optimality can be guaranteed, for example, if the objective and 
the constraint functions are convex (as stated in Theorem 1.2.3). A clustering-based 
method for obtaining globally Pareto optimal solutions is presented in [Torn, 1983]. 
In the following, the solutions are understood to be local, unless stated otherwise. 

Results from other fields of research, for example, game theory, can be used in 
the solution processes. Rao has studied the relationship between Pareto optimal 
soluLiurn; arnl game Lheury iu [Rau, 1987]. He has also applied his results to structural 
optimization. 

There is a large variety of methods for multiobjective optimization. None of them 
can be said to be superior to all the others in general. When selecting a solution 
method, the specific features of the problem to be solved must be taken into con­
sideration. In addition, the opinions of the decision maker are important. It is not 
enough if the analyst prefers some method but the decision maker cannot or does 
not want to use it. The decision maker may be busy and mathematically ignorant. 
One can say that selecting an appropriate multiobjective optimization method is a 
multiobjective optimization problem in itself! We shall treat the method selection 
problem in Section 5.2 after some methods have been presented. 

Methods for multiobjective optimization can be classified in many ways according 
to different criteria. In [Cohon, 1985], they are categorized into two relatively distinct 
subsets: generating methods and preference-based methods. In generating methods, 
the set of Pareto optimal ( or efficient) solutions is generated for the decision maker, 
who then chooses one of the alternatives. In preference-based methods, the preferences 
of the decision maker are taken into consideration as the solution process goes on and 
the solution that best satisfies the decision maker's preferences is selected. 

Rosenthal suggests three classes of solution methods; partial generation of the Pare­
to optimal set, explicit value function maximization and interactive implicit value 
function maximization in [Rosenthal, 1985]. In [Carmichael, 1981], the methods are 
classified according to whether a composite single criterion, a single criterion with 
constraints, or many single criteria are the basis for the approach. A rough division 
could be done into interactive and noninteractive methods. Those classes can be 
further divided in many ways. 

Here we apply the classification presented in [Hwang, Masud, 1979]. This clas­
sification has been followed, for instance, in [Hwang, Paidy, Yoon, Masud, 1980], 
[Buchanan, 1986] and [Lieberman, 199l(a), (b )]. Hwang and Masud have classified 
the methods according to the participation of the decision maker in the solution pro­
cess. The classes are: 1) methods where no articulation of preference information is 
used (no-preference methods), 2) methods where a priori articulation of preference 
information is used ( a priori methods), 3) methods where progressive articulation of 
preference information is used (interactive methods) and 4) methods where a posteri­
ori articulation of preference information is used ( a posteriori methods). The names 
in the parentheses are used in the following for short. 
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It is, however, stated in [Despontin, Moscarola, Spronk, 1983] that after looking at 
every possible classification, one has to conclude that every classification considered 
led to more than 50 % of exception. Thus one must keep in mind that the classifica­
tions are not absolute. Overlapping and combinations of the classes are possible and 
some methods can be considered to belong into more than one class. The presented 
grouping is only guiding. 

We also consider another way of classification into ad hoe and non ad hoe methods. 
This way of division, suggested in [Steuer, Gardiner, 1991], has been mainly meant 
for interactive methods but can be applied to some other methods, too. It is based 
on the existence of an underlying value function. The common feature of ad hoe 
methods is that even if one knew the decision maker's value function, one could not 
exactly know how to respond to the questions posed by the algorithm. On the other 
hand, in non ad hoe methods the responses can be determined or at least confidently 
simulated if the decision maker's value function is known. 

Before we examine the methods, we mention several references for further informa­
tion. 

A wide collection of methods available (up to the year 1983) has been gathered in 
[Despontin, Moscarola, Spronk, 1983]. Almost 100 methods for both multiobjective 
and multiattribute optimization have been included. A set of methods developed 
up till the year 1973 for both multiattribute decision analysis and multiobjective 
optimization has been collected in [MacCrimmon, 1973]. 

Extensive surveys of concepts and methods for multiobjective optimization are 
provided in the monographs [Chankong, Haimes, 1983(b )] and [Steuer, 1986]. Similar 
matters have been gathered and studied briefly in [Dyer, Sarin, 1981], [Rosenthal, 
1985], [Buchanan, 1986], [Steuer, 1989(b )], [Steuer, Gardiner, 1990] and [Stewart, 
1992]. An overview is given in [Evans, 1984] and several methods are also presented 
in [Cohon, 1985] and [Osyczka, 1984]. In [Hwang, Masud, 1979], a large number 
of methods is presented and illustrated by solving numerical examples in detail. A 
similar but shortened presentation is given in [Hwang, Paidy, Yoon, Masud, 1980]. 
The detailed solution process descriptions have been intended to help in selecting 
solution methods. 

Overviews of multiobjective optimization methods in the former Soviet Union are 
presented in [Lieberman, 1991(a), (b )] and of theory and applications in China in [Hu, 
1990]. Nine multiobjective optimization methods developed in Germany are briefly 
introduced in [Ester, Holzmiiller, 1986]. 

A great number of interactive multiobjective optimization methods have been col­
lected in [Shin, Ravindran, 1991]. Interactive methods are also presented in [White, 
1983(b)] and [Narula, Weistroffer, 1989(a)]. Information about applications of the 
methods is reported, too. Some literature on interactive multiobjective optimization 
between the years 1965 and 1988 has been gathered in [Aksoy, 1990]. 

An overview of methods for MOLP problems can be found in [Zionts, 1980, 1989]. 
Methods for hierarchical multiobjective optimization problems have been reviewed in 
[Haimes, Li, 1988]. Such methods are needed in large-scale problems. A wide survey 
on the literature of hierarchical multiobjective analysis is also provided. 

Several groups of methods applicable to computer-aided design systems are pre­
sented briefly in [Eiduks, 1983]. Methods for applications in structural optimization 
are reported in [Jendo, 1986], [Eschenauer, 1987], [Koski, Silvennoinen, 1987] and 
[Osyczka, Koski, 1989]. Methods with applications to industry and large-scale sys­
tems are presented in the monographs [Tabucanon, 1988] and [Haimes, Tarvainen, 
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Shima, Thadathil, 1990], respectively. The collections of papers [Stadler, 1988(b )] 
and [Eschenauer, Koski, Osyczka, 1990] contain mainly applications in engineering. 

In the following, we present several methods (in four classes) for multiobjective 
optimization. Some of them will be described in detail, some in outline, and some 
are just briefly mentioned. This presentation has not been intended to cover every 
existing method. 

2.1. Methods Where A Posteriori Articulation of Preference 
Information Is Used 

A posteriori methods can also be called methods for generating Pareto optimal 
solutions. After the Pareto optimal set ( or a part of it) has been generated, it is pre­
sented to the decision maker, who selects the most preferred among the alternatives. 
The inconveniences here are that the generation is usually computationally expensive 
and sometimes at least partly difficult. On the other hand, it is hard for the decision 
maker to select from among a large set of alternatives. One more important que::;tiun 
is how to present or display the alternatives to the decision maker in an effective way. 
The working order in these methods is: 1. analyst and 2. decision maker. 

If there are only two objective functions the Pareto optimal set can be generated 
parametrically (see, for example, [Gass, Saaty, 1955] and [Benson, 1979]). When there 
are more objectives, the problem becomes more complicated. 

In the MOLP problems the methods of this class can be divided into two subclasses. 
The first is for the methods which can find all the Pareto optimal solutions and the 
second is for the methods which can find only all the Pareto optimal extreme solutions. 
In the latter case, edges connecting Pareto optimal extreme points may be Pareto 
optimal or not. 

The methods closely presented are called basic methods, since they are used fre­
quently in practical problems, and they are also used as parts of some more developed 
methods. These basic methods are a weighting method and an €-constraint method. 
After them, we give a limited overview of a method combining features of both the 
weighting and the €-constraint method. Finally, some other methods of this class are 
briefly mentioned. 

2.2. Weighting Method 

In the weighting method, presented, for example, in [Gass, Saaty, 1955] and [Zadeh, 
1963], the idea is to associate each objective function with a weighting factor and min­
imize the weighted sum of the objectives. In this way, the multiple objective functions 
are transformed into a single objective function. We suppose that the weighting co­
efficients Wi are real numbers such that w; 2': 0 for all i = 1, ... , k. It is also usually 
supposed that the weights are normalized, that is, I::=l Wi = l. Then the multiob­
jective optimization problem ( 1.1.1) is modified into the following problem 
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(2.2.1) 

k 

m1mm1ze L w;f;(x)
i=l 

subject to x E S, 

where w; 2: 0 for all i = l, ... ,k, and 
k 

LWi = l. 

i=l 

Theoretical Results 

In the following, several theoretical results are presented concerning the weighting 
method. 

Theorem 2.2.2. Let x* E S be a solution of the weighting problem (2.2.1). Then 
x* is weakly Pareto optimal. 

Proof. Let x* E S be a solution of the weighting problem. Let us suppose that it 
is not weakly Pareto optimal. In this case, there exists a solution x E S such that 
J;(x) < f;(x*) for all i = 1, ... , k. According to the assumptions set to the weighting 

coefficients, Wj > 0 for at least one j. Thus we have I:7=1 
w;f;(x) < I:7=1 

w;f;(x*).
This is a contradiction with the assumption that x* is a solution of the weighting 
problem. Thus x* is weakly Pareto optimal. I 

Theorem 2.2.3. Let x* ES be a solution of the weighting problem (2.2.1), where 
the weighting coefficients are positive (w; > 0 for all i = 1, ... , k ). Then x* is Pareto 
optimal. 

Proof. Let x* E S be a solution of the weighting problem. Let us suppose that 
it is not Pareto optimal. This means that there exists a solution x E S such that 
f;(x) :S f;(x*) for all i = 1, ... , k and Jj(x) < Jj(x*) for at least one j. Since w; > 0 

for all i = 1, ... , k, we have I:7=
1 

w;f;(x) < I:7=1 
w;f;(x*). This contradicts the

assumption that x* is a solution of the weighting problem. I 

Theorem 2.2.4. Let x* ES be a unique solution of the weighting problem (2.2.1). 
Then x* is Pareto optimal. 

Proof. Let x* E S be a unique solution of the weighting problem. Let us suppose 
that it is not Pareto optimal. In this case, there exists a solution x E S such that 
f;(x) :S f;(x*) for all i = 1, ... , k and Jj(x) < fi(x*) for at least one j. Because all 

the weighting coefficients w; are nonnegative, we have I:7=1 
w;f;(x) :S I:7= 1 w;f;(x*).

On the other hand, the uniqueness of x* means that I:7=1 
w;f;(x*) < I:7=1 

w;f;(x.)
for all x E S. The two inequalities above are contradictory and thus x* must be 
Pareto optimal. I 

As Theorems 2.2.3 and 2.2.4 state, the solution of the weighting method is always 
Pareto optimal if the weighting coefficients are all positive or if the solution is unique, 
without any further assumptions. The weakness of the weighting method is that not 
all of the Pareto optimal solutions can be found unless the problem is convex. 
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Theorem 2.2.5. Let the multiobjective optimization problem be convex. Ifx* ES 
is Pareto optimal, then there exists a weighting vector w (w; 2: 0, i = 1, ... , k, 

I:7=
1 

w; = 1) such that x* is a solution of the weighting problem (2.2.1 ).

Proof. The proof is presented after Theorem 2.3.9. 

Figure 7 illustrates the contents of Theorem 2.2.5. On the left, every Pareto optimal 
solution along the fat line can be obtained. On the right, it is not possible to obtain 
the Pareto optimal solutions in the "hollow". 

z 

z 1 z 1 

Figure 7. Weighting method with convex and nonconvex problems. 

The similar result holds also for weakly Pareto optimal solutions of convex problems. 

Remark. According to Theorem 2.2.5, all the Pareto optimal solutions of the MOLP 
problems can be found by the weighting method. 

In practice, the result of the above remark is not quite true. The single objective 
optimization routines for linear problems usually find only extreme point solutions. 
Thus, if some facet of the feasible region is Pareto optimal, then the infinity of Pareto 
optimal non-extreme points must be described in terms of linear combinations of the 
Pareto optimal extreme solutions. On the other hand, notice that if two adjacent 
Pareto optimal extreme points for an MOLP problem are found, the edge connecting 
them is not necessarily Pareto optimal. 

The conditions under which the whole Pareto optimal set can be generated by 
the weighting method with positive weighting coefficients are presented in [Censor, 
1977]. The solutions that are possible to reach by the weighting method with posi­
tive weighting coefficients are characterized in [Belkeziz, Pirlot, 1991]. The authors 
also give some generalized results. More relations between nonnegative and positive 
weighting coefficients, convexity of S and Z and Pareto optimality are studied in [Lin, 
1976(b)]. 

If the weighting coefficients in the weighting method are all positive, we can say 
more about the solutions than the Pareto optimality. The following results concerning 
proper Pareto optimality were originally presented in [Geoffrion, 1968]. 
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Theorem 2.2.6. Let x* E S be a solution of the weighting problem (2.2.1), when 
all the weighting coefficients w;, i = 1, ... , k, are positive. Then x* is properly Pareto 
optimal (sufficient condition). 

Proof. Let x* E S be a solution of the weighting problem with positive weighting 
coefficients. In Theorem 2.2.3 we showed that the solution is Pareto optimal. Now 
we shall show that x* is properly Pareto optimal with M = (k -l) max;,j(Wj/w;).

Let us on the contrary suppose that x* is not properly Pareto optimal. Then for 
some i (which we fix) and x ES such that f;(x*) > f;(x) we have 

f;(x*) -f;(x) > M(fi(x) -fi(x*))

for all j such that fi(x*) < fi(x). Now we can write

f;(x*) -f;(x) > (k -1) W
j 

(fi(x) -fi(x*)).
w; 

After multiplying both sides by w;/ ( k -1) > 0, we get 

where l # the fixed index i, and l # the indices j, which were specified earlier. After 
this reasoning we can sum over all j -=/- i and obtain 

which means 

w;(f;(x*) -f;(x)) > 2)wi(fi(x) - fi(x*))),
#i 

k k 

L wifi(x*) > L wifi(x). 
j=l j=l 

Now we have a contradiction with the assumption that x* is a solution of the weighting 
problem. I 

Theorem 2.2.7. If the multiobjective optimization problem is convex, then the 
condition in Theorem 2.2.6 is also necessary. 

Proof. See [Geoffrion, 1968] or [Chou, Hsia, Lee, 1985]. 

Corollary 2.2.8. A necessary and sufficient condition for a point to be a properly 
Pareto optimal solution of an MOLP problem is that it is a solution of a weighting 
problem with all the weighting coefficients being positive. 

The weighting method is used in [Isermann, 1974] in proving that for linear mul­
tiobjective optimization problems all the Pareto optimal solutions are also properly 
Pareto optimal. Some results about weak, proper and Pareto optimality of the solu­
tions obtained by the weighting method have been combined in [Wierzbicki, 1986(b )]. 
Proper Pareto optimality and the weighting method are also discussed in [Belkeziz, 
Pirlot, 1991]. 
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Applications and Extensions 

The weighting method is used to generate Pareto optimal solutions in [Sadek, 
Bruch, Sloss, Adali, 1988-89] when solving a problem of optimal control of a damped 
beam. The weighting method is also applied in [Weck, Fortsch, 1988] to structural 
systems in the optimization of a spindle bearing system and in the optimization of 
a table, and in [ReVelle, 1988] when the reductions of strategic nuclear weapons for 
the two superpowers are examined. In addition, the weighting method i.s an essential 
part in the determination of the optimal size of a batch system in [Friedman, Mehrez, 
1992]. 

The weighting vector that produces a certain Pareto optimal solution is not nec­
essarily unique. This is particularly true for linear problems. A method is presented 
in [Steuer, 1986] for determining ranges for weighting vectors that produce the same 
solution. Notice that some weighting vectors may produce unbounded single objective 
optimization problems. This does not mean that the problem could not have feasihle 
solutions with some other weighting vectors. 

A method for reducing the Pareto optimal set (of an MOLP problem) before it is 
presented to the decision maker is suggested in [Soloveychik, 1983]. Pareto optimal 
solutions are generated by the weighting method. Statistical analysis (factor analysis) 
is used to group and partition the Pareto optimal set into groups of relatively homo­
geneous elements. Finally, typical solutions from the groups are chosen and presented 
to the decision maker. 

In [Hansen, Labbe, Wendell, 1989], sensitivity analysis is considered in solving 
linear multiobjective optimization problems by the weighting method. The authors 
determine the maximum percentage by which all the weighting coefficients can deviate 
simultaneously and independently from their values while the same optimal basis 
retains. They also consider the situation when ranges are given to the weighting 
coefficients. This case can be exploited to enlarge the maximum percentage. 

The weighting method can be used so that the decision maker specifies a weighting 
vector representing her or his preference information. In this case, the weighted-sums 
problem can be considered (a negative of) a value function (remember that value 
functions are maximized). Notice that, according to Remark (1.7.5), the weighting 
coefficients provided by the decision maker are now nothing but marginal rates of 5ub­
stitution (mij = wi/wi)- A method for assisting in the determination of the weight­
ing coefficients is presented in [Batishchev, Anuchin, Shaposhnikov, 1991]. When the 
weighting method is used in this fashion, it can be considered to belong to the class 
of a priori methods. This method can also be extended into an interactive form by 
letting the decision maker modify the weighting vectors after each iteration. 

Let us for a while consider the weighting method as an a priori method. A remark­
able point is that the objective functions should be normalized or scaled so that their 
criterion values were approximately of the same magnitude. Only in this way one can 
control and manoeuvre the method to produce solutions of a desirable nature in pro­
portion to the ranges of the objective functions. Otherwise the role of the weighting 
coefficients may be greatly misleading. It is suggested in [Steuer, 1986] that every 
objective function is multiplied by a range equalization factor K;. The range Ri off; 
is estimated by the difference between the (possibly approximated) nadir point and 
the ideal criterion vector. Now, 

K l 1
i = R; "'k _!__

L,j=l R; 
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for every i = 1, ... , k. A simpler way, suggested in [Osyczka, 198 4, 199 2], is to divide 
each objective function by its ideal criterion value. It is remarked in [Hobbs, 1986] 
that instead of relative importance, the weighting factors should represent the rate at 
which the decision maker is willing to trade off values of objective functions. 

It must be noticed that if some of the objective functions correlate with each other, 
then seemingly "good" weighting vectors may produce poor results and seemingly 
"bad" weighting vectors may produce good results (see [Steuer, 1986], pp. 198-199, 
for an illustrative example). 

Wierzbicki points out in [Wierzbicki, 1986(b )] that "experience in application of de­
cision support systems shows that weighting coefficients are not easy to be interpreted 
and understood well by an average user." 

A modification of the weighting method has been presented in [Kanniappan, 1988]. 
The decision maker can give either upper bounds or lower bounds or both of them 
for the weighting vector and the problem is solved with the aid of this information. 
An extended version of this method with an implementation is given in [Miettinen, 
1990]. 

It is suggested in [Koski, Silvennoinen, 1987] that the weighting method can be used 
to reduce the number of the objective functions before the actual solution process. The 
original objective functions are divided into such groups that a linear combination of 
the objective functions in each group forms a new objective function, and these new 
objective functions form a new multiobjective optimization problem. The authors 
state that every Pareto optimal solution of the new problem is also a Pareto optimal 
solution of the original problems, but the reverse result is not generally true. 

Concluding Remarks 

Sometimes, the results concerning the weighting method are presented in a simpler 
form, assuming that zeros are not accepted as weighting coefficients. It may seem 
that the weighting factor zero makes no sense. It means that we have included in the 
problem some objective function that has no significance at all. Nevertheless, zero 
values have here been included to make the presentation more general. On the other 
hand, by allowing also zeros as weighting coefficients, it is easy to explore how the 
solutions change when some objective function is dropped. 

Applying Theorem 2.2.3, we know that different Pareto optimal solutions can be 
obtained by the weighting method by altering the positive weighting coefficients. 
However, in practical calculations the condition w; 2: c, where c > 0, must be used 
instead of the condition w; > 0 for all i = 1, ... , k. All the Pareto optimal solutions 
in some convex problems may be found if c is small enough, but the concept of "small 
enough" is problem-dependent and for this reason difficult to specify in advance, as 
pointed out in [Korhonen, Wallenius, 1989(a)]. 

As observed before, the weakness of the weighting method is that all of the Pareto 
optimal points cannot be found if the problem is nonconvex. If this is the case, a 
duality gap is said to occur (according to duality theory). 

Employing the weighting method as an a priori method presumes that the decision 
maker's underlying value function is or can be approximated by a linear function (see 
Section 1.4). It is in many cases a rather simplifying assumption. It must be noticed 
that altering the weighting vectors linearly does not have to mean that the values of 
the objective functions should change linearly. 
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2.3. £-Constraint Method 

In the €-constraint method, introduced in [Haimes, Lasdon, Wismer, 1971], one of 
the objective functions is selected to be optimized and all the other objective functions 
are converted into constraints by giving an upper bound for each of them. Now the 
problem to be solved is of the form 

(2.3.1) 

mm1m1ze ft(x) 

subject to fi(x) :S cj for all j = 1, ... , k, j # e,

X ES. 

In [Lin, 1976(a), (b )], Lin has proposed a method where proper equality constraints 
are used instead of the above-mentioned inequalities. The solutions obtained by Lin's 
method are Pareto optimal under certain assumptions. Here we, however, concentrate 
on the formulation (2.3.1). 

Theoretical Results about Pareto Optimality 

First, we prove a result concerning weak Pareto optimality. 

Theorem 2.3.2. Let x* ES be a solution of the €-constraint problem (2.3.1). Then 
it is weakly Pareto optimal. 

Proof. Let x* E S be a solution of the €-constraint problem. Let us assume that x* 

is not weakly Pareto optimal. In this case, there exists some other x E S such that 
fi(x) < Jj(x*) for all j = 1, ... , k.

This means that fi(x) < Jj(x*) :S cj for all j = 1, ... , k, j # e. Thus x is 
fea8ihle for the F.-constraint problem. While in a<l<lition h(x) < ft (x*), we have a 
contradiction with the assumption that x* is a solution of the €-constraint problem. I 

Next, we handle Pareto optimality and the €-constraint method. 

Theorem 2.3.3. A decision vector x* E S is Pareto optimal if and only if it is a 
solution of the €-constraint problem (2.3.1) for every f_ = 1, ... , k, where €j = Jj(x*) 
(j = 1, ... ,k, j # f-). 

Proof. Necessity: Let x* be Pareto optimal. Let us assume that it does nut :mlve 
the €-constraint problem for some f_ where €j = fi(x*) (j = 1, ... , k, j # f-). Then 
there exists a solution x E S such that h(x) < h(x*) and Jj(x) :S fi(x*) when j # e. 
This contradicts the Pareto optimality of x*. 

Sufficiency: Since x* is by assumption a solution of the €-constraint problem for 
every f_ = 1, ... , k, there is no x E S such that h(x) < h(x*) and fi(x) :S fi(x*) 
when j # e. This is the definition of Pareto optimality for x*. I 

Notice that according to the "necessity"-part of Theorem 2.3.3, it is possible to 
find every Pareto optimal solution of any multiobjective optimization problem by the 
€-constraint method regardless of the convexity of the problem. 
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Theorem 2.3.4. Ifx* E Sis a unique solution of the c:-constraint problem (2.3.1) 
for some f with c:1 = fi(x*) (j = 1, ... , k, j -::j:. R,), then x* is Pareto optimal.

Proof. Let x* E S be a unique solution of the €-constraint problem for some f. Let 
us assume that it is not Pareto optimal. In other words, there exists some point 
x0 E S such that f;(x0) � f;(x*) for all i = 1, ... , k and for at least one index
j is fi(x0) < fi(x*). The uniqueness of x* means that for all x E S such that
f;(x) � f;(x*), i -/- f, is ft(x*) < ft(x). Here we have a contradiction with the 
preceding inequalities and x* must be Pareto optimal. I 

The following theorem is a straightforward extension of Theorem 2.3.4. 

Theorem 2.3.5. For any given upper bound vectore = (c:1, ... , cf-l, c£+1 , ... ,c:k)T , 
an optimal solution of the €-constraint problem (2.3.1) is Pareto optimal ifit is unique. 

Proof. Let x* E S be a unique solution of the problem (2.3.1). This means that 
fc(x*) < h,(x) for all x ES when f1(x*) � c:1 for all j -::j:. f. Let us assume that x* is 
not Pareto optimal. In this case, there exists a vector x0 E S such that f;(x0) � f;(x*)
for all i = 1, ... , k and the inequality is strict for at least one index j. 

If j = f, this means that h,(x0) < h,(x*) and f;(x0) � f;(x*) � c:1 for all i -::j:. f.
Here we have a contradiction with the fact that x* is a solution of the €-constraint 
problem. 

On the other hand, if j -/- f, then fi(x0) < Jj(x*) � c:1, f;(x0 ) � f;(x*) � c; for
all i -::j:. j and R, and ft(x0) � h,(x*). This is a contradiction with x* being a unique
solution of the €-constraint problem. I 

In Figure 8, different upper bounds for the objective function fz are given, while 
the function Ji is to be minimized. The Pareto optimal set has been illustrated by a 
fat line. The upper bound level c:1 is too tight and the feasible region becomes empty. 
On the other hand, the level c:4 does not restrict the region at all. If it is used as the 
upper bound, the point z4 is obtained as a solution. It is Pareto optimal according to 
Theorem 2.3.5. Correspondingly, for the upper bound c:3 the point z3 is obtained as 
a Pareto optimal solution. The point z2 is the optimal solution for the upper bound 
c:2 • Its Pareto optimality can be proved according to Theorem 2.3.4. Also Theorem 
2.3.3 can be applied. 

The relationships between the weighting method and the €-constraint method are 
presented in the following theorems. 

Theorem 2.3.6. Let w be a weighting vector such that x* E S is a solution of the 
corresponding weighting problem (2.2.1). Then 

(1) if Wt > 0, x* is a solution of the €-constraint problem for fe as the objective
function and €j = fi(x*) (j = 1, ... , k, j -::j:. f); or

(2) ifx* is a unique solution of the weighting problem (2.2.1), then x* is a solution
of the €-constraint problem when c:1 = fi(x*) for every ft, R, = 1, ... , k, as the
objective function.

Proof. Let x* ES be a solution of the weighting problem (2.2.1) for some weighting 
vector w.
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Figure 8. Different upper bounds for the €-constraint method. 

( 1) In this case,

(2.3.7) 

for all x ES. 

k k 

L wdi(x) ?: L wdi(x*) 
i=l i=l 

Let us assume that x* is not a solution of the €-constraint problem. Then there 
exists a point x E S such that fe(x) < fe(x*) and fi(x) S fi(x*) when j -:f.£. We 
assumed that we > 0 and Wi ?: 0 when i -:f. P,. Now we have 

0 > we(fe(x) 
-

fe(x*)) + L wi(f;(x)
- fi(x*)),

i=;fi 

which is a contradiction with the inequality (2.3. 7). Thus x* is a solution of the 
€-constraint problem. 

(2) If x* iE: a unique wlution of the weighting problem, then for n,ll x C S io

(2.3.8) 
k k 
L wd;(x*) < L w;f;(x). 
i=l i=l 

If there is some objective function fe such that x* does not solve the €-constraint 
problem when fe is to be minimized, then we can find a solution x E S such that 
fe(x) < fe(x*) and fi(x) S fi(x*) when j -:f. £. This means that for any w ?: 0 is 

I:7=1 wi(fi(x.) - f;(x*)) S 0. This contradicts the inequality (2.3.8). Thus x* is a
solution of the €-constraint problem for all fe to be minimized. I 

Theorem 2.3.9. Let the multiobjective optimization problem be convex. Hx* ES 
is a solution of the €-constraint problem (2.3.1) for any given fe to be minimized and 
€j = fi(x*) when j -:f.£, then there exists a weighting vector w (wi ?: 0, I:7=1 w; = 1)
such that x* is also a solution of the weighting problem (2.2.1). 

Proof. The proof needs a so-called generalized Gordon theorem. See [Chankong, 
Haimes, 1983(b )], p. 121. 
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Now we have appropriate tools for proving Theorem 2.2.5 from the previous section. 

Proof of Theorem 2.2.5. Since x* is Pareto optimal, it is by Theorem 2.3.3 a 
solution of the €-constraint problem for every objective function fe to be minimized. 
The proof is completed with the aid of the convexity assumption and Theorem 2.3.9. I 

A diagram representing several results about the characterization of Pareto optimal 
solutions and optimality conditions of the weighting method, the €-constraint method 
and a so-called j th Lagrangian method, their relations and connections is presented 
in [Chankong, Haimes, 1982, 1983(b )]. The jth Lagrangian method (presented in 
[Benson, Morin, 1977]) means solving the problem 

(2.3.10) 
minimize !J(x) + L u;f;(x)

i#j 
subject to x E S,

where u = (u1, ... , Uj-I, Uj+i, ... , uk)T and u; 2:: 0 for all i-# j. The jth Lagrangian 
method is in a computational viewpoint almost equal to the weighting method. This 
is why it is not studied more closely in this presentation. Chankong and Haimes have 
treated the problems separately to emphasize two ways of arriving at the same point. 

Theoretical Results about Proper Pareto Optimality 

Let us now return to the €-constraint problem and the proper Pareto optimality 
of its solutions. In [Benson, Morin, 1977] an auxiliary function, called perturbation 
function, v: R k-I -, R associated with the €-constraint problem has been defined in 
the form (modified here for the minimization problem) 

v(y) = inf {fe(x) I !J(x) - c:1::; Yi for all j-::/:- £}. 
xES 

(The optimal value of the objective function of the €-constraint problem is v(O).) Now 
we can define the stability of €-constraint problems. 

Definition 2.3.11. The €-constraint problem (2.3.1) is said to be stable when v(O)
is finite and there exists a scalar R > 0 such that, for all y -# 0 

v(O) - v(y) 
R 

IIYII ::; 
.

After this, a theorem concerning the proper Pareto optimality of the solutions of 
the €-constraint problem can be presented. 

Theorem 2.3.12. Let the multiobjective optimization problem be convex and let
x* E S be a Pareto optimal solution. Then x* is properly Pareto optimal if and only
if the c:-constraint problem (2.3.1) is stable for each£= 1, ... , k, where c:1 = fi(x*)
for all j-# £. 

Proof. See [Benson, Morin, 1977] or [Sawaragi, Nakayama, Tanino, 198 5], p. 88. 
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Let us now suppose that the feasible region is of the form 

S = {x E Rn I g(x) = (g1(x),g2(x), ... ,gm(x)f � O}.

The c-constraint problem is a constrained single objective optimization problem 
and it can be converted into an unconstrained problem by formulating a Lagrange 
function of the form 

m 

ft(x) + I.:>,iUi(x) - cj) + L µigi(x). 
j#i i=l 

Setting some assumptions on the Lagrange multipliers l E R k-l andµ E Rm, we can 
get more conditions for proper Pareto optimality. 

Before we can go on, we must define a so-called regular point. 

Definition 2.3.13. A point x* E S is said to be a regular point of the constraints 
of the €-constraint problem if the gradients of the active constraints at x* are linearly
independent. 

(The vectors vi, i = 1, ... , m, are linearly independent if the only weighting coeffi­
cients Wi for which I:Z:.

1 
W iVi 

= 0 are w; = 0, i = 1, ... , m.) 
For clarity, we shall now formulate the classical necessary Karush-Kuhn-Tucker 

conditions for optimality (see [Kuhn, Tucker, 1951]) applied to the c-constraint prob­
lem. The proof for general nonlinear problems is presented, for example, in [Kuhn, 
Tucker, 1951] and [Luenberger, 1984], p. 315. The conditions can also be derived 
from the optimality conditions for multiobjective optimization problems which were 
presented in Section 1.10. Notice that we assume here the above-defined constraint 
qualification, regularity. 

Remark 2.3.14. Necessary K arush-Kuhn-Tucker optimality conditions applied to 
the €-constraint problem: Let the objective and the constraint functions be continu­
ously differentiable. Let x* E S be a regular point of the constraints of the €-constraint
problem. If x* is a (local) minimum of the €-constraint problem, then there exists a 
set of (Kuhn-Tucker) multipliers O � l E Rk-l and O � µ E Rm such that

and 

m 

"v ft(x*) + L Aj "v(fj(x*) - Ej) + L µi"vgi(x*) = 0
j# i=l 

Notice that the Lagrange multipliers are here called Kuhn-Tucker multipliers, when 
they are associated with the Karush-Kuhn-Tucker optimality conditions. Now we can 
present the following theorem. 
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Theorem 2.3.15. Let x* E S be a regular point of the constraints of the c:­
constraint problem and let all the objective and the constraint functions be continu­
ously differentiable. 

(1) If x* is a properly Pareto optimal solution, then x* solves the c:-constraint
problem for some!£ being minimized and E:j = fi(x*) (j -:f. R) with all the Kuhn­
Tucker multipliers associated with the constraints Jj (x) :S C:j (j -:f. R) being strictly 
positive. 

(2) If the multiobjective optimization problem is convex, then x* is a properly
Pareto optimal solution if it is a solution of the c-constraint problem with the Kuhn­
Tucker multipliers associated with the constraints being positive for all j -:f. R. 

Proof. See [Chankong, Haimes, 1983(b )] , p. 143. 

It can also be proved that if some solution is improperly Pareto optimal and the 
problem is convex, then some of the associated Kuhn-Tucker multipliers equal zero. 
On the other hand, if some of the Kuhn-Tucker multipliers equals zero, then the solu­
tion of the c-constraint problem is improperly Pareto optimal (see, e.g., [Chankong, 
Haimes, 1983(a)]). 

If the multiobjective optimization problem is solved by the c-constraint method, 
the proper Pareto optimality can be checked by employing the Lagrange function. 
In the previous section in connection with the weighting method, we also presented 
some conditions for proper Pareto optimality. There are many methods where proper 
Pareto optimality is difficult to guarantee algorithmically. For the following two 
scalarization types, proper Pareto optimality has been studied. 

In [Benson, Morin, 1977], proper Pareto optimality is characterized with the help 
of the jth Lagrangian problem (2.3.10). Wendell and Lee use in [Wendell, Lee, 1977] 
the function (1.9.1) that has characteristics from both the weighting method and the 
c-constraint method. Optimality conditions for Pareto optimality and proper Pareto
optimality are presented by assuming certain properties on the function and on the
weighting coefficients.

Connections with Trade-Off Rates 

The relationships between the Kuhn-Tucker multipliers and the trade-off rates have 
been studied in [Haimes, Chankong, 1979] and [Chankong, Haimes, 1983(b )]. Indeed, 
under certain conditions which are presented in the following, the Kuhn-Tucker mul­
tipliers of the Lagrange problem are equivalent to the trade-off rates. 

For the convenience of notations we state the second-order sufficiency conditions for 
the c-constraint problem. See [Chankong, Haimes, 1983(b )] for an exact mathematical 
formulation. 

The second-order sufficiency conditions for the c-constraint problem require that 
the optimality conditions of Remark 2.3.14 are satisfied and the Hessian matrix of the 
corresponding Lagrange function is positive definite on the subspace corresponding to 
the supporting hyperplane to the active constraints surface where the Kuhn-Tucker 
multipliers of the active constraints are strictly positive. 

The connection between Kuhn-Tucker multipliers and trade-off rates is presented 
in the following theorem. The upper bound vector is denoted by e0 E R k-l.
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Theorem 2.3.16. Let x* E S be a solution of the €-constraint problem for some 
ft (f = 1, ... , k) to be minimized (where the vector of upper bounds c0 E Rk -l is 
chosen such that feasible solutions exist). Let >.1 = Atj (j =/= e) be the corresponding 
Kuhn-Tucker multipliers associated with the constraints Ji(x) � t:'J (j =/= e). H 

(1) x* is a regular point of the constraints of the €-constraint problem,
(2) the second-order sufflciency conditions are satisfied at x*, and
(3) there are no degenerate constraints at x* (i.e., the Kuhn-Tucker multipliers of

all the constraints are strictly positive),

then Af,j = - d tx*) for all j =I= e. 
J 

Proof. The proof is based on the implicit function theorem, see [Luenberger, 1984], 
p. 313.

From the assumption >.1(fi(x*) - i:;j) = 0 for all j =/= e of the Karush-Kuhn-Tucker
optimality conditions and the non degeneracy of the constraints we know that Ji ( x*) =
c:1 for all j =/= e. Thus from Theorem 2.3.16 we have trade-off rates

d ft(x*) 

dfi(x*) 
for all J =/= e.

An important result about the relationships between the Kuhn-Tucker multipliers 
and trade-off rates in a more general situation, where also zero-valued multipliers are 
accepted, is presented in the following. For notational reasons we now suppose that 
the function to be minimized in the €-constraint problem is fk (i.e., we set ft = fk). 
This does not lose any generality. For details and a more extensive form of the theorem 
we refer to [Chankong, Haimes, 1983(b)]. 

Theorem 2.3.17. Let x* E S be a solution of the €-constraint problem (when fk 
is minimized and t:0 E Rk-l is chosen so that feasible solutions exist) such that 

(1) x* is a regular point of the constraints of the €-constraint problem,
(2) the second-order sufflciency conditions are satisfied at x*, and
(3) all the active constraints at x* are nondegenerate.

Let Akj be the optimal Kuhn-Tucker multipliers associated with the constraints 
fi(x) � t:'J, j =/= k. Without loss of generality we can assume that the first p 
(1 � p � k - 1) of the multipliers are strictly positive (i.e., Akj > 0 for j = 1, .. . ,p) 
and the rest k - 1 - p multipliers equal zero (i.e., Akj = 0 for j = p + 1, ... , k - 1). 
We denote the criterion vector corresponding to x* by z* E Z. 

(1) If p = k -1, that is, all the Kuhn-Tucker multipliers are strictly positive, then
the Pareto optimal surface in the feasible criterion region in the neighbour­
hood ofz* can be represented by a continuously differentiable function Jk such
that for each (z1, ... , zk) in the neighbourhood of z* is Zk = Jk(z1, . . .  , Zk-1)­
Moreover, for all l � j � p

Thus Akj represents the partial trade-off rate between fk and f1 at x*.
(2) If 1 � p < k - 1, that is, some of the Kuhn-Tucker multipliers equal ze­

ro, then the Pareto optimal surface in the feasible criterion region in the
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neighbourhood of z* can be represented by continuously differentiable func­
tions Zj = fJ(z1, ... , zp, c:;+1, ... , t:%_1) for j = p + l, ... , k. Moreover, for all
l'.Si'.Sp

,\ dfk ( * * o O ) Vfk(x*)Tdi ki = -
df; z1,···,zp ,c:p+1,···,c:k-1 = Vf;(x*)Tdi'

where d* is the direction of dx(e0)/dc:;. In addition, for all p + l :S j :S k - l,
dfJ

( 
* * o O ) f ( *)r dx(e0

) 

d f; z1,···,zp ,c:p+1,···,c:k-1 =V j x �-
Thus Aki represents the total trade-off rate between f k and f; at x* 

in the
direction of d x(e0 ) / d t:;.

Proof. See [Chankong, Haimes, 198 3 (b)], pp. 163-165.

Let us now take a look at the contents of Theorem 2.3.17. Part (1) says that under
the specified conditions there are exactly k-1 degrees of freedom in specifying a point
on the (locally) Pareto optimal surface in the criterion space in the neighbourhood
of z*. In other words, when the values for z1, ... , Zk-1 have been chosen from the
neighbourhood of z*, then the value for Zk can be calculated from the given function
and the resulting point z lies on the (locally) Pareto optimal surface in the criterion
space.

Part (2) of Theorem 2.3.17 extends the result of part ( 1) by relaxing the assumption
that all the constraints Ji ( x) :S t:'J, j = 1, ... , k -l, should be active and non degener­
ate (Akj > 0 for all j = 1, ... , k -l). When the number of nondegenerate constraints
is p ( < k - l), then the degree of freedom in specifying a point on the (locally) Pareto
optimal surface in the criterion space in the neighbourhood of z* is the number of
non degenerate active constraints (p). The results of Theorem 2.3.17 will be needed in
Section 2.1 3 when the c:-constraint method is used as a part of an interactive method.

Applications and Extensions 

The c:-constraint method is used for generating Pareto optimal solutions in [Osman,
Ragab, 1986(b )]. Then the solutions are clustered and a global Pareto optimum is
located.

Sensitivity analysis with the c:-constraint method is dealt with in [Rarig, Haimes,
198 3]. The authors define an index approximating the standard deviation of the
optimal solution. The objective and the constraint functions are not supposed to
be known for a certainty. The parameters describing the problem are treated as
independent random variables with known finite mean values and variances. This
index conveys to the decision maker information about the possibility of the actual
solution deviating from the nominal (calculated) solution.

At this point it is worthwhile to mention a method for nonlinear problems presented
in [Osman, Ragab, 1986(a)] which combines features from both the weighting method
and the c:-constraint method. The nonconvex feasible criterion region is divided into
convex and nonconvex parts. The positive feature of the weighting method that the
feasible region is not disturbed in the solution process is utilized in convex parts,
and the capability of the c:-constraint method to find all the Pareto optimal solutions
is utilized in nonconvex parts. Therefore, merits of both these basic methods are
exploited.
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Concluding Remarks 

Theoretically, every Pareto optimal solution of multiobjective optimization prob­
lems can be found by the .::-constraint method by altering the upper bounds and the 
function to be minimized. It must be underlined that even duality gaps in nonconvex 
problems (see, e.g., Section 1.9 and [Chankong, Haimes, 1983(b)]) do not disturb the 
functioning of the .::-constraint method. However, computationally, the conditions 
set by Theorems 2.3.3, 2.3.4 and 2.3.5 are not always very practical. For example, 
according to Theorem 2.3.3 the .::-constraint problem needs to be solved for all !£ as 
objective functions in order to generate one Pareto optimal solution. On the other 
hand, the uniqueness of the solution demanded in the other theorems is not always 
so easy to check, either. 

It may be difficult to specify the upper bounds for the objective functions. The 
components of the ideal criterion vector can be used to help in the specification. Then 
we can set C:j = zJ + ej, where ej is some relatively small positive real number whir.h 
can be altered. 

The .::-constraint method can also be used as an a priori method, where the deci­
sion maker specifies ft and the upper bounds. Then it can characterized as an ad hoe 
method. It means that one can never be completely sure how to select the objective 
function and the upper bounds to obtain a desired solution. This is a common weak­
ness with the a priori weighting method. Computationally, the .::-constraint method 
is more laborious than the weighting method because the number of constraints in­
creases. 

2.4. Method of Corley 

In [Corley, 1980], a method based on the minimization of a real-valued function 
subject to parametric constraints is introduced. Optimality is supposed to be de­
fined by an ordering cone D as presented after Definition 1.2.5. Thus the method 
deals with efficient solutions. Features from both the weighting method and the .::­
constraint method are incorporated. The original method has been here modified for 
minimization problems. 

The problem to be solved is of the form 

(2.4.1) 

mm1m1ze dTf(x) 

subject to f(x) - y E -D, 

X Es, 

where y E Rk is a parameter and d ED+ = {d E Rk I dT
y > 0 for all O i= y ED} 

can be regarded as a weighting vector. Now we have the following result. 

Theorem 2.4.2. Ifx* E S solves tbe problem (2.4.1) for any y E Rk , tben x* is
efflcient. On tbe otber band, ifx* is efficient, tben x* solves tbe problem (2.4.1) for 
y = f(x*). 

Proof. See [Corley, 1980]. 

The set of efficient solutions can be found by solving the problem (2.4.1) with 
methods for parametric constraints (where the parameter is y), see, for example, 
[Rao, 1984]. The Pareto optimal set is found by setting D = Ri and D+ = {fJ E Rk I
/Ji > 0, i = 1, . . .  , k }, see details in [Corley, 1980]. This approach for finding Pareto 
optimal solutions is closely related to the problem (1.9.1) in [Wendell, Lee, 1977]. 
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2.5. Other A Posteriori Methods 

Finally, we briefly mention some other methods of a posteriori type. 
A so-called hyperplane method is introduced in (Yano, Sakawa, 1989] for generating 

Pareto optimal or properly Pareto optimal solutions. It is shown that the weighting 
method, the €-constraint method and the weighted L

p
-metric methods (in Sections 

2.2, 2.3 and 2.7, respectively) can be viewed as special cases of the hyperplane meth­
ods. A theory concerning trade-off rates in the hyperplane method is provided in 
[Sakawa, Yano, 1990]. A generalized hyperplane method for generating all the effi­
cient solutions (with respect to some cone) is presented in [Sakawa, Yano, 1992]. 

Another method for a general characterization of the Pareto optimal set is sug­
gested in [Soland, 1979]. For example, the weighting method, the method of global 
criterion (see Section 2.7) and goal programming (see Section 2.11) can be seen as 
special cases of the general scalar problem of Soland. The weighting method and 
the €-constraint method are utilized in a so-called envelope approach for determin­
ing Pareto optimal solutions in [Li, Haimes, 1987, 1988]. An application to dynamic 
multiobjective programming is also treated. 

The noninferior (meaning here Pareto optimality) set estimation (NISE) method 
for MOLP problems can be considered to belong to this class of a posteriori methods, 
too. It is a technique for generating the Pareto optimal set of two objective functions 
(see [Cohon, 1978]). In (Balachandran, Gero, 1985], the method is extended for 
three objective functions. The weighting method is the basis of the NISE method. In 
[Armann, 1989], a method is presented for generating a dispersed subset of the Pareto 
optimal set which is then presented to the decision maker. 

Multiobjective optimization problems with polynomial objective and constraint 
functions are treated in [Kostreva, Ordoyne, Wiecek, 1992]. The method for de­
termining Pareto optimal solutions is based on the problem (1.9.5) and a so-called 
homotopy continuation. Notice that problems with polynomial functions are highly 
nonlinear, nonconvex and nonconcave. Such problems have not been handled before. 

A scalarization method for multiobjective optimization problems, where optimality 
is defined through ordering cones, is suggested in (Pascoletti, Serafini, 1984]. By 
varying the parameters of the scalar problem it is possible to find all the efficient 
solutions. Further investigation is made in [Sterna-Karwat, 1987]. 

2.6. Methods Where No Articulation of Preference Informa­

tion Is Used 

In no-preference methods, where the opinions of the decision maker are not taken 
into consideration, the multiobjective optimization problem is solved with some rel­
atively simple method and the solution obtained is presented to the decision maker. 
The decision maker may either accept or reject the solution. It seems quite unlike­
ly that the solution best satisfying the decision maker could be found with these 
methods. That is why no-preference methods are suitable for such situations where 
the decision maker does not have any special expectations of the solution and ( s )he 
is satisfied with just some optimal solution. The working order here is l. analyst, 
2. none.

As an example of this class we present the method of global criterion. This approach
is also sometimes called compromise programming. 
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2.7. Method of Global Criterion 

In the method of global criterion, the distance between some reference point and 
the feasible criterion region is minimized. The analyst has to select the reference point 
and the metric for measuring the distances. All the objective functions are thought to 
be equally important. Here we examine the situation where the ideal criterion vector 
is used as a reference point and Lp-metrics are used for measuring. In this case, the 
problem to be solved is 

(2.7.1) mm1m1ze (t (f;(x) - zt)') ,1,
subject to x E S.

From the definition of the ideal criterion vector z* we know that fi(x) 2:: zt for all 
i = 1, . . .  , k and all x E S. This is why no absolute values are needed. The exponent 
1/p may be dropped. The problems with or without the exponent 1/p are equivalent 
for 1 � p < oo since the problem (2. 7.1) is an increasing function of the corresponding 
problem without the exponent. 

If p = oo, the metric is also called a Tchebycheff metric and the problem is of the 
form 

(2.7.2) 
mm1m1ze max [fi(x) - zt] 

l'.Si'.Sk 

subject to x E S.

Notice that the problem (2.7.2) is nondifferentiable. Anyway, it can be transformed 
into a differentiable form as in (2.7.11). 

The solution obtained depends greatly on the value chosen for p. Widely used 
choices are p = l, 2 or oo. In Figure 9, the contours of these three different metrics 
are shown. The black point is the ideal criterion vector and the fat line represents 
the Pareto optimal set. It is worth noticing that if the original problem is linear, the 
choice p = l results in a linear problem. As the value of p increases, the nonlinear 
minimization problem becomes more difficult and badly conditioned to solve. 

For linear problems, the solutions obtained by the Lp-metrics where 1 < p < oo are 
situated between the solutions obtained by the L1 - and L00-metrics. It is illustrated 
in [Zeleny, 1973] that this set of solutions is a part of the Pareto optimal set, but only 
a substantially small part. 

Instead of the terms f;(x)-zt, denominators may be added to the problems (2.7.1) 
and (2.7.2) to normalize the components, that is, to use the terms f;(j;11zf instead.
Some other denominators can also be used. The reason for employing denominators 
is that sometimes it is worthwhile to use relative distances in the calculations. For 
example, using the components of z* forms the contour of the metric to reflect better 
the location of the ideal criterion vector. Of course, the denominators zf cannot be 
used if some of them equals zero. 

A variation of the L00-metric is suggested in [Osyczka, 1989(a), 1992]. There the 
problem to be solved is 

(2.7.3) 
m1n1m1ze i�l�\ [max { I fi

(x
l

t
-

zt I' If;(��� zt I}]
subject to x E S.
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Figure 9. Different metrics. 

The objective functions may be normalized by 

(2.7.4) 

before the distance is minimized. In this case, the range of the new objective functions 
is [O, 1). This normalizing is possible only if the objectives are bounded. However, it 
is usually better to employ the ranges of the Pareto optimal set and replace the max 
term by the component of the approximated nadir point zfad in (2.7.4).

Theoretical Results 

Next, we present some theoretical results concerning the method of global criterion. 

Theorem 2.7.5. Every solution of the problem (2. 7.1) (where 1 :S p < oo) is Pareto
optimal. 

Proof. Let x* E S be a solution of the problem (2.7.1) with 1 :S p < oo. Let 
us suppose that x* is not Pareto optimal. Then there exists a point x E S such 
that f;(x) :S f;(x*) for all i = 1, ... ,k and fi(x) < fi(x*) for at least one j. Now 
(f;(x) - zt)P :S (fi(x*) - zt)P for all i and (fi(x) - zJ)P < (fi(x*)- zJ)P. From this 
we obtain 

k k 

L (f;(x) - zfY < L (f;(x*) - z;y.
i=l i=l 
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When both sides of the inequality are raised into the 1/pth power we get a contradic­
tion with the assumption that x* is a solution of the problem (2.7.1). This completes 
the proof. I 

Yu has pointed out in [Yu, 1973] that if Z is a convex set, then for 1 < p < oo the 
solution of the problem (2.7.1) is unique. 

Theorem 2.7.6. Every solution oftbe problem (2.7.2) is weakly .Pareto optimal. 

Proof. Let x* E S be a solution of the problem (2.7.2). Let us suppose that x* 
is not weakly Pareto optimal. In this case, there exists a point x E S such that 
fi(x) < fi(x*) for all i = 1, . .. , k. It means that, fi(x) - zt < fi(x*) - zt for all i. 
Thus, x* cannot be a solution of the problem (2.7.2). Here we have a contradiction 
which completes the proof. I 

Theorem 2. 7. 7. The problem (2. 7.2) bas at least one Pareto optimal solution. 

Proof. Let us suppose that none of the optimal solutions of the problem (2.7.2) is 
Pareto optimal. Let x* E S be an optimal solution of the problem (2. 7.2). Since 
we assume that it is not Pareto optimal, there must exist a solution x E S which 
is not optimal for the problem (2.7.2) but for which fi(x) :S fi(x*) for all i (and 
/j(x) < /j(x*) for at least one j). 

Now we have fi(x) - zt :S fi(x*) - zt for all i with the strict inequality holding for 
at least one index j, and further maxi[fi(x) - zt] :S maxi[fi(x*) - zt]. Because x*
is an optimal solution of the problem (2. 7.2), x has to be an optimal solution, too. 
This contradiction completes the proof. I 

Corollary 2. 7.8. If the problem (2. 7.2) bas a unique solution, it is Pareto optimal. 

The £00-metric is utilized in [Ecker, Shoemaker, '1980, 1981] to obtain certain sub­
sets of the Pareto optimal set in a linear case. Sufficient conditions for the solution 
of an £

,,
-metric problem to be stable with respect to changes of the feasible region S 

are presented in [Jurkiewicz, 1983]. 

Concluding Remarks 

The method of global criterion is a simple method to be used if the aim is just 
to obtain a solution where no special hopes are set. The properties of the metrics 
imply that if the objective functions are not normalized anyhow, then such an objec­
tive function gets more importance whose ideal criterion value is situated nearer the 
feasible criterion region. 

The solutions obtained with the L
p
-metric (1 :S p < oo) are guaranteed to be Pareto 

optimal. If the £00-metric is used, the solution may be weakly Pareto optimal. In the 
latter case, for instance, the problem (1.9.5) can be used to produce Pareto optimal 
solutions. It is up to the analyst to select an appropriate metric. 

Weighted L
p
-Metrics 

The method of global criterion can also be used to generate Pareto optimal solu­
tions. In this case, weighting coefficients Wi are included in the metrics. At this point, 
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we also briefly present such a method. It can be considered to belong to the classes 
of a posteriori or a priori methods. 

We suppose that w; � 0 for all i and I:7
=1 

w; = l. Now the problems for minimizing 
distances are of the form 

(2.7.9) m1mm1ze (t, w;(/;(x) - zt)') ,i,

subject to x ES 

and 

m1mm1ze 
(2.7.10) 

subject to x ES. 

Again, denominators may be included. Weighting vectors can also be used in connec­
tion with the problem of the form (2.7.3). 

If p = 1, the sum of weighted deviations is minimized (and the problem to be solved 
is equal to the weighting method except a constant). If p = 2, we have a method of 
least squares. When p gets larger, the minimization of the largest deviation becomes 
more important. Finally, when p = oo, the only thing that matters is the weighted 
relative deviation of one objective function. 

The problem (2. 7.10) is nondifferentiable as its unweighted counterpart. It can, 
however, be solved in a differentiable form as long as the objective and the constraint 
functions are differentiable. In this case, instead of the problem ( 2.7.10), the problem 

(2.7.1 1) 

m1mm1ze a 

subject to a� w;(f;(x) - zt), for all i = 1, ... , k,

X Es,

is solved, where both x and a E R are variables. This formulation will be utilized 
later in this presentation. 

In the following, we present some theoretical results concerning the weighted met­
rics. Most of the proofs so closely remind those presented earlier that there is no 
reason to repeat them. 

Theorem 2. 7.12. Tbe solution x* E S of tbe problem (2. 7.9) (wben 1 :S p < oo) 
is Pareto optimal if (i) tbe solution is unique; or (ii) tbe weigbting coefficients are 
positive (w; > 0 for all i = 1, ... , k). 

Proof. The proof is not presented here since it follows directly from the proofs of 
Theorems 2.2.3, 2.2.4 and 2.7.5. See [Yu, 19 7 3], or [Chankong, Haimes, 1983(b)], 
p. 1 4 4.

Theorem 2.7.13. Every solution of tbe problem (2. 7.10) is weakly Pareto optimal 
if w; > 0 for all i = 1, ... , k. 

Proof. The proof is a straightforward modification of the proof of Theorem 2.7.6. 
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Theorem 2.7.14. The problem (2.7.10) has at least one Pareto optimal solution.

Proof. The proof follows directly from the proof of Theorem 2. 7. 7.

Convexity of the multiobjective optimization problem is needed in order to guar­
antee that every Pareto optimal solution can be found by the weighted Lp-metric
(2.7.9). The following theorem shows that, on the other hand, every Pareto optimal
solution can be found by the weighted L00-metric (2. 7.10). 

Theorem 2.7.15. Let x* E S be a Pareto optimal solution. Then there exists a
weighting vector w, where w; > 0 for all i = 1, ... , k, such that x* is an optimal
solution of the problem (2. 7.10), where the reference point is z** = z* - e (where
e E Rk is any vector with t:; > 0 for all i = 1, ... , k).

Pruuf. Let x* E S be a Pareto optimal solution. Let us assume that there does not 
exist a weighting vector w > 0 such that x* is a solution of the problem (2.7.10).
We know that f;(x) > zt* for all i = 1, ... , k and for all x E S. Now we choose 
w; = f;(x•)-zf* for all i = 1, ... , k, where /3 > 0 is some normalizing factor.

According to the antithesis, there exists another point x
0 E S that is not Pareto

optimal and that is a solution of the problem (2.7.10), meaning that

max [w;(f;(x
0) - zt*)] � max [w;(f;(x*) - z;*)]

' ' 

= max [
1 ( ( ** 

(f;(x*) - zt*)] = {3. 
' i X* - Z; 

Thus w;(f;(x0 ) - zt*) � f3 for all i = 1, ... , k. This means that

/3
(f·( 0) - **) < /3 

f;(x*) - zt* ' x z; - '

and after simplifying the expression we have

for all i = 1, ... , k. Because x* is Pareto optimal, we must have f;(x0 ) = J;(x*) for
all i. Because x0 is a solution of the problem (2.7.10), also x* must be. Here we have
a contradiction which completes the proof. I 

The theorem above sounds quite promising for the weighted L00-metric. Unfortu­
nately, the metric is not so overwhelming as one could deduce. In addition to the
fact that every Pareto optimal solution can be found, weakly Pareto optimal solutions
may also be included. Auxiliary calculation is needed in order to identify the weak
ones. 

An interesting result concerning trade-off rates and the weighted L00-metric has
been proved in [Yano, Sakawa, 1 987]. The problem (2.7.1 1) is formulated as a La­
grange function and the trade-off rates are obtained from the Kuhn-Tucker multipliers
under certain assumptions. This procedure is not treated here in more detail because
of its close similarities with the approach presented in Section 2.3 in connection with
the t:-constraint method. A differentiating factor is that the weighting coefficients
have an essential role in these trade-off rates.
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Applications and Extensions of Weighted L
p
-Metrics 

A shape optimization problem of a spillway profile is solved by the weighted L2-

metric (with denominators) in [Wang, Zhou, 1990]. An extension of the weighted 
method of global criterion called composite programming is presented in [Bardossy, 
Bogardi, Duckstein, 1985]. The method is applied to a problem of multiobjective 
watershed management. 

More results about the properties of the L
p
-metrics (1 :S p < oo) with and without 

the weighting coefficients can be found in [Yu, 1973], [Chankong, Haimes, 1983(b)], 
[Nakayama, 1985(a)], [Koski, Silvennoinen, 1987] and [Bowman, 1976], the last one 
treating especially the L00-metric. Some results about the proper efficiency (in the 
sense of Henig) of the solutions of the weighted L

p
-metric are presented briefly in 

[Wierzbicki, 1986(b )]. 
One way to apply the weighted L00-metric successfully will be introduced in Section 

2.17. The weighted L00-metric may also be augmented (see Section 2.17). In this case, 
all the solutions are Pareto optimal but not all of them are necessarily found. More 
information about the augmented weighted L00-metric is presented, for example, in 
[Steuer, Choo, 1983] and [Steuer, 1986]. Necessary and sufficient conditions for proper 
efficiency (in the sense of Henig) are provided in [Kaliszewski, 1985, 1986] with the 
help of the augmented weighted L00-metric. 

Results for a generalized L00-metric approach are presented in [Dauer, Osman, 
1985]. An extended generalized L00-metric is presented to characterize properly Pare­
to optimal solutions of nonconvex multiobjective optimization problems in [Choo, 
Atkins, 1983]. 

2.8. Methods Where A Priori Articulation of Preference In­

formation Is Used 

In the a priori methods, the decision maker must specify her or his preferences, 
hopes and opinions before the solution process. The difficulty is that the decision 
maker does not necessarily know beforehand what is possible to attain in the prob­
lem and how realistic the expectations are. The working order in these methods 
is: 1. decision maker and 2. analyst. 

In the following, we handle three a priori methods. The approach of value function 
optimization was already mentioned earlier. Here we present it again briefly. Then 
we introduce the lexicographic ordering and goal programming. 

2.9. Value Function Method 

Introduction 

In the value function method, the decision maker must be able to give an accurate 
and explicit mathematical form of the value function U: R k - R that represents her 
or his preferences globally. The function provides a complete ordering in the criterion 
space. Then the problem 

(2.9.1) 
max1m1ze U ( f( x)) 

subject to x E S 

57 



is to be solved by some method for single objective optimization as illustrated in 
Figure 10. The fat line represents the Pareto optimal set. Remember Theorem 1.4.2, 
which says that the solution of the problem (2.9.1) is Pareto optimal if the value 
function is componentwise decreasing. 

' 

' 

' 

' 

' 

' 

' 

' 

contours of U 

z 

z 1 

Figure 10. Contours of the value function. 

The value function method seems to be a very simple method, but the difficulty 
lies in specifying the mathematical expression of the value function. This unability 
to encode the decision maker's underlying value function reliably is demonstrated 
in [deNeufville, McCord, 1984] by experiments. It is shown that encoding methods 
which should theoretically produce identical value functions fail; the functions may 
differ from each other by more than 50 %. It is also pointed out that there is no actual 
analysis of the accuracy of the value function assessment. The consistency checks, 
that is, whether decision makers provide consistent answers to similar questions, are 
not adequate: a biased instrument can provide consistent data. 

On the other hand, if it were possible for the decision maker to express her or his 
preferences globally, the resulting preference structure might be too simple, since value 
functions cannot represent intransitivity or incomparability (see [Rosinger, 1985]). 
More features and weaknesses were presented in connection with the definition of the 
value function (Definition 1.4.1) in Section 1.4. 

The value function method could be called an "optimal" way of solving multiob­
jective optimization problems, if the decision maker could reliably present the value 
function. The use of the value function method is restricted in practice to multiat­
tribute decision analysis problems with a discrete set of feasible alternatives. The 
theory of value and utility functions for multiattribute problems has been examined 
broadly in [Keeney, Raiffa, 1976]. It is believed, in [Rosenthal, 1985], that the expe­
riences can be utilized also in continuous cases. 

Important results about value functions and conditions for their existence have 
been gathered in [Dyer, Sarin, 1981]. Two general classes of value functions, additive 
and multiplicative forms, are presented widely in [Keeney, Raiffa, 1976] and briefly in 
[Rosenthal, 1985]. General properties and some desirable features of certain types of 
value functions ( e.g., max-min, min-sum and exponential forms) are stated in [Soland, 
1979], [Stam, Lee, Yu, 1985], [Choo, Chew, 1985], [Bell, 1986], [Harrison, Rosenthal, 
1988] and [Sounderpandian, 1991]. More examples of value functions are given in [Tell, 
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Wallenius, 1979]. Relations between value functions, ordering cones and (proper) 
efficiency are studied in [Henig, 1990]. 

In some interactive methods, it is supposed that the value function is of some par­
ticular ( e.g., additive or exponent) form and then its parameters are fitted according 
to the decision maker's preferences. Such methods are presented, for example, in 
[Sakawa, Seo, 1980, 1982(a), (b)] (see Section 2.15) and [Rothermel, Schilling, 1986]. 
Three kinds of conditions for value functions under which it is not possible to exclude 
any Pareto optimal or properly Pareto optimal solution from consideration a priori 
are identified in [Soland, 1979]. 

Relationships between the method of global criterion ( see Section 2. 7) and the value 
function method are investigated in [Ballestero, Romero, 1991]. One could think that 
there is nothing in common between those methods, since a value function represents 
the opinions of the decision maker and the method of global criterion does not take 
the decision maker into consideration. However, conditions can be set to the value 
function to guarantee that its optimum belongs to the solution set obtainable by the 
method of global criterion. 

Concluding Remarks 

The value function method is an excellent method if the decision maker happens to 
know an explicit mathematical formulation of the value function and if that function 
represents totally the preferences of the decision maker. These two serious precondi­
tions are the difficulties of the approach. 

There are certain conditions which the decision maker's preferences must satisfy so 
that a value function can be defined on them. The decision maker must, for instance, 
be able to specify consistent (implying transitive) preferences. Thus, there does not 
necessarily exist a value function which imposes a total order in the set of feasible 
criterion vectors. It is reminded in [Polak, Payne, 1976] that the assumption of a 
total order is often contrary to our intuitive aims and hence is quite likely to lead 
to less than ideal selections. This fact must be kept in mind in the following, when 
several methods are introduced which assume the existence of a value function ( at 
least implicitly). 

One important thing to keep in mind in practice is that the aspirations of the 
decision maker may change during the solution process. A notable question is aroused 
in [Steuer, Gardiner, 1990]: "Does this mean that the decision maker's value function 
can change considerably during a short time and is thus unstable or is it so difficult 
for the decision maker to really know the value function without interaction with the 
solution process?" More open questions concerning value functions have been listed 
in [Nijkamp, Rietveld, Spronk, 1988]. 

The weighting method presented in Section 2.2 may be regarded as a special case 
of a value function, where the utilities are linear and additive. If the underlying value 
function is assumed to be linear, this means that the marginal rates of substitution 
of the decision maker are constant at every solution. See comments on this feature in 
Section 2.11. 
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2.10. Lexicographic Ordering 

Introduction 

In the lexicographic ordering the decision maker must arrange the objective func­
tions according to their absolute importance. This ordering means that the more 
important objective is infinitely more important than the le:;:; important objective. 
After the ordering, the most important objective function is minimized subject to the 
original constraints. If this problem has a unique solution, it is the solution of the 
whole multiobjective optimization problem. Otherwise, the second most important 
objective function is minimized. Now, in addition to the original constraints, a new 
constraint is added. This new constraint is there to guarantee that the most important 
objective function preserves its optimal value. If this problem has a unique solution, 
it is the solution of the original problem. Otherwise, the process goes on accordingly. 
Lexicographic orders and utilities are widely examined in [Fishburn, 1974). 

An example of lexicographic ordering is presented in Figure 11. There are two 
objective functions where the first one is the most important. After minimizing the 
first objective, there are two points left and after minimizing the second objective, the 
point z1 is obtained as the final solution. The fat line represents the Pareto optimal set 
in the figure. This example is somewhat too positive since all the objective functions 
have their effect on the solution process. 

z 

Figure 11. Lexicographic ordering. 

Now we can present the following result about the Pareto optimality of the solutions. 

Theorem 2.10.1. 
optimal. 

A solution obtained by the lexicographic ordering is Pareto 

Proof. Let x* E S be a solution obtained by the lexicographic ordering. Let us 
assume that it is not Pareto optimal. In this case, there exists a point x E S (x -f x*) 
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such that fi(x) � fi(x*) for all i = 1, ... , k and for at least one j the inequality is 
strict, that is, fi(x) < fi(x*). 

Let be i = l. From the definition of the lexicographic ordering we know that 
Ji attains its minimum at x*. Since also Ji (x) � Ji (x*), it is only possible that 

fi(x) = fi(x*). 
There are two possibilities in determining the lexicographic optimum. Either 

a unique solution is found during the optimization process, or optimizations are 
performed for every i = 1, ... , k. In the latter case, when i = 2, we also have 
h(x) = h(x*) and with similar reasoning we have that fi(x) = fi(x*) for every 
i = 1, ... , k. This contradicts the assumption of strict inequality. Thus, x* is Pareto 
optimal. 

On the other hand, if the lexicographic ordering stops before every objective func­
tion has been examined, this means that a unique solution x* has been obtained for fi. 
The assumption f;(x) � fi(x*) implies that J;(x) = J;(x*), which is a contradiction. 
Thus, x* is Pareto optimal. I 

In [Ben-Tal, 1980], Pareto and lexicographic optima are characterized in convex 
problems. Duality theory for convex problems with the help of the lexicographic 
ordering is developed in [Mart:inez-Legaz, 1988]. 

The lexicographic ordering corresponds to the weighting method when the weight­
ing coefficients are of very different magnitude. The question whether there exist 
weighting vectors such that the optimal solution of the weighting method is identical 
to the solution obtained by the lexicographic ordering is considered in [Sherali, 1982] 
and [Sherali, Soyster, 1983]. The answer is positive for linear problems and several 
discrete problems. In practice, this means that the problem of lexicographic ordering 
can be solved as a weighting problem with standard programs. 

Concluding Remarks 

The justification of using the lexicographic ordering is its simplicity and the fact 
that people usually make decisions successively. However, this method has several 
drawbacks. The decision maker may have difficulties in putting the objective functions 
into an absolute order of importance. On the other hand, the method is usually 
robust. It is very likely that the less important objective functions are not taken 
into the consideration at all. If the most important objective function has a unique 
solution, the other objectives do not have any influence on the solution. And even if 
the most important objective had alternative optima and the second most important 
objective could be used, it is very unlikely that this problem would have alternative 
optima, and the third or other less important objectives could be used. 

Notice that the lexicographic ordering does not allow a small increment of an im­
portant objective function to be traded off with a great decrement of a less important 
objective function. Yet, many times this kind of trading might be appealing to the 
decision maker. 

The lexicographic ordering may be used as a part of the following solution method, 
called goal programming. 
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2.11. Goal Programming 

The ideas of goal programming were originally introduced in [Charnes, Cooper, 
Ferguson, 1955) but the term goal programming was fixed in [Charnes, Cooper, 1961). 
It is one of the first methods really created for multiobjective optimization. Among 
more recent papers, an easy-to-understand presentation of goal programming is given 
in [Ignizio, 1983(a), 1985(a)). 

Introduction 

The basic idea in goal programming is that the decision maker specifies (optimistic) 
aspiration levels to the objective functions and the deviations from these aspiration 
levels are minimized. An objective function jointly with an aspiration level forms a 
goal. We can say that minimizing the prize of a product is an objective function, but 
if we want the prize to be less than 500 FIM, it is a goal ( and if the prize must be less 
than 500 FIM, it is a constraint). We denote the aspiration level of the ith objective 
function by z; ( i = 1, ... , k). 

For minimization problems, the goals are of the form f;(x) � z;. The goals may also 
be represented as equalities or ranges (for the latter situation see [Charnes, Cooper, 
1977)). The aspiration levels are supposed to be selected such that they are not 
achievable simultaneously. 

It is worth noticing that the goals are of the same form as the constraints of the 
problem. This is why the constraints may be regarded as a subset of the goals. This 
way of formulating the problem is called generalized goal programming. In this case, 
the goals can be thought of being divided into flexible and inflexible goals, where 
the constraints are the inflexible ( or rigid) ones. More detailed presentations and 
practical applications of generalized goal programming are given, for example, in 
[Ignizio, 1983(a)) and [Korhonen, 199l(a)). See also Section 2.21. 

After the aspiration levels have been specified, the following task is to minimize 
the under- and overachievements of the objective function values with respect to the 
aspiration levels. It is sufficient to study the deviational variables ,\ = z; - f;(x). 
The deviational variable 8; may have positive or negative values, depending on the
problem. We caH v1e:seHL iL c1:s c1 Jiffere1H.:e of Lwo positive variables, that is, 8; =

8; - 8t. Now we can investigate how well each of the aspiration levels is attained
by studying the deviational variables. We can write f;(x) + 8; - 8; = z; for all i,
where 8; is a negative deviation (underachievement) and 8t is a positive deviation 
( overachievement) from the aspiration level. It is valid that 8; · 8t = 0 for all i.

Now we have the multiobjective optimization problem in a form where we minimize 
the deviational variables. For minimization problems it is sufficient to minimize 8t:s. 
If the ith goal is in the form of an equality, we minimize 8; + 8;. 

Two Approaches 

So far, we have only written the multiobjective optimization problem in an equiv­
alent form, where we have deviational variables as the objective functions. There are 
several possibilities to proceed from this point. Here we present an Archimedian and 
a preemptive approach. More methods are handled in [Ignizio, 1983(a)) and some 
formulations are explored in [De Kluyver, 1979). 

In the Archimedian approach (originally presented by Charnes and Cooper), the 
weighted sum of the deviational variables is minimized. This means that in addition 
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to the aspiration levels, the decision maker must specify information about the im­
portance of attaining the aspiration levels (in the form of weighting coefficients). The 
weighting coefficients are supposed to be positive and sum up to one. The bigger 
the weighting factor is, the more important is the attainment of that aspiration level. 
(Sometimes negative weighting coefficients are used to represent a premium instead 
of a penalty.) 

To put the above-presented introduction into a mathematical form, we can say that 
the problem 

(2.11.1) 

k 

m1mm1ze L w;l,z; - f;(x)I
i=l 

subject to x E S

is converted into a new form by adding the overachievement variables 

and underachievement variables 

o-; = max [O, Zi - f;(x)] or o-; = � [iz; - f;(x)I + Zi - f;(x)].

The resulting (Archimedian goal programming) problem is 

(2.1 1.2) 

minimize 
i=l 

subject to f;(x) + o-; - ot = z;, i = 1, ... , k,

o-;,ot?:.O, i=l, ... ,k, 
X Es, 

where we give separate weighting coefficients for underachievements and overachieve­
ments, and x, o-; and ot ( i = 1, ... , k) are the variables. If all the goals are in the 
form f;(x) ::; z;, we can leave the underachievement variables and write the problem
in the form 

mm1m1ze 

(2.1 1.3) subject to 

k 

""""'w+ 5+ 

� ' '
i=l 

f;(x) - ot ::; z;, i = 1, ... , k,

ot ?:. 0, i = l, ... , k,

X Es, 

where x and ot ( i = 1, ... , k) are the variables. 
Figure 1 2  portrays how the problem (2.11.3) is solved. The black point is the 

reference point of the aspiration levels. Every weighting vector produces different 
contours by which the feasible criterion region is to be intersected. Thus, different 
solutions can be obtained by altering the weights. The contours with two weighting 
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vectors have been depicted in the figure. The fat line illustrates the Pareto optimal 
set. 

reference 

point 

• 

z 

·····\.:_-·-. . . 

Figure 12. Contours with different weighting vectors. 

Even though the constraints lii · lit = 0 for all i are not usually included in the
problem formulations, some attention must be paid to guarantee that they are valid 
(see details in [Rosenthal, 1983]). An example of the required conditions is given 
in [Sawaragi, Nakayama, Tanino, 1985], p. 253. The Archimedian problem may be 
solved by standard single objective optimization methods. If the original problem is 
linear, then the corresponding Archimedian problem is also linear. 

Notice that goal programming is closely related to the method of global criterion or 
compromise programming, presented in Section 2.7. It can be seen particularly well 
in the formulation (2.11.1 ). Instead of the ideal criterion vector, the reference point of 
the decision maker is used in goal programming. The distances can be measured by 
many metrics but the L1 -metric is widely used in connection with goal programming. 

In the preemptive approach, the decision maker must specify a lexicographic order 
of the goals in addition to the aspiration levels. The goal of the highest priority level is 
supposed to be infinitely more important than the goal of the second priority level, etc. 
This means that no matter how large a multiplier is selected, the lower priority goal 
multiplied by it cannot be made equally important than the higher priority goal. After 
the lexicographic ordering, the problem with the deviational variables as objective 
functions and the constraints as in (2.11.2) is solved as explained in Section 2.10. 
In order to be able to use the preemptive approach, the decision maker's preference 
order for the objectives must be definite and rigid. 

It is computationally advisable not to add new constraints in the preemptive ap­
proach, if the problem is linear. Instead, the variables with nonzero reduced cost 
values should be deleted (see, e.g., [Eiselt, Pederzoli, Sandblom, 1987]). 

Also a combination of the Archimedian and the preemptive approaches can be used. 
In this case, several objective functions may belong to the same class of importance 
in the lexicographic order. In each priority class, a weighted sum of the deviation­
al variables is minimized. The same weaknesses presented in connection with the 
lexicographic ordering are valid for this and the preemptive approach. 

Next, we prove a result concerning the Pareto optimality of the solutions of goal 
programming. 
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Theorem 2.11.4. If either the aspiration levels form a Pareto optimal reference 
point or all the deviational variables ot for functions to be minimized and o; for
functions to be maximized have positive values at the optimum, then the solution of 
an Archimedian or preemptive goal programming problem is Pareto optimal. 

Proof. For the preemptive approach, the proof corresponds to that of Theorem 
2.10.1. Here, we only present a proof for the Archimedian approach. For simplic­
ity of notations, we assume that the problem is of the form (2.11.3). A more general 
case is straightforward. 

Let x* E S be a solution of the problem (2.11.3), where the deviational variables 
( denoted here for clarity by 8;) are positive. Let us assume that x* is not Pareto 
optimal. In this case, there exists a vector x0 E S such that fi(x0 ) ::; f;(x*) for all 
i = 1, ... , k and fi(x0 ) < fi(x*) for at least one index j. 

We denote fi(x*) - fi(x0 ) = /3 > 0. Then we set of = 87 > 0 for i -=I- j and 
5'J = max [0, 5J - ,8] 2: 0, where 5f is the deviational variable corresponding to x0 for 
i = 1, ... ,k. 

Now we have f;(x0 ) - 5f ::; f;(x*) - 57 ::; z; for all i -=I- j. If 5J -/3 > 0, then 
fi(x0)-5'J = Jj(x0

)- 5J + fi(x*)- fi(x0
) ::; Zj , and if 5J- /3::; 0, then fi(x0)-5'J =

fi(x0
) + fi(x*) - fi(x*) = fi(x*) - /3::; fi(x*) - 5J ::; Zj ,

This means that x0 satisfies the constraints of the problem (2.11.3). We have 
5'J < 5J ( this is also valid if 5'J = 0 since 57 > 0 for all i), and 5f ::; 57 for all i -=I- j. As 
the weighting coefficients are positive, we have I: wt 5f < I: wt 57, which contradicts 
the fact that x* is a solution of the problem (2.11.3). 

For aspiration levels forming a Pareto optimal point the proof is self-evident. I 

If the optimal objective function value of the goal programming problem equals 
zero, some caution is in order, since the solution obtained may not be Pareto optimal. 
The reason is that if the aspiration levels are all feasible, then the value zero for all 
the deviational variables gives the minimum value (zero) for the goal programming 
objective function. Thus the solution is equal to the reference point, and there exist 
normally many feasible points which are not Pareto optimal. If the solutions are 
intended to be Pareto optimal despite the selection of the aspiration levels, then we 
must maximize the distance if the aspiration levels are feasible and minimize the dis­
tance if the aspiration levels are infeasible. This is the case with so-called achievement 
scalarizing functions as explained in Section 2.19. Tests for Pareto optimality in goal 
programming are provided in [Romero, 1991]. 

In [Dyer, Sarin, 1981], it is pointed out that although it is not readily apparent, goal 
programming implicitly assumes that there is a measurable, additive and rigid piece­
wise linear underlying value function. Rosenthal stresses, in [Rosenthal, 1983], that 
the Archimedian problem (2.11.2) is equivalent to the value function maximization 
problem where 

dU(f(x)) == {
w; if f;(x) < Zi 

df; -wtiff;(x)>z;,

which means that the marginal utility is constant on either side of the aspiration level. 
This is contrary to the economic idea that a decision maker considers the next unit 
of decrease of f; more important when f; is plentiful than when f; is scarce. This 
idea is even more evident when we look at the marginal rates of substitution in goal 
programming problems. In connection with Definition 1.7.4, it was mentioned that 
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marginal rates of substitution may be defined as m;j(x) = d ud�;x)) / d ud��x)). Thus, 
goal programming does not take into consideration the possibility that it is easier 
for the decision maker to let something increase a little if (s)he has got it little than 
if ( s )he has got it much. The reason for this is that goal programming implicitly 
assumes that the marginal rates of substitution are piecewise constant. This critique 
also applies to the preemptive approach (see details in [Rosenthal, 1983, 1985]). More 
critical observations about goal programming are presented in [Rosenthal, 1983] and 
[Romero, Hl91]. 

Applications and Extensions 

An extensive presentation on goal programming and its extensions is given in [Ig­
nizio, 1976] and a survey of different variations of goal programming is provided in 
[Charnes, Cooper, 1977]. In addition, a wide survey of the literature around goal pro­
gramming up till the year 1983 is presented in [Soyibo, 1985]. Several modifications 
and improvements as well as applications are reviewed. A survey of goal programming 
is also given in [Kornbluth, 1973] and the Archimedian and the preemptive approaches 
are applied to problems with fractional objective functions. 

Preemptive goal programming is applied in [Benito-Alonso, Devaux, 1981] to a 
problem concerning the location and size of day nurseries, in [Sinha, Sastry, Misra, 
1988] to storage problems of agriculture, and in [Mitra, Patankar, 1990] to aid manu­
facturers in selecting the price and warranty time of their products. Preemptive goal 
programming is also applied in [Kumar, Singh, Tewari, 1991] to nonlinear multistage 
decision problems of manufacturing systems, in [Ng, 1992] to aircraft loading and in 
[Brauer, Naadimuthu, 1992] to solve a mixed integer MOLP problem involving inven­
tory and distribution planning. Archimedian goal programming with equal weighting 
factors is employed in the planning of public works in [Yoshikawa, Haruna, Kobayashi, 
1982] with two illustrative examples. 

A combination of the Archimedian and the preemptive goal programming approach­
e8 i8 applied in [Levary, 1986] to problems of optimal control, in [Giokas, Vassiloglou, 
1991] to the (linear) management of the bank assets and liabilities of a Greek bank, 
and in [Ghosh, Pal, Basu, 1992] to the resource planning of university management. 
In [Sankaran, 1990], the combined approach is used to solve an integer MOLP prob­
lem in cell formation, and, in [Schniederjans, Hoffman, 1992], combined zero-one goal 
programming is applied to a problem concerning international business expansion 
analysis. The ideas of combined goal programming are adapted in [Miyaji, Ohno, 
Mine, 1988], when solving a transportation problem-type problem of partitioning stu­
dents into groups. 

The applications mentioned here are just a minor part of what exists. The popu­
larity of goal programming is well affirmed by the fact that in a bibliography collected 
by White on multiobjective optimization applications ( covering the years from 1955 
to 1986) more than a half involved goal programming (see lWhite, 1990]). 

Four different goal interpretations in multiobjective optimization are presented in 
[Dinkelbach, 1980]. Ignizio applies goal programming to multiobjective generalized 
networks for integer problems in [Ignizio, 1983(b)]. In [Inuiguchi, Kume, 1991], goal 
programming is extended to linear problems where the coefficients and the aspiration 
levels are given by intervals. The aspiration level intervals do not here represent re­
gions within which the decision maker is satisfied, but regions where the aspiration 
levels may vary. A generalization of goal programming through the theory of varia­
tional inequalities is presented in [Thore, Nagurney, Pan, 1992]. An extension of goal 
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programming to MOLP problems is given in [Martel, Aouni, 1990). Instead of the de­
viational variables, some functions describing the wishes of the decision maker about 
attaining the goals are used in the Archimedian approach. An illustrating example is 
also provided. 

A multiphase simplex method, called MULTIPLEX, is proposed in [Ignizio, 1985(6 )) 
for solving linear (Archimedian and preemptive) goal programming problems. A 
graphic solution technique for linear goal programming problems with two decision 
variables is presented in [Eiselt, Pederzoli, Sandblom, 1987). The same authors present 
also simplex-based algorithms for linear goal programming problems. Among them is 
a sequential method consisting of successive solutions of linear problems with chang­
ing polytopes. A modified simplex method for linear goal programming is presented 
in [Lee, 1981). Lee also mentions some ideas of further research in the areas of goal 
programming with uncertainty, integer-valued problems and interactive goal program­
ming. In [Hartley, 1985), it is shown how the simplex algorithm can efficiently be used 
in solving linear preemptive goal programming problems. 

Concluding Remarks 

Goal programming is a widely used and popular solution method for practical 
multiobjective optimization problems. One of the reasons is that goal-setting is an 
understandable and easy way of making decisions. The specification of the weighting 
coefficients or the lexicographic ordering may be more difficult. However, the weights 
do not have so direct an effect on the solution obtained as in the a priori weighting 
method. 

One must be careful with the selection of the aspiration levels so that the Pareto 
optimality of the solutions can be guaranteed. The correct selection may be difficult 
for a decision maker who does not know what the feasible region looks like. Presenting 
the ranges of the Pareto optimal set, or at least the ideal criterion vector, to the 
decision maker may help in the selection. 

Goal programming is not an appropriate method to be used if trade-offs are desired 
to obtain. Another restricting property is the underlying assumption of a piecewise 
linear value function and thus piecewise constant marginal rates of substitution. 

2.12. Methods Where Progressive Articulation of Preference 
Information Is Used (Interactive Methods) 

The class of interactive methods is the most developed one of the four method 
classes presented here. The interest devoted to this class can be explained by the fact 
that assuming the decision maker has enough time and capabilities for cooperation, 
interactive methods can be presumed to produce most satisfactory results. Many 
weak points of the methods in the other three classes are overcome. Now only a 
part of the Pareto optimal points has to be generated and evaluated and the decision 
maker can specify and correct the preferences and selections as the solution process 
goes on and (s)he gets to know the problem and its potentialities better. This also 
means that the decision maker does not have to know any global preference structure. 
In addition, the decision maker can be assumed to have more confidence in the final 
solution since ( s )he is involved throughout the solution process. 

In interactive methods the decision maker works together with an analyst or an 
interactive computer program. One can say that the analyst tries to find out the 
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preference structure of the decision maker in an interactive way. A solution pattern 
is formed and repeated several times. After every iteration some information is given 
to the decision maker and ( s )he is asked to answer some questions or provide some 
other type of information. The working order in these methods is 1. analyst, 2. deci­
sion maker, 3. analyst, 4. decision maker, .... After a reasonable (finite) number of 
iterations every interactive method should yield a solution so that the decision maker 
can be satisfied with it and (s)he can be convinced that there does not exist any con­
siderably better solution. The basic steps of inLeractive alguriLlurn; cau be expressed 
as 

(a) find an initial feasible solution,
(b) interact with the decision maker, and
(c) obtain a new solution (or a set of new solutions). If it (or some of them)

or some of the previous solutions is acceptable for the decision maker, stop.
Otherwise, go to step (b).

Interactive methods differ from each other by the form information is given to 
the decision maker, by the form information is provided by the decision maker and 
how the problem is transformed into a single objective optimization problem. One 
problem to be solved when designing an interactive method is what kind of data one 
should use to interact with the decision maker. It should be meaningful and easy 
to comprehend for the decision maker. The decision maker should understand the 
meaning of the parameters to which (s)he is asked to supply values. On the other 
hand, data provided to the decision maker should be easily obtainable by the analyst 
and contain information of the system. Too much information should not be used. To 
ensure that the greatest possible benefit can be obtained from the interactive method 
the decision maker must find the method worthwhile and acceptable and ( s )he must 
be able to use the method properly. Usually, this means that the method must be 
sufficiently easy to use and understandable. 

Interactive methods have been classified in many ways, mainly according to their 
solution approaches. Here we do not follow any of those classifications. 

Two different conceptions of interactive approaches are handled in [Vanderpooten, 
1989(a), (b)]. The approaches are searching and learning. In searching-oriented pro­
cedures a converging sequence of solution proposals is presented to the decision maker. 
It is supposed that the decision maker provides consistent preference information. In 
learning-oriented procedures a free exploration of alternatives is possible allowing tri­
al and error. The latter does not guide the decision maker and the convergence is 
not guaranteed. A combination of these two approaches containing positive features 
of them both can be recommended. This approach would support the learning of 
preferences, while it would also include guiding properties. 

From experimental tests with interactive methods it is concluded, in [Korhonen, 
Moskowitz, Wallenius, 1990], that interactive procedures should converge well right 
in the few initial iterations. The decision makers are not willing to wait for progress 
for a long time. Another conclusion is that interactive procedures should have built-in 
mechanisms to deal with inconsistencies. 

Consistency of the responses of the decision maker is one of the most important 
factors in order to guarantee the success of most interactive solution methods. Because 
of the subjectivity of the decision makers, different starting points, different types of 
questions or interaction styles may lead to different final solutions. Some methods are 
more sensitive with respect to consistency than others. The handling of inconsistency 
for several interactive methods has been compared in [Shin, Ravindran, 1991]. In 
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general, inconsistency can be reduced by consistency tests during the solution process 
or by minimizing the decision maker's cognitive burden. The latter way is one of the 
motivations in developing new methods for multiobjective optimization. 

A critical factor in interactive methods is the stopping criterion. There are mainly 
three stopping criteria. Either the decision maker gets tired of the solution process, 
some algorithmic stopping (convergence) rule is fulfilled, or the decision maker finds a 
desired solution and wants to stop. It is difficult to define precisely when a solution is 
desirable enough to become a final solution. The convergence of the method has been 
considered to be an important factor when selecting a method. However, it is stated, 
in [Vanderpooten, Vincke, 1989], that "the procedure should not be stopped because 
of any convergence test but only if the decision maker is satisfied with a solution or 
when he has the feeling that he has enough information about his problem." 

Before we present the methods, some critical comments are in order. Repeatedly 
in this presentation, it has been and will be assumed that the decision maker makes 
consistent decisions or that (s)he has an underlying (implicitly known) value function 
upon which decisions are made. The purpose is not to go deeply into the theories 
of decision making. However, it is worth mentioning that those assumptions can 
be called into question because they are difficult to verify. Decision making is, for 
example, in [Zeleny, 1989] described as "searching for harmony in a chaos". One can 
criticize the way how decision makers are forced into a priori formulas, patterns or 
contexts (like wandering around the Pareto optimal set). Instead, the decision maker 
should be guided through her or his own creative search process since "decision making 
is a process of continuous redefinition of the problem." 

On the other hand, after the existence of the underlying, implicit value function 
is supposed, several assumptions are set on it. How can one guarantee and verify, 
for example, the pseudoconcavity of a function which is not explicitly known? Of 
course, something can be concluded if we find out enough about the decision maker's 
preference structure. Steps in that direction are, however, very laborious and yet the 
results are likely to be controversial. 

One more interesting concept is the convergence of an interactive method. One can 
understand several different features as convergence. It may be said that the method 
converges into Pareto optimal points if the final solution can be proved to be Pareto 
optimal. One can also say that the method converges into a satisficing solution, if the 
final solution is satisficing. On the other hand, convergence may mean that the final 
solution is optimal to the underlying value function. This kind of convergence result 
necessitates certain assumptions on the underlying value function. In this case, the 
observations of the previous paragraph are valid. If the method is not based on the 
assumption on any underlying value function, this conception of convergence cannot 
always be applied. To sum up, is not unequivocal, what is meant by convergence and 
how it should be proved. For this reason, it is difficult to provide convergence results 
for the different methods considered. Thus, the convergence properties have been left 
into a secondary position in what follows. 

Even though interactive methods can be regarded as most promising solution meth­
ods for multiobjective optimization problems, there are still cases where these meth­
ods are not practical to be applied regardless of the availability of the decision maker. 
Such problems are, for instance, many engineering problems that require extensive 
and expensive calculations (like large-scale finite element approximations). One must, 
however, remember that computational facilities have developed greatly during the 
last few years. Thus, the number of problems which cannot be solved by interac-
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tive methods has decreased. See [Osyczka, Zajac, 1990] for a suggestion of handling 
computationally expensive functions. 

In the following, we present several interactive methods. Some of them are quite 
old and much tested and developed, whereas some others are new and deserve fur­
ther refinements. The methods to be described are the ISWT and the GDF method, 
SPOT, the ZW and the IWT method, STEM, the reference point and the satisfic­
ing trade-off method, the visual interactive approach, the subgradient GDF and the 
NIMBUS method. Some of them are only briefly outlined and the rest are described 
in more detail. In developing the last two of the methods, one has tried to overcome 
some of the drawbacks observed in the other methods. Even though specialities of 
MOLP problems have been avoided in this presentation, we yet describe some lin­
ear interactive methods. The reason for this is that the ideologies of these methods 
are interesting and important in the general history of multiobjective optimization 
method development. 

In connection with the methods, some applications reported in the literature are 
mentioned. We also indicate whether the methods belong to the class of ad hoe or 
non ad hoe methods. (The classes were introduced at the beginning of this chapter.) 
The description of each method ends by concluding remarks, where some important 
aspects and opinions of the author have been collected. 

Throughout the presentation the iteration counter is denoted by h and the decision 
variable vector at the current iteration by xh. In addition, the number of alternative 
criterion vectors presented to the decision maker is denoted by P.

2.13. Interactive Surrogate Worth Trade-Off Method 

An interactive surrogate worth trade-off (ISWT) method, put forward in [Chankong, 
Haimes, 1978, 1983(b )] , is an extension of a surrogate worth trade-off (SWT) method 
presented in [Haimes, Hall, 1974] and [Haimes, Hall, Freedman, 1975]. We do not go 
into details of the SWT method here, but present directly the interactive version. 

Introduction 

It is assumed in the ISWT method that the decision maker's underlying value 
function is implicitly known. The aim of the method is to find a local maximum for 
the value function by local approximations. 

One of the basic ideas inspiring the ISWT method has been the thought that it is 
easier for the decision maker to compare alternatives than to give numerical informa­
tion. Further, it has been assumed that it is easiest to compare two alternatives at 
a time. The motivation is that if the information presented and requested is simple 
and easy for the decision maker to understand, it can be expected that the solution 
process becomes more reliable and fluent. Another important feature in the ISWT 
method is that the c-constraint method is used as a means of generating new alterna­
tives. This is why it is guaranteed that the alternatives are Pareto optimal and any 
Pareto optimal solution can be found. 

The main features of the ISWT method are the following. First, an c-constraint 
problem is solved and the opinions of the decision maker are asked about the trade-off 
rates at the solution point. If the decision maker does not want to change the current 
solution, the solving process can be stopped. Otherwise, the direction of the steepest 
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ascent of the value function is approximated according to the opinions of the decision 
maker about the trade-off rates. New upper bounds are obtained for the .::-constraint 
problem. The step-size, how far to proceed into the new direction, is obtained by 
solving the .::-constraint problem several times and letting the decision maker select 
the best Pareto optimal solution. The procedure continues as described until the 
decision maker does not want to change any criterion value or some other stopping 
criterion is satisfied. Hereby, a sequence of Pareto optimal solutions is generated such 
that the next solution is preferable to the previous one. 

It is assumed that 

1. The underlying value function U exists and is implicitly known to the decision
maker. In addition, U is continuously differentiable and a monotone non­
increasing function on Z.

2. All the objective and the constraint functions are twice continuously differen­
tiable.

3. The feasible region S (with the feasible region of the .::-constraint problem) is
compact.

Important additional assumptions are that the Pareto optimal set has a smooth 
surface (implying that at every point the trade-off rates are unique) and every solu­
tion of the .::-constraint problem satisfies the requirements and hypotheses of Theorem 
2.3.17. In this way, we make sure that the trade-off rates are at our disposal. Since 
it is assumed that the regularity and second-order sufficiency conditions are satisfied 
at every solution xh of the .::-constraint problem (implying uniqueness in some neigh­
bourhood), we know that xh is Pareto optimal (see [Chankong, Haimes, 1983(b )]). 
Remember that only local Pareto optimality can be guaranteed, as has been stated 
earlier. 

An important factor in the ISWT method is the reference function ( see Section 
1. 7). It is the function to be minimized in the .::-constraint problem (see Section
2.3). Careful consideration must be given to the selection of the reference function
because trade-off rates are calculated with respect to it. It is suggested in [Tarvainen,
1984] that the decision maker specifies such an objective function to be the reference
function with respect to whose values ( s )he is flexible. This means that there is no
sudden limit under which the criterion values are satisfactory and above which the
criterion values are unsatisfactory. In addition, the trade-off rates must be sensible
with respect to the reference function.

ISWT Algorithm 

The main features of the ISWT method can be presented cursorily as follows. 

(1) Select the reference function to be minimized and give upper bounds to the
other objective functions.

(2) Solve the current .::-constraint problem to get a Pareto optimal solution. Trade­
off information is obtained from the optimal Kuhn-Tucker multipliers.

(3) Ask the. opinions of the decision maker with respect to the trade-off rates at
the current solution point.

( 4) If some stopping criterion is satisfied, stop. Otherwise update the upper bounds
of the objective functions with the help of the answers obtained earlier and solve
several .::-constraint problems to determine an appropriate step-size. Let the
decision maker choose the most preferred alternative. Go to step (3).
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First, we examine how the trade-off information is obtained from the optimal Kuhn­
Tucker multipliers. As noted in Theorem 2.3.17 of Section 2.3, the optimal Kuhn­
Tucker multipliers represent trade-off rates under the specified assumptions. 

Let xh E S be a solution of the c-constraint problem at the iteration h, where fe 
is the function to be minimized and the upper bounds are cf for i f:. e. We suppose 
that xh satisfies the assumptions specified in Theorem 2.3.17. If-the Kuhn-Tucker 
multipliers >.}; associated with the constraints f;(x) :S cf are strictly positive for all 
·i = 1, ... , k, ·i f:. e, then >-2; represents the partial trade-off rate at xh between fe and 

f;. Now we know that to move from xh to some other (locally) Pareto optimal point 
in the neighbourhood of xh, the value of the function fe decreases by >-;; units for 
every unit of increment in the value of the function f; ( or vice versa), while the values 
of all the other objective functions remain unaltered. The opinion of the decision 
maker with regard to this kind of trade-off for all i f:. e is found out by posing the 
following question. 

Let a criterion vector (f1 (xh), ... ,fk(xh)f = zh be given. If the value of fe 

is decreased by >.}; units, then the value of f; is increased by one unit ( or vice 
versa) and the other criterion values remain unaltered. How desirable do you 
find this trade-off? 

If the situation is not so convenient as above, that is, some of the optimal Kuhn­
Tucker multipliers >.J; equal zero, then another type of question is needed. Let us 
suppose that >.Ji > 0 for i E N> and >.}

j 
= 0 for j E N=, where N> U N= = { i I 

i = 1, ... , k, i f:. e}. As noted in Theorem 2.3.17, increasing the value off;, where 
i E N> decreases the value of fe and in addition, the values of all Ji also change, 
where j E N=. Now the question to the decision maker for all i E N> is of the form 

Let a criterion vector (Ji (xh ), ... , fk(xh)f = zh be given. If the value of fe 
is decreased by >-}; units, then the value off; is increased by one unit and the 
values of Ji for j EN= change by 'vfi(xhf d��ih) units (or vice versa). How 
desirable do you find these trade-offs? 

A problem with the question above is that the values of d��
h
) for i EN> are not 

known. One of the ways suggested in [Chankong, Haimes, 1983(b )] for coping with 
this is that the values can be approximated by solving the c-constraint problem with a 
slightly modified upper bound vector as sh( i) = (et, ... , c:L

1
, c}+1, ... , cf + c:, ... , c� ), 

where c f:. 0 is a scalar with a small absolute value. Let the solution of this c-constraint 
problem be x(eh(i)). Now we get the approximation by 

dx(eh) x(eh(i)) -xh 

� � c 
Notice that the decision maker's opinions are asked of certain amounts of change 

in the values of the objective functions, and not of changes in general. The following 
problem to be handled is the form of answers expected from the decision maker. It is 
suggested in [Chankong, Haimes, 1978, 1983(b)] that the decision maker must specify 
an integer between 10 and -10 to indicate her or his degree of preference. If the 
decision maker is completely satisfied with the trade-off suggested, the answer is 10. 
Positive numbers less that 10 indicate the degree of satisfaction (less than complete). 
Correspondingly, negative answers reflect the decision maker's satisfaction with the 
trade-off which is converse to that in the question. The answer O means that the 
decision maker is indifferent to the given trade-off. 

In [Tarvainen, 1984], it is suggested that much less choices are given to the decision 
maker. The possible answers are 2, 1, 0, -1, -2 and their meaning corresponds to the 
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previously presented. The justification is that it is easier for the decision maker to 
give the answer when there are less alternatives. These five alternatives are enough 
to represent the direction and rough degree of the decision maker's preferences and 
satisfaction. 

Regardless of the scale selected, the response of the decision maker is called a 
surrogate worth of the trade-off between h, and Ji at xh and denoted by Wi�- At 
each point, k - l ( or less, if N= f= 0) questions of the previously described form are 
presented to the decision maker and the values for Wi� ( i f= £) are obtained. 

According to Theorem 2.3.17, there exists a Pareto optimal solution in the neigh­
bourhood of xh when the values of the objective functions are changed according to 
the information given in the trade-off rates. The problem is how much the values 
of the objective functions can be changed in order to remain on the Pareto optimal 
surface and obtain the best possible solution. We must find a way to update the 
upper bounds of the objective functions in an appropriate way. 

The way how to proceed from this point depends on the scale chosen for the sur­
rogate worth values. The idea is to obtain an estimate for the gradient of the value 
function with the help of the surrogate worth values. Then a steepest ascent-type 
formulation is used. The upper bounds of the t:-constraint problem are revised and 
a new solution is obtained. It is supposed to satisfy the preferences of the decision 
maker indicated by the surrogate worth values as well as possible. 

In the original version of Chankong and Haimes, it is suggested that the upper 
bounds are updated from iteration h to h + l by 

for i EN> and 

for j E N= , where i E N> and t is a step-size to be determined. For details, see 
[Chankong, Haimes, 1978, 1983(b)] and references therein. 

For simplicity, it is assumed in [Tarvainen, 1984] that the optimal Kuhn-Tucker 
multipliers are all strictly positive. The decision maker is asked to specify small and 
meaningful amounts tlfi for all i f= £. The scalar tlfi represents the amount of change 
in the value off; that is relevant to the decision maker. Now the upper bounds are 
updated by 

c:7+1
= c:? + t(Wi�tlfi) 

for i E N> , where t denotes the step-size. 
Several discrete values may be given to the step-size t in each updating formula. 

Then the t:-constraint problem is solved for every value. The resulting criterion vec­
tors are presented to the decision maker, who is asked to choose the most preferred 
one. A graphical representation of the alternatives may be helpful. This topic is han­
dled in Chapter 4. After choosing the step-size and thus the new solution, trade-off 
information at that solution is obtained from the optimal Kuhn-Tucker multipliers 
( as earlier). The procedure continues by asking the decision maker for the surrogate 
worth values. 

In practice, when the decision maker is asked to express her or his preferences about 
the trade-offs, (s)he is implicitly asked to compare the trade-off rates with her or his 
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marginal rates of substitution. (Naturally, the decision maker does not have to be 
able to specify the marginal rates of substitution explicitly.) If mei < >.ei, then the 
surrogate worth value is positive (and the contrary respectively). If mli = >.e; for 
all i i= R, meaning Wei = 0 then the stopping criterion introduced in Section 1. 7 is 
valid. Thus, the condition W

e
� = 0 for all i i= R is a common stopping criterion of 

the algorithm. Another possible stopping situation is that the decision maker wants 
to proceed only into an infeasible direction. The latter condition is more difficult to 
check. 

The ISWT method can be classified to be non ad hoe in nature. If the value 
function is known, then the trade-off rates are easy to compare with the marginal rates 
of substitution. The convergence rate of the ISWT method greatly depends on the 
accuracy and consistency of the answers of the decision maker. The comments about 
the importance of selecting the reference function well were given partly because of the 
convergence properties. If there is a sharp limit in the values of the reference function 
where the satisfaction changes from "very satisfactory" to "very unsatisfactory", the 
solution procedure may stop too early. Further references are cited in [Chankong, 
Haimes, 1978] for convergence results. 

A method related to the ISWT method is presented in [Chen, Wang, 1984]. The 
method is an interactive version of the SWT method, where new solution alternatives 
are generated by Lin's proper equality method (see Section 2.3), and the decision 
maker has to specify only the sign of the surrogate worth values. 

There are many other modifications of the SWT method in the literature. Among 
others, it has been generalized for multiple decision makers in [Hall, Haimes, 1976] 
and [Haimes, 1980]. 

Concluding Remarks 

The role of the decision maker is quite easy to understand in the ISWT method. 
The complicatedness of giving the answers depends on which variation of the method 
is employed. The selection of 21 different answers in the original version is quite a 
lot to select from. It may be difficult for the decision maker to provide consistent 
surrogate worth values during the whole decision process. In addition, if there is a 
larµ;e number of objective functions, the decision maker has to specify a lot of surrogate 
worth values at each iteration. At least for some decision makers it may be easier to 
maintain consistency when there are less alternative values for the surrogate worth 
available ( as suggested by Tarvainen). 

Trade-off rates play an important role in the ISWT method, and this is why the 
decision maker has to understand the concept of trade-off properly. Attention must 
also be paid to the understandable and careful formulation of the questions about the 
trade-off rates. Careless formulation may, for example, cause the sign of the surrogate 
worth value to be changed. 

It is good that all the alternatives <luring the solution process are Pareto optimal. 
Thus the decision maker is not bothered with unsatisfactory solutions. 

A negative feature is that there are a�lot of different assumptions to be satisfied so 
that the algorithm is guaranteed to work. It may be difficult (and at least laborious) 
in many practical problems to make sure that the assumptions are fulfilled. 
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2.14. Geoffrion-Dyer-Feinberg Method 

The Geoffrion-Dyer-Feinberg (GDF) method, proposed in [Geoffrion, Dyer, Fein­
berg, 1972], is an interactive method based in principle on the same idea as the ISWT 
method above; maximization of the underlying (implicitly known) value function. 
The realization is quite different, though. 

Introduction 

The basic thought of the GDF and the ISWT method is the same. At each iteration, 
a local approximation of the value function is generated and maximized. In the GDF 
method, the idea is somewhat clearer to be seen. Marginal rates of substitution 
given by the decision maker are used to approximate the direction of steepest ascent 
of the value function. Then the value function is maximized by a gradient-based 
method. A gradient method of Frank and Wolfe (FW) (see [Frank, Wolfe, 1956]) 
has been selected for optimization because of its simplicity and robust convergence 
(rapid initial convergence) properties. The GDF method is also sometimes called an 
interactive Frank-Wolfe method, because it has been constructed on the basis of the 
FW method. 

The problem to be solved here is 

(2.14.1) 

It is assumed that 

max1m1ze u(x) = U(f(x))

subject to x E S.

1. The underlying value function U: R k -+ R exists and is implicitly known to
the decision maker. In addition, u : R

n -+ R is a continuously differentiable
and concave function on S (sufficient conditions for the concavity are, for
example, that U is a concave decreasing function and the objective functions
are convex; or U is concave and the objective functions are linear), and U is
strictly decreasing with respect to the reference function (denoted here by!£).

2. All the objective functions are continuously differentiable.
3. The feasible region S is compact and convex.

Let us begin by presenting the main principles of the FW method. Let a point 
xh E S be given. The idea of the FW method is that when maximizing some objective 
function u: Rn -+ R subject to constraints x ES, instead of u, a linear approximation 
of it at some point xh E S is optimized. If the solution is yh, then the direction 
dh 

= yh - xh is a good direction where to seek an increased value for the objective 
function u.

At any feasible point xh a linear approximation to y-+ u(y) is 

The maximization of the linear approximation after excluding constant terms is equiv­
alent to the problem 

(2.14.2) 
max1m1ze v7 xu(xh f y 

subject to y E S,

where xh is fixed and y is the variable. Let yh E S be the solution. 
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A well-known condition for xh to be an optimal solution of the problem (2.14.1) is 
that V xu(xh)T d :S O for all d E S. Therefore, if after solving the problem (2.14.2) 
is yh = xh , then we know that O = 'vxu(xhf(yh -xh) 2:: 'vxu(xh )T(y-xh ) for all 
y E S, and, thus, the optimality condition is fulfilled at xh . 

If yh =f=. xh, then we set dh 
= yh -xh. The points yh and xh are feasible, and, 

because of the convexity assumption of S, any new point xh+l = xh + td h where 
0 :S t :S 1 is feasible. Finally, we must determine an appropriate step-size into the 
direction d h by mo.ximizing u( xh + td h ) subject to O � t � 1. 

GDF Algorithm 

In the following, we shall show that even though we do not know the value function 
explicitly, we can obtain a local linear approximation for it (i.e., its gradient) with the 
help of marginal rates of substitution. This is enough so that the FW method can be 
applied. Before going into details we present the basic phases of the GDF algorithm. 

(1) Ask the decision maker to specify a reference function!£. Choose a feasible
starting point x1

. Set h = 1.
(2) Ask the decision maker to specify marginal rates of substitution between ft

and the other objectives at the current solution point xh.
(3) Solve the problem (2.14.3), where the approximation of the value function is

maximized. Denote the solution by yh E S. Set the direction dh 
= yh -xh.

If yh 
= xh, go to step (6).

( 4) Determine with the help of the decision maker the appropriate step-size th to
be taken into the direction dh. Denote the corresponding solution by xh+I =

xh + thdh.
(5) Set h = h + 1. If the decision maker wants to continue, go to step (2).
( 6) Stop. The final solution is xh.
In the algorithm above we need a local linear approximation of the value function

at the point xh. As explained earlier, we only need to know the gradient of the 
value function at xh. According to the chain rule, we know that the gradient of the 
objective function of the problem (2.14.1) at the point xh E S can be written in the 
form 

In assumption 1 we supposed that d u�r;;
h)) < 0, where !£ is the reference function

(we shall return to it later). Positive scaling does not affect the direction of the 
gradient, so we can divide the gradient of the value function by a positive scalar 
- d u�f h)). Now we have the direction of the gradient of the value function at the
point xh in the form

k 

:I:-m;'vxfi(xh ), 
i=l 

where m; = d U�ft
h)) / d U�ft

h )) for all i -:/- e. The numbers m; ( = mt;) represent the
marginal rates of substitution at xh between !£ and f; (see (1.7.5)). The role of the 
reference function is significant, because marginal rates of substitution are generated 
with respect to it. The decision maker must be asked to specify the reference function 
so that the marginal rates of substitution are sensible. Notice that if the underlying 
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value function is linear, then only one iteration is needed to achieve the final solution 
(and the marginal rates of substitution are constant). 

It may be difficult for the decision maker to specify the marginal rates of substitu­
tion. If (s)he cannot specify them straight away, some auxiliary procedures may be 
used to assist. One such procedure is presented in [Dyer, 1973(a)]. The idea there 
is to determine ( at the point f ( xh)) small amounts of ft and -J;, denoted by I::!. ft 

and I::!. f;, respectively, such that an increase in the value of f; by I::!. f. is compensat­
ed to the decision maker by a decrease by !::!,.ft in the value of h, while the values 
of all the other objective functions remain unaltered. In other words, the vectors 
(f1 (xh ), ... , !k(xh))T and (!1 (xh), · · ·, ft(xh) - l::!.fn- · ·, f;(xh) + l::!.f;,- • •, fk(xh)f 
are indifferent to the decision maker. Now we get 

l::!.tt m· ~--' ~ A > 

Uf; 

where the approximation becomes arbitrarily exact when the l::!.-amounts of change 
approach 0. Notice that me = 1. 

The approximation of marginal rates of substitution is illustrated in Figure 13. The 
fat curve is a contour of the value function and the solid line its tangent at zh . The 
marginal rate of substitution at zh is the negative of the slope of that tangent. The 
slope of the approximating dash line is quite different. 

Af.: 
1 : •••••••••••••••••••••••• 

A f l 
�-::-:-0:::::::::::::-----

Figure 13. An approximation of the marginal rate of substitution. 

It is remarked in [Sawaragi, Nakayama, Tanino, 1985] that, in practice, the !::!,.­
amounts of change cannot be made arbitrarily small near 0, because human beings 
cannot recognize small changes within some extent. This threshold of human recogni­
tion is called a just noticeable difference. This is why the marginal rates of substitution 
are always approximations of the correct values. An example of the effects of the just 
noticeable difference is given in [Nakayama, 1985(a)] by illustrating how the solution 
process may terminate at a wrong solution. This is why one may have doubts that 
marginal rates of substitution are not adequate as a means of providing preference 
information. They seem to be difficult for the decision maker to answer and their 
accuracy is questionable. 

However, we must now assume that the marginal rates of substitution are provided 
accurately enough. According to the FW method the maximization of the linear 
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approximation of U is equivalent to the problem

(2.14.3)

( k T 

maximize �-mfv'xf;(xh)) y

subject to y E S
with y being the variable. The solution is denoted by yh. The existence of the optimal
solution is ensured by the compactness of S and the continuity of all the functions. 

The search direction is now dh 
= yh - xh. Provided that the marginal rates

of substitution are reasonably accurate, the search direction should be usable. A
scaling idea presented in [Clinton, Troutt, 1988] can be included in the method.
Heterogeneous objective functions can be scaled to have equal effect in the problem
(2.14.3) by adjusting the norms of the gradients of the objective functions with scalar
coefficients. 

The followine; prohlem is to find the step-size for how far to go into the search
direction. Now the only variable is the step-size. The decision maker can be offered
criterion vectors, where z; = f;(xh 

+ tdh) for i = 1, ... , k, and t varies stepwise
between O and 1 (e.g., t = i-=.� where j = l, ... ,P, and P is the number of the
alternative criterion vectors to be presented). Another possibility is to draw the
criterion values as a function of t, provided no serious scaling problems exist. An
example of the graphical presentation is given in [Hwang, Masud, 1979]. The graphical
illustration of the alternative criterion vectors will be handled in Chapter 4. Notice the
fact that the alternatives are not necessarily Pareto optimal. From the information
given to the decision maker ( s )he selects the most preferred criterion vector and
the corresponding value of t is selected as th. It is obvious that the task of selection
becomes more difficult for the decision maker as the number of the objective functions
increases. 

The opinions of the decision maker and the situation yh 
= xh are used here as

stopping criteria. Other possible criteria have been presented in [Hwang, Masud,
1979] and [Yu, 1985]. 

The GDF method can be characterized to be a non ad hoe method. If one knows
the value function, it is easy to specify the marginal rates of substitution and select
the hest alternative. The r.onvergenr.e properties of the GDF method are closely
related to the convergence properties of the FW method. The convergence of the
FW algorithm under the assumptions provided at the beginning of this section, is
proved in [Zangwill, 1969]. However, it must be kept in mind that the correctness
of the values for marginal rates of substitution and step-sizes affects the convergence
remarkably. If it is supposed that the answers of the decision maker become ever more
exact as the solution process continues, it is asserted in [Geoffrion, Dyer, Feinberg,
1972] that infinite convergence holds. 

More important than infinite convergence in an interactive procedure like this is the
initial rate of convergence, since a satisfactory solution should be found in a reasonable
number of iterations. It is claimed in [Geoffrion, Dyer, Feinberg, 1972] that the error
in the objective function values is at least halved at each of the first H iterations
(H is unknown). The convergence becomes slower near the optimum because of the
zig-zag-phenomenon. The effects of errors in estimating the gradient of the value
function have been investigated in [Dyer, 1974]. The result is that even if the answers
of the decision maker are not strictly consistent and the just noticeable difference
affects the marginal rates of substitution, the method is stable and converges ( only
slower) under certain assumptions. 
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Applications and Extensions 

The GDF method has been applied in [Geoffrion, Dyer, Feinberg, 1972] to the op­
eration of an academic department. Numerical examples are also given, for example, 
in [Hwang, Masud, 1979] and [Steuer, 1986]. The GDF method is adapted for contin­
uous equilibrium network design problems in [Friesz, 1981]. A time-sharing computer 
program implementing the GDF algorithm is suggested in [Dyer; 1973(a)]. 

In [Dyer, 1972], Dyer presents a method called interactive goal programming, which 
is a combination of the GDF method and goal programming. The vector yh is ob­
tained by the means of Archimedian goal programming with the marginal rates of 
substitution as weights. Also some convergence results are given. The GDF method 
and the interactive goal programming method are applied in [Jedrzejowicz, Rosicka, 
1983] to multiobjective reliability optimization problems appearing in multiple classes 
of system failures. 

The GDF method has been a subject of many modifications in the literature. New 
versions have been mainly developed to overcome some of the weaknesses of the GDF 
method. In [Hemming, 1981], a simplex-based direction finding problem is proposed 
for MOLP problems to avoid the specification of the marginal rates of substitution. It 
is stressed that the convergence properties may impair but the mental burden placed 
on the decision maker is diminished. Also a revised step-size problem is presented to 
produce Pareto optimal solutions. 

The GDF method is altered in [Rosinger, 1981, 1982] by constructing a wide family 
of possible inquiry patterns to lead into the determination of the marginal rates of 
substitution. The decision maker can choose the form of the inquiry at each iteration. 
The convergence of the method is also proved. 

A so-called proxy approach is introduced in [Oppenheimer, 1978]. The value func­
tion is no longer approximated linearly. The idea is to give a local proxy to the value 
function at each iteration. A sum-of-powers or a sum-of-exponentials proxy is fitted 
locally by specifying parameters connected to the problem. Now direction finding 
and step-size determination problems are replaced by the maximization of the proxy 
function. The proxy is not a valid approximation globally, but when used locally, it 
gives a higher convergence rate than the original GDF method. Even this method 
does not guarantee that the solutions are Pareto optimal. Oppenheimer has not es­
tablished any systematic procedure for maximizing the proxy function. A method 
where Oppenheimer's ideas are improved and utilized is presented in Section 2.15. 

Several modifications of the GDF method are presented in [Sadagopan, Ravindran, 
1986]. First, the authors replace the FW method by a generalized reduced gradient 
method. Then, the role of the decision maker is facilitated by asking intervals for the 
marginal rates of substitution instead of exact values. The step-size is computed with 
the help of upper and lower bounds for the objective functions without the decision 
maker. In [Musselman, Talavage, 1980], the idea of the adaptation is to reduce the 
feasible region according to the marginal rates of substitution given by the decision 
maker. Such solutions are dropped that have lower values of the value function than 
the current solution. The method per.mits sensitivity analysis of the decision maker's 
inputs. The GDF method is modified for MOLP problems in [Winkels, Meika, 1984] 
so that when determining the step-size at each iteration, the criterion vectors are 
projected with a so-called efficiency projection onto the Pareto optimal set. This is 
done by solving a parametric linear programming problem. 

Finally, we mention a modification of the GDF method for nondifferentiable multi­
objective optimization problems, presented in [Miettinen, Makela, 1991, 1993, 1994] 
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and handled in Section 2.22. The modified method is called a subgradient GDF 
method, because nondifferentiable objective functions are allowed. 

Concluding Remarks 

In spite of the plausible theoretical foundation of the GDF method, it is not so 
convincing and overwhelming in practice. A drawback of the GDF method is that 
the final solution obtained is not necessarily Pareto optimal. In fact, when several 
alternatives are given to the decision maker for selecting the step-size, it is likely that 
many of them are not Pareto optimal. 

Theoretically, the Pareto optimality of the final solution is guaranteed if the value 
function is componentwise decreasing (by Theorem 1.4.2). Anyway, marginal rates 
of substitution are crucial in approximating the value function and for many decision 
makers difficult and troublesome to specify. Even more difficult is to give consistent 
and correct marginal rates of substitution at every iteration. The difficulties of the 
decision maker in determining the marginal rates of substitution are demonstrated, 
for example, in (Wallenius, 1975] by comparative tests. The same point is illustrated 
by an example in [Hemming, 1981] when a politician is asked "What increase in 
unemployment would exactly compensate a decrease of 1 % in the inflation rate?" 

The non-Pareto optimality can be overcome by projecting the alternatives onto the 
Pareto optimal set before presenting them to the decision maker. The projection may 
be done, for instance, by lexicographic ordering or by the means presented in Section 
1.9. The use of scalarizing functions is demonstrated more closely in Section 2.22. 
The weakness in the projection is that the computational burden increases. It is for 
the analyst and the decision maker to decide which of the two shortcomings is less 
inconvenient. 

The Frank-Wolfe gradient method has been selected as the maximization algorithm 
for its fast initial convergence. In some cases, other gradient-based methods may be 
more appropriate. Employing the (Kiev) subgradient method is described in Section 
2.22. 

There are a lot of assumptions that the problem to be solved must satisfy in order 
the method to work and converge. Several sufficient conditions on the decision maker's 
preferences are presented in [Sawaragi, Nakayama, Tanino, 19851 to guarantee the 
differentiability and the concavity of the value function. Even the new conditions are 
not very easy to check. For more critical discussion about the GDF method we refer 
to [Sawaragi, Nakayama, Tanino, 1985]. 

2.15. Sequential Proxy Optimization Technique 

The sequential proxy optimization technique (SPOT), presented in [Sakawa, 1982], 
is based on the idea of maximizing the decision maker's value function, which is once 
again supposed to be known (implicitly). Some properties of the previously presented 
ISWT and GDF methods have been included. 

Introduction 

As in the two methods presented so far, the search direction in SPOT is obtained 
by approximating locally the gradient of the value function, and the step-size is deter­
mined according to the preferences of the decision maker. Here, both marginal rates 
of substitution and trade-off rates are used in approximating the value function. 
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It is assumed that 
1. The underlying value function U: R k -+ R exists and is implicitly known

to the decision maker. In addition, U is a continuously differentiable, strictly
decreasing and concave function on the subset of Z where the points are Pareto
optimal.

2. All the objective and the constraint functions are convex and twice continu­
ously differentiable.

3. The feasible region S is compact and convex ( and there exist some upper
bounds for the €-constraint problem so that the solution is finite).

The €-constraint problem is used for generating Pareto optimal solutions. Through­
out this section it is assumed that all the upper bound constraints are active at the 
optimum. (If this is not the case, then the upper bounds must be slightly modified.) 
The solution of the €-constraint problem (2.3.1) is supposed to be unique (so that 
Pareto optimality is guaranteed) and it is denoted by xh . Then, fi(xh ) = cj for all 
j =/- R.. The optimal value of ft, that is, ft(xh ), is denoted by z;. It is also assumed 
that all the Kuhn-Tucker multipliers associated with the active constraints are strict­
ly positive. The conditions of Theorem 2.3.17 are supposed to be satisfied so that 
trade-off information can be obtained from the Kuhn-Tucker multipliers. 

The value function is not maximized here in the form (2.9.1) as before. Instead, 
the set of feasible alternatives is restricted to the Pareto optimal set. According to 
the above assumption fi(xh ) = cj for all j =/- R., we get a new formulation 

(2.15.1) 

No constraints are needed here since the formulation includes the original constraints. 
The optimization is now carried out in the criterion space R k-l, where the cj:s are 
the variables. 

It is proved in [Sakawa, 1982] that the new function is concave with respect to those 
e E R k-l for which the upper bound constraints are all active. Sakawa also claims that 
the partial derivative of (2.15.1) with respect to cj is equivalent to dr

f
�·\m}

i 
- >.}

j
) 

for j -:/- R., where m}j is the marginal rate of substitution between ft and Ji at xh 

( obtained from the decision maker, see Section 2.14) and >.}
j 

is the partial trade-off 
rate between ft and Ji at xh ( obtained from the optimal Kuhn-Tucker multipliers, 
see Sections 2.3 and 2.13). 

Because it was assumed that the value function is strictly decreasing, we know that 
d

dUf
�-) < 0 and we can divide by it. Now we denote 

-(m}
i 

- >.}
i
) = Clcj 

for j # e, and it represents the direction of steepest ascent of the value function 
(2.15.1) at the current point xh for j-:/- R.. According to Sakawa, the R.th component 
of the direction is 

I: >.}
j
(m}

j 
- >.}

j
) 

j#l 

denoted by Clz}.
After obtaining the search direction, we have to find the step-size t which in theory 

maximizes the function 
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The step-size could be determined as earlier by presenting different criterion vectors 
for the decision maker with different values of t and by letting the decision maker 
choose the most preferred one. The problem with the alternative criterion vectors 
is that they are not necessarily Pareto optimal. This weakness can be overcome by 
solving the €-constraint problem with the upper bounds cj + tt:i.1oj, j i= R. We still 
assume that the constraints are active. The amount of calculations increases now 
since the €-constraint problem must be solved for several values of t but now the 
alternatives are guaranteed to be Pareto optimal. 

However, the step-size is not determined by the above described way. To aid the 
decision maker in maximizing (2.15.2), local proxy preference functions p (in the 
same spirit as presented in Section 2.14 in connection with the GDF method) are 
now applied. According to the preference structure of the decision maker a sum­
of-exponentials, a sum-of-powers or a sum-of-logarithms proxy function of the form 
_ "°' k . -wf;(x) _ "°' k 

·( . J·( ))°'' "°' k · l ( . J·( )) · 1 · 
L.,i=l a,e , L.,i=l a, n, + , x or L.,i=l a, n n, - , x , respective y, 1s

selected. The constants a;, w;, n; and a; are used for tuning the proxy functions to 
represent the preferences of the decision maker better, see, for example, [Sakawa, 
1982] or [Sakawa, Seo, 1982(b )] for further details. This kind of a proxy function 
is very restrictive globally but reasonable when assumed locally. The parameters 
needed to fit the selected proxy function into the current problem are obtained from 
the marginal rates of substitution. 

SPOT Algorithm 

Now we can present the basic ideas of the SPOT algorithm. 
( 1) Choose a reference function and upper bounds e1 E Rk-l for which all the

constraints of the €-constraint problem are active. Set h = l.
(2) Solve the current (active) €-constraint problem for eh to obtain a Pareto opti­

mal criterion vector zh and the optimal Kuhn-Tucker multipliers >.}
j
, j i= R.

(3) Obtain the marginal rates of substitution at zh from the decision maker. Test
the consistency of the marginal rates of substitution and ask the decision maker
to respecify them if necessary.

(4) If lm;
j 

- >.;
j

l < 0, where 0 is a prespecified positive tolerance, then zh is the
final solution. Otherwise, determine the components f::i.cj, j i= R, and f::i.zf of
the direction vector.

(5) Select the appropriate form of the proxy function and calculate its parameters.
If the obtained proxy function is not strictly decreasing and concave, then ask
the decision maker to specify new marginal rates of substitution.

(6) Determine the step-size by solving the €-constraint problem with the upper
bounds cj + tt:i.1oj, j i= R. Denote the optimal value of the objective function
by zf(t). A step-size th is selected which maximizes the proxy function. If the
new criterion vector (c}+thf::i.c}, ... , z;(th), ... ,1oi+thf::i.1o�)T is preferred to z\
then denote it by zh+l, set h = h + l and go to step (2). If the decision maker
prefers zh to the new solution, reduce th to be ½th , ¼th, ... until improvement
is achieved.

The maximum of the proxy function is determined by altering the step-size t, ob­
taining the corresponding Pareto optimal solution and searching for three t values, ti , 
th and t2 so that t1 < th 

< t2 and p( ti) < p( th) > p( t2 ), where p is the proxy function. 
When the above condition is satisfied, the local maximum of the proxy function p(t) 
is in the neighbourhood of th. 
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Under the assumptions 1-3, the optimality condition for the problem (2.15.1) at 
eh is that the gradient equals zero at that point. This means that m}

1 
= >.}

1 
for

j = 1, ... k, j # R. This is the background of the absolute value checking at step (4) 
( see also Section 1. 7). 

The consistency of the marginal rates of substitution is checked because it is im­
portant for the successful convergence of the algorithm. The consistency at a single 
point is tested by the chain rule and by limiting the discrepancy ( the formula is given 
in [Sakawa, 1982]) by a given tolerance level. The consistency at successive points is 
tested by checking the concavity and monotonicity of the proxy function ( the proxy 
function must fulfill the same assumptions as the value function). A theorem giving 
conditions for different types of proxy functions is presented in [Sakawa, 1982]. 

To ensure the convergence of the algorithm it must, at each iteration, be checked 
that sufficient improvement is obtained. If the decision maker prefers the new solution, 
the procedure may continue. Otherwise, a new step-size must be estimated. 

It is remarked in [Sakawa, 1982] that the SPOT algorithm is nothing but a feasible 
direction method as for the convergence rate. The convergence can be demonstrated 
by the convergence of the modified feasible direction method. For this statement to be 
true an ideal (i.e., consistent with correct answers) decision maker must be assumed. 
SPOT can be classified to belong to methods of non ad hoe nature. If the value 
function is known, then the marginal rates of substitution can be computed directly. 

Applications and Extensions 

The functioning of the SPOT algorithm is demonstrated in [Sakawa, 1982] by an 
academic example. It is shown that even though the marginal rates of substitution are 
only approximations, it did not worsen the results remarkably. A problem concerning 
industrial pollution in Osaka City in Japan is solved by SPOT in [Sakawa, Seo, 1980, 
1982(a), (b)]. The problem is defined as a large-scale problem in [Sakawa, Seo, 1980] 
and a dual decomposition method is used to solve the c:-constraint problems. 

Fuzzy SPOT is presented in [Sakawa, Yano, 1985]. The decision maker is supposed 
to assess the marginal rates of substitution in a fuzzy form. In [Sakawa, Mori, 1983], 
a new method for nonconvex problems is proposed, where the weighted L00-metric 
is used to generate Pareto optimal solutions instead of the c:-constraint method, and 
trade-off rates are not used. A method related to the preceding one is presented in 
[Sakawa, Mori, 1984]. The difference is that a penalty scalarizing function is used in 
generating Pareto optimal solutions (see Section 2.19). This method is also applicable 
to nonconvex problems. 

Concluding Remarks 

Ideas of several methods have been combined in SPOT and several concepts are 
utilized. The difficulties in determining the marginal rates of substitution mentioned 
in Section 2.14 are still valid. The consistency of the marginal rates of substitution 
is in SPOT even more important than in the GDF method. 

A positive feature in SPOT when compared to the GDF method is that only Pareto 
optimal solutions are handled. Also the burden on the decision maker is smaller 
because a proxy functions is employed when selecting the step-size. 

Many assumptions are set to guarantee the proper functioning of the algorithm. 
Some of them are quite difficult to check in practice (see concluding remarks of the 
GDF method). 
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Because the multiobjective optimization problem was assumed to be convex, glob­
ally Pareto optimal solutions are obtained. If the convexity assumptions are relaxed, 
locally Pareto optimal solutions are to be considered. 

2.16. Zionts-Wallenius Method 

After presenting several multiobjective optimization methods based on the opti­
mization of the underlying (implicitly known) value function, we shortly mention one 
more method based on the same idea. It is called a Zionts-Wallenius (ZW) method 
and it was originally presented in [Zionts, Wallenius, 1976] for maximizing MOLP 
problems with linear implicit value functions. In [Wallenius, Zionts, 1977], it was 
presented more thoroughly with some experiences of implementations. The method 
was developed in [Zionts, Wallenius, 1983] to handle certain types of nonlinear value 
functions. Here we present the method only briefly in the latter, more general form, 
and for minimization problems. 

General Outline 

It is assumed that 

1. The underlying value function U exists and is implicitly known to the decision
maker. In addition, U is a pseudoconcave, nonincreasing and continuously
differentiable function on Z (possible are, e.g., linearly additive or concave
functions).

2. The objective functions are linear.
3. The constraint functions are linear forming a closed and bounded feasible re­

gion S.

The assumption 2 can be generalized to convex objective functions by considering 
piecewise linearizations. 

Pareto optimal solutions are generated in the ZW method by solving weighting 
problems with positive weights (see Section 2.2) by the simplex algorithm. This 
means that the ( nonlinear) underlying value function is approximated locally by linear 
weighting problems. (Remember that the weighting problem corresponds to a linear 
value function.) In other words, an "optimal" weighting vector is tried to determine. 

The basic ideas of the algorithm are the following. After obtaining a Pareto optimal 
criterion vector zh E Z by the weighting method, all its adjacent Pareto optimal 
extreme points (in the criterion space) are identified (see [Zionts, Wallenius, 1975, 
1980]) and the decision maker is asked to compare each of them with zh (i.e., express 
preference or indifference). According to the responses of the decision maker, the 
space of the weighting vectors is restricted. If two solutions are too close to each 
other to be compared, total trade-off rates ( obtained from the reduced costs portion 
of the optimal simplex tableau) are utilized. Trade-off rates are also used in situations 
where the decision maker wants to move along a Pareto optimal edge leading from 
zh to some adjacent Pareto optimal extreme point but not as far as the extreme 
point. The decision maker's opinions of the trade-off rates are also used to restrict 
the space of weighting vectors. Thus, the ZW method transforms the preference 
information of the decision maker into constraints on the weighting vector space. At 
the next iteration, the weighting vector for the weighting problem is selected from the 
contracted space. If the contracted weighting vector space is empty ( this may happen 
if the decision maker is not consistent), then the oldest constraints are deleted until 
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the space becomes nonempty. The algorithm continues until the decision maker does 
not prefer any of the adjacent Pareto optimal solutions. 

The purpose of the method is to generate a sequence of improved extreme solutions. 
In [Zionts, Wallenius, 1983], it is proved that the solution x* E Sand the correspond­
ing z* E Z are globally optimal (with respect to the underlying U), if the decision 
maker does not prefer any Pareto optimal edge emanating from -z*. If we only know 
that the decision maker does not prefer any adjacent Pareto optimal extreme point, 
then the solution can be regarded as a locally optimal solution (with respect to U) 
and better solutions may exist in the relative interior of some adjacent facet. Such a 
point cannot be found by the ZW method but some other algorithm must be applied. 
If the answers of the decision maker are consistent and correct, the method may con­
verge rapidly. A positive feature is that earlier mistakes can be corrected during the 
solution process (by deleting old constraints on the weighting vector space). The ZW 
method can be characterized as a non ad hoe method. The questions posed by the 
algorithm can be answered deterministically if the value function is known. 

Without taking any negative attitude, we mention that the ZW method was scored 
the worst of four interactive methods compared in [Buchanan, Daellenbach, 1987] ( see 
Section 5). The problem was not in the easiness of using or understanding the method, 
but the decision makers felt that they were at the mercy of the method. Thus, the 
decision makers thought that they were not able to take enough responsibility of the 
solution process. Notice that all the interactive methods described so far share this 
property is common. They are algorithm-led rather than decision maker-led methods. 

Applications and Extensions 

A Fortran implementation of the ZW algorithm is outlined in [Breslawski, Zionts, 
1985]. Another way of generalizing the original ZW method of [Zionts, Wallenius, 
1976] for pseudoconcave value functions is suggested in [Korhonen, Wallenius, 1984]. 
This approach is based on so-called reference directions (see Section 2.21). A new 
variation is presented also in [Koksalan, Beseli, 1989], where the two versions of 
Zionts and Wallenius have been combined. This method does not require any trade­
off information. 

An extension of the ZW method, presented in [Ramesh, Karwan, Zionts, 1989(a)], 
pays attention to inconsistent answers of the decision maker. In the ZW method, the 
problem is handled by dropping old constraints of the w:eighting vector space. This 
may mean a loss of information on the preference structure, and more questions have 
to be asked to return that information. In the extension, convex cones are formed 
according to the answers of the decision maker representing the preferences. Even 
though the constraints on the weighting vector space are deleted, the cones are not 
changed. This extension is modified for integer programming in [Ramesh, Karwan, 
Zionts, 1989(b )]. 

The ZW method is extended for concave (maximization case) objective and value 
functions and convex feasible regions in [Roy, Wallenius, 1992]. A more general case of 
nonlinear objective functions, nonconvex feasible regions and concave value functions 
is also discussed. The generalized reduced gradient method is used for optimization 
since it is based on the ideas of the simplex method. Trade-off rates are still pre­
sented to the decision maker to obtain information but a proxy function is used to 
approximate the value function. In addition, the ZW method is adapted for multiple 
decision makers in [Korhonen, Moskowitz, Wallenius, Zionts, 1986]. 
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The method in [White, 1980] is based on the same idea as the ZW method by 
trying to determine the optimal weights of a linear underlying value function. The 
realization is different but related to the ZW method. 

Concluding Remarks 

The role of the decision maker has been tried to keep rather simple in the ZW 
method. (S)he is only asked to compare two criterion vectors at a time. However, 
the number of comparisons per iteration depends on the problem to be solved, and, if 
the problem is large, then many questions have to be asked from the decision maker 
until every extreme point and adjacent facet has been explored. When comparing, 
for example, the ZW method and the GDF method, the key difference is that the ZW 
method requires more ordinal comparisons, whereas the GDF method requires fewer, 
but more complicated, indifference judgements. 

The concept of trade-off rates must be clear to the decision maker in order to 
guarantee satisfactory progress. If the trade-offs cause problems, it may be positive 
that (unlike the ISWT method) the ZW method is not based completely on them. 
It is still quite a substantial requirement that the decision maker has a reasonable 
(implicit) value function. To assume that the value function is linear is a very serious 
restriction. In that case, the convergence is guaranteed better, though. 

Employing the weighting method guarantees the solutions to be Pareto optimal. 
The weakness of the ZW method for MOLP problems is that it can only find opti­
mal solutions which are at the edges of the feasible criterion region. Naturally, the 
seriousness of this weakness depends on the structure of the problem. 

2.17. Interactive Weighted Tchebycheff Procedure 

The interactive weighted Tchebycheff (IWT) procedure, proposed in [Steuer, Choo, 
1983] and [Steuer, 1986] and refined in [Steuer, 1989(a)], is an interactive weighting 
vector space reduction method. Thus, it has something in common with the ZW 
method even though the two methods are of different structure. A remarkable dif­
ference when compared to the methods described thus far is that the value function 
plays no central role in the IWT method. In this presentation, we introduce the IWT 
algorithm according to the refined version but modified for minimization problems. 

Introduction 

The IWT method has been designed to be easy to use for the decision maker, 
and, thus, complicated information is not required. To start with, a utopian vector 
below the ideal criterion vector is established. Then the distance from the feasible 
criterion region to the utopian vector, measured by a weighted Tchebycheff metric, 
is minimized. Different solutions are obtained with different weighting vectors in the 
metric. The space of solutions is reduced by working with sequences of progressively 
smaller subsets of the weighting vector space. Thus, the idea is to develop a sequence 
of progressively smaller subsets of the Pareto optimal set until a final solution is 
located. Different alternative criterion vectors are presented to the decision maker 
and (s)he is asked to select the most preferred of them. The feasible region is then 
reduced and alternatives from the reduced space are presented to the decision maker 
for selection. 
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Contrary to many other interactive methods for multiobjective optimization, the 
IWT procedure does not presume many assumptions on the problem to be solved. It 
is assumed that 

1. The underlying value function is monotone.
2. All the objective functions are bounded over the feasible region S.

The utopian vector z** is defined to be an infeasible criterion vector that strictly 
dominates every Pareto optimal solution. The components are formed by setting 

for all i = 1, ... , k, where zt is a component of the ideal criterion vector and €i > 0 
is a relatively small but computationally significant scalar. 

The metric to be used for measuring the distances, the weighted Tchebycheff (L00-)
metric ( see Section 2. 7) is 

max [wi(f;(x) - zt*)],
199 

where w E W = {w E Rk I O < w; < 1, I:7
=1 

w; = l}. We have a family of 
metrics since w E W can vary widely. The nondifferentiable problem of minimizing 
the distance between fi(x) E Z and z** with the weighted Tchebycheff metric can 
be solving as a differentiable weighted Tchebycheff problem (2.7.1 1) (where the ideal 
criterion vector is replaced by the utopian vector) instead of the nondifferentiable 
min-max problem. 

Adapting Theorem 2.7.15, we know that every Pareto optimal solution of any mul­
tiobjective optimization problem can be found by solving the problem (2.7.1 1) with 
z**. The negative aspect with the weighted Tchebycheff problem is that some of 
the solutions may be weakly Pareto optimal (though according to Theorem 2.7.14 at 
least one of the solutions is Pareto optimal). This weakness has been overcome in the 
IWT procedure by formulating the distance minimization problem as a lexicographic

weighted Tchebycheff problem 

(2.1 7.1) 

k 

lex minimize a, I)J;(x) - zt*)

subject to 
i=l 

a � w;(f;(x) - zt*), for all i = 1, ... , k,

x ES. 

The functioning of the problem (2.1 7.1) is described in Figure 14 by a problem with 
two objective functions. The fat line illustrates the Pareto optimal set. The problem 
with a as the objective function has L-shaped contours (the thin solid line) whose 
vertices lie along the line emanating from z** in the direction (.1..., .1..., ... , ..L). When 

W1 W2 Wk 

minimizing a, such a contour is determined which is closest to z** and intersects Z.

If this problem does not have a unigue solution, that is, there are several feasible 
points on the optimal contour intersecting Z, then some of them may not be Pareto 
optimal. (In practice, the uniqueness is usually difficult to check, and, to be on the 
safe side, the following step must be taken.) In this case, the sum term is minimized 
subject to the obtained points to determine which of them is closest to z** according 
to the Li -metric ( the dashed line). Thus a unique solution, which is Pareto optimal 
(see Theorem 2.7.12), is obtained. It is proved in more detail in [Steuer, 1986] that 
every solution of the lexicographic weighted Tchebycheff problem is Pareto optimal 
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and for every Pareto optimal solution there exists a weighting vector w E W such 
that the solution is unique for the lexicographic weighted Tchebycheff problem. 

• 

utopian 
vector 

z 

second minimization 

first minimization 

Figure 14. Lexicographic weighted Tchebycheff problem. 

Different Pareto optimal solutions can be obtained by altering the weighting vector. 
At each iteration h, the weighting vector space Wh = { wh E R k I lf < wf < 

uh "k wh = l} is reduced to Wh+l where wh+l C wh With a sequence
1, Wi=l 1 , 

• 

of progressively smaller subsets of the weighting vector space a sequence of smaller 
subsets of the Pareto optimal set is sampled. 

At the first iteration, a sample of the whole Pareto optima.I set is generated by 
solving the leximgrnphic. wP.ie;hteil Tc.hehyc.heff prnhlP.m with well dispersed weighting 
vectors from W = W1 (with l} = 0 and u} = 1). The reduction of Wh is done by 
tightening the upper and the lower bounds for the weighting vectors. Let zh be the 
criterion vector that the decision maker chooses from the sample at the hth iteration 
and let wh be the corresponding weighting vector in the problem (2.17.1). Now, a 
concentrated group of weighting vectors centred around wh is formed. In this way, a 
sample of Pareto optimal solutions centred about zh is obtained. 

The number of the alternative criterion vectors to be presented to the decision 
maker is denoted here by P. The number is usually specified by the decision maker. 
It may be fixed or different at each iteration. The algorithm becomes more reliable, if 
as many alternatives as possible can be evaluated effectively at each iteration. Human 
capabilities are yet limited, and some kind of a compromise is desirable. 

When reducing the weighting vector space at each iteration, a reduction factor r 
is needed. The larger the reduction factor is, the faster the weighting vector space is 
reduced and the smaller are the decision maker's possibilities for making errors and 
changing her or his mind about aspirations during the process. The correct selection 
of r is thus important. It is suggested in [Steuer, Choo, 1983] and [Steuer, 1986] 
that (1/ P)1fk � r � v1f(H-l), where v is the final interval length of the weighting
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vectors, A � v � 2
3
k

, H is the number of iterations to be carried out and � stands 
for "approximately equal or less". 

IWT Algorithm 

Now we can present the main features of the IWT algorithm. 
( 1) Specify values for the set size P('?!;, k ), reduction factor r and an approximation

for the number of iterations H(� k). Set l} = 0 and u} = 1 for all i = 1, ... , k.
Construct the utopian vector. Set h = 1.

(2) Form the weighting vector space Wh = { wh E R k I lf < wf < uf, :Z::7
= 1

wf =
l}.

(3) Generate 2P dispersed weighting vectors wh E Wh.
( 4) Solve the lexicographic weighted Tchebycheff program (2.17.1) for each of the

2P weighting vectors.
(5) Present P most different of the resulting criterion vectors to the decision maker

and let her or him choose the most preferred among them, denoting it by zh .
(6) If h = H go to step (8). Otherwise, modify, if necessary, the weighting vector

corresponding to zh such that if the problem (2.17.1) was solved again, zh 

would be a uniquely generated solution at the vertex of the intersecting new
contour.

(7) Specify lf+1 and u7+1 for the reduced weighting vector space Wh+1
, set h =

h + 1 and go to step (2).
(8) The final solution is xh corresponding to zh.

Dispersed weighting vectors are generated from Wh in step (3). In practice, this
can be realized by generating randomly a large set ( e.g., 50k) of weighting vectors. 
Then the vectors are filtered (see [Steuer, 1986]) or clustered (see [Miettinen, 1990]). 
The clustering is practical since subroutines for it are available in many subroutine 
libraries. While we want to obtain 2P well dispersed weighting vectors, we form 2P 
clusters and choose one candidate from each of them either arbitrarily or near the 
centre. 

Computationally, the following subroutine can be used to obtain random weighting 
vectors in Wh. The subroutine has been developed for the implementation described 
in [Miettinen, 1990). We leave the index h for clearness. For i = 1, ... , k set 

where ra is a random number between O and 1. Calculate the sums we= I:7
=1 wei,

l = I:7
=1 l; and u = :Z::7

=1 
u;. Finally, set 

{ 
we;+ t:;(Z; - we;) if we> 1 

w· = we·+ l-we(u· - we·) if we< 1i t u-we z t 

we; _ otherwise. 

The lexicographic weighted Tchebycheff problem is solved 2P times for 2P weight­
ing vectors (instead of P) in case the same or a very similar solution is obtained with 
different weighting vectors. The 2P ( or less) criterion vectors are again filtered or 
clustered to obtain P most different. In this way, it is guaranteed that P different 
criterion vectors can be presented to the decision maker. For graphical illustration of 
the alternatives, see Chapter 4. 
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The modification of the weighting vector in step (6) can be conducted by setting 

for all i = 1, ... , k. The modification is relevant because the weighting vector space 
is reduced with respect to wh. It is good to have an unbiased basis for the reduction. 

Several possibilities for reducing the weighting vector space have been suggested. 
It is proposed in [Steuer, 1986] that we set 

if Wh - � < 0 
I 2 -

if wh + � > l 
I 2 -

otherwise, 

where rh means raising r to the hth power. In [Steuer, 1989(a)], an auxiliary scalar 
w is determined so that the ratio of the volumes of Wh+1 and Wh is r. Then w is 
used in the reduction instead of the term ½rh. 

The predetermined number of iterations is not necessarily conclusive. The decision 
maker can stop iterating when (s )he obtains a satisfactory solution or can continue 
the solution process further if necessary. 

It is suggested in [Steuer, 1986, 1989(a)] that the sampling of the Pareto optimal 
set works in the most unbiased way if the ranges of the objective function values 
over the Pareto optimal set are approximately the same. This can be accomplished 
by re-scaling the objective functions in the similar way as presented in Section 2.2, 
when necessary. It is advisable to use the scaling only in the calculations and present 
the alternatives to the decision maker in the original form. More suggestions for 
modifications of the algorithm are presented in [Steuer, 1989(a)]. 

The convergence rate of the IWT procedure is very <lifficnlt, to establish. It is 
stressed in [Steuer, 1989(a)] that the IWT procedure is able to converge to any Pare­
to optimal solution. The reduction factor r is comprehended as a convergence factor. 
The weighting vector space is reduced until a solution is obtained that is good enough 
to be a final solution (see [Steuer, Choo, 1983]). The IWT procedure can be charac­
terized as a non ad hoe method. If the value function is known, it is easy to select 
from the set of P alternatives the one which maximizes U. It is worth noticing that 
the IWT procedure, unlike many other methods, is able to converge to a non-extreme 
solution in MOLP problems. 

We do not here go into details of the original version of the IWT procedure. We only 
mention that the possibility of getting weakly Pareto optimal solutions is handled by 
introducing an augmentation term to give a slight slope to the contour of the metric. 
An augmented weighted Tchebycheff metric is defined by 

k 
max [wi(fi(x) - zf*)] + p ""'Ui(x) - zt*),I<i<k 6 
- -

i=l 

where p is a sufficiently small positive scalar. The metric is illustrated in Figure 
15, where the dashed lines represent the contours of the augmented metric. The 
contour of the weighted Tchebycheff metric (solid line) has been added only to ease 
the comparison with Figure 14. In this version, the lexicographic optimization is 
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avoided, but the IWT algorithm is more complicated in other ways (see (Steuer, 1986]). 
A numerical illustration of the algorithm is presented in [Steuer, 1986]. Another 
implementation of the IWT algorithm is presented in [Miettinen, 1990], where several 
different graphical illustrations of the alternatives are presented to the decision maker 
at each iteration (see also Chapter 4). 

z 

• 

utopian 

vector 

Figure 15. Augmented weighted Tchebycheff problem. 

The IWT procedure in its original form is applied in (Wood, Greis, Steuer, 1982] to 
water allocation problems of a river basin and in [Silverman, Steuer, Whisman, 1988] 
to manpower supply forecasting. In [Olson, 1993], the IWT procedure is applied to a 
sausage blending problem. A method related to the IWT procedure is introduced in 
[Kaliszewski, 1987]. There, a so-called modified weighted Tchebycheff metric is used 
for measuring the distances. 

Concluding Remarks 

A positive feature in the IWT procedure is that the role of the decision maker is 
quite easy to understand. (S)he does not need to realize new concepts or specify 
numerical answers as, for example, in the ISWT and the GDF method. The easiness 
of comparing the alternative criterion vectors depends on the magnitude of P and on 
the number of the objective functions. Personal capabilities of the decision makers 
also play an important role. It is also good that all the alternatives are Pareto optimal. 

The flexibility of the method is decreased by the fact that the discarded parts of 
the weighting vector space cannot be restored, if the decision maker changes her or 
his mind. Thus, some consistency is required. 

The weakness of the IWT method is that very much calculation is needed at each 
iteration and many of the results are discarded. For large and complex problems, 
where the evaluation of the values of the objective functions may be laborious, the 

91 



IWT procedure is not a realistic choice. On the other hand, it is possible to utilize parallel computing since all the lexicographic problems can be solved independently. Not that any absolute superiority could be concluded, we, however, mention that the 1 WT procedure performed best in the comparative evaluation of the ZW, the SWT and the IWT method, and a naive approach in [Buchanan, Daellenbach, 1987] (see Chapter 5). Anyhow, a difficulty encountered was comprehending the information provided. The test example had only three objective functions and six alternatives were presented at each iteration. And the burden nothing but becomes larger when the number of the objective functions is increased. 
2.18. Step Method 

The step method (STEM), presented in [Benayon, de Montgolfier, Tergny, Lar­itchev, 1971], contains elements somewhat similar to the lWT procedure, but is based on a different idea. STEM is one of the first interactive methods developed for mul­tiobjective optimization problems. It was originally designed for MOLP problems to be maximized but can be extended for nonlinear problems (see, e.g., [Sawaragi, Nakayama, Tanino, 1985] or [Eschenauer, Osyczka, Schafer, 1990]). It can be consid­ered to aspire at finding satisficing solutions (as introduced in Section 1.4) instead of optimizing an underlying value function. The main features for minimizing MOLP problems are only briefly sketched in the following. It is assumed that 1. The multiobjective optimization problem is linear.2. The objective functions are bounded over the feasible region S.

General Outline It is assumed in STEM that at a certain criterion point the hopes of the decision maker are fulfilled so Lhat (:;)he cau give up a little in the value(s) of some objective function(s) in order to improve the values of some other objective functions. The ideal criterion vector z* is used as a reference point in the calculations and the distances are mf:.'asured by the weighted Tchebycheff (L00-) metric. The nadir point znad is approximated from the payoff table as explained in Section 1.5. Thus, the maximal element of the ith column is zrad. Information about the ranges of the Pareto optimal set is used in generating the weighting vector for the metric. The weighting vector is calculated by the following formula 
where for every i = 1, .. . , k 

{ zrad - zt ('-'n 2)-½ if Znad > Qz':'ad L.,j=l Cij i 

e; =
i z':'ad - z* t 

i i ( '-'n c 2)-2 otherwise.
lztl 

L.,j=I ij 

(The denominators are not allowed to be zero.) Here the terms Cij are the coefficients of the linear objective functions. The first term in the multiplication gives more 
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weight to such objective functions that are far from the ideal criterion vector and 
the latter term normalizes the gradients of the objective functions according to the 
Lrnorm. 

The distance between the ideal criterion vector and the feasible criterion region is 
minimized by the weighted Tchebycheff metric ( the weighting coefficients specified 
as above). The obtained solution and the ideal criterion vector -are presented to the 
decision maker for comparison. Then the decision maker is asked to specify such 
objective function(s) whose value(s) (s)he is willing to relax (weaken) to decrease the 
values of some other objective functions. (S)he must also determine the amount(s) of 
acceptable relaxation. Ways of helping the decision maker in this phase are presented 
in [Benayon, de Montgolfier, Tergny, Laritchev, 1971]. The feasible region is restricted 
according to the information of the decision maker and the weights of the relaxed 
objective functions are set equal to zero. Then a new distance minimization problem 
is solved and the procedure continues until the decision maker does not want to change 
any component. If the decision maker is not satisfied with any of the components, then 
the procedure must also be stopped. In this case, STEM fails to find a satisfactory 
solution. 

Unlike many other methods, STEM does not assume the existence of an underlying 
value function. Even if one were available, it could not help in answering the questions. 
Thus nothing can be said about the convergence of STEM with respect to a value 
function. It can be characterized as an ad hoe method. However, the developers of the 
method mention that the algorithm produces a final solution fast if the new constraints 
constructed during the solution process become ineligible for further relaxations. They 
state that fewer iterations are needed, if several objective functions are relaxed at the 
same time. 

Applications and Extensions 

STEM is applied in [Bare, Mendoza, 1988] to solve forest land management planning 
problems of Washington area, and in [Wascher, 1990] to solve problems of cutting 
stock. In [Vijayalakshmi, 1987], it is applied to Indian sugar industry, and in [Rentz, 
Hanicke, 1988], it is used in planning parts of energy support systems. 

A modification of STEM is presented in [Slowinski, Warczynski, 1984]. The L2-

metric is there utilized in the distance minimization to guarantee the Pareto optimality 
of the solutions. The simplex method and the ellipsoid method are compared as 
optimization routines. 

A so-called exterior branching algorithm is presented in [Aubin, Naslund, 1972]. It 
is an extension of STEM into nonlinear problems. There are several differences when 
compared with the original method. For example, the decision maker does not need to 
specify amounts of change and an implicit value function is assumed to exist. Some 
extensions and modifications of STEM are also presented in [Chankong, Haimes, 
1983(b )] and [Crama, 1983]. STRANGE, an extension of STEM to treat linear, 
stochastic multiobjective optimization problems is introduced in [Teghem, Dufrane, 
Thauvoye, Kunsch, 1986]. 

Concluding Remarks 

The idea of specifying objective functions whose values should be decreased or can 
be increased seems quite simple and appealing. However, specifying the amounts of 
change may sometimes be more difficult. 
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According to the results presented in Section 2. 7, the solutions of STEM are not 
necessarily Pareto optimal but weakly Pareto optimal solutions may be obtained. A 
positive feature for MOLP problems is that STEM is able to identify Pareto optimal 
solutions which are not extreme points ( unlike, e.g., the Zionts-Wallenius method in 
Section 2.16). 

STEM and the IWT method have a limitation in common. Namely, the decision 
maker must be somewhat consistent in her or his actions. It is not possible to withdraw 
the restrictions set on the feasible region. 

2.19. Reference Point Method 

The reference point method, presented in [Wierzbicki, 1980(a), (b), 1981, 1982], 
is based on a reference point. The reference point is a feasible or infeasible point in 
the criterion space being reasonable or desirable to the decision maker. The reference 
point is used to derive achievement scalarizing functions which have minimal solutions 
at Pareto optimal points (only). So, value functions or weighting vectors are not 
used as a basis when generating Pareto optimal solutions. Notice that no specific 
assumptions are set on the problem to be solved. 

Introduction 

The basic idea behind the reference point method is to reconsider the fact how 
decision makers make decisions. It is doubted in [Wierzbicki, 1980(a), (b)] that indi­
viduals do not make everyday decisions by maximizing some value function. Instead, 
it is claimed that decision makers want to attain certain aspiration levels ( e.g., when 
making purchases according to a shopping list). Wierzbicki suggests that, while thou­
sands of consumers behave on the average as if they maximized a value function, no 
individual behaves in that way. The basic idea is satisficing (introduced in Section 
1.4) rather than optimizing. In addition, reference points are easy and intuitive for 
the decision maker to specify and their consistency is not required so essentially. 

Before we can present the algorithm itself, we must present new concepts and new 
ways of approaching the multiobjective optimization problem. This section is based on 
the papers [Wierzbicki, 1977, 1980(b), 1981, 1982, 1986(a), (b)]. (Somewhat similar 
results for scalarizing functions are presented in [Jahn, 1984] and [Luc, 1986].) By a 
reference point method we here mean that of Wierzbicki's. 

It is shown, for instance, in [Wierzbicki, 1980(b ), 1986( a)] that Pareto optimal solu­
tions can be characterized by achievement scalarizing functions if the functions satisfy 
certain requirements. An achievement scalarizing function is a function Sz: Z - R, 
where z E Rk is an arbitrary reference point of aspiration levels. In the following, we 
shorten the name to an achievement function. 

Because we do not know the feasible criterion region Z explicitly, we, in practice, 
minimi:te the function 8z(f(x)) subject to x E S (see, e.g., Figure 1). Thus, we deal 
with the feasible region in the decision variable space. For notational convenience, 
we, however, present the problem in this section as if it were solved in the feasible 
criterion region. 

First, we define some general properties applied to an achievement function Sz . 

Definition 2.19.1. A function Sz : Z - R is strictly monotone (or strictly order 
preserving) if for z1 and z2 E Z 

z; < zf for all i = l, ... , k imply Sz(z1 ) < Sz(z2 ). 
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Definition 2.19.2. A functions;; : Z-+ R is strongly monotone (or strongly order 
preserving) if for z1 and z2 E Z 

z} ::; z; for i = 1, ... , k and z3 < z; for some j imply s;;(z1 ) < s;;(z2).

We already defined a set R! = {z E Rk I <list (z, Ri) ::; eJJz JJ} in connection with 
the e-proper Pareto optimality (see Definition 1.8.2). 

Definition 2.19.3. A function s;; : Z -+ R is e-strongly monotone if for z1 and 
z2 E Z

Z
1 Ez2 -R�\{O}

. 
1 ( 1

)< (
2

) _ 1mp y S;; Z S;; Z . 

Definition 2.19.4. A continuous function s;; : Z -+ R is order representing if it is 
strictly monotone as a function of z E Z for any z E R k and if 

{z E Rk I s;;(z) < O} 
= z - int Rt 

(for all z E Rk ). 

Definition 2.19.5. A continuous function s;; : Z -+ R is order approximating if it 
is strongly monotone as a function of z E Z for any z E R k and if 

z - R! C {z E Rk I s;;(z)::; O} C z - R! 

(for all z E Rk) with e > t 2: 0. 

Remark. For a continuous function s;; which is order representing or order approx­
imating, we have 

s;;(z) = 0.

Now we can present the following theorems according to [Wierzbicki, 198 6(a), (b)]. 
The problem to be solved is 

( 2.19.6) 
mm1m1ze s;; 

( z) 

subject to z E Z.

Theorem 2.19. 7. If the achievement functions;; : Z -+ R is strictly monotone, then 
every solution of the problem (2.19.6) is weakly Pareto optimal. If the achievement 
functions;; : Z-+ R is strongly monotone, then every solution of the problem (2.19.6) 
is Pareto optimal. Finally, if the achievement function s;; : Z -+ R is e-strongly 
monotone, then every solution of the problem (2.19.6) is €-properly Pareto optimal. 

Proof. Here, we only prove the second statement because of the similarity of the 
proofs. We assume that s;; is strongly monotone. Let z* E Z be a solution of the 
problem (2.19.6). Let us suppose that it is not Pareto optimal. In this case, there 
exists a criterion vector z E Z such that z; ::; z; for all i = 1, ... , k and Zj < zJ for 
some j. According to the strong monotonicity of s;;, we know that s;;(z) < s;;(z*), 
which contradicts the assumption that z* minimizes s;;. Thus z* is Pareto optimal. I 

The above result is now rewritten to be able to characterize Pareto optimal solutions 
with the help of order representing and order approximating achievement functions. 
The proof follows from the proof of Theorem 2.19. 7. 
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Corollary 2.19.8. If the achievement function s,; : Z -+ R is order representing, 
then, for any z E Rk , every solution of the problem (2.19.6) is weakly Pareto optimal. 
If the achievement function Sz : Z -+ R is order approximating with some € and t as 
in Definition 2.19.5, then, for any z E Rk , every solution of the problem (2.19.6) is 
Pareto optimal. If Sz in addition is t-strongly monotone, then every solution of the 
problem (2.19.6) is t-properly Pareto optimal. 

The preceding theorem states sufficient conditions for a solution of an achievement 
function to be ( weakly, €-properly, or) Pareto optimal. The following theorem gives 
the corresponding necessary conditions. 

Theorem 2.19.9. If the achievement function Sz: Z -+ R is order representing 
and z* E Z is weakly Pareto optimal or Pareto optimal, then the minimum of the 
problem (2.19.6) is attained at z = z* and the value of the achievement function is 
zero. If the achievement function Sz : Z -+ R is order approximating and z* E Z is 
€-properly Pareto optimal, then the minimum of the problem (2.19.6) is attained at 
z = z* and the value of the achievement function is zero. 

Proof. Here, we only prove the statement for Pareto optimality. The proofs of the 
other statements are very similar. (The proof of the necessary condition for €-proper 
Pareto optimality can be found in [Wierzbicki, 1986(a)].) 

Let z* E Z be Pareto optimal. This means that there does not exist any other point 
z E Z such that z; '.S z; for all i = 1, ... , k and z1 < zJ for some j. Let us assume that 
z* is not a solution of the problem (2.19.6) when z = z*. So, there exists some vector 
z

0 E Z such that s,;(z0) < s,;(z*) = s;;(z) = 0 and z
0 =/- z*. Since Sz was assumed 

to be order representing, we have z0 E z - int Ri = z* - int Ri. This means that 
zf < z; for all i, which contradicts the assumption that z* is Pareto optimal. I 

Remark. By the help of the results in Theorem 2.19.9 a certain point can be con­
firmed not to be weakly, €-properly or Pareto optimal (if the optimal value of the 
achievement function differs from zero). 

Now we are able to completely characterize the set of weakly Pareto optimal solu­
tions with the help of order representing achievement functions. The sets of €-properly 
Pareto optimal solutions and Pareto optimal solutions are characterized almost com­
pletely (if the closure of the sets of solutions of the problem (2.19.6) for an order ap­
proximating achievement function is taken as € -+ 0). If the solutions of the problem 
(2.19.6) are supposed to be unique, the above theorems can make the characterization 
of Pareto optimal solutions complete. 

If the reference point is feasible, or more specifically z E Z + Ri, then the mini­
mization of the achievement function s,;(z) subject to z E Z must produce a solution 
which maximizes the surplus to the Pareto optimal set. If the reference point is infea­
sible, that is, z (/: Z + Ri, then the mi:riimization of the achievement function s,;(z) 
subject to z E Z must produce a solution which minimizes the distance to the Pareto 
optimal set. 

The importance with the achievement functions is that the decision maker can ob­
tain any arbitrary weakly Pareto optimal or Pareto optimal ( or at least €-properly 
Pareto optimal) solution by moving the reference point only. There are many achieve­
ment functions which satisfy the above-presented conditions. An example of order 
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representing functions is 
s,;(z) = max [w;(z; - z;)],

1$i$k 

where w is some fixed positive weighting vector. Let us briefly convince ourselves 
that the above-mentioned function really is order representing. The continuity of the 
function is obvious. If we have z1 and z2 E Z such that z} < zt for all i = 1, ... , k, 
then s,;(z1 ) = max;[w;(zt - z;)] < max;[w;(zr - Zi)] = s,;(z2 ) and thus the function 
is strictly monotone. If the inequality sz(z) = maxi[w;(z; - z;)] < 0 holds, then we 
must have z; < z; for all i = 1, ... , k, that is, z E z - int Ri. 

An example of order approximating functions is 

(2.19.10) 
k 

sz(z) = max [w;(z; - z;)] + p L w;(z; - z;),
1$i$k 

i=l 

where w is as above and p > 0 is sufficiently small when compared with c: and large 
when compared with t. This function is also t-strongly monotone. 

An example of so-called penalty scalarizing functions is 

(2.19.1 1) s,;(z) = -llz - zlJ2 
+ ell(z -z)+ ll

2

, 

where e > 1 is a scalar penalty coefficient and (z - z)+ is a vector with components 
max [O, Zi - zi]. This function is strictly monotone, strongly monotone for all norms
in Rk except the L00-norm and order approximating with c: � 1/e (see [Wierzbic­
ki, 1980(a), 1982]). More examples of order representing a.nd order approximating 
functions are presented, for example, in [Wierzbicki, 1980(b), 1986(a), (b)]. 

Reference Point Algorithm 

After presenting the necessary mathematical background, we can introduce the 
interactive multiobjective optimization technique of Wierzbicki. The method is very 
simple and practical. Before the solution process starts, some information is given 
to the decision maker about the problem. If possible, the ideal criterion vector and 
the ( approximated) nadir point are presented to illustrate the ranges of the Pareto 
optimal set. Another possibility is to minimize and maximize the objective functions 
individually in the feasible region (if it is bounded). Both decision variable and 
criterion values are presented. An appropriate form for the achievement function 
must also be selected. 

The basic steps of the reference point method are the following. 
( 1) Present information about the problem to the decision maker. Set h = 1.
(2) Ask the decision maker to specify a reference point zh E Rk (a level for every

objective function).
(3) Minimize the achievement function and obtain a (weakly) Pareto optimal so­

lution zh. Present the solution to the decision maker.
( 4) Calculate a number of k other (weakly) Pareto optimal solutions by minimizing

the achievement function with_ perturbed reference points

z(i) = zh 
+ dhei, 

where dh 
= llzh - zh ll and ei is the ith unit vector for i = 1, ... , k. 

(5) Present the alternatives to the decision maker. If (s)he finds one of the k + 1
solutions satisfactory, ( s )he chooses it as a final solution. Otherwise, ask the
decision maker to specify a new reference point zh+l . Set h = h + 1 and go to
step (3).
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The reason for writing the word weakly in parentheses in the algorithm is that 
it depends on the achievement function selected whether the solutions are Pareto 
optimal or weakly Pareto optimal. 

The advantage of perturbing the reference point is that the decision maker gets 
a better conception about possible solutions. If the reference point is far from the 
Pareto optimal set, the decision maker gets a wider description of the Pareto optimal 
set and if the reference point is near the Pareto optimal set, then a finer description 
of the Pareto optimal set is given. Affects of the perturbation and close and distant 
reference points are illustrated in Figure 16. 

z 

z 1 

Figure 16. Altering the reference points. 

The reference point method can be characterized as a non ad hoe method. Alter­
natives are easy to compare if the value function is known. On the other han<l, a 
reference point cannot be directly defined with the help of the value function. How­
ever, it is possible to test that a new reference point has a higher value function value 
t.him t.hP. P.ii.rliP.r Rnh1t.innR. 

As to the infinite convergence of the algorithm the following result is stated in 
[Wierzbicki, 1980(b )] . 

Theorem 2.19.12. If the solutions of the achievement function in the algorithm

are unique and if the minimal value of llz - zll subject to Pareto optimal criterion

vectors is equal to the minimal value of the achievement function Sz subject to Z for
z E Z + Ri, then for any norm in R k, the solution procedure is convergent. In other

words, limh--+oo llzh - zh+l II = limh--+oo dh 
= 0. 

Proof. See references in [Wierzbicki, 1980(b )]. 

A modification of the algorithm guaranteeing the convergence is presented in [Wierz­
bicki, 1980(b)]. 

Applications and Extensions 

The reference point approach is applied to econometric models in [Olbrisch, 1986]. 
In cases when there exists a weighting vector such that the solution of the weighting 

98 



problem is equal to the solution of the problem (2.19.6) the weighting vector can be 
obtained as a partial derivative of the achievement function. See [Wierzbicki, 1982] 
for details. 

It is remarked in [Vetschera, 1991(b )] that an achievement function widely used 
with the reference point context is not stable with respect to changes in the set 
of objective functions. A subset of reference points, called d0minating points, is 
considered in [Skulimowski, 1989]. A point is called a dominating point if it is not 
dominated by any feasible point and it dominates at least one of the feasible points. 
Skulimowski classifies the dominating points and studies their properties. 

The reference point method is generalized for several decision makers or several 
reference points in [Song, Cheng, 1988] and [Vetschera, 199l(a)]. A software package 
based on the reference point ideas of Wierzbicki is presented in Section 3.2. This 
package is called DIDAS. 

Concluding Remarks 

The reference point method of Wierzbicki is quite easy for the decision maker to 
understand. The decision maker only has to specify appropriate aspiration levels and 
compare criterion vectors. What has been said about the comparison of alternatives 
in connection with the previous methods is also valid here. The solutions are Pareto 
optimal or weakly Pareto optimal depending on the achievement function employed. 

The freedom of the decision maker has both positive and negative aspects. The 
decision maker can direct the solution process and is free to change her or his mind 
during the process. However, the convergence is not necessarily fast if the decision 
maker is not determined. There is no clear strategy to produce the final solution since 
the method does not help the decision maker to find improved solutions. 

The method of Wierzbicki can be regarded as a generalization of goal programming 
(in Section 2.11 ). Aspiration levels are central in both methods, but the method of 
Wierzbicki is able to handle both feasible and infeasible aspiration levels, the contrary 
of goal programming. 

2.20. Satisficing Trade-Off Method 

The satisficing trade-off method, presented in [Nakayama, Sawaragi, 1984], [N akaya­
ma, Furukawa, 1985] and [Nakayama, 1985(a)], is based on ideas similar to the ref­
erence point method of Wierzbicki. The method is presented here only briefly ( and 
converted into minimization). 

General Outline 

Just like the reference point method of Wierzbicki, the satisficing trade-off method 
originates from aspiration levels forming a reference point and is based on satisficing 
decision making as can be deduced from its name. However, the achievement function 
for obtaining Pareto optimal or weakly Pareto optimal solutions is somewhat different. 

The theoretical derivation of the method is based on the three requirements for 
scalarizing functions presented at the beginning of Chapter 2. As was then men­
tioned, there does not exist a scalarizing function which could satisfy all the three 
requirements. It was proved in Section 2. 7 that every Pareto optimal solution can be 
found by the weighted L00-norm, whereas the same is not always true for weighted 
L

p
-norms (1 :'.S p < oo) (depending on the degree of nonconvexity of the problem). 
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Thus, the weighted L00-norm seems to be a more promising scalarizing function than 
the others. However, its solutions are weakly Pareto optimal. 

A Pareto optimal solution can be produced from a weakly Pareto optimal solution, 
for example, by the lexicographic ordering or by solving the problem (1.9.5). In some 
cases, it may be expensive to solve additional optimization problems. To avoid the 
additional optimizations, augmentation terms comparable to those in Sections 2.17 
and 2.19 can be added. When augmented distance measures are used, the solutions 
obtained are guaranteed to be Pareto optimal but the drawback is that not all of them 
are necessarily found. This depends on how well the augmentation term is managed 
to be selected. In addition, the third requirement of Chapter 2 concerning satisficing 
decision making also fails (see [Nakayama, 1985(a)] and [Steuer, 1986]). 

In the satisficing trade-off method the achievement function to be minimized is of 
the form 

where z is the reference point and z** is a utopian vector ( see Section 2.17) so that 
z > z**. If some objective function Ji is not bounded in S, then some small scalar 
value is selected to be zJ*. If the problem is bounded, then solutions obtained by this 
method are guaranteed to be weakly Pareto optimal (see Theorem 2.7.13) and every 
Pareto optimal solution can be found (see Theorem 2.7.15). It is proved in [Nakaya­
ma, 1985(a)] and [Sawaragi, Nakayama, Tanino, 1985] that the solution obtained is 
satisfactory (i.e., f;(x*) :S z; for all i) if the reference point is feasible. 

Because the optimal Kuhn-Tucker multipliers of the differentiable counterpart prob­
lem (2.7.11) (see Section 2.7) multiplied by the weighting coefficients, are used to 
obtain trade-off information, it must be assumed that 

1. All the objective and the constraint functions are continuously differentiable.

If, in addition, trade-off rates are desired to be available, more assumptions have to be 
fulfilled. The assumptions are parallel to those in Theorem 2.3.17, see [Yano, Sakawa, 
1987]. This fact has not earlier been emphasized when introducing the method. 

The functioning of the satisficing trade-off method is the following. After a (weakly) 
Pareto optimal solution ( depending whether an augmentation term is included or 
not) has been obtained by optimizing the achievement function, it is presented to 
the decision maker. Based on this information (s )he is asked to classify the objective 
functions into three classes. The classes are the objective functions whose values 
(s)he wants to improve, the objective functions whose values (s)he agrees to relax
(impair) and the objective functions whose values (s)he accepts as they are. New
aspiration levels are required for the objective functions in the first two classes. The
current criterion values are set as the aspiration levels for the objectives in the third
class. If trade-off rates are obtainable from the Kuhn-Tucker multipliers and the
weighting coefficients, they can be utilized to help in specifying the new aspiration
levels. Trade-off information is used to check the feasibility of the reference point. If
it is not feasible then the number of minimizations of the achievement function can
be reduced by specifying higher aspiration levels directly (remember that satisficing
solutions are obtained when the reference point is feasible). The procedure continues
until the decision maker does not want to improve any of the objectives.

Because no specific assumptions are set on the underlying value function, conver­
gence results based on it are not available. Even though a value function existed, it 
could not be directly used to determine the functions to be decreased and increased 
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and the amounts of change. Thus the method is characterized to be an ad hoe method. 
On the other hand, one must remember that the aim of the method has particularly 
been in satisficing rather than optimizing some value function. 

Applications and Extensions 

Some theoretical specifications about the algorithm are presented in [Nakayama, 
Furukawa, 1985]. The method is also applied to the aseismic design of a tower-pier 
system of a long span suspension bridge. An application to a water quality control 
problem is presented in [Nakayama, Sawaragi, 1984] and to a river basin problem in 
[Nakayama, 1985(a)]. In [Olson, 1993], the method is employed to solve a sausage 
blending problem and, in [Nakayama, Nomura, Sawada, Nakajima, 1986], to solve 
a blending problem of industrial plastic materials. The satisficing trade-off method 
is adapted for linear fractional objective functions in [Nakayama, 1991(a)] with an 
application concerning material blending in cement production. 

Sensitivity analysis of the algorithm for linear problems is investigated in [Nakaya­
ma, 1989]. The burden of the decision maker is reduced in the extension described in 
[Nakayama, 1991(b), 1992]. Then the decision maker does not have to specify aspi­
ration levels for the objective functions whose values are to be impaired but they are 
calculated automatically by a specified formula. Also exact trade-off information by 
parametric analysis is introduced for linear and quadratic problems. 

Concluding Remarks 

The satisficing trade-off method contains identical elements with STEM and the 
reference point method of Wierzbicki. Therefore, comments given there are not re­
peated here. The role of the decision maker is easy to understand and the solutions 
obtained are Pareto optimal or weakly Pareto optimal depending on the scalarizing 
function selected. 

Notice that, in practice, classifying the objective functions into three classes and 
specifying the amounts of increment and decrement for their values is exactly the 
same as specifying a new reference point. A new reference point is implicitly formed. 
Either the new aspiration levels are larger, smaller, or the same as in the current 
solution. Thus the same outcome can be obtained with different reasonings. 

Because the method is based on satisficing decision making, the decision maker can 
freely search for a satisficing solution and change her or his mind, if necessary. No 
convergence based on value functions has even been intended. 

2.21. Visual Interactive Approach 

A visual interactive approach has been introduced in [Korhonen, Laakso, 1984, 
1985, 1986(a)]. It contains ideas from the methods of Geoffrion, Dyer and Feinberg, 
Zionts and Wallenius, and Wierzbicki. The algorithm works best for MOLP problems 
if the optimality of the final solution is wanted to check. Otherwise, it can be applied 
also to nonlinear problems. The algorithm was originally designed for problems to be 
maximized but here it is presented in the form of minimization. 

Introduction and Visual Interactive Algorithm 

An interesting feature of the visual interactive approach is that no explicit knowl­
edge is assumed on the properties of the value function during the solution process. 
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However, sufficient conditions for optimality can be established for the termination 
point of the algorithm, if the decision maker's underlying value function is supposed 
to be pseudoconcave ( and differentiable) at that point ( and several other assumptions 
to be listed later are fulfilled). 

In the method of Wierzbicki in Section 2.19, a reference point consisting of aspira­
tion levels for each objective function was projected onto the Pareto optimal set by 
an achievement function. This idea is extended here. A so-called reference direction, 

which is a vector from the current iteration point to the reference point, is projected 
onto the Pareto optimal set. The decision maker can examine this Pareto optimal 
curve with the means of computer graphics. 

The algorithm is as follows. Once again, in the notations we handle criterion vectors 
for simplicity. Naturally, the actual calculations are performed in the decision variable 
space. 

(1) Find an arbitrary starting criterion point z1 E R k. Set h = l.
(2) Ask the decision maker to specify a reference point z E R k and set dh+l 

=

z - zh as a new reference direction.
(3) Find the set zh+l of (weakly) Pareto optimal solutions z that solve the problem

mm1m1ze Sz,w(z) 

subject to z = zh + tdh+1

z E Z is Pareto optimal, 

where Sz,w is an achievement function, w is a weighting vector and t increases 
from zero to infinity. 

( 4) Ask the decision maker to select the most preferred solution zh+l in zh+l.
(5) If zh =fa zh+1, set h = h + l and go to step (2). Otherwise, check the optimality

conditions. If the conditions are satisfied, stop with zh+l as a final solution.
Else, set h = h +land set dh+1 to be a new search direction identified by the
optimality checking procedure. Go to step (3).

The setting of the algorithm makes it possible for the starting point to be any point 
in the criterion space. It does not have to be feasible, much less Pareto optimal, since 
it is projected onto the (weakly) Pareto optimal set in step (3). 

The straight line from the current iteration point ( or its Pareto optimal projection 
at the first iteration) to the boundary of the Pareto optimal set is projected into 
a Pareto optimal curve traversing across the Pareto optimal set. The developers of 
the method suggest that the values of the objective functions along the curve are 
plotted on the computer screen as value paths with different colours illustrating each 
of the objectives. The decision maker can move the cursor back and forth and see the 
corresponding numerical values at each point. 

The achievement function Sz,w(z) is of the same form as presented in Section 2.19, 
namely 

· Zi -z;
Sz,w(z) = max ---, 

•El Wi 

where I= {i I w; > O} C {1, .. . ,k}, w is a weighting vector, z E Z is a criterion 
vector and z E Rk is an arbitrary reference point. Notice that if weakly Pareto 
optimal solutions are desired to be avoided, then an augmentation term must be 
added to the achievement function as, for example, in Sections 2.17 and 2.19 (see also 
[Steuer, 1986)). However, originally it was not considered to be necessary because the 
purpose is just to produce different solutions effectively. 
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The minimization problem of Sz ,w is nondifferentiable but it can be transformed 
into an equivalent, differentiable ( and solvable) form 

(2.21.1) 
m1n1m1ze a 

subject to f;(x) - aw; :S zf + td?+1 for all i E I 
XE s,

with x E S as a variable. As a weighting vector one can use, for example, the reference 
point specified by the decision maker. 

As the parameter t increases from zero towards infinity, a curve of weakly Pareto 
optimal solutions emanating from the point zh towards the boundary of the Pareto 
optimal set is formed. If the original problem is linear, then the problem can be solved 
by using any code for parametric linear programming. The weighted Tchebycheff 
distance measure has been chosen to facilitate the parametric linear programming 
( even though the solutions are only guaranteed to be weakly Pareto optimal). If some 
of the constraint or the objective functions are nonlinear, an approximate solution can 
be obtained by solving the problem (2.21.1) with several different values fort. 

Checking the optimality conditions in step (5) is the most complicated part of the 
algorithm. So far, no specific assumptions have been set on the value function. It may 
change during the solution process or it may not even exist at all. However, we can 
check whether a given criterion vector zh+1 (and the corresponding decision variable 
xh+1 ) is optimal to the value function, assuming that 

1. The decision maker's underlying value function is pseudoconcave at xh+l.

2. The feasible region S is convex, compact and bounded.
3. The constraint functions are continuous and differentiable.

Let the feasible directions at zh+l be denoted by d(j), j = 1, ... ,p. We define a 
cone C containing all those feasible directions by 

(2.21.2) 

If we have zh 
= zh+l in the fifth step, we know that the projection of dh on the 

weakly Pareto optimal set is not a direction of improvement. Then we can apply the 
following sufficient conditions for optimality. 

Theorem 2.21.3. Let the assumptions 1-3 be satisfied. Let zh+l E Z and let C 
be a cone containing all the feasible directions at zh+l ( as in (2.21.2)). Let us assume 
that 

U(zh+1 ) 2: U(zh+1 
+ ,Bjd(j)) for all ,Bi 2'. 0 and j = 1, ... ,p.

Then zh+l is a globally optimal solution (with respect to U ). 

Proof. See [Korhonen, Laakso, 1986(a)]. 

For MOLP problems we know that if the current solution is not optimal, then one 
of the feasible directions of the cone C must be a direction of improvement. This 
direction is then used as a new reference direction in step (3). In other words, to 
be able to apply Theorem 2.21.3 at a certain point, the decision maker must first 
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check every feasible direction at that point for improvement. This increases both the 
computational burden and the burden on the decision maker. It is demonstrated in 
[Korhonen, Laakso, 1986(a), (b)] and [Halme, Korhonen, 1989] how the amount of 
search directions can be reduced. 

Notice that the termination condition of Theorem 2.21.3 is analogous to the Karush­
Kuhn-Tucker optimality conditions. This is proved in [Halme, Korhonen, 1989]. If the 
value function is known, it is easy to compare alternative criterion vectors. Thus the 
visual interactive approach can be characterized as a non ad hoe method. However, 
what was said about the difficulty in determining new reference points in connection 
with the reference point method in Section 2.19 is also valid here. 

The graphical illustration of the alternatives has been an important aspect in the 
development of multiobjective optimization methods which try to improve and facili­
tate the cooperation between the decision maker and the analyst (computer). Further 
developments of the graphical illustration of this method are presented in Section 3.1. 

A similar interactive line search algorithm for MOLP problems is presented in 
[Benson, Aksoy, 1991]. The procedure generates only Pareto optimal points and is 
able to automatically correct possible errors in the decision maker's judgement. 

Concluding Remarks 

The role of the decision maker reminds the reference point method. (S)he has 
to both specify reference points and select the most preferred alternatives. In the 
reference point methods, there are, however, fewer choices to select from. By the 
visual interactive approach, the decision maker can explore a wider part of the weakly 
Pareto optimal set than by the reference point method and the satisficing trade-off 
method, even by providing similar reference point information. This possibility brings 
the the task of comparing the alternatives and selecting the most preferred of them. 

The visual interactive approach works best for MOLP problems, as it has basically 
been designed for them. It is interesting that the method requires no additional 
assumptions on the problem and the underlying value function until the optimality of 
the final solution is to be examined. The optimality can be guaranteed under certain 
assumptions and with some effort. 

The performance of the method depends greatly on how well the decision maker 
manages to specify the reference directions that lead to improved solutions. Korhonen 
and Laakso mention that particularly when the number of objective functions is large, 
the specification of reference points may be quite laborious for the decision maker. 
In this case, they suggest that random directions in conjunction with decision maker­
defined reference directions should be used. See [Korhonen, Laakso, 1986(a)] for a 
discussion about other ways of specifying the reference directions. 

The computation time for large problems can be reduced by presenting one piece 
at a time of the weakly Pareto optimal curve to the decision maker. If (s)he finds 
the end point to be the most satisfactory one, then the next piece is to be presented. 
If the number of the objective functions is large, the power of graphical illustration 
suffers. For this reason, it is advisable not to have more than ten objective functions 
at a time. 

The consistency of the decision maker's answers is not important and it is not 
checked in the algorithm. Thus the algorithm may cycle. This can also be seen as 
a positive feature since the decision maker is able to return to such parts that ( s )he 
already has examined, if ( s )he changes her or his mind. 
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Adaptation into Goal Programming 

The ideas of the visual interactive approach have been adapted to the goal pro­
gramming environment in [Korhonen, Laakso, 1986(b)]. The problem to be solved 
is now assumed to be in the generalized goal programming form (see Section 2.11). 
Again, the original formulation for maximization problems is here transformed for 
minimization. Just as the original visual interactive approach, the adaptation works 
best for MOLP problems. However, more general problems can be solved if it 1s 
assumed that 

1. All the objective functions (flexible goals) are convex and differentiable.
2. The feasible region restricted by the inflexible (rigid) goals is a convex set.

The optimality of the final solution can be checked also in this adaptation in an 
identical way, as described above. 

The index set of the objective functions is denoted by G and the index set of the 
constraint functions is denoted by R. The feasible region restricted by the constraint 
functions (inflexible goals) is denoted by SR to remind that the region alters when the 
roles of the goals are changed. As in Section 2.11, the aspiration levels are denoted by 
Zi and the deviational variables are denoted by b;. It can be said that if the ith goal 
is a flexible goal, then b; is unbounded, and, if the ith goal is an inflexible goal, then 
b; is bounded. The aspiration levels for flexible goals are not absolute. The decision 
maker wants to improve the values of the objective functions as much as possible. 
Notice that combining achievement functions into goal programming eliminates the 
problems caused by feasible aspiration levels (see Section 2.11). 

The advantage of formulating the problem as a generalized goal programming prob­
lem is that the decision maker can easily convert flexible goals into inflexible ones and 
vice versa in an interactive fashion. This increases the freedom of the decision maker. 
Now we need a new concept, called unique Pareto optimality. 

Definition 2.21.4. A decision vector x* E SR is uniquely Pareto optimal if it is 
Pareto optimal and for any x E SR the equalities f;(x) = f;(x*) for all i E G imply 
X = x*. 

It is important to know that uniquely Pareto optimal solutions remain uniquely Pareto 
optimal when the sets of flexible and inflexible goals are altered. This result is proved 
in [Korhonen, Laakso, 1986(b )] 

Again, optimality of a current solution is checked by · assuming that the decision 
maker's underlying value function is pseudoconcave at that point in SR and that 
(s)he always takes a move in the direction (s)he likes (i.e., the value function is not
ill-conditioned). It is proved in [Korhonen, Laakso, 1986(b )] that assuming pseudo­
concavity in SR is not stronger an assumption than assuming that in Z.

For clarity, we here state the visual interactive approach adapted for generalized 
goal programming. (The reference direction is now z; - f;(xh)).

(1) Ask the decision maker to specify the aspiration levels z; and the initial parti­
tion into flexible and inflexible goals. Set h = l. Find an initial Pareto optimal
solution x1

, for example, by solving the problem

mm1m1ze s(6, w) 

subject to f;(x) + b; = z;, i E G 

fi(x) + bj = ij , bj 2: 0, j ER. 
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(2) If the decision maker is satisfied with f(xh) and is willing to check its optimality, 
go to step (5), otherwise, stop. If the decision maker wants to continue, (s)he
can redefine the division of goals and give new aspiration levels for the flexible
goals.

(3) Solve the problem

mm1m1ze s(o, w) 

subject to fi(x) +Di= fi(xh) + tdi, i E G 

X E SR, 

for all t 2 0, where di = Zi - fi(xh ). 
( 4) Present the Pareto optimal curve to the decision maker for evaluation and ask

the most satisfactory solution f(xh+1 ). If the decision maker finds the old
solution better than the new alternatives, set h = h + 1 and go to step (5).
Otherwise, set h = h + 1 and go to step (2).

(5) Construct a cone with vertex at xh and which contains the whole feasible
set. Present the directions spanning the cone to the decision maker as in step
(4). If none of them is a direction of improvement, then stop with xh as a
final solution. Else, if the decision maker wants to continue, go to step (2).
Otherwise, stop.

We can utilize a similar achievement function as earlier: s(6, w) = maxiea[8i/wi]­
In this case, the problem to be solved in step (3) is 

mm1m1ze a

subject to fi(x) - awi � fi(xh) + tdi for all i E G 

X E SR. 

If (some) objective functions (or flexible goals) are nonlinear, they are supposed 
to be linearized at xh . In this case, all the solutions obtained during the solution 
process are not necessarily weakly Pareto optimal. However, the optimality checking 
procedure identifies improved solutions. 

The following step in developing the visual interactive approach has been to diver­
sify the graphical illustration into a form called Pareto race. It is described in Section 
3.1. 

So far, we have described quite a lot of different methods for multiobjective opti­
mization. The question of differentiability has not been emphasized. Let us handle 
this aspect in the following. All the noninteractive methods, presented in Sections 
from 2.2 to 2.11, can also be employed with nondifferentiable objective functions 
whenever the single objective optimization routines utilized can handle nondifferen­
tiable functions. The case is totally different with interactive methods. Most of the 
interactive methods described this far assume that the functions involved are differ­
entiable ( or even linear), with the exception of the IWT procedure (Section 2.17) and 
the reference point method (Section 2.19). 

Few methods which have especially been designed to handle nondifferentiable prob­
lems have been proposed. In the sequel, we suggest such new methods. There the 
objective functions are assumed to be locally Lipschitzian. 

Another aim in developing new methods has been in trying to overcome some of 
the weaknesses detected in the older methods. All the previously described methods 
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have had an effect in the development. Either they have offered good ideas to adopt 
or unsatisfactory properties to avoid. 

Trade-off rate information cannot be exploited in nondifferentiable problems as in 
the ISWT method and SPOT. The natural reason is that obtaining trade-off informa­
tion from the Kuhn-Tucker multipliers of the €-constraint problem necessitates twice 
continuous differentiability of the functions. How to obtain trade-off information in 
nondifferentiable cases needs and deserves more research. 

While the ideas of the ISWT method and SPOT cannot be extended into nondif­
ferentiable cases, it can be tried with the GDF method. In Section 2.22, we introduce 
a modification based on the subgradient method. 

On the other hand, the ideas of reference points and satisficing decision making 
seem to be generalizable into nondifferentiable problems. We can adopt the ideas of 
classification of the objective functions and reference points of STEM, the reference 
point method, and the satisficing trade-off method and the idea of reference direction 
of the visual interactive method and mix them with some ideas of nondifferentiable 
analysis. The outcome is described in Section 2.23. 

2.22. Subgradient GDF Method 

The subgradient GDF method, presented in [Miettinen, Makela, 1991, 1993, 1994], 
is a modification of the Geoffrion-Dyer-Feinberg (GDF) method, described in Sec­
tion 2.14. Two serious drawbacks of the original method have been overcome in the 
subgradient GDF method. Firstly, the assumption 2 in Section 2.14 of the contin­
uous differentiability of the objective functions is relaxed. Secondly, the solutions 
obtained are guaranteed to be Pareto optimal. The subgradient GDF method has 
been developed by the author in collaboration with M. Makela at the Department of 
Mathematics of the University of Jyvaskyla. 

For completeness, we list all the assumptions. 
l. The underlying value function U: R k -+ R exists, is implicitly known to the

decision maker and is continuously differentiable.
2. U is componentwise decreasing and strictly decreasing at least with respect to

the reference function so that d ud��x)) < 0.
3. All the objective functions f; are locally Lipschitzian.
4. The feasible region Sis convex and compact.

Introduction 

As mentioned earlier, the basic idea of the original GDF method is to maximize 
the decision maker's value function by the gradient method of Frank and Wolfe. The 
Frank-Wolfe (FW) method was selected instead of the steepest ascent (gradient) 
method for its faster convergence properties. It is known that the steepest ascent 
method, where the search direction is simply stated as the gradient 'VxU(f(x)), is 
rather sensitive to the zig-zag phenomenon (since the consecutive search directions 
are orthogonal). However, the dependence on the geometry of the feasible region S

is a disadvantage of the FW method (see (Miettinen, Makela, 1991]). 
Generalizing the FW method directly into the nondifferentiable case is in theory 

simple. When maximizing the linear approximation of U, the gradients of the func­
tions f; in the chain rule are replaced by their subdifferentials. However, in practice, 
this plan of action presumes that the whole subdifferential is known at each point, 
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which is possible for few special problems. Usually, even the calculation of one arbi­
trary subgradient may be difficult. In order to maintain the generality of the method, 
we have to be content with one subgradient at each point ( which is a standard as­
sumption in nondifferentiable optimization). 

Experiments of the generalization by replacing the gradient in the FW algorithm 
by one arbitrary subgradient have been reported in [Miettinen, Makela, 1991]. The 
results proved that this was not a productive way. The search direction became so 
haphazard that the decision maker's desires had almost no affect at all in the solution 
process. 

After these experiences, we return to the origin of nondifferentiable optimization 
instead of trying to generalize the FW method as such. In the sequel, we replace the 
FW method by a pioneering method in the nondifferentiable optimization, the (Kiev) 
subgradient method (see [Shor, 1985]). 

The simple structure of the basic subgradient method has made it widely used, 
although it suffers from some serious drawbacks. Namely, in order to guarantee 
the convergence properties the step-sizes have to be chosen a priori. Also the lack 
of an implementable stopping criterion is a disadvantage of the subgradient method. 
However, in the multiobjective case, these difficulties can be overcome since the choice 
of the step-sizes is up to the decision maker. The decision maker is also the one who 
normally terminates the solution process ( even if a feasible search direction exists). 

The idea of the subgradient method is to choose the search direction to be the 
direction of an arbitrary subgradient e E OxU(f(xh)). In order to obtain as versatile 
selection of candidate solutions as possible we "stretch" the search direction d h as far 
as possible (which actually is the case also in the FW method). This can be done as 
follows. 

Let us first choose the search direction as in the subgradient method, that is, 
d� = e E clxU(f(xh)). Then we search for a scalar /33 � 0 which solves the problem 

(2.22.1) 
maximize (3 

subject to xh 
+ /3dg E S. 

If /33 > 0, then we obtain the actual search direction by dh 
= (33dg. On the other 

hand, if /33 = 0, then dg points out from the feasible rep;ion S, and we have to project 
the infeasible direction onto the feasible region. In this case, we derive dh as a solution 
of the projection problem 

(2.22.2) 
m1rum1ze Jldg - dll 
subject to xh 

+ d E S. 

It is obvious that, after the projection, the new iteration point xh 
+ dh lies on the 

boundary of S, and thus the search direction dh extends as far as possible. It is also 
easy to show that, if we still have dh 

= 0 after the projection, then dTe $ 0 for all 
d E Rn such that xh 

+ d E S, that is, a necessary optimality condition for U to attain 
its maximum is fulfilled (see [Miettinen, Makela, 1991]). 

Notice that our aim is to keep the search direction as close to the subgradient 
direction as possible, first stretching and, not until secondly, projecting, while in the 
FW method both of them are done at the same time. 

After obtaining the search direction the step-size is determined as in the GDF 
method. Discrete criterion vectors f(xh 

+ tdh) (0 $ t $ 1) calculated with different 
values oft are presented to the decision maker, who then selects the most preferred 
one among the alternatives. 

108 



Calculation of the Subgradient 

In this subsection, we handle the evaluation of the subgradient ( E 8xU(f(xh )). 
Through the generalized Jacobian chain rule (see [Clarke, 1983]), the subdifferential 
at the point xh is of the form 

OxU(f(xh )) = v'rU(f(xh )f Oxf(xh), 
where Oxf(xh ) = conv {J E Rkxn I J = lim1-oo v'f(:x:1); :x:1 - xh , :x:1 E Rn \ nr} is 
the generalized Jacobian off at xh and v'f(:x:1) denotes the usual k x n Jacobian ma­
trix. A collection of points where some of the objective functions is not differentiable 
is denoted by Dr. Then a single subgradient e E 8xU(f(xh )) may be calculated by 

where ei is the ith row of a representative from Oxf(xh). From here we proceed as 
in the original GDF method. The assumption 2 implies that the partial derivative 
d U�ft

h )) is negative. We can divide e by the scalar - d utth )). The direction of the
subgradient ( is now in the form 

k 
�-m·t. 
L-i i�i, 

i=l 

where m; = d u�f.h)) / d u�j;h)) is the marginal rate of substitution involving !£ and 
f; at the point xh for all i = 1, . .. , k, i i= C. As in the original GDF method, the 
marginal rates of substitution have to be asked from the decision maker either right 
off or using different auxiliary procedures (as in (Dyer, 1973(a)]). 

Producing Pareto Optimal Solutions 

One serious weakness of the original GDF method is that the generated solutions are 
not necessarily Pareto optimal. To improve this failing we adopt in the subgradient 
GDF method a modification where the solution candidates are "projected" onto the 
set of Pareto optimal solutions before they are presented to the decision maker. The 
purpose is to generate Pareto optimal solutions that are close to the solutions obtained 
in the algorithm. This can be carried out in many ways, Because the points to be 
projected are not necessarily even weakly Pareto optimal, for instance, lexicographic 
ordering is too robust. One practical way is to utilize achievement functions, presented 
in Section 2. 19. 

Let zh be a solution obtained by the subgradient GDF method. We set it as a 
reference point (z = zh) and minimize some achievement function. If the selected 
achievement function is order approximating, the solution produced is guaranteed to 
be Pareto optimal (and weakly Pareto optimal for order representing functions) (see 
Section 2.19 and also [Wierzbicki, 1980(a), 1982]). 

Achievement functions utilized most up to now are the augmented weighted Tcheby­
cheff function 

(2.22.3) 
k 

mm1m1ze sz(f(x)) = max [w;(f;(x) - z;)] + p � w;(f;(x) - z;) 
l<i<k L-i 

subject to x E S,

- - i=l 
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where w;:s are weighting coefficients (for example, w; = nal_ * if the problem is 
zi zi 

bounded) and p > 0 is a relatively small augmentation term, and the penalty scalar­
izing function 

(2.22.4) 
mm1m1ze sz(f(x)) = -llf(x) - zll + gJJ(f(x) - z)+ II 
subject to x E S,

where (f(x) - z)+ denotes the positive part of f(x) - z and g > 1 is a scalar penalty 
coefficient. 

Unlike the function (2.19.11) presented in Section 2.19, we employ in (2.22.4) an 
exact penalty scalarizing function with the L2-norm. If the function (2.19.11) is used, 
it is well known that penalty coefficients of large order of magnitude are required. 
This may be computationally expensive and cause serious numerical difficulties as 
has been noticed in [Miettinen, Makela, 1991]. When we use the exact penalty scalar­
izing function, there exisLs a finite limit for the penalty coefficient g such that, when 
penalties greater than the limit are used, Pareto optimal solutions are obtained. 

Notice that the possible nondifferentiability of the achievement function should be 
no problem because nondifferentiable optimization routines are used anyhow. Note, 
however, that the objective functions of (2.22.3) and (2.22.4) are compositions of 
the nondifferentiable map f and a nondifferentiable outer function (the norm). This 
may cause difficulties in the computation of the subgradient. Anyway, if the objective 
functions are subdifferentially regular (in the sense of Clarke, see [Clarke, 1983]), then 
the generalized chain rule is valid (with equality instead of inclusion). 

In general, one can state that the problem (2.22.3) is computationally easier to solve 
than the problem (2.22.4). It must be noticed that different achievement functions 
produce different Pareto optimal solutions. The reason for this is that they move into 
different directions from the non-Pareto optimal reference point. 

One more possibility to be employed in the projection phase is a black-box routine 
MPB. It will be introduced more closely in Section 2.23. Pareto optimality cannot be 
guaranteed for its solutions but weakly Pareto optimal solutions are usually obtained. 

No matter which projection method is employed, it increases the computational 
burden. Anyway, it is the price to be paid for the certainty that the decision mak­
er doeEJ not have to handle non-Pnreto optimal solutions which mo5tly are highly 
unsatisfactory (at least while a componentwise decreasing value function is assumed). 

Subgradient GDF Algorithm 

Now we can present the algorithm of the subgradient GDF method. 
(1) Ask the decision maker to specify a reference function J,. Choose a starting

point x1 E S. Set h = l.
(2) Ask the decision maker to specify the marginal rates of substitution mf be­

tween ft and the other objective functions f; (i = 1, .. . , k, i -:f:. 1!) at the point
Xh.

(3) Set dg = � E OxU(f(xh )) and get /3; � 0, which solves the problem (2.22.1).
If /3; > 0, then set dh 

= f3;dg. Otherwise, that is, if /3; = 0, then set dh to be
the solution of the projection problem (2.22.2). If dh = 0, then go to sLep (7).

(4) Calculate P different criterion vectors f(xh +tjdh), where tj = (i-=:_11), j = 

1, . . .  ,P. 
(5) Produce Pareto optimal solutions from the criterion vectors by minimizing the

achievement function with z = f(xh +tjdh) for j = 1, . . .  ,P.
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(6) Present P alternative criterion vectors to the decision maker who chooses the
most preferred one among them. Denote the corresponding decision variable
by xh+1

. Set h = h + l. If the decision maker wants to continue, then go to
step (2).

(7) Stop. The final solution is xh.

As in the original GDF method, the convergence of the subgradient GDF method
is rather robust in consequence of the approximation of the marginal rates of sub­
stitutions and the step-sizes. We have to notice that the convergence rate of the 
subgradient method is rather poor (see [Shor, 1985]) when compared with the Frank­
Wolfe method in the differentiable case. However, as in nondifferentiable optimization 
in general, this kind of compromise has to be done when the assumption of differen­
tiability is weakened. 

On the other hand, the improvement of our method is that it guarantees the con­
vergence to a Pareto optimal solution. In fact, all the alternatives presented to the 
decision maker are Pareto optimal. Thus the decision maker is not bothered with un­
satisfactory solutions. In addition, since the underlying value function was assumed 
to be componentwise decreasing, it is assured that the solutions cannot get worse 
when they are projected into the Pareto optimal set in step (5). The subgradient 
GDF method is non ad hoe in nature as its origin. 

Numerical experiments with the subgradient GDF method are presented in Chap­
ters 6 and 7. 

Concluding Remarks 

Merits of the subgradient GDF method are the Pareto optimality of all the solu­
tions and the ability to handle nondifferentiable objective functions. Notice that the 
underlying value function has to be still assumed to be continuously differentiable. 
However, guaranteeing the Pareto optimality increases the computational costs. Also 
the calculation of the element from the generalized Jacobian may be difficult. 

A common drawback of the original and the subgradient GDF method is that it may 
be difficult for the decision maker to specify the marginal rates of substitution. This 
remains a remarkable fact because it is important that the direction of the gradient 
of the value function is approximated closely enough. The role and the selection of 
the reference function ( denoted here by !£) is as important as in the original GDF 
method. 

Note that the problems (2.22.2), (2.22.3) and (2.22.4) are nondifferentiable. Since 
the objective functions themselves are nondifferentiable, this property does not cause 
additional difficulties. The nondifferentiable optimization problems can be solved by 
effective bundle methods (see, e.g., [Makela, Neittaanmaki, 1992]). 

2.23. NIMBUS Method 

NIMBUS is an interactive multiobjective optimization method designed especially 
to be able to handle nondifferentiable functions. The interaction phase has been 
aimed at being comparatively simple and easy to understand for the decision maker. 
NIMBUS contains a subroutine, called MPB, which is needed to produce (weakly) 
Pareto optimal solutions. The role of MPB is of a black-box nature. Therefore, 
we do not present it here in detail. NIMBUS has been developed by the author in 
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collaboration with M. Makela at the Department of Mathematics of the University of
Jyvaskyla. 

The assumptions in the NIMBUS method are that
1. All the objective and the constraint functions are locally Lipschitzian.2. The feasible region S is convex. 
3. Less is preferred to more to the decision maker.

The assumption 3 could be formulated to require that the underlying value func­tion is componentwise decreasing. The reason for avoiding this wording is that an 
underlying value function is not assumed to exist. The assumption only concerns the
form of the general preference structure of the decision maker.
Introduction 

The starting point in developing the NIMBUS method has been somewhat the
opposite to the starting point in the subgradient GDF method. In the subgra<lientGDF method, the purpose was to develop a theoretically sound and logical method.This led into difficulties on the decision maker's side and more or less instable results,
not to mention the computational costs. In the NIMBUS method, the basis has beento overcome difficulties encountered with the other interactive methods. The mostimportant aspects appeared to be the effectiveness and the comfortableness of thedecision maker. 

In the NIMBUS method, the idea is that the decision maker examines the values of
the objective functions calculated at a point xh and divides the objective functions into
up to five classes. Those classes are functions Ji whose values should be decreased(i E J<), functions Ji whose values should be decreased down till some aspiration
level (i E J�), functions Ji whose values are satisfactory at the moment (i E J=),functions J; whose values are allowed to increase up till some upper bound ( i E
J> ), and functions Ji whose values are allowed to change freely ( i E J◊), where
J< U J� U J= 

u J> 
u I° = { 1, ... , k}. 

The decision maker is asked to specify the aspiration levels z; for i E J� and the
upper bounds t:; for i E J>. The difference between the classes J< and J� is that the
functions in J< are to be minimized as far as possible but the functions in J� only
till the aspiration level. Thus the functions in the latter class are called a:Jpiration

functions. Also weighting coefficients can be given to the functions in these two
classes. 

Notice that we have more classes than in STEM and the satisficing trade-off method.
In this way, the classification part of the objective functions can be performed as ifthe c:-constraint method, the weighting method, lexicographic ordering or goal pro­gramming was used to produce (weakly) Pareto optimal solutions. According to the classification and connected information we form a new problem

(2.23.1)
m1mm1ze {J;(x)/wi (i E J<), max [max [fi(x)/wi - Zj , o]]} . 

JEJ� 

subject to J;(x) :S fi(xh), i Er= 

J;(x) :S C:i,
X Es,

where the weighting coefficients Wi, i E J< U I�, are positive and sum up to one, theaspiration levels Zi must satisfy the condition z; < J;(xh) for i E J� and the upper
bounds C:i must satisfy t:; > f;(xh) for i E J>. 
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Notice that (2.23.1) is still a (nondifferentiable) multiobjective optimization prob­
lem. It is solved with the help of the MPB routine. The solution is denoted by xh . If 
the decision maker does not like f(xh) for some reason, no dead end is at hand. (S)he 
can explore solutions between xh and :xh. In this case, we form a search direction 
dh =xh -xh . 

The step-size is determined by the decision maker just as in the subgradient GDF 
method. Criterion vectors f(xh +tdh) are calculated with different values of O :S t :S 1. 
Then (weakly) Pareto optimal solutions are produced from them (through MPB) and 
presented to the decision maker for selection. 

Unlike with some other methods based on classification, the success of the solution 
process does not depend entirely on how well the decision maker manages in specifying 
the classification and the appropriate parameter values. It is important that the 
classification is not irreversible (as is the case, e.g., in STEM). Thus, no unrecallable 
damage is caused in NIMBUS if the solution f(xh ) is not what was expected. The 
decision maker is free to go back or explore intermediate points. (S)he can easily 
get to know the problem and its possibilities by specifying, for example, loose upper 
bounds and examining intermediate solutions. NIMBUS is indeed learning-oriented. 

NIMBUS Algorithm 

In the following, we describe the NIMBUS algorithm in detail. Because NIMBUS 
contains so many alternative ways to proceed in the solution process, the detailed 
algorithm becomes inevitably long and somewhat obscure. However, to the decision 
maker NIMBUS is much easier to use than one could think when looking at the 
algorithm. 

(1) Choose a starting point x0 E S and calculate its weakly Pareto optimal coun­
terpart x1 E S, employing MPB with J< = { 1, . . .  , k}. Set h = l.

(2) Ask the decision maker to divide the objective functions into the classes[<, [5',
r= , r> , and I° at the point zh = f(xh ) such that r> U I° f. 0 and J< U [5' f. 0.
If either of the unions is empty, goto step (9). Ask the aspiration levels zf for
i E [5: and the upper bounds c:f for i E [> from the decision maker. Ask also
the possible positive weighting coefficients wf for i E [< U [5' summing up to
one.

(3) Calculate :xh by solving the problem (2.23.1) by the MPB routine. If :xh = xh,
ask the decision maker whether ( s )he wants to try another classification. If
yes, set xh+1 = xh, h = h + l and go to step (2). If no, go to step (9).

( 4) Let us denote zh = f( xh ). Present zh and zh to the decision maker. If the
decision maker wants to see different alternatives, set dh = xh - xh and go to
step (6). If the decision maker prefers zh, set xh+i = xh, h = h + l, and to go
step (2).

(5) Now the decision maker wants to continue from zh . If J< -:/- 0 set xh+1 = xh,
h = h + l and go to step (2). Otherwise (J< 

= 0), the weak Pareto optimality
must be checked, setting [< = { 1, ... , k} and employing MPB. Let the solution
be x.h and set xh+1 = x.h. Set h = h + l and go to step (2).

(6) Calculate P different criterion vectors f(xh + ijdh), where ij = (�-=-�), j = 

l, ... ,P.

(7) Produce weakly Pareto optimal solutions from the criterion vectors, employing
MPB (with J< = {1, . .. ,k}).

(8) Present P alternative criterion vectors to the decision maker and let her or him
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choose the most preferred one among them. Denote the corresponding decision 
variable by xh+ 1

. Set h = h + 1. If the decision maker wants to continue, go 
to step (2). 

(9) Check the Pareto optimality of xh by solving the problem (1.9.5) presented
in Theorem 1.9.4 with xh as x*. Let the solution be (x,e). Stop. The final
solution is x with the corresponding z.

Notice that the decision maker must be ready to give up something in order to 
attain improvement for some other objective functions. The search procedure stops 
in step (2) also if the decision maker does not want to improve any criterion value. 

We must remember that the best we can guarantee is a local optimum for the 
problem (2.23.1). Because of the structure of the MPB method, its solutions are 
quite sensitive with respect to the starting point. If the solution obtained is not 
completely satisfactory, one can always solve the problem again with another starting 
point. Changing the starting point is also advised if the decision maker has to stop the 
search process with x.h 

= xh in step (3). It is also possible to improve the algorithm 
in step (3) to avoid the case x.h 

= xh. If the upper bounds specified by the decision 
maker are too tight, one can use them as a reference point and project them onto the 
Pareto optimal set. Showing the new solution to the decision maker provides her or 
him information about the possibilities and the limitations of the problem, and some 
dead ends can be avoided, too. 

The justification of step (5) is given in the form of Theorem 2.23.6. In the last 
step, the Pareto optimality of the final solution is guaranteed by solving an addition­
al problem introduced in Theorem 1.9.4. For clarity of notations, it has not been 
mentioned in the algorithm that the decision maker may check Pareto optimality at 
any time during the solution process. Then the problem (1.9.5) is solved with the 
current solution as x*. 

MPB Routine 

Here we briefly sketch the MPB routine which is employed in the NIMBUS algo­
rithm to produce (weakly) Pareto optimal solutions. For details see [Makela, 1993]. 
The most advanced version of the bundle family for nondifferentiable single objec­
tive optimization, namely, the proximal bundle method is presented in [Kiwiel, 1990]. 
It has been generalized to handle nonconvex and constrained problems in [Makela, 
Neittaanmaki, 1992]. The MPB routine is an extension into a multiobjective case. 
The strategy of handling several objective functions in MPB is based on the ideas 
presented in [Kiwiel, 1984, 1985(a), (b)] and [Wang, 1989]. The basic idea is to move 
into a direction where the values of all the current objective functions improve. 

The problem to be solved is of the form 

(2.23.2) 
mm1m1ze {fi(x), fz(x), ... , Jk'(x)} 
subject to (g1(x),g2(x), . . .  ,gm1(x)f:::; 0, 

where k' :::; k and m' 2:: m. If the problem has linear constraints or upper and lower 
bounds for the decision variables, in addition to nonlinear constraints, they are treated 
separately, each type in the most effective way. The possible linear constraints and 
bounds are taken into account in the minimization problems in the following. 

The MPB routine is not directly based on employing any scalarizing function. 
Some kind of scalarization is, however, needed in deriving the minimization method 
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for all the objective functions. Theoretically, we utilize an improvement function
H: Rn x Rn --+ R defined by 

H(x, y) = max {f;(x) - f;(y), g1(x) Ii= 1, .. . , k', l = 1, ... , m'}. 

As a part of the proof of Theorem 1.11.9 ( and Corollary 1.11.16) in Section 1.11 it has 
been shown that a necessary condition for a point x* to be a weakly Pareto optimal 
solution of the problem (2.23. 2) is that x* minimizes the function H(· ,x*).

In the following, the iteration counter h refers to the inner iterations of the MPB 
routine, not the iterations of NIMBUS. In the MPB routine, the solution is looked 
for iteratively, until some stopping criterion is fulfilled. Let xh be the current approx­
imation to the solution of (2.23.2) at the iteration h. Then we seek for the search 
direction dh as a solution of the optimization problem 

(2.23.3) 
minimize H(xh 

+ d,xh) 
subject to d E Rn. 

Since the problem (2.23.3) is still nondifferentiable, we must approximate it somehow. 
Let us assume for a moment that the problem is convex. We suppose that, at the 

iteration h besides the iteration point xh, we have some auxiliary points yi E Rn 

from the past iterations and subgradients e}, E 8f;(yi) for j E Jh, i = 1, ... , k', and 
etl E 8g1(yi) for j E Jh' l = 1, ... 'm'' where Jh is a nonempty subset of {1, ... 'h }. 
We linearize the objective and the constraint functions at the point yi and denote 

h.i(x) = f;(yi) + (e},f (x -yi) for all

g1,j(x) 
= g1(yi) + (etl f (x - yi) for all

. 1 k' . Jh i= , ... , ,JE 
l=l, ... ,m', jEJh. 

and 

Now we can define a convex piecewise linear approximation to the improvement 
function by 

' h 
-

h h H (x) = max {f;,j(x) - f;(x ), g1,j(x) I i = 1, ... , k', l = 1, ... , m', j E J } 

and we get an approximation to (2.23.3) by 

(2.23.4) 
mm1m1ze fih(xh 

+ d) + ½uh lldll2 

subject to d E Rn, 

where uh > 0 is some weighting coefficient. The penalty term ½uh lldll2 is added 
to guarantee that there exists a solution to the problem (2.23.4) and to keep the 
approximation local enough. 

Notice that (2.23. 4) is still a nondifferentiable problem, but due to the min-max­
nature it is equivalent to the following (differentiable) quadratic problem with d and 
v as variables 

(2.23.5) 
mm1m1ze v + ½uhlldll2 

subject to v � -a},,j + (e}.f d, i = 1, ... ,k', j E Jh 

h . T h v�-a g
,,j+(e�l ) d, l=l, ... ,m', jEJ' 
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where 
a:};,j = f;(xh )-];,j (xh), i = 1, ... ,k', j E Jh and 

a;,,i = -gz,j(xh), l = l, ... ,m', j E Jh 

are so-called linearization errors. 
In the nonconvex case, we replace the linearization errors by so-called subgradient 

locality measures 
/3];,j = max [la:};,jl ,'YJJxh -yjll

2

] 

/3;, ,i = max [la;, ,j I , ,'g, llx
h -yi 

11
2], 

where ,'f; 2". 0 for i = 1, ... , k' and ')'g1 
2". 0 for l = l, ... , m' are so-called distance 

measure parameters ('YJ; = 0 if f; is convex and ')'g1 = 0 if gz is convex). 
Let ( d h, vh ) be the solution of the problem (2.23.5). Next, we employ a line search 

algorithm described in [Makela, Neittaanmiiki, 199 2), which detects discontinuities in 
the gradients of the objective functions. Roughly speaking, we try to find a step-size 
0 < th � l such that H(xh 

+ thd\ xh ) is minimal when xh 
+ thdh ES. The iteration 

is terminated when -½vh < c:, where c: > 0 is an accuracy parameter supplied by 
the user. The subgradient aggregation strategy due to [Kiwiel, 1985( c )) is used to 
restrict the storage requirements, and a modification of the weight updating algorithm 
described in [Kiwiel, 1990) is used to update the weight uh. 

On the Optimality of the Solutions 

First, we state a theoretical result concerning the optimality of xh in step (3) of 
the NIMBUS algorithm. 

Theorem 2.23.6. If the set J< is nonempty in the NIMBUS algorithm, then the so­
lution xh in step (3) is a weakly Pareto optimal solution of the original multiob_jective
optimization problem with k objective functions. 

Proof. Let xh be a solution of the problem (2.23.1) with some sets J< , J-:5., 1=, J> 

and J0
, where J< -:/- 0. Let us assume that x.h is not weakly Pareto optimal. Then 

there exists a decision vector x E S such that f; ( x) < f; ( xh ) for all i = 1, ... , k. 
Decause xh is a fea:siLle :suluLiuu uf Lhe problem (2.23.1), we have f;(x) <. fi("k_h):::; 

f;(xh) for i E J= and f;(x) < f;(xh) :S C:i for i E J>. Thus also x is a feasible solution 
of the problem (2.23.1 ). 

For all i E J'S. is valid fi(x)/wi -z; < f;(xh )/w; -z; with Wi > 0. It implies that 
max [f;(x)/w; -z;, O] � max [f;(xh )/w; -z;, o] for i E r-s., and further 

While, in addition, 
f;(x)/w; < f;(x.h )jw;, 

w; > 0, for all i E J<, the point x.h cannot be an optimal solution of the problem 
(2.23.1 ). This contradiction implies that x.h must be weakly Pareto optimal. The 
proof is also valid if some of the classes J-:5., J=, J> or J0 is empty. I 

Optimality of the solutions produced by the MPB routine is an important fact 
to consider. Here we only present some results without proofs, since proving would 
necessitate explicit expression of the MPB algorithm. 
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Theorem 2.23.7. Let the multiobjective optimization problem be convex and 
Slater's constraint qualification (Definition 1.11.20) be satisfied. If the MPB routine 
stops with a finite number of iterations, then the solution is weakly Pareto optimal. On 
the other band, any accumulation point of the infinite sequence of solutions generated 
by the MPB routine is weakly Pareto optimal. 

Proof. See [Kiwiel, 1985(a)] or [Wang, 1989]. 

If the convexity assumption is not satisfied, we obtain somewhat weaker results 
about substationary points. Let us first define a substationary point. 

Definition 2.23.8. A decision vector x* E S is called a substationary point if it 
satisfies the (necessary) optimality condition presented in Theorem 1.11. 9. 

Now we can state the following general theorem. 

Theorem 2.23.9. If the MPB routine stops with a finite number of iterations, then 
the solution is a substationary point. On the other band, any accumulation point of 
the infinite sequence of solutions generated by the MPB routine is a substationary 
point. 

Proof. See [Wang, 1989] and references therein. 

Notice that only the substationarity of the solutions of the MPB routine is guar­
anteed for general multiobjective optimization problems. However, we have so far 
referred and shall continue referring to the solutions as (weakly) Pareto optimal. 
This practice has been adopted for the fluency of the presentation. 

The NIMBUS method has not been developed to converge in the traditional sense. 
The aim has been to formulate a method where the decision maker can easily explore 
the (weakly) Pareto optimal set. W hen the solution process stops so that the decision 
maker does not want to change any objective function value, the solution is then 
optimal. 

An important factor is that the final solution is always Pareto optimal because 
of the structure of the algorithm. In addition, all the intermediate points are at 
least substationary points and they can be projected into Pareto optimal points, if so 
desired. 

Numerical experiments with the NIMBUS method are presented in Chapters 6 and 
7. 

User Interface 

Because the classification phase in the NIMBUS algorithm may seem complicated 
at first sight, we examine it more closely in this subsection. A user interface can have a 
remarkable role in this important phase. We propose a snapshot of an implementation, 
which is under development. The interface has been created to help the decision maker 
in the classification. It has been depicted in Figure 17. 

It is assumed that, as the problem has been inputted, a symbol has been attached 
to each of the objective functions. Only these symbols are dealt with in this phase. 
The function descriptions can be seen in the Edit menu, if necessary. The function 
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symbols can be seen in the topmost row. Below is the criterion vector to be considered 
in the row titled Criterion values. 

The decision maker can proceed in different ways. With a mouse (s)he can select 
a symbol of an objective function in the topmost row, drag it and drop it into some 
of the five boxes underneath, one box for each function class. No matter where the 
symbol is dropped inside a box, it will automatically be placed into a correct position. 

Another way to specify the classification is to use the symbols of the function classes 
( <, :S, =, >, o) and enter an appropriate symbol to each objective function in the third 
topmost row titled Classes. The class symbols available can be seen in connection 
with the explanatory texts in the boxes underneath or in the Help menu. 

If the decision maker likes to indicate preferences in the form of a reference point, 
it is also possible . In this case, only aspiration functions, functions to be fixed and 
functions to be relaxed are used. Then the components of the reference point are 
specified into the field called New levels in the fourth topmost row. 

No matter which of these three ways is used in the classification, the information 
specified is updated automatically to all the other appropriate fields. For example, 
if the class of some objective function is specified to be = in the row called Classes, 
then the function also appears in the box titled Functions fixed with the corresponding 
value. The value appears also in the row titled New levels. Naturally, if some function 
is to be minimized or is set free, then the corresponding field in the row called New 
levels is empty. 

The weighting coefficients, the aspiration levels and the upper bounds can be spec­
ified with the help of graphical devices. In proportion as functions are classified into 
aspiration functions and functions to be minimized, their weighting coefficients are 
updated to sum up to one. If the decision maker does not want to employ weighting 
coefficients, they remain equal. On the other hand, ( s )he can alter the coefficients 
by moving the bars or by giving numerical values. When some coefficient is altered, 
the other coefficients are updated so that they all sum up to one ( and the others 
are equal). A coefficient can he fixed by locking. Then it remains unaltered when 
the other coefficients are handled. The weighting coefficients are also illustrated by 
vertical bars on the right. 

Specifying aspiration levels and upper bounds can also be realized by moving bars 
or by specifying numerical values in the appropriate boxes. Notice that the aspiration 
levels must be smaller than the current criterion value. Thus the current value is the 
upper bound in the bar. The other end of the bar can be unrestricted or equal to the 
corresponding ideal criterion vector value (if it has been calculated). 

The case with upper bounds is exactly the opposite. Here the lowest value in the 
bar is the current criterion value and the largest value may be unrestricted, equal 
to the corresponding (approximated) nadir point component, or equal to some other 
estimate. 

The idea in the description above is that the decision maker can select the order 
of specifying the information as (s)he wishes. Either the functions are first classified 
and then the corresponding information is given, or the information is specified in 
proportion as the functions are classified. The program keeps checking the validity of 
all the inputs and gives error messages and advice, if necessary. Additional help can 
in every situation be found from the Help menu. 

Such a user interface aims at flexibility. The decision maker is not forced to ad­
just oneself into one rigid manner but has different possibilities to provide the same 
information. Therefore, one can select a way that suits one's personal characteristics 
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best. 
In the example depicted in Figure 17, six objective functions have been classified 

and the corresponding parameter information has been provided. 

Aspiration functions(<=) 
Weighting coefficients Lock 

F4 ll!!L:J□ 
0 - 1 

F6 ••c=J ![CJ� 
0 1 

Functions to be minimized (<) 
Weighting coefficients Lock 

Fl I l!!L:]□
0 - 1 

F5 ll I [[CJ� 
0 1 

Functions relaxed (>) 
Upper bound 

F3 I[[[] 
12.541 -

Functions fixed (=) 
Value 

F2 j3.46 I 

Aspiration level 

1.0 
0.9 
0.8 
0.7 
0.6 
0.5 
0.4 
0.3 
0.2 
0.1 

1 

0.0 : 

0.9 
8.221 ,----,a 

1.8 
4.652 

Fl F2 F3 F4 F5 F6 

Free functions(<>) 

Figure 17. Classification of the objective functions. 

Concluding Remarks 

A positive feature of the NIMBUS method compared with the subgradient GDF 
method ( and many other interactive methods) is that the questions posed to the 
decision maker are not so demanding. The method aims at being flexible and the 
decision maker can select to what extent ( s )he exploits the versatile possibilities of 
the method. The calculations are not too massive, either because the MPB method is 
computationally efficient. The reason for this is that, at the moment, bundle methods 
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are the most efficient methods in nondifferentiable optimization (see [Makela, 1993]). 
As to the MPB routine, NIMBUS stands out from the majority of existing interactive 
multiobjective optimization methods because it is not based on an explicit scalarizing 
function. 

The decision maker is free to move around the (weakly) Pareto optimal set and also 
to change her or his mind if necessary. Previous acts do not limit the movements. 
The decision maker can also extract undesirable solutions from further consideration 
keeping some upper bounds fixed. Naturally, the decision maker does not have to 
employ all of the five classes if ( s )he feels uncomfortable with some of them. How­
ever, it is important to provide different ways of action to the decision maker. The 
classification of the functions and the specification of the appropriate parameter in­
formation does not necessarily have to succeed as well as in the other methods based 
on the classification (such as STEM). The reason is that also intermediate solutions 
can be examined and, thus, more information of the problem can be obtained. On 
the other hand, the decision maker can also cancel some classification step because 
nothing is irreversible. Such a flexibility is not possible, for example, in STEM and 
the satisficing trade-off method. 

Eventually, it is up to the user interface to take the most of the possibilities of the 
method and provide it to the user. In connection with this, we have given a proposal 
for realizing the function classification phase. 

Even though the MPB routine cannot guarantee the Pareto optimality of the so­
lutions, at least the final solution is Pareto optimal. If the user finds it important 
that the intermediate solutions are Pareto optimal, they can be projected. It adds 
computational costs, though. 

The method is ad hoe in nature, since the existence of a value function does not 
directly advise the decision maker how to act to attain her or his desires. The intention 
has especially been to release the decision maker from the assumption of an underlying 
value function. What is important is that the method satisfies two widely agreed 
desirable properties of interactive methods: not to place too demanding assumptions 
on the decision maker or the information exchanged, and to be able to find (weakly) 
Pareto optimal solutions quickly and efficiently. 

Unfortunately, it has not been possible to empirically test NIMBUS with real de­
cision makers, so far. However, the main emphasis in this presentation is in the 
mathematical side of multiobjective optimization, not in the behavioural aspects. 

2.24. Other Interactive Methods 

There is a great number of interactive methods. It is not the purpose nor practical 
or possible to discuss all of them in this context. Nevertheless, in addition to those 
presentecl in the previous sections, some methods are listed in the following. Only 
basic concepts and ideas of the methods are mentioned and references are indicated. 
The methods have been roughly divided according to their basis on goal programming, 
on weighted Lp-metrics and reference points, and on miscellaneous ideas. 

Methods Based on Goal Programming 

A rather straightforward extension of goal programming into an interactive form 
has been presented in [Masud, Hwang, 1981]. The method is called interactive se­
quential goal programming (ISGP). Also an interactive multiple goal programming 
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(IMGP) method, described in [Nijkamp, Spronk, 1980] and [Spronk, 1990], has been 
created to combine the flexibility of goal programming and the robustness and learn­
ing characters of interactive approaches. At each iteration, the algorithm provides 
a lot of information about the problem to the decision maker, who can revise the 
aspiration levels of the goals. 

A sequential multiobjective problem solving (SEMOPS) technique is briefly out­
lined in [Monarchi, Kisiel, Duckstein, 1973]. Five types of goal specifications in the 
form of points and intervals are allowed. A different measure of deviation is utilized 
for each type. For example, if the goal is of the form f;(x) :s; z;, then the correspond­
ing measure of deviation is 8; = f;(x)/z;. At each iteration, a subset of deviations 
is summed up and then minimized. The decision maker may change that subset and 
specify new aspiration levels. The solutions are not guaranteed to be Pareto opti­
mal. A related method, called sequential information generator for multiple objective 
problems (SIGMOP), is introduced in [Monarchi, Weber, Duckstein, 1976]. SIGMOP 
is a flexible method where the decision maker can alter aspiration levels and weight­
ing coefficients as ( s )he separates attainable solutions from the desired ones. As an 
application, a pollution problem in water resources is solved by the SEMO PS and the 
SIGMOP methods in the references mentioned. 

The ideas of goal programming, the €-constraint problem and trade-offs are com­
bined in a direction-searching method proposed in [Masud, Zheng, 1989]. The method 
aims at reducing the cognitive burden on the decision maker while not increasing the 
computational complexity. The algorithm is illustrated by a numerical example. The 
properties of the method are also compared with those of several other interactive 
methods. 

A method combining features from goal programming and the method of global 
criterion is suggested in [Hallefjord, Jornsten, 1986]. After the decision maker has 
specified the reference point, the distance between it and the feasible criterion region 
is minimized by an entropy function. The mathematical background of the method 
is widely provided in the reference. 

Methods Based on Weighted L
p
-Metrics and Reference Points 

The idea of the method in [Moldavskiy, 1981] is to form a grid in the space of 
weighting vectors and to map this grid onto the Pareto optimal set. Weighted L

p
­

metrics are used as scalarizing functions. The decision maker can contract the space 
of the weighting vectors until the most satisfactory solution is obtained. 

Diaz presents in [Diaz, 1987] a method based on sensitivity analysis and weighted 
Tchebycheff metrics. The distance between a reference point and the Pareto optimal 
set is minimized by the weighted Tchebycheff metric and the effects of changing some 
aspiration level are studied by sensitivity analysis. The method in [Sunaga, Mazeed, 
Kondo, 1988] utilizes the weighted Tchebycheff metric and transforms the constrained 
( min-max) problem into a series of (differentiable) unconstrained problems by penalty 
functions. 

In [Loganathan, Sherali, 1987], an ·interactive cutting-plane algorithm with appli­
cations is presented. The idea is to maximize the underlying value function. The 
weighted Tchebycheff metric is utilized with marginal rates of substitution as weight­
ing coefficients. The convergence of the algorithm is also treated. 

The method proposed in [M'silti, Tolla, 1993] combines features from the c:-con­
straint method and the augmented weighted Tchebycheff metric. The global Pareto 
optimality of the solution obtained is checked. 
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The method of the displaced ideal for MOLP problems, described in [Zeleny, 1973, 
1974, 1976], can be characterized as an interactive extension of the method of global 
criterion. A subset of the Pareto optimal set is obtained by minimizing the distance 
between the ideal criterion vector and the feasible criterion region by the weighted 
Lp-metrics with altered exponents p. The subset is reduced by moving the reference 
point towards the feasible criterion region until the subset of Pareto optimal solution 
is small enough for the decision maker to select the most preferred solution. The 
method is based on empirical studies of the decision maker's behaviour. 

The method of Wierzbicki is a basis of the interactive reference point methods 
introduced in [Bogetoft, Hallefjord, Kok, 1988]. The multiobjective optimization 
problem is supposed to be convex. Kuhn-Tucker multiplier information is presented 
to the decision maker to guide the specification of new reference points. Several 
different modifications are presented in the paper and their convergence properties 
are studied. 

In the method presented in [Tapia, Murtagh, 1989], the decision maker is asked to 
express preferential desires to attain her or his reference point. So-called preference 
criteria are formed from this information. These preference criteria are then used as a 
reference point in the achievement function. The authors also report some encouraging 
numerical experiments. 

The method presented in [Weistroffer, 1982] assumes that the decision maker spec­
ifies required values or maximum-achievement levels. Then the surplus is maximized 
to the Pareto optimal set. The methods in [Weistroffer, 1984, 1987] and (Narula, 
Weistroffer, 1989(b )] expect that the decision maker provides required and desired 
values for every objective function. Then an achievement function is optimized. The 
required and the desired values are modified until a most preferred solution is ob­
tained. Some convergence results are handled. 

The method in [Skulimowski, 1992] is also based on several reference points. The 
feasible region is limited according to the reference point information and some value 
function values are developed. 

Ways of approaching discrete multiobjective optimization problems have been in­
cluded in the method introduced in [Kok, Lootsma, 1985]. The ideal criterion vector 
is used as a reference point. Pairwise-comparison methods are applied between the 
reference point and the (possibly approximated) nadir point. The distances are mea­
sured by solving the augmented weighted Tchebycheff problem. 

In the method described in [Kirilov, 1991], a reference direction is formed with 
the help of the reference point. Then, several (weakly) Pareto optimal solutions are 
generated along the reference direction to be presented to the decision maker. 

Methods Based on Miscellaneous Ideas 

An interactive extension of the weighting method is presented in [Steuer, 1986]. 
Many of its ideas are related to those of the IWT method (in Section 2.17). The set 
of the weighting vectors is reduced acc_ording to the choices of the decision maker. 
The weighting vectors are generated randomly from the reduced space and filtered to 
obtain a well dispersed set. 

The bi-reference procedure presented in [Michalowski, Szapiro, 1992] has been de­
veloped for MOLP problems. The decision maker is asked to specify the worst accept­
able criterion vector, and the search direction is obtained as the difference between 
the worst and the ideal criterion vectors. As long a step as possible is taken into that 
direction and the decision maker is asked to partition the objective functions into 
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three classes (to be improved, to be kept unchanged and to be relaxed). Then the 
worst and the ideal criterion vectors are replaced and the procedure continues until no 
significant improvement is achieved. The performance of the bi-reference procedure is 
compared with other interactive procedures by solving some test examples from the 
literature. At least in those examples the procedure has managed quite well. 

Two different interactive relaxation methods are put forward in-[Nakayama, Tanino, 
Sawaragi, 1980] and [Lazimy, 1986(6 )]. The latter is applicable to both continuous and 
integer problems. The methods are based on the maximization of an underlying value 
function in a new but equivalent form with additional constraints. Marginal rates of 
substitution and other estimates of the value function are required from the decision 
maker. Similar ingredients are utilized in the decomposition method, presented in 
(Lazimy, 1986(a)]. It is based on the duality theory for nonlinear programming. The 
original problem is decomposed into a series of linear subproblems and two-attribute 
problems. A relaxation-projection technique, especially for bi-objective problems with 
an application to scheduling, is proposed in [Ferreira, Geromel, 1990]. 

An interactive algorithm with several alternative subproblems is proposed in [Mukai, 
1980]. Every objective function is treated equally in the beginning, and the sub­
problems generate feasible directions where the values of all the objective functions 
improve. The decision maker can then indicate what objective functions to improve 
at the expense of the others, and a new direction is generated. Tools for extending 
the algorithms of Mukai to be applicable to nondifferentiable objective functions are 
presented in [Kiwiel, 1984, 1985(a), (b)] and [Wang, 1989]. The ideas were applied in 
the NIMBUS method in Section 2.23. 

The method submitted in [Roy, Mackin, 1991] is based on a sequence of pairwise 
questions and it tries to approximate the parameters of a proxy value function. An 
example of including ideas from other research areas in interactive multiobjective 
optimization is presented in [Tapia, Murtagh, 1992]. The authors analyze the pref­
erences of a decision maker in MOLP problems with Markovian processes. Cardinal 
priority ranking of Pareto optimal solutions is part of the method proposed. 

Methods for discrete and continuous multiobjective optimization problems have 
been combined in [Slowinski, 1991]. A finite set of Pareto optimal points is generated 
and then the ordinal regression is applied. The method is intended to be practical in 
the situations where the decision maker wants to focus on a subset of Pareto optimal 
points at early stages of the process. Similar ideas are utilized in [Bard, 1986]. A 
set of Pareto optimal solutions is generated by the c-constraint method and ranked 
by means of multiattribute decision analysis. The method is demonstrated by an 
example on the selection of automation options for an upcoming Space Station. 

An interactive step trade-off method combining ideas from the SWT method and 
STEM is presented in [Yang, Chen, Zhang, 1990). It utilizes trade-off rates and the 
division of objectives into those to be improved, those that should maintain their 
values and those to be impaired. A method for complex problems with high dimen­
sionality is proposed in [Baba, Takeda, Miyake, 1988]. The method utilizes a random 
optimization method and is also applicable to nondifferentiable objective functions. 
Possibilities of multiobjective optimization in structural mechanics are presented in 
[Eschenauer, Schafer, Bernau, 1989]. Two interactive methods are briefly described 
and applied to the optimization of a conical shell. 

The method in [Kim, Gal, 1993] has been intended for MOLP problems. It is 
based on a recently developed concept, a maximally changeable dominance cone, 
and marginal rates of substitution. The effectiveness of the method is illustrated by a 

123 



numerical example. Ideas for reducing the burden on the decision maker in interactive 
methods are introduced in [Korhonen, Wallenius, Zionts, 1984] and further developed 
in [Ramesh, Karwan, Zionts, 1988]. An underlying quasiconcave value function is 
assumed to exist. Convex cones are formed according to the preference relations of 
the decision maker. The cones are formed such that the solutions in the cones can 
be dropped from further considerations, because they are dominated by some other 
solutions. Thus, fewer questions have to be asked from the decision maker in charting 
the preferences. These ideas of convex cones can be applied as well to multiobjective 
optimization as multiattribute decision analysis. The ideas have been applied, for 
example, in [Ramesh, Karwan, Zionts, 1989(a), (b)]. 
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3. Software for Solving Multiobjective

Optimization Problems

The recent development of computers and the improvement in the speed, storage 
capacities, and flexibility of computing facilities has made it possible to produce 
more sophisticated and demanding software for solving multiobjective optimization 
problems. Efficient computers enable the implementation of interactive algorithms, 
since they can produce sufficiently fast responses for the decision maker without the 
user getting frustrated in waiting. Nevertheless, taking into account the large amount 
of methods developed for solving multiob jective optimization problems, the number of 
widely tested and user-friendly computer programs that are widely available is small. 

Most of the software packages developed for multiobjective optimization problems 
can be called multiobjective decision support systems forming a class of decision sup­
port systems. Decision support systems ( often shortened to DSS) can be defined to be 
interactive computer-based systems designed for helping in the decision making pro­
cess. The main parts of a decision support system are a model, an optimizer (solver) 
and an interface between the model, the optimizer and the user. By an interface we 
mean the input language and style, exchange of information and presentation of the 
results. It is to be remembered that the human-computer interface must be designed 
with at least as much care and effort as the other parts of the system. 

The role and the requirements of the model, the optimizer and the interface in 
the multiobjective optimization environment are outlined in [Jelassi, Jarke, Stohr, 
1985]. A decision support system is worthwhile to have capabilities of self-learning 
and model updating. The interface is a dominating factor when the user-friendliness 
of the system is regarded. One can state that developing software for multiobjective 
optimization problems is once again a multiobjective optimization problem in itself 
and proper planning is essential. Several ( conflicting) objectives to be taken into 
consideration in multiobjective software design are mentioned in [Olkucu, 1989). 

Features to be taken into consideration when designing decision support systems 
are also handled in [Lewandowski, 1986]. Different definitions of user-friendliness and 
rules for dialogue design are given. One must point out that plenty of effort has been 
made in developing methodological and computational aspects of the systems but the 
interface, between the system and its user is often of poor quality. This is a serious 
weakness, since no matter how brilliant the methodology and its implementation is, 
it will be discarded if the interface does not suit the user. In any case, the algorithms 
must be implemented in such a manner that computer-technical requirements do not 
overshadow the real problem and non-skilled persons can use the algorithms, too. 
One way to try to improve the situation is to provide different interface possibilities 
for the same system for computer specialists, trained users and average users. 

Existing software packages by the year 1980 are listed in [Hwang, Paidy, Yoon, 
Masud, 1980]. The programs have mainly been developed for linear and goal pro­
gramming problems. We do not present them here more closely, because they are 
quite primitive when compared with modern computer facilities. The state of deci­
sion support systems developed to aid in the multiobjective optimization and multi­
attribute decision analysis problems up till the year 1988 has been gathered in [Eom, 
1989). The presentation is only cursory. A classification of the system applications is 
provided. Some software implementations are also mentioned in [Weistroffer, Narula, 
1991]. 
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Most of the software implementing the extensive amount of existing multiobjective 
optimization methods is neither commonly available nor widely known. However, 
some implementations are introduced in the following. No detailed information about 
the realizations is described, since the implementations are under continuous devel­
opment and the details may be out-of-date at any moment. Only those computer 
programs are presented whose implementations have been at the -author's disposal. 
They are VIG, DIDAS, CAMOS, ADBASE and TRIMAP. On this occasion it is in 
order to thank the developers of the programs for giving a copy to the author. At the 
end of the chapter some other programs are briefly mentioned. 

By a user we in the following mean either a decision maker or an analyst who 
uses the solution program. If the user is a decision maker, it is usually assumed that 
the problem has been formed earlier (and perhaps loaded in the system) so that the 
decision maker can concentrate on the solution process. 

After describing each software product, some practical user experiences are men­
tioned. It is difficult to compare the programs with each other because they have 
been developed for so different purposes. Unfortunately, many of the programs are 
capable of handling MOLP problems only. 

3.1. Visual Interactive Approach to Goal Programming 

The visual interactive approach to goal programming (VIG), described in [Korho­
nen, 1987, 1990, 1991(a)] and [Korhonen, Wallenius, 1989(c), 1990]), is a dynamic, 
visual and interactive solution system for MOLP problems with emphasis on graphi­
cal illustration. VIG is based on the visual interactive approach and its adaptation to 
generalized goal programming, both of which were presented in Section 2.21. What 
is new is a so-called Pareto race (see [Korhonen, Wallenius, 1988]), which develops 
reference directions in a dynamic way. 

VIG is a commercial product. It has been implemented by P. Korhonen in Helsinki, 
Finland, on IBM compatible microcomputers (in Turbo Pascal) into a menu-driven 
system. The user's guide is available (see [Korhonen, 1987]). This description handles 
version 2.27. 

General Outline 

VIG follows the principles of the algorithm for the visual interactive approach 
adapted to goal programming. However, the graphical illustration is quite different. 
The developers of Pareto race felt that producing one picture at each iteration may 
make the user feel somewhat at a mercy of the system. The aim of the Pareto race 
is to transform the solution process into a dynamic form where the user can feel that 
( s )he is in control. Instead of looking at a certain weakly Pareto optimal curve at a 
time, the user can move to any direction in the weakly .Pareto optimal set. There are 
no restrictive assumptions limiting the user's behaviour. Using Pareto race in VIG is 
like driving a car. An accelerator, a steering wheel, gears and brakes are available in 
the function keys of the keyboard. 

ln practice, the Pareto race has been implemented by varying two variables ( which 
were already introduced in Section 2.21). The variables are the reference direction 
and the step-size. Their values are updated according to the actions of the user. If 
the user pushes the accelerator key, one more step of predetermined size is taken into 
the reference direction. If the user pushes the gears-forwards key, the step-size is 
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increased and if ( s )he pushes the gears-backwards key, the step-size is increased into 
the opposite direction. If the user pushes the brakes key, the step-size is decreased. 
If the user wants to change the direction, ( s )he pushes the ordinal number of the 
goal whose significance (s)he wants to increase. This causes a change in the reference 
direction. The values of the objective functions can also be fixed and relaxed. The 
values of the objective functions are displayed as a bar chart, where the lengths of the 
bars keep changing according to the instructions of the user. The objective function 
values are on view also numerically. 

Every time the parameters are changed, the system minimizes the corresponding 
achievement function and shows the solution. All this happens so quickly that the 
lengths of the bar graphs seem to change dynamically in real-time as the user "travels" 
on the weakly Pareto optimal set. The functioning of the system reminds a simple 
video game. Several solutions can be saved for further analysis. 

Because of the achievement function employed, VIG produces weakly Pareto opti­
mal solutions. It is, however, suggested in [Korhonen, Halme, 1994] that lexicographic 
ordering can be used to guarantee the Pareto optimality of the solutions. 

Pareto Race (and VIG) can be characterized as an ad hoe method. No value 
function is now assumed to exist and, thus, the optimality of the final solution is 
not checked. How satisfactory a solution the user manages to find depends on her or 
his patience. A more profound presentation of VIG has been collected in [Miettinen, 
1990]. 

VIG is used in [Korhonen, Soismaa, 1988] for pricing alcoholic beverages in Finland. 
Pareto race is used in locating ocean waste disposal sites in [Leschine, Wallenius, Ver­
dini, 1992]. Other problems where VIG has been applied are presented in [Korhonen, 
1990]. The performance of VIG is compared with four other methods in [Korhonen, 
Wallenius, 1989(b )]. An MOLP problem with five objective functions was solved by 
65 decision makers. VIG was found to be superior to the other methods. The main 
reason was that the decision makers found the aspiration levels to be a comfortable 
way of expressing preference relations. 

Features from VIG (Pareto race) and the visual interactive approach (see Section 
2.21) have later on been combined into a computer graphics-based decision support 
system in a novel way. This system is described in [Korhonen, Wallenius, Zionts, 
1992]. The new method is especially useful for large-scale linear problems. Graphical 
presentations from both of the basis methods have been included. 

Practical Experiences 

The main benefit of VIG is its easiness to use. No difficult questions are asked from 
the user. The user can feel that (s)he is in command instead of the computer or the 
analyst. The graphical illustration is the dominating part of the system. Unfortu­
nately, only linear problems can be solved. The maximum size of the problem is 96 
variables and 100 functions, of which up to 10 may be objective functions. 

The fact that no parts of the weakly Pareto optimal set can be eliminated from the 
examination, can be seen as a drawback. It may also be difficult to find again some 
solution discovered earlier, if it was not saved. If there is a large number of objective 
functions, the user may have difficulties in finding improved solutions. 
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3.2. DIDAS 

DID AS (Dynamic Interactive Decision Analysis and Support) system ( earlier DI­
D ASS) is a family of decision support systems developed at the International Institute 
for Applied Systems Analysis (IIASA) in Austria in collaboration between IIASA and 
several Polish scientific institutions. There is a lot of literature describing different 
steps of the development work (see [Lewandowski, Grauer, 1982], [Grauer, 1983(a), 
(b )], [Grauer, Lewandowski, Wierzbicki, 1984], [Lewandowski, Kreglewski, Rogows­
ki, Wierzbicki, 1987], [Rogowski, Sobczyk, Wierzbicki, 1987], [Kreglewski, Paczynski, 
Wierzbicki, 1987], [Kreglewski, 1989] and [Kreglewski, Granat, Wierzbicki, 1991]). 

DIDAS is a commercial product and it can be inquired from IIASA. Originally, 
DIDAS was designed for mainframe computers, but nowadays microcomputer ver­
sions exist. Some versions are in Fortran 77 (see, e.g., [Grauer, 1983( a)]) and some in 
Pascal (see [Kreglewski, Paczynski, Wierzbicki, 1987]). There are special packages for 
dynamic problems, linear problems ( called IAS-DIDAS-1, see [Rogowski, Sobczyk, 
Wierzbicki, 1987]) and nonlinear problems. Here we mainly outline the nonlinear ver­
sion, called IAC-DIDAS-N (for short DIDAS-N) for IBM compatible microcomputers 
up till version 4.0. 

General Outline 

DIDAS is an implementation of the reference point method, presented in Section 
2.19. It is a dynamic decision support system and it aims at helping in achieving better 
decisions. Users of DIDAS may be decision makers, analysts, or decision makers and 
analysts together. The forms of the achievement functions are varied in different 
versions of the system. 

DIDAS is based on satisficing decision making. The user gives a reference point 
and a corresponding Pareto optimal ( or weakly Pareto optimal) solution is generated 
by optimizing an achievement function. Then the user can specify new aspiration 
levels or let the system help in determining them. 

Three kinds of objective functions can be given. They can be functions to be 
minimized, to be maximized, or to be stabili:;;ed (i.e., minimi:;;eil if their wih1es are 
above stabilization levels and maximized if their values are below stabilization levels). 
Both equality constraints and inequality constraints can be used. All the functions 
are assumed to be differentiable. In addition to the aspiration levels Zi, the user is 
asked in some versions ( e.g., in IAC-DIDAS-N 4.0) to specify reservation levels Zi for 
the objective functions. The reservation levels are interpreted as "soft" upper bounds 
( or lower bounds in maximization case) for the objective functions. The reservation 
levels should be more pessimistic than the aspiration levels; for example, for objective 
functions to be minimized, they should be greater than the aspiration levels. 

In the beginning, the ranges of the Pareto optimal set are presented to the user 
to give an overview of the problem. In some versions, these ranges are also used to 
scale the objective functions. In different versions of DIDAS, the ranges are deter­
mined in different ways. Some versions utilize the means described in Section 1.5 (see 
[Kreglewski, 1989]) and some versions optimize the achievement function with sys­
tematically varied aspiration levels and collect the best and worst objective function 
values obtained (see [Lewandowski, Kreglewski, Rogowski, Wierzbicki, 1987]). A neu­

tral Pareto optimal solution which is situated "in the middle" of the Pareto optimal 
set is usually calculated as a starting point. Also so-called relative achievement factors 
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and conflict coefficients may be calculated at the beginning of the solution process to 
give information about the difficulty of the problem (see [Kreglewski, 1989]). 

A vital factor in the successful functioning of DIDAS is that the user can easily 
affect the selection of Pareto optimal solutions by changing the aspiration levels. 
Because of this, the objective functions are in many versions scaled by the difference 
between a slightly displaced ideal criterion vector and the cunent reference point. 
The user is assumed to specify aspiration levels between the ideal criterion vector and 
the nadir point. Now the user can implicitly attach more importance in attaining 
some aspiration level by placing it near the ideal criterion value. In that case, the 
corresponding objective function is weighted stronger in the achievement function. 

Now we give an example of achievement functions utilized in DIDAS. If all the 
objective functions are to be minimized, an order-approximating achievement function 
to be maximized can be of the form 

min [min [(z; - f;(x))/s\, 1 + (z; - f;(x))/s:']] +1:$i9 
k 

c ( � min [(z; - f;(x))/ s\, 1 + (z; - f;(x))/ s\1 ]), 

where € > 0 and the coefficients s: > 0 and s:' > 0 are scaling units to be deter­
mined automatically according to a complicated formula (see [Kreglewski, 1989] and 
[Kreglewski, Granat, Wierzbicki, 1991]). Achievement functions are typically nondif­
ferentiable at the reference point. So is this function. However, it can be solved in an 
equivalent differentiable form if the objective functions are differentiable. In practice, 
the achievement functions are replaced by differentiable approximate functions which 
are also order-approximating (see, e.g., [Kreglewski, Granat, Wierzbicki, 1991]). 

The developers of DID AS have also considered the problems of gradients. They have 
come to the conclusion that only gradient-based nonlinear programming algorithms 
for the optimization of the achievement function are efficient and robust enough to 
be employed in interactive decision support systems. An important question is how 
to obtain the gradients of the objective and the constraint functions. For two reasons 
it is not advisable to ask the derivatives from the user of the system. Firstly, the 
formulation of the derivatives is a time-consuming and laborious task, and secondly, 
errors and mistakes are likely to occur. Mistakes have been found to be a main rea­
son for nonlinear optimization methods to fail in convergence. However, numerical 
estimation of the gradients is considered to be very time-consuming and not accurate 
enough. A potential possibility is to formulate the gradients symbolically inside the 
model. The implementation of this gradient formulation is briefly handled in [Kre­
glewski, 1989]. One more alternative is to use automatic differentiation. However, 
such results have not been reported. 

Some experiences in applying DIDAS to macroeconomics planning are reported 
in [Grauer, Lewandowski, Wierzbicki, 1984). DIDAS is used in empirical tests in 
[Bischoff, 1985) to experiment with _different scalarizing functions. A problem of 
determining the optimal temperature in a greenhouse is solved by a nonlinear version 
of DIDAS in [Udink ten Cate, 1985). In [Stam, Kuula, Cesar, 1992), DIDAS-N is 
used in analysing the acid rain problem in Europe. A trajectory-oriented extension 
of DIDAS is described and applied in [Lewandowski, Rogowski, Kreglewski, 1985(a), 
(b )). IMPROVE, a package for MOLP problems, which is based on experiences with 
DIDAS, is introduced in [Barnikow, Gollmer, Grauer, 1986). Some applications to 
strategic planning of carbochemical industry are also reported. 
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Practical Experiences of the Version IAC-DIDAS-N 4.0 

Even though the facilities of microcomputers have been utilized, the interface be­
tween the user and the system is still quite cumbersome. The screen contains cells 
where the problem information is to be input. The system is controlled by pushing 
alt or ctrl keys and letters or function keys. The solution process is divided into three 
phases and to be able to continue to the next phase, the current" problem must be 
saved. The user must be acquainted with the system to be able to use it. The system 
itself does not give any guidance how to proceed or what one is expected to do. Once 
the problem with reservation and aspiration levels and some other information has 
been successfully stored, the problem may be solved. The reservation and the aspi­
ration levels can be altered and the obtained results can be saved. Then the results 
which have been saved can be displayed in a graphical bar form. 

What is positive with IAC-DIDAS-N is that many kinds of problems can be solved 
with it. In addition, the user does not have to give derivatives of the functions if (s )he 
does not want to. One must acknowledge that a lot of attention has been paid to 
developing efficient achievement functions and other computational tunings. On the 
other hand, the interface has to develop remarkably to become a system that can be 
called user-friendly. When the system is like this, the user needs a lot of practice and 
experience to be able to exploit the possibilities of the system effectively. 

3.3. CAMOS 

CAMOS (Computer Aided Multicriterion Optimization System) is an optimization 
system developed by A. Osyczka in Cracow, Poland, to treat especially (nonlinear) 
computer aided optimal design problems. It has been written in standard Fortran 
to run on IBM compatible microcomputers (see [Osyczka, 1989(b), 1992] and for an 
earlier version [Osyczka, 1984]). However, there are no obstacles for the system to 
be run on other computers. CAMOS is a commercial product distributed through 
International Software Publishers (see [Osyczka, 1992]). 

General Outline 

CAMOS does not contain any highly developed interactive solution method. The 
system has been meant for producing Pareto optimal solutions with different generat­
ing methods. The user can solve the problem with different single and (noninteractive) 
multiobjective optimization methods, with different parameters and input data, with 
different starting points, etc. 

Using CAMOS requires the user to know Fortran since the problem to be solved 
must be given as a Fortran subroutine. The functions are supposed to be minimized 
and equality and inequality constraints can be used. The user can also supply general 
data which can be altered inside CAMOS. In addition, the input subroutine can 
contain code for printing the results of the problem. Since the system has been 
intended for general usage to be compatible between different computer systems, no 
graphical capabilities of microcomputers have been utilized in the interface. 

CAMOS is able to solve nonlinear single and multiobjective optimization problems 
with continuous, integer, discrete and mixed decision variables. The methods for iden­
tifying (weakly) Pareto optimal solutions are the weighting method with or without 
normalizing the objective function (see Section 2.2), the method of global criterion, 
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the min-max method (which means the method of global criterion with L00-norm) 
and the weighted min-max method (see Section 2.7). 

Parameters for the methods are asked from the user. The weighting coefficients 
are assumed to sum up to one in the weighting methods. The normalized weighting 
method means that every objective function is divided by its ideal criterion value. In 
the method of global criterion, the user must specify the exponent p. The norms with 
ideal criterion values as denominators and without the exponent 1/p are used (when 
compared with Section 2.7). The min-max method has been briefly described by the 
formula (2.7.3). See more details, for example, in [Osyczka, 1984, 1992]. If the user 
does not want the ideal criterion vector to be used in the methods, ( s )he may specify 
another reference point. In this case, solutions generated are not necessarily Pareto 
optimal. 

In addition, there is a method called "generating a set of Pareto optimal solutions". 
This means that feasible decision vectors are generated by a random search method. 
Each new point is compared with the stored points. If the new point is dominated 
by the older points, it is discarded. On the other hand, if the new point dominates 
some of the older points, they are discarded and the new point is stored. 

The user can choose the optimization method for the newly developed single ob­
jective optimization problem among the random search (Monte Carlo) method, the 
direct search method of Hooke and Jeeves, the nonlinear simplex method of Nelder 
and Mead, the variable metric method of Davidon, Fletcher and Powell, and the 
flexible tolerance method of Himmelblau. The user may also include new solution 
methods. Also some combinations of the methods are permitted. 

To illustrate the functioning of CAM OS the results of solving two practical problems 
are reported in [Osyczka, 1992]. They are the optimal design of multiple clutch brakes 
and the optimal counterweight balancing of robot arms. 

Practical Experiences 

The interface in CAMOS is system-driven and the user must answer a lot of ques­
tions, which may be rather frustrating. Information about expected reply alternatives 
can be obtained by the HELP command. There does not, anyway, exist any default 
replies. This is sometimes laborious, for example, when specific data for the selected 
single objective optimization routine is given. HELP command shows standard data 
as a guideline and the user must give the values even though (s)he does not want to 
change the standard input. To be able to change the problem to be solved, CAMOS 
must be quit and another Fortran program must be linked with it. 

The user of CAMOS has to be active. When one solution has been obtained, the 
system does not advise how to proceed. The user must know what to do next. 

What is positive in using Fortran programs to input the problem to be solved is that 
also more complicated problems can be solved. By complication we mean problems 
where the values of the objective functions are determined via calling subroutines and 
not by short expressions. The same ianguage feature can also be seen as a negative 
part of the system. Knowing Fortran is a threshold to using CAMOS. On the other 
hand, one can think that an analyst inputs the Fortran parts and the decision maker 
only uses the program which is ready for use. One can also state that CAMOS has 
not been intended to be an easy tool for every average user. 

When using CAMOS, it must be kept in mind that it may be quite sensitive to 
the starting point specified by the user. This can be overcome by solving the same 
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problem with several different starting points or with the random search method to 
generate a starting point. 

A professional user may find CAM OS a practical tool for solving problem if (s)he has 
got enough patience, time and know-how and (s)he does not expect highly developed 
interaction. 

3.4. ADBASE 

AD BASE is a widely distributed package of programs for solving MOLP problems. 
ADBASE has been developed by R. E. Steuer in Georgia, USA (see [Steuer, 1989(c))), 
though some of the programs have been made by others. This short summary is about 
the version 9/89. All the programs are written in low level Fortran IV and run on both 
mainframe and personal computers (with or without a math-coprocessor). ADBASE 
is a commercial product. It can be inquired from R. Steuer. 

General Outline 

In addition to the package itself, ADBASE is also the name of a program which 
is able to generate all the Pareto optimal extreme solutions and all the unbounded 
Pareto optimal edges of an MOLP problem. AD BASE operates by solving a family of 
weighting problems. Subsets of Pareto optimal extreme points and unbounded Pareto 
optimal edges can be generated by reducing the set of weighting vectors. Also pre­
emptive goal programming problems can be solved. ADBASE uses a multiobjective 
analogue of the revised simplex method of single objective optimization. One can also 
generate linear random test problems by ADBASE. 

All the programs in the AD BASE package have been integrated so that output from 
one program can be used as input to some other program. FILTER is a program for 
finding a dispersed subset from a set of vectors. LAMBDA is a program for gathering 
representatives from the set of weighting vectors specified by lower and upper bounds. 
UTILITY computes the value of a specified value function at given criterion vectors. 
VECTOR computes an updated weighting vector utilized in the older version of the 
IWT procedure and CONVERT converts input funnaLt;. 

The use of ADBASE package is demonstrated in [Steuer, 1986]. It is shown, for 
example, how the programs of the package can be used to solve MOLP problems by 
the IWT procedure. Some computational testing with a revised version is reported 
in [Steuer, Gardiner, 1991]. It is demonstrated how programs of ADBASE can be 
exploited in solving MOLP problems by Wierzbicki's reference point method as well 
as by the IWT method. 

Practical Experiences 

AD BASE is rather a collection of tools than a program. The user must know what 
( s )he must and can do with the different subroutines to obtain desired solutions. Thus 
it is not meant for decision makers as such. Instead, from the subroutines available, 
an analyst must first collect a program which implements some method. 

The weakness of AD BASE is its stiffness and thus relatively high threshold of usage. 
The input and the output formats are fixed and inflexible and no graphical properties 
are available. Two input files of prespecified contents and layout are required for a 
multiobjective optimization problem to be solved by ADBASE. Because of versatile 
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possibilities of the problem, there are quite many parameters whose values have to be 
set. 

Getting accustomed to using ADBASE takes time and effort. Likewise is the case 
with the flexible usage of the auxiliary programs. But after the user has familiarized 
oneself with the programs, MOLP problems can be solved and analysed in many ways. 

3.5. TRIMAP 

TRIMAP is an interactive program for solving MOLP problems with three objective 
functions. It has been developed at the University of Coimbra, Portugal (see [CHmaco, 
Antunes, 1987, 1989]). The program has been written in Pascal and it runs in the 
Apple Macintosh environment utilizing its graphical capabilities. The version to be 
handled here is 2.dl. The program can be inquired from the developers. 

General Outline 

The starting point of TRIMAP is the weighting method with the possibility to 
decompose the set of the weighting vectors into subsets where the weighting method 
results in the same solution. Computer graphics plays an important part. Also the€­
constraint method has been included so that it would be possible to eliminate regions 
of the criterion space. The program is based on progressive and selective "learning" 
of the Pareto optimal set where the user can eliminate subsets of the Pareto optimal 
solutions as they become uninteresting. The convergence of the solutions is not of 
interest in TRIMAP. 

What the user can do with TRIMAP is to study the changes when ( s )he alters 
the weighting coefficients or the upper bounds. The user can also consider different 
projections of the criterion space and the weighting space. The limitation to three 
objective functions allows the effective use of computer graphics. The fact that there 
are only two independent weighting coefficients is utilized in the graphical presen­
tations. A new version of TRIMAP for three-objective transportation problems has 
been introduced in [CHmaco, Antunes, Alves, 1993]. 

The ZW method, STEM and the computer program TRIMAP have been com­
pared in [CHmaco, Antunes, 1990]. A problem of power generation system expansion 
planning with three linear objective functions was solved. All the programs were im­
plemented in the same (Macintosh II) environment. The authors conclude that the 
TRIMAP was easiest to use since the decision maker does not have to answer difficult 
questions. 

Practical Experiences 

TRIMAP is at its best when analyzing problems of a relatively small dimension. 
The interface is quite user-friendly and TRIMAP is suitable also for users with little 
experience with computers. The assumption of three objective functions limits the 
number of practical applications. The developers of TRIMAP have mostly used it for 
educational purposes (see [CHmaco, 1989]). 
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3.6. Other Software Packages 

Software comparisons reported in the literature concern mainly programs for mul­
tiattribute decision analysis. We just mention that seven microcomputer implemen­
tations in C are presented and compared in [Colson, De Bruyn, 1987]. Five of them 
are intended for multiattribute decision analysis. Also an implementation of STEM is 
reported. Main features and requirements of eight microcomputer software packages 
are introduced in [Lotfi, Teich, 1989]. One of them is VIG and the other seven are 
for discrete alternatives. 

There exist several software packages for general single objective optimization prob­
lems that also contain some possibilities for multiobjective optimization. Here we 
briefly indicate some of them. 

EASY_OPT is an optimization system which has been intended to be easy to use, 
as can be concluded from its name. It has been developed by K. Schittkowski in 
Bayreuth, Germany, and it works in IBM compatible microcomputers. The system 
contains methods for both single and multiobjective linear and nonlinear optimiza­
tion problems. A Fortran-type language PCOMP is used for specifying nonlinear 
functions. 

Multiobjective optimization means in EASY_OPT that Pareto optimal solutions are 
generated with different methods. Then a graphical projection into the (z1, z2)-space 
is presented for evaluation. Thus no actual interaction is possible. 

Several generation methods are available. The basic methods, the weighting method 
and the c:-constraint method, are available. Four different variants of the method 
of global criterion have also been included. Other possibilities are minimizing the 
maximum of the objective functions, of the weighted objective functions or of the 
absolute values of the objective functions. At hand is also a kind of Archimedian goal 
programming with five different distance measures. 

Expert System for Mathematical Programming (EMP), created by K. Schittkowski 
in Bayreuth, Germany, and described in [Schittkowski, 1988], is a general expert 
system. Both mainframe and microcomputer versions are available. Here, as in the 
EASY_OPT, the main emphasis has been in other algorithms (e.g., data fitting and 
single objective optimization) than multiobjective optimization. Thus the possibilities 
for solving (differentiable) multiob jective optimization problems are restricted into 
the weighting method, the weighting method with additional upper bounds for the 
objective functions and minimizing one objective function and suppressing all the 
others. In addition, it is possible to handle solutions in an interactive mode. New 
solutions can be generated and saved and also deleted from the store. 

EMP has been implemented by a SUSY language. The idea is that a pile of ques­
tions is asked and according to the answers, an executable Fortran program is pro­
duced. Still, the user is assumed to know some Fortran because the objective and 
the constraint functions are to be given as Fortran expressions. The outcoming single 
objective optimization problem is solved by an NLPQL method based on the SQP 
(sequential quadratic programming) ideas. Unfortunately, EMP is not an expert sys­
tem from the point of view of multiobjective optimization. Choosing the method is 
up to the user, and, as mentioned earlier, there are not so many methods to choose 
from. 

It has been reported in [Miettinen, 1990] how a method based on Kanniappan's 
ideas (see Section 2.2) has been appended into EMP. Instead of the weighting coeffi­
cients, their upper or lower bounds or both of them are asked from the user. 
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NOA, a collection of Fortran subroutines for minimizing nondifferentiable functions 
subject to linear and nonlinear (nondifferentiable) constraints, is described in [Kiwiel, 
Stachurski, 1989]. NOA is applicable to multiobjective optimization problems since 
the single objective function to be minimized is supposed to be a maximum of several 
functions. Thus, for example, reference point problems with the achievement function 
(2.19.10) can be solved. 

The subgradient GDF and the NIMBUS algorithms, introduced in Sections 2.22 
and 2.23, respectively, have been implemented by Fortran 77 at the Department of 
Mathematics of the University of Jyvaskyla. However, the main interest has been 
in testing purposes. Thus, the user interface side is still under development. For 
this reason, the programs are not presented here. A snapshot of the user interface of 
NIMBUS, which is under development, was proposed in Section 2.23. 
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4. Graphical Illustration

Graphical illustration is an essential part when designing modern user interfaces. 
Graphics may be used to assist the decision maker in specifying values for problem 
parameters or to illustrate the contents and the meaning of questions posed by the 
algorithms. In such realizations, the upper limit lies in one's imagination. One 
proposal into that direction was suggested in Figure 17 in Section 2.23. 

In spite of the more general possibilities, we restrict our treatment in this chapter. 
By graphical illustration we here mean the ways of presenting several criterion vectors 
to the decision maker. One can notice the need for such illustration when examining 
the interactive methods described in Chapter 2. 

As computers have developed, more attention has been paid towards the role and 
the possibilities of computer graphics in building human-computer interfaces. Never­
theless, utilizing graphical illustration does not invalidate the limits of human capacity 
for processing information. So there is no sense in trying to offer too many criteri­
on vectors for evaluation, no matter how clear the illustrations are. It is claimed in 
[Miller, 1956] that the limit usually is seven plus or minus two. (Seven ways of de­
creasing the number of alternatives are presented in [Graves, llinguest, Bard, 1992].) 

Naturally, many different ways for illustrating criterion vectors can be thought of. 
However, elegant graphics must not be an end in itself. The graphics must be easy 
to comprehend for the decision maker. On one hand, not too much information is 
allowed to be lost and, on the other hand, no extra unintentional information should 
be included in the presentation. 

If there are two objective functions, the graphical illustration of the criterion space 
is effective. The feasible criterion region and, especially, its Pareto optimal subspace 
can be sketched on a plane. It is suggested in [Meisel, 1973] that when there are three 
objective functions, the Pareto optimal seL can be expressed by three projections on 
a plane. The interpretation of such information is far more difficult for the decision 
maker. This idea of projections is utilized in TRIMAP. 

In the following, we present some ways of graphical illustration. Some of the ways 
are clarified by applying them to an example of three alternative criterion vectors of 
a problem with three objective fnnc:tion8. 

A widely used way of representing sets of criterion vectors is to use value paths, 
as suggested in [Schilling, ReVelle, Cohon, 1983]. Then, horizontal lines of different 
colours or of different line styles represent the values of the objective functions at 
different alternatives. It means that one line displays one alternative. This is depicted 
in Figure 18. The bars in the figure show the ranges of the objective function in the 
Pareto optimal set. If the ranges are known, they give additional information about 
the available possibilities. Notice that each objective can have a scale of its own. 
Examples are suggested in [Hwang, Masud, 1979] and [Torn, 1983] how to display the 
scales of the objective functions. 

The roles of the lines and the bars can also be interchanged. Then bars denote 
alternatives and lines denote objective functions. In this case, possible different scales 
of the objective functions have to be interpreted in a different way. This way has been 
utilized, for instance, in the first implementations of the visual interactive approach 
( described in Section 2.21 ), and its counterpart for discrete problems, called VIMDA, 
see [Korhonen, 1986, 199l(a)]. The idea in VIMDA is that when the user horizontally 
moves the cursor on a bar representing an alternative, the numerical criterion values 
are presented. 
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Figure 18. Value paths. 
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Value paths are an effective means of presenting information to the decision maker 
without overloading her or him. Another general way of illustration is to use bar 
charts. Then a group of bars represents the values of one objective function at different 
alternatives, as in Figure 19. The bars of the same colour form one criterion vector. 
Also here, separate ranges for objective functions are possible. Parallel ideas have 
been realized, for example, in DIDAS. 
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Figure 19. Bar chart. 
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The problem how we can determine a priori whether the graphical formats used will 
aid rather than hinder the decision making has been studied in [Jarvenpaa, 1989] by 
comparative studies. The concluding result is that knowledge about the relationship 
between the presentation format and the decision strategy can facilitate the selection 
of the presentation format. Especially, benefits of bar charts and grouped bar charts 
have been studied in [Jarvenpaa, 1989]. See the reference for further details. 

Literature describing graphic presentation of data has been summarized in [Lewan­
dowski, Granat, 1991]. It is stated that the research done does not provide clear 
answers regarding what types of data presentation to favour in the decision making 
context. Lewandowski and Granat suggest a technique for graphical presentation of 
matrices of rank 2, called BIPLOT. The set of Pareto optimal criterion vectors forms 
a matrix. This matrix is factorized into a product of two matrices. The vectors in the 
two matrices are of order two and can be plotted on a plane giving a representation of 
the original criterion vectors. Dynamic BIPLOT in aspiration-based decision support 
systems is also described. Another thing is how much experience one must have to 
be able to interpret representations like these. 

It is suggested in [Manas, 1982] that criterion vectors can be represented in a 
star coordinate system. For example, an alternative of five criteria is represented 
as an irregular pentagon. This requires the ideal criterion vector and the (possibly 
approximated) nadir point to be known. An example is given in Figure 20. Each 
circle represents one alternative criterion vector. The ideal criterion value is at the 
centre and the component of the nadir point is at the circle. Each ray represents one 
objective function. See details in [Manas, 1982]. 
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� 
Figure 20. Star coordinate system. 

Similar ideas are exploited in [Kasanen, Ostermark, Zeleny, 1991]. An example 
of them is presented in Figure 21. This illustration form can be called a spider-web 
because of its shape. Each apex represents one objective function. The outer triangle 
shows the (possibly approximated) nadir point, the inner triangle (the darkest one) 
stands for the ideal criterion vector and the middle triangle ( the grey one) presents 
one alternative criterion vector. Thus, only the middle triangle is different in different 
alternatives. The ideas are further developed in the reference. 

Somewhat parallel ideas are utilized in [Angehrn, 1990(a), (b)] when illustrating 
discrete alternatives in a program called Triple C (Circular Criteria Comparison). A 
circle is divided into k ( the number of objective functions) sectors. The size (radius) of 
each slice indicates the magnitude of the criterion value. One of the ways mentioned 
in [Klimberg, 1992] is to transform criterion vectors into two-dimensional curves with 
the aid of Fourier series. All the vectors can be plotted on the same coordinate system 
for comparison. 
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Figure 21. Spider-web illustration. 

Different ideas of graphical illustration are presented in [Korhonen, 1991(b )]. Kor­
honen reminds that, for example, Chernoff's faces have been developed to illustrate 
numerical information. The reasoning is that the values of each objective function are 
parametrized to represent some feature of an icon. The icon used must be such that 
the user can see the icon becoming "better" as the value of the objective function 
improves. This is why concepts like symmetry and harmony are important. An icon 
which people have been used to seeing in a harmonious and symmetric form is a house. 
Thus, Korhonen suggests so-called harmonious houses to be used as icons. Objective 
functions are associated with the corner points of the house, the door, the windows, 
or the roof. The aim is that when the values of the objective functions are near the 
ideal criterion vector, the house is quite harmonious and symmetric. This type of 
illustration has especially been intended for pairwise comparison. 

Using colours in illustration has its good and weak points. The colours must be 
easy to discriminate. Another important fact is that some colours may have specific 
connotations to the user. Such colours should be avoided as far as possible. An exper­
imental evaluation of graphical and colour-enhanced information presentation is given 
in (Benbasat, Dexter, 1985]. It has been found out that a tabular representation is 
the best when a simple retrieval of data is important and a graphical representation 
is the best when relationships among the data have to be illustrated. Graphs are 
visually appealing but sometimes tables are easier to read since they provide exact 
values. Benbasat and Dexter conclude that colours improve the readability and un­
derstandability of both the symbolic and graphical displays. Colours make it easier for 
the subject to associate visually the promotion and profit figures ( or lines) belonging 
to the same territory, since the promotion-profit pairs are coded in the same colour. 
Benbasat and Dexter have obtained encouraging results with multi-colour reports. 

Other proposals for the graphical illustration of alternatives have been given, for 
example, in (Vetschera, 1992] (for discrete problems). The method is based on indif­
ference regions and linear underlying value functions. 

A recommended way of presenting information to the decision maker is to offer the 
same data in different forms. In this way, the decision maker can choose the most 
illustrative and informative representations. The illustrations may also supplement 
each other. The decision maker can change her or his attention from one figure to 
another and possibly skip undesirable alternatives before the final selection. A simple 
tabular format may be one of the figures. Corresponding ideas are suggested, for 
instance, in [Silverman, Steuer, Whisman, 1985] and (Steuer, 1986] and their imple­
mentation is described in (Miettinen, 1990]. In the last-mentioned reference, tabular 
information, value paths and bar charts are used to illustrate the IWT procedure. 

Finally, one must concede that if there is a great number of alternatives, the decision 
maker may get confused no matter how the alternatives are illustrated. 
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5. Comparing the Methods

As one can be convinced from all that has been said so far, there is a large variety of 
methods for multiobjective optimization problems and none of them can be claimed 
to be superior to the others in every aspect. Thus, it is in order to consider some 
matters of comparison and selection between the methods. 

In addition to theoretical properties, also practical applicability plays an important 
role in selecting an appropriate method. Some matters of interest may come up 
in the computational applications available to support the method selection. There 
have only been quite a few actual computational applications of the multiobjective 
optimization techniques in the literature. Many methods have been presented without 
computational experiences. It is tenably remarked in [Bischoff, 1986] that even most 
of the applications presented are merely proposals for applications or they deal with 
highly idealized problems. Fur must (interactive) methods a natural reason is the 
difficulty (in finding and) in testing with real decision makers. A complicating fact is 
also the diversity of the decision makers. 

A few comparisons of multiobjective optimization methods and software packages 
have been reported in the literature, and here we mention some of them. Then we 
consider some matters in selecting a method. We also propose a decision tree for the 
selection. Finally, we compile some features of the interactive methods handled into 
a comparative table. 

5.1. Comparisons Available in the Literature 

Here we briefly mention some comparisons available and bring about a few results 
and conclusions obtained. For more detailed information we cite the references indi­
cated. An interesting matter to notice is that most of the multiobjective optimization 
problems solved when testing the methods have been linear. It is true that complex 
nonlinear functions cause difficulties of their own and the characteristics of the solu­
tion methods may be disturbed. On the other hand, features concerning nonlinear 
problems may remain unnoticed. On the whole, the comparisons available are not of 
too much help if one is looking for a method for a nonlinear problem. 

Some caution is in order when trying to judge something from the comparisons. 
The comparisons have been performed according to different criteria and under varied 
circumstances. Thus they are not fully proportional. Which method is the most 
suitable for a certain problem depends highly on the personality of the decision maker 
and on the problem to be solved. 

Instead of a human decision maker one can sometimes employ value functions in 
the comparisons, but such tests do not fully reflect the real usefulness of the methods. 
One can try to compensate the lack of a real decision maker by employing several 
different value functions. If, for example, marginal rates of substitution are desired, 
the decision maker's inconsistency and inaccurate responses can be imitated by mul­
tiplying them with different random numbers. These means have been employed in 
[Shin, Ravindran, 1992]. 

On the other hand, value functions cannot help in testing ad hoe methods. Notice 
also that practical experience is especially important in evaluating the techniques 
with respect to criteria related to the decision makers. It is important to compare a 
method under a variety of circumstances so that the conclusions can be generalized. 
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One critical factor that can affect the performance of the methods in the compar­
isons is the user interface. Nothing is usually mentioned about the realization of the 
user interface in the comparisons reported. It is important to remember that one can 
damage a "good" method with a poor user interface or to support a poor method 
with a good interface. A good user interface, in addition to the illustration of the 
(intermediate) results, also means a clear and intelligible input phase. (It is natural 
that when someone has developed a method, (s)he may be (more or less) tempted to 
form the testing conditions to favour her or his own method.) 

An MOLP problem for determining the most economical combination of grape 
growing and wine production in Hungary has been solved by the weighting method, 
the c:-constraint method, the lexicographic ordering and the weighted L1 - and L2-

metrics with normalized objective functions in [Szidarovszky, Szenteleki, 1987]. It 
is noticed that different solutions are obtained with each method. It is also stated 
that the weighted L1 - and L2-metrics with normalized objective functions produce 
the most uniform distribution of criterion vectors. Finally, the weighted L1 -metric is 
concluded to be the most convenient way for generating Pareto optimal solutions in 
large-scale MOLP problems. 

A linear problem of mining industry has been solved in [Peterson, 1984] by the 
weighting method, the €-constraint method, the weighted method of global criterion 
with and without denominators, and by the lexicographic ordering. The solutions 
from the other methods are utilized in the methods of global criterion and all the 
solutions are analysed. The conclusion is that the solution methods should be applied 
by complementing each other. 

Notice that no interactive methods were included in the comparisons mentioned so 
far. The following comparisons involve interactive methods. 

It is described in [Dyer, 1973(b)] how nine (student) decision makers were given an 
MOLP problem on choosing an engine for a car. They were first asked to suggest a 
solution approach and then compare it with the GDF method and a trial-and-error 
procedure. (The trial-and-error procedure was simply such that the decision maker 
was asked to enter a criterion vector and the program informed whether it was feasible 
or not. The decision makers were supposed to explore the feasible criterion region 
until they were unable to find more preferred solutions.) 

The criteria in the evaluation were the easiness of using the procedure and the 
confidence in the solution obtained. Dyer obtained results favouring the GDF method. 
Thus, he concludes that the GDF method can successfully be used by untrained 
decision makers. 

The performance of the GDF method, STEM and the trial-and-error procedure 
( the same as used by Dyer) is compared from the point of view of a decision maker 
in [Wallenius, 1975]. A total of 36 business school students and managers from in­
dustry were employed as decision makers. The following aspects of the methods were 
compared: the decision maker's confidence in the solution obtained, ease of use and 
understanding of the method, usefulness of the information provided, and rapidity of 
convergence. The linear management problem to be solved contained three objective 
functions. 

The results are analysed statistically in [Wallenius, 1975]. One interesting conclu­
sion is how well the trial-and-error procedure competed with the more sophisticated 
methods. Nevertheless, Wallenius points out that its performance could weaken if the 
problems were more complex. Difficulties in estimating the marginal rates of substi­
tution deteriorated the overall performance of the GDF method. Wallenius suggests 
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that a logical direction of research would be to attempt to better adjust the methods 
to match the characteristics of a human decision maker, and vice versa. 

There was a remarkable difference in the results of Dyer and Wallenius concerning 
the GDF method. Some trials of analysing the reasons are presented by Wallenius. 

The capabilities of the ZW, the SWT and the IWT method and a naive solution 
method are compared in [Buchanan, Daellenbach, 1987] from the point of view of 
the user in solving a linear three-objective optimization problem. The naive method 
here means producing a weakly Pareto optimal point from a point suggested by the 
decision maker with the help of the L00-norm. 

The problem concerned producing electrical components of lamps. A total of 24 
decision makers (students and academic staff) were employed. The criteria in the 
comparison were partly the same as those of Wallenius. In addition to confidence 
in the final solution, ease of use and ease of understanding the logic of the method, 
CPU and elapsed time were compared. The most important criterion was the relative 
preference of using each method. The conclusions were that the IWT procedure was 
clearly preferred to the other methods and the ZW method was the worst under the 
first four criteria. The SWT method was in the middle. Once again, the naive method 
performed surprisingly well. The authors conclude that the decision makers seem to 
prefer such solution methods where they can feel being in control. 

Steuer's method (see Section 2.24 and [Steuer, 1986]) and the ZW method are 
compared in [Michalowski, 1987]. Five decision makers from the planning department 
of a factory were employed. A linear production planning problem with three objective 
functions was solved and the evaluation criteria were not fixed in advance, though the 
main interest was in the decision phase. The decision makers had critical comments 
about both the methods, and each of them obtained a different final solution. One 
can say that the decision processes by the ZW method terminated slightly faster than 
those by Steuer's method. 

The method of Steuer and STEM are tested in [Brockhoff, 1985]. An amount of 
14 7 decision makers were employed to solve six problems involving buying cars. The 
results and progress were analysed according to several criteria leaving the method of 
Steuer with the best outcomes on the average. 

A more detailed review of the above-described and some other empirical studies 
involving real decision makers is presented in [Olson, 1992]. It can be stated that 
no final conclusions can be made from the experiments. The reason is that the test 
settings and the samples are not similar enough. 

An MOLP problem with three objective functions concerning natural gas busi­
ness has heen solve<l with severa.l methods in [Mote, Olson, Venkataramanan, 1988]. 
A nonlinear value function was employed instead of human decision makers. The 
problem was solved by the GDF, the SWT and the ZW method, STEM, goal pro­
gramming, and the method of Steuer. Only standard LP codes were utilized in the 
calculations. No superiority of any technique could be indicated. The methods had 
differences concerning the burden upon the decision maker and ad hoe and non ad 
hoe properties. 

A characteristic in common with the evaluations that will be described in this para­
graph is that they are based on intuition and insight rather than practical experiences 
and tests. A collection of features of five nonlinear interactive methods is presented 
in [Masud, Zheng, 1989]. The methods are compared with regard to eleven items, 
for example, certainty of obtaining a Pareto optimal solution, optimization technique 
used, type of information required from the decision maker, computational complexity 
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compared to the GDF method, and the number of iterations needed with the decision 
maker compared to the GDF method. A similar table comparing the decision mak­
er's burden, ease in actual use, effectiveness and handling of inconsistency has been 
gathered in [Shin, Ravindran, 1991] for ten methods. A classification and evaluation 
of methods according to 21 criteria is given in [Rietveld, 1980]. The number of items 
a decision maker has to assess simultaneously and per iteration for eight different 
methods in a medium size linear decision problem are tabulated in [Kok, 1985]. Kok 
concludes that the displaced ideal method, the interactive multiple goal programming 
method and STEM are most promising because their presumptions are realistic. A to­
tal of 19 interactive methods for MOLP problems have been listed according to three 
characteristics in [Larichev, Polyakov, Nikiforov, 1987]. The characteristics are the re­
liability of information elicitation from the decision maker, insignificant sensitivity to 
random decision maker's errors and good speed of convergence. The basic principles 
of the methods are also introduced. Features of STEM, the GDF, the ZW and the 
IWT method, the reference point method and the visual interactive approach, among 
others, have been tabulated in [Vanderpooten, Vincke, 1989] and [Vincke, 1992]. The 
criteria were, for instance, prior assumptions of a value function, applicability, trial 
and error support, mathematical convergence, the number of questions posed and the 
computational burden. 

Finally, we mention some other comparative studies of the methods. Characteristic 
values in optimizing the multiobjective layout of a conical shell by the GDF method, 
STEM and three other methods are reported in [Eschenauer, Osyczka, Schafer, 1990]. 
The comparison of the performances of the satisficing trade-off method and the IWT 
method when solving a linear sausage blending problem in [Olson, 1993] is mainly 
presented to emphasize the power of the weighted L00-metrics in multiobjective op­
timization. Several methods for quadratic multiobjective optimization problems are 
surveyed and compared in [Helbig, 1990(b )]. Some comparisons of continuous and 
discrete methods are presented in [Korhonen, Wallenius, 1989(b)]. 

5.2. Selecting a Method 

Choosing an appropriate solution method for a certain multiobjective optimization 
problem is not easy, as has been assured. None of the existing methods can be labelled 
as the best for every situation, since there are a lot of aspects to consider and many of 
the comparison criteria are of somewhat fuzzy character. The features of the problem 
to be solved and the capabilities of the decision maker have to be charted before 
a solution method can be chosen. Some method may suit some problem and some 
decision maker better than the other. 

Hobbs has written down in [Hobbs, 1986] some of the criteria to consider when 
methods are evaluated. The selection criteria are appropriateness, ease of use, validi­
ty and sensitivity of results to choosing the method. Appropriateness means that the 
method is appropriate to the problem to be solved, the people who will use it and 
the institutional setting in which it will be implemented. Ease of use means the effort 
and the knowledge required from the analyst and the decision maker. Validity means 
that the method measures what is is supposed to and the assumptions set are consis­
tent with reality. Sensitivity of results to choosing the method means that solutions 
obtained by the method do not significantly differ from those of other methods. If the 
choice of method affects decisions significantly, then the relative validity of different 
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methods should be considered. If the form of the method does not matter, then the 
most important criteria are the ease of use and appropriateness. 

Stewart reduces the number of the critical criteria in selecting a solution method 
into three in [Stewart, 1992]. The input required from the decision maker must be 
meaningful and unequivocal, the method must be as transparent as possible and it 
must be simple and efficient. 

The role of the decision maker must be considered very important. Many exper­
iments have shown that decision makers prefer simpler methods because they can 
understand them better and they feel more in control. An important fact to keep in 
mind is that theoretically irrelevant aspects, such as question phasing, may affect the 
confidence that the decision maker feels in some method. The concept of the decision 
maker's confidence is analysed further in [Bischoff, 1986]. 

Other important criteria for the decision maker in selecting the solution method 
are, for example, the simplicity of the concepts involved, possibilities of interaction, 
easiness of interpreting the results and the chances of choosing the most preferred 
solution from a wide enough set of alternatives. The method must also fit the decision 
maker's way of thinking. The communication language between the decision maker 
and the method (system) must be understandable to the decision maker. (S)he wants 
also to see that the information ( s )he provides has some (desirable) effect on the 
solutions obtained. One more element, not mentioned thus far, in the selection is how 
well the decision maker knows the problem to be solved. If one does not know its 
limitations, possibilities and potentialities well, one needs a method that supports the 
user in getting acquainted with the problem. In the opposite case, a method which 
makes it possible to directly focus on some interesting sector is advisable. 

An attempt at aiding in the selection of a solution method is presented in [Gershon, 
Duckstein, 1983]. The selection problem is modelled as a multiobjective optimization 
problem. A set of 28 criteria for the selection are suggested and they are divided into 
four groups. Only the criteria in the last group have to be considered every time the 
selection algorithm is applied. The criteria take into account the characteristics of 
the problem, the decision maker and the methods. Many types of problems are taken 
into consideration in the criteria ( e.g., discrete and continuous variables). The model 
contains 13 solution methods from which to select. The set of methods can naturally 
be modified. The amount of selection criteria can also be altered to include only such 
criteria that are relevant for the problem to be solved. Finally, after the methods 
have been evaluated according to the selection criteria, the resulting multiobjective 
optimization problem is solved by the method of global criterion (e.g., L1 -metric). 

Different decision trees and taxonomies for providing assistance in selecting a meth­
od for multiattribute decision analysis problems are described in [Hwang, Yoon, 1981] 
and [Teghem, Delhaye, Kunsch, 1989]. However, it is criticized in [Ozernoy, 1992] that 
to design a covering and versatile decision tree usually results in an explosion of the 
number of the nodes. Another problem with decision tree diagran1s is what to do 
when the user answers "I do not know". 

An expert system for advising in the selection of solution methods for problems with 
discrete alternatives in proposed in [Jelassi, Ozernoy, 1989]. The reference mainly 
describes the development of the expert system. Steps in the development of another 
expert system for selecting the most appropriate method for discrete problems are 
described in [Ozernoy, 1992]. The questions posed by the system are based on if/then 
rules. They lead into recommending some method or stating that no method can 
be recommended. The user of the system can also always ask why some question is 
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posed. 

Few advice exists for selecting a method for nonlinear and continuous problems. 
Therefore, despite the above mentioned pitfalls and faults in decision tree diagrams, 
we still here present one in Figure 22. The tree is mostly based on plain facts about 
the assumptions set by the methods on the problem to be solved and preferences of 
the decision maker. Because of space limitations not all the properties have been able 
to be included. The tree contains eighteen methods described in Chapter 2. Only 
such methods have been included which have been presented in more detail or whose 
main features have been introduced. 

The starting node is situated at the lower left corner. The tree diagram has been 
created in such a way that only the answers "yes" or "no" are available. Whenever 
the answer should be "I do not know", the answer "no" can be given. Of course, 
for example, when it is inquired whether the problem is an MOLP problem one can 
always answer "no" also for linear problems. Then more general methods, which 
do not utilize the linearity, are employed. The nodes containing only capital letters 
are reached when no method can be found along that path. Then one can try some 
other path. The endeavour has been that as many previous answers as possible are 
exploited. Thus, some dead ends may be avoided. 

As repeated several times, selecting the solution method is a difficult and impor­
tant task. In the subsection titled "concluding remarks" in connection with each 
method described here, we have tried to mention favouring and criticizing aspects. 
The matters are always more or less subjective. 

Finally, we present in Table 23 a comparison of eleven interactive multiobjective 
methods described here. It can be regarded as a brief summary of the methods. 
However, one must always take up a sceptical attitude towards such attempts to 
compress matters to the utmost extreme. The table is subjective and there is no 
reason even to try to deny it. 

Different problems arise when one tries to collect a table like this. Among them 
are, for example, which matter is important enough to be included, how it should be 
formulated, and whether the matter is positive or negative. 

Table 23 contains some properties described when introducing the methods. They 
are related to the general features of the methods and their solutions. Properties 
concerning the assumptions set to the problem to be solved have not been included 
in the table. They have been handled in the decision tree in Figure 22. 

The table is by no means self-contained. However, we do not explain the table 
here in detail but refer to the corresponding sections were the methods have been 
presented. For clarity, explanatory comments on some properties listed are in order. 

The property "final solution Pareto optimal" has not been ticked in the columns 
corresponding to the reference point method and the satisficing trade-off method. 
The reason is that it is up to the form of the achievement function used whether the 
solutions are Pareto optimal or weakl_y Pareto optimal. 

The property "implementation available" in the fourth row means such methods 
whose computer implementation has been available to the author. However, the 
implementations of the subgradient GDF method and the NIMBUS method have 
been done for testing purposes. An implementation of NIMBUS with special interest 
in the user interface is under development. 

In the sixth row the question "gradient or subgradient of functions needed" refers 
to such methods, where the algorithm itself necessitates the availability of gradients 
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or subgradients no matter which method is used to solve the resulting single objective 
optimization problem. Thus, if ( sub )gradients for some reason cannot be calculated, 
such methods cannot be used. In connection with the ISWT and the satisfi.cing trade­
off method, the mark (x) means that the answer is positive or negative depending 
on the problem to be solved ( whether the Kuhn-Tucker multipliers are all positive or 
not). 

The feature "only for linear problems" means that the formulation of the method 
described in this presentation has been for MOLP problems. Other formulations for 
nonlinear problems may exist but they are not original. 

The properties have been subjectively classified into positive, neutral and negative 
ones. The neutral properties are so much up to subjective opinions that they have 
had to be left unsigned. Some types of information required from the decision maker 
have been collected at the end of the table. 
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+ final solution X X X X X X 
Pareto optimal

+ final solution weakly X X X X X X X X X X 
Pareto optimal

+ suitable also for X X X X 
nondifferentiable problems

+ implementation
available

X X X X X 

- ad hoe nature X X X X 

- (sub)gradients
of functions needed (x) X (x) X X 

- sensitive needing X X X X X X X 
consistent answers 

- compu�ationally X 
expensive

- only for linear 
problems 

X X X 

- difficult questions X X X X 
posed

only comparisons 
required 

X X 

classification of X X X 
objective functions required 

marginal rates of 
substitution required 

X X X 

Table 23. Properties of interactive methods. 
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6. Results on Numerical Test Examples

In this chapter, we present results of some numerical experiments with the subgradi­
ent GDF and the NIMBUS method, described in Sections 2.22 and 2.23, respectively. 
The aim is to illustrate the possibilities and limitations of these methods with some 
examples of different nature. 

The implementations have been written in Fortran 77 and the test runs have been 
performed in an HP9000/735 (99MHz) computer. The intermediate possibly non­
differentiable single objective optimization problems have been solved by the code 
PBNCBC, which is an implementation of the proximal bundle (PB) algorithm de­
rived in [Makela, Neittaanmiiki, 1992]. PBNCBC calls the quadratic solver QPDF4 
derived in [Kiwiel, 1986]. The implementation of the black-box routine MPB, which 
optimizes several objedive fundions at. l'l, time subject to nonlinear constraints, is 
called MPBNGC. It has been introduced in [Makela, 1993]. MPBNGC is a genuine 
extension of PBNCBC. Here we briefly present some of the parameter values utilized. 
For a closer description of their role we cite the references mentioned above. The 
line search parameter has been set to RL=0.l, the upper bound for the size of the 
bundle has been set to JMAX= 10 and the distance measure parameter has been set 
to GAM=0.0 or GAM=0.l. 

The accuracy in the calculations has been 10-6 unless stated otherwise. For clarity, 
the solutions are here presented with much fewer decimals than in the actual solution 
processes. Whenever alternatives are presented to the decision maker, their number 
has been chosen to be P = 5. 

One way to measure the efficiency of a solution process is to count the number 
of the function value calculations. For this reason, we count how many times the 
subroutine evaluating the objective function values is calle<l. This number is called 
an SC (subroutine call) value and it will be associated with every solution process 
that is described here. Notice that the SC values of different methods cannoL be 
compared objectively and absolutely. However, they can be used to get an impression 
of the general complexity of the methods. 

As an exception to the practice followed so far in this presentation, we assume that 
all the vectors appearing are row vectors. Thus we avoid the need to transpose all 
the vectors and the readability of the text improves. 

In the following, we solve two academic problems presented in the literature. The 
functions involved are differentiable. It is natural that the methods must also work in 
such cases. In the next chapter, we solve (nondifferentiable) optimal control problems 
describing the deflection of a string and the continuous casting of steel. 

Before we continue it must be stressed that there has been no real decision maker 
involved in the solution processes. Thus the decisions and the selections are almost ar­
bitrary. The intention has been to introduce the methods and to give some impression 
of the methods in general. 

6.1. First Problem 

The first problem to be solved has been presented in [Nakayama, Sawaragi, 1984] 
and [Nakayama, 1985(a)]. It contains three objective functions 
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(6.1.1) 

mm1m1ze {36.03 - (8.05x1 + l.04x2 + 24.0x3), 

287.58 + 2295.59(x1 - 0.45)2 
+ 404.46(x2 - 0.45)2 , 

1050.73 + 10035.34(x3 - 0.45)2 } 

subject to 0.45 :S x1, x2, X3 :S 1.0. 

The problem describes a hypothetical water quality control problem modelling a 
river basin. The river has three upper streams, two of which have a treatment plant. 
They are financed by one local government. In addition, there is a treatment plant 
in the lower stream and it is financed by another local government. The aim is to 
minimize treatment costs and environmental pollution. The pollution rate is measured 
by a biological oxygen demand (BOD) concentration. The objective functions stand 
for the BOD concentration at the inflow point of the river basin into the sea, treatment 
costs in the upper reach and treatment costs in the lower reach, respectively. Three 
decision variables describe the percent of water treated in each of the three treatment 
plants. 

The starting point has been arbitrarily selected to be x1 
= (0.8, 0.8, 0.8) and the 

corresponding criterion vector is z1 
= (9.558, 618.336, 2280.059). First, we solve the 

problem by the subgradient GDF method. 

Subgradient GDF Method 

In the solution process to be described here we employ the augmented weighted 
Tchebycheff function (2.22.3) with p = 0.001 to produce Pareto optimal solutions. 
Because the problem has box-constraints, it is bounded, and an estimate to the ranges 
of the Pareto optimal set can be obtained from the payoff table. The weighting 
coefficients utilized in the augmented weighted Tchebycheff function are thus the 
inverses of the differences between the components of the (approximated) nadir point 
and the ideal criterion vector. The first objective function has been selected to be the 
reference function. 

At the starting point z1 , the marginal rates of substitution are specified as m½ = 0.5, 
m� = 0.2. Five Pareto optimal alternatives obtained by the method have been listed 
in Table 24. 

Ji h h 

[] 9.549 617.944 2278.602 

2 12.058 540.017 1739.715 

3 14.566 473.784 1354.382 

4 17.078 419.466 1123.420 

5 19.618 373.301 1050.730 

Table 24. 

The first alternative is selected to continue with because the BOD concentration 
at the inflow point (the first objective function) should not be increasing. We set 
z2 

= (9.549, 617.944, 2278.602). Thus the first iteration was used for learning. It was 
needed to see how small marginal rates of substitution are needed to obtain desired 

149 



solutions. The user ( decision maker) must realize the different scales of the objective 
function values. 

In the second iteration, the marginal rates of substitution are set as m� = 0.001 
and m� = 0.001. Again, five alternatives are presented for evaluation. They can be 
seen in Table 25. 

Ji h h 

1 9.549 617.944 2278.602 
2 8.194 650.604 2655.118 
3 6.838 684.885 3081.874 

[}] 5.482 720.786 3558.866 
5 4.126 758.308 4086.102 

Table 25. 

Alternatives are now obtained from the right direction. The fourth alternative is 
selected for continuation, that is, z3 

= (5.482, 720. 786, 3558.866). The BOD concen­
tration is at that point at a tolerable level and, on the other hand, the treatment costs 
(the second and the third objective function) are too high in the fifth alternative. 

Next, the marginal rates of substitution m� = 0.0004 and m� = 0.001 are specified. 
The intention is to get a more concentrated set of alternatives. They have been 
tabulated in Table 26. 

Ji h h 

1 5.482 720.786 3558.866 

[I] 5.128 733.541 3686.036 
3 4.774 746.490 3816.345 
4 4.421 759.634 3949.786 
5 4.067 772.974 4086.385 

Table 26. 

From this selection the second alternative, z4 
= (5.128, 733.541, 3686.036), is picked, 

because, especially, the value of the third objective function is too high in the rest 
of the alternatives. The solution process could be stopped here because the solution 
obtained is quite satisfactory. In this case, the SC value wuul<l be 218. 

Any way, we present one more iteration and set the marginal rates of substitution 
m� = 0.0012 and mi = 0.0014. The alternatives obtained are shown in Table 27. 

Ji 

1 5.128 

[I] 4.857 
3 4.586 
4 4.315 
5 4.044 

h 

733.541 
744.629 

755.859 
767.234 
778.752 

Table 27. 
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In the second alternative of Table 27, the BOD concentration has still been managed 
to decrease with treatment costs that can be tolerated. Thus it is selected as the final 
solution and z5 = ( 4.857, 744.629, 3783.477). The corresponding decision variable 
vector is x5 = (0.876, 0.764, 0.972). The SC value of this solution process with four 
iterations is 277 (with the augmented weighted Tchebycheff function). 

If the penalty scalarizing function (2.22.4) is used (with the penalty term (] = 
1000.0), the projection phase is very laborious and the alternatives differ remarkably 
from those presented above. The reason is that the penalty scalarizing function is 
too sensitive to the scales of the objective functions and it strives for minimizing the 
values of the second and the third objective function more willingly than the first 
objective function. Naturally, the achievable relative improvement in their values is 
larger. The result is that the decision maker cannot see the desired affects in the 
alternatives obtained. The penalty scalarizing function should be modified to better 
take into consideration the different scales of the objective functions. This is not a 
straightforward task to do. In addition, it is not here worth the trouble because the 
computational burden would still remain. To give an image of the burden we mention 
that if the problem is solved with the help of the same marginal rates of substitution 
as in the previously described solution process with four iterations, the SC value is 
925! 

If the black-box routine MPB is used to produce (weakly) Pareto optimal solutions, 
the alternatives obtained are naturally not exactly the same but fairly similar to those 
presented above. The same marginal rates of substitution and the same choices are 
valid. The first iteration proved out to cause some troubles. The accuracy in the 
calculations was relaxed to be 10-4

, and still a lot of iterations were needed. So, the 
SC value of the first iteration is 269. In the following iterations the difference in the 
decimals of the criterion values resulted in such alternatives where no projection was 
necessary. Thus, the SC value of the latter three iterations is in all 18. 

As can be seen from the solution process described, the difficulty of the subgradient 
GDF method lies in specifying the marginal rates of substitution. In this example, 
the marginal rates of substitution were more or less arbitrary or occasional because 
there was no actual decision maker involved. 

NIMBUS Method 

In this section, we solve the problem (6.1.1) by the NIMBUS method. The start­
ing point is still x0 

= (0.8, 0.8, 0.8) and the corresponding criterion vector is z0 
=

(9.558, 618.336, 2280.059). We start by minimizing all the objective functions simul­
taneously. This guarantees that we can begin the actual solution process from a 
(weakly) Pareto optimal solution. We obtain z1 = (9.543, 618.328, 2280.044). Notice 
the difference between z1 and the first alternative in Table 24, which is the project­
ed one obtained by the augmented weighted Tchebycheff function. The difference 
in which direction the criterion values change to become Pareto optimal originates 
from different projection philosophies. In this case, the distinction is not remarkable 
because the starting point is situated so close to the Pareto optimal set. 

At z1
, the first two objective functions, namely, the BOD concentration and the 

treatment costs in the upper reach, are desired to be minimized, J< = {1, 2} without 
any special weighting, and an upper bound is given to the third, J> 

= {3} as c:½ =

3000.0. The solution obtained is z1 = (7.375, 616.162, 3000.0). It is selected for 
continuation without considering any intermediate alternatives, so z2 = z1

. 
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It can be noticed that the treatment costs must be relaxed to decrease the BOD 
concentration. Thus J< 

= {1} and J> 
= {2, 3} with c� = 800.0 and d = 4000.0. 

Usually, it is advisable to specify loose enough upper bounds so that feasible solutions 
are more likely to be found. This causes no irreversible damage since one can always 
select some intermediate point between the previous and the new solution. 

The solution obtained is z2 = ( 4.149, 800.0, 4000.0). Even though the BOD con­
centration is good, the treatment costs are after all too high at z2

• A set of five 
candidates has been listed in Table 28.

Ji h h 

1 7.375 616.162 3000.000 

2 6.569 658.307 3230.658 

3 5.762 702.995 3474.211 

[I] 4.956 750.226 3730.658 

5 4.149 800.000 4000.000 

Table 28. 

From this table the fourth alternative is selected. Some adjustment could naturally 
be done and the solution process could be continued, but we stop here with z3 

=

( 4.956, 750.226, 3730.658) as the final solution. The corresponding decision variable 
vector is x3 = (0.879, 0. 763, 0.967). 

The SC value of this solution process is 550! The reason for this enormous number 
is the instability in minimizing all the objective functions before the solution process 
itself. As can be seen, the starting point and its (weakly) Pareto optimal counterpart 
are almost the same. So all this trouble was unnecessary. This kind of occurrence can 
be avoided by setting a maximum number for the function value evaluations at each 
projection phase. Another possibility is to relax the accuracy in the calculations. If 
only the actual iterations are considered, the SC value is 99. Making sure that the 
final solution is Pareto optimal adds the SC value by 14. 

One must keep in mind that the SC values presented here are very relative. When 
the same problem is solved with a different accuracy or from a different starting point 
the SC value may vary considerably. If the accuracy in the computations above is 
reduced from 10-6 to 10-4, then no projection takes place in the beginning and the
SC value of the first projection decreases from 451 to 1. 

This water quality control problem has been solved in [Nakayama, Sawaragi, 1984] 
by the satisficing trade-off method. To illustrate the fact that the NIMBUS method 
can be used like the methods of reference point-type, we solve the problem again. 
At this time, we set the components of the reference point specified in [Nakayama, 
Sawaragi, 1984] (in the continuation briefly referred as the paper) to be either aspira­
tion levels or upper bounds as need arises. The original reference points of the paper 
are denoted by a. 

The starting point used in the original paper does not become apparent in the text. 
We select x0 = (0.5, 0.5, 0.5) as a starting point instead of the starting point used 
earlier. The reason is that we want to demonstrate that NIMBUS can as easily find 
solutions that are situated farther from the starting point as those situated nearer. 

The criterion vector corresponding to x0 is z0 = (19.485, 294.330, 1075.818). When 
we select J< 

= {1, 2, 3}, we obtain z1 
= (19.483, 294.328, 1075.816). The first ref-
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erence point in the paper is a1 
= (5.0, 700.0,3000.0). Thus we set J5' = {1} with 

z} = 5.0 and J> 
= {2, 3} with c:½ = 700.0 and d = 3000.0. The resulting vector 

is z1 
= (6.992, 700.0, 3000.0). It is selected for continuation, and z2 

= z1 . (Natu­
rally, the solutions obtained by the satisficing trade-off method and by NIMBUS are 
somewhat different because of their different solution philosophies.) 

The second reference point in the paper is a2 
= (5.0, 800.0, 3500.0). The function 

classification is the following: J5' = {1} with zr = 5.0 and J> 
= {2, 3} with c� = 800.0 

and d = 3500.0. With this setting we get z2 
= (5.303, 800.0, 3500.0) and z3 

= z
2

. 

The BOD concentration is still too high and we must relax the aspirations of the 
treatment costs. For this reason, the third reference point in the paper is a3 

=

(5.0, 800.0, 3700.0). Now we can use three classes of objectives, J5' = {1} with zf =
5.0, J= 

= {2} and J> 
= {3} with d = 3700.0. With this classification we obtain 

z3
= z4 

= (5.0, 799.697, 3627.466), the corresponding decision vector being x4 
=

(0.902, 0. 779, 0.957). This is the final solution, because the BOD concentration has 
attained its aspiration level. The SC value of this solution process is 222. The final 
solution is Pareto optimal, and this checking means an increment in the SC value by 
14 to 236. 

Notice that because of the emptiness of the set J< the algorithm had to check 
the (weak) Pareto optimality of the solutions at each iteration. Every z vector was 
(weakly) Pareto optimal, and for this reason this auxiliary step was not mentioned 
above. Anyway, it was performed at every iteration. 

The final criterion vector obtained by the satisficing trade-off method was ( 4.949, 
791.83, 3662.2). Nothing is said in the paper about the computational complexity. 

When examining the solution processes with the subgradient GDF method and the 
NIMBUS method and the amount of information asked from the decision maker, one 
may think that the subgradient GDF method is easier to use than NIMBUS. Only 
a couple of marginal rates of substitution are required per iteration, while NIMBUS 
needs the classification of the objective functions plus values for different parameters. 
Nevertheless, it is not always the amount of information that counts most but the 
nature of information. As has been stated already in Section 2.14, marginal rates of 
substitution are difficult to specify for most of the people. As to the NIMBUS method, 
its flexibility allows the user to decide how much information to supply. Eventually, 
it is the task of the user interface to make NIMBUS easy to use by supporting the 
user. A good user interface can be created by careful planning. No aid, however, can 
completely eliminate the difficulties in specifying marginal rates of substitution. 

6.2. Second Problem 

The second problem to be solved has been handled, for example, in [Chankong, 
Haimes, 1978] when introducing the ISWT method. The problem is the following 

(6.2.1) 
m1mm1ze {(x1 - 3)2 

+ (x2 - 2)2, x1 + x2, X1 + 2x2} 
subject to x1, x2 2 0. 

The value function has been given as U(z1, zz, z3) = 1 - � - fi - � whenever 
0 :S z1 :S 10, 0:::; z2 :S 5 and 0:::; Z3 :S 10, and, otherwise, U(z1,z2,z3) = 0. This 
is a nonincreasing function. Because of the setting of the value function, we can give 
upper bounds 5.0 for the decision variables. We have set the starting point to be the 
same as in [Chankong, Haimes, 1978), that is, x1 

= (2.75, 1.625), the corresponding 
criterion vector being z1 

= (0.203, 4.375, 6.0). 
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Subgradient GDF Method 

Because of the linearity of the value function, the subgradient GDF (just as the 
original GDF) method converges in one iteration (because a linear approximation of 
a linear function is exact). Nevertheless, we present the solution process with the 
subgradient GDF method. 

We have selected the first objective function as the reference function. Here we 
present five Pareto optimal alternatives obtained by using the augmented weighted 
Tchebycheff function in the projection. Because the problem is bounded, weighting 
coefficients have been obtained from the payoff table. The augmentation term is 
p = 0.01. 

The marginal rates of substitution are easy to calculate from the value function 
( m; = d f �;> / d [!;) ). At the point z

1 they are m� = 2.0 and mi = 1.0. As a 
matter of fact, the marginal rates of substitution are constant whenever O S z1 S 10, 
0 :S z2 :S 5 and O :S z3 :S 10. Otherwise, they cannot be calculated. The set of five 
alternatives obtained can be seen in Table 29. 

Ji fz h 

1 0.203 4.375 6.000 
2 0.927 3.656 4.875 
3 2.176 2.937 3.750 
4 3.950 2.219 2.625 

[fil 6.250 1.500 1.500 

Table 29. 

In the fifth alternative, the value of the value function is maximal (i.e., U =

0.641667), and so z2 
= (6.25, 1.5, 1.5) is selected as the final solution. The solu­

tion process stops because no movements are desired. The corresponding decision 
variable vector is x2 

= (1.5, 0.0). 
Essentially, subroutine calls result from the projections. All the alternatives happen 

to be Pareto optimal this time, so the projection phase wuulu uut be needed. Because 
of numerical instabilities, however, the SC value is 49. 

If the penalty scalarizing function is used in the projection (with the penalty co­
efficient e = 1000.0), then the alternatives are naturally somewhat different. An 
exception is the fifth alternative, which is of course the same an<l whic:h is selected. 
The penalty term adds computational difficulty and instability. For this reason, the 
SC value is as much as 84. 

On the other hand, if the black-box routine MPB is used, it notices directly that 
no projections are needed. Thus, it produces solutions most efficiently and the SC 
value is only 7. 

NIMBUS Method 

In this section, we solve the problem (6.2.1) by the NIMBUS method from the same 
starting point x0 

= (2. 75, 1.625) and the corresponding criterion vector z0 
= (0.203, 

4.375, 6.0) as above. We start by minimizing all the objective functions simultaneously 
(i.e., J< 

= {l, 2, 3} ). This time no improvement is possible because the starting point 
is already Pareto optimal. Therefore, we set z1 

= z
0

. 
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We continue by minimizing the second and the third objective function because of 
their large values, J< 

= {2, 3}. Weighting coefficients are attached to them to give 
different stresses with respect to their ranges, sow½ = 0.3 and w½ = 0. 7. Reciprocally, 
something must be allowed to increase. There is no other alternative than to relax 
the first objective function, J> = { 1}, and we set d = 5.2. The resulting criterion 
vector is z1 

= (5.2, 1.807, 1.984), which is accepted for continuation (z2 
= z1 ). 

Aspiration functions are used in the following iteration, that is, J'.5. = {2, 3} with 
z� = 1.4 and zi = 1.4 without any special weighting coefficients. The first objective 
function must again be relaxed and J> 

= {1} with ci = 6.7. This setting produces
z2 

= (6.603, 1.387, 1.387), which is not acceptable. In NIMBUS, it is typical for aspi­
ration functions that the solution process does not necessarily stop at the aspiration 
value. For this reason, it is good to have a look at the five alternatives shown in Table 
30. 

Ji fz h 

1 5.200 1.807 1.984 
2 5.534 1.702 1.835 
3 5.879 1.597 1.685 

IT] 6.235 1.492 1.536 
5 6.603 1.387 1.387 

Table 30. 

Now we can employ the value function available to select the most preferred candi­
date from the table. The value function has the largest value in the fourth alternative 
(U = 0.64151). Thus, z3 = (6.235, 1.492, 1.536) is the one that is selected. 

Finally, some refinement is attempted by setting J'.5. = {3}, z� = 1.49, J= 
= {2} 

and J> 
= {1} with d = 6.4. This produces a point z3 = (6.397, 1.446, 1.467). Five 

alternatives between z3 and z3 can be seen in Table 31. 

Ji fz h 

[] 6.235 1.492 1.536 
2 6.275 1.480 1.519 
3 6.316 1.469 1.502 
4 6.356 1.457 1.484 
5 6.397 1.446 1.467 

Table 31. 

No improvement can be found in this direction, and the first alternative is selected 
as the final solution, z4 

= (6.235, 1.492, 1.536). The corresponding decision variable 
vector is x4 

= (1.448, 0.043). Of course, we could continue and try some other clas­
sification but we stop with the current solution. As to the efficiency of the NIMBUS 
method, very little calculation is needed. The SC value of this solution process is 45. 
The final solution is Pareto optimal. The checking increases the SC value to 68. 

Notice that all the value function calculations have been carried out with more 
accurate criterion vectors than shown here. 
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When the same problem (6.2.1) was solved by the ISWT method in [Chankong, 
Haimes, 1978], much less satisfactory results were obtained. Even though the explic­
it value function was employed, there are always some uncertainties involved with 
the surrogate worth values. For this reason, 22 iterations were needed to produce 
a satisfactory solution (with U=0.64053). Thus, a great number of function value 
calculations could not have been avoided. 

The test results of this problem give a more or less unrealistic image of the po­
tentialities of the methods. Most misleading is the case with the subgradient GDF 
method. The marginal rates of substitution are "too easy" to determine from an 
explicit value function. While, in addition, the value function happened to be linear, 
only one iteration was needed. When the value function is nothing more than just 
a set of preference relations in the mind of the decision maker, it is very difficult to 
express exact numerical values. However, the correctness of the marginal rates of 
substitution is crucial for the convergence of the method. 

The case is different with the NIMBUS method. Even though we had the explic­
it value function at our disposal, it did not directly reveal exactly which objective 
function values should be decreased, which ones relaxed, and how much. The value 
function could be exploited in the selection phase when comparing the alternatives. 
The NIMBUS method is not based so strictly on the idea of maximizing the under­
lying value function but on exploring the potentialities of the problem and a sort of 
aspiration-based satisficing decision making. 

Notice that as well as knowing the explicit value function makes the subgradient 
GDF method converge fast, the NIMBUS method can also be stopped after one 
iteration if the appropriate upper bounds and aspiration levels are known. However, 
neither the explicit value function nor the exact aspiration levels and upper bounds 
are realistic to be assumed in practical problems. 

After introducing some basic properties of the subgradient GDF method and the 
NIMBUS method with simple examples, we can continue with more complex prob­
lems. In the following, there are also nondifferentiable functions involved. 
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7. Applications to Optimal Control Problems

In the following, we present new ways to solve certain state-constrained complex 
optimal control problems that have been widely solved and treated in different connec­
tions at the University of Jyviiskyla. They are of nondifferentiablie and multiobjective 
nature. 

Originally, they have been solved by first scalarizing the objective functions by the 
weighting method and then regularizing the nondifferentiabilities into a differentiable 
form. After discretization and employing the finite element method, the problems 
have been able to be solved by traditional, differentiable single objective optimization 
methods. However, both scalarization and regularization simplify the problem and 
cause errors. 

Later, the regularization has been given up by employing nondifferentiable analysis, 
but the weighting method has still been utilized (see, e.g., [Haslinger, Neittaanmaki, 
1988], [Laitinen, 1989], (Makela, 1990], [Makela, Neittaanmaki, 1992] and (Neittaan­
maki, Tiba, 1994]). The weighting method has been used in the a priori form. Some 
weighting coefficients have been specified, and one has had to be content with the 
solution obtained. However, the relative importances of the objective functions are 
not usually known in advance and the weighting method is artificial. As some of the 
functions originate from technological constraints, the method may bring about inac­
curacies and the solution may be irrelevant in a technological sense. For this reason, 
interactive methods are recommendable. Then the decision maker is involved in the 
solution process and can revise preferences, if necessary. 

We handle a model of an elastic string and the continuous casting process of steel. 
We formulate the problems to be solved and apply the subgradient GDF method 
and the NIMBUS method to solve them. Because the derivation and the numerical 
treatment of the problems into implementable forms have been treated in several 
contexts, we do not repeat them here. Instead, we settle for introducing the main 
problems briefly and indicating appropriate references. 

7.1. Elastic String 

The problem to be handled describes an elastic string which is deflected by some 
vertical force. The force is bounded from above and the deflection of the string 
is limited from below by some rigid obstacle. The aim is to maximize the contact 
area between the string and the obstacle with minimal total force. Thus, we have two 
conflicting objective functions. The general setting of the problem has been illustrated 
in Figure 32. 

force x 

Figure 32. Elastic string deflected by a force towards a rigid obstacle. 
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The formulation of the problem involves variational inequalities and employing the 
finite element method (FEM). The solution of the problem by the subgradient GDF 
method has been described in [Miettinen, Makela, 199 1, 1993]. 

Setting of the Problem 

Let n = ( 0, 1 0) C R be the domain considered and let y be the deflection of the 
string (state variable) belonging to the Sobolev space HJ (Q). The string is deflected 
by the force x ( control variable) belonging to the space of the square integrable func­
tions L2(Q). The string cannot overpass the obstacle g, which belongs to the space 
H 1 (Q) such that g(0) ::; 0 and g(l0) ::; 0. The set of admissible forces (controls) is 
defined by 

S = {x E L2 (Q) I O::; x(s)::; /3 almost everywhere inn}. 

We denote by(·, •)o,n the usual inner product on L2(Q). The dependence between 
a given force x E S and the deflection y(x) E K can be described by the following 
variational inequality 

(7.1.1) (y(x)', v' - y(x)')o,n � (x, v - y(x))o,n 

for all v E K, where 

K = {v E HJ(n) Iv� g almost everywhere inn}. 

The first objective function to be minimized is the utilized total force 

fi(x) =�in x2 ds.

The second objective function is maximizing the contact area. It has been modelled 
as minimizing the Jifference between the string and the obstacle 

h(x) = f (y(x) - g) ds.
Jn 

Obviously, the objective function Ji is differentiable but the function h is noncon­
vex and nondifferentiable. Thus the multiobjective optimization problem to be solved 
is nondifferentiable. 

The state problem (7.1.1) has a unique solution, and thus the optimal control prob­
lem has at least one optimal solution. For details of the existence and the uniqueness 
results, see [Haslinger, Neittaanmaki, 1988]. 

The variational formulation is discretized by linear finite elements for approxi­
mating y ancl x. Fnr dP.t.ails of this finite element (FE) handling and calculating 
the subgradients, see [Makela, 199 0] and [Miettinen, Makela, 1993]. In addition to 
the subroutines mentioned at the beginning of Chapter 6, Powell's quadratic solver 
ZQPCVX is needed in the numerical implementation. 

We have chosen the value n = 40 for the discretization parameter (number of 
variables) and g = ( -1.0, ... , -1.0) for the discrete approximation of the rigid obstacle 
to be used. The bounds for the decision variables are 0.0 ::; Xi ::; 20.0 ( i = 1, ... , n) 
(see [Miettinen, Makela, 199 1]). The starting point has been arbitrarily chosen to be 
x1 = ( 1.0, ... , 1.0). 
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Subgradient GDF Method 

As in the examples of the previous chapter, we here present one solution process by 
the subgradient GDF method where the augmented weighted Tchebycheff function is 
used to produce Pareto optimal solutions (with the augmentation term p = 0.0001 
and the weighting coefficients from the payoff table). The corresponding solution pro­
cesses, employing the penalty scalarizing function and the black-box routine MPB, are 
described only briefly. The first objective function has been selected as the reference 
function. 

The criterion vector corresponding to the starting point x1 
= (1.0, . .. , 1.0) is z1 

=

(5.0, 0.953). The first marginal rate of substitution is set to be m� = 3.0. It produces 
the alternatives listed in Table 33. 

Ji fz 

1 2.548 0.766 

2 1.610 0.884 

3 1.077 1.004 

[I] 0.693 1.159 

5 0.019 4.376 

Table 33. 

The trend in the alternatives is convenient, because the force utilized (Ji) was far 
too large in the beginning. However, in the fifth alternative, the string is too little in 
contact, and so the fourth alternative is selected for continuation. 

At the point z2 
= (0.693, 1.159), the marginal rate of substitution is set as m� = 0.5. 

The set of five alternatives obtained can be seen in Table 34. 

!1 fz 

1 0.693 1.159 

[fil 0.298 1.529 

3 0.140 1.957 

4 0.077 2.387 

5 0.047 2.811 

Table 34. 

The second alternative is selected from this table, because the total force is quite 
small. In the rest of the alternatives, the string (fz) looses too much contact. 

At the point z3 
= (0.298, 1.529), the marginal rate of substitution is set again as 

m� = 0.5. The resulting five candidates have been tabulated in Table 35. 
In the second alternative, the total force (11) has been managed to decrease a little 

and the contact area does not diminish too much. Thus it is the point to be selected. 
The next iterations are only a fine adjustment. The solution z4 

= (0.252, 1.613) could 
as well be selected as the final solution. 

To illustrate how almost identical marginal rates of substitution may produce alter­
natives from different directions, we proceed from here by setting the marginal rate 
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Ji fz 

1 0.298 1.529 

[I] 0.252 1.613 

3 0.135 1.984 

4 0.062 2.566 

5 0.033 3.151 

Table 35. 

Ji fz 

0.252 1.613 

2 0.291 1.540 

3 0.326 1.483 

4 0.363 1.431 

5 0.396 1.392 

Table 36. 

of substitution at the point z4 as m� = 0.6. This gives alternatives presented in Table 
36. 

As can be seen, the alternatives move into the direction where the total force and 
the contact area increase. This is not what was desired, and thus the first alternative 
is selected. We set z5 

= z4 . When we set m� = 0.4 (instead of 0.6), we get the 
alternatives of Table 37 for evaluation. 

Ji fz 

1 0.252 1.613 

2 0.240 1.640 

� 0.202 1.736 

4 0.148 1.923 

5 0.112 2.112 

Table 37. 

We stop the solution process by selecting the third solution z6 
= (0.202, 1.736) as 

the final one. The total force employed and the deflection of the string at the original 
starting point and at the final solution have been illustrated in Figures 38 and 39, 
respectively. Notice that the starting point is not Pareto optimal. 

The SC value of the above-described solution process with five iterations is 1628. 
This means that 76 subroutine calls are needed on the average for projecting one 
criterion vector onto the Pareto optimal set. If the last two iterations are abandoned, 
then the SC value of the first three iterations is in all 1023. 
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Figure 38. Force and deflection at the starting point. 
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Figure 39. Final force and deflection with the subgradient GDF method. 

If the penalty scalarizing function is used in the projection phase, the alternatives 
obtained are remarkably different from those presented above. If we, despite this fact, 
repeat the solution process with the same choices and marginal rates of substitution, 
the corresponding SC value is 2718. If we choose the best alternative at each iteration 
for five iterations, the SC value is 1629. (As a curiosity, we can state that the above­
used marginal rates of substitution are usable almost as such and only the number of 
the selected alternative is different.) From this solution process we conclude that the 
SC value can vary greatly depending on the alternatives. 

As to employing the black-box routine MPB, we obtain a significantly smaller SC 
value than with the other projection types. The SC value for five iterations is only 
665. Thus, producing one alternative onto the (weakly) Pareto optimal set only takes
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3 1  subroutine calls on the average. The alternatives obtained by the MPB routine 
and the augmented weighted Tchebycheff function are within limits so much alike 
that the same marginal rates of substitution and selections are valid. 

We do not here present the total force employed and the deflection of the string 
at the final solutions obtained with the penalty scalarizing function and the MPB 
routine because of their similarity to the solution in Figure 3 9. Instead, we have a 
look at the difference between the projection methods. 

To illustrate how different solutions are obtained with the augmented weighted 
Tchebycheff function, the penalty scalarizing function and the MPB routine, we con­
sider the starting point x1 

= (1.0, ... , 1.0). The original force employed and the 
deflection can be seen in Figure 3 8. In the following, we show what the starting point 
looks like when it has been projected onto the (weakly) Pareto optimal set with those 
three methods. 

The Pareto optimal counterpart of x1 obtained by the augmented weighted Tcheby­
cheff method can be seen in Figure 40. The corresponding criterion vector is (2.548, 
0. 766). It is the first alternative in Table 33.

Force 
0 
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0 

Cli 
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0.0 2.0 4.0 6.0 8.0 10.0 
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>-so 

� 
2.0 4.0 6.0 8.0 10.0 

Figure 40. Starting point by Lhe augmented weighted Tchebycheff function. 

In Figure 41, the Pareto optimal analogue of the starting point produced by the 
penalty scalarizing function is illustraLed. The corresponding criterion vector is 
(1.273, 0.953). In this figure, the total force needed and the deflection of the string 
are quite different from the previous fig.ure. 

Finally, a third state of the string is depicted in Figure 42. It has been obtained 
from the starting point by the MPB routine. The corresponding criterion vector is 
( 4.8 2 1, 0.631 ). 
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Figure 41. Starting point by the penalty scalarizing function. 
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Figure 42. Starting point by the MPB routine. 

These figures prove that even though producing Pareto optimal solutions is quite 
laborious and many function value calculations are needed, it is, however, worthwhile. 
As can be seen above, the original solution is considerably worse than the Pareto 
optimal counterparts. Another matter is the difference of the Pareto optimal solutions 
obtained by different functions. 

NIMBUS Method 

We start solving the string problem by the NIMBUS method from the same starting 
point x0 

= (1.0, ... , 1.0). The corresponding criterion vector is still z0 
= (5.0, 0.953). 

When we minimize both of the objective functions by setting J< 
= {1, 2}, we obtain 
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z1 = ( 4.821, 0.631 ). This solution is the same as depicted in Figure 42, because the 
MPB routine has been used to produce both of them. 

The total force must be decreased in z1
. Therefore, we want to minimize the first 

objective function and we must relax the second objective function. If the upper 
bound is here set, for example, as 1.0, the solution process needs remarkably many 
inner iterations ( and function value calculations) to produce a solution. This may 
sometimes happen because of some numerical instabilities and the structure of the 
problem. Such bottlenecks can usually be best overcome by loosening the upper 
bound. 

Because the user does not necessarily know the potentialities of the problem, (s)he 
can decide to minimize one objective function and see what happens to the other 
ones. Likewise, we set here J< = {l} and I° = {2}. This produces the solution 
z1 = (0.0, 10.0). Naturally, this is too extreme, and five alternatives are in order.
They have been listed in Table 43. 

Ji h 
1 4.821 0.631 

[fil 1.200 0.971 

3 0.026 3.472 

4 0.005 7.003 

5 0.000 10.00 

Table 43. 

The second alternative is selected from this set, because the string (h) looses too 
much contact in the latter alternatives. We set z2 = (1.2, 0.971). Still the total force 
(!1) is too big and it must be decreased. 

We set the first objective function as an aspiration function JS= {l} with zf = 0.5. 
The second objective function must then be relaxed, J> = {2} with c:� = 1.5. This 
settlement produces z2 = (0.481, 1.351). This seems to be a good solution, and we 
accevL iL for continuation. Notice that at this iteration the set of functions to be 
minimized was empty. Thus the (weak) Pareto optimality of the solution is not 
guaranteed. For this reason, the algorithm minimizes both of the objective functions 
further simultaneously, and we obtain z3 = (0.458, 1.326) to continue from. 

At this point, it seems that it would still be desirable to decrease the total force, 
and we set J< = {l} and J> = {2} with c:� = 2.0. We get z3 = (0.131, 2.0). Five 
candidates of this iteration can be seen in Table 44. 

1 

2 

[fil 
4 

5 

Ji h 
0.458 1.326 

0.333 1.472 

0.240 1.610 

0.175 1.820 

0.131 2.000 

Table 44. 
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The third alternative is the best, because the total force (!1 ) is quite small but the 
contact (h) is still pretty good. Therefore, we continue from z4 

= (0.24, 1.64). To 
tune the solution a little bit we continue for one more iteration. 

We allow only slight movements, setting JS = {1} with zt = 0.2 and J> 
= {2} 

with c� = 1.75. The solution obtained is z4 
= (0.2, 1.745). Five alternatives have 

been tabulated in Table 45. 

Ji h 

1 0.240 1.640 

2 0.229 1.665 

3 0.219 1.691 

[±] 0.209 1.717 

5 0.199 1.745 

Table 45. 

We stop here, and the fourth alternative z5 
= (0.209, 1. 717) is selected as the final 

solution. The SC value of the above-described. solution process is 447. The final 
solution is Pareto optimal. This additional testing adds the total SC value by 10 to 
be 457. It is remarkably smaller than any of the SC values reported in connection with 
the subgradient GDF method. The final solution obtained by the NIMBUS method 
can be seen in Figure 46. It is so close to the solution obtained by the subgradient 
GDF method, presented in Figure 39, that one can hardly tell the difference. 
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0 

>< c:i 

0 
o-+--,---,��-.-=t--r---r---,---,---,��-F--r-r---r--r-,---, 

0.0 2.0 4.0 6.0 8.0 10.0 

Deflection 
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Figure 46. Force and deflection at the final solution with the NIMBUS method. 

The direct comparison between the results obtained here and those obtained earlier 
( e.g., in [Makela, 1990]), when multiobjective capabilities were not utilized, is quite 
difficult. The reason is that the problem settings are different. A more complicated 
discretized model, which describes the original problem better, has been able to be 
solved here. Thus, the results are in that sense more satisfactory. 
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7 .2. Continuous Casting of Steel 

The second problem of optimal control is, both mathematically and computational­
ly, substantially more complicated than the previous one. The model described is used
to simulate the continuous casting process of steel. Here we present only the main
parts of the problem. A more detailed description can be found in [Makela, Mannikko,
1992, to appear). As a multiobjective optimization problem, the continuous casting
problem has been handled in [Miettinen, Makela, 1994).

Processing steel by continuous casting has increased its popularity in industry dur­
ing the last few years. Thus, a considerable amount of steel is manufactured in the
world by the continuous casting. Numerical simulation models have been developed
to avoid expensive and timeconsuming full-scale tests on production machines. The
model to be presented here is used for controlling cooling water sprays.

The main parts of the casting process are depicted in Figure 47. Molten steel is
poured from a tundi:;h iulo a water cooled mould. After the molten steel has formed
a solid shell, the steel strand is drawn down with a constant speed ( the solid shell
surrounding the liquid pool). After the mould (from the point p1 on), the strand is
supported by rollers and cooled down by water sprays until the steel has solidified
completely. Our simulation model has been intended for controlling this cooling
process by adjusting the intensity of the water sprays. The water sprays end at the
point p2

, and the maximum length of the liquid pool is p3
• The strand is straightened

at the point p4 and cut up at the point p5
• 

Spray 
coo.hng 
region 

=::====== mould 
cooling 

=::===�== water 

Secondary 
cooling 
control 

secondary 
:::@l===(XI=*===

_,_

= cooling 
water 

Figure 47. Schematic representation of the continuous casting process. 

As to the quality of the product, it is important that both overcooling and under­
cooling are avoided. Thus, the surface temperature must transform smoothly as the 
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steel proceeds between the cooling regions. The main purpose of the problem is to
minimize the defects in the final products. 

Setting of the Problem 

Because it is difficult to measure the surface temperature directly, it is better to
calculate the temperature distribution numerically. Notice that ·the point where the
steel does not contain any molten parts depends on the adjustment of the cooling and
is thus not known in advance. In addition, there exists a so-called mushy zone where
the steel is neither solid nor liquid. 

The temperature distribution of the strand is calculated by solving a nonlinear
heat transfer equation with free boundaries between solid and liquid phases. Due
to the piecewise linear approximation of nonlinear terms, the objective functions are
nondifferentiable. 

We here handle the casting process from the point p1 till the point p4
. The control

variable x represents a heat transfer coefficient, which has an effect on the temperature
distribution y( x) ( the state) of the steel strand. 

Let n C R2 denote the cross-section of the strand (e.g., a square or a circle) and
r its boundary. Time variables are now denoted by t. Let t; (i = 1, ... ,4) be the
time events when n passes the points pi. Thus, we consider the time period between
t1 and t4 (t1 = 0 and t4 = T). Moreover, we denote Q = (0, T) x n, :E = (0, T) x r,

Q1 = (t3 , T) x n and :E1 = (0, t2) x r. The set of admissible control variables is of
the form

S = {x E £2(:E) I 0 < a(t)::::; x(t,s)::::; f3(t), t E (0,T), s Er},

where £2(:E) denotes square integrable functions on :E. For any point x E S, the
temperature distribution y = y(x) is obtained by solving the state system 

(7.2.1) 

d 
d t  H(y) - 6.K(y) = 0

d 
{ 

X. (ywat -y) +C. ((yext)4 _ y4)
d n 

K(y) = c. ((yext)4 _ y4)

y(0,s) = y0 (s) 

in Q

on :E1 
on :E \ :E1

s ED,

where 6. denotes the two-dimensional Laplace operator, /n denotes the normal deriva­
tive, the enthalpy function H and Kirchhoff's transformation K are piecewise linear
functions, the constants y0 , ywat and yext denote the initial, the spray water and
the surrounding environment temperature, respectively, and c is a physical constant.
Notice that between the points p1 and p2 the steel is cooled down by both the water
sprays and normal radiation. After p2 only the radiation is left. We assume that we
know the temperature distribution at the end of the mould, y0 • From there we obtain
the initial condition. 

Next, we formulate the first objective function. We assume that we have some
technologically desirable temperature distribution yd 

= yd( t, s) on the boundary of
the strand. Naturally, we want the actual surface temperature to be as close to yd as
possible. Thus we have the objective function 

fi(x) = t:1 i
T 

½lly(x)-yd ll�,r dt. 
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In addition, we have the following technological constraints 

(7.2.2) 

Ymin ::; y(x) ::; Ymax

• I d I 

ymm ::; dty(x)::; ymax

0 ::; y( X) ::; Ysol 

Yduc ::; y( ·, T; X) ::; Ysol 

on �

on �

m Q1 

m n,

where the constants ymin , ymax, ymin', ymax', y801 and yduc denote some minimum
and maximum bounds ( also for derivatives), the solidus and the ductility tempera­
tures, respectively. The state constraints in (7.2.2) have been defined in this approach 
to be so tight that the feasible region is empty. For this reason, the constraints in 
(7.2.2) are translated into objective functions fz, ... , ls , respectively, using projection 
operators and exact penalty functions. Thus, our aim is to find the solution violating 
the "constraints" as little as possible. For details see [Makela, Mannikki:i, 1992, to 
appear]. 

The physical meanings of the objective functions to be minimized are the following 

Ji - keep the surface temperature near the desired temperature, 
fz - keep the surface temperature between some upper and lower bounds, 
h - avoid excessive cooling or reheating on the surface, 
14 - restrict the length of the liquid pool, and 
ls - avoid too low temperatures at the yield point. 

The system (7.2.1) is discretized by the finite element method (FEM). We do not 
here present the discretization nor the exact formulation of the four latter objective 
functions. What has been stated in [Makela, Mannikki:i, 1992, to appear], as to 
these parts, is valid also here. The difference is that, earlier, all of the five objective 
functions were summed up together. Here every single one of them is treated as a 
separate objective function. 

In the computational experiments, when solving the optimal control problem of the 
continuous casting of steel, the dimension of the problem is n = 325. The rest of the 
numerical data for the problem can be found in [Makela, Mannikki:i, 1992]. 

Subgradient GDF Method 

The first impression of the computational complexity of the problem was strength­
ened during the solution process. The solutions obtained depend, for instance, on the 
starting point of the whole process, the starting point at the projection phase, the 
computational accuracy (of the auxiliary scalar projection function) required and, of 
course, on the marginal rates of substitution provided by the decision maker. 

The reference function has been selected to be Ji. Here we present a solution process 
where the augmented weighted Tchebychefffunction is used to produce Pareto optimal 
solutions. The augmentation term employed is p = 0.0001. The weighting coefficients 
are all set to be equal to one. The reason for this is the complicated nature of the 
problem. The nadir point is very difficult to be approximated. On the other hand, 
it is known that the scales of the objective functions do not differ from each other 
remarkably. Thus it is safer to use equal weighting. 

Exceptionally, when compared with earlier examples, the accuracy in the calcula­
tions had to be tightened to 10-s. In addition, the maximum number of function 
value calculations at each projection phase was restricted to 150. 
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We do not present the decision variable values because of the great dimension of 
the problem (n = 325). The objective functions have been scaled so that their values 
are equal to one at the starting point. Thus we have z1 

= (1.0, 1.0, 1.0, 1.0, 1.0). 
In addition to the iterations described here, there were several iterations when 

the specified marginal rates of substitution produced alternatives from an opposite 
direction to what was expected. Reasons for this are the difficulty of specifying 
marginal rates of substitution and the unstable behaviour of the complicated problem. 

Now we can go into the solution process. At z1 , the length of the liquid pool is too 
long in the fourth objective function. Also the temperature at the yield point (!5) is 
too low. Both of these facts bring about the possibility that the strand gets defects 
when it is straightened. So the marginal rates of substitution are chosen at the first 
iteration as m1 = 1.5, m½ = 2.5, m! = 3.5 and mg = 4.5. After the projections, five 
(P = 5) Pareto optimal alternatives shown in Table 48 are obtained. 

Ji fz h 14 fs 

1 0.5179 0.0000 0.5179 0.5179 0.5179 

[I] 0.5992 0.0000 0.5960 0.6652 0.3403 

3 0.6765 0.0000 0.6432 0.7855 0.2182 

4 0.7796 0.0000 0.6885 0.9067 0.1015 

5 0.9446 0.0000 0.7668 1.0984 0.0203 

Table 48. 

None of the alternatives obtained is particularly good, but the second one, z2 
=

(0.5992, 0.0, 0.596, 0.6652, 0.3403), is selected because the value of the fifth objective 
has been considerably decreased. In the latter alternatives, the values of the other 
objective functions are too high. 

At the second iteration, the marginal rates of substitution, m� = 1.0, m� = 50.0, 
m� = 40.0, and mg = 40.0, are specified to emphasize the relative importance of 
the third, the fourth and the fifth objective function. The alternatives obtained are 
presented in Table 49. 

Ji fz h f4 fs 

1 0.5992 0.0000 0.5960 0.6652 0.3403 

2 0.5614 0.0000 0.5915 0.5269 0.4285 

3 0.5358 0.0000 0.5875 0.3895 0.5168 

4 0.5220 0.0000 0.5840 0.2552 0.6054 

[fil 0.5193 0.0000 0.5795 0.1217 0.7008 

Table 49. 

From this set the fifth candidate is selected for continuation. The reason is that 
even though the value of the fifth objective function increased, the values of the third 
and especially the fourth objective function were managed to decrease remarkably. 
Thus, we continue from z3 

= (0.5193, 0.0, 0.5795, 0.1217, 0.7008). 
Now the importance of the third and the fourth objective function, avoiding ex­

cessive cooling or reheating on the surface and restricting the length of the liquid 
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pool, respectively, has become more evident. The marginal rates of substitution at 
the third iteration are the following, m� = 1.0, m� = 70.0, mi = 40.0 and m� = 20.0.
Five alternatives produced by this setting can be seen in Table 50. 

Ji h h f4 fs 
1 0.5193 0.0000 0.5795 0.1217 0.7008 

2 0.5079 0.0000 0.5355 0.0000 1.0335 

3 0.5943 0.0000 0.4714 0.0000 0.9283 

4 0.7211 0.0000 0.3019 0.0000 1.0013 

[fil 0.9047 0.0000 0.2385 0.0000 0.7067 

Table 50. 

From these alternatives the fifth one, z4 
= (0.904 7, 0.0, 0.2385, 0.0, 0.7067), is the 

best, because the value of the fourth objective function decreased down to 2ero and 
the value of the third objective function decreased also nicely. The fact that the value 
of the first objective function increased is not so dangerous. Keeping the surface 
temperature near some desired temperatures is not as important as the other objective 
functions. For briefness, we do not here present all the iterations in the complete 
extent. 

We just state that at the fourth iteration the marginal rates of substitution are 
set as m� = 1.0, mt = 70.0, m! = 40.0 and mt = 40.0 and the solution selected is
z5 

= (0.9814, 0.0, 0.1749, 0.3339, 0.3925). The reason for this selection is that even 
though the value of the fourth objective function increased, the values of the third 
and the fifth objective function decreased in proportion. 

At the fifth iteration, the marginal rates of substitution are specified to be m� =

1.0, m� = 70.0, m: = 80.0 and m� = 10.0. The intention is to emphasize the 
importance of the fourth objective function. At this iteration, the solution z6 

=

(1.1103, 0.0,0.0747,0.0,0.7848) is selected because the values of the third and the 
fourth objective function are quite satisfactory. 

The solution process continues by setting m� = 1.0, m� = 80.0, m� = 60.0 and 
m� = 20.0. This time the vector z7 

= (1.1286, 0.0, 0.0289, 0.0043, 0.6389) is considered 
the best. The reason is that the values of the third and the fifth objective function 
decreased, at the cost of the fourth objective function, though. Anyway, this is quite 
a good solution. 

At the seventh iteration, the marginal rates of t:iuln;titution are m� = 1.0, m� = 5.0, 
m� = 3.0 and m� = 2.0. The alternatives to be considered in this phase have been 
listed in Table 51. 

Ji f;. 
1 1.1286 0.0000 

2 1.0850 0.0000 

w 1.0918 0.0000 

4 1.0779 0.0000 
5 1.0737 0.0000 

h 

0.0289 

0.0233 

0.0252 

0.0187 
0.0349 

Table 51. 
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0.0043 

0.0000 

0.0000 

0.0000 
0.0000 

fs 
0.6389 

0.7533 

0.7079 

1.0300 
0.9447 



The third alternative is the most preferred one from this list. It seems that the 
value of the fourth objective function (restricting the length of the liquid pool) can 
only be decreased by increasing the value of the fifth objective function ( allowing 
lower temperatures at the yield point). The solution could not be improved, and so 
the solution process is stopped with z8 

= (1.0918, 0.0, 0.0252, 0.0, 0. 7079) as the final 
solution. 

The SC value of this above-described solution process with seven iterations is 3435. 
It is a large number but the problem to be solved is complicated. This number 
contains only those iterations when some progress was accomplished. 

Next, we outline the solution of the continuous casting problem, employing the 
penalty scalarizing function in the subgradient GDF method. The penalty coeffi­
cient utilized is e = 10000.0. If the same marginal rates of substitution and choic­
es as in the solution process above are used, the SC value is 2635. However, the 
result obtained (z8 

= (0.8521, 0.0, 0.2766, 0.0, 0.9471)) is not particularly satisfac­
tory. The best possible solution obtained by the penalty scalarizing function is 
z8 

= (1.2609,0.0,0.074,0.0,0.71). This could not be improved. When this solu­
tion and the one obtained with the augmented weighted Tchebycheff function are 
compared, this solution is not even Pareto optimal. The reason for this phenomenon 
is the fact that all the solutions obtained are only locally Pareto optimal. Thus, such 
situations may occur. 

The SC value of the solution process with the penalty scalarizing function is 2679. 
Also this process took seven iterations. The number is somewhat less than with the 
augmented weighted Tchebycheff function but the result obtained is worse. Thus, the 
choice of the method by which Pareto optimal solutions are produced has its effect 
on the solution obtained. 

When the black-box routine MPB is used (instead of the augmented weighted 
Tchebycheff function or the penalty scalarizing function) to produce (weakly) Pareto 
optimal solutions, its weakness shows up. After the first iteration, all the alternatives 
produced by the subgradient GDF method are already weakly Pareto optimal and the 
MPB routine cannot improve them at all. At this problem setting, the MPB routine 
does not appear to advantage. This proves the point that no method can be good 
at every context. For some problems the MPB routine produces solutions effectively, 
but for other problems its weak sides are emphasized. 

NIMBUS Method 

When the solution process is started by the NIMBUS method from the point 
z0 

= (1.0, 1.0, 1.0, 1.0, 1.0) by setting J< 
= {1,2,3,4,5}, the resulting vector is 

z1 
= (0.5043, 0.0, 0.4548, 0. 7371, 0.5922). At this point, there is too excessive cooling 

or reheating on the surface (h), the liquid pool is too long (!4) and the temperature 
is too low at the yield point (is). In other words, the values of the third, the fourth 
and the fifth objective function are too high. 

So, we continue with the specification J< 
= {3, 4, 5} with w½ = 0.35, wl = 0.5 and 

wg = 0.15. Something must be allow�d to increase, and we select the first objective 
into this class. We set J> 

= {l} and d = 1.0. The value of the second objective 
function is good, and we set r= 

= {2}. 
The result of this classification is that no improvement can be found and z2 

= z1
. 

When such cases occur, the reason often lies in too tight bounds. Therefore, we can 
try to continue by allowing the value of the second objective function to increase. The 
problem is so complicated that the possibility of jamming in some local optimum is 
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great. To avoid the jamming we relax the second objective function relatively much. 
This allows improvement in the other functions and if the value of the second objective 
function should increase too much, one can always take a shorter step. 

After this reasoning we leave the classification J< = {3,4,5} with w� = 0.35, 
wl = 0.5 and wg = 0.15 unchanged. Then we set J> = {l, 2} with €i = 1.0 and 
€� = 1.0. 

The solution obtained is z2 = (0.9938, 0.0, 0.0, 0.3147, 0.4403). As we can see, the 
value of the second objective function did not actually increase from 0.0. Allowing 
the increment was necessary only for computational reasons. This point is selected 
for continuation without considering any intermediate solutions; thus z3 

= z2
. 

At the point z3
, the values of the fourth and the fifth objective function are still 

too high. Thus, their values are to be decreased and J< = {4,5}. We also attach 
weighting coefficients to them, w! = 0.8 and w� = 0.2. The first objective function 
has less importance than the other ones and it is thus allowed to increase. Keeping in 
mind the earlier experiences, we give a loose upper bound also for the second objective 
function. We set J> == {l, 2} with d = 1.5 and d = 1.0. The zero value for the third 
objective function is good, and we set r= = {3}. 

However, no improvement is possible with this specification either, and z
4 = z

3
. 

Something must again be changed. Therefore, we revise the classification by leaving 
the class r= and relaxing the third objective function a little. It is so important 
that we cannot let it increase significantly. We have J< = { 4, 5} with wi = 0.8 and 
wg = 0.2 and J> = {l, 2, 3} with €f = 2.0, €i = 1.0 and €j = 0.01. 

This setting gives a solution z4 = (1.6059, 0.0, 0.0029, 0.0002, 0.353). For certainty, 
we take a glance at five alternatives. They have been tabulated in Table 52. 

Ji h fa f4 f5 

1 0.9938 0.0000 0.0000 0.3147 0.4403 

2 1.1058 0.0000 0.0004 0.2305 0.4238 

3 1.2455 0.0000 0.0009 0.1524 0.4036 

4 1.4124 0.0000 0.0017 0.0808 0.3801 

� 1.6059 0.0000 0.0029 0.0002 0.3530 

Table 52. 

The fifth alternative is the best from this set and we have z5 = z1
. This seems to be 

quite a good solution, but we still would like the third objective function to decrease 
to the zero value. In other words, we would like to better avoid excessive cooling 
or reheating on the surface. In addition, it would be interesting to see whether the 
values of the fourth and the fifth objective function can still be decreased. 

Thus, we specify J< = { 3, 4, 5} without any special weighting coefficients and, as 
before, J> = {2} with €� = 1.0. For curiosity, we let the values of the first objective 
function change freely, I° = {l}. 

Once again, no improved solutions can be found and z6 = z5. Now, too tight upper 
bounds cannot be the excuse. Nevertheless, there is no reason to give up yet. We 
have here a chance to utilize the versatile possibilities of the NIMBUS method, where 
we have different means to strive for the same goal. Instead of using functions to be 
minimized, we can use aspiration functions. 
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Therefore, we set I� = { 3, 4, 5} without any special weighting. The aspiration levels 
of the third and the fourth objective function are naturally set to zero, zg = zJ = 0.0 
and for the fifth objective function we set zE = 0.2. The rest of the classification need 
not be changed and J> = {2} with c� = 1.0 and I°

= {l}. 
The solution obtained is z6 

= (2.1479, 0.0157, 0.0, 0.0, 0.1997). The decrement in 
the values of the third, the fourth and the fifth objective function could be obtained 
only at the expense of increasing the second (and the first) objective function. Es­
pecially, the increment of the second objective function is not desirable because it is 
important to keep the surface temperature between some upper and lower bounds. 
Therefore, we do not take this step but return to the previous solution, z 

7 
= z

6
. 

We keep the classification similar to the previous one but increase the aspiration 
level of the fifth objective function. Thus, we have I� = {3, 4, 5} with zl = zJ = 0.0 
and zJ = 0.23, J> = {2} with c� = 1.0, and J0 

= {1}. 
After this specification, the solution generated is z7 

= (2.0383, 0.0, 0.0, 0.0, 0.2286). 
The value of the first objective function is tolerable, and no intermediate solutions 
are desired as far as it is concerned. The values of the other objective functions are 
also satisfactory and so we stop the solution process here. In the end, the method 
checks that the final solution z8 

= (2.0383, 0.0, 0.0, 0.0, 0.2286) is Pareto optimal. 
The SC value of the above-presented seven iterations is 508, where the checking 

of Pareto optimality takes 51 function calls. Thus, in this problem, the difference 
between the computational complexities of the subgradient GDF method and the 
NIMBUS method is manifested. The SC value of the subgradient GDF method is 
more than six times larger than that of the NIMBUS method, not to mention that 
the final solution obtained by NIMBUS is far more desirable. 

The solution of the continuous casting problem by the weighting method has been 
described in [Makela, Miinnikko, 1992]. The decision maker was used only to give 
weighting coefficients to the objective functions. When all the coefficients were equal, 
the best criterion vector that could be obtained was z0 

= (1.0378, 0.0, 0.0772, 0.002, 
0.537). Even the solution obtained by the subgradient GDF method (z = (1.0918, 0.0, 
0.0252, 0.0, 0. 7079)) can be considered to be better because of the smaller values in 
the important third and fourth objective function, despite the opposite difference in 
the fifth objective. 

The second solution reported in [Makela, Mannikko, 1992] was obtained by setting 
the weighting coefficient of the first objective function to be remarkably small and 
and the rest of the coefficients to be equal with each other. By this setting the best 
solution obtained was z0 

= (2.1714, 0.0, 0.0019, 0.0, 0.1981). When it is compared 
with z = (2.0383, 0.0, 0.0, 0.0, 0.2286) attained by the NIMBUS method, the latter 
can be said to be better. There the value of the third objective function has been 
managed to decrease to zero by paying the price of a slight increment in the fifth 
objective function value. 
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8. Future Directions

In this chapter, we outline some challenging topics for the future development of 
multiobjective optimization, mainly from a mathematical point of view. They all 
deserve further research and examination. 

Even though multiobjective optimization methods have been applied to solve prob­
lems from many sides of life, like design problems in engineering, production problems 
in economics, and environmental control problems in ecology, there still exist many 
new problem types where multiobjective optimization may bring along new possibil­
ities. Encouraging experiences were obtained in the previous chapter when solving 
state-constrained optimal control problems. Especially challenging are the practical 
problems. Remarkably few real-life applications have been reported so far. 

One interesting problem type is so-called multidisciplinary re-engineering. It means 
that old engineering problems, for example, in optimal design, whose solut.iorn; have 
been revised one feature at a time in the course of years, are solved again from the 
very beginning, taking different aspirations and aspects into consideration at the same 
time. 

The methodology of multiobjective optimization must also be improved. The idea 
of using different methods in different phases of the solution process is quite new. In 
this way, positive features of various methods are taken into account in such phases of 
the solution process when they can best be benefited. In addition, some weaknesses 
of the methods may be possible to overcome. 

A meta algorithm endeavouring at consolidating different methods of multiobjective 
optimization has been proposed in (Steuer, Whisman, 1986]. The idea is that the same 
meta program can be transformed into different methods by varying its controlling 
parameters. The GDF, the IWT and the reference point method with the visual 
interactive approach, STEM, the €-constraint method and two interactive versions of 
the weighting method are available. This idea has been further developed in [Steuer, 
Gardiner, 1990]. An important fact to consider, when switching from one method 
to another in the middle of the solution process, how to maintain the convergence 
properties, needs still more examination. 

An attempt to realize this meta al1?;orithm has been named MCOP. It is a system for 
IBM compatible microcomputers, implemented at the Department of Mathematics of 
the University of Jyvaskyla. The weighting method, the c:-constraint method and the 
reference point method have been included in the pilot version. Bar charts and value 
paths are available for graphical illustration. The graphical user interface makes it 
possible to expand the human-computer dialogue. The user can input the required 
weights, upper bounds and reference points in a graphical form. 

Similar ideas of combining several methods have been proposed in [CHmaco, An­
tunes, 1991]. The system (only for MOLP problems) contains, for example, the ZW 
rneLlwJ, STEM, VIG auu TRIMAP. A restriction caused by TRIMAP is that on­
ly problems with three objective functions can be handled. The system has been 
implemented in the Apple Macintosh environment with graphical illustrations. A fur­
ther developed implementation of the above-mentioned ideas is described in [Antunes, 
Alves, Silva, CHmaco, 1992]. The method base package has been named TOMMIX. 
Means for supporting the decision maker in deciding when and how to change from 
one method to another have still to be explicated. 

Another way to be elaborated is combining methods for continuous and discrete 
problems. It may, for example, mean that a set of solutions is generated to the 
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continuous problem, and, then this set is ranked with the means of discrete meth­
ods. Examples of this have been presented in [Kok, Lootsma, 1985], [Bard, 1986] and 
[Slowinski, 1991]. One can also combine methods of global optimization to multiobjec­
tive optimization methods. In this way, one can aim at being able to handle globally 
Pareto optimal solutions, instead of locally Pareto optimal ones, also in nonconvex 
problems. Such ideas have been proposed in [Torn, 1983]. 

In [Arbel, Korhonen, 1994], the authors have developed a new method in the spirit 
of interior-point methods ( of linear programming). The idea is to wander in the 
interior of the feasible criterion region and only in the end to come up to the Pareto 
optimal surface. In this way, they call into question the generally adopted idea that 
the decision makers should handle only (weakly) Pareto optimal solutions. 

An important area of development is software implementing different methods and, 
especially, the user interface. As more and more advanced computers and graphical 
devices are created, the more tools are available when striving for easiness and even 
enjoyment of use. As far as problems of large scale are concerned, the possibilities 
of parallel computing are worth examining in making the solution processes more 
efficient. 

One potentiality not to be forgotten are expert systems. They can be utilized in 
both selecting a solution method and in the solution process itself. As an example, 
interactive MOLP methods and expert system techniques have been integrated in 
[Antunes, Melo, Cl:i'.maco, 1992]. The system described includes five methods, for 
example, STEM and the ZW method. When the user of the system expresses her or 
his hopes for further actions ( such as: "I want to know what is around the current 
solution"), the system suggests one of the interactive methods to be utilized. The 
program has been developed on an IBM/PS2 computer in C and the expert system 
components in Prolog. Computer graphics is also available. There is a lot of features 
that deserve further research and development, but this is certainly an interesting 
path to follow. 
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9. Conclusions

We have presented a self-contained survey of the state-of-the-art of multiobjective 
optimization with a great number of further references. We have begun by handling 
several significant concepts and their relations and then continued by considering 
some theoretical results and connections. 

We have demonstrated the methodology of multiobjective optimization by describ­
ing several methods and by giving references to a large number of other methods. 
The methods have been classified into four groups according to the contribution of 
the decision maker in the solution process. Because the group of interactive methods 
has been developed most, the main emphasis has been in it. We have endeavoured to 
characterize the methods by some comments on their positive and negative features. 

Existing software packages have been demonstrated by giving short overviews. 
Some practical experiences have also been expressed. Related to software, several 
possibilities of the graphical illustration of alternatives have been introduced. 

Selected experiences and observations of the comparison of the methods have been 
put forward. Certain features of the interactive methods handled have been collect­
ed in a comparative table. In addition, some attempts to aid in the selection of a 
solution method have been made. A decision tree containing both interactive and 
noninteractive methods has been suggested. 

While two of the methods presented are new, their functioning has been clarified by 
numerical examples. Those methods have also been applied to solve two benchmark­
type problems of optimal control. The problems have earlier been solved by less 
developed methods. Improved results compared to the previous ones were obtained. 

Many things can be concluded from the numerical experiments with the sub gradient 
GDF method and the NIMBUS method on a more general basis. The computational 
expense is rwL <listiuguished with relatively simple problems. But when the complex­
ity of the problem increases, so does also the difference in the computational costs. 
Naturally, there are profound differences in the solution philosophies of these two 
methods. However, one can say that NIMBUS seems to be computationally more 
efficient. 

One reason for this is that there is no explicit scalarizing function employed. On 
the other hand, the algorithm cannot make any difference between weakly Pareto 
optimal ( or substationary, to be exact) and Pareto optimal solutions. Thus, weakly 
Pareto optimal solutions are not projected anywhere. This (in itself, negative) feature 
may also have influence by decreasing the computational burden. 

In addition to the computational expense, there are also differences in the easiness 
of use between the subgradient GDF method and the NIMBUS method. For many 
people it is easier to think of desired changes in the objective function values than 
to specify indifference relations. This may, especially, be the case if the criterion vec­
tor at which the marginal rates of substitution are to be specified is not particularly 
desirable. Then it may be frustrating to think of indifferent solutions instead of im­
provements wanted. A remarkable reason for obtaining more satisfactory solutions by 
the NIMBUS method in the examples reported is its more intelligible communication 
style. 

One more interesting factor is the accuracy in the computation. It can be considered 
in a more extensive meaning as a separating factor between scalarizing functions 
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and treating the objective functions as themselves. If some scalarizing function is 
employed, then it is the accuracy of that additional function that can be followed 
along the solution process. It may happen that when the accuracy of the scalarizing 
function has reached the desired level, the values of the actual objective functions 
can still change considerably. For this reason, the accuracy had to be tightened when 
solving the continuous casting problem with the subgradient GDF method and the 
augmented weighted Tchebycheff function. When no auxiliary scalarizing function 
is used, then the accuracies of the objective functions themselves can be followed 
directly during the solution process. 

Many scalarizing functions have positive features whose importance is not to be 
underestimated, like producing Pareto optimal solutions only. However, employing 
some scalarizing function usually brings along extra parameters and the difficulty of 
specifying their values. This causes additional stability concern. To put it shortly, 
scalarizing functions add extra characteristics to the problem. 

Scalarization cannot completely be avoided even in the MPB routine. However, 
the scalarization is carried out under the surface, invisible to the user. Whatever 
additional parameters or phases are needed, they cannot be seen and the user does 
not have to be bothered with them. The weakness of the MPB routine is that the 
Pareto optimality of the solutions obtained cannot be guaranteed. In theory, only the 
substationarity of the solutions is sure. In practice, it is, however, very likely that the 
solutions are at least weakly Pareto optimal. As a matter of fact, in the numerical 
experiments performed, the final solutions obtained have usually proved out to be 
Pareto optimal at the final testing. 

Even though the solution processes with the subgradient GDF method and the 
NIMBUS method cannot be directly compared, we can still conclude that NIMBUS 
seems to be the more efficient and flexible of these two. Naturally, there are many 
challenges in the further development of NIMBUS. One of the challenges, also in gen­
eral for software development, is creating illustrative and easy-to-use user interfaces. 
If the interface is able to adapt in the decision maker's style of making decisions and 
is of help in analyzing the alternatives and results, and can perhaps give suggestions 
or advice, then the interface may even overcome some lacks of the method itself. 

In general, one can say that the theory and the methods of multiobjective optimiza­
tion have been widely developed during the last few decades. Software implementa­
tions are considerably more infrequent. Even more exceptional are documentations 
on solving real-life multiobjective optimization problems. Reasons for this may be 
ignorance of all the extensive possibilities of existing methods or also the lack of suit­
able methods. For our part, we have filled a gap in nondifferentiable multiobjective 
optimization. 

In the method development one can conclude that it is important to continue in the 
direction of user-friendliness. The methods must even better be able to correspond 
the characteristics of the decision maker. If the aspirations of the decision maker 
change during the solution process, the algorithm must be able to cope with it. Com­
putational tests have confirmed the thought that the decision makers want to feel 
being in control in the solution process and they must understand what is happening. 
The decision maker must be the starting point in developing new interactive methods. 
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