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Abstract

Spatial point patterns arise in a number of applications from different dis-
ciplines. They represent locations of objects or events of interest. Such data
is analysed and modelled using point process statistics. This work develops
new statistical models and methods for challenges encountered in a few
specific applications in forestry and medicine. We consider methods for the
analysis of datasets that include artefacts or missing data, introduce new
point process models, and suggest tests having graphical interpretation.
In one of the applications, we develop models for sweat gland activation
data, which is important in early screening of diabetes. To this end, we
suggest methods to handle erroneously detected points in the data pro-
duced by image analysis. We also consider modelling how the locations
of tree seedlings are affected by large trees. Here we propose a Bayesian
inference method for handling nonlinear covariates in a log Gaussian Cox
process. Furthermore, we present an estimator for forest characteristics in
data obtained by terrestrial laser scanning. The new estimator accounts
for unobserved trees behind other trees. Finally, we suggest a test with
a graphical interpretation for including particular covariates in a point
process model.
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Tiivistelmä

Spatiaalisia pistekuvioita esiintyy useiden tieteenalojen sovelluksissa. Ne
edustavat kiinnostavien kohteiden tai tapahtumien sijainteja. Tällaisia pis-
tekuvioaineistoja analysoidaan ja mallinnetaan pisteprosessitilastotieteen
avulla. Tässä työssä kehitetään uusia tilastollisia malleja ja menetelmiä
metsätalouden ja lääketieteen erityissovellusten haasteisiin. Työssä tutki-
taan aineistoja, joissa on virheellisiä tai puuttuvia havaintoja, sekä esi-
tellään uusia pisteprosessimalleja ja ehdotetaan testejä, joilla on graafinen
tulkinta. Yhdessä sovelluksessa kehitetään malleja hikirauhasten aktivoi-
tumiselle, jonka ymmärtäminen on tärkeää diabeteksen varhaisessa seulon-
nassa. Hikirauhaset havaitaan työssä kehitetyllä kuva-analyysimenetelmäl-
lä. Menetelmän tuottamat virheelliset pisteet otetaan huomioon hikirau-
haskuvioiden analyysissä. Toisessa sovelluksessa mallinnetaan log-gaussi-
sella Coxin prosessilla suurten puiden vaikutusta taimien sijaintiin ja käy-
tetään Bayes-päättelyä epälineaaristen kovariaattien sisällyttämiseksi mal-
liin. Kolmas osajulkaisu esittelee uuden estimaattorin puustotunnuksille
maalaserkeilauksella saadusta aineistosta. Uusi estimaattori huomioi puut,
jotka jäävät havaitsematta, koska ne ovat muiden puiden takana. Viimei-
sessä työn osassa esitellään uusia testejä selittävien muuttujien merkitse-
vyydelle pisteprosessimallissa.
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my first PhD attempt. I thank Prof. Emer. Elja Arjas and Prof. Jorge
Mateu for their work as pre-examiners and Dr Thordis Thorarinsdottir
for agreeing to serve as the opponent. Finally, I wish to thank Dr Sara
Taskinen for always believing in me.

I thank Academy of Finland (Project numbers 304212, 306875 and
327211) for financial support and CSC – IT Center for Science, Finland,
for computational resources.

Finally, I would like to thank my family and friends for their con-
tinuous support.

Helsinki, January 2022

Mikko Kuronen

iii



List of included articles

This thesis consists of an introductory part and the publications listed
below.

I Kuronen, M., Henttonen, H. M., and Myllymäki, M. Correcting for
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Chapter 1

Introduction

Spatial point patterns are encountered in many fields of research. The
points represent the locations of some objects or events of interest such as
the locations of particles or pores in material science, trees or disasters in
environmental science, disease occurrences in epidemiology, or fixations of
eye movement in behavioural science. Further relevant information of the
objects or events is often available in addition to the location, for example
the species or size of a tree. In the point pattern context, such information
is called a mark associated to a point.

A point process is a statistical model for a point pattern. Similar
models and methods of point process statistics can be useful in many dif-
ferent applications. In general, the locations are points in a d-dimensional
Euclidean space. In this work, we consider only point patterns in the plane,
although some of the methods are applicable also in higher dimensional
settings.

Typical workflow (Illian et al., 2008) in statistical analysis of point
patterns starts with plotting the data and selected summary characteris-
tics. This preliminary examination can reveal such features as regularity
or clumpiness of point locations. It is common that a few appropriate
models are fitted to the data, for example using software packages such as
spatstat (Baddeley et al., 2015) or INLA (Rue et al., 2009). Again sum-
mary characteristics are computed from simulated data generated from
the models to assess goodness-of-fit. It is not uncommon to point process
statistics that challenges arise in different phases of the analysis, which
may be due to limitations in the current methodology or in the methods
implemented in software. In the applications discussed here such issues
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arise because of spurious points which are produced by image analysis, all
relevant points have not been observed, the likelihood may be intractable,
or the distribution of test statistics is unknown.

The contributions of this work consist of developing new models and
methods in order to resolve a number of challenges encountered in specific
applications. In modelling sweat spots (Article II) we dealt with points
that were caused by errors in image analysis by utilising mixture models
as an inferential method. We also tackled computationally demanding like-
lihood by an efficient implementation. Furthermore, we proposed a new
model for sweat glands where the extra points were handled with infer-
ence based on approximate Bayesian computation with carefully selected
low dimensional summary statistics. When modelling tree seedlings (Ar-
ticle III) the complications were caused by nonlinear point pattern based
predictors making the model unsuitable for the available software. Several
approximations were used to achieve efficient inference. We also proposed
a test (Article IV) that can be used to select covariates in the model fit-
ting stage of the point process workflow. Furthermore, we used the theory
behind point processes to introduce a new estimator (Article I) for forest
characteristics. The problem here was due to missing data: the trees that
were not detected with terrestrial laser scanning because they were behind
other trees.

Section 2 introduces background of point process statistics relevant
for the developments in this work. In particular, Section 2.3 presents a
general formulation for the sequential model likelihood that allows for
efficient computation. Section 3 discusses the inference methods that were
used in this work. Sections 4, 5, 6 and 7 summarise and elaborate on the
main results of the Articles I, II, III and IV, respectively. Finally Section
8 finishes the thesis with discussion.
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Chapter 2

Point process statistics

Two dimensional point processes are usually defined on the whole plane,
but point patterns are observed within an observation window denoted
by W ⊂ R2. A spatial point process X = {xi} may be augmented with
additional information associated to the objects, called marks, to produce
a marked point process {(xi,mi)}.

The intensity of a point process X is a function λ : R2 → R+ that
satisfies EX(B) =

∫
B λ(x)dx for all (Borel1) B ⊂ R2, where X(B) stands

for the number of points of the process in the set B. The Poisson process
with intensity λ is characterised by two properties. The number of points of
the process in a set B has a Poisson distribution with mean

∫
B λ(s)ds and

the numbers of points in disjoint sets are independent. A Poisson process
with constant intensity is a model of complete spatial randomness.

The rest of this section is organised as follows. Section 2.1 introduces
the summary statistics used in Articles II and III. Sections 2.2 and 2.3 in-
troduce the point process models used in Article II. Section 2.4 introduces
the log Gaussian Cox process (LGCP) used in Article III. Finally, Sec-
tion 2.5 introduces point process residuals that were used in Article IV for
defining new summary statistics.

1. In this work we implicitly assume all sets and functions to be appropriately measur-
able.
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2.1 Summaries

Features of point patterns are often explored using functional summary
statistics. This section presents selected summary statistics that were the
most important for this work. The point process is assumed to be sta-
tionary and isotropic, that is, invariant under translations and rotations
(e.g. Illian et al., 2008, p. 177). Stationarity implies that the process has
constant intensity.

A commonly used functional summary is the Ripley’s K-function
(Ripley, 1977) K(r) = 1

λEo(X(B(o, r) \ {o})), where λ is the intensity of
the process, B(o, r) is the ball centred at the origin o with radius r and
Eo is the expectation conditional on having a point of the process at o
(in the Palm sense, e.g. Illian et al., 2008; Chiu et al., 2013). Due to the
stationarity, it suffices to consider the origin only.

Instead of the K-function, its derivative, the pair correlation func-
tion

g(r) =
K ′(r)

2πr
(2.1)

can be used. The pair correlation has the following interpretation. Under
complete spatial randomness g(r) = 1 for all r ≥ 0. Values g(r) < 1
indicate repulsion at distance r and values g(r) > 1 indicate attraction at
r.

The K-function can be modified to describe association between
two point processes X1 and X2 by defining K12(r) = 1

λ2
Eo1(X2(B(o, r))),

where λ2 is the intensity of X2 and Eo1 is the Palm expectation of having
a point of X1 at o (e.g. Illian et al., 2008). The cross pair correlation
function between the two point processes is, analogous to (2.1):

g12(r) =
K ′12(r)

2πr
. (2.2)

Another commonly used summary is the empty space function

F (r) = P(X(b(o, r)) 6= 0), (2.3)

which describes the probability that a ball with radius r around the origin
contains at least one point of the process.

Summary statistics have several uses in exploration, parameter es-
timation and evaluation of goodness-of-fit of a model. They were used for
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parameter estimation in an approximate Bayesian computation method in
Article II and for evaluating the goodness-of-fit in Articles II and III.

2.2 Simple sequential inhibition model

The simple sequential inhibition model (e.g. Illian et al., 2008, p. 393) was
used in Article II as a building block for a model for observed sweat gland
locations. It is an example of a hard-core model where points cannot exist
at distances smaller than a specific distance from another point. It has
one parameter, the hard-core radius R.

A realisation of the model is constructed by first placing a uniformly
distributed random point in a bounded window W . After that points are
added one at a time, so that independent uniformly random points are
proposed until they satisfy the hard-core condition that no two points are
at a distance less than R from each other. This is continued until no more
points can be added (there is no space left).

The hard-core property causes the generated patterns to look regu-
lar. Lotwick (1981) and Wang (1994) present efficient algorithms for sim-
ulating the process. The algorithm of Wang (1994) was implemented in
Article II to obtain accurate realisations of SSI process in reasonable time.

2.3 Sequential point processes

The sequential model of Penttinen and Ylitalo (2016) is a point process
with a fixed number n of points. The points are assumed to arrive sequen-
tially, conditional on the earlier points. In the general sequential point
process, the first point x1 is assumed to follow the density f1 and the
kth point, k = 2, 3, . . . , n, is assumed to follow the conditional density
fk(y|~xk−1), where ~xk−1 = (x1, x2, . . . , xk−1). The density function for the
whole point pattern (x1, ..., xn) is then

f1(x1)

n∏
k=2

fk(xk|~xk−1).

In the following models, which were considered in Article II, f1 is the
uniform distribution on W and fk = f for k = 2, 3, . . . , n.
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As a first instance we considered the model where the reweighting
probability for a new point is dictated by the presence of an earlier ’neigh-
bour’, that is, a point at distance less than R. The density is

f(y|~xk, R, θ) ∝ θ1(Mk(y) < R) + (1− θ)1(Mk(y) ≥ R), (2.4)

where R > 0 and θ ∈ [0, 1] are parameters and Mk(y) = mini≤k d(y, xi)
is the Euclidean distance (d) to the nearest earlier neighbour. This model
is closely related to the recurrence-based reweighting model of Penttinen
and Ylitalo (2016). In Article II we were mainly interested in cases where
θ < 1

2 (repulsion between points), and especially for θ = 0, when the model
is a hard-core model.

We also considered the soft-core model

f(y|~xk, R, κ) ∝ exp

(
−

k∑
i=1

(
R

d(y, xi)

)2/κ
)
, (2.5)

with parameters R > 0 and κ ≥ 0. This particular form, which was used
in Article II, was inspired by a soft-core Gibbs process (Baddeley et al.,
2015; Ogata and Tanemura, 1981, 1984).

Both (2.4) and (2.5) admit the hard-core process as a special case,
namely with θ = 0 for the first model and κ = 0 for the second model.
Note that both models can be written in the following form:

fk+1(y|~xk) ∝ H

(
k⊕
i=1

h(y, xi)

)
, (2.6)

where h and H are functions and
⊕

is a binary operator. The hard-core
model (2.4) is obtained by choosing H(A) = θ1(A < R)+(1−θ)1(A ≥ R),⊕

= min and h as the Euclidean distance. The soft-core model (2.5) is

obtained by choosing H(A) = exp(−A),
⊕

= + and h(y, x) =
(

R
d(y,x)

)2/κ
.

With the formulation (2.6), the likelihood of both models can be
written as follows:

Z−1f1(x1)
n∏
k=2

H

(
k−1⊕
i=1

h(xk, xi)

)
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with the normalising constant

Z =
n∏
k=2

∫
H

(
k−1⊕
i=1

h(y, xi)

)
dy. (2.7)

This formulation allows for efficient likelihood calculations, as we shall see
in Section 5.

Penttinen and Ylitalo (2016) considered more general sequential
models which included a heterogeneity term α(y) and a Markov transi-
tion kernel Kk(y, xk) for the transition from the current point xk to the
next point y. If we extend (2.6) by multiplying it with α(y)Kk(y, xk) and
allowing the ”sum” to stop at k−1 instead of k, then the extended formu-
lation accommodates all the models considered in Penttinen and Ylitalo
(2016).

2.4 Log Gaussian Cox process

Log Gaussian Cox process (LGCP) (Møller et al., 1998; Møller and
Waagepetersen, 2004) is a Poisson process with random intensity eZ , where
Z = {Z(s) : s ∈ R2} is a Gaussian field (i.e. any vector (Z(s1), . . . , Z(sk))
is Gaussian). The distribution of a Gaussian field (and the LGCP) is char-
acterised by the mean function µ(s) = EZ(s) and the covariance function
C(s1, s2) = cov(Z(s1), Z(s2)). We restrict our attention to stationary and
isotropic covariance functions that only depend on the distance between
the two locations, that is, C(s1, s2) = C(d(s1, s2)).

Our main interest will be on the Matérn covariance function

C(r) = σ2
21−ν

Γ(ν)

(√
8ν

r

ρ

)ν
Kν

(√
8ν

r

ρ

)
, r > 0, (2.8)

where ν is the smoothness parameter, ρ is the range parameter, σ2 is the
variance parameter, and Kν is the modified Bessel function of the second
kind (e.g. Cressie, 1993; Chilés and Delfiner, 1999; Banerjee et al., 2004).
The parameter ν of the Matérn covariance function controls the degree of
smoothness: a Gaussian random field with the Matérn covariance function
will have dν − 1e continuous derivatives (Handcock and Stein, 1993).
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2.5 Residuals

Residuals for point processes were introduced in Baddeley et al. (2005)
for processes with known conditional intensity and Waagepetersen (2005)
further suggested them for processes with known intensity. For simplicity
of presentation, here we only consider smoothed residuals for the Poisson
process which are defined with respect to the intensity λ(x) (which is also
the conditional intensity).

Residuals in the point process context are measures (Baddeley et al.,
2005). Smoothed residuals, however, are functions and can be defined with-
out first defining the residuals. Smoothed residual at location u for the
pattern X and a fitted Poisson process can be defined as

s(u) = e(u)

(∑
x∈X

k(u− x)−
∫
W
k(u− v)λ̂(v)dv

)
,

where k is a smoothing kernel, e(u)−1 =
∫
W k(v)dv is an edge correction

factor (cf. Section 3.4) and λ̂(v) is the intensity given by the fitted model.
The interpretation is that a positive smoothed residual at u indicates

that there are more observed points around u than predicted by the model.
However, care must be taken when interpreting the smoothed residuals
since they depend on the user specified smoothing kernel.

8



Chapter 3

Inference methods

Likelihood based methods are generally desirable also in the point pro-
cess context. However, the likelihood can be difficult to compute for point
process models. This is particularly the case in many latent variable mod-
els. One option to handle the likelihood is to use Laplace approximation
(Tierney and Kadane, 1986). For our LGCP model (Article III) we used
the Laplace approximation to marginalise the latent Gaussian field, which
itself was approximated by a Gaussian Markov random field. Sections 3.1
and 3.2 explain these approximations.

For some point process models the likelihood is intractable to the
extent that approximation is difficult or impossible. Several estimation
methods have been developed which can accommodate such models, for
instance minimum contrast methods and the pseudo-likelihood. In Article
II we used approximate Bayesian computation based on simulated sum-
maries, which is described in Section 3.3.

Section 3.4 introduces the edge correction that was used to account
for partially observed covariates of the LGCP model. Preliminary data
analysis and goodness-of-fit assessments are integral parts of inference.
Section 3.5 introduces the Monte Carlo test, Section 3.6 explains a multiple
testing correction used with functional summary statistics and Section 3.7
explains posterior predictive check based on the same principle as the
Monte Carlo test.
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3.1 Laplace approximation

Laplace approximation (e.g. Tierney and Kadane, 1986) can be used to
compute marginal likelihoods by using optimization. It is used for example
in the popular integrated nested Laplace approximation framework of Rue
et al. (2009). Laplace approximation is based on the assumption that the
likelihood has approximately normal shape near the maximum. Let L(x; θ)
be the likelihood of the latent variables x. The Laplace approximation
states that ∫

L(x; θ)dx ≈

√
(2π)n

det(−Hθ(x̂θ))
L(x̂θ; θ),

where Hθ and x̂θ are the Hessian and maximiser of logL(x; θ) and n is the
dimension of x.

3.2 Gaussian random field approximations

Assume that Z is a Gaussian random field in R2 with mean zero and the
Matérn covariance function (2.8) with ν = 0, 1 or 2. Lindgren et al. (2011)
have shown that Z can be approximated by a Gaussian Markov random
field on a regular grid with a sparse precision matrix. In general, the
sparsity of the precision matrix depends on the smoothness parameter ν.
The precision matrix element is non-zero only when |i−k|+ |j− l| ≤ ν+1.

For example if ν = 2, which was used in Article III, then the precision
matrix element for the grid cells (i, j) and (k, l) with |i− k|+ |j− l| ≤ 3 is

Q(i,j),(k,l) = σ−24πν(a− 4)νA|i−k|,|j−l|,

and 0 otherwise. Here

A =


a(a2 + 12) −3(a2 + 3) 3a −1
−3(a2 + 3) 6a −3

3a −3
−1


and a = κ2 + 4, κ =

√
8ν/ρ, where ρ is the range parameter in multiples

of grid cell width and σ2 is the variance.
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3.3 Approximate Bayesian computation

Approximate Bayesian computation (ABC) (e.g. Sunn̊aker et al., 2013)
can be viewed as the Bayesian version of the minimum contrast method,
which has been used in the point process context before (e.g. Illian et al.,
2008; Diggle, 2003; Stoyan and Stoyan, 1994; Møller and Waagepetersen,
2004). The minimum contrast method can be characterised as the method
of moments for functional summary characteristics.

The ABC approach differs from the minimum contrast method in
several ways. As a Bayesian method it aims for producing an approximate
posterior distribution for the parameters instead of a point estimate. The
minimum contrast method is based on a known formula for the expected
value of the summary characteristic, whose discrepancy with respect to
the corresponding data summary is minimised. In contrast, ABC is based
on random samples of summary statistics simulated from the model with
different parameter values.

The ABC methods sample from the approximate posterior πε(θ) ∝
prior(θ)Lε(θ), where the approximate likelihood is

Lε(θ) = P(‖s(Yθ)− s(y)‖ ≤ ε). (3.1)

Here Yθ is simulated from the assumed model with parameter θ, y is the ob-
served data, s is the user specified summary and ε is a tolerance parameter,
balancing between approximation accuracy (smaller ε) and computational
efficiency (larger ε).

We obtained samples from the ABC-posterior based on the approx-
imate likelihood (3.1) by using MCMC as explained in Vihola and Franks
(2020). The method selects the threshold ε automatically and the only
user supplied parameter is the summary function s.

3.4 Edge corrections for a covariate based on a point pat-
tern

Typically only a part of the point pattern of interest is observed and there
is interaction between the points in the observation window and the nearby
points outside the window. This interaction can cause so called edge effects
in simulation and estimation. For example, summary functions typically
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measure different kinds of interactions between points and, due to the
unobserved points, a naive estimator will be biased. To estimate summary
functions with less bias, different edge corrections are used (e.g. Stoyan
and Stoyan, 1994; Baddeley and Gill, 1997).

The simplest edge correction is the minus sampling (e.g. Illian et al.,
2008), that is, restricting the attention to W−, a smaller window where
the neighbourhoods of all points are known. This is wasteful and will lead
to discarding possibly a large amount of data. A better situation would
be if the point pattern was observed in a larger window W+, that is,
neighbourhoods would be observed for all points in W . This is called plus
sampling (e.g. Illian et al., 2008). Unfortunately, plus sampling is often
infeasible.

In Article III, we modelled a point pattern y using another point
pattern x as a covariate, both observed in the window W . The pattern
x was influencing the intensity of y through a computed covariate field
f . The covariate field value f(s,x) at a location s ∈ W depended on the
points near s. Thus some form of edge correction was necessary, and we
adopted the one proposed by Kühlmann-Berenzon et al. (2005).

The edge correction is based on a simplifying assumption that the
point pattern x is a realisation of homogeneous Poisson process X re-
stricted to the observation window W . Under this assumption we use the
expected contribution of the unobserved points to define the Poisson cor-
rected covariate value as

f̃(s,x) = f(s,x) + Ef(s,XW c),

where XW c is the restriction of X to W c, the complement of W .
If f is a sum over the points of the process X, then the expectation

can be computed using Campbell’s theorem (e.g. Chiu et al., 2013). This is
the case with the C shown in (6.1), which was used in Article III. For this
function, the resulting integrals could be efficiently evaluated using the
Fast Fourier Transform (e.g. Oppenheim et al., 1999; Frigo and Johnson,
2005).

3.5 Monte Carlo testing

In point process statistics the distributions of test statistics are usually
not available in an accessible form (e.g. Illian et al., 2008). Thus Monte
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Carlo testing is commonly used. The Monte Carlo test is applicable when
it is possible to simulate under the null hypothesis. The test statistic T1
is computed from the data and n − 1 test statistics T2, T3, . . . , Tn are
simulated under the null hypothesis. Suppose that significance test with
size α is required. Then n has to be chosen such that m = αn is an integer.
The hypothesis is rejected if the observed test statistic is among the m
most extreme values of the n test statistics. The test is exact in the sense
that the type I error is precisely α (e.g. Marriott, 1979).

Model fitting involves finding parameter values and when testing
hypothesis with those parameter values the hypothesis is said to be com-
posite. The simple Monte Carlo test discussed above will not be exact in
general for such a composite hypothesis. An adjusted test was introduced
in Dao and Genton (2014), see also Baddeley et al. (2017). The simple but
possibly biased test is still often used in practice since the adjusted test
can be computationally prohibitive.

Since the summaries are usually functional in the point process con-
text, that is, instead of Ti, we have, Ti(x), the definition of extremeness is
more complicated than with real valued summaries. Traditionally a simple
scalarisation such as an integral or a maximum of the difference between
the functional summary and a reference level has been used (e.g. Diggle,
1979; Ripley, 1979). This can be sufficient if a simple decision is enough.
However, it is often necessary to understand why the hypothesis was re-
jected. In this case global envelopes, which will be discussed next, can be
useful.

3.6 Global envelope

With functional test statistics, global envelope test (Myllymäki et al.,
2017; Myllymäki and Mrkvička, 2020) can be used to produce an envelope
that has the property that the significance of the test is equivalent to
having the observed statistic not stay inside the envelope.

Let Ti(x), i = 1, . . . , n be the realisations of the functional test statis-
tics from which global extreme rank envelope is to be constructed. First,
local ranks of the test statistics are computed as ri(x) = min(rai (x), rdi (x)),
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where

rai (x) = 1 +
∑
j

1(Tj(x) < Ti(x)) +
1

2

∑
j 6=i

1(Tj(x) = Ti(x))

rdi (x) = 1 +
∑
j

1(Tj(x) > Ti(x)) +
1

2

∑
j 6=i

1(Tj(x) = Ti(x))

are the mid-ranks in ascending and descending order. The extreme rank
of a functional test statistic can be computed as Ri = minx ri(x). For
instance, the 95%-critical rank is defined as the 5%-quantile Rc = max{R :
1
n

∑
j 1(Rj < R) ≤ 0.05}. Finally the global envelope is defined as

Tlow(x) = minR
c{T1(x), T2(x), . . . , Tn(x)}

Tupp(x) = maxR
c{T1(x), T2(x), . . . , Tn(x)},

where mink and maxk denote kth smallest and largest values, respectively.

3.7 Posterior predictive check

Posterior predictive checks (e.g. Gelman et al., 2013) can be used to assess
the fit of the model in the Bayesian setting. Posterior predictive checks
are similar to hypothesis testing in practice, but in theory they are quite
different. Roughly speaking, if the model fit is good, the summary statistic
of the data should be consistent with the posterior predictive distribution
of the summary statistic.

Samples from the posterior predictive distribution are generated as
follows. Let θi, i = 1, 2, . . . , n be samples from the posterior. Simulate data
Xi from the studied model with parameters θi and compute the summary
statistic Ti based on Xi. Then Ti, i = 1, 2, . . . , n is a sample from the
posterior predictive distribution of the summary statistic.

Global envelopes can be used to visualise the posterior predictive
distribution of functional summaries. We used this approach for model
assessment in Articles II and III.
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Chapter 4

Estimation of forest characteristics from a sample
plot measured with terrestrial laser scanning

Terrestrial laser scanning (TLS) is a technique where a laser scanner mea-
sures distance from a single point to the nearest visible obstacle in a large
number of directions (Liang et al., 2016). There is great interest to replace
some of the traditional field measurements in forest inventories by TLS
(Liang et al., 2016). In the forest inventory context, extracting single tree
characteristics from the 3D point cloud obtained by TLS is an interesting
research topic in itself (e.g. Liang et al., 2012; Olofsson et al., 2014; Olof-
sson and Holmgren, 2016; Pitkänen et al., 2019). Here we assume that a
2D map of trees with diameter at breast height has been extracted from
a single scan.

Single scan TLS cannot see behind trees or other obstacles as il-
lustrated in Figure 4.1 A. This limits the usefulness of the technique in
forest inventories (Liang et al., 2016). Several corrections for the nonde-
tection have been considered. For example Ducey and Astrup (2013) and
Astrup et al. (2014) proposed distance sampling methods. Seidel and Am-
mer (2014) corrected for the shadowing based on the visible area which is
shown in Figure 4.1 A. Olofsson and Olsson (2018) investigated the same
correction for different detection rules. Detection rules model the necessity
to detect more than a single point on the stem of the tree, for example, the
whole tree could be required or only the center point of the tree. Olofsson
and Olsson (2018) observed a large bias with some detection rules even
when the trees in the forest were assumed to follow a Poisson process.
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A

+
x

B

+
x

C

+
x

Figure 4.1: The trees (circles), scanner (+) and a test tree (x). A tree with
size similar to the test tree is visible to the scanner if its center is in the
white region. Panels A, B and C correspond to the detection rules 2, 1
and 4, respectively.

In Article I we proposed an estimator where the visible area is com-
puted taking into account the detection rule. For example if the complete
stem is required for detection then the area shadowed by each tree is larger
than when only the center point of the tree is required to be seen (see Fig-
ure 4.1 A and C). Moreover the shadowing also depends on the size of the
tree to be detected.

We considered four detection rules which were also considered in
Olofsson and Olsson (2018). Let V (X) denote the visible region seen from
the scanner, as in Figure 4.1 A, corresponding to forest (marked point
pattern) X.

1. Visible detection: A tree at location x with diameter d is detected if
any part of it is visible

v(x, d,X) = 1(B(x, d/2) ∩ V (X) 6= ∅).

2. Center detection: A tree is detected if its center point x is seen

v(x, d,X) = 1(x ∈ V (X)).

3. Proportional detection: This is a weighted version of the detection
rule 1. Trees are weighted by the proportion of their circumference
that is visible. Here we use the circle ∂B(x, d/2) to define the visible
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proportion. In this case,

v(x, d,X) =
len(∂B(x, d/2) ∩ V (X))

len(∂B(0, d/2))
,

where len is the boundary length.
4. Complete detection: A tree is detected if it is completely visible

v(x, d,X) = 1(B(x, d/2) ⊂ V (X)).

For detection rule 2 our estimator coincides with the estimator of Olofsson
and Olsson (2018). Figure 4.1 shows detected trees for detection rules 1,
2 and 4.

Consider a marked point pattern X (the trees) in W (the forest
stand) with marks: diameter d and the mark of interest m. If the interest
is in the tree density, the mark of interest is 1. The aim is to estimate

T =
1

|W |
∑

(x,d,m)∈X

m1(x ∈W ),

where |W | is the size of the window W . The proposed estimator for T is

T̂ =
∑

(x,d,m)∈X

m
v(x, d,X)

w(d,X)
,

where w(d,X) =
∫
W v(y, d,X)dy and v is the detection rule. We showed

in Article I that ET̂ ≥ ET if X is a Poisson process and argued that the
bias can be small.

A simulation study was executed to evaluate the performance also in
non-Poisson cases and to compare with the estimator proposed by Olofsson
and Olsson (2018). We found that the proposed estimator works consis-
tently well with different detection rules, solving the problem with the
earlier estimator that different detection rules could cause large biases,
even in the Poisson case. Moreover, the proposed estimator was found
to have positive bias with regular patterns and negative with clustered
patterns.
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Chapter 5

Analysis of sweat gland patterns

The dynamic sweat test was presented by Provitera et al. (2010) to help
diagnose neuropathy, which could be caused by diabetes, for example.
In this test, sweating is stimulated by placing a patch with pilocarpine
gels on the test site, foot or calf. Then, the test site is dried and painted
with iodine solution. Finally, a camera is placed on the skin and a video is
recorded for 60 seconds. The accumulation of sweat is visible on the video.
Typically subjects with neuropathy have less sweat produced and smaller
number of active sweat glands than healthy controls.

The data analysed in Article II have been collected by Dr. William
R. Kennedy’s group at the University of Minnesota by using the dynamic
sweat test. The sample consists of 5 healthy controls, 5 subjects who had
reported having symptoms of neuropathy (MNA), and 5 with diagnosed
neuropathy (MNA Diagnosed). The size of the video frame is 2592× 1944
pixels corresponding to 17.5 × 13 mm2. The video shows the sweat pro-
duced as dark areas (Figure 5.1).

In Article II we sought spatial characteristics that could characterise
the healthy and diseased patterns. The first step was to extract point pat-
terns from the video data. To extract the coordinates of the individual
sweat glands, that is the point patterns, from the videos (see Figure 5.1),
several image analysis steps were needed. Instead of a frame-by-frame
approach, we applied an algorithm based on the detection of a change
point to the time series of grey scale values for each individual pixel. This
pixel-by-pixel approach suits to the video sequences, where the sweat ac-
cumulates and does not dry once it has appeared, much better than going
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Figure 5.1: A sequence of snapshots at 1 sec (top left), 15 sec (top right),
30 sec (bottom left), and 60 sec (bottom right) of one control subject with
extracted gland locations (+). The size of the image is 17.5× 13 mm2.
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Figure 5.2: Time series for four pixels with estimated jump locations
(frames) marked by dashed lines.

through the videos frame by frame, because the sweat gland locations are
the easiest to detect at times when the sweat first appears.

Testing for a change point is a well studied problem in statistics (e.g.
Hinkley, 1970; Yao and Davis, 1986; James et al., 1987; Pettitt, 1979).
Here, however, the problem is not purely of statistical nature. There ap-
peared to be some jumps possibly due to the changing lightning conditions
that were not real jumps caused by sweat accumulation but clear enough
to be detected by a statistical change point test. In Figure 5.2, the series
number 3 (blue curve) shows an example of such a spurious change point.
We used a similar principle as in the statistical change point tests to locate
the most likely change point. To decide if the change point was caused by
sweat filling a pixel we applied a simple threshold instead of a statistical
test. Only changes that were larger than the threshold were accepted. The
threshold for each individual video was chosen from a range of values by
looking at the final result for each threshold and selecting the one that
gave the best result visually.

More precisely, the change point was defined as the integer value 1 ≤
t < T that minimises ft = s21,t + s2t+1,T , where T is the length of the time

series and s2i,j is the sample variance of xi, xi+1, . . . , xj . The main difference
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compared to the methods presented in the literature (e.g. Hinkley, 1970)
is that we minimised the sum of sample variances instead of the sums of
squared residuals.

The method was originally developed in Article II as a tool to find
the change point, but it can be also seen as a maximum a posterior estimate
for a Bayesian model. The model is the following. Let t be a potential
change point, µ1 and µ2 the means of the process before and after the
change point and x1, x2, . . . , xT the time series. The change point model
is

xi ∼

{
N(µ1, t/2), for i ≤ t
N(µ2, (T − t)/2), for i > t.

Additionally a U-shaped prior is needed for t

prior(t) ∝ tt/2(T − t)(T−t)/2.

This prior quite strongly prefers change points in the beginning or end of
the series. Other parameters had improper uniform priors.

We first modelled the activation of sweat glands using sequential
point processes (Section 2.3). The first try was the hard-core process (2.4).
We quickly observed that a hard-core model was too hard, producing too
sharp changes in the pair-correlation functions, and instead tried the soft-
core model (2.5). We fitted the models with maximum likelihood. Since
the density of the soft-core process (2.5) was known only up to a constant
factor, we computed the normalisation factor similarly as Penttinen and
Ylitalo (2016).

In particular, we applied numerical integration with regular grid
of integration points to the integrals (2.7). Following the formulation in
Section 2.3, the numeric approximation of logZ can be written as

n∑
k=2

log

J∑
j=1

wjG

(
k−1⊕
i=1

g(yj , xi)

)
,

where yj are the integration points, and wj are the integration weights.
Since g(yj , xi) are independent of k, their computation can be reused. This
reduces the number of evaluations of g(yj , xi) and the operator

⊕
for each

integration point from quadratic to linear. This is a key to more efficient
inference.
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For some sweat gland patterns, the soft-core model gave results that
were not completely satisfactory. On the left of Figure 5.3, the simulated
pair correlation functions are notably different from the observed pair
correlation function. The problems were associated with the patterns that
had non-zero pair correlation well before the steep upward slope. Careful
inspection of the videos revealed that the non-zero pair correlation was
mainly caused by erroneously detected points close to other points.

Our next sequential model was an attempt to accommodate such
anomalies by a mixture model where the density of the next point was a
mixture of soft-core and uniform components,

f(y|~xk, R, κ, θ) = (1− θ)fSC(y|~xk, R, κ) +
θ

|W |
,

where fSC is the soft-core model (2.5) and θ is the mixture proportion.
The middle panel in Figure 5.3 shows the pair correlation function of
this model. The upward slopes of the simulated and observed pair cor-
relation functions are located reasonably close to each other. Thus, the
model with the mixture component was superior compared to the soft-
core model. However, the uniform distribution was not a realistic model
for the erroneously detected points. Visual inspection revealed that the er-
roneous points were always points that were close to other points. For this
reason the mixture proportions were not usefully related to the proportion
of errors, and it is better to regard the mixture model as an estimation
method for the soft-core model in the presence of erroneous points.

The mixture model was much better but still not quite satisfactory.
There was still a clear difference in the steepness of the slope of the sim-
ulated and observed pair correlation functions (Figure 5.3, middle). Our
next model was a completely different generative model for the sweat gland
formation and activation processes.

In the generative model the formation of sweat glands and their
activation were modelled separately. We started with a simple sequential
inhibition (Section 2.2) process with hard-core parameter R. To get some
softness in the process we added independent isotropic identically dis-
tributed Gaussian perturbation with standard deviation σ to each point.
To model the activation we further applied an independent thinning with
probability (1− p).
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Figure 5.3: Empirical pair correlation functions (black lines) for subject
205 in the end of the video recording together with 95% global envelopes
(grey areas) constructed from 25000 simulations from the soft-core model
estimated without (left) and with (middle) noise and from the posterior
predictive distribution of the generative model (right). Here, r = 100 cor-
responds to approximately 0.7 mm.

Since the likelihood of the proposed generative model is not
tractable, but the model is relatively straightforward to simulate, we used
approximate Bayesian computation (ABC) inference. For such a regular
point process model, it was natural to use summary statistics based on
the pair correlation function g, illustrated in Figure 5.3. Intuitively, the
location of the upward slope of the pair correlation function would be infor-
mative about the hard-core parameter R. The steepness of the slope would
be informative about the noise component σ. Further the activation prob-
ability p is closely related to the amount of empty space. To capture the
location and steepness of the upward slope of the pair correlation function
(2.1) we selected the smallest distances r1, r2 ≥ 10 pixels (approximately
0.07 mm) where g(r1) = 0.75 and g(r2) = 1 as summaries. For the empty
space we chose r3 = F−1(0.5), where F is the empty space function (2.3).
These choices helped avoiding the effect of erroneous detection of points
close to other points.

In Figure 5.3 (right) the simulated pair correlation functions are very
close to the observed one, even though the simulation uses the posterior
predictive distribution instead of a point estimate for the model parame-
ters. We also inspected the posterior predictive distributions of the empty
space function and the K-function. These summaries did not show evi-
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Figure 5.4: The original point patterns (top) and patterns generated
from the corresponding posterior predictive distributions of the genera-
tive model (bottom) for one subject from each group (96, 20 and 42). The
size of the window is 17.5× 13 mm2.

dence of substantial misfit. Figure 5.4 shows examples of simulated and
observed point patterns, which look very similar. Even some empty re-
gions similar to those observed in Provitera et al. (2010) are present in
the simulated patterns. The activation probability was higher for controls
than other groups agreeing with earlier studies where controls were found
to have higher density of sweat spots than other groups.
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Chapter 6

Modelling the regeneration patterns

Recently there has been a lot of interest in continuous cover forestry (Ku-
usinen et al., 2019; Juutinen et al., 2018). The basic idea of continuous
cover forestry is that clear cuts are not performed and thus a forest always
looks more or less like a forest that has trees from all size classes. How-
ever there are a lot of management decisions that have to be made. One
important question is what kind of management would ensure a success-
ful regeneration. This motivates the research of Article III: We aimed for
modelling the effect of large trees on the seedlings to build understand-
ing of the regeneration in a continuous cover forest managed by selection
cutting.

We modelled the intensity of new seedlings in an uneven-aged forest
given the locations of large trees. The data consist of 14 sample plots in
Southern Finland (Figure 6.1) (Eerikäinen et al., 2007; Eerikäinen et al.,
2014; Saksa and Valkonen, 2011). We used a log Gaussian Cox process
(LGCP) since the seedling patterns are clustered. Following Pommerening
and Grabarnik (2019) we modelled the effect of the large trees X as an
influence field. The influence field

C(s;X) =
∑

[x,m]∈X

c(‖s− x‖,m). (6.1)

is a superposition of kernels c attached to each tree. We used the influence
kernel

c(h,m) = mα exp

(
−
(

h

θmδ

)2
)

(6.2)
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Figure 6.1: Trees with diameter at breast height (dbh) at least 7 cm (open
circles with radii relative to the dbh of the tree) and new seedlings (red
crosses) in areas of size 40 m× 40 m. The headings give abbreviations for
the plot locations and numbers.

where θ > 0, δ ≥ 0, and α ≥ 0 are parameters.
The model for the seedlings was a LGCP. The mean function of the

Gaussian process was

β0 + β1C(s;X),

where β0 and β1 are parameters, and the covariance function was the
Matérn covariance function (2.8).

We modelled the sample plots as independent replicates of the
same LGCP but with plot specific intercepts β0k to accommodate varying
seedling intensities. We discretised the problem using a regular grid. Since
the discretised random field has quite high dimension and the covariate
is nonlinear there were no readily available software to do the inference.
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Instead, we used the Laplace approximation (Section 3.1) and GMRF
(Section 3.2) to deal with the high dimension of the latent random field,
and MCMC to estimate the few remaining parameters. Since the large
tree pattern was only observed in the same window as the seedlings we
applied the Poisson correction (Section 3.4) for the influence field.

We conducted a simulation experiment to assess the performance of
the Poisson correction, comparing it to no correction and plus sampling,
which is the ideal case. The large tree patterns were generated from either
a Poisson process or a hard-core process (see Article III for details). If
the influence of the large trees was modest, the edge effect was small,
but when the influence had somewhat long range, the Poisson correction
produced results that were much closer to the plus sampling than without
any correction.

We tried four different influence kernel models for our tree data,
and one model without influence kernel. Three of the models were mark
dependent. The first model was (6.2) and the two others were (6.2) with
either α or δ set to zero. The fourth model was mark independent, that
is, (6.2) with both α and δ set to zero. The last model had no influence
kernel.

We constructed 95% global envelopes (Section 3.6) based on poste-
rior predictive distributions (Section 3.7) for several summary statistics
(see Article III for details). Figure 6.2 shows the global envelopes for the
cross pair correlation function (2.2) between the trees and seedlings for the
complete model with three parameters (dotted lines), the mark indepen-
dent model (grey shade) and the model with no influence (dashed lines).
All mark dependent influence models produced very similar envelopes. The
other summary functions, that only described the seedling pattern, were
very similar for all models, see Article III for the figures. Based on the
envelope tests using the influence kernel had a strong effect on the model
fit, while using the mark was not important. According to the final model
with mark independent influence kernel, the seedlings had a preference for
locations with no large trees in the immediate vicinity.
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Figure 6.2: Empirical cross pair correlation functions (solid line) between
trees and seedlings together with the 95% global envelopes constructed
from 10 000 simulations from the posterior predictive distribution of the
fitted LGCP models for the 14 plots in Figure 6.1 with mark indepen-
dent (grey shade), mark dependent (dotted lines), and no (dashed lines)
influence.
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Chapter 7

Testing for a covariate effect on a point pattern

It can be useful to explain the intensity of a point pattern using a co-
variate field. If there are multiple covariates the question arises which of
the covariates should be included in the model. In Article IV we proposed
two new spatial test statistics for testing the hypothesis that a particu-
lar covariate should be included in a model. They both give information
on the locations where the covariate has a significant effect on the point
pattern intensity. The first test statistic directly compares the residuals of
the competing models while the second one, loosely speaking, compares
the gradients of the residuals.

For simplicity of presentation we assume that there is an interesting
covariate field C and a nuisance covariate field U . Moreover we assume
that we have observed a point pattern X which is modelled as the inho-
mogeneous Poisson process with intensity

λ(u) = exp (βC(u) + γU(u)) , (7.1)

where β and γ are regression coefficients. The question of interest is
whether the covariate C should be included in the model, or not. There
are many alternatives for performing such a test, for example, the likeli-
hood ratio test (Baddeley et al., 2015, p. 372), and the Wald test (Baddeley
et al., 2015; Coeurjolly and Rubak, 2013; Waagepetersen and Guan, 2009),
which are both based on asymptotic distributions of the test statistics.

We considered two functional test statistics. The first proposed test
statistic is

F (u) = s0(u)2 − s1(u)2,
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where s1 is the smoothed residual field from the fitted model with intensity
(7.1) and s0 is the smoothed residual field from the fitted null model with
the following intensity

λ(u) = exp (γU(u)) .

The second proposed test statistic is

S(u) =

∫
B(u,R)∩W (s0(x)− s̄0(u))2dx∫
B(u,R)∩W (s1(x)− s̄1(u))2dx

, (7.2)

where R is a smoothing parameter, in general different from the one used
in the smoothed residuals, and

s̄i(u) =
1

|B(u,R) ∩W |

∫
B(u,R)∩W

si(x)dx

is the mean value of si within B(u,R) ∩W .
The following result, which was not reported in Article IV, consol-

idates the interpretation of S(u) as the gradient of the residuals when R
is small.

Theorem 1. If s0 and s1 are differentiable at u, an interior point of W ,
then

lim
R→0

S(u) =
‖∇s0(u)‖2

‖∇s1(u)‖2
.

Proof. To see this let BR stand for the ball at the origin with radius R.
Since si is differentiable at u, the function fR : B1 → R defined as

fR(x) =
si(u+Rx)− si(u)

R

converges uniformly to f0(x) = ∇si(u) · x as R→ 0. Uniform convergence
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allows us to interchange the order of integration and limit and thus

s̄i(u)− si(u)

R
=

1

|BR|

∫
BR

si(u+ x)− si(u)

R
dx

=
1

|B1|

∫
B1

si(u+Rx)− si(u)

R
dx

→ 1

|B1|

∫
B1

∇si(u) · x dx

=
1

|B1|

∫
B1

‖∇si(u)‖x1 dx,

where the last equality follows from a change of variables by a rotation
to align the first coordinate with the vector ∇si(u). The last integral is
zero because of anti-symmetry of x1. Now the numerator/denumerator of
(7.2), when scaled appropriately, satisfies

1

R2

|B1|
|BR|

∫
BR

(si(u+ x)− s̄i(u))2dx

=
1

R2

∫
B1

(si(u+Rx)− s̄i(u))2dx

=
1

R2

∫
B1

(si(u+Rx)− si(u) + si(u)− s̄i(u))2dx

→
∫
B1

(∇si(u) · x)2dx

= ‖∇si(u)‖2
∫
B1

(x1)
2dx.

Since the null distributions of these test statistics are unknown, we
employ a Monte Carlo test as discussed in Section 3.5. First the null model
is fitted to the data. A number n of simulations are generated from the
fitted null model. Test statistics are computed for the data and the sim-
ulated patterns. A global envelope (Section 3.6) is constructed from the
test statistics. If the test statistic of the data is outside the envelope then
the null hypothesis is rejected.

The proposed tests easily generalise to Gibbs and Cox processes,
multiple covariates and multiple nuisance covariates. In Article IV we con-
ducted a simulation experiment to study the empirical performance of the
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proposed test statistics compared to the Wald test. It was found out that
the performance of the proposed tests was comparable to the Wald test in
the investigated cases.
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Chapter 8

Discussion

This work originated from applied problems in forestry and medicine.
Various challenges arose in modelling which demanded development of
methodology, new models and employing a range of inference methods.
Challenges were caused by anomalies such as spurious or missing points,
effects of covariates in a point process model, nonlinear covariates and
likelihoods that were difficult to handle.

In Article I we developed an estimator for forest characteristics based
on a tree map obtained by a single terrestrial laser scan. The estimator
was found to be clearly better than the earlier method of Olofsson and
Olsson (2018). Later, another estimator was developed by Kansanen et al.
(2021). Their simulation study, comparing all the three methods above,
confirmed the findings in Article I and found little differences between our
and their estimators. However, their estimator is unbiased for the Poisson
case and even has an estimator for the variance.

The strategy of accounting for the spurious points in the inference
worked in the case of sweat gland activation data in Article II. Based on
the small data sample we were able to confirm earlier findings. However, we
found no evidence against the hypothesis that the sweat glands activate
independently. It might still be that there is some patterning to which
the used summary functions are blind. The next step in studying the
sweat gland activation would be to implement several activation strategies
and evaluate the performance of the summary functions in classifying the
activation patterns. If no good summary function would be found, a new
summary should be developed that is more sensitive to the differences in
activation patterns. Certainly, it would be interesting to study these issues
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for larger numbers of subjects, taking into account also subject related
covariates, like age and body mass index.

In Article III we investigated seedling patterns in forests managed
under continuous cover forestry, by using a LGCP with influence field
induced by large trees, a nonlinear covariate. Based on the model assess-
ment, using the influence field had a strong effect on the model fit, while
the tree size played a minor role. Our findings with the final model with
size independent influence kernel suggested that the seedlings preferred lo-
cations with no large trees in the immediate vicinity. We used the LGCP
model as a general model for all the sample plots. During the model fitting
the sample plots with very few seedlings were somewhat problematic. This
was partially the reason for using the same covariance parameters for all
sample plots. A possible reason for the problems is that the Laplace ap-
proximation struggles with very sparse data. Although there are multiple
methods for dealing with a LGCP, a robust method for working with non-
linear covariates is missing. It is also clear that for a sample plot with very
few seedlings a simpler model, like Poisson process, would be sufficient.

In Article IV we introduced two new test statistics for testing for
the effect of a covariate in a parametric point process model. The intro-
ductory part of this thesis complemented Article IV by providing a small
scale interpretation for the second test statistic (7.2). An advantage of the
new tests is that they produce a map of significant regions and in this
way provide local information, which can be useful as a model diagnostic.
Another advantage is that the proposed tests could be used in situations
where the Wald test is not applicable as such, for example with cluster
processes estimated using the composite likelihood. Although they work
also for more complex processes than the Poisson process, the computation
effort required also increases significantly.
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Abstract: A problem in the single-scan setup of terrestrial laser scanning is that some trees are shaded by others and therefore

not detected in the scan. A basic estimator for forest characteristics such as tree density or basal area is based on the visible area

of a scanner. However, simply compensating for nondetection by the visible areamay result in considerable bias even in Poisson

forests, especially if the detection of a tree depends on its size. We propose a new estimator that is a generalization of the visible

area based estimator. Most importantly, the new estimator allows different detection rules; for example, full or partial visibility

of a tree can be required for detection. By a simulation study, it is shown to work adequately in different types of simulated and

empirical forests with different detection rules.

Key words: terrestrial laser scanning, nondetection, single scan, spatial point pattern, tree density estimator.

Résumé : Un problème inhérent à l’utilisation du balayage laser terrestre avec un seul balayage vient du fait que certains arbres

sont cachés par d’autres et ne sont donc pas détectés dans l’analyse. Un estimateur de base des caractéristiques de la forêt,

comme la densité ou la surface terrière, est basé sur la zone visible d’un balayage. Cependant, une simple compensation de la

non-détection par la zone visible peut entraîner un biais important même dans les forêts répondant à une distribution de

Poisson, surtout si la détection d’un arbre dépend de sa taille. Nous proposons un nouvel estimateur qui est une généralisation

de l’estimateur basé sur la zone visible. Plus important encore, le nouvel estimateur permet d’utiliser différentes règles de

détection; par exemple, la visibilité requise pour la détection d’un arbre peut être complète ou partielle. Une étude par

simulation, a montré qu’il fonctionne correctement dans différents types de forêts, simulées et empiriques, avec différentes

règles de détection. [Traduit par la Rédaction]

Mots-clés : balayage laser terrestre, non détection, balayage unique, configuration spatiale de points, estimateur de la densité

d’arbres.

1. Introduction
There is great interest in replacing at least part of traditional

field measurements in forest inventories by terrestrial laser scan-

ning (TLS). As soon as the best practices with TLS become known,

it is expected that TLS will be used operationally in forest inven-

tories (Liang et al. 2016). Meanwhile, there are still many open

questions about its use.

TLS can be used in single- and multi-scan setups for field plot

inventories. An advantage of the multi-scan situation, where the

TLS instrument is positioned at several locations in the field plot,

is that, at least in principle, all of the trees in the field plot can be

detected (increasing the number of scans). In such a situation, the

estimation of forest characteristics is rather straightforward after

the tree characteristics have been extracted from the TLS point

cloud, which certainly is a challenging problem on its own (see,

e.g., Liang et al. 2012; Olofsson et al. 2014; Olofsson and Holmgren

2016). On the other hand, the fieldwork of the multi-scan setup

can be rather time consuming, thus expensive, demanding not

only that the scans be done at several locations, but also co-

registration of the different scans. The main advantage of the

single-scan setup is indeed that it is fast to position the scanner

only in one location, typically in the middle of the field plot,

which makes it an interesting technique for operational forestry
(e.g., Astrup et al. 2014). The downside of the cost efficiency is that
some of the trees in the field plot are not detected or they are only
partly detected due to lack of visibility. The nondetection rate of
trees obviously depends on the plot size and forest type, and there
are several studies that have considered nondetection rates em-
pirically: Liang et al. (2016, tables 2 and 3) provides summaries of
the accuracy of stem detection and plot-level estimation of mean
diameter (diameter at breast height, dbh) of the single-scan
method in previous studies. Because of nondetection, the estima-
tion of forest characteristics needs careful treatment.
The current study deals with estimation of forest characteristics

after the tree stem coordinates and dbhs of trees have been ex-
tracted from a TLS point cloud. Some studies have already pre-
sentedmodels for compensating for the nondetection problem in
the single-scan setup. Jupp et al. (2005), Strahler et al. (2008), and
Lovell et al. (2011), besides extensive work with TLS data including
identifying tree characteristics, compensated for nondetected
trees using gap probabilities under the Poisson forest assumption.
Ducey and Astrup (2013) and Astrup et al. (2014) used distance
sampling methods. On the other hand, Seidel and Ammer (2014)
and Olofsson and Olsson (2018) compensated for the nondetected
or visible area of the plot. More precisely, Olofsson and Olsson
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(2018) took the region visible from the scanner as the sampling

window, which may be regarded as the most obvious correction

for nondetection.

Our focus is solely on further development of the latter correc-

tion type, which may be attractive due to their simplicity.

Olofsson and Olsson (2018) studied the performance of the sim-

ple visible area based estimator and found that if only a small part

of a tree is required for the tree to be detected, i.e., to be included

in the sample, then the simple estimator is seriously biased even

in the Poisson forest case. The finding was similar for a detector

that required full visibility of the tree. Olofsson and Olsson (2018)

concluded that a careful choice of the detection rule is needed to

obtain unbiased estimates even in Poisson forests. However, the

detectors leading to unbiased results may not be the most reason-

able ones in practice.

We propose a new estimator for forest characteristics such as

tree density and basal area from a set of tree stem coordinates and

dbhs extracted from a single terrestrial laser scan. This estimator

allows, in principle, the use of any detector. It can be seen as a

refined visible area based estimator. We study its accuracy and

precision in simulated and empirical data using four different

detectors.

2. Materials and methods

2.1. Visible area
Similarly as in Olofsson and Olsson (2018), we assume that non-

detection of trees in a single terrestrial laser scan is caused only by

the tree trunks and that the cross sections of tree trunks are

perfect circles. This refers to an “easy” forest with no understorey

vegetation or tree branches affecting the visibility. Therefore,

given a set of tree coordinates and the tree dbhs, the visible area of

a scanner can be determined simply by geometric rules. Figure 1

illustrates the visible area and shows that some trees are com-

pletely or partly shaded by other trees in a single terrestrial laser

scan (also see Olofsson and Olsson 2018). From here on, we will

denote the set (or area) that is visible from the scanner by V(X),
where X will be explained below.

In practice, the visible area needs to be estimated fromTLS data.

In addition, to use the estimators considered in this paper, we

assume that location and dbh of each detected tree (by a certain

detection rule) have been extracted from TLS data.

2.2. Estimator
We first define the proposed estimator in terms of a marked

point pattern (see, e.g., Illian et al. 2008) X = {(xi, di, mi)} of trees

that are in a forest area W � R2. Here x denotes the location of a

tree (stem), d is the dbh, andm is themark for which total per unit

area is to be estimated. For example, the marksm = �d2/4 and m =

1 lead to the estimation of basal area (per hectare) and tree den-

sity, respectively. Using this notation, the variable of interest, i.e.,

the total per unit area (T), is

T � 1

|W| �
(x,d,m)�X

m1(x � W)

where |W| is the size of the area W and 1(…) is the indicator

function that takes the value 1 if the condition in the parenthesis

is true and 0 otherwise.

We propose the estimator

(1) T̂ � �
(x,d,m)�X

mv(x, d,X)
w(d,X)

where v(x, d, X) is the detection function and

(2) w(d,X) � �
W
v(y, d,X)dy

is the weight. Note that the sum in eq. 1 is over all trees of the
marked point pattern X in W. However, the detection function
v(x, d, X) determines the contribution of a tree, and this contribu-
tion is positive only for detected trees. For undetected trees,
v(x, d, X) = 0. Further, note that the contribution v(x, d, X) of a tree
depends not only on the location (x) and dbh (d) of the tree, but
also on the whole marked pattern of trees (X) because the other
trees affect whether or not the tree is detected. For some detection
functions, the weight (eq. 2) has an intuitive interpretation as the
area of the set where a tree with dbh d would be detected. Exam-
ples of detection functions will be given below in section 2.2.1.
Estimator (1) is motivated by a heuristic calculation in a Poisson

process setting that is explained in Appendix A. There it is found
that the estimator has positive bias in the Poisson process case,

ET̂ ≥ ET

There appears to be a somewhat close relationship between our
estimator (1) and the Horvitz–Thompson estimator (Horvitz and
Thompson 1952), which multiplies the sample values by the in-
verse of the inclusion probability. To see this, consider the case in
which the scanner is located randomly in the forest area W, the
tree locations are fixed, and the detection function v obtains only
the values 0 and 1. The inclusion probability of a tree at location x
and having dbh d is then

(3)
1

|W|
�
W
vs(x, d,X)ds

where s is the scanner location and vs is the detection function for
a scanner located at s. The problem here is, of course, that eq. 3
depends, in general, on the trees that are not seen. The difference
between the Horvitz–Thompson estimator and our estimator (1) is
that in eq. 3, the integral is over the scanner location and the tree
is fixed, whereas in eq. 2, the integral is over the tree location and
the scanner location is fixed.

2.2.1. Detection functions
We consider four different detection functions for which it is

necessary first to introduce some notation. Recall that V(X) de-
notes the set (or area) that is visible from the scanner and Fig. 1

Fig. 1. Illustration of the visible area of a scan restricted to the

square window. The white area represents the visible region for the

scan centered at +; the grey area is not visible.

+
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illustrates how we define the visible region for a scan. Following
Chiu et al. (2013), we use the following notation for a set A and a
real number r ≥ 0, A�r � A � B�o, r� for morphological dilation,
A�r � A � B�o, r� for morphological erosion, vA for the boundary
of A, and l(A) for the length of A whenever it makes sense. Here,
B(x, r) is a disc centered at x and having radius r.
We study four detectors also considered in Olofsson and Olsson

(2018). Figure 2 illustrates these different detection rules.

1. Visible detection: a tree is detected if any part of it is visible. Then

v(x, d,X) � 1[B(x, d/2) � V(X) ≠ Ø]

Because this detection function corresponds to

v(x, d,X) � 1[x � V(X)�d/2]

the weight function is simply

w(d,X) � |W � V(X)�d/2|

2. Center detection: a tree is detected if its center point x is seen.
Then

v(x, d,X) � 1[x � V(X)]

and

w(d,X) � |W � V(X)|

3. Proportional detection: this is a weighted version of the detec-
tor Visible. Trees are weighted by the proportion that is visi-
ble. Here we use the circle vB(x, d/2) to define the visible
proportion. In this case,

v(x, d,X) � l[�B(x, d/2) � V(X)]
l[�B(0, d/2)]

It turns out that if the scanner is not too close to the bound-
ary ofW, V�X��d/2 � W, the weight function has a simple form,
namely

w(d,X) � |W � V(X)|

which follows from noting that

�
W
l[�B(x, r) � A]dx

� �
R2

l[�B(x, r) � A]dx

� �
R2
�
�B(0,r)

1(x � y � A)dl(y)dx

� �
�B(0,r)

|A|dl(y)

� 2�r|A|

4. Complete detection: a tree is detected if it is completely visible.

Then

v(x, d,X) � 1[B(x, d/2) � V(X)]

and

w(d,X) � |W � V(X)�d/2|

Detectors 1–4 were also considered in Olofsson and Olsson
(2018) in the estimator

(4) T̂′ � �
(x,d,m)�X

mv(x, d,X)
|V(X)|

By a simulation study, Olofsson and Olsson (2018) concluded that

estimator T̂′ was approximately unbiased for the detectors Center
and Proportional, whereas it was clearly biased for the detectors
Visible and Complete. We note that estimator (4) coincides with
our estimator in the case of the detectors Center and Proportional
(up to how the stem visibility ratio is defined) in the case in which
V�X� � W.

2.3. Data for the simulation experiment
Our simulation study had three parts to study the behaviour of

estimator (1): (i) the case of Poisson-distributed stem positions and
equal dbhs for all stems; (ii) simulated spatial patterns of the trees
where the stem coordinates exhibit different degrees of regularity
or clustering and independent stem dbhs; and (iii) empirical
data. In case i, we also included comparison with estimator (4).
Sections 2.3.1 and 2.3.2 below describe the Poisson, regular, and
clustered models. Section 2.3.3 presents the empirical data.
For the simulated spatial patterns (i and ii), the simulation win-

dow was set toW = [0, 40 m] × [0, 40 m]. The parameter values of

Fig. 2. (Left) Illustration of the detectors Visible (1), Center (2), and Complete (4) for a scan centered at +. The labels indicate which detectors

detect which trees. The tree without label is not detected by any of these detectors. (Right) Illustration of the detector Proportional. The

number next to the circle is the proportion that is visible.
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the models regarding tree density and dbh were selected to be

realistic for Finnish forests.

2.3.1. Poisson forests
Poisson-distributed stem positions were obtained by first simu-

lating the number of stems n from the Poisson distribution with

mean �|W| and then generating the locations of the n points uni-
formly inW. We considered the properties of estimators (1) and (4)

by simulation for varying � from 150 to 2500 trees per hectare. In

each simulation, a fixed dbh was used. We used the following

values of dbh: 5, 10, 20, and 45 cm.

2.3.2. Regular and clustered forests with independent stem dbhs
The model for regular forests was a Strauss process with an

interaction radius of 2 m and an interaction parameter � control-
ling the strength of interaction (see, e.g., Illian et al. 2008). This

process is a model for spatial inhibition, ranging from a strong

“hard core” inhibition (� = 1) to a completely random pattern (� = 0).
We fixed the number of trees to n = 160 in our simulation

window corresponding to 1000 trees per hectare. Figure 3 (top
row) shows three examples of simulated patterns with � = 0, 0.5,
and 1.
The model for clustered forests was the log Gaussian Cox pro-

cess (Møller et al. 1998; Illian et al. 2008) in which the density of

the points is given by exp[Z(s)], s � R2, where Z is an underlying
Gaussian process. We used the Matérn covariance function as the
covariance function of the Gaussian process. The smoothness and
variance parameters were fixed to 2 and 1, respectively. To obtain
different degrees of clustering, we varied the correlation range �
of the Matérn covariance function between 1 and 10 m. The corre-
lation range was defined as the distance where correlation drops
to approximately 0.05. In our simulations, we fixed the number of
trees to the same n = 160 inW as used in the regular process and
simulated the tree locations according to exp[Z(s)] in W. Figure 3
(bottom row) shows three examples of simulated patterns with � =
1, 5, and 10.
In both cases, four differentWeibull distributions were used for

dbh. We selected basal areas 3, 12, 20, and 35 m2·ha−1 and chose

thereafter the parameters of the Weibull distribution using the

method of Siipilehto and Mehtätalo (2013). The mean dbhs corre-

sponding to the selected basal areas were 6, 12, 15, and 21 cm.

The simulations were performed using R (R Core Team 2017)

libraries rstrauss (https://github.com/antiphon/rstrauss), spatstat

(Baddeley et al. 2015), and RandomFields (Schlather et al. 2015).

2.3.3. Empirical data
The empirical data consisted of observations and measure-

ments for 30 field plots located in southern Finland with a size of

approximately 32 m × 32 m, previously used by Tomppo et al.

(2017). The locations of these plots were selected subjectively from

forests in which estimation of stem volume and other forest re-

source characteristics with airborne laser scanning data usually

leads to large root-mean-square errors (RMSEs) (Tomppo et al.

2017). Each plot was entirely within one forest stand. The plots

were distributed into development classes as follows: one in an

advanced seedling stand, 17 in young thinning stands, 10 in ad-

vanced thinning stands, and 2 in mature stands. The minimum

dbh of a measured tree was 2.5 cm. The maximum observed dbh

was 49.0 cm. Tree densities in the empirical data ranged from 737

to 8231 stems per hectare. The range of plot basal areas was from

10 to 40 m2·ha−1.
The field plots in the empirical data had different degrees of

regularity or clustering. Figure 4 shows examples of four pat-
terns with obvious differences in the stem coordinate distribu-
tions. The degree of clustering or regularity was described using
Lmax� L�r̂�	 r̂, where r̂maximizes |L(r) – r| on the chosen interval
of distances r (which was chosen here to be from 0 to approxi-
mately one-fourth of the side of the observation window) and L is
the square root transformation of Ripley’s K function (Besag 1977).
Positive values of Lmax indicate clustering of the corresponding
pattern, whereas negative values are an indication of regularity.

2.4. Simulation study
In the simulation experiment, we positioned the TLS scanner in

the center of the simulation windowW but found a new location
for the scanner if its location was closer than 1 m away from the

Fig. 3. (Top) Simulated patterns of Strauss processes with interaction parameters � = 0, 0.5, and 1. (Bottom) Simulated patterns of log Gaussian Cox

processes with correlation ranges � = 1, 5, and 10.
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nearest tree. The search operated on a grid with 1 m spacing
taking the nearest suitable grid location.
We generated 10 000 replicates of each considered Poisson for-

estmodel and 1000 replicates of each regular and clusteredmodel.
To obtain replicates for the empirical data, we simulated approx-
imately 1000 TLS scans on each plot. The scan locations were at
first placed on a regular grid, locations outside the plot windows
were discarded, and then the remaining locations were moved as
in the previous cases if the scan location was too close to a tree.
We estimated the tree density using estimator (1) and each of

the detectors (Visible, Center, Proportional, and Complete) speci-
fied in section 2.2.1. For the empirical data, we also estimated the
basal area. We set a maximum radius of 10 m for the TLS plot.
For the Poisson forests, we compared the estimates to the inten-

sity � of the Poisson process, and in the regular and clustered
cases, we used the fixed tree density of 1000 trees per hectare as
the reference value. The relative bias was calculated as

1

n�
i�1

n Ŷi 	 Y

Y

where Ŷi is the estimated value for replicate i, Y is the reference

value, and n is the number of replicates. The relative RMSE was

calculated as

� 1

n�
i�1

n �Ŷi 	 Y

Y
�2

3. Results

3.1. Poisson forests
Figure 5 shows the relative biases of estimator (4) and the rela-

tive biases and relative RMSEs of estimator (1) for the tree density

for the four different detectors. The Monte Carlo errors for the

relative biases of estimator (1) were less than 0.5 percentage

points. First, by comparing the top and middle rows of Fig. 5, we

see that the biases of the proposed estimator were clearly smaller

than the biases of estimator (4) for the detectors Visible and Com-

plete. Second, the detectors generally led to different biases also

for estimator (1), even though the differences were smaller than

when estimator (4) was used. The detector Visible led to the lowest

Fig. 4. Four field plots from the empirical data. The patterns from left to right represent a regular, random, and clustered pattern of tree

locations and a pattern with small-scale clustering and larger scale regularity.

Fig. 5. Relative biases of estimator (4) (top row), and relative biases (middle row) and relative RMSEs (bottom row) of estimator (1) with different

detectors for the Poisson forest with different tree densities (given on the x axis) and with dbhs of 5, 10, 20, and 45 cm (given in the heading).
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biases of estimator (1), whereas the detector Complete led to the
largest biases. The relative bias also tended to increase along in-
creasing tree density and dbh for all detectors.
Regarding estimator (1), the detector Visible led also to the low-

est relative RMSEs, although the differences of the different de-
tectors in RMSEs were rather small (see Fig. 5, bottom). It should
be noted that the relative RMSEs were largest for low tree densi-
ties, but the (non-relative) RMSEs increased with decreasing visi-
bility, i.e., increasing tree density. All in all, the biases were less
than 2% for all detectors when estimator (1) was used, and the
contribution of the bias to the RMSE was rather small.

3.2. Regular and clustered forests with independent dbhs
Figure 6 shows the relative biases and RMSEs of estimator (1) for

the tree density for the regular and clustered cases, respectively.
The Monte Carlo standard errors for the biases were less than 0.6
percentage points for the regular cases and less than 1.3 percent-
age points for the clustered cases.
For the regular patterns of tree locations, the biases were posi-

tive and tended to increase with the degree of regularity (Fig. 6,
top row). On the other hand, for the clustered tree locations, the
biases were negative and increased in absolute value with the
degree of clustering (Fig. 6, third row). In both cases, the absolute
values of relative bias increased with increasing basal area. The
detectors had rather different biases. The detector Visible that
detects the largest number of the trees had the smallest biases, as
in the case of Poisson forests. Considering the four detectors, the
absolute values of relative bias were less than 7% for the regular

patterns and less than 9% for the clustered patterns. On the other

hand, for the detector Visible, the absolute values of relative bias

were all less than 2.5%. (In the case of Poisson patterns, they were

less than 1% for the detector Visible.) Thus, the biases were some-

what larger for the regular and clustered patterns than for the

Poisson patterns.

For the regular forests, the relative RMSEs decreased with in-

creasing regularity (Fig. 6, second row), whereas for the clustered

forests, the relative RMSEs increased clearly with increasing de-

gree of clustering (Fig. 6, bottom row). The differences in relative

RMSEs between different basal areas were small.

3.3. Empirical data
Figure 7 shows the relative biases and relative RMSEs for tree

density and basal area for the empirical data with the detectors

Visible and Complete as a function of Lmax. The performance of

the detectors Proportional and Center were between the detectors

Visible and Complete, as in our previous experiments. Similarly as

for the regular and clustered simulated forests, we observed pos-

itive biases for the regular patterns of the empirical data and

negative biases for the clustered patterns when the detector Com-

plete was used. For the detector Visible, however, the pattern was

not that clear and the absolute values of bias were less than 3%.

The relative RMSEs were rather similar for the two detectors and

did not clearly depend on Lmax, except for the very clustered pat-

tern (with Lmax ≈ 2), where the RMSEs for the tree density were

clearly larger than for the other patterns. This clustered pattern

Fig. 6. Relative biases and relative RMSEs for tree density in regular forests (top) and clustered forests (bottom) with different interaction

parameters �, correlation ranges �, and basal areas 3, 12, 20, and 35 m2·ha−1. The legend gives the different detectors considered.
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was one of the advanced thinning stands, which by visual inves-
tigation was somewhat inhomogeneous.

4. Discussion
We proposed the new estimator (1) for correcting the effect of

nondetection of the trees in the single-scan setup of TLS. This
estimator allows for different detectors, e.g., those considered by
Olofsson and Olsson (2018). A key observation is that, instead of
scaling by the visible area of the scanner in the estimator for each
detector, the scaling must account for the chosen detector. See
Fig. 5 for a comparison of the biases of the corrected and uncor-
rected estimators in a Poisson forest.
In our simulation study with simulated and empirical forests,

the new estimator worked adequately. It appeared that it would
be best to use the detector Visible, i.e., to consider a tree detected
if any part of it is seen. Our study is, however, based on the theo-
retical setting where the tree dbh is always obtained exactly, no
matter how small a part of the tree is seen. In practice, the mea-
surement accuracy is likely to decrease as the distance to the
measured tree grows (see, e.g., Lovell et al. 2011). The accuracymay
also depend on the proportion of the visible part of the tree. Thus,
other detectorsmay be preferred over the detector Visible in prac-
tice. We considered other detectors, and estimator (1) allows for
further ones as well, as long as one is able to calculate the corre-
sponding weight (eq. 2).
We only considered a few detection functions to keep the sim-

ulation study reasonably sized. We think that the chosen detec-
tors illustrate the variation in performance quite well. As pointed
out also by Olofsson and Olsson (2018), small trees could be more
difficult to detect than large trees. In that case, it might be reason-
able to consider the detector

v(x, d,X) � 1	 l[�B(x, d/2) � V(X)]
�d

≥ f(d)

where f is a function that gives the proportion of the tree that is
required for detection. So far, though, we have not been able to
compute a good enough approximation for the weight (eq. 2)
corresponding to this detector.

In principle, it appears possible to use something other than the

dbh to determine the nondetection caused by a tree. One could

use the tree shape or even a three-dimensional tree model, for

example. An interesting question would be whether or not that

could improve estimation.

We believe that obstacles such as stones or understorey vegeta-

tion could be handled in the estimation by including them in the

scanner visible area V(X). The proposed estimators should work if

the obstacles are independent of the trees (suggested by our heu-

ristic calculations of Appendix A). Unfortunately, in practice, the

branches of trees are probably affecting the visibility of trees the

most, and they would need a different treatment, definitely being

strongly dependent on the locations of trees.

Another point worth studyingwould be to include themeasure-

ment accuracy in the estimator. The dbhs (or other properties) of

more distant trees may be harder to estimate from a TLS point

cloud than those of trees close to the scanner; however, it is not

immediately clear how to extend the proposed estimator to han-

dle that case.

The final question is, of course, how to apply the results in

practice. Our recommendation is that the applied detection algo-

rithm should be studied and an approximate detection function

chosen. An estimator taking the used detection algorithm into

account could have smaller bias than the simple visible area based

estimator.
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Appendix A. Motivation for the estimator
Estimator (1) is motivated by a heuristic calculation in a Poisson

process setting. This settingmeans that the tree locations x follow

the Poisson process with expected tree density �(s), s � R2, and the

dbhs d are independent. The additional marks m can depend on d
(or be defined in terms of d), but mutually, the ms are assumed to

be independent as well. We denote the joint mark distribution of

d and m by F. Under this setting, we can calculate the expectation

of estimator (1) by applying the Mecke theorem (Schneider and

Weil 2008, theorem 3.2.5):

ET̂ � E �
(x,d,m)�X

mv(x, d,X)
w(d,X)

� �Emv[x, d,X � {(x, d,m)}]
w[d,X � {(x, d,m)}]

d�(x)dF(d,m)

� �Em v(x, d,X)
w[d,X � {(x, d,m)}]

d�(x)dF(d,m)

where in the last equation, we assumed that

v[x, d,X � {(x, d,m)}] � v(x, d,X)

which corresponds to assuming that a tree cannot block itself.

Unfortunately, it is not possible to calculate the expectation,

but we can obtain an approximation by replacing w�d, X �
	�x, d, m�
� by w(d, X), namely then

ET̂ ≈ �Emv(x, d,X)w(d,X)
d�(x)dF(d,m)

� E�m
� v(x, d,X)d�(x)

w(d,X)
dF(d,m)

Now if we define the weight (eq. 2) and assume that the Poisson

process is homogeneous, i.e., �(s) = � for all s � R2 (the expected

tree density is constant), we arrive at

ET̂ ≈ �m�dF(d,m) � �Em

Althoughwe cannot say anything about the size of the errormade

by the approximation, it appears to give valuable insight, which is

shown in the simulation study.

For many detection functions v�x, d, X � 	y
� ≤ v�x, d, X�, that is,
adding a tree decreases visibility. For the weight function, this

implies that w�d, X � 	�x, d, m�
� ≤ w�d, X�. Then ET̂ ≥ �Em.
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The aim of this article is to construct spatial models for the activation of sweat
glands for healthy subjects and subjects suffering from peripheral neuropathy
by using videos of sweating recorded from the subjects. The sweat patterns are
regarded as realizations of spatial point processes and two point process mod-
els for the sweat gland activation and two methods for inference are proposed.
Several image analysis steps are needed to extract the point patterns from the
videos and some incorrectly identified sweat gland locations may be present in
the data. To take into account the errors, we either include an error term in the
point process model or use an estimation procedure that is robust with respect
to the errors.
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process, soft-core inhibition

1 INTRODUCTION

Sweating is critical in human evolution in maintaining ability to thermoregulate in a wide range of climates and activity
levels. Neurologic control, headquartered in the hypothalamis, is therefore tightly regulated and concordantly disruptive
in pathologic states such as peripheral neuropathy. Assessment of sudomotor (sweat) function has long been used in
clinical and research settings for detection of neurologic dysfunction.1,2 Minor’s starch iodine test was originally described
in 1928,3 where tincture of iodine was applied to the skin, air dried, and then powdered with corn starch. Sweating is
stimulated with increasing room temperature or use of pilocarpine. As sweat flows from pores, iodine is diluted and the
solution absorbed by the starch powder, turning dark black from yellow. Normally the entire skin surface should be able
to sweat in response to sufficient stimuli, and absence of sweating in an area of the body is indicative of loss of neurologic
function in that area.

Peripheral neuropathy is a disease state of peripheral nerves, the segment of the nervous system which extends from
the brain and spinal cord to various targets in the body, such as muscles, sensory receptors, and autonomically controlled
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2021 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.

Statistics in Medicine. 2021;40:2055–2072. wileyonlinelibrary.com/journal/sim 2055



2056 KURONEN et al.

organs. Peripheral neuropathy occurs in etiologically diverse conditions which cause damage or dysgenesis of peripheral
nerves. The most common causes include diabetes, toxicity such as in chemotherapy and excessive alcohol consumption,
and vitamin deficiencies.4 The resulting nerve damage causes various combinations ofmuscleweakness, pain, numbness,
and autonomic dysfunction.

Autonomic nerves are often the earliest to be affected in peripheral neuropathy,5-7 and penetrate all parts of the body,
including digestive tract, liver, kidneys, bladder, genitals, lungs, pupils, heart, and skin. Skin is the largest organ in the
body, and contains a vast network of the distal ends of sensory and autonomic nerves over the entire body surface.
These distal ends of nerves are especially susceptible to systemic disease. Because sweating is neutrally controlled and
modulated, and can be measured at the skin surface, it can be used to reflect alterations in the underlying nerves.

Currently, there are several tests used in clinical practice to evaluate sudomotor function.8-10 Thermoregulatory sweat
testing11 measures percentage of body surface area sweating elicited by a heated, humidified sauna. Sweat imprints and
silastic molds12,13 measure the density and distribution of activated sweat glands in an area of skin. Quantitative sudomo-
tor axon reflex testing (QSART) is likely the most widely used autonomic test of sweating,14,15 comparing against robust
normative databases the total volume of sweat produced by 1 cm2 areas of skin at standardized sites.

The sensitive sweat test (SST) enhanced Minor’s starch iodine test with closeup time lapse imaging, and software
analysis.4,16-18 The critical feature of the test is a rigid, transparent video screen which limits sweat to an essentially
two-dimensional space. As sweat exits ducts, it dilutes the iodine painted on the skin onto starch coated plastic film. The
imaged result is a field of sharply demarcated, dark sweat spots on a white background, expanding centripetally around
the opening of each duct (Figure 1). The area of each spot is therefore a measurement of the volume of sweat produced
by each gland. Sub-nanoliter volumes of liquid were measured by pipette and shown to create reproducible sweat spot
areas. Similarly, tracking the increase in sweat spots’ areas between timelapse frames measures the rate of sweating from
each duct at the nanoliter level. Of note, blackened areas of film do not return to white during the test—sweat spots can
only enlarge. The videos therefore provide several measurable physiologic data points, including coordinates and rela-
tive locations of all sweat spots, the second by second volumes of sweat (nanoliters) and flow rate of each sweat gland
(nL/minute), total number of activated sweat glands, density of activated sweat glands (glands/cm2), total sweat volume
(nL), and total sweat rate (nL/minute).

Using the dynamic sweat test, a significant reduction of sweating was observed in diabetic subjects in the distal leg
but not in forearm.16 The study included measurements taken from the forearm of 14 diabetic subjects and 14 age- and
sex-matched healthy controls and from distal leg of seven diabetes patients and seven controls. In a larger study,4 178
healthy controls and 20 neuropathy subjects were tested, most of them at the hand, thigh, calf, and foot, some only at calf
and foot, and it was concluded that neuropathy subjects had lower sweat rates per sweat gland, lower total amount of
sweat, and lower sweat gland density. It was also observed visually that the sweat patterns of the diabetic subjects were less
regular than the healthy patterns.16 To quantify this visual observation, the spatial sweat patterns that the videos provide
should be investigated more carefully. Spatial analysis can provide more detailed information on the sweat patterns and
tools for revealing additional abnormalities that may appear when the sweat rate and the total amount of sweat are still
within normal ranges. However, up to now, no spatial analysis of the sweat patterns to quantify this observation has been
performed.

In this article, the locations of sweat spots or glands are regarded as realizations of spatial point processes. Our main
emphasis is to develop suitable methodology for analyzing the spatial structure of the sweat gland patterns and activation
extracted from video sequences. As the data are non-standard in the point process literature, some special treatment is
needed.

To extract the coordinates of the individual sweat spots, that is, the points of the point patterns, from the videos (see
Figure 1), several image analysis steps are needed. As a non-standard step, we apply an algorithmbased on the detection of
a change point to the sequence of gray scale values in each pixel. This pixel-by-pixel approach suits to the video sequences,
where the sweat does not dry once it has appeared, much better than going through the videos frame by frame, because
the sweat gland locations are best detected at times where sweat first appears. However, even though we perform careful
analysis of the videos, there are some spots that are incorrectly recorded as two spots due to, for example, wrinkles in the
skin. It is not straightforward to remove these errors automatically and doing it manually can be very time consuming.
Therefore, they need to be taken into account in the analysis of the point patterns.

Some studies of point patterns observed with errors or noise can be found in the literature. For example, in the area of
minefield detection, one first detects a minefield and then classifies each observed point in the minefield either as mine
or as noise. The observation window is typically divided into two parts, the minefield as a region with a higher intensity
containing both mines and noise and a low intensity area containing only noise.19 The points can then be classified in a
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F I GURE 1 A sequence of snapshots (1 second (top left), 15 seconds (top right), 30 seconds (bottom left), and 60 seconds (bottom
right)) of one control subject with extracted gland locations (+)

Bayesian set-up where a posterior probability for each point being amine is derived.20,21 In a similar Bayesian framework,
classification of points of a superposition of a Strauss process and Poisson noise has been considered.22,23 A likelihood of
an imperfect observation given the true point process, where the imperfect observation can be due to random thinning,
displacement, censoring of the displaced points, or superposition of additional points24 and Bayesian analysis for similar
data25 can also be found in the literature. Furthermore, a Bayesian framework for estimating the intensity of a noisy point
process, where the noise is either due to points within the sampling window but regarded as being outside and/or points
outside the window which were incorrectly regarded as points inside the window, is available26 as well as descriptive
statistics for noisy spatial point processes, where the noise is perturbation of points.27

Here, we suggest two different ways to model the activation of sweat glands and to take noise into account in the
analysis, by either including an error term in the model or using an estimation procedure that is robust with respect to
the errors. We pay special attention to incorrectly recorded close pairs of points since they can cause problems for the
analysis of regular point patterns such as our data.

We propose two models for the sweat gland patterns that are different in their nature. In the first model, the activa-
tion of individual sweat glands is modeled by a sequential point process, where sweat spots appear conditionally on the
pattern so far. The other model is more physiologically motivated, a generative point process model, where the activated
sweat gland pattern is modeled as a thinning of the underlying true (unobserved) sweat gland pattern which is modeled
first.While the likelihood of the sequential model is tractable, it has been considered computationally costly to evaluate.28
Here, we propose an efficient way to perform traditional likelihood-based inference for a certain type of sequential mod-
els, which makes also likelihood-based Bayesian inference feasible. The likelihood of the generative model is not easily
tractable and, therefore, we employ approximate Bayesian computation (ABC) to estimate the model parameters. When
some noise points are present, the sequential model is replaced by a mixture model having the sequential point process
and an error point process as its components. In the generative model, the summary statistics in the ABC approach are
chosen such that they are robust with respect to the errors.



2058 KURONEN et al.

The rest of this article is organized as follows. We first describe the extraction of the points from the videos and the
preliminary analysis of the data in Section 2. Then, we present the sequential and generative models together with a
description of the inferencemethods in Sections 3 and 4, respectively. Further, themethodology is illustrated by analyzing
a set of video sequences taken from the right foot of 15 subjects, either controls or subjects with suspected or diagnosed
neuropathy. The models are fitted separately to each subject. Section 5 is left for further discussion. We carry out all
computations in Julia29 while we use R30 mainly for plotting.

2 DATA AND PRELIMINARY DATA ANALYSIS

2.1 Description of data

The data have been collected by Dr. Kennedy’s group at the University of Minnesota by using the dynamic sweat test they
have presented.16 First, sweating is stimulated by placing a patch with pilocarpine gels on the test site, foot or calf. Then,
the test site is dried and painted with iodine solution. Finally, a camera is placed on the skin and a video is recorded at the
rate of 1 frame/sec for 60 seconds. The size of the frame was 2592× 1944 pixels corresponding to 17.5× 13 mm2. Videos
were taken from the feet and/or calves from 121 healthy controls without known neuropathy or known risk factors for
neuropathy, as well as 72 subjects who had reported having symptoms of neuropathy, 20 of whom had well characterized
neuropathy (diagnosis based on neurologic examination and nerve conduction studies). Therefore, the subjects were
divided into three groups: controls, subjects with suspected neuropathy (MNA), and subjects with diagnosed neuropathy
(MNA Diagnosed).

In this study, we have access to five videos from the right foot from each of the three groups. Based on earlier studies,
it was clear that the number of activated sweat glands is an important predictor for the condition, controls having higher
density than subjects in the neuropathy groups. The five videos were selected based on the point density of the pattern
so that different groups have overlapping densities. A sequence of snapshots (1 second, 15 seconds, 30 seconds, and 60
seconds) of one control subject is shown in Figure 1. Here, we study the patterns of activated sweat glands at the end
of videos as realizations of spatial point processes. The complete video is needed to extract the gland locations, because
these can be obtained most precisely at their first occurrence (see Section 2.2).

2.2 Video processing with change point detection

Extracting the locations and sizes of the sweat spots required several video processing steps: transforming the video
into sweat/not sweat binary video, splitting the sweat part of the video into the sweat produced by individual sweat
glands, and finally extracting the point pattern of gland locations. As is commonly done in data pre-processing, some
trial and error was necessary before a satisfactory result was obtained. In the following, we describe the final choices in
more detail.

The first step consisted of a background correction, finding change points, and finding and applying a threshold to the
change points. The backgroundwas first estimated by kernel smoothing using aGaussian kernelwith 𝜎 = 100 pixels to the
first frame of the video. The smoothing bandwidth of 100 pixels, which is a bitmore than theminimum interpoint distance
of sweat spots, was large enough to remove the sweat spots, but small enough to keep the background fluctuations. Since
the first frame had only small amount of sweat, the resulting imagemostlymimicked the lighting conditions. For example,
the corners of the frame were darker than the middle. Next, the grayscale values gt of each pixel at frame t were divided
by the estimated lightning intensity l of the pixel and the time series of these scaled grayscale values were considered to
find the pixels that belong to the wet area. More precisely, a time series was constructed for each pixel as follows: Let
x−2 = x−1 = x0 = 1 and xt = gt/l for t= 1, … ,T. The change point of the time series x−2, x−1, x0, x1, … , xT was defined as
the integer value t≥ 1 that minimizes f (t) = s2−2,t + s2t+1,T , where

s2j,k =
1

k − j + 1

k∑
i=j
x2i −

(
1

k − j + 1

k∑
i=j
xi

)2

is the sample variance of xj, … , xk.
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F I GURE 2 Time series for four
pixels with estimated jump locations
(frames) marked by dashed lines [Colour
figure can be viewed at
wileyonlinelibrary.com]
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Testing for a change point is a well known problem in statistics.31-34 Here, however, the problem is not of purely
statistical nature. There appeared to be some jumps possibly due to the lightning conditions that were not real jumps but
clear enough to be detected by a statistical change point test. In Figure 2, the series number 3 (blue curve) is an example
of such a change point. We used a similar principle as in the statistical change point tests to locate the most likely change
point. Instead of formally testing for the change point, we only accepted those change points where the change was large
enough.

The time series and estimated change points for four pixels are shown in Figure 2. Since each pixel, even the ones that
do not belong to the wet area, obtained a change point, thresholding on the difference of sample means was used to filter
out small changes. A per video threshold was found by trial and error evaluating the point patterns that resulted from
the whole video processing visually. By looking at the video it was quite easy to see the emerging sweat glands and how
well the detected points matched them. In Figure 2, the two largest jumps, 1 and 2, passed the threshold. The third jump,
although it clearly is a jump, did not pass the threshold. The resulting binary video frames were post processed with a
morphological closing to fill in some small gaps.

The sweat area in the first framewas segmented into the sweat produced by individual glands. Startingwith the second
frame, each new sweat pixel was assigned to the closest spot in the previous frame. The distance was measured as the
shortest path through the new sweat area. Several filtering steps were applied in various stages of the process to account
for pixels that belonged to spots that were too small to be sweat.

Finally, we extracted a point pattern with coordinates for each gland. To obtain an ordered point pattern we used the
frame of the first appearance, and for those spots that arrived at the same frame, we used spot size as a surrogate for the
time, where larger ones were assumed to have appeared earlier. An example of extracted point patterns in the video can
be seen in Figure 1. Figure 3 shows the final point patterns of all subjects.

2.3 Spatial summary functions

To analyze the spatial structure of the activated sweat gland patterns, we used two different commonly used spatial
summary functions, the pair correlation function g and the empty space function F. If the underlying point process is
stationary and isotropic, these summary functions are functions of distance r only.

The pair correlation function g describes the (pairwise) interaction between the points.35 It gives a scaled measure
that describes how likely two points are to occur at distance r from each other. For a completely spatially random point
pattern, g(r)= 1 for all r. Values g(r)< 1 indicate inhibition and values g(r)> 1 attraction at distance r. Thus, the pair
correlation function can recognize clustering and regularity at different spatial scales, and is especially useful in describ-
ing strongly inhibitive point patterns. To estimate the pair correlation function, we used a traditional kernel smoothing
method with Epanechnikov kernel and the recommended bandwidth 0.15∕

√
𝜆̂, where 𝜆̂ is the intensity estimated from

the point pattern.36 Formally,

ĝ(r) = 1

2𝜋r𝜆̂2

n∑
i=1

n∑
j=1;j≠i

w(xi, xj)k(r − ||xi − xj||),
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F IGURE 3 Point patterns extracted from the videos for each subject of the three groups (group and subject number shown on label)

where n is the observed number of points in the observation window, k is the chosen kernel function, ||xi − xj|| is the
distance between the points xi and xj, and w(xi, xj) is an edge correction weight. Here, we used the translation edge
correction.36

The empty space function F(r) is related to the probability that an arbitrary location s in the observation window has
an empty disk of radius r, b(s, r), around it. It is defined as

F(r) = 1 − P(the number of xi in b(s, r) = 0).

The empty space function can be estimated using a number of sample points in the observation windowW . Typically, a
grid is used. Letm be the number of sample points and di the distance from the sample point i to its nearest point in the
point pattern. Then, an estimator for the empty space function is

F̂(r) = the number of di < r
m

.

This estimator is hampered with edge effects since we cannot observe if a disk close to the boundary of the observation
windowwould have any points of the process outside thewindow. Therefore, we used theKaplan-Meiermethod to correct
for the edge effects.37

2.4 Descriptive statistics of the point patterns

We first estimated the pair correlation function for each of the sweat gland patterns shown in Figure 3 and thereafter,
obtained the groupwise pair correlation functions (see Figure 4) by pooling the estimated pair correlation functions of
all the subjects within the group by taking a weighted average of the values of the pair correlation fiunctions at each
distance.35 Since the number of points in the point patterns within each group varied quite a lot, the individual pair
correlation functions were weighted by the squared number of points, not number of points, when pooling.38-40 The pair
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F I GURE 4 Pooled pair correlation functions for the three
groups [Colour figure can be viewed at wileyonlinelibrary.com]
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correlation functions show a clear sign of inhibition in all three groups (g(r)< 1 for small r). Further, the initial peak of
the functions appears approximately at the same distance for the control and suspected neuropathy groups. However,
the diagnosed neuropathy group has the initial peak at a slightly longer distance, indicating somewhat larger range of
inhibition than in the other two groups.

At very short distances, especially the control subjects seem to have some unexpected close pairs of points. Upon a
closer inspection of the point patterns and the videos, it was reasonable to assume that some sweat spots had been detected
as two nearby spots, instead of havingmerged into one. An obvious, simple idea to remove such close pairs of spots would
be tomerge all small glands having a larger spot closer than at some specified distancewith the larger spot. However, such
erroneous pairs of glands may appear at various (small) distances from each other and thus, applying a global limiting
distance is not reasonable. Instead of using an additional image analysis step, we include some of this inaccuracy in the
modeling and/or parameter estimation.

3 SEQUENTIAL POINT PROCESS MODEL

Since sweat glands activate at different times, we modeled the activation by using sequential point processes similar to
those suggested for modeling eyemovements.28 The points, activated sweat glands in our case, are generated sequentially
conditioning on the already existing points. Points are added until the observed number of points in the pattern has been
reached and the main focus here is to make inference on the arrival density. Below, we first recall the general sequential
model28 (Section 3.1) and specify it in our case without (Section 3.2) and with noise (3.4). Further, we discuss efficient
inference for the sequential models (Section 3.3) and, finally, fit the sequential model with noise to the sweat gland data
(Section 3.5).

3.1 General sequential point process model

Denote byW the observation window and by n the fixed number of points in the pattern. The first point x1 is assumed
to be uniformly distributed in W and the kth point, k= 2, … ,n, is assumed to follow the density y → f (y; x⃗k−1), where
x⃗k−1 = (x1, x2, … , xk−1). The density function for the whole point pattern (x1, … , xN) is then

x⃗n →
1|W |

n∏
k=2

f (xk; x⃗k−1),



2062 KURONEN et al.

where 1/|W | is the contribution of the first point. A nice feature of the sequential point process models is that they have
a tractable likelihood even though it can be costly to compute.28

3.2 Soft-core model

The function f above should be chosen based on the phenomenon we would like to model. The activated sweat gland
location patterns are repulsive. Our first attempt was to use a hard-core model, where sweat glands cannot be closer
together than some minimum hard-core distance, but such a model turned out not to be flexible enough. Therefore, we
suggest to use a soft-core model with the density

fSC(y; x⃗k,R, 𝜅) ∝ exp

(
−

k∑
i=1

(
R

d(y, xi)

)2∕𝜅)

for adding the point y in the realization. Above, R> 0 is an inhibition range parameter and 0 < 𝜅 < 1 in the exponent
describes how “soft-core” the model is. In the limit as 𝜅 → 0, we obtain a hard-core process with hard-core distance
R. Some soft-core Gibbs point process models have been introduced in the literature,41,42 including models with the
particular interaction function that we use here.43

The log likelihood of the model becomes

l(R, 𝜅; x⃗n) = −log |W | − n∑
k=2

k−1∑
i=1

(
R

d(xk, xi)

)2∕𝜅
−

n∑
k=2

logZ(R, 𝜅, x⃗k), (1)

where

Z(R, 𝜅, x⃗k)−1 = ∫W exp
(
−
k−1∑
i=1

(
R

d(y, xi)

)2∕𝜅)
dy

is a normalizing constant.

3.3 Efficient likelihood inference for the sequential models

Even though the likelihood of a sequential point process can be costly to compute, the particular sum structure
in (1) allows faster computations. Using an integration scheme with J integration points y1, y2, … , yJ with weights
w1,w2, … ,wJ , the last term in (1) can be written as

n∑
k=2

logZ(R, 𝜅, x⃗k) =
n∑
k=2

log

(
∫W exp

(
−
k−1∑
i=1

(
R

d(y, xi)

)2∕𝜅)
dy

)−1

= −
n∑
k=2

log
J∑
j=1
wj exp

(
−
k−1∑
i=1

(
R

d(yj, xi)

)2∕𝜅)
.

In total, there are Jn(n− 1)/2 summands, among which only Jn are distinct. Therefore, the integrals are efficiently
calculated by evaluating the terms in the innermost sum only once.

3.4 Soft-core model with noise

To account for the incorrectly identified close pairs in the extracted point patterns, we used amixture model where one of
the components is a uniformly distributed error component. Such an error component can be added to any point process
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F I GURE 5 Parameter
estimates of the soft-core
model without and with noise
fitted separately to each subject
of the three groups (subject
numbers shown on the left)
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model and here, we add it in the sequential soft-coremodel. The arrival density of a point y (after the uniformly distributed
first point) is then

fM(y; x⃗k,R, 𝜅, 𝜃) = (1 − 𝜃)fSC(y; x⃗k,R, 𝜅) +
𝜃|W |

= (1 − 𝜃)Z(R, 𝜅, x⃗k) exp

(
−

k∑
i=1

(
R

d(y, xi)

)2∕𝜅)
+ 𝜃|W | .

Therefore, the point at y comes from the soft-core process with probability 1 − 𝜃 (the first term on the right-hand side
of the formula) and from the uniformly distributed error process with probability 𝜃. Even though this model allows extra
points everywhere, not only near the real activated glands, it can improve estimation of the parameters as shown below.
However, the parameter 𝜃 cannot be interpreted directly as the probability of incorrectly identified glands since some of
the points without close neighbors regarded as noise could as well be true glands.

The log-likelihood of the soft-core model with uniformly distributed error is given by

lM(R, 𝜅, 𝜃; x⃗n) = − log |W | + n∑
k=2

log fM(xk; x⃗k−1,R, 𝜅, 𝜃). (2)

3.5 Application to the sweat gland data

The soft-coremodelwas fittedwithout andwithnoise to each sweat glandpoint pattern independently. First, we compared
the maximum likelihood estimates of the soft-core parameters obtained without or with added noise. Then, we fitted the
model with noise to the data in a Bayesian framework to be able to better compare the goodness-of fit of the sequential
soft-core model and the generative model presented in Section 4. We used regular grid based integration with 10 800
integration points to evaluate the likelihood in all cases.

3.5.1 Parameter estimates without and with added noise

The parameter estimates obtained by maximizing the log likelihood (1) or (2) with respect to the parameters can be seen
in Figure 5, where circles belong to the sequential soft-core model without noise and the pluses to the model with noise.
The estimates obtained without noise for the range parameter R are on average smaller and the “softness” parameter 𝜅
larger in the control group than in the neuropathy groups. However, for the model fitted with noise (circles on Figure 5),
only the mixture parameter 𝜃, which is estimated larger for the control group than for the neuropathy groups, differs
between the groups. Note that the 𝜅 and R parameters coincide for the twomodels if the mixture parameter 𝜃 is estimated
to be zero, see subjects 42, 50, and 71 in Figure 5.
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F IGURE 6 Empirical pair
correlation functions (black
lines) for subject 205 in the end
of the video recording together
with 95% global envelopes (grey
areas) constructed from 25 000
simulations from the soft-core
model estimated without (left)
and with (right) noise

We investigated the goodness-of-fit of the fitted soft-core models by using the pair-correlation function. We generated
samples from the sequential soft-core models with parameters R and 𝜅 estimated with and without noise. The uniform
noise was not simulated. Figure 6 shows the empirical pair-correlation functions for subject 205 for the soft-core model
estimatedwith andwithout noise together with 95% global envelopes44,45 calculated from 25 000 samples of eachmodel. It
can be seen that for this subject, the range parameter is clearly underestimated if estimation is donewithout accounting for
noise. For the other subjects, the goodness-of-fit of themodel with noise was also as good or better than the goodness-of-fit
of the model without noise. The difference between the observed and model (fitted with noise) based pair correlation
function at short distances is explained by the incorrectly recorded close pairs of points that are present in the data but
not in the simulations.

3.5.2 Bayesian inference of the model with noise

We fitted the soft-coremodelwith noise to the sweat gland data also by using standard likelihood-basedBayesian approach
with robust adaptive Metropolis algorithm.46 We ran the MCMC for 120 000 iterations and discarded the first 20 000
iterations as burn-in. As the prior distribution for the range parameter R, we used the Gamma distribution with shape
parameter 3 and scale parameter 70/3 and the priors for 𝜅 and 𝜃were both the uniform distribution on [0, 1]. The posterior
histograms in Figure 7 show some variation within the groups but no clear differences between the groups: The arrival
density parameters R and 𝜅 were estimated to be rather similar in all groups. The 𝜃 parameter related to the errors appears
to be somewhat larger in the control group than in the other two groups.

Figure 8 shows the empirical pair-correlation functions for each subject together with the global envelopes44,47 cal-
culated from 25 000 simulations from the posterior predictive distribution of the fitted soft-core models with noise.
In most cases, the envelopes cover the empirical curves. For some subjects, especially for the controls, the empirical
pair-correlation function is not covered by the envelopes at very short distances. This is expected, as mentioned earlier,
since according to the model used, this behavior is caused mainly by noise, which was not simulated. Thus, the pair cor-
relation function reveals that, ignoring the noise at short distances, the quite clear inhibition and the gradual increase of
interpoint distances around 50-75 pixels in the empirical patterns is captured by the soft-core model. However, the char-
acteristic peak in the pair correlation functions around 100 pixels is not always captured by the model, particularly for
the patients who have smaller number of activated sweat glands, as the envelopes are quite wide close to the peak. All the
empirical pair correlation functions have the same characteristic behavior.

4 GENERATIVE POINT PROCESS MODEL

In our second approach, we first model the underlying unobserved sweat glands and then, model the activated sweat
glands as an independent thinning of the underlying gland pattern. Modeling the glands and the activation of them
separately allows one to answer questions regarding specifically the activation process. One possible hypothesis is that the
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F IGURE 7 Posterior marginals for each subject (subject number and group given on the right) and each parameter (R, 𝜅, and 𝜃) for the
soft-core model estimated with noise. The prior densities are given on the last row
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F IGURE 8 Empirical pair correlation functions (black lines) for each subject (subject number shown in the label above each plot) in
the end of the video recording together with 95% global envelopes (gray areas) constructed from 25 000 simulations from the posterior
predictive distribution of the soft-core model estimated with noise

underlying gland pattern itself is not different between controls and subjects with neuropathy, but the activation process
is different. More specifically, almost all glands should activate on healthy subjects while the glands of the subjects with
neuropathy could have a tendency to leave larger holes in the activation process.16

4.1 Model specification

It seems reasonable to assume that the underlying (unobserved) sweat gland pattern is a rather densely packed reg-
ular point pattern covering the whole skin. To obtain such a structure, some type of soft-core sequential inhibition
process, where points are added as long as it is possible (we do not know the actual number of glands), would be
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appropriate. However, it is not straightforward to decide when to stop adding points since theoretically, soft-core type
of interaction always allows new points. Instead, we start by generating a simple sequential inhibition (SSI) model,35
which is then disturbed to obtain a soft-core structure. A sample from the SSI model is generated sequentially by
proposing points from the uniform distribution and accepting them if the pattern satisfies the hard-core condition with
hard-core distance R, that is, the new proposed point does not lie within distance R from any earlier point. This is
continued until there is no space left for new points. The disturbed SSI model is obtained from the “pure” SSI model
by displacing the location of each point with an independent zero mean isotropic Gaussian random variable with
covariance 𝜎2I.

We assume independent gland activation, that is, that the final pattern is a result of an independent thinning of the
underlying disturbed SSI process. Therefore, the model has three parameters: inhibition range R, hardness of inhibition
𝜎, and probability of activation p.

4.2 Parameter estimation using approximate Bayesian computation

For the generative model, we cannot write down the likelihood. However, sampling from the model is easy. We used
the method proposed by Wang48 to generate samples from the SSI process. Approximate Bayesian computation (ABC)
is a method for Bayesian inference in situations where the likelihood of the model is intractable,49,50 but it is possible to
simulate the model. It is based on sampling from the (pseudo-) posterior distribution

𝜋𝜖(𝜃) = 𝜋(𝜃)P(||s(Y𝜃) − s(y)|| < 𝜖),

where Y𝜃 follows the model with parameter vector 𝜃, y is the data, 𝜋(⋅) is the prior distribution for the parameters, s is an
appropriately chosen summary statistic, and 𝜖 is a tolerance level.

4.2.1 ABC-MCMC

AsimpleABC rejection sampler is expressed inAlgorithm1. This basic algorithmcan be rather inefficient, but fortunately,
there are severalmore efficient algorithms for performingABC.Weused an adaptiveABC-MCMCalgorithm.51 In our data
study below, the MCMC was run for 10 000 000 iterations and the 250 000 simulated parameter values with the smallest
distances ||s(z)− s(y)|| were taken as the posterior sample.
Algorithm 1. A simple ABC rejection sampler

for i ← 1,M do
repeat

Generate parameter vector 𝜃′ from the prior distribution 𝜋

Generate a realization z from the model with parameter vector 𝜃′
until ‖s(z) − s(y)‖ ≤ 𝜖

𝜃i ← 𝜃′

end for

4.2.2 Summary statistics

The choice of summary statistics is crucial for the ABC method to work. For a regular point process model, it is natural
to use summary statistics based on the pair correlation function g. Instead of using the full pair correlation function g, we
tried to find a specific part of it that would be sufficient for our purpose following the rule of thumb52 that the number of
summary statistics in theABC approach should approximatelymatchwith the number of parameters to be estimated. The
location of the first peak of the pair correlation function is intuitively connected to the inhibition range R. However, the
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F IGURE 9 Posterior marginals for each subject (subject number and group given on the right) and each parameter (R, p, and 𝜎) of the
generative model

location of the first peak can be difficult to estimate exactly and thus, we used the smallest distance r1 > 10 pixels where
g(r1)= 0.75 as the location of the uphill before the first peak. Furthermore, the slope of the uphill provides information
on the “softness” parameter 𝜎 and we chose the smallest distance r2 > 10 pixels where g(r2)= 1 as the second summary
statistic. Finally, the smallest distance r3 in the empty space function F where F(r3)= 0.5 was taken as the third summary
statistic to represent the activation probability p. The empty space functionwas chosen because it gives information on the
number of points but is not greatly affected by erroneous nearby points. Since all the chosen summary statistics, r1, r2, and
r3, have a similar order of magnitude, we did not have to add any weights in the ABC algorithm. The specific values 0.75
and 1 were chosen to be somewhat separated and not too small to account for possible errors caused by splitting of spots
into multiple glands that would cause the pair-correlation function not to start from zero. In addition, we only considered
distances greater than 10 pixels since at very short distances the kernel estimator of the pair correlation function is not
very reliable. These choices worked well for the sweat gland data, as demonstrated below.

4.3 Application to the sweat gland data

The generativemodel was fitted to the sweat gland data using the ABC approach described above. In addition to the above
specifications, we needed to set the priors. For R we used an improper, uniform prior on [40,∞) restricting that R could
not be unreasonably small, while in addition to being unrealistic, small R values result in a large number of points in the
SSI process which is computationally challenging. The prior of p was uniform on [0.1, 1], stating that at least 10% of the
glands (modeled by the underlying disturbed SSI process) needed to activate and thus be observed. Furthermore, for 𝜎,
we used the gamma distribution with the shape parameter equal to 10/3 and scale parameter equal to 3. While the priors
R and p can be considered rather non-informative, the prior for 𝜎 was somewhat informative suggesting positive, but not
too large 𝜎. Note that if 𝜎 was very large in comparison to R, it would break all the structure of the SSI process, which is
unreasonable.

The posterior marginal histograms for the parameters can be seen in Figure 9 and 95% global envelopes for the pair
correlation function constructed from 25 000 simulations from the posterior predictive distribution in Figure 10. As can
be seen in Figure 9, the parameter estimates vary somewhat between the subjects and groups. Differences in the softness
of the model, that is, in the values of the parameter 𝜎, are small. However, there seems to be a slight tendency for the
inhibition range R to be a little smaller in the control group than in the MNA groups, but the difference is not clear based
on the limited amount of data we have. The range was always between 60 pixels and 100 pixels. Furthermore, the control
subjects tend to have a larger activation probability than theMNA patients, but the within group variation is large. This is
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F IGURE 10 Empirical pair correlation functions (lines) for each subject (subject number shown in the label above each plot) in the
end of the video recording together with 95% global envelopes (gray areas) and means (dashed lines) constructed from 25 000 simulations
from the posterior predictive distribution of the generative model

in agreement with earlier studies, which indicate that a larger number of sweat glands of controls than of MNA patients
activate.4

According to the visual evaluation of the global envelopes of the pair-correlation function (see Figure 10) and empty
space function (see Figure 11), the model seems to fit quite well to the data. It captures the behavior of the pair cor-
relation function both at small distances and around the initial peak. It should also be mentioned that the envelopes
for the pair correlation function are rather wide at small distances covering the observed functions almost in all cases,
even though the model did not include any error term. The wide envelopes are due to the relatively wide posterior
distribution of 𝜎. Namely, large 𝜎 can lead to some close pairs in the patterns and consequently also positive values
of the pair correlation function at small distances. Another reason for the relatively wide envelopes may be that the
summary statistics used in the ABC approach were chosen such that they do not use any information at very short
distances.

We explored a few other priors for 𝜎, namely, improper uniform and exponential distributions with means 1, 2, and 4.
The posterior distributions of the other parameters were not affected by the choice of the prior for 𝜎, but the posterior of 𝜎
itself was somewhat sensitive to the choice and also the goodness-of-fit of themodel measured by the pair correlation was
affected. Namely, the improper uniform prior led to wider posterior distribution of 𝜎 and large 𝜎 caused the variation of
the pair correlation function to be even higher at small distances. On the other hand, the strict exponential priors shrank
the posterior distribution toward zero, and very small 𝜎 caused the peak of the pair correlation function to be too sharp.
Thus, the disturbance parameter 𝜎 needed a somewhat informative prior to lead to a good fit of the model.

We simulated patterns from the posterior predictive distribution and the simulated patterns mimic the data patterns
rather well, see Figure 12. Note, in particular, that the independent thinning seems to produce empty regions similar to
those observed in the point pattern data, as also indicated by the empty space function (Figure 11).

5 DISCUSSION

Videos produced by dynamic sweat tests provide not only the total and per gland sweat volume and the number and
density of activated sweat glands but also a time series of spatial patterns of the activated sweat glands. Up to now, only
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F IGURE 11 Empirical empty space functions (black lines) for each subject (subject number shown in label) in the end of the video
recording together with 95% global envelopes (gray areas) and means (dashed lines) constructed from 25 000 simulations from the posterior
predictive distribution of the generative model

the sweat volume and the number/density of activated sweat glands have been used in the analysis and comparison
between healthy subjects and subjects with neuropathy. However, visual inspection has indicated that the spatial pat-
tern of activated sweat glands of subjects with neuropathy seem to have more empty areas than the patterns of healthy
controls. This may indicate that the neuropathy does not result in random deactivation of sweat glands but the glands
that activate are arranged in a different pattern than in control patterns. To quantify this observation, spatial analysis is
needed.

Here, we analyzed videos of sweat gland activation recorded from five controls, five subjects with suspected neuropa-
thy, and five subjects with diagnosed neuropathy. The initial non-parametric spatial analysis by using pair correlation
functions showed clear indication of inhibition in all three groups. In addition, it suggested some differences between the
spatial patterns of activated sweat glands in subjects diagnosed for neuropathy and the non-diagnosed and control groups.
To further investigate and compare the spatial patterns and the activation processes, we suggested two point process
models for the activation of sweat glands, a sequential soft-core model describing the appearance of the activated sweat
glands and a thinned disturbed SSI process, that we call a generative model, where we start by modeling the underlying
unobserved sweat gland pattern.

Maximizing the log-likelihood function of a sequential point process has been considered computationally costly due
to the integrals in the normalizing constants.28 However, for the sequential soft-coremodel, these integrals have a particu-
lar sum form which allows efficient computation of the log-likelihood and in turn Bayesian inference. The same efficient
computation scheme is applicable for any sequential point process having an arrival density with a similar sum structure.
To estimate the parameters of the generative model, we employed an ABC algorithm since the likelihood function was
not easily available.

Even though our proposed image analysis approach worked well, there were some incorrectly identified close pairs of
glands in the extracted point patterns. To take into account such errors, we added an error term in the sequential soft-core
model resulting in a mixture model having a soft-core component and a uniform noise component. For the generative
model, on the other hand, the summary statistics in the ABC approach were chosen such that they were robust to close
pairs of points. The good fit of the models shows that it is possible to account for some, but likely not many, errors in the
pre-processing of videos. Such an analysis needs to be applied with care, but allows the researcher to focus on the analysis
more than on the pre-processing.
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F IGURE 12 The original point patterns (top) and patterns generated from the corresponding posterior predictive distributions of the
generative model (bottom) for one subject from each group (96, 20, and 42)

The proposed models were fitted to the data. The fit of the generative model was good regardless of the disease status,
as the point patterns in Figure 12 and the spatial summary characteristics in Figures 10 and 11 show. It should be noted
that this model based on independent activation of underlying sweat glands was also able to produce similar holes in the
point patterns as observed earlier in the sweat gland patterns of diabetic patients;16 see, for example, the bottom right
plot in Figure 12. Apparently the SSI process with random displacements of points is a working model for the underlying
sweat glands.

Themodel parameters estimated from the patterns of healthy subjects and of subjects suffering from neuropathy were
compared. Based on the generative model, detailed information was obtained on the sweat patterns: while the hardness
of inhibition parameter was rather similar for each subject, the inhibition range R and the activation probability p were
characteristic for each subject. The former characterizes the pattern of all glands, while the latter is the probability of
these glands to activate. There was some indication that the inhibition range R was slightly smaller and the activation
probability p larger in the control group than in the neuropathy groups (Figure 9). Both of these observations are in
agreement with an earlier study,16 where the density of activated sweat glands was found to be lower for diabetic patients
than controls. However, the spatial analysis provides more detailed information than the non-spatial analysis alone, and
the model parameters might facilitate classification of subjects in the future. For example, the control subject 203 had
rather small number of activated sweat glands (Figure 3), but simultaneously a small inhibition range parameter. Thus,
the parameters may contain more valuable information jointly as either of them alone.

We believe that themodels suggested here, especially the generativemodel, would givemore impactful insight into the
sweat patterns in a larger study includingmore subjects. Especially, combining the point pattern approach presented here
with non-spatial covariates like age or body mass index would provide a better understanding of the sweat patterns and
provide an explanation for the individually varying generative model parameters. In addition, incorporating the amount
of sweat produced over time by individual sweat glands into the analysis would further improve our understanding and
lead to further methodological development.
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of the parameters. Points outside the observationwindowmay affect the influence field
inside the window. We propose an edge correction to account for this missing data.
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chain Monte Carlo where a Laplace approximation is used for the Gaussian field of
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1 Introduction

Hierarchical relationships or interactions, where a plant species affects the locations
or intensity of another species but not vice versa, often occur in ecological commu-
nities (e.g. Dieckmann et al. 2000). An example of such a hierarchical relationship is
that proximity of large trees affects the intensity of seedling either positively, e.g. by
protecting against wind, or negatively by giving too much shade. Mathematically, we
can describe such plant communities by two point processes, Y and X , where one (X )
is affecting the other (Y ) but not vice versa.
The hierarchical interaction assumption affects the inference for Y and X greatly

since X can be modeled independently of Y and Y is modeled conditionally on X .
A realization of the point process X acts then as a source of heterogeneity in the
distribution of Y . Högmander and Särkkä (1999) modeled interaction between two
territorial ant species using Gibbs point processes under such an assumption. A similar
hierarchical Gibbs point process approach was used in Grabarnik and Särkkä (2009)
and Genet et al. (2014). Furthermore, Illian et al. (2009) modeled the spatial pattern
of resprouter species (Y ) given the locations of seeders (X ) in a hierarchical set-up
having an inhomogeneous Poisson process as a model for the resprouters.
Here, we model the intensity of new seedlings in a spruce-dominated uneven-aged

(boreal) forest given the locations and diameters at breast height (dbh) of large trees.
Thus, our X process of large trees is a marked point process, where the mark of a
tree is the dbh. The data consist of 14 sample plots from an experiment of continuous
cover forestry involving single-tree selection in four nearby areas in Southern Finland
(Fig. 1). The system relies on the natural emergence of new seedlings, and a continuous
recruitment is necessary for long-term sustainability in a wide sense (e.g. Eerikäinen
et al. 2014; Kuusinen et al. 2019). While a sufficient number of seedlings is necessary
for the success of regeneration, our focus here is on the spatial distribution of the
seedlings within the plots, and the effect of large trees on it.
Like in the resprouter and seeder case above, an inhomogeneous Poisson process

would be a reasonable model since the effect of large trees could be added in the
model as an explanatory variable. However, already visual inspection of the patterns
of seedlings y indicates that the patterns tend to be rather clustered, beyond the clus-
tering that may be explained by the patterns of large trees x. Due to such unexplained
clustering, a log Gaussian Cox process (LGCP) (Møller et al. 1998) is a more appro-
priate model for the conditional point process of seedlings given large trees.
To model the effect of the large trees X , we assume that each tree x ∈ X emits a

signal or impulse that describes the effect of the tree on its neighborhood. We assume
that this effect decreases with the distance from the tree x . In general, the size of the
effect as well as the range of the effect could depend on the size or other properties of
the tree, e.g. its dbh. Because we do not have precise a priori information on the size
and range of the effects, we use parametric signals similar to the ones found in the
literature (Adler 1996; Pommerening et al. 2011; Häbel et al. 2019; Pommerening and
Grabarnik 2019). The individual signals are then superimposed to form an influence
field, which describes the overall influence of the points of X on any location s in the
observation windowW . These kinds of models have been used to model, for example,
effect of neighboring individuals on the growth of a subject tree, survival of seedlings
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Fig. 1 Trees with dbh at least 7 cm (open circles with radii relative to the dbh of the tree) and new seedlings
(red crosses) in areas of size 40 m × 40 m. The headings give abbreviations for the plot locations and
numbers

and ground vegetation in different contexts (e.g. Wu et al. 1985; Miina and Pukkala
2002; Pommerening et al. 2011; Häbel et al. 2019; Kuuluvainen and Pukkala 1989;
Kühlmann-Berenzon et al. 2005).
Our idea here is to include the superimposed individual signals in the log intensity

function of the LGCP model. Using parametric models for the signals, the intensity of
theLGCP is a non-linear functionof themodel parameters.According toPommerening
and Sánchez Meador (2018) the signals are aggregated additively or multiplicatively
and there is no evidence to prefer either of these ways. We follow Pommerening et al.
(2011) and Illian et al. (2009) and aggregate the signals additively.
Our Bayesian inference algorithm is based onMarkov chainMonte Carlo (MCMC)

sampling for parameters, and a Laplace approximation is used for the latent random
field of the LGCP to avoid high-dimensional MCMC sampling. Laplace approxima-
tions are widely used for inference of latent Gaussian fields, for instance within the
popular INLA method (Rue et al. 2009). However, in contrast to INLA, MCMC is
more robust, and can cope with multimodal parameter posteriors.
The large tree process typically extends beyond the borders of the sample plot. How-

ever, we have observed the process in the same observation window as the seedlings.
Thus, the influence field computed only from the observed trees is weaker near the
borders than the field computed from the fully observed large tree process would
be. In order to account for the unobserved trees outside the observation window, we
compute the influence field using an edge correction method similar to that suggested
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in Kühlmann-Berenzon et al. (2005): the unobserved trees are imputed based on the
assumption that the locations of large trees are distributed according to a Poisson pro-
cess. This rather simple edge correction method can be efficiently implemented within
the Bayesian inference, in contrast to alternatives where the locations (and sizes) of
unobserved large trees would be included in the Bayesian inference as unknowns and
simulated within the MCMC approach.
The rest of the paper is organized as follows. In Sect. 2, we give some examples of

influence kernels and introduce the conditional LGCPmodel. TheBayesian estimation
approach, including the edge correction, is described in Sect. 3. Section 4 presents the
results of a simulation experiment that was conducted to explore the performance of
the proposed estimation and edge correction methods. Finally, the forestry data are
described in further detail and studied in Sect. 5. Section 6 is for discussion.

2 Conditional log Gaussian Cox process model

Let us have a bivariate point process in R
2 consisting of an unmarked point process

Y and an unmarked or a marked point process X . Let us further assume that we have
observed a realization of process Y , namely y = {yi }, in a bounded windowW ⊂ R

2.
Our primary interest is in the spatial pattern y which is affected by a realization x of
the spatial point process X . The spatial pattern x can consist only of the point locations
x j or of the point locations and marks, [x j , m j ], if some characteristics (marks) m j

of the points x j are available. In our forestry application, y consists of the locations
of seedlings, while x is the pattern of locations and dbh’s of large trees.
In our approach, the effect of x on y is modeled using the influence kernels around

the points of x that are explained in Sect. 2.1. To account for the clustering in the
pattern y not explained by x, the LGCP model is proposed and defined in Sect. 2.2.
Replicated point patterns are discussed in Sect. 2.3.

2.1 Influence kernels and influence field

We assume that each point [x j , m j ] of the process X introduces an influence kernel
around its location. We focus on isotropic influence kernels of the form c(h; m j , θ I ),
where h = ‖s − x j ‖ is the distance between the location s of interest and x j . Many
kernels have been suggested in the literature for different applications (e.g. Adler
1996; Illian et al. 2008; Pommerening et al. 2011; Pommerening and Maleki 2014;
Schneider et al. 2006). We used a mark independent Gaussian kernel

c(h; θ) = exp
(
−(h/θ)2

)
, (1)

where θ > 0 is an unknown influence range parameter. Here the influence of a point
gradually decreases with the distance from the point.
A mark dependent generalization of (1) is given by

c(h, m; θ I ) = mα exp

(
−
(

h

θmδ

)2)
(2)
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with θ I = (θ, δ, α), where θ > 0, δ > 0, and α ≥ 0. If α = 0, the mark affects only
the range of influence and if α > 0, it affects both the range and the strength (e.g.
Pommerening et al. 2011).
The influence field of the process X can then be defined as a superposition of the

individual influence kernels,

C(s; θ I , X) =
∑

[x j ,m j ]∈X

c(‖s − x j ‖, m j ; θ I ).

2.2 Conditional model

Since y is affected by x, we introduce a conditional point process model for y given
X = x, where the intensity of Y is affected by the influence field of x. This conditional
model is a LGCP with the intensity

Λ(s;β, θ I , x, Z) = exp(β0 + β1C(s; θ I , x) + Z(s)), (3)

where C(s; θ I , x) is a parametric influence field, β = (β0, β1) and the unknown
coefficients β0 ∈ R and β1 ∈ R are the intercept and the strength of the influence field,
respectively. If β1 < 0, x affects the intensity of Y negatively and the influence field
C(s; θ I , x) can be interpreted as a thinning of the LGCPprocesswith intensityΛ(s) =
exp(β0 + Z(s)). If, however, β1 > 0, x has a positive effect on the intensity of Y and
there aremore points of Y in areas with a high value ofC(s; θ I , x). Furthermore, Z :=
{Z(s) : s ∈ R

2} is a zero-mean stationary Gaussian random field with a covariance
function CZ (r; θ Z ) and independent of the influence field. In our application below,
we use the Matérn covariance function

CZ (r; θ Z , ν) = σ 2Z
21−ν

Γ (ν)

(√
2ν

r

ρZ

)ν

Kν

(√
2ν

r

ρZ

)
, r > 0, (4)

with the smoothness parameter ν = 2 and θ Z = (σ 2Z , ρZ ), where σ 2Z and ρZ are the
variance and range parameters, respectively, and Kν is the modified Bessel function
of the second kind (e.g. Cressie 1993; Chilés and Delfiner 1999; Banerjee et al. 2004).
The choice ν = 2 was made since we expect that the unobserved environmental
conditions that affect the clustering of y in our application vary rather smoothly and
since it is computationally convenient (Lindgren et al. 2011).

2.3 Replicates

Assume that we have several independent replicated point patterns yk , k = 1, . . . , N ,
from the conditional distribution of the point process Y given X = xk , k =
1, . . . , N . Conditionally on X = xk , the model for yk is a LGCP with the intensity
Λ(s; β0, β1, θ I , xk, Zk) in (3), where Zk , k = 1, . . . , N , are independent replicates
of the Gaussian random field with parameters θ Z . For our data, it is not reasonable
to assume that all replicates have the same β0, which controls the number of points
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of Y , and we let each pattern yk have its own intercept parameter β0, i.e. β0k for yk ,
k = 1, . . . , N . Consequently, in our application below, the pattern yk is assumed to
be a realization of the LGCP model with the intensity Λ(s; β0k, β1, θ I , xk, Zk).

3 Inference

The likelihood of the conditional LGCP model for a point pattern y with n points
observed in W is

p( y;β, θ I , θ Z , x) = Eθ Z

n∏
i=1

Λ(yi ;β, θ I , x, Z) exp

(
−
∫

W
Λ(u;β, θ I , x, Z)du

)
,

(5)

where β, θ I , θ Z are the model parameters, Z denotes the Gaussian random field and
the expectation is over Z given θ Z . As we use Bayesian inference we need to be able to
evaluate the likelihood (5) efficiently. Below, we describe the approximations needed:
discretization of the observation window (Sect. 3.1), an edge-corrected influence field
(Sect. 3.2), and approximations related to the Gaussian field (Sect. 3.3), which include
approximating the field by a Gaussian Markov random field and using the Laplace
approximation to evaluate the likelihood. Finally, the approximated likelihood based
on replicates is given in Sect. 3.4 and the MCMC algorithm is described in Sect. 3.5.

3.1 Discretization

To be able to make inference on LGCP models, the observation window W of the
point pattern y is discretized using a regular grid in a similar manner as in Rue et al.
(2009) and Møller et al. (1998). Namely, the observation windowW is divided into G
disjoint cells {wg} with center locations ξg and area A. Furthermore, we let ny

g denote
the number of observations y within wg in W and ny = (ny

1, . . . , ny
G). A piecewise

constant approximation is used for theGaussian field Z and the competition fieldC and
the locations of y are replaced by the counts ny

g . The approximate likelihood for ny is

p(ny;β, θ I , θ Z , x) = Eθ Z p(ny;β, θ I , x, Z D), (6)

where

p(ny;β, θ I , x, Z D) =
G∏

g=1
Pois(ny

g; Λg),

Λg = A exp(β0+β1C D(ξg; θ I , x)+ Z D(ξg; θ Z )), andC D and Z D are the piecewise
constant approximations of C and Z .
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3.2 Edge correction

The large tree process X is only partially observed, and generating the influence field
only based on the observed large trees would result in too weak influence near the bor-
ders. Therefore, we propose an imputation type approach, similar to the one proposed
byKühlmann-Berenzon et al. (2005), to correct for the unobserved points of X . Specif-
ically, we propose to replace the influence generated by the unobserved trees with the
expected influence generated assuming that the whole process X is an independently
marked homogeneous Poisson process. In the unmarked case, X is assumed to be a
homogeneous Poisson process. In general, the point pattern outside the windowwould
depend on the pattern inside thewindow, but this is not the case for the Poisson process.
Let λ and F be the intensity and mark distribution of X , and XW c the restriction of

X to W c, the complement of W . Using the Campbell theorem (e.g. Chiu et al. 2013)
we can write

EC(s; θ I , XW c ) = E
∑

[x j ,m j ]∈XW c

c(‖s − x j ‖, m j ; θ I )

=
∫

R+

∫
R2

c(s − x, m; θ I )1W c (x)λ dx dF(m),

where 1W c is the indicator function of the set W c, i.e. 1W c (x) = 1 if x ∈ W c, and 0
otherwise. By changing the order of the integrals we find that

EC(s; θ I , XW c ) =
∫

R2
f (s − y)1W c (y)λ dy

=
∫

R2
f (s − y)λ dx −

∫
R2

f (s − x)1W (x)λ dx,

where f (x) = ∫
R+ c(‖x‖, m; θ I ) dF(m). By changing to polar coordinates and with

a slight abuse of notation

∫
R2

f (s − x)λ dx = λ2π
∫ ∞

0
r f (r) dr ,

which can be computed using numerical integration. Since we are only interested in
locations s ∈ W , we can replace the function f with f 1W S , the restriction of f to the
set W S = {s − x : s ∈ W , x ∈ W }, and

∫
R2

f (s − x)1W (x) dx =
∫

R2
( f 1W S )(s − x)1W (x)λ dx = ( f 1W S ∗ 1W )(s).

The discrete convolution of the piecewise constant approximations of f 1W S , and
1W can be efficiently computed using discrete Fourier transforms (Oppenheim et al.
1999; Frigo and Johnson 2005). For F , we use the empirical distribution of marks in
the sample plot under study.

123



Environmental and Ecological Statistics

The edge-corrected influence field value at any location s ∈ W is then obtained
as the sum of the influence field calculated from the observed xW , C(s; θ I , xW ), and
the expected influence load of the unobserved XW c . In general, we use the numerical
approximation explained above, but for the special case of the Gaussian influence ker-
nel (1) and a rectangular observation window, it is easy to compute the edge correction
by hand.

3.3 Approximations related to the Gaussian field

We use Laplace approximation (Tierney and Kadane 1986; Rue et al. 2009) to approx-
imate the likelihood (6) and obtain

Eθ Z p(ny;β, θ I , x, Z D) ≈
√

(2π)d

det(−H(ẑ))
p(ny;β, θ I , x, ẑ)p(ẑ; θ Z ), (7)

where H and ẑ are the Hessian and maximizer of log p(ny;β, θ I , x, z)p(z; θ Z ),
respectively, and p(z; θ Z ) is the probability density of the vector ZD which contains
the values of Z D at grid cells.
Since the Gaussian random field Z is assumed to have mean zero and the Matérn

covariance function (4) with ν = 2, we can utilize the explicit link between Gaussian
fields and Markov random fields (Lindgren et al. 2011), which tells us that the distri-
bution of ZD should be approximated with a Gaussian distribution with a precision
matrix given by Lindgren et al. (2011).

3.4 Replicates

Since the point patterns are assumed to be conditionally independent, the likelihoods
(5) for each replicate yk can be multiplied to yield the final likelihood

p( y1, . . . , yN ;β, θ I , θ Z , x1, . . . , xN ) =
N∏

k=1
p( yk; β0k, β1, θ I , xk), (8)

where now β contains all the regression coefficients, i.e. β = (β01, . . . , β0N , β1). To
obtain an approximation of (8), the approximations (6) and (7) are applied to each
pattern separately.

3.5 MCMC

Combining the likelihood (8)with the prior p(β, θ I , θ Z ) yields the approximate poste-
rior distribution. To sample from this distribution, we use Robust Adaptive Metropolis
algorithm (Vihola 2012, 2020), which uses a Gaussian random-walk proposal dis-
tribution, whose covariance is updated adaptively. The limiting proposal covariance
matches the shape of the posterior, such that an average acceptance rate of 0.234 is
attained, following the theoretical findings presented e.g. in Roberts et al. (1997).
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4 Simulation experiment

Wemade a simulation experiment to study the performance of the inference approach
and the edge correction method suggested above. The point pattern x was a realization
of either a Poisson process or a regular Strauss process. The Strauss process (e.g. Illian
et al. 2008) was included to see whether the edge correction based on the Poisson
assumption of X would work even in a more regular case. We did not include any
cluster process since in our application, the large tree patterns x are regular. Also,
based on a small simulation study (results not shown here), it is unlikely that the
Poisson correction would work well when the x pattern is strongly clustered. We did
not include marks in the simulation experiment.

4.1 Set-up

The intensity parameters of the Poisson and Strauss processes were chosen such that
they result in approximately 60 points in the observation window W = [0, 40] ×
[0, 40]. In the Strauss process (parametrized as in Baddeley et al. 2015), the intensity
related parameter was 0.06, the interaction strength 0.1, and the interaction radius 2,
making the resulting patterns rather regular. The y patterns were generated on W and
the x patterns on the extended window Wext = [−20, 60] × [−20, 60] to be able to
use plus sampling which represents the ideal situation where no imputation is needed
as the complete pattern is known. The Gaussian kernel (1) was used as the influence
kernel. Initially, the parameters of the competition field and of the Gaussian field were
set to the estimates found in Sect. 5 and the intercept β0 was chosen such that the
resulting LGCP model would have 600 points on average. First we used the estimated
values β1 = −0.7 and θ = 2.1, called “estimated” in Fig. 2. In addition, we used
either the values β1 = −3, and θ = 2.1 corresponding to a much stronger effect of
the influence kernel (β1) (“strong” in Fig. 2) or the values β1 = −0.7, and θ = 6
corresponding to a much larger range of influence θ (“wide” in Fig. 2) than in the
data. In all cases, σZ = 1.6 and ρZ = 2.6. We generated 100 replicates of each X
process and one y pattern for each x. The random intensity of the Cox process was
approximated by a piecewise constant function using 0.1 m × 0.1 m cells.
We fitted the conditional LGCP model to the simulated point patterns. We dis-

cretized the observationwindows to pixels of size 1m×1mand setweakly informative
independent priors for all model parameters as follows: For the parameters in β, we
used Gaussian distributions with mean zero and standard deviation 10. For the range
parameters ρZ and θ , very small and very large values do not make sense based on the
discretization and window used. Thus, we set the prior to be the Gamma distribution
with shape parameter 2.4 and scale parameter 1.8, implying that approximately 90%of
the prior probability is between 1 m and 10 m. Furthermore, the prior for the standard
deviation of the Gaussian field σZ was the exponential distribution with expectation
10, slightly favoring small values.
For each point pattern, we then ran theMCMC scheme using (a) no edge correction,

(b) the Poisson edge correction and (c) plus sampling edge correction with 100,000
updates using the true parameter values as the starting values. For each chain we
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Fig. 2 Quantiles (0.05, 0.25, 0.5, 0.75, 0.95) of differences between posterior means and reference values.
For each row of the figure, we display the X process and the competition effect on the right and within each
subfigure, we label the three different edge corrections (left). The quantiles are based on 100 replicates

discarded 20,000 first samples as burn-in and saved every 10th sample.When influence
was strong, most chains converged and mixed well. However, there were problems
with mixing if the influence was not so strong. In this case the effective sample size
was estimated to be less than 1000 in half of the chains. Upon closer inspection
multi-modality was often the cause. We used posterior means of each chain in the
comparisons. Using posterior modes led to identical conclusions.

4.2 Results

First, we investigated the performance of the Bayesian inference approach. To avoid
edge effects,we estimated the parameters using plus sampling, utilizing the true pattern
x in the extendedwindow.Based on the distributions of the posteriormeans for the plus
sampling method (see Plus in Fig. 2), we can see that the Bayesian MCMC approach
with the approximations used performed reasonably well for the main parameters β1
and θ . However, the less interesting random field parameters were clearly biased.
As expected, the distribution of the X pattern did not affect the performance of the
inference.
Second, we investigated the performance of the Poisson edge correction. An exam-

ple of the expected intensity field with and without edge correction for the conditional
LGCP model with the parameters estimated from the EVO02 pattern and Strauss pat-
tern x is shown in top row of Fig. 3. It can be seen that the Poisson corrected and the
plus sampling corrected intensities are quite similar to each other. The bottom row of
Fig. 3 further shows the components of the influence field for the Poisson correction,
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Fig. 3 Top row: expected intensity of the conditional LGCP with parameters estimated from the EVO02
pattern using no edge correction (left), Poisson correction (middle) and plus sampling (right). Bottom row:
influence field induced by the observed points (left), expected influence field caused by the unobserved
points under the Poisson assumption (middle) and influence field caused by the unobserved points (right).
The x pattern is a realization of a Strauss process with interaction parameter 0.1, interaction range 2, and
with on average 60 points. Dark color means low intensity/high influence

namely the contribution of the observed points (left) and the expected contribution
of the unobserved points under the Poisson assumption (middle). The contribution
of unobserved points is shown for comparison (right). The Poisson correction simply
approximates the contribution of the unobserved points.
To assess the performance of the proposed edge correction method, we compared

the posterior means of the model parameters β0, β1 and θ , obtained by using plus
sampling to the estimates obtained by using the Poisson correction and those obtained
by using no edge correction. The distribution of the posterior means is shown in Fig. 2.
It can be seen that the estimates of the different methods are very similar when the
influence of the large trees was not too wide, for both X processes. However, when
the influence was wide, the proposed Poisson correction produced estimates that were
closer to the plus sampling based estimates than the uncorrected estimates were. The
results were altogether very similar for the Poisson and Strauss processes. Thus, the
edge correction plays a role if the range of influence of the x points on the intensity
of Y is wide.

5 Application

The data shown in Fig. 1 have been collected on 40 m × 40 m squares in southern
Finland. They are part of a larger data set collected for studies on tree and stand
development in managed, uneven-aged Norway spruce forests conducted under the
ERIKA research project at the Natural Resources Institute Finland (Eerikäinen et al.
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2007; Eerikäinen et al. 2014; Saksa and Valkonen 2011). Using the conditional LGCP
model, we studied the effect of large trees xi (black circles) to the seedling patterns
yi (red crosses). The patterns xi consist of trees which had a vital crown with no
damages and with a dbh at least 7 cm in 1991. Most trees (78% of trees, 70% basal
area) were Norway spruces and the remaining ones either Scots pines or broadleaves.
The seedlings were naturally generated with height at least 10 cm in 1996 and had
reached this height after the data collection in 1991. The seedlingsweremostlyNorway
spruces (98%).
We fitted the conditional LGCP model using different mark dependent and mark

independent Gaussian influence fields: the full mark dependent model (2), the two
reduced models where either of the mark specific parameters, namely δ or α were
set to zero, the mark independent model (1), and a model without an influence field.
The mark was always the dbh. We used the same discretization of the observation
window (1 m × 1 m pixel size) and the same priors as in the simulation experiment
(Sect. 4.1). The pixel size 1 m × 1 m was chosen because variations in smaller units
are practically unimportant in forests. The priors for α and δ were both the exponential
distribution with expectation 10. We then ran the MCMC scheme using the Poisson
edge correction with 120,000 updates, leaving out the first 20,000 observations of the
chains as the burn-in.
To compare themodels, we used the posterior predictivemodel assessment based on

various summary characteristics, namely the L-function (variance stabilizing version
of Ripley’s K ), the empty space function F , and the nearest neighbour distribution
function G summarizing the spatial pattern y and, to investigate the relationship
between the large trees and seedlings, the cross L-function, L12 (e.g. Illian et al.
2008; Diggle 2013). We used the standard estimators of these functions with transla-
tional (L , L12) and Kaplan-Meier edge correction methods (F , G) (Baddeley and Gill
1997). For each plot, we generated 10,000 patterns of seedlings from the posterior
predictive distributions of the conditional LGCP models given the observed x and
calculated the summary functions for the data and for each of the generated patterns.
The posterior predictive simulations were made using a discretization with 0.2 m ×
0.2 m cell size.
Figure 4 shows the empirical L12 functions together with the 95% global extreme

rank length envelopes (Myllymäki et al. 2017; Myllymäki and Mrkvička 2020) con-
structed from the L12 summary functions of the simulations of the fitted model with
mark independent influence kernel (1) (shaded region), mark dependent influence ker-
nel (2) (dotted lines), and no influence kernel (dashed line) separately for each plot.
The observed L12 function is distinctly better covered by the envelopes based on the
models with influence field than without. While the envelopes of the model without an
influence field are centred around zero, i.e., no interaction between trees and seedlings,
the empirical L12 functions have the tendency to go below zero in most plots, indi-
cating repulsion or inhibition of trees and seedlings, and the envelopes of the models
with influence kernels are shifted downwards as well. The difference between the two
models with influence kernels is, however, minor. Other summary functions (L , F , G)
produced very similar envelopes regardless of the type or lack of influence field, see
figures in Appendix 1. The empirical functions were inside the envelopes, except the
nearest neighbor distance distribution functions of four sample plots VES07, VES13,
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Fig. 4 Empirical L12 functions (solid line) together with the 95% global envelopes constructed from 10,000
simulations from the posterior predictive distribution of the fitted conditional LGCPmodels for the 14 plots
in Fig. 1 with mark independent (1) (grey shade), mark dependent (2) (dotted lines), and no (dashed lines)
influence

VES14 and VES16, which were slightly outside the envelopes at distances less than
1 m, i.e. less than the pixel size used in the discretization. This may suggest that the
spatial distribution of the seedlings is not Poisson at a very small scale, but we did not
investigate this further.
The envelopes for the models with mark dependent kernels with either δ or α set

to zero are omitted because they were very similar to the envelopes of the other two
influence kernels.
Based on the analysis above, it is clear that an influence kernel is needed. However,

since all the models with an influence kernel fitted the data equally well, we report the
results of the simplest model (1). The marginal posterior distributions of the model
parameters of this model are shown in Fig. 6. The influence of the large trees on the
seedlings (β1) is clearly negativemeaning that the seedlings avoid locations in the close
vicinity of the large trees. The range of influence θ of the large trees was estimated
to be around 2.1 m, indicating that the influence of a large tree decreases from its
maximum influence (at the tree location) to 37% of it at distance 2.1 m from the tree,
or to 5% of it at distance 3.6 m. However, there is a lot of unexplained variability, as
the quite wide envelopes in Fig. 4 and Appendix 1 show.
Figure 5 shows for each plot one realization drawn from the posterior predictive

distribution of the model with mark independent influence kernel. It is difficult to
detect the relationship between trees and seedlings by eye, but one can compare the
clustering of the seedling patterns to the observed patterns (Fig. 1). The patterns in
Figs. 1 and 5 look rather similar, and according to the envelope tests (see Fig. 4 and
Appendix 1) the model captures small scale structures up to 5 m distances.
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Fig. 5 Simulated seedling pattern (red crosses) and observed large trees (black circles, radius relative to
dbh). The simulation was done using the posterior predictive distribution of the fitted conditional LGCP
models for the 14 plots in Fig. 1 with mark independent influence of large trees

Fig. 6 Posterior quantiles (0.05,
0.25, 0.5, 0.75, 0.95) of the
common parameters (top) and
the sample plot specific
intercepts β0 (bottom)
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6 Discussion

We proposed a LGCP model to investigate the effect of large trees on the intensity of
seedlings under the presence of unexplained clustering. The influence of large treeswas
modeled by using parametric influence kernels around them.Our analysis suggests that
tree regeneration is affected by the pattern of large trees in the studied data. Namely,
the large trees were found to have negative effect on the seedling density in the vicinity
of large trees. Further, the LGCP model could capture much of the unexplained clus-
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tering. For parameter estimation, we constructed a Bayesian approach using MCMC
and Laplace approximation. All computations were implemented in Julia language
(Bezanson et al. 2017), while graphics were done using ggplot2 (Wickham 2016).
Estimation of the influence field parameters worked well in our simulation experi-

ment and we did not observe any problems due to possible confounding between the
influence field and the spatial random effect as reported in the literature (e.g. Dupont
et al. 2020). However, the random field parameter estimates were biased. We suspect
that this is caused byweak identifiability (cf. Anderes 2010; Zhang 2004) or discretiza-
tion bias coupled with the Laplace approximation. We used replicates to help with the
weak identifiability which was necessary for the plots with very few seedlings. In our
further experiments with finer discretizations (results not shown), we observed issues
with the approximation. In particular, when the number of points per cell was small,
the approximate posterior appeared to degenerate. We are unaware of exact inference
methods that would be feasible in our setting, but we are currently investigating new
methods that could allow for more detailed investigation of this issue.
There are many alternative approaches to inference with log Gaussian Cox pro-

cesses. For example, theRpackage INLA(Rue et al. 2009) usesLaplace approximation
in a similar fashion as we did, but is somewhat restricted to linear models. Indeed,
INLA can in principle accommodate our model using the rgeneric class (personal
communication with Håvard Rue). However, we faced some computational difficul-
ties in estimation. The R package lgcp (Taylor et al. 2015) uses MALA algorithm for
efficient Bayesian inference for the full model including the latent field. The use of
full MCMC might lead to better estimation of the random field parameters. However,
the lgcp package is also restricted to linear models, whereby we were not able to
apply it directly to our model. For Stan (Stan Development Team 2018) our random
field model appears to be too complicated, however there are some recent advances
see e.g. Margossian et al. (2020). Also, inlabru (Bachl et al. 2019) could be further
investigated.
Since the large trees outside the sampling window may affect the intensity of the

seedlings within the window, an edge correction assuming that the large trees were
from a Poisson process was included in the estimation procedure. We demonstrated
by a small simulation study that this edge correction can work well even when the
large trees are from a regular process. Compared to no edge correction, it improved
the parameter estimates when the range of influence was rather wide.
An obvious alternative strategy would be to include the locations of the unob-

served trees outside the observation window to the MCMC estimation in a similar
manner as considered in the inference for Neyman-Scott point processes (Møller and
Waagepetersen 2004). This approach would allow incorporating prior information on
the large tree process in the edge correction at the cost of increased complexity. Since
we did not have important prior information and the effect of edge correction appeared
minor, we did not explore this approach further. Ideas from Geyer (1999) or Gabriel
et al. (2017) could be used to find further alternative edge correction methods.
Our proposed edge correction method can be efficiently implemented when the

influence field is constructed as the sum of individual signals. In principle, a similar
edge correction could be applied with different combination rules, such as product
(e.g. Wu et al. 1985; Miina and Pukkala 2002) or max-fields (e.g. Penttinen and Niemi
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2007). If also the influence kernel is binary, e.g. c(h; θ) = 1(h ≤ θ), then themax-field
is split into two phases as well, namely influence and influence-free zones. However,
we note that our proposed calculation of the expected influence of trees outside the
observation window W does not generalize directly to other combination rules.
Themodels introduced in this paper could be useful even for natural (e.g. Abellanas

and Pérez-Moreno 2018) or urban forests (Hauru et al. 2012). Furthermore, they could
be used in an experimental setup, where realizations of seedlings would be generated
for different large tree patterns and the success of regeneration evaluated by some
spatial summary functions such as the empty space function. In a similar manner, the
effect of different thinning strategies on the regeneration of trees could be evaluated.
It could be argued that, since the management was the same for all plots and

the geographical differences minor, the plots should have had a common intercept
parameter. However, this was clearly not the case due to large variation in numbers of
seedlings fromplot to plot. Sinceweusedplot specific intercepts, it could be argued that
all other parameters should be plot specific too. This was not possible in practice due
to the problems with the random field parameters. We did not explore the alternative
where the intercept and the influence field parameters would be plot specific but the
random field parameters shared since the envelope tests already suggested adequate
fit of the model.
The observed and simulated seedling patterns in the Figures 1 and 5, respectively,

are very similar in several aspects while quite different in others. For example, the
clusters seemed to be clustered in the VES13 plot. Although the envelope tests suggest
that the model was able to capture the variability in the data, it depends on the specific
application if the model is adequate. To best of our knowledge, this is the first point
process model accounting for clustering of the seedlings in these uneven-aged forests.
There are many other factors than the vicinity of large trees that may affect the

intensity of seedlings (Valkonen and Maguire 2005; Kuusinen et al. 2019). Therefore,
the model could be further improved and unexplained variability decreased if some
covariate information on local conditionswithin plotswould be available to be included
in themodel. Further, plot level covariate effects could be added to themodel in order to
explain the numbers of seedlings in different plots. Finally, we modeled the influence
of large trees as a function of the dbh, whose effect on the influence was, however,
minor in our data. Other possibly useful marks could be the height, crown ratio or
crown width of the tree, for example.
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Appendix: Envelopes

See Appendix Figures 7, 8 and 9.
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Fig. 7 Empirical L functions (solid line) together with the 95% global envelopes constructed from 10,000
simulations from the posterior predictive distribution of the fitted conditional LGCPmodels for the 14 plots
in Fig. 1 with mark independent (grey shade), mark dependent (dashed lines), and no (dotted lines) influence
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Fig. 8 Empirical empty space functions (solid line) together with the 95% global envelopes constructed
from 10,000 simulations from the posterior predictive distribution of the fitted conditional LGCP models
for the 14 plots in Fig. 1 with mark independent (grey shade), mark dependent (dashed lines), and no (dotted
lines) influence
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Fig. 9 Empirical nearest neighbor distance distribution functions (solid line) together with the 95% global
envelopes constructed from 10,000 simulations from the posterior predictive distribution of the fitted condi-
tional LGCPmodels for the 14 plots in Fig. 1 with mark independent (grey shade), mark dependent (dashed
lines), and no (dotted lines) influence
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MyllymäkiM,Mrkvička T, Seijo H, Grabarnik P, HahnU (2017) Global envelope tests for spatial processes.

J R Stat Soc 79:381–404. https://doi.org/10.1111/rssb.12172
Oppenheim AV, Schafer RW, Buck JR (1999) Discrete-time signal processing, 2nd edn. Prentice-Hall Inc,

USA
Penttinen A, Niemi A (2007) On statistical inference for the random set generated cox process with set-

marking. Biometr J 49(2):197–213. https://doi.org/10.1002/bimj.200610272
Pommerening A, Grabarnik P (2019) Individual-based methods in forest ecology and management, 1st edn.

Springer, New York. https://doi.org/10.1007/978-3-030-24528-3
Pommerening A, Maleki K (2014) Differences between competition kernels and traditional size-ratio based

competition indices used in forest ecology. For Ecol Manag 331:135–143. https://doi.org/10.1016/j.
foreco.2014.07.028

Pommerening A, Sánchez Meador AJ (2018) Tamm review: tree interactions between myth and reality. For
Ecol Manag 424:164–176. https://doi.org/10.1016/j.foreco.2018.04.051

Pommerening A, LeMay V, Stoyan D (2011) Model-based analysis of the influence of ecological processes
on forest point pattern formation–a case study. Ecol Model 222(3):666–678. https://doi.org/10.1016/
j.ecolmodel.2010.10.019

RobertsGO,GelmanA,GilksWR (1997)Weak convergence and optimal scaling of randomwalkmetropolis
algorithms. Ann Appl Probab 7(1):110–120. https://doi.org/10.1214/aoap/1034625254

Rue H, Martino S, Chopin N (2009) Approximate Bayesian inference for latent Gaussian models using
integrated nested Laplace approximations (with discussion). J R Stat Soc 71:319–392

Saksa T, Valkonen S (2011) Dynamics of seedling establishment and survival in uneven-aged boreal forests.
For Ecol Manag 261(8):1409–1414. https://doi.org/10.1016/j.foreco.2011.01.026

Schneider MK, Law R, Illian JB (2006) Quantification of neighbourhood-dependent plant growth by
Bayesian hierarchical modelling. J Ecol 94(2):310–321. https://doi.org/10.1111/j.1365-2745.2005.
01079.x

Stan Development Team (2018) Stan modeling language users guide and reference manual, version 2.18.0.
http://mc-stan.org/

123



Environmental and Ecological Statistics

Taylor BM, Davies TM, Rowlingson BS, Diggle PJ (2015) Bayesian inference and data augmentation
schemes for spatial, spatiotemporal and multivariate log-Gaussian Cox processes in R. J Stat Softw
63(7):1–48. https://doi.org/10.18637/jss.v063.i07

Tierney L, Kadane JB (1986) Accurate approximations for posterior moments and marginal densities. J Am
Stat Assoc 81(393):82–86. https://doi.org/10.2307/2287970

Valkonen S, Maguire DA (2005) Relationship between seedbed properties and the emergence of spruce
germinants in recently cut Norway spruce selection stands in southern Finland. For Ecol Manag
210(1):255–266. https://doi.org/10.1016/j.foreco.2005.02.039

Vihola M (2012) Robust adaptive metropolis algorithm with coerced acceptance rate. Stat Comput 22:997–
1008. https://doi.org/10.1007/s11222-011-9269-5

Vihola M (2020) Ergonomic and reliable Bayesian inference with adaptive Markov chain Monte Carlo. In:
Piegrorsch WW, Levine R, Zhang HH, Lee TCM (eds) Handbook of computational statistics and data
science. Wiley, New York

WickhamH (2016) ggplot2: Elegant graphics for data analysis. Springer-Verlag, NewYork. https://ggplot2.
tidyverse.org

Wu HI, Sharpe PJ, Walker J, Penridge LK (1985) Ecological field theory: a spatial analysis of resource
interference among plants. EcolModel 29(1):215–243. https://doi.org/10.1016/0304-3800(85)90054-
7

Zhang H (2004) Inconsistent estimation and asymptotically equal interpolations in model-based geostatis-
tics. J Am Stat Assoc 99(465):250–261. https://doi.org/10.1198/016214504000000241

Mikko Kuronen is a doctoral student. His field of research is spatial statistics and computational methods.

Aila Särkkä is Professor of Mathematical Statistics. She is working on spatial point process statistics,
spatio–temporal modeling, and applications in forestry, materials science and neurology.

Matti Vihola is Associate Professor of Statistics. His research interests include computational statistics, in
particular Monte Carlo methods for Bayesian inference.

Mari Myllymäki is Academy Research Fellow. Her research topics include spatial and spatio–temporal
statistics and simulation-based methods with applications to forestry and life sciences.

123



IV 

TESTING GLOBAL AND LOCAL DEPENDENCE OF POINT 
PATTERNS ON COVARIATES IN PARAMETRIC MODELS 

by 

Myllymäki, M., Kuronen, M., and , T.  

Spatial Statistics, 42, 100436, 2021. 

doi:10.1016/j.spasta.2020.100436 

https://doi.org/10.1016/j.spasta.2020.100436


Spatial Statistics 42 (2021) 100436

Contents lists available at ScienceDirect

Spatial Statistics

journal homepage: www.elsevier.com/locate/spasta

Testing global and local dependence of point
patterns on covariates in parametricmodels

Mari Myllymäki a,∗, Mikko Kuronen a, Tomáš Mrkvička b

a Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790 Helsinki, Finland
b Department of Applied Mathematics and Informatics, Faculty of Economics, University of South

Bohemia, Studentská 13, 37005 České Budějovice, Czech Republic

a r t i c l e i n f o

Article history:

Received 14 November 2019

Received in revised form 26 February 2020

Accepted 26 February 2020

Available online 3 March 2020

Keywords:

F-statistic

General linear model

Global envelope test

Local dependence

Monte Carlo test

Spatial point pattern

a b s t r a c t

Testing for a covariate effect in a parametric point process model

is usually done through the Wald test, which relies on an asymp-

totic null distribution of the test statistic. We propose a Monte

Carlo version of the test that also allows local investigation of

the covariate effect in the globally fitted model. Two different

test statistics are suggested for this purpose: the first, a spatial

statistic computed at every location of the observation window,

resembles the classical F-statistic that is usually used in general

linear models (GLMs) to express the distance between a model

and its sub model. This statistic allows one to detect locations

where the smoothed point process residuals are reduced by

adding the interesting covariates into the model. The second

spatial statistic tries to capture local improvements in the shape

of the predicted intensity caused by an interesting, continuous

covariate. A simulation scheme resembling the permutation in-

ference for GLMs is used to obtain the null distribution of the

statistics. Thereafter, a Monte Carlo test with graphical interpre-

tation (a global envelope test) is applied to the empirical and

simulated statistic fields to determine the global significance of

the covariate and the spatially significant areas. We study the

empirical significance level and power of the test in different

scenarios and, by applying the test to simulated and real point

pattern data, show that the proposed statistics can be valuable

for model construction.

© 2020 The Author(s). Published by Elsevier B.V. This is an open

access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

∗ Corresponding author.

E-mail address: mari.myllymaki@luke.fi (M. Myllymäki).

https://doi.org/10.1016/j.spasta.2020.100436

2211-6753/© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).



2 M. Myllymäki, M. Kuronen and T. Mrkvička / Spatial Statistics 42 (2021) 100436

1. Introduction

A wide range of spatial point process models have been developed to model real data in
applications. Furthermore, a wealth of diagnostic plots (see e.g. Baddeley et al., 2005, 2015) and
goodness-of-fit tests (see e.g. Illian et al., 2008; Diggle, 2013; Myllymäki et al., 2017) are available to
evaluate the models. In any case, building up a useful model in real life applications is a challenging
task. One important step in model construction is testing covariate effects in a parametric model.

For inhomogeneous Poisson point processes, the likelihood ratio test can be used to examine
whether a point pattern depends on covariates in the presence of confounding covariates (Baddeley
et al., 2015, p. 372). Another classical test for the null hypothesis ‘H0 : β = 0’ for a single
parameter β of a point process model under the presence of effect of other nuisance covariates
is the Wald test. It has also been adjusted for Gibbs processes (Coeurjolly and Rubak, 2013) and
cluster processes (Waagepetersen and Guan, 2009) through asymptotic behavior of the estimators.
In the Bayesian context, the posterior distribution of β is used to draw conclusions about the
effect of the covariate. The Bayesian analysis is easily available for the log Gaussian Cox point
processes (Møller et al., 1998) by the R package R-INLA (Rue et al., 2009, www.r-inla.org), while the
Wald test is implemented in the R library spatstat (Baddeley et al., 2015). We are interested in the
same hypothesis either for a scalar or vector β for a general point process model that may include
second or higher order structures. Thus our focus is also on processes and estimation methods,
for which the Wald test is not yet available. Moreover, our focus is on the local assessment of
dependence between the point pattern and the covariate, whereby we use test statistics for which
the asymptotic distributions are unknown. To this end, we present tests based on the Monte Carlo
simulation and test statistics based on spatial residuals that can be applied to any model for which
spatial residuals can be computed.

The basic idea in Monte Carlo testing is to estimate the variability of a chosen test statistic under
H0 from the simulations in order to determine whether the test statistic calculated from the data
deviates from the H0 case (Barnard, 1963; Besag and Diggle, 1977; Illian et al., 2008; Myllymäki
et al., 2017). In principle, the simulation scheme allows the use of any point process model and test
statistic, as long as suitable simulations can be obtained under H0. Our simulation based inference
mimics the permutation inference in general linear models (GLMs) proposed by Freedman and Lane
(1983); see also Winkler et al. (2014) and Mrkvička et al. (2019a,b). In neuroimaging applications,
the same linear model is typically fitted at each spatial pixel or voxel of an image (Winkler et al.,
2014) and the aim is to find the spatial pixels where the data contradicts the null hypothesis. The
first step of such a test is to choose a test statistic to express the distance between a model and its
sub model, which is the null model; typically the F-statistic is used here. Secondly, permutations
are used to obtain the distribution of the test statistic under H0. One strategy is to permute the
residuals from the null model (Freedman and Lane, 1983); although this is an approximative
method, according to Anderson and Ter Braak (2003) (see also Winkler et al., 2014) it is the most
precise permutation method in the case of nuisance effects. The last step is to apply a multiple
testing correction. These steps are followed in our tests of covariate effects in point process models.
In the second step, instead of permutations, the Monte Carlo simulation is used.

Our proposed test statistics are based on point process residuals (see e.g. Stoyan and Grabarnik,
1991; Baddeley et al., 2005; Waagepetersen, 2005; Baddeley et al., 2015). For point process models
for which the conditional intensity is known in closed form, we use smoothed raw residuals defined
by Baddeley et al. (2005). For Cox processes we instead apply smoothed raw residuals based on the
intensity, as suggested by Waagepetersen (2005); because our tests rely on Monte Carlo simulation,
there is no problem in using the intensity instead of the conditional intensity, if the statistic is
informative of the null hypothesis. Our first test statistic is motivated by the classical F-statistic.
The difference between the model and the sub model is summarized as the difference of squared
smoothed residuals at each spatial location u in the observation window W . In the case where
only the effect of a continuous covariate is investigated, we also propose a test statistic to detect
where the covariate improves the match of the shape of the predicted and empirical intensities,
roughly speaking, where the covariate locally influences the intensity of the point process. This
local characteristic is particularly useful for assessing the quality of the covariate in the point process
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Fig. 1. On the left: Two point patterns with a trend in the whole observation window (top), and in the left part of

the observation window (bottom). On the right: the significant area (red) detected by a global envelope test using the

proposed local characteristic and significance level α = 0.05. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)

model. Consider the example of Fig. 1: the points represent locations of objects (e.g. infected trees or
saplings) whose intensity depends on the distance from the left edge of the observation window W
(e.g. a road). An interesting question that arises is whether there is a trend in the x-direction, which
can be inspected by the inhomogeneous Poisson process with x-coordinate as the only covariate. In
the first pattern (first row) there is indeed a decreasing trend in the x-direction, while in the second
pattern (second row) there is a change in dependence in the middle of the image. Namely, on the
left the intensity of the second pattern decreases as the distance from the edge increases, while
on the right the intensity is flat. While the first statistic detects a similar overall improvement of
the model fit as the Wald test for both cases (figure not shown), the proposed local test correctly
identifies that in the first pattern the linear trend leads to an improved local fit in nearly the whole
observation window; in the second pattern the fit is improved only on the left part of the window
(Fig. 1, right). Therefore, a researcher can think of alternative models to better capture the variation
in the intensity. A more detailed description will be given below (Section 4).

The last step of our Monte Carlo test is to apply a global envelope test (Myllymäki et al., 2017)
to the set of empirical and simulated spatial statistics. The global envelope test solves the multiple
testing problem that arises from considering the spatial statistics in the observation window W .
This multiple testing method allows one to also detect the spatial area of significance of the test,
as shown in the example above (Fig. 1).

The rest of the article is organized as follows. Point processes and residuals considered in this
article are described in Section 2. Thereafter, the new global and local statistics and the simulation
scheme for testing the effect of spatial covariates are presented in detail in Section 3. Section 4
illustrates the local test with further examples. A simulation study on the empirical significance
levels and power of the proposed test is presented in Section 5, and Section 6 shows an application
of the method to real data from the literature. Further discussion is included in Section 7.

The proposed tests are implemented in the R library GET (Myllymäki et al., 2017; Myllymäki and
Mrkvička, 2019).

2. Preliminaries on point processes and their residuals

A spatial point pattern x = {x1, . . . , xn} consists of the (unordered) locations x1, . . . , xn that are
observed in a bounded window W ⊂ R

2. In this paper, we investigate the effect of covariates in a
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general parametric spatial point process model which has been fitted to x through some arbitrary
method. The covariates are assumed to affect only the first-order trend b(u), u ∈ W , of the model, and
in the following sections we first describe what we mean by the first-order trend b(u) for different
point process models X . Section 2.1 describes b(u) for finite point processes; for Cox processes we
use b(u), as defined in Section 2.2. Section 2.3 defines the residuals considered in the new statistics
thereafter.

2.1. First-order trend of finite point processes

Assume that the model has a probability density fθ (x) with respect to the unit rate Poisson
process on W satisfying the positivity condition, i.e. if fθ (x) > 0 and y ⊂ x then fθ (y) > 0 for any
finite point patterns x, y ⊂ W . Examples of such processes are homogeneous and inhomogeneous
Poisson processes and pairwise interaction point processes. For all these processes, the density can
be expressed in the ‘Gibbs’ form f (x) = exp{V0 + V1(x)+ V2(x)+ · · · + Vn(x)} for unique functions
Vk, called the potentials of order k, where n = n(x) is the random number of points (Ripley and
Kelly, 1977; Baddeley et al., 2005). Here V0 determines the normalizing constant and, formally,
Vk(x) = ∑

y vk(y) where vk(y) ∈ [−∞,∞) and the sum is over all subsets y ⊆ x with n(y) = k,
k = 1, . . . , n. We define the first-order trend for these processes as

b(u) = exp(v1({u})).
If the potentials of higher order V≥2 = V2(x) + · · · + Vn(x), that determine interpoint interaction,
are identically zero, then the process is a Poisson process with intensity function b(u), u ∈ W .

Baddeley et al. (2005) defined the residuals for these type of finite point processes X in W
through their Papangelou conditional intensity λ(u, x) that uniquely determines the probability
density f , and vice versa. Loosely speaking, λ(u, x)du is the conditional probability that there is
a point of X in an infinitesimal region of area du containing u, given that the rest of the point
process coincides with x. Formally, for u ∈ W , u /∈ x, the conditional intensity is defined by
λ(u, x) = f (x∪{u})/f (x) if f (x) > 0, and λ(u, x) = 0 otherwise. For u ∈ x, it is λ(u, x) = λ(u, x/{u}).
In general, it holds that

log{λ(u, x)} = v1(u)+
∑

i

v2({u, xi})+
∑
i<j

v3({u, xi, xj})+ · · · , u /∈ x.

For example, for the Poisson process, the conditional intensity coincides with the intensity function
and also with the first-order trend, i.e.

λ(u, x) = b(u), u ∈ W .

For the general pairwise interaction process, it is

λ(u, x) = b(u)

n∏
i=1

c(u, xi),

where the ‘activity’ (or first-order trend) b(u) ≥ 0, u ∈ W , is typically used to model spatial variation
in the abundance of points, and c(u, v) = c(v, u) ≥ 0, u, v ∈ W , is the ‘interaction’ that can be used
to model the association between points.

2.2. First-order trend of Cox processes

The Cox process is a ‘doubly stochastic Poisson process’ with a random intensity Λ(u); given
the realization l(u) of the non-negative random intensity, the points follow the inhomogeneous
Poisson process with intensity function l(u). Examples of Cox processes are the log Gaussian Cox
process (LGCP) (Møller et al., 1998) and the Neyman–Scott point process (see e.g. Illian et al., 2008;
Mrkvička et al., 2014). In the LGCP, which we use in our examples, the random intensity is

Λ(u) = b(u) exp(Z(u)),
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where b(u) is the first-order trend and Z(u) is a zero-mean Gaussian random field, with variance
σ 2, that creates additional clustering. The intensity of the LGCP is

λ(u) = EΛ(u) = b(u) exp(σ 2/2).

2.3. Point process residuals

Different types of residuals have been defined for finite point processes (see Section 2.1) based
on the Georgii–Nguyen–Zessin (GNZ) formula (Georgii, 1976; Nguyen and Zessin, 1979; Stoyan and
Grabarnik, 1991; Baddeley et al., 2005). We consider only the raw residuals that correspond to those

in a linear model: Given data x and a general parameter estimate θ̂ = θ̂ (x), Baddeley et al. (2005)
defined the raw residuals

Rθ̂ (B) = n(x ∩ B)−
∫
B

λ̂(u, x)du (1)

with the fitted conditional intensity λ̂(u, x) = λθ̂ (u, x) for any B ⊆ W . The raw residuals Rθ̂ (B) are a

signed measure onW , with atoms of mass 1 at the data points, and a negative density−λ̂(u, x) at all
locations u ∈ W (Baddeley et al., 2005). For diagnostic plots to investigate spatial trends, Baddeley
et al. (2005, p. 634) defined the smoothed raw residuals as

s(u) = e(u)

(∑
xi∈x

k(u− xi)−
∫
W

k(u− v)λ̂(v, x)dv

)
(2)

= λ̃(u)− λ†(u)

for u ∈ W , where e is an edge correction in the window W , e(u)−1 = ∫
W

k(u − v)dv, and k is a
smoothing kernel. Thus, the smoothed raw residuals are the difference between a non-parametric
kernel smoothing estimator of the point process intensity function, λ̃(u), and a kernel-smoothed
version of the parametric estimator of the conditional intensity, λ†(u). According to Baddeley et al.
(2005), these two intensities should be approximately equal if the fitted model is correct, and it is
hoped that then s(u) ≈ 0. Positive and negative values of s(u) relate to the underestimation and
overestimation of the intensity, respectively.

For some point processes such as Cox and cluster processes, including inhomogeneous log
Gaussian Cox processes and certain Neyman–Scott processes, the intensity function is known in
a closed form, whereas the conditional intensity is not. For such processes, in the analogy of the
raw residuals (1), Waagepetersen (2005) proposed the residuals

R′
θ̂
(B) = n(x ∩ B)−

∫
B

λ̂(u)du

where λ̂(u) = λθ̂ (u) is the fitted intensity. Baddeley et al. (2005) suspected that these residuals
could indeed be valuable for assessing spatial trends, but they might be insensitive to the lack of
fit if the model parameters are estimated using the minimum contrast estimation (as in Baddeley
et al., 2015). In the analogy of (2), the corresponding smoothed residuals can be defined as

s(u) = e(u)

(∑
xi∈x

k(u− xi)−
∫
W

k(u− v)λ̂(v)dv

)
.

We employ these smoothed residuals for Cox processes.

3. Testing for the covariate effect

Let x be a point pattern and X be the point process model under consideration for x inW . Assume
that the first-order trend of the process X takes the form

b(u) = exp

{
K∑

k=1

βkCk(u)+
L∑

l=1

γlUl(u)

}
, (3)
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where Ck(u), k = 1, . . . , K , are spatial covariates of interest, Ul(u), l = 1, . . . , L, are (spatial) nuisance

covariates, and β = (β1, . . . , βK ) and γ = (γ1, . . . , γL) are the regression coefficient vectors. We are

interested in the null hypothesis

H0 : β1 = · · · = βK = 0. (4)

To test the hypothesis (4) for inhomogeneous Poisson processes, it is possible to use the

likelihood ratio test (see e.g. Baddeley et al., 2015, p. 372). Furthermore, for K = 1, the Wald test

can be used with the test statistic

V = β̂

se(β̂)
(5)

where β̂ is the estimate of β under the alternative hypothesis H1, and se(β̂) is the estimate of the

standard error of β̂ . For inhomogeneous Poisson processes and the maximum likelihood estimator

β̂ , the asymptotic null distribution of this statistic is standard normal (see e.g. Baddeley et al., 2015,

Section 10.3.3). The test can also be used for inhomogeneous Cox processes (Waagepetersen and

Guan, 2009) and Gibbs processes (Coeurjolly and Rubak, 2013). These tests are implemented in the

R package spatstat (Baddeley et al., 2015); we compared the performance of our spatial statistics

to these in Section 5.

In Section 3.1, we first present two spatial statistics for testing covariate effects. The first statistic

inspects the hypothesis (4) through spatial residuals. In addition to the test decision, the test allows

the detection of spatial locations where the residuals are significantly reduced. The second statistic

allows the inspection of the local dependence between an interesting continuous covariate and the

point density under the presence of nuisance variables. In Section 3.2, we describe how these new

statistics can be used in a Monte Carlo test.

3.1. Spatial statistics

To test the hypothesis H0, we first defined a spatial statistic motivated by the classical F-statistic,

namely

F (u) = s0(u)
2 − s1(u)

2, u ∈ W , (6)

where s1(u) are the smoothed raw residuals of the model X with the first-order trend (3), and s0(u)

are the smoothed raw residuals of the reduced model that has the first-order trend

bH0 (u) = exp

{
L∑

l=1

γlUl(u)

}
, (7)

and that is otherwise equal to the full model X . While we do not know the asymptotic distribution

of the statistic (6), a Monte Carlo test can be constructed based on it, leading to a simulation-

based alternative to the Wald test. This test can detect where the residuals are reduced due to

the covariates Ck(u), k = 1, . . . , K . However, interpretation of the local F (u) can sometimes be

challenging due to the nature of the residuals: the residuals s0(u) of the reduced model are always

close to zero in some parts of the observation window W , and in these locations the full model

cannot be any better than the reduced model in terms of smaller residuals. Thus, the detected areas

where the residuals are decreased can sometimes be surprising at first and difficult to interpret. We

recommend always inspecting the residuals s0(u) and s1(u) alongside F (u).

In the case that there is only one interesting covariate (i.e. β is a scalar and K = 1) we can also

address local dependence between the point pattern and the covariate in the presence of nuisance

covariates. Local dependence of X on C(u) at u ∈ W could be assessed by fitting the model (3),

and testing H0 in the surrounding area of the spatial location u. However, a computationally less

demanding alternative is to investigate the dependence from the fitted global model, which, as we

show below, can provide similar information and avoid possible problems with local fits when the

data are sparse.
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We define our second spatial statistic to investigate the local dependence of the point pattern

and the spatial covariate C(u) as

S(u) = a0(u)

a1(u)
=
∫
Bu∩W (s0(x)− s̄0(u))

2dx∫
Bu∩W (s1(x)− s̄1(u))2dx

, u ∈ W , (8)

where

s̄i(u) = 1

|Bu ∩W |
∫
Bu∩W

si(x)dx, u ∈ W , i = 0, 1,

and Bu is a ball of radius R centered at u. The numerator a0(u) and denominator a1(u) measure

variation in the smoothed residuals of the reduced and full models in the sub windows Bu for u ∈ W ,

respectively. The quantity ai(u), i = 0, 1, is smallest when the smoothed residuals si(u), i = 0, 1, are

constant in Bu. This happens when the deviations of the smoothed predicted (conditional) intensity

from the kernel smoothed intensity λ̃(u) are zero (perfect fit) or constant (perfect fit for slope) in

Bu. Therefore, the statistic S(u) obtains values larger than one at u ∈ W if the full model captures

the shape of the point density λ̃(u) better than the reduced model.

For the statistics F (u) and S(u), we need to choose the bandwidth for smoothing the raw

residuals. For S(u), also the radius R needs to be chosen. As the kernel for smoothing in (2), we

used the Gaussian kernel and chose the bandwidth according to the rule of thumb of Scott (1992,

p. 152). This rule is typically useful when a gradual trend is expected. Furthermore, we chose R
relative to Scott’s bandwidths given in the x and y directions; namely we took R to be the mean

of the two bandwidths. In general, the choices should be made depending on the application, but

relatively large bandwidths are typically recommended to investigate trends in the patterns.

3.2. Simulation based inference with graphical interpretation

According to Anderson and Ter Braak (2003) and Winkler et al. (2014), the approximative

permutation method proposed by Freedman and Lane (1983) is one of the most precise permutation

methods in the presence of nuisance effects in GLMs. The algorithm is based on permuting the

residuals from the null model. It does not satisfy the exchangeability property, but the significance

level of such permutation schemes is close to the nominal level. We mimic this algorithm to test

the hypothesis (4). In the case of point processes, we cannot permute the residuals, because our

residuals are a spatial field in W , and we assume here to have only observed a point pattern in W .

Instead we can simulate point patterns from the reduced model. More precisely, we propose the

following algorithm to generate simulations under H0:

1. Fit the full model (3) and the reduced model (7) to the data pattern X , and calculate the test

statistic (6) (and/or (8)). Denote the estimated statistics by F0(u) (and S0(u)) at u ∈ W .

2. Generate s simulated patterns X∗
i , i = 1, . . . , s, from the fitted reduced model.

3. For each i = 1, . . . , s, fit the full and reduced models to the simulated data X∗
i and calculate

the test statistic (6) (and/or (8)). Denote the estimated statistics by Fi(u) (and Si(u)) at u ∈ W .

Consequently, we have s+ 1 spatial fields Fi(u), i = 0, 1, . . . , s (and/or Si(u), i = 0, 1, . . . , s). Under
the null hypothesis (4), the statistics Fi(u) (or Si(u)) come from the same distribution. A Monte Carlo

test can be done based on the statistics Fi(u) (or Si(u)) to test the null hypothesis (4).

As we are not testing a simple hypothesis, since parameters of the null model are estimated,

the two-stage Monte Carlo test (Dao and Genton, 2014; Myllymäki et al., 2017; Baddeley et al.,

2017) should be applied. On the other hand, the residuals are not strongly related to estimation

procedures, and thus the one-stage Monte Carlo test is not assumed to be seriously liberal or

conservative. Because the two-step test is computationally rather demanding, we describe below

the one-stage version and investigate its applicability in Section 5.

To make a Monte Carlo test based on Fi(u), i = 0, 1, . . . , s (or Si(u), i = 0, 1, . . . , s), we
utilize the completely non-parametric global envelope test based on the extreme rank length (ERL)

measure (Myllymäki et al., 2017; Narisetty and Nair, 2016; Mrkvička et al., 2018). The ERL measure
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solves the multiple testing problem which arises by comparing the functions Fi(u) (Mrkvička et al.,
2017). The test also provides a graphical interpretation of the test results by identifying the locations
where the data contradicts the null hypothesis.

In practice, the functions are evaluated on a finite number of locations u1, . . . , ud ∈ W , and we
denote the statistics at these locations by Fi = Fi(u1), . . . , Fi(ud), i = 0, 1, . . . , s. We consider the
one-sided test, where large values of F (u) are considered extreme, i.e. we want to find if and where
the covariates Ck(u), k = 1, . . . , K , improve the model.

The ERL measure proposed by Myllymäki et al. (2017) and Narisetty and Nair (2016) is based on
the ranks of the Fi among each other. Let R0j, R1j, . . . , Rsj be the raw ranks of F0(uj), F1(uj), . . . , Fs(uj),
such that the largest Fi(uj) has rank 1. The vector of pointwise ranks (Ri1, Ri2, . . . , Rid) at u1, . . . , ud

is attached to each Fi. Let Ri = (Ri[1], Ri[2], . . . , Ri[d]) be these pointwise ranks ordered from smallest
to largest, i.e. Ri[j] ≤ Ri[j′] whenever j ≤ j′. Formally, the ERL measure is defined by the lexicographic
ordering of the Ri, i = 0, 1, . . . , s:

Ei = 1

s+ 1

s∑
i′=0

1(Ri′ ≺ Ri) (9)

where

Ri′ ≺ Ri ⇐⇒ ∃ n ≤ d : Ri′[l] = Ri[l] ∀ l < n, Ri′[n] < Ri[n].

The p-value of a Monte Carlo test based on the ERL measure is perl =∑s
i=0 1(Ei ≤ Ei)

/
(s+1) and the

100(1−α)% global ERL envelope induced by the ERL measure is defined as a hull of the vectors that
are considered non-extreme by the measure at the given significance level α, see details in Mrkvička
et al. (2018) and Narisetty and Nair (2016). Throughout this paper, we use the significance level
α = 0.05. If the data function F0 goes outside the constructed 95% global envelope, then also
perl ≤ 0.05. In the simulation experiment below, we explore the empirical significance level of
this test in a few specific cases.

We utilized the R package GET (Myllymäki et al., 2017; Myllymäki and Mrkvička, 2019) for the
global envelope tests.

4. Simulated examples

Let us consider a few simulated examples to understand the behavior of the spatial test statistics
(6) and (8). Let W = [0, 1]2 and u = (x, y) ∈ W . Each of the example patterns shown in Fig. 2 (left)
were generated from the inhomogeneous Poisson process with intensity

b(u) = exp(γ + βZ(u)), (10)

where Z(u) is a covariate and β is its coefficient (both specified in each example below), and we
used γ = log(1000/

∫
W
exp(βZ(u))du) leading approximately to 1000 points in the patterns. We

tested the significance of a covariate C(u) in the inhomogeneous Poisson process specified below.
Although the inhomogeneous Poisson process may not be the most suitable model for patterns of
trees, we describe the simulated examples below as they were patterns of (certain) trees (or saplings
or other plants) in a particular neighborhood, in order to resemble real life situations.

Example A (Change in Dependence). The covariate in the simulated model (10) was

Z(u) = (0.5− x)1(x ≤ 0.5),

where 1(·) denotes the indicator function, and β = 2. The point pattern (Fig. 2, top left) can be
imagined to represent the locations of infected trees that are affected by the distance from the road
(on the left of the window) up to a certain distance.

We considered the test for a linear trend (i.e., our interesting covariate was C(u) = x) and
the reduced model was simply the homogeneous Poisson process. The significant regions for both
spatial statistics (6) and (8) are shown in Fig. 2 (first row). The spatial F-statistic (6) shows that
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Fig. 2. Results for testing the significance of the (A) x-coordinate, (B) distance from the center, and (C) x-coordinate for

the three different point patterns generated from the inhomogeneous Poisson process with intensity (10), see details

of Examples A–C in the text. The columns from left to right show: the simulated point pattern (points) with the covariate

Z(u) in (10) on the background (red hues), the residuals s0(u) and s1(u) (red overestimation, blue underestimation), and

the empirical F (u) and S(u) (blue hues) overlaid by the significant regions of the tests (red). (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of this article.)

the residuals of the model were decreased almost everywhere by adding the x-coordinate to the
model. However, in the vertical line in the middle of the window no reduction was obtained; this
is because the residuals of the reduced model, s0(u), are close to zero there (see Fig. 2, top row). The
S-statistic (8) shows us that the changes in the point pattern intensity were better captured with
the full model in the left part of the window. However, as expected, it shows no improvements in
comparison to the constant model on the right part of the window. Thus, the S-statistic correctly
suggests that the linear trend may be appropriate on the left hand side of W , but not on the right
hand side.

Example B (Spatial Break in Dependence). The point pattern (Fig. 2, middle left) was simulated from
the model (10) with

Z(u) = 0.5/d(u) · 1(d(u) > 0.2)

where d(u) = √
(x− 0.5)2 + (y− 0.5)2 is the distance from the center of the window W and β = 2.

This example can be understood as mimicking a landscape with a swamp in the middle of a valley:
generally the trees prefer the valley, but they do not grow in the swamp.

We tested the effect of the covariate C(u) = d(u). The reduced model was the homogeneous
Poisson process. In this case, the spatial F-statistic shows reduction in the residuals next to the
swamp where the tree density is highest, as well as in the outskirts of the valley (Fig. 2, middle
row). The residuals were not reduced in the swamp, where the new model is obviously flawed and
also not in a circle where the s0(u) residuals were around zero (see again Fig. 2, middle row). Thus,
the swamp is detected by the spatial F (u) as a location where the full model is not any better than
the reduced model (in fact, in terms of residuals it is worse). The local S-statistic shows that the
changes in intensity are better captured in the outskirts. The shape is not captured very close to
the border of the swamp due to smoothing. When we divided the smoothing parameters by two,
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the circle in the middle became smaller, but at the same time the significant region in the outskirts
became less uniform.

Example C (Nonadditive Dependence). The point pattern (Fig. 2, bottom left) was simulated from the
model (10) with β = 2 and

Z(u) = max(1.5(1− C(u)),U(u)),

where C(u) = x, and U(u) is a realization of the zero-mean Gaussian random field with the Gaussian
covariance function that has unit variance and the scale parameter 0.2. The field 1.5(1−C(u)) creates
a decreasing linear trend in the point density from left to right, which is confounded by U(u). This
pattern can be understood again as a pattern of infected trees, which is affected by two factors, an
environmental covariate such as elevation (U(u)) and the distance from a road (on the left of the
window). Infected trees are observed either in high elevation or close to the road.

Our nuisance covariates were the constant and the elevation U(u), and we investigated the effect
of the covariate C(u) = x. The spatial F-statistic shows a reduction in residuals almost in the whole
window, except in the high elevation (bump on the left), and in the region where the s0(u) residuals
are close to zero (Fig. 2, bottom row). This suggests that even though the linear trend improves the
model fit, it is not entirely satisfactory. The spatial S-statistic further detects that the changes in
intensity are better captured close to the road (left) and at the bottom and top right hand corners
with relatively low intensities. On the other hand, no significant improvements were obtained in
the high elevation area. Observing significance only at specific locations, rather than everywhere,
suggests that the additive trend in the model contradicts the data.

5. Simulation study

The previous examples were designed to show how the new spatial statistics can be helpful
to find improvements and misfits (no improvement) of the fitted model due to the interesting
covariate C(u). Here, we edit these models for the purpose of studying the empirical significance
levels of the proposed tests and the Wald type tests, as well as their power in different cases where
the fitted model is equal to the true model. In this scenario, we expect that the Wald test and the
F (u) test (the global envelope test based on (6)) have more power to reject the null hypothesis (4)
than the S(u) test (the global envelope test based on (8)); this is due to the nature of S(u), that is
designed to detect local fits rather than global fits. Therefore, to compare the Wald and F (u) tests,
and to determine how much less power the test based on S(u) would have, we simulated data in
the unit square [0, 1]2 from the full (log linear) models with

M1: b(u) = exp(γ1 + βx)

M2: b(u) = exp(γ1 + βZ(u))

M3: b(u) = exp(γ1 + βx+ γ2Z(u))

M4: b(u) = exp(γ1 + βZ(u)+ γ2x)

where x is the x-coordinate, u = (x, y), and Z(u) is the realization of the zero-mean Gaussian random
field U(u) from Example C (Gaussian covariance function with variance 1 and scale 0.2). In each
model, the factor with coefficient β is the interesting factor, and the others are considered nuisance
factors in the simulations. Together with each of the first-order trends M1–M4, we considered the
following second order structures

S0: none, i.e. the process was the inhomogeneous Poisson process,

S1: hard-core process with interaction radius 0.01 (small scale repulsion),

S2: LGCP with small scale clustering produced by the zero-mean Gaussian random field with
exponential covariance function with interaction range parameter 0.02.

In all our simulations, the value of γ1 was chosen to lead to 1000 points in the patterns on
average, and the coefficient γ2 of the nuisance covariate was fixed to 1, resulting in a rather strong
(visually clear) effect of the nuisance covariate on the point pattern. First, to explore the empirical
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Table 1
Empirical significance levels for testing the null

hypothesis (4) at the significance level 0.05 for

the three tests, the Wald test and the global ERL

envelope test based on F (u) and S(u). For details

about the models M1–M4 and S0–S2 see the text.

Tests

Wald F (u) S(u)

M1

S0

0.058 0.048 0.047

M2 0.058 0.062 0.051

M3 0.058 0.059 0.040

M4 0.053 0.046 0.045

M1

S1

0.075 0.072 0.059

M2 0.057 0.056 0.033

M3 0.064 0.077 0.043

M4 0.082 0.080 0.064

M1

S2

0.059 0.033 0.050

M2 0.081 0.052 0.052

M3 0.048 0.048 0.044

M4 0.072 0.043 0.053

significance levels, we considered the models M1–M4 with S0, S1 and S2 and with β = 0 (i.e.
the interesting factor had no effect on the intensity). Second, to explore the power of the tests,
we simulated data from the models M1–M4 with S0, S1 and S2 and three different values for the
parameter β (see Table 2). The smallest values of β were chosen so that the V -values of the Wald
test were close to 2 on average, which was explored in a small side study. The other two values of
β were taken to be a bit larger, to obtain higher powers. We simulated 1000 realizations of each
model, performed the tests for each of these realizations, and calculated the empirical rejection
rates of H0 among the 1000 repetitions. We used the significance level α = 0.05, and in each
global envelope test we performed s = 499 simulations in the algorithm presented in Section 3.2.
To estimate F (u) and S(u), we used the choices of the bandwidths given in Section 3.1. The Wald
test was provided by the R library spatstat (Baddeley et al., 2015; Coeurjolly and Rubak, 2013;
Waagepetersen and Guan, 2009).

The empirical significance levels are shown in Table 1. Note that the levels should be within
the interval (0.037, 0.064) with a probability of 0.95 (given by the 2.5% and 97.5% quantiles of the
binomial distribution with parameters 1000 and 0.05), if the level of the test was correct. First,
we can see that for the inhomogeneous Poisson processes (i.e. M1–M4 with S0), all the empirical
significance levels are close to the nominal level 0.05. For the hard-core process (the case S1), the
empirical significance levels of the Wald and F (u) tests tended to be slightly liberal, while for S(u)
the levels were either close to 0.05 (M1, M3, M4) or slightly conservative (M2). The empirical levels
of the S(u) test were also good for the LGCP processes (the case S2). However, the F (u) test was
slightly conservative for M1; the Wald test, on the other hand, was liberal for both M2 and M4.
Thus, to conclude, the significance levels of the S(u) test were close to the nominal level 0.05 in
all cases, while the F (u) and Wald tests tended to be slightly liberal for S1 and Wald also for S2. It
might be that S(u) is even less related to the estimation procedure than the other two tests.

Next we compared the empirical powers, see Table 2. First, for the inhomogeneous Poisson
processes (the case with the second-order structure S0), all the tests had rather similar powers,
but the order from the highest to lowest power was always: Wald, F (u), S(u). For the hard-core
processes (the case S1), the Wald and F (u) tests had rather similar power, while the power of the
S(u) test was a bit lower. Note, however, that the empirical significance levels of the Wald and
F (u) tests were a bit above the nominal level, which may explain why they were a bit higher in
power than the S(u) test. For the LGCP model (the case S2), the Wald test had higher power than
the F (u) and S(u) tests. Again, this result may be at least partly due to differences in the empirical
significance levels of the tests. In addition, in this case the S(u) test always had higher power than
the F (u) test.
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Table 2
Rejection rates for testing the null hypothesis (4) at the significance level 0.05 for the three tests, the Wald test and

the global ERL envelope test based on F (u) and S(u). The data were simulated from the models with first-order trends

M1–M4 and second-order structures S0–S2, and with different parameter values of β specified in the first column of the

table. See description of the models in the text.

S0 S1 S2

β Wald F (u) S(u) Wald F (u) S(u) Wald F (u) S(u)

M1

0.25 0.616 0.541 0.533 0.432 0.425 0.333 0.264 0.151 0.186

0.50 0.998 0.991 0.984 0.957 0.945 0.905 0.683 0.409 0.554

0.75 1.000 1.000 1.000 1.000 0.999 0.999 0.946 0.671 0.871

M2

0.10 0.616 0.544 0.541 0.354 0.360 0.291 0.248 0.156 0.207

0.20 0.995 0.988 0.986 0.911 0.904 0.833 0.700 0.523 0.620

0.30 1.000 1.000 1.000 0.999 0.999 0.994 0.946 0.839 0.909

M3

0.25 0.557 0.530 0.461 0.485 0.476 0.406 0.181 0.150 0.147

0.50 0.989 0.980 0.959 0.967 0.954 0.920 0.513 0.377 0.407

0.75 1.000 1.000 1.000 0.999 0.999 0.999 0.822 0.616 0.719

M4

0.10 0.561 0.499 0.483 0.415 0.406 0.316 0.210 0.138 0.152

0.20 0.988 0.971 0.966 0.940 0.928 0.868 0.642 0.479 0.553

0.30 1.000 1.000 1.000 1.000 1.000 0.998 0.915 0.777 0.872

In fact, we had expected the S(u) test to have less power than the other tests in this simulation

experiment where the tested model was a truly global model, as it has an inherently different

nature. However, its power was only slightly lower than the power of the Wald and F (u) tests
for the cases of inhomogeneous Poisson (S0) and hard-core (S1) processes. For the clustered case

(S2), it led to a higher power than the F (u) test.

6. Data examples

We illustrate the proposed tests on two point patterns from the literature. Both point patterns

are available in the R library spatstat (Baddeley et al., 2015).

6.1. Rainforest data

Fig. 3 shows the point pattern of the locations of 3605 trees in a tropical rain forest, accompanied

by the elevation and gradient (norm of the elevation gradient) in the study region (Condit, 1998;

Condit et al., 1996; Hubbell and Foster, 1983; Møller and Waagepetersen, 2007). As the first model

for the pattern, we considered the inhomogeneous Poisson process with intensity b(u) = exp(γ +
βelevation(u)). The Wald test indicated that the elevation has a slightly significant effect (β̂ = 0.005,

V = 2.32). The outputs of the global envelope tests based on F (u) and S(u) with s = 999 simulations

and R = 59 m are given in Fig. 4(a). While the F (u) shows a reduction of residuals in quite large

areas, according to the S(u) test there were no improvements in the local fits. By looking at the

point pattern in Fig. 3, we can see, for example, that in the area on the right where the elevation

changes greatly, the point intensity does not vary much.

Secondly, we considered the model b(u) = exp(γ + βgradient(u)). The Wald test indicated a

significant effect of the gradient (β̂ = 5.03, V = 20.5). The F (u) test shows that the residuals were
particularly reduced in the middle of the observation window with low gradient, and in the four

spots with an intermediate gradient (see Fig. 4(b)). On the other hand, no reduction in residuals

was obtained in the top left part of the window, where the gradient is rather low but the number

of trees is high. The S(u) test shows improvements in somewhat different areas than F (u), namely

in the areas where the point density changes with the gradient. No improvements in the local fit

were obtained in the top left hand corner or bottom parts of the window.

We then followed Baddeley et al. (2015, p. 309) and further considered the quadratic model

b(u) = exp(γ1 + γ2gradient(u)+ βgradient2(u)),
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Fig. 3. The point pattern of the tree species Beilschmiedia pendula, elevation and slope (norm of elevation gradient) in a

1000 m × 500 m area in the tropical rainforest of Barro Colorado Island.

where the gradient was regarded as a nuisance covariate and the gradient2 was the covariate of

interest. According to the Wald test, the gradient squared had a significant effect (β̂ = −55.5,
v = −13.0) and also the F (u) test shows a reduction in the residuals at several locations, particularly
in the area at the top discussed above (Fig. 4(c)). However, the S(u) test shows that locally the
gradient2 did not improve the fit. Therefore, it appears that these covariates were not sufficient to
explain the pattern, and some further covariates should be considered.

As a summary, we showed first that the elevation could not explain much of the variation in the
point density. Secondly, the gradient was better, but it could not explain the high intensity in the
upper left corner of W . Thus, the gradient was also insufficient, suggesting that dependence may
be non-linear. However, the gradient squared could not improve the local fits further, suggesting
that some other phenomenon plays a role.

6.2. Forest fires

Fig. 5 shows the locations of the forest fires that were caused by lightning in the Castilla-La
Mancha region of Spain between 2004 and 2007. The data is a part of the data set clmfires available
at the R library spatstat (Baddeley et al., 2015). Fig. 5 shows further elevation and a land use area
that was classified as different types of forests (namely conifer, dense forest or mixed forests). The
rest of the area is comprised of urban, farm, meadow, grassland, bush and scrub, and artificial green
land use classes. We first studied the inhomogeneous Poisson process with intensity

b(u) = exp(γ1 + γ21(u ∈ forest)+ βelevation(u)),

i.e. the effect of elevation accounting for the effect of the forest class variable (forest or non-forest)
as the nuisance covariate of the model. We first used Scott’s rule for the smoothed residuals (with
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Fig. 4. Investigating the effect of a covariate in the inhomogeneous Poisson process model for the point pattern of Fig. 3

in three different models, where the interesting covariate was: (a) elevation, (b) gradient, and (c) gradient2. In (a) and

(b), the constant was the only nuisance factor, while in (c) the nuisance factors were the constant and gradient. The

residuals s0(u) and s1(u) of the reduced and full model (red overestimation, blue underestimation) and the F (u) and S(u)

statistics for the data (blue hue on the background) overlaid by the significant regions of the global envelope test (red).

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

corresponding R = 29.5), as we did earlier, but as these residuals were very smooth we divided
the bandwidths by two to look at the phenomena on a finer scale (R = 14.8). The results shown
below are for the latter case. The effect of elevation was again shown to be significant by the Wald

test (β̂ = 0.0015, V = 11.48) and the F (u) test also detected large areas with a reduction in spatial
residuals (Fig. 6). However, in the S(u) test we observed that the linear trend was significant only in
a small region of W , indicating that the linear dependence on the elevation did not hold locally. On
account of the possibility that the forest fires may not be frequent in areas of very high elevation,
we next tested the global and local significance of the quadratic term of elevation in the model

b(u) = exp(γ1 + γ21(u ∈ forest)+ γ3elevation(u)+ β(elevation(u))2).

For all the tests, the null hypothesis was again rejected (β̂ = −2.3 · 10−6, V = −5.624, Fig. 6).
The S(u) test shows that the quadratic term only helped capture the shape of the point pattern
intensity in some small intermediate elevation areas, and in high elevation areas in the southeast
and northwest. On the other hand, in the high elevation area in the northeast, no improvements
were obtained and F (u) suggests that the residuals did not decrease there either; in this high
elevation area the amount of fires is rather high, while the quadratic term suggested a decreased
number of points in comparison to the null model. This suggests that other covariates are needed
to explain the variation in the intensity in high elevation areas.

7. Discussion

We proposed new Monte Carlo tests for the dependence of a point pattern on covariates in
a general point process model and general estimation strategy. In particular, the proposed test
statistic S(u) in (8) allows us to explore local dependence. In our approach, we did not fit local
models, but instead the proposed test statistic used the fitted global model. It would be possible
to fit local models in a similar manner as in Viladomat et al. (2014) for random fields and bind
the local tests together in a global envelope test. Even though the R library spatstat.local (Baddeley,
2019) supports the fitting of local models, this approach would be more computational than the
one used here.
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Fig. 5. The locations of forest fires that were caused by lightning in the Castilla-La Mancha region of Spain between 2004

and 2007 as well as the elevation and forest area (land use classes: forest, dense forest and mixed forest).

Fig. 6. Investigating the effect of a covariate in the inhomogeneous Poisson process model for the point pattern of Fig. 5

in two different models, where the interesting covariate was: (a) elevation and (b) elevation2. In (a), the nuisance factors

were the constant as well as class variable of forest/non-forest, while in (b) the nuisance factors were the constant,

forest/non-forest, and elevation. The residuals s0(u) and s1(u) of the reduced and full model (red overestimation, blue

underestimation) and the F (u) and S(u) statistics for the data (blue hue on the background) overlaid with the significant

regions of the global envelope test (red). (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)

Baddeley et al. (2005) recommended a diagnostic tool to plot residuals with respect to a given
covariate. This tool helps to identify non-linear dependence of the intensity and the covariate by
eye. In contrast, our test is able to identify the spatial locations where the covariate leads to a
significantly better local fit of the model and where it does not. Of course, insignificance may also
be present due to the lack of gradient or noise in the data, but generally the test can be used in the
following way: if there are large areas without any significant local dependence, the dependence in
that area is spoiled, the reasons for which are to be determined. Different reasons were shown in
data studies and simulated examples, including nonlinearity, lack of dependence in a certain area,
opposite dependence in a certain area, presence of another unobserved covariate in the model,
non-additivity of the covariates effects. The Monte Carlo tests can also be used in cases where the
Wald test is not applicable, such as in cluster processes with a composite likelihood estimation
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strategy. The Monte Carlo tests also reduced the slight liberality of the Wald test for Gibbs and
cluster processes in our simulation study. In particular, the test based on the statistic S(u) performed
surprisingly well in testing the global hypothesis given that its focus is on local dependencies.
Therefore, we believe that the new test can be a useful tool in model construction, complementing
the toolbox for the analysis of point patterns to understand the significance of spatial covariates in
point process models.

The hypothesis tested by the Monte Carlo method in this work was not simple. However, in our
limited simulation study, the one-step Monte Carlo tests based on F (u) and S(u) achieved empirical
significance levels close to the nominal level 0.05 for inhomogeneous Poisson processes, and for
inhomogeneous models with small scale regularity and clustering; therefore, the one-stage tests
are applicable. In any case, it is also possible to employ the two-stage tests (Dao and Genton, 2014;
Baddeley et al., 2017; Myllymäki et al., 2017; Myllymäki and Mrkvička, 2019), which are exact,
albeit more computational.

In principle, other forms of dependence on the covariates than (3) could be considered by the
Monte Carlo tests. The only requirement is that the full and reduced models can be fitted both to
the data and to the simulations of the reduced model.

Global envelope tests (Myllymäki et al., 2017) have so far been used for spatial point patterns
mainly in goodness-of-fit testing. Here we have presented a new application where the global
envelope tests with graphical interpretation can be useful. The tests are directly applicable to testing
other hypotheses when the test statistic is a function, an image, or a general multivariate vector and
simulations under the null hypothesis are available.
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