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Proton Direct Ionization in Sub-Micron
Technologies:

Numerical Method for RPP Parameter Extraction
Sascha Lüdeke, Member, IEEE, and Arto Javanainen, Member, IEEE

Abstract—This work introduces a numerical method to itera-
tively extract parameters of a rectangular parallelepiped (RPP)
sensitive volume (SV) from experimental proton direct ioniza-
tion SEU data. The method combines two separate numerical
models. The first model estimates the average LET values for
energetic ions, including protons and also heavy ions, in ele-
mental solid targets. The second model describes the statistical
variance in the energy deposition events of projectile-induced
primary ionization within a RPP shaped target volume. To
benchmark the method, simulated cross-section values based on
RPP parameters derived with this method are compared with
literature data from four SRAM devices. The RPP geometries
determined by this method reproduced the experimental cross-
section values in the literature with good accuracy, therefore
showing that this method can be used to reliably and quickly
determine the RPP parameters for SVs in memories sensitive to
proton direct ionization (PDI). The method is currently strictly
limited to direct ionization effects, i.e. not taking into account
any nuclear reaction mechanisms, and elemental materials due
to the underlying models’ definitions.

Index Terms—proton direct ionization (PDI), single event
upset (SEU), linear energy transfer (LET), straggling, Monte
Carlo (MC) method, rectangular parallelepiped (RPP)

I. INTRODUCTION

The impact of proton direct ionization (PDI) on the
single event upset (SEU) cross sections of highly-scaled sub-
micron technology has been demonstrated in [1]–[12], among
others. Therefore, it is of great importance to consider the
contribution of low energy protons (LEP) (Ep+ < 3MeV )
to the on-orbit soft error rate (SER) [1]–[7], [13]. Also the
impact of LEP PDI effects on the SER in avionics have been
shown [14].

One of the main methods to investigate the SERs is to use
the rectangular parallelepiped (RPP) method [4], [5], [9],
[15], [16]. This approach assumes a RPP-shaped sensitive
volume (SV) and uses it as a surrogate for the device
under testing (DUT) in Monte Carlo (MC) simulations of
the radiation environment. This method does not rely on
any knowledge of the inner composition and design of the
DUT and can therefore be used when this information is
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Finland and Electrical and Computer Engineering Department, Vanderbilt
University, Nashville, TN 37235 USA, e-mail: arto.javanainen@jyu.fi

not available or insufficient. The RPP geometry does not
represent the actual charge collection area of the device, it
emulates the devices SEU response in radiation transport
simulations. Therefore, the parameters of the RPP do not
have any physical meaning in regards to the actual structure
of the device, but the RPP geometry can be used to calculate
SER under various radiation environments due to its similar
SEU response as the DUT.

The parameters for the single SV RPP approach used in
this work are lateral length and width (aSV ) of the SV, height
(hSV ) of the SV, critical charge threshold (Qcrit) of the SV
required to trigger an upset and the thickness (hOL) of any
material or overlayers between the incident beam and the SV
of the DUT. A schematic representation of the RPP geometry
is given in Fig. 1.

While direct approaches to deduce the parameters for
the RPP geometry from heavy-ion and proton cross section
data, e.g. [17]–[19], have been formulated, an approach to
estimate these directly from low energy proton data has not
been found. Therefore, the common procedure to determine
RPP parameters consists of an iterative (usually manual)
process of adjusting the parameters of the RPP geometry and
simulating the resulting cross sections of the geometry using
the MC method until the simulated and experimental cross
sections agree. This process depends on user experience,
hence the obtained parameters are not necessarily unequivo-
cal, depending on the users assessment of a good visual fit
between the simulated and experimental data. Furthermore,
due to the relative complexity and computational demands
of MC simulations, this procedure can be difficult and time
consuming.

In this work, a less time intensive and numerical approach
to iteratively determine appropriate RPP parameters from
PDI cross-section data is proposed. Instead of using the MC
method to calculate the energy depositions in the SV of
the RPP geometry and consecutively the cross sections, the
presented method combines two numerical models to achieve
this.

The first, a linear energy transfer (LET) model is based
on a semi-empirical modification of Bloch’s stopping number
after [20]. In this work the terms LET, stopping force and
stopping power are used as synonyms is used to estimate the
average energy deposition of ions traversing target materials.

The second model is formulated after [21], and it describes
the standard deviation of an ion’s energy deposition in a
target volume of a given thickness.

The method then provides an estimate of the energy
deposition distributions within the SV based on a RPP
geometry for protons with different initial energies. The PDI
SEU cross sections of the device represented by the RPP
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Fig. 1. Schematic representation of the RPP geometries assumed in this
work (not to scale).

geometry can be then estimated from these distributions
by applying the Qcrit of the RPP geometry to the energy
deposition distribution. Applying this method for protons
with different initial energies the PDI cross-section as a
function of initial proton energy can be derived. With that,
the parameters of the RPP geometry can then be adjusted
and a new set of cross-section calculated. The parameters
are adjusted until the estimated cross-section values agree
with the experimental PDI cross-section data.

Due to the numerical and simpler nature of the proposed
method, the parameters of the RPP geometry can be adjusted
and the resulting cross-section calculated without the use of
the MC method, making the process less time consuming.
Further, the proposed method can be implemented in any
programming language with numeric abilities and requires
less computation power than MC simulations.

This method is not meant to replace the MC method
in general, but rather to substitute it during this iterative
adjustment process of the RPP parameters to find the most
fitting RPP geometry for a given data set.

In this work experimental and simulated proton SEU data
[4], [5], [9] for several SRAMs were used to benchmark
the method’s ability to determine RPP geometries from PDI
cross-section data. The determined RPP parameters for the
data sets by this method were verified via MC simulations
and the results compared against the simulations presented
in the literature. All MC simulations in this work were
performed with the Geant4 toolkit [22]. Additionally, the new
LET model for protons and heavy ions in elemental targets
is presented and verified against experimental LET data [23].

II. LET MODEL

In the following section the semi-empirical LET model for
protons and heavy ions in elemental targets is introduced.
The model is used in the methodology presented here to
estimate the energy lost to the overlayers by the proton as
well as the average energy deposited within the SV by the
proton.

A. Model and Calculations

The general description of the linear energy transfer
(
dE
dx

)
in units of MeVcm2/mg can be expressed as:

dE

dx
= 3.0705 · 10−4 · Z1 · Z2

A2β2
· L, (1)

where Z1 and Z2 are the atomic numbers for the projectile
and target, respectively, A2 the mass number of the target and
β the velocity of the projectile relative to the speed of light
[24]. The parameter L is referred to as the stopping number.

Essentially, the stopping number governs the overall de-
pendence of the LET on projectile velocity, atomic number
and the target properties. Depending on the theory (or
model), in general the stopping number is usually given in
form

Li = ln(ξi) (2)

where ξi is the stopping variable for the theory in question.
The theory proposed by Bohr [25] defines the stopping
number as

LBohr = ln(ξBohr) = ln

(
C
mec

2β3

Z1Iα

)
, (3)

where I = Z2 · 10 eV represents the mean ionization
energy of the target atoms, C = 2e−γ with γ = 0.5772, unit-
less, as the Euler-Mascheroni constant, me = 511 keV/c2

the electron mass, c the speed of light in m/s and α ≈ 1/137
the unitless fine-structure constant. Bohr’s stopping number
is valid for intermediate and high projectile energies.

The second theory, describing the high energy stopping
number is the Bethe’s formula that mostly covers very high
energies. In case of Bethe’s theory the stopping number reads
as:

LBethe = ln(ξBethe) = ln

(
2mec

2β2

I

)
. (4)

Bohr’s stopping theory was then combined by Bloch with
Bethe’s theory, which led to a new definition of the stopping
number after Bloch’s theory approximated by de Ferrariis
and Arista [24]:

LBloch = ln

C
mec

2β3

Z1Iα

1√
1 +

(
Cβ

2Z1α

)2
 (5)

This stopping number now covers both the energy range
of Bohr’s and Bethe’s theory, because for very high energies
the Bloch’s stopping variable will convert towards Bethe’s
stopping variable.

For the low energy stopping the most prominent theories
are the ones by Lindhard and Scharff [26] (LSS) and Firsov
[27]. Both theories show that for low energies the stopping
power is proportional to Bohr’s stopping variable. Therefore,
in comparison with Eq. 1, the following applies:

LLSS ∝ ξBohr

LFirsov ∝ ξBohr
(6)

This work proposes a modification to the approximation
of Bloch’s stopping number after [20] using two semi-
empirical unitless parameters p0 and p1, with no direct
physical meaning, in the following manner:
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ln(ξBloch) → p0 · ln(1 + p1ξBloch) (7)

This modification results in the following expression for
the modified Bloch’s stopping number:

L = p0 · ln

1 + p1C
mec

2β3

Z1Iα

1√
1 +

(
Cβ

2Z1α

)2
 (8)

This alteration impacts the convergence behavior of the
stopping number in the low and high energy regime accord-
ing to Eq. 9. In the low energy regime it allows the modified
Bloch’s stopping number to converge towards a form similar
to the stopping numbers after LSS [26] and Firsov [27], both
are considered to accurately describe the stopping of particles
in the low energy regime [24]. The similarity is that both
theories and the modified stopping number can be described
as proportional to Bohr’s stopping variable in the low energy
range.

po ln(1 + p1 · ξBloch) ≈
{

p0p1 · ξBohr, v → 0
p0 ln(p1 · ξBethe), v → ∞

(9)
Additionally, the modified stopping number behaves simi-

lar to Bloch’s stopping number, after [20], in the intermediate
energy range, which describes the stopping of particles in the
intermediate and high energy regimes [24]. Finally, in the
high energy range the modified stopping number converges
towards an expression proportional to Bethe’s stopping the-
ory. Overall, the modification of Bloch’s stopping number
does not impact it’s behavior in the intermediate energy
range strongly, but allows one description of the stopping
number to cover the entire energy range. Therefore, the semi-
empirical modification of the stopping number can be used
to describe all regimes of stopping with a single expression,
unlike the theoretical descriptions that only cover partial
energy regimes [24].

The stopping numbers L from different models and the-
ories for H projectiles in a Si target as a function of the
projectile energy are given in Fig. 2. The figure shows how
the modified stopping number aligns with the theoretical
stopping numbers in their respective energy interval.

In conclusion, this modification combines two stopping
number expressions after [26], [27] and [20] describing low,
intermediate and high energy stopping simultaneously.

The parameters p0 and p1 were determined for selected
data sets from the Nuclear Data Services (NDS) Database
[23]. One hundred and eight projectile-target combinations
were selected, based on the amount and range of the available
experimental data. For each combination Eq.(8) was fitted to
the experimental data to determine p0 and p1. For projectile-
target combinations not covered in this step, the values can
be determined via linear interpolation of p0 and p1 over Z1

and Z2. The p0 and p1 parameters for all fitted data sets have
been published at [28].

The LET values calculated from this model were com-
pared to the experimental data from the NDS database [23]
as well as LET values produced by the SRIM2013 [29] and
DPASS [30]. The average difference (⟨∆⟩) of the values from
the model (dEdx mod

) in comparison to the experimental values
(dEdx exp

) over the number of data points (Ndata) in a certain

Fig. 2. Stopping number L as a function of proton energy E calculated
from various theoretical approaches (Firsov, LSS, Bohr, Bethe and Bloch)
in Si. Additionally, the modified stopping number presented in this work
is shown. Finally, the stopping numbers of the experimental data from the
NDS was calculated and displayed.

energy range was calculated using the following equation
adapted from [31]:

⟨∆⟩ = 1

Ndata

∑
Ndata

dE
dx exp

− dE
dx mod

dE
dx exp

(10)

Furthermore, the standard deviation (s∆) of the difference
between the modelled values and the experimental data is
calculated after:

s∆ =

√√√√ 1

Ndata

∑
Ndata

(
dE
dx exp

− dE
dx mod

dE
dx exp

− ⟨∆⟩

)2

(11)

These metrics were used to evaluate the ability of the
model to estimate LET values at different projectile energies.

B. Results

Figure 3 presents the experimental LET values as a
function of the projectile’s energy for H projectiles in a
Si target. Values calculated from the proposed LET model,
DPASS [30] and SRIM2013 [29] softwares are presented
as well. Overall, all models show good agreement with
the experimental data and the established softwares. For H
projectiles in Si targets the value for p0 is 0.774 and 1.231
for p1. The p0 and p1 parameters for the remaining data sets
are published at [28]. Furthermore an example of the heavy
ion LET values is given for O projectiles in an Al target is
given in Fig. 4.

A comparison of values produced by different models over
a wider variety of projectile-target combinations (H, He, O,
Ar, Kr, Xe projectiles in C, Al, Ni, Si targets) against the
experimental values was conducted using Eq. (10) and Eq.
(11). The results are presented in Table I. The results are split
into four energy regimes: < 0.1MeV (Low), 0.1MeV to
10.0MeV (Intermediate), > 10.0MeV (High) and covering
all energies (Full). In the current iteration of the model
projectiles ranging from H to Au and targets from Li until
Au are covered. This describes the average performance of
the model for common projectile and target combination
in comparison to established models and software. A more
detailed overview over the performance of the model in



4

Fig. 3. LET values dE/dx in MeV/mg/cm2 for H projectiles in Si targets
over the projectile’s kinetic energy E in MeV/u. Experimental data taken
from the NDS database [23]. Modeled values from this work, SRIM [29]
and DPASS [30] are shown.

Fig. 4. SLET values dE/dx in MeV/mg/cm2 for O projectiles in Al targets
over the projectile’s kinetic energy E in MeV/u. Experimental data taken
from the NDS database [23]. Modeled values from this work, SRIM [29]
and DPASS [30] are shown.

regards to every individual experimental value used in the
fitting procedure has been published at [28].

Overall, the proposed model overestimates the experimen-
tal values in the low energy range and underestimate the data
in the intermediate and high energy ranges. The proposed
model performs comparable to SRIM and slightly better
than DPASS in the considered projectile-target combinations.
While Fig. 3 shows that the model accurately describes the
LET values for protons in Si, which is of importance for
the method proposed in this work, Table I, Fig. 4 as well
as the data published at [28] further show that the LET
model on its own can be successfully applied to a wider
variety of projectile-target combinations, including heavy ion
projectiles.

III. STRAGGLING MODEL

In the following a model to estimate the standard deviation
of the energy depositions in the SV adapted from [21] is
presented. If only the average deposited energy in the SV
is considered, the incoming protons of a specific energy
are either able to cause an upset in the SV or not. This
would result in a rectangular cross-section curve, which is
not what can be seen in the experimental data reported in the

literature. Straggling has been identified to be the a factor for
the shape of the PDI cross-section response observed in the
experimental data, which is considered in this method by
considering the standard deviation of the energy depositions
of the protons in the SV due to straggling.

A. Model and Calculations

An approximation of the relative standard deviation (sdep)
in MeV of the energy deposition profile of a proton or heavy
ion in the SV was adapted from [21]:

sdep ≈ Z1 ·
√
A ·
√
hSV (12)

where Z1 is the atomic number of the projectile ion and
hSV the SV height in nm. The parameter A in MeV2/nm
in above is defined as

A = 4π(αℏc)2NZ2, (13)

where ℏ is the reduced Planck’s constant. N and Z2 are
the atomic density and the atomic number of the target,
respectively. For a silicon target, (Z2 = 14) A = 1.82 ·
10−8 MeV 2/nm.

For this work a log-normal shape was assumed for the
energy deposition distribution D(Edep) within a target of a
given thickness, as the domain of the log-normal distribution
is strictly positive. For a collection of proton or heavy-
ion energy deposition events calculated after the straggling
model presented here, the distribution is

D(Edep) =
1

Edep · slog ·
√
2π

·

exp

(
− (ln(Edep)− µlog)

2

2 · s2log

) (14)

The mean (µlog) and the standard deviation (slog) of the
log-normal distribution can be calculated from the LET and
the straggling models using

µlog = ln

 ⟨Edep⟩2√
⟨Edep⟩2 + s2dep

 (15)

and

s2log = ln

(
1 +

s2dep

⟨Edep⟩2

)
(16)

The average deposited energy ⟨Edep⟩ in the SV of height
hSV can be calculated from the LET (dEdx ) of the particle
reaching the SV with an energy of Ep+ via

⟨Edep⟩ =
dE

dx
(Ep+) · hSV (17)

B. Results

The energy deposition profiles calculated based on the
approach described above were compared to Geant4 sim-
ulation results. Figures 5 and 6 present probability density
distributions of the energy deposition of protons in Si-targets
computed via Geant4 [22] simulations and via the straggling
model described above. The distributions are normalized so
that the area under the distribution equals unity. Figure 5
presents the distributions for various proton energies in a
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TABLE I
OVERVIEW OF THE AVERAGE AND STANDARD DEVIATION OF THE RELATIVE DIFFERENCE (⟨∆⟩ ± s∆) FOR DIFFERENT MODELS COMPARED TO
EXPERIMENTAL DATA. PRESENTED ARE DATA FOR H, HE, O, AR, KR, XE PROJECTILES IN C, AL, NI, SI TARGETS OVER DIFFERENT ENERGY

RANGES. THE NUMBER OF DATA POINTS (Ndata) IN EACH ENERGY RANGE (Erange) ARE GIVEN.

Erange Low (<0.1 MeV/u) Intermediate (0.1-10 MeV/u) High (>10 MeV/u) Full
Ndata 1859 3163 190 5212

This Work −8.26± 28.47 2.08± 8.84 11.63± 20.80 −1.26± 19.56
SRIM −10.23± 37.44 1.70± 8.25 8.51± 18.48 −2.32± 24.28

DPASS −19.21± 39.15 2.94± 12.97 6.60± 19.60 −4.83± 27.89

Fig. 5. Probability density functions of the normalized energy depositions
of protons in a Si hSV = 250 nm. Functions for various initial proton
energies Ep+ are presented. Solid line represent the simulated distribution
and the dashed lines the modelled distribution.

Fig. 6. Probability density functions of the normalized energy depositions
of 0.8MeV protons in Si. Functions for various hSV are presented. Solid
line represent the simulated distribution and the dashed lines the modelled
distribution.

Si SV with hSV = 250 nm and Fig. 6 the distributions of
0.8MeV protons in Si-SVs with varying heights.

Both Fig. 5 and Fig. 6 confirm that the model is able to
estimate the width of the distributions compared to Geant4
simulations. Additionally, for the proton energies relevant for
this work the probability density function can be represented
by a log-normal distribution.

IV. APPLYING THE MODELS TO DETERMINE RPP
PARAMETERS

In this section the methodology to estimate the PDI cross-
sections for a RPP geometry based on the two models
detailed above is presented. This is used further to iteratively
determine the RPP parameters for sets of PDI cross-section
data.

MC simulations are preformed with RPP geometries from
the extracted parameters. The simulated cross-sections are
then compared against the experimental cross-section data
presented in the literature.

RPP geometries are mainly used in the simulation of
radiation environments to estimate the SER of the device
under that radiation environment. This has not been done
here, as it is beyond of the scope of this work.

A. Method and Calculations

1) Estimation of Proton Energy after Overlayers: The
first step in this method is to determine the energy of the
primary proton at SV level (ESV ) in MeV after traversing
the overlayers of thickness hOL in µm of the RPP geometry.
Here, the LET model is used to estimate the energy lost by
the proton with initial energy Ep+ to the overlayers and from
that the remaining energy of the particle when reaching the
SV level.

The energy at SV level ESV can be estimated from the
initial energy of the particle Ep+ = E0 by splitting the
overlayers in sections of thickness hsect. A section thickness
of 200 nm was used in this work and was chosen as a
compromise of computation time and accuracy. The energy
after a section Epost is calculated by reducing the energy of
the particle Epre before entering section by the energy lost
in that section. The energy lost is estimated with the LET
model and the thickness of the section according to:

Epost = Epre −
dE

dx
(Epre) · hsect. (18)

This procedure is repeated for every section of the OL
until the energy at the SV surface is known. The thickness
of the last section has to be adjusted if thickness of the OL is
not divisible without rest by the selection section thickness.

The initial guess for the the thickness of the overlayers
hOL can be derived from the initial proton energy Ep+,max

at which the peak of the experimental PDI cross-section data
is observed. It is assumed that the PDI cross-section peak
occurs when the Bragg peak of the proton is located in the
SV of the RPP geometry. With that assumption an initial
estimate for hOL can be made. E.g. for a PDI peak located
at Ep+,max = 0.6MeV an initial guess of 7.3 µm of Si-
equivalent overlayer would be made, the Bragg peak ranges
of protons in several target materials are presented in Fig 7.

In Fig. 7 the Bragg peak ranges calculated via SRIM2013
for Si, SiO2 and Kapton are shown. The values for Si are
also given as estimated using the LET model presented in
this work. It shows that both calculations, via the model or
SRIM2013, of the location of the Bragg peak agree. Common
materials encounter in the packaging and overlayers of
devices were chosen for illustration.

Due to the current limitations of the LET model, only ele-
mental overlayers can be considered. For that reason, Si was
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Fig. 7. Proton Bragg peak range (RBragg) in µm inside Si, SiO2 and
Kapton targets as a function of primary energy (Ep+ ) in MeV.

chosen as the substitute of SiO2 for the devices investigated
in this work. This will provide an Si equivalent overlayer
thickness and all further parameters will be determined with
that taken into consideration.

2) Estimation of Deposited Energy Distribution in the SV:
With the estimated ESV from the previous step, the previous
models are used to determine the parameters µlog and slog
for the energy deposition distribution (D(Edep)) in MeV−1

of the proton with energy ESV in the SV of thickness hSV .
D(Edep) is to be normalized so that:∫ ∞

0

D(Edep)dEdep = 1 (19)

A first guess for hSV and aSV in µm can be made by
assuming a cubic SV as follows

aSV = hSV =
√
σPDI,max (20)

with σPDI,max being the maximum PDI cross-section
of the experimental data in cm2. This is derived from
the assumption that at the Bragg peak energy any proton
reaching the SV is able to upset it making the surface area
of the SV equal to σPDI,max. The SV is assumed cubic as
literature shows that aSV and hSV are in the same order of
magnitude for the technologies covered here (see Table III),
making a cubic SV a reasonable starting point.

3) Application of the Critical Charge Threshold: In this
step the critical charge (Qcrit) of the RPP geometry is
applied to D(Edep). First, Qcrit in fC is transformed into
critical energy (Ecrit) in MeV according to

Ecrit = Qcrit · F (21)

where F = 22.5MeVpC−1 describes the energy required
to create an electron-hole pair in Si.

Ecrit is then applied to D(Edep) to determine the likeli-
hood P (Ep+ , Edep > Ecrit) of a proton with initial energy
Ep+ inducing an upset by depositing energy (Edep) in the
SV above the critical energy (Ecrit). This is calculated via

P (Ep+ , Edep > Ecrit) =

∫ ∞

Ecrit

D(Edep)dEdep

=
1

2
erfc

(
ln(Edep)− µlog

slog ·
√
2

)
,

(22)

where erfc refers to the complementary error function.
An initial value for Qcrit around 0.75 fC can be assumed

for this step. No clear correlation between Qcrit and the
experimental cross-section curve was identified in this work.
Therefore, the initial value was derived from Qcrit val-
ues reported in the literature for similar technology node
sizes [4], [5], [9]. The initial value was chosen as the
center of the Qcrit value range displayed in the literature
(≈ 0.5 fC to 1.0 fC).

4) Converting P (Ep+ , Edep > Ecrit) into Cross-Section:
The estimated cross-section (σest) of a proton with energy
Ep+ inducing an upset in the RPP geometry is calculated
after

σest(Ep+) = P (Ep+ , Edep > Ecrit) · a2SV , (23)

where aSV is the lateral length and of the SV in µm,
assuming a square surface of the SV. The initial guess for
aSV is made according to Eq. 20.

5) Iterative Adjustment of Parameters: For the last step of
the method steps 1) through 4) are performed for the energies
used in the experiments and the cross-section estimated based
on a initial guess for the RPP geometry. Afterwards, the mean
squared error (MSE) between the results of this method and
the experimental cross-section is calculated with

MSE =
1

Nexp

Nexp∑
i=1

(log10(σest(Ei))− log10(σexp,i))
2

(24)
where Nexp is the number of experimental data points,

Ei and σexp,i are the i-th pair of proton energy in MeV
used in the experiment and measured cross-section in cm2,
respectively.

Then the parameters of the RPP (aSV ,hSV ,hOL and Qcrit)
are adjusted until the MSE is minimized. This can be
done either via minimization algorithms or manually. In
general, the aSV was observed to impact the vertical offset of
the estimated cross-sections, hOL the position of the cross-
section peak and hSV in conjunction with Qcrit the shape
of the right shoulder of the cross-section curve [5].

This method was applied to four SRAM data sets. The
sources and technology nodes can be seen in Table II. For
all, the RPP parameters were extracted from the experimental
data using the method presented here. The resulting RPP
geometries were then used in Geant4 MC simulation to
compare their ability to reproduce the DUTs PDI SEU
behavior in simulations. Finally, the MSE was calculated
between the experimental cross-section data and the sim-
ulated cross-section data from the literature and from the
Geant4 simulations with the RPP geometries determined
here, respectively.

TABLE II
DATA SET NAMES, SOURCES AND TECHNOLOGY USED FOR COMPARISON

IN THIS WORK

Name Source Technology

ISSI [5], [9] 40nm1

Cypress [5] 65nm
RADSAGA [5] 65nm
TI [4] 65nm

1 [9] states 65nm, but [5] correctly states 40nm.
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Fig. 8. Proton SEU cross section for the ISSI SRAM. Experimental and
simulated data from [9] are presented. Cross-section values calculated from
the method presented here based on the determined RPP parameters are
shown. Furthermore, results of a MC simulation using Geant4 based on the
RPP geometry determined here is displayed.

Fig. 9. Proton SEU cross section for the Cypress SRAM. Experimental
and simulated data from [5] are presented. Cross-section values calculated
from the method presented here based on the determined RPP parameters
are shown. Furthermore, results of a MC simulation using Geant4 based on
the RPP geometry determined here is displayed.

B. Results

The RPP parameters for the four data sets determined by
this method and the parameters presented in the literature
are presented in Table III. Furthermore, the MSE values
between the experimental and the Geant4 simulated cross-
section data are presented for both the RPP geometries
presented in the literature and the ones extracted in this work.

Some of the RPP geometries reported in the literature
consist of multiple nested SVs, but only the parameters of
the central SV were used for the comparison. This has been
done since a single SV is sufficient to emulate the LEP SEU
response, which is the focus of this work. The nested SVs
were introduced in the literature to better emulate the high
energy proton SEU response, as well as the heavy ion SEU
response.

Figures 8 through 11 show the experimental and simulated
cross-section data from the literature for the four data sets,
as well as the cross-sections based on the RPP geometry de-
termined in this work estimated using the method described
here and Geant4 MC simulation results of the same RPP
geometry.

The proposed method is able to reproduce the RPP pa-

Fig. 10. Proton SEU cross section for the RADSAGA SRAM. Experimental
and simulated data from [5] are presented. Cross-section values calculated
from the method presented here based on the determined RPP parameters
are shown. Furthermore, results of a MC simulation using Geant4 based on
the RPP geometry determined here is displayed.

Fig. 11. Proton SEU cross section for the TI SRAM. Experimental and
simulated data from [4] are presented. Cross-section values calculated from
the method presented here based on the determined RPP parameters are
shown. Furthermore, results of a MC simulation using Geant4 based on the
RPP geometry determined here is displayed.

rameters that are close to the ones reported in the literature
strictly numerically without the use of the MC method.
Furthermore, the obtained parameters were confirmed to
reproduce the PDI cross-sections of the DUTs in MC simula-
tions with comparable accuracy as the simulations performed
in the literature.

Additionally, the MC simulations and the method return
comparable cross-section values when performed for a given
RPP geometry, apart from the left side of the cross-section
peak, because the method does not take straggling inside
the overlayers into account. This confirms the method’s use
as a replacement of the MC simulation during the iterative
adjustment of the RPP parameters.

Finally, it has been shown that assuming an elemental Si
overlayer with a Si equivalent overlayer thickness did not in-
duce any significant uncertainty in the MC simulation results,
which were able to accurately reproduce the experimental
PDI data with a purely elemental overlayer.
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TABLE III
RPP PARAMETERS FOR THE 4 DATA SETS DISCUSSED IN THIS WORK. VALUES FROM THE LITERATURE (IF AVAILABLE) AND VALUES DETERMINED BY

THE METHOD PRESENTED IN THIS WORK ARE GIVEN. THE MSE BETWEEN THE MC SIMULATED AND THE EXPERIMENTAL DATA IS PRESENTED.

Device Source aSV hSV hOL Qcrit MSE
[µm] [µm] [µm] [fC] [log10(cm

2)2]

ISSI [9] 0.25 0.25 6.0 0.73 0.147
[5] 0.31 0.31 6.0 0.96 1.012
This Work 0.225 0.25 6.5 0.73 0.186

Cypress [5] 0.36 0.36 10.0 0.86 0.384
This Work 0.356 0.356 11.0 0.8 0.071

RADSAGA [5] 0.638 0.25 12.0 0.55 0.139
This Work 0.638 0.28 12.5 0.63 0.066

TI [4] - - - - 0.593
This Work 0.1 0.25 14 0.65 0.221

V. DISCUSSION AND FURTHER WORK

A. LET Model

The LET model itself agrees well in comparison with well
established LET softwares, SRIM2013 [29] and DPASS [30],
for protons and heavy ions in various elemental targets. In
contrast to the establish softwares, the proposed model is
available as a collection of equations. This makes this model
very versatile and able to support the presented method
without the need of external software. Furthermore, it is
natively supports any platform able to perform numerical
calculations and can therefore be easily implemented in
programming algorithms such as the method described here.

The model is not limited to protons and covers a projectile
range from H to Au and targets from Li until Au. As of now,
only elemental solid targets can be considered. No direct
functional relation was found between parameters p0 and p1
and the characteristics of the projectile-target combination.
Therefore, the current version of the model interpolates
parameters p0 and p1 over Z1 and Z2 for projectile-target
combinations, that could not used in the fitting process due
to insufficient or no data in the NDS database [23]. This
may result in inaccurate parameters, when projectile-target
combinations are considered that have no fitted data set close
to them. Since, H in Si was one of the data sets used in the
fitting procedure, this limitation does not apply to the method
described here.

The next steps in developing this model are to find a
functional relationship between the projectile-target combi-
nations and p0 and p1, and to expand the model to cover
non-elemental targets as well, most importantly compounds
used in electronics, such as SiO2 and SiC.

B. Straggling Model

The straggling model has been shown to provide accurate
estimates on the energy deposition distributions for protons in
the energy and target thickness ranges relevant to low energy
proton testing of devices in modern technologies. The models
straightforward equations make it simple to implement in low
computing power calculations.

The accuracy of the model declines when the range of
the particle is close to or lower than the thickness of the
absorber. This impacts mostly energies left of the PDI cross-
section peak. Due to the high average deposited energy
around the Bragg peak and low hSV associated with the
newer technologies in the literature this has little impact on
the method.

Further research into the straggling model is planned to
improve the characterization of the straggling close to or at
end of range of the particle.

C. Applying the Models to Determine RPP parameters

The method presented in this work was shown to suc-
cessfully estimate PDI cross-section values based on a RPP
geometry and then was used to iteratively determine RPP
parameters for LEP cross-section data sets. Furthermore, the
method proofed to accurately predict MC simulations PDI
cross-section results results for a given RPP geometry.

The methods ability to emulate the results of MC simula-
tions was successfully benchmarked by performing Geant4
MC simulations with the four RPP geometries determined
here, without using the MC method at any step in the
determination of those parameters. The results of the sim-
ulations agree well with the values estimated by the method
based on the same RPP geometry. The results of the Geant4
simulations of the RPP geometries also agree with the
experimental and the simulated cross-section values from the
literature, validating the method’s use in the determination of
RPP geometries from experimental PDI cross-section data.

Due to the non-reliance of this method on the MC method
of external software, the determination of the RPP parameters
for each data set can be performed within minutes. The
reduced time and computation power requirements makes
this method an attractive alternative to repeated MC simula-
tions to determine a single SV RPP geometry based on PDI
cross-section data. The determination of the RPP parameters
took approximately 10min per data set, whereas the MC
simulation of one set of RPP parameters took 4 h each.

Currently, the presented method only takes the straggling
inside the SV into account. This causes the estimated cross
section peak to exhibit a very steep decrease with decreasing
proton energy below the PDI SEU cross section maximum,
because it consider all particles with an average range below
hOL not to reach the SV. Due to straggling, even if the
average range of the particles is too low, a fraction of
the particles will still penetrate the overlayers, potentially
upsetting the device. This has to be taken into account when
interpreting the results.

Furthermore, the LET model covers only elemental targets,
which means the materials used in the algorithm are limited
to elemental materials as well. This will only affect hOL as
this most commonly assumed as SiO2 or Si depending on
the device. As of now, this method only can only consider
Si and therefore gives slightly increased values for hOL

compared to the literature values, when SiO2 was used there.
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It has little to no influence in the accuracy of the MC
simulations, in which Si was used as well, in comparison
to the experimental values. Essentially, the SiO2 overlayer
thickness is translated into a Si equivalent thickness. An
elemental material close to the assumed, or known, overlayer
material composition should be chosen. This may be a cause
of error for very complex overlayer compositions or for
materials where it is more difficult to choose a suitable
elemental material such as polymers and similar complex
materials. Further investigations may be required to find
elemental materials with similar stopping characteristics as
the assumed, or known, overlayer materials. Even in those
cases, the uncertainties are expected to be minimal as the
method uses the same elemental material to determine the
remaining parameters providing a RPP geometry that will
reproduce the experiment values in MC simulation based on
the chosen overlayer material.

Additionally, due to the underlying models’ limitations
to direct ionization effects, the method can not provide
cross-sections at higher energies, where nuclear reactions
dominate the ionization. Therefore, when the PDI peak of the
DUT’s SEU response overlaps with the indirect ionization
response, the model will not be able to reproduce these values
accurately. Therefore, the method will be subject to increased
uncertainties for hOL ≫ 10 µm.

The simulated cross-section data based on the determined
RPP parameters in this work show differences for the high
energy proton (HEP) cross-section data, while showing good
agreement with the low energy proton cross-section data.
This is not unexpected since it has been shown that high
energy proton and heavy ion cross-section data require
multiple nested SVs to be accurately represented in MC
simulations [5], [9]. The nested volumes around the central
SV use the same Qcrit but a reduced charge collection
efficiency is assumed, meaning only a fraction of the charge
produced within the nested SV by the incoming particle
is collected by the volume. LEPs are not able to produce
an upset when depositing energy in the outer nested SVs
due to the reduced charge collection efficiency. Only heavy
ions and secondaries from nuclear reactions, induced by
high energy protons, are able to deposit sufficient energy in
the nested SV due to their higher LET compared to LEPs.
Therefore, only the center SV, having 100% charge collection
efficiency by definition, can be derived from the PDI cross-
section data. This method, currently, focuses only on direct
ionization effects from protons and therefore can only extract
information for a single SV RPP geometry from LEP PDI
cross section data. In order to extend the RPP geometry with
nested volumes either heavy ion or HEP cross-section data
has to be available and be taken into consideration. The more
data points are available the more detailed the description of
the nested RPP geometry will be. This is not the focus of
this work and the extraction of RPP parameters from heavy
ion data has been presented in [17], [18]. The goal of this
work is the numerical extraction of RPP parameters from PDI
cross-section for error rate calculations and MC simulations.

The metric of MSE was applied in this work to quan-
titatively assess the agreement of the cross-section values
estimated by the method and the experimental data. It enables
the method to determine the set of RPP parameters that
most accurately emulate the device’s SEU response in MC
simulation. Cross-sections estimated by the method agree

with cross-section obtained from MC simulations for the
same RPP geometries. This set of parameters will exhibit
the lowest MSE between the method’s results and the exper-
imental data.

This method will be extended to include the straggle
occurring in the overlayers, extending the applicability of it
to higher overlayer thicknesses, and with that data obtained
during backside irradiations where the beam needs to pene-
trate tens of micrometers of thinned substrate before reaching
the SV. Furthermore, it is planned to direct ionization effects
of heavy ions. Additionally, the applicability of this method
for smaller technologies will be investigated. Once the LET
model is able to cover compound targets, this method will
also cover those materials in the overlayers.

Finally, it is important to note, that this method does not
aim to replace the MC method for the calculation of cross-
sections from RPP geometries, as the MC method is more
flexible and accurate. The main objective of this method is to
replace excess MC simulations during the initial adjustment
of RPP parameters. The extracted RPP geometry can then
be used as a surrogate for the DUT in MC simulations of
radiation environments to estimate the LEP SEU response
of the DUT under that environment. Overall, this greatly
reduces the amount of MC simulations necessary in this
process.

VI. CONCLUSIONS

RPP geometries are typically used in MC simulations
to estimate the SER of a DUT under a given radiation
environment. The process of finding the set of RPP param-
eters that emulates the DUT’s PDI SEU response can be
time consuming and difficult as various sets of parameters
might need to be simulated until one has found a set that
recreates the DUT’s response satisfyingly. Therefore, aim
of this work was to provide a method to determine RPP
parameters from PDI cross-section data quicker and easier.
This method is based on two numerical models, that describe
(1) the linear energy transfer, from which the average energy
deposition can be derived, and (2) the standard deviation of
the energy deposition distributions for protons and other ions
traversing elemental solid targets. Both of these models were
described and benchmarked against experimental stopping
power values from the NDS and MC simulated energy
deposition profiles. Both models exhibit adequate accuracy
for their simplicity. The two models when combined enables
estimation of cross-sections based on RPP geometries. This
in turn can be utilized to iteratively determine RPP param-
eters for devices for which experimental low energy proton
SEU cross-section data are available. The RPP parameters
determined with this procedure were used in MC simulations
and the obtained results agree with the experimental and
simulation results presented in the literature.

Despite the method’s limitations and simplicity compared
to the MC method, it is demonstrated that the RPP param-
eters determined by the using the proposed method are in
good agreement with those obtained from more traditional
MC approach. The method offers great reduction in demand
of computing power and time, which makes this method a
viable approach to determine RPP parameters from experi-
mental LEP SEU data. But due to its inherent limitations in
terms of energies that can be used and effects considered, it



10

is not intended replace the MC method beyond the use cases
presented here.

Finally, it is to note that the use of the new LET model
presented here is not limited only to protons in silicon, but
it on its own provides a tool to estimate heavy ion stopping
in any elemental solid target.
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