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LR-NIMBUS: An interactive algorithm for uncertain
multiobjective optimization with lightly robust
efficient solutions

Javad Koushki, Kaisa Miettinen, Majid Soleimani-damaneh

Abstract In this paper, we develop an interactive algorithm to support a
decision maker to find a most preferred lightly robust efficient solution when
solving uncertain multiobjective optimization problems. It extends the inter-
active NIMBUS method. The main idea underlying the designed algorithm,
called LR-NIMBUS, is to ask the decision maker for a most acceptable (typi-
cal) scenario, find an efficient solution for this scenario satisfying the decision
maker, and then apply the derived efficient solution to generate a lightly ro-
bust efficient solution. The preferences of the decision maker are incorporated
through classifying the objective functions. A lightly robust efficient solution is
generated by solving an augmented weighted achievement scalarizing function.
We establish the tractability of the algorithm for important classes of objec-
tive functions and uncertainty sets. As an illustrative example, we model and
solve a robust optimization problem in stock investment (portfolio selection).
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1 Introduction

There are many real-world optimization problems in which we need to max-
imize/minimize more than one objective function, simultaneously. Usually
these objective functions are in conflict. This kind of problems are called Mul-
tiobjective Optimization Problems (MOPs). One cannot define the optimal
solution (in the classic sense) for them, because of the conflict of the objective
functions. Various solution concepts for MOPs have been introduced and dif-
ferent approaches for solving them have been provided [36,21]. Optimality can
be defined with the concept of efficiency. Efficient solutions are feasible points
in which improvement of some objective function without deterioration of at
least one other objective function is impossible [12,27].

Solving MOPs usually requires the participation of a Decision Maker (DM)
who is supposed to have insight into the problem and can express preference
relations between alternative solutions and/or objective functions [27,31]. The
methods addressed in the literature for solving MOPs can be divided into four
classes according to the role of the DM in the solution process [21,27]. If the
DM is not involved, the procedure is called a no-preference one [40,42,43].
If the DM expresses preference information after (resp. before) the solution
process, we have a posteriori (resp. a priori) methods [15,23,38,43]. The most
extensive and practical class of algorithms is that of interactive methods, in
which the DM specifies preference information progressively during the solu-
tion process.

A general interactive method works as an iterative procedure starting from
an initial solution given by the solver. This solution is presented to the DM. If
(s)he is satisfied with (the objective values at) the solution, it is considered as
the best (most preferred) solution and the procedure is terminated. Otherwise,
the DM expresses her/his preferences. Then the solver finds a solution or
few solutions taking the preferences into account, and presents it or them to
the DM. Again, if the DM is satisfied with the solution, then the procedure
stops and the current solution is the final (most preferred) one. Otherwise, the
process is repeated, following a similar manner, until satisfying the DM.

In addition to the interactive tools, other important issues in our work
are uncertainty and robustness. There are many real-world optimization prob-
lems involving uncertainty in which the optimal/efficient solution depends on
different possible realizations of parameters, called scenarios. These scenarios
are the elements of a deterministic set, called uncertainty set [4,6,17]. The
set of optimal/efficient solutions may change when the scenario changes. For
example, in transportation problem, the optimal path may change when the
fuel price changes. As another example, efficient agricultural activities may
depend on the climate (weather) situation. There are several ways for dealing
with uncertainty in the literature, including robust optimization, sensitivity
analysis, and stochastic programming; see, e.g., [4,6,19,22]. In the present
work, we assume uncertainty in the objective functions, and concentrate on
the robustness. We assume no distributions on uncertainty are available.
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Various robust solution notions have been introduced in the literature, in-
cluding set-based minmax robust efficient solution [13], highly robust efficient
solution [24], flimsily robust efficient solution [24], and lightly robust efficient
solution [22]. Each of these concepts has its strengths and weaknesses, how-
ever there are some interesting connections between them [22]. In the present
study, assuming uncertainty in the objective functions, we work with lightly
robust efficient solutions. These solutions have been introduced by Fischetti
and Monaci [16] for the single-objective case, and then have been extended to
multiobjective problems by Ide and Schöbel [22].

In the current paper, we sketch an interactive method which is able to find
a lightly robust efficient solution of an uncertain multiobjective optimization
problem satisfying the DM. This method, which is called LR-NIMBUS, is built
by extending the NIMBUS method (developed for deterministic problems) [27,
28,35,20], especially particular versions of this method, called synchronous
NIMBUS [28] and MuRO-NIMBUS [45]. The MuRO-NIMBUS method, devel-
oped by Zhou-Kangas, Miettinen and Sindhya [45], works utilizing an achieve-
ment scalarizing function, and generates a set-based minmax robust efficient
solution incorporating the DM’s preferences. Minmax robust efficient solu-
tions, which are obtained by optimizing the objective functions in the worst
case over all scenarios, could be highly conservative [6,7]. Due to the con-
servatism of minmax robustness, the objective function at a minmax robust
efficient solution may not be that good in other scenarios. Furthermore, min-
max robust efficient solutions are not always easy to compute [44].

Our method, called LR-NIMBUS, supports the DM by finding a most
preferred lightly robust efficient solution. A lightly robust efficient solution
is produced by using a tolerance parameter which controls the closeness of
the value of the objective function at the generated robust efficient solution
to the objective function values in the nominal scenario [16,22]. Indeed, light
robust efficiency leads to a robust efficient solution with tolerable degradation
in the objective function values in the nominal scenario; see [16,22,44]. On
the other hand, in LR-NIMBUS, the DM takes part in the whole method
and her/his preferences are applied from beginning, while MuRO-NIMBUS
performs two stages, the pre-decision making and the decision making, and
the DM intervenes only in the second stage.

The main idea underlying LR-NIMBUS, as an extension of the NIMBUS
method, is to ask the DM for most acceptable (typical) scenario, called nom-
inal scenario. Then the procedure finds an efficient solution for the nominal
scenario, satisfying the DM. The mentioned efficient solution is applied to
generate a lightly robust efficient solution, taking the DM’s preferences into
account. If the DM is satisfied with the generated lightly robust efficient so-
lution, then the procedure is terminated; otherwise (s)he provides new prefer-
ences through classifying the objective functions. A new lightly robust efficient
solution, w.r.t. the new preferences, is generated and the algorithm iterated fol-
lowing a similar manner. In LR-NIMBUS, lightly robust efficient solutions are
computed invoking an augmented weighted achievement scalarizing function
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which involves a reference point and a classification of the objective functions
specified by the DM.

In addition to designing and analyzing the LR-NIMBUS algorithm and
highlighting the above-mentioned general issues, we prove some important
theoretical results to answer the following crucial question: For which forms
of uncertainty sets and objective functions, is generation of robust efficient
solutions by LR-NIMBUS operational? We answer this question for linear and
quadratic objective functions as well as box, norm, and polyhedral uncertainty
sets. These theoretical outcomes reveal the tractability of LR-NIMBUS. In ad-
dition to presenting theoretical results and sketching the algorithm, we address
an application of the LR-NIMBUS method in stock investing (portfolio selec-
tion) under uncertainty by implementing it on a data set of S&P 500 stocks
extracted from Yahoo Finance.

The rest of the paper is organized as follows. In Section 2, some basic
definitions and preliminaries are given. Section 3 is devoted to designing and
analyzing the algorithm accompanying the theoretical results. Section 4 con-
tains an application, followed by conclusions in Section 5.

2 Preliminaries

In this section, we provide some basic definitions and preliminaries that will
be used in the rest of the paper.

2.1 Basic definitions and notations

For a vector d ∈ Rn, dT stands for the transpose of d. For x, y ∈ Rn with n ≥ 2,
the vector inequality x < y means xi < yi for all i = 1, 2, . . . , n. Furthermore,
x 5 y denotes xi ≤ yi for all i = 1, 2, . . . , n. Moreover, x ≤ y stands for x 5 y
with x ̸= y. Corresponding to these vector inequalities, we define

Rn
= := {x ∈ Rn : x = 0},

Rn
≥ := {x ∈ Rn : x ≥ 0},

Rn
> := {x ∈ Rn : x > 0}.

Consider the following deterministic multiobjective optimization problem:

min f(x) = (f1(x), . . . , fp(x))
s.t. x ∈ X,

(1)

where X is a nonempty set in Rn and fi (i ∈ I := {1, 2, . . . , p}) are real-valued
functions from X to R. Here, X is the set of feasible solutions. We denote the
image of X by Y := f(X).

Definition 2.1 A feasible point x̄ ∈ X is called an efficient solution of (1) if
there is no other x ∈ X such that f(x) ≤ f(x̄). In this case, f(x̄) is called a
nondominated point of (1).
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We denote the sets of all efficient solutions and nondominated points of
(1) by XE and YN , respectively. Indeed, YN = f(XE). The nadir point
zN = (zN1 , . . . , zNp ) (resp. ideal point zI = (zI1 , . . . , z

I
p)) is the vector com-

posed with the worst (resp. best) objective values over the efficient set. Math-
ematically, the components of a nadir (resp. ideal) point are defined as zNi :=
maxx∈XE fi(x) (resp. z

I
i := minx∈X fi(x)). A vector zU with zU < zI is called

a utopian point.

2.2 NIMBUS method

As mentioned in the preceding section, NIMBUS is an interactive method for
solving multiobjective optimization problems. In this method, a DM expresses
preferences at the current solution to indicate how to get a more preferred
solution in each iteration by classifying objective functions to five classes as
follows [27,28]:

• I< := {i : fi should be decreased},
• I≤ := {i : fi should be decreased till an aspiration level},
• I= := {i : fi is satisfactory at the moment},
• I≥ := {i : fi is allowed to increase till an upper bound},
• I⋄ := {i : fi is allowed to change freely}.

According to the definition of efficient solutions, a classification is feasible
only if I< ∪ I≤ ̸= ∅, I≥ ∪ I⋄ ̸= ∅, and the DM has to classify all the objective
functions, that is, I<∪I≤∪I=∪I≥∪I⋄ = {1, 2, . . . , p}. The following theorem
plays a crucial role in the NIMBUS method. The proof of this theorem can
be found in [28]. Indeed, in each iteration of the NIMBUS method, problem
(2) below is constructed and solved. In this problem, xh ∈ X is the current
solution derived from the preceding iteration. Recall that, zI is the ideal point.
Whenever we use this point, we assume its existence implicitly.

Theorem 2.1 [28] Let w = (w1, . . . , wp) ∈ Rp
> be a vector of given positive

weights and ρ be a sufficiently small positive scalar. Assume that xh ∈ X is
the current solution, ẑj , j ∈ I≤, are aspiration levels, and ϵi, i ∈ I≥, are the
upper bounds. Consider the following single-objective optimization problem:

min max
i∈I<

j∈I≤

[
wi(fi(x)− zIi ), wj(fj(x)− ẑj)

]
+ ρ

p∑
i=1

wifi(x)

s.t. fi(x) ≤ fi(x
h), i ∈ I< ∪ I≤ ∪ I=,

fi(x) ≤ ϵi, i ∈ I≥,
x ∈ X.

(2)

Each optimal solution of (2) is an efficient solution for (1).

Now, we sketch Algorithm 1 invoking Theorem 2.1. Indeed, this algorithm ad-

dresses the NIMBUS method. In practice, in (2), we usually set wi =
1

zNi − zUi
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for i ∈ I. In Step 0 of the algorithm, an intial efficient solution can be generated
by the Achievement Scalarizing Function (ASF) [39]. See Appendix A for a
brief introduction of the ASF. Throughout the present paper, we assume that
the considered (single) multiobjective optimization problems are well behaved
and admit at least one (optimal) efficient solution.

Algorithm 1. NIMBUS
Step 0. Generate an initial efficient solution x0 of (1); and set h = 0.
Step 1. If the DM is satisfied with xh, go to step 4; otherwise, go to

step 2.
Step 2. Ask the DM to classify the objective functions of (1) to I<,

I≤, I=, I≥, I⋄.
Step 3. Solve (2) corresponding to xh.

Denote the derived optimal solution of (2) by xh+1.
Set h = h+ 1 and go to Step 1.

Step 4. Stop; xh is a desirable efficient solution of (1).

Actually, the method presented in [28] has other scalarizing functions besides
(2) so that up to four efficient solutions can be generated and presented to the
DM at each iteration. The method also has an option of generating interme-
diate solutions between any two efficient solutions. For details, see [28].

2.3 Robustness

In optimization under uncertainty, the optimal/efficient solution depends on
different possible realizations of parameters, called scenarios. The most typical
or expected scenario is called the nominal scenario [6,4]. Robust optimization,
as one of the leading tools for dealing with uncertainty, has been the subject
of many publications in recent decades, e.g., [13,5,6,4].

Suppose that Ui ⊂ Rsi , i = 1, . . . , p, are nonempty given uncertainty sets.
Here, si ∈ N is the dimension of the uncertainty set Ui. We define,

U :=
{
ξ = {ξ1, ξ2, . . . , ξp} : ξ1 ∈ U1, ξ2 ∈ U2, . . . , ξp ∈ Up

}
.

Now, associated with ξ ∈ U , we consider the parametric problem

P (ξ) : min f(x, ξ) = (f1(x, ξ1), . . . , fp(x, ξp))

s.t. x ∈ X,
(3)

in which X ⊂ Rn is the (nonempty) feasible set; and fi(·, ·) : X × Rsi −→
R, i ∈ I, are real-valued functions. Here, ξ ∈ U is composed by p vectors
ξi ∈ Ui, i = 1, . . . , p. Indeed, U is the uncertainty set in which ξ varies. We set

P (U) := {P (ξ) : ξ ∈ U}.

This set is a family of parameterized multiobjective optimization problems.
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As mentioned in the introduction, there are several robustness notions in
the literature of multiobjective optimization. In the following, we address two
of them which are relevant to our study: set-based minmax robustness and
light robustness. The main part of our work concentrates on light robustness,
though we need set-based minmax robustness to define the light one.

We start with set-based minmax robustness introduced in [13].

Definition 2.2 [13] The feasible solution x̄ ∈ X is said to be a set-based
minmax robust efficient solution for P (U), if there is no other feasible solution
x′ ∈ X such that

fU (x
′) ⊆ fU (x)− Rk

≥,

where fU (x) = {f(x, ξ), ξ ∈ U} = {
(
f1(x, ξ1), . . . , fp(x, ξp)

)
: ξi ∈ Ui, i ∈ I}.

Light robustness was first introduced in [16] for single-objective optimiza-
tion problems and was extended to multiobjective cases in [22]. This robustness
notion is looking for set-based minmax robust efficient solutions which are not
unreasonably far from efficient solutions associated with a nominal scenario.
This reasonability is controlled by a δ parameter.

Let ξ̂ = {ξ̂1, . . . , ξ̂p} ∈ U be the nominal scenario. We consider the following
deterministic problem:

P (ξ̂) : min f(x, ξ̂) = (f1(x, ξ̂1), . . . , fp(x, ξ̂p))

s.t. x ∈ X.
(4)

We denote the set of efficient solutions of P (ξ̂) by X∗(ξ̂). Suppose δ ∈ Rp
≥ and

x̂ ∈ X∗(ξ̂) are given. Consider the uncertain problem

P (x̂, δ, ξ) : min f(x, ξ)

s.t. fi(x, ξ̂i) ≤ fi(x̂, ξ̂i) + δi, i = 1, . . . , p.
x ∈ X,

(5)

and set

P (x̂, δ, U) := {P (x̂, δ, ξ) : ξ ∈ U}.

Definition 2.3 [22] Suppose that the nominal scenario ξ̂ ∈ U and a vector
δ ∈ Rp

≥ are given. A feasible solution x̄ ∈ X is called a lightly robust efficient
solution for P (U) w.r.t. δ, if it is a set-based minmax robust efficient solution

for P (x̂, δ, U) for some x̂ ∈ X∗(ξ̂).

3 Main results

This section is devoted to introducing and investigation of the LR-NIMBUS
algorithm. In the first subsection we provide the main idea, and in the second
subsection we establish the tractability of the algorithm for special cases of
the uncertainty set.
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3.1 LR-NIMBUS

In this subsection, we provide the main idea of the interactive LR-NIMBUS
method. LR-NIMBUS is able to find a lightly robust efficient solution such
that the DM plays role throughout the solution process.

MuRO-NIMBUS [45] is one of the successful interactive algorithms existing
in the literature which is looking for robust solutions. MuRO-NIMBUS looks
for a set-based minmax robust efficient solution, while our algorithm finds a
lightly robust efficient solution. Notice that lightly robust efficient solutions are
less conservative than set-based minmax ones, because the objective values at
lightly robust efficient solutions do not highly differ from the objective values
at efficient solutions for the nominal scenario. As mentioned in [22, p. 250], a
pitfall of minmax robustness is its overconservatism. Indeed, “hedging against
all scenarios from the uncertainty set usually comes with a high price, namely
the quality in the nominal scenario often drastically decreases. For example, if
one wants to hedge against all delays in timetabling, one would need so much
buffer that the timetable becomes unattractive to the passengers. These high
costs motivate the definition of light robustness, in which a certain nominal
quality of the solution is required.”[22]. In light robust solutions, the objective
value should not differ too much from an efficient solution corresponding to
the nominal scenario. To this end, an additional constraint is imposed to the
problem, to produce a solution which is good enough for the nominal case.

Assume the nominal scenario ξ̂ ∈ U is given. For starting the algorithm, we
find an efficient solution of the deterministic problem (4). It is done by applying
the NIMBUS method; and an efficient solution satisfying DM is found1. To
this end, according to Theorem 2.1 in each iteration of the NIMBUS method,
one should solve

min max
i∈I<

j∈I≤

[
wi(fi(x, ξ̂i)− zIi ), wj(fj(x, ξ̂j)− ẑj)

]
+ ρ

p∑
i=1

wifi(x, ξ̂i)

s.t. fi(x, ξ̂i) ≤ fi(x
h, ξ̂i), i ∈ I< ∪ I≤ ∪ I=,

fi(x, ξ̂i) ≤ ϵi, i ∈ I≥,
x ∈ X,

(6)

where zIi is the i-th component of the ideal point corresponding to fi(·, ξ̂). Fur-
thermore, xh is the current solution of P (ξ̂), scalars ẑj , j ∈ I≤, are aspiration

levels for fj(·, ξ̂), and ϵi, i ∈ I≥, are the upper bounds.

Theorem 3.1 Let w = (w1, . . . , wp) ∈ Rp
> be a given vector of positive weights

and ρ be a sufficiently small positive scalar. Each optimal solution of (6) is an
efficient solution for (4).

1 Two measures “price to be paid for robustness” and “gain in robustness” developed by
Zhou-Kangas and Miettinen [44] could be helpful here to support the DM in controlling the
trade-offs between robustness and the objective function values in the nominal scenario. See
also [2,30] and the references therein for some tools to recognize if a DM is learned and
satisfied.
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Proof As problem (4) is deterministic, the claim follows from Theorem 2.1. ⊓⊔

Theorem 3.2 introduces a single-objective optimization problem which gives
a lightly robust efficient solution for P (U). Let δ ∈ Rp

≥ and x∗ ∈ X∗(ξ̂) be
given. The main idea behind this result goes back to the deterministic multi-
objective optimization problem

min (max
ξ1∈U1

f1(x, ξ1), . . . , max
ξp∈Up

fp(x, ξp))

s.t. fi(x, ξ̂i) ≤ fi(x
∗, ξ̂i) + δi, i ∈ I,

x ∈ X.

(7)

This problem provides a counterpart for robust optimization problems whose
objective functions depend on some scenarios. In fact, in this problem the
worst case of the objective functions fi is optimized.

In Theorem 3.2, the parameters w, ẑ, ρ, and ϵ are as described above.

Theorem 3.2 Let δ ∈ Rp
≥ and x∗ ∈ X∗(ξ̂) be given. Each optimal solution of

the following single-objective optimization problem is a lightly robust efficient
solution of P (U) (for uncertain multiobjective optimization problem (3)) w.r.t.
δ:

min max
i∈I<

j∈I≤

[
wi(max

ξi∈Ui

fi(x, ξi)− zIi ), wj(max
ξj∈Uj

fj(x, ξj)− ẑj)
]
+ ρ

p∑
i=1

wi max
ξi∈Ui

fi(x, ξi)

s.t. max
ξi∈Ui

fi(x, ξi) ≤ max
ξi∈Ui

fi(x
h, ξi), i ∈ I< ∪ I≤ ∪ I=,

max
ξi∈Ui

fi(x, ξi) ≤ ϵi, i ∈ I≥,

fi(x, ξ̂i) ≤ fi(x
∗, ξ̂i) + δi, i ∈ I,

x ∈ X,
(8)

where zIi is the i-th components of the ideal point of problem (7).

Proof Let x̄ be an optimal solution of problem (8). According to [28, Theorem
3.1], x̄ is an efficient solution of multiobjective problem (7).

To prove the theorem, it is sufficient to show that x̄ is a set-based minmax
robust efficient solution of

min (f1(x, ξ1), . . . , fp(x, ξp))

s.t. fi(x, ξ̂i) ≤ fi(x
∗, ξ̂i) + δi, i ∈ I,

x ∈ X,
(9)

in which ξ = {ξ1, ξ2, · · · , ξp} varies in U.
Let us assume that there exists a vector x′ which is feasible for (9) and

fU (x
′) ⊆ fU (x̄)− Rp

≥.

So, for every {ζ1, . . . , ζp} ∈ U , there exists some {η1, . . . , ηp} ∈ U such that
fi(x

′, ζi) ≤ fi(x̄, ηi) for all i = 1, . . . , p and fj(x
′, ζj) < fj(x̄, ηj) for at least
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one j. Therefore,

fi(x
′, ζi) ≤ max

ηi∈Ui

fi(x̄, ηj), ∀i = 1, . . . , p,

fj(x
′, ζj) < max

ηj∈Uj

fj(x̄, ηj), ∃j = 1, . . . , p,

This contradicts the efficiency of x̄ for (7) and the proof is complete. ⊓⊔

Now, we are ready to sketch the LR-NIMBUS algorithm (Algorithm 2).
A brief explanation of Algorithm 2 is as follows. In the initial step, as in the
original NIMBUS method, we find a neutral compromise solution by ASF (See
Appendix A), as an initial efficient solution. Then, by applying the NIMBUS
method for (4) (repeatedly), taking the DM’s preferences into account, we
solve (6) to get solutions that satisfy the DM (Steps 0-3). In these four steps,
we find an efficient solution for the nominal scenario, denoted by x∗.
Using x∗, we find an initial efficient solution for (7). If the DM is satisfied
with the objective values at x∗, then the algorithm stops. The derived efficient
solution of (7) is a lightly robust efficient solution of P (U). Otherwise, the
DM is asked to classify the objective functions of (7). Then, by applying the
NIMBUS method, we solve (8) repeatedly to get a solution satisfying the DM
(Steps 4-8). The output of the algorithm is a lightly robust efficient solution.

Algorithm 2. LR-NIMBUS
Step 0. Generate an initial efficient solution x0 for (4); and set h = 0.
Step 1. If the DM is satisfied with xh, go to step 4; otherwise, go to

step 2.
Step 2. Ask the DM to classify the objective functions of (4) to I<,

I≤, I=, I≥, I⋄.
Step 3. Solve problem (6) corresponding to xh.

Denote the derived optimal solution of (6) by xh+1.
Set h = h+ 1 and go to Step 1.

Step 4. Set x∗ = xh. Generate an initial efficient solution x0 for (7);
and set h = 0.

Step 5. If the DM is satisfied with xh, go to step 8; otherwise, go to
step 6.

Step 6. Ask the DM to classify the objective functions of (7) to I<,
I≤, I=, I≥, I⋄

Step 7. Solve problem (8) corresponding to xh.
Denote the derived optimal solution of (8) by xh+1.
Set h = h+ 1 and go to Step 5.

Step 8. Stop; xh is a desirable lightly robust efficient solution of P (U).

Although the LR-NIMBUS algorithm works well theoretically, there is an
operational difficulty in implementing it. This is related to the tractability of
problems (7) and (8), because of the presence of the max

ξi∈Ui

fi(x, ξi) term in

objective functions of these problems. Notice that this maximum depends on
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x. This term may make the afore-mentioned problems intractable for general
uncertainty sets Ui. However, in the next subsection we prove tractability of
problems (7) and (8) (and thus applicability of LR-NIMBUS) under special
forms of objective functions and uncertainty sets.

3.2 Tractability

In this section, we establish the tractability of problem (8) for various classes
of objective functions and uncertainty sets. The considered classes are popular
and important in the literature [18,6]. The results of the present subsection
lead to applicability of LR-NIMBUS under the considered cases. As the prob-
lematic max-term in both (7) and (8) is the same, we present the results only
for (8). Analogous results can be developed for (7).

• Linear functions and box uncertainty set

Suppose that the functions fi(x, ξi), i ∈ I, are affine in ξi, while their coef-
ficients depend on x. In addition, assume that the uncertainty set has a box
form. In general, we assume

fi(x, ξi) = ξTi f̄i(x), i ∈ I,

U = [ξ
1
, ξ̄1]× . . .× [ξ

p
, ξ̄p],

(10)

where f̄i : Rn −→ Rsi , i ∈ I, are deterministic functions, ξ
i
, ξ̄i ∈ Rsi and

ξ
i
≤ ξ̄i. Here, Ui = [ξ

i
, ξ̄i] = {ξ ∈ Rsi : ξ

i
5 ξ 5 ξ̄i}.

Denote the set of extreme points of Ui = [ξ
i
, ξ̄i], i ∈ I, byEi = {ξ̃(1), . . . , ξ̃(2si )}.

According to this notation, the extreme points of U have the form {ξ̃(r1), . . . , ξ̃(rp)}
with ξ̃(ri) ∈ Ei, i ∈ I.

Theorem 3.3 Consider problem (8) with fi(·, ·)’s and U as in (10). The fol-
lowing problem is equivalent to problem (8), in the sense that, x ∈ Rn is
a feasible (resp. optimal) solution of problem (8), if there are α ∈ R and
γ = (γ1, . . . , γp) ∈ Rp such that (x, α, γ) is a feasible (resp. optimal) solution
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of the following problem and vice versa:

min α+ ρ

p∑
i=1

wiγi

s.t. ξ̃(ri)
T

f̄i(x) ≤ max
r=1,...,2si

ξ̃(ri)
T

f̄i(x
h), ri ∈ {1, . . . , 2si}, i ∈ I< ∪ I≤ ∪ I=,

ξ̃(ri)
T

f̄i(x) ≤ ϵi, ri = 1, . . . , 2si , i ∈ I≥,

ξ̂Ti f̄i(x) ≤ ξ̂Ti f̄i(x
∗) + δi, i ∈ I,

ξ̃(ri)
T

f̄i(x) ≤ γi, ri = 1, . . . , 2si , i ∈ I,

ξ̃(ri)
T

f̄i(x) ≤
α

wi
+ zIi , ri = 1, . . . , 2si , i ∈ I<,

ξ̃(rj)
T

f̄j(x) ≤
α

wj
+ ẑj , rj = 1, . . . , 2sj , j ∈ I≤,

x ∈ X.
(11)

Proof As each linear function attains its maximum over a polytope in at least
one extreme point of the polytope, we have

max
ξi∈Ui

fi(x, ξi) = max
ξi∈Ui

ξTi f̄i(x) = max
ri=1,...,2si

ξ̃(ri)
T

f̄i(x). (12)

Hence, problem (8) can be rewritten as

min

(
max
i∈I<

j∈I≤

[
wi( max

ri=1,...,2si
ξ̃(ri)

T

f̄i(x)− zIi ), wj( max
rj=1,...,2sj

ξ̃(rj)
T

f̄j(x)− ẑj)
]

+ ρ
∑p

i=1 wi maxri=1,...,2si ξ̃
(ri)

T

f̄i(x)

)
s.t. ξ̃(ri)

T

f̄i(x) ≤ max
ri=1,...,2si

ξ̃(ri)
T

f̄i(x
h), ri ∈ {1, . . . , 2si}, i ∈ I< ∪ I≤ ∪ I=,

ξ̃(ri)
T

f̄i(x) ≤ ϵi, ri = 1, . . . , 2si , i ∈ I≥,

ξ̂Ti f̄i(x) ≤ ξ̂Ti f̄i(x
∗) + δi, i ∈ I,

x ∈ X.
(13)

Now, by setting

γi := max
ri=1,...,2si

ξ̃(ri)
T

f̄i(x),

α := max
i∈I<

j∈I≤

[
wi( max

ri=1,...,2si
ξ̃(ri)

T

f̄i(x)− zIi ), wj( max
rj=1,...,2sj

ξ̃(rj)
T

f̄j(x)− ẑj)
]
,

(14)
with a little algebra, the proof is completed. ⊓⊔
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• Linear functions and norm uncertainty set

Assume again the functions fi(x, ξi), i ∈ I, are affine in ξi, while their coeffi-
cients depend on x. Assuming l > 1 given, we consider the norm uncertainty
set as

U = U1×, . . .× Up,
Ui =

{
ξ̄i + γiξi : ξi ∈ Rsi , ||Aiξi||l ≤ 1

}
, i = 1, . . . , p,

(15)

where ξ̄i ∈ Rsi , γi > 0 and Ai ∈ Rsi×si is an invertible symmetric matrix.

Here, || · ||l is the l-norm, defined by ||y||l = (
∑
i

|yi|l)
1
l . In the following

theorem, || · ||∗l stands for the dual norm of the l-norm, defined as

||y||∗l = max
||x||≤1

yTx.

It is known that ||y||∗l = ||y|| l
l−1

; see [9].

Theorem 3.4 Consider problem (8) with fi(·, ·) functions described in (10)
and uncertainty set given in (15). Then the following problem is equivalent to
problem (8):

min max
i∈I<

j∈I≤

[
wi

(
Ri(x)− zIi

)
, wj

(
Rj(x)− ẑj

)]
+ ρ

p∑
i=1

wi

(
Ri(x)

)
s.t. Ri(x) ≤ Ri(x

h), i ∈ I< ∪ I≤ ∪ I=,

Ri(x) ≤ ϵi, i ∈ I≥,

ξ̂Ti f̄i(x) ≤ ξ̂Ti f̄i(x
∗) + ϵi, i ∈ I,

x ∈ X,

where Ri(x) := ξ̄Ti f̄i(x) + γi ∥ A−1
i f̄i(x) ∥ l

l−1
.

Proof According to the assumptions, we get

max
ξi∈Ui

fi(x, ξi) = max
ξi∈Ui

ξi
T f̄i(x) = ξ̄Ti f̄i(x) + max

ξi:||Aiξi||l≤1
γiξ

T
i f̄i(x).

By setting z := Aiξi, we have

max
ξi∈Ui

fi(x, ξi) = ξ̄Ti f̄i(x) + max
z:||z||l≤1

γiz
TA−1

i f̄i(x)

= ξ̄Ti f̄i(x) + γi||A−1
i f̄i(x)||∗l

= ξ̄Ti f̄i(x) + γi||A−1
i f̄i(x)|| l

l−1
.

Now, by replacing max
ξi∈Ui

fi(x, ξi) with Ri(x) := ξ̄Ti f̄i(x) + γi ∥ A−1
i f̄i(x) ∥ l

l−1

in (8), the proof is completed. ⊓⊔
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• Linear functions and polyhedral uncertainty set

Let us assume again that the functions fi(x, ξi), i ∈ I, are affine in ξi, while
their coefficients depend on x. In addition, we suppose that the uncertainty
set is a polyhedral set as

U = U1×, . . .× Up,
Ui = {ξi ∈ Rsi : Hiξi ≤ hi, ξi ≥ 0}, i ∈ I,

(16)

where Hi, for i ∈ I, is an mi × si matrix. Furthermore, hi ∈ Rmi , for i ∈ I.

Theorem 3.5 Consider problem (8) with fi(·, ·) functions described in (10)
and uncertainty set given in (16). Assume I⋄ = ∅. If there exist x̄ ∈ Rn,
γ̄i, (i ∈ I< ∪ I≤ ∪ I= ∪ I≥), such that (x̄, γ̄) is an optimal solution for

min
x,γi,γj

max
i∈I<

j∈I≤

[
wi(γ

T
i hi − zIi ), wj(γ

T
j hj − ẑj)

]
+ ρ

∑
i∈I<∪I≤∪I=∪I≥

wiγ
T
i hi

s.t. γT
i hi ≤ max

ξi∈Ui

ξT f̄i(x
h), i ∈ I< ∪ I≤ ∪ I=,

γT
i hi ≤ ϵi, i ∈ I≥,

ξ̂i
T
f̄i(x) ≤ ξ̂i

T
f̄i(x

∗) + δi, i ∈ I,

HT
i γi ≥ f̄i(x), i ∈ I< ∪ I≤ ∪ I= ∪ I≥,

γi ≥ 0, i ∈ I< ∪ I≤ ∪ I= ∪ I≥

x ∈ X,

(17)

then x̄ is an optimal solution for (8).

Proof By setting

ki(x) := max ξTi f̄i(x)
s.t. Hiξi ≤ hi,

ξi ≥ 0
(18)

for i ∈ I, one can rewrite problem (8) as follows

min max
i∈I<

j∈I≤

[
wi(ki(x)− zIi ), wj(kj(x)− ẑj)

]
+ ρ

p∑
i=1

wiki(x)

s.t. ki(x) ≤ max
ξi∈Ui

ξTi f̄i(x
h), i ∈ I< ∪ I≤ ∪ I=,

ki(x) ≤ ϵi, i ∈ I≥,

ξ̂Ti f̄i(x) ≤ ξ̂Ti f̄i(x
∗) + δi, i ∈ I,

x ∈ X.

(19)
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Now, by duality theory in linear programming, we have

ki(x) = min
γi

γT
i hi

s.t. HT
i γi ≥ f̄i(x),

γi ≥ 0.

(20)

So, problem (19) (equivalently (8)) is rewritten as

min
x,γi,γj

max
i∈I<

j∈I≤

[
wi(γ

T
i hi − zIi ), wj(γ

T
j hj − ẑj)

]
+ ρ

∑
i∈I<∪I≤∪I=∪I≥

wiγ
T
i hi

s.t. ki(x) ≤ max
ξi∈Ui

ξTi f̄i(x
h), i ∈ I< ∪ I≤ ∪ I=,

ki(x) ≤ ϵi, i ∈ I≥,

ξ̂Ti f̄i(x) ≤ ξ̂Ti f̄i(x
∗) + δi, i ∈ I,

HT
i γi ≥ f̄i(x), i ∈ I< ∪ I≤ ∪ I= ∪ I≥,

γi ≥ 0, i ∈ I< ∪ I≤ ∪ I= ∪ I≥,

x ∈ X.

(21)

Now, assume that (x̄, γ̄) is a feasible solution of (17). Due to the constraints
of (17), by invoking weak duality in linear programming theory, we have

ki(x) ≤ γT
i hi ≤ max

ξi∈Ui

ξTi f̄i(x
h), i ∈ I< ∪ I≤ ∪ I=,

ki(x) ≤ γT
i hi ≤ ϵi, i ∈ I≥.

These imply that (x̄, γ̄) is a feasible solution of (21) which is equivalent to (8).
This completes the proof because the objective functions of (17) and (21) are
the same. ⊓⊔

• Quadratic functions and polyhedral uncertainty set

Let us assume that fi(x, ξi), i ∈ I, is a quadratic function in terms of ξi, and
coefficients of these function depend on x. We suppose

fi(x, ξi) =
1

2
ξTi F̄i(x)ξi + ξTi f̄i(x), (22)

where F̄i(x) and f̄i(x) for i ∈ I are an si × si positive definite matrix and an
si-vector, respectively. Furthermore, we assume that the uncertainty set is a
polyhedral set as

U = U1 × U2 × . . .× Up,
Ui = {ξi : Hiξi ≤ hi}, i ∈ I.

(23)

Here, Hi is an mi × si matrix and hi is an mi-vector.



16

Theorem 3.6 Consider problem (8) with functions fi(·, ·), (i ∈ I), as de-
scribed in (22) and Ui, i ∈ I, is a polyhedral set as given in (23). Assume
I⋄ = ∅. The vector x̄ is an optimal solution of (8) if there exist γ̄i, (i ∈
I< ∪ I≤ ∪ I= ∪ I≥), such that (x̄, γ̄) is an optimal solution of the following
problem:

min
x

min
γi,γj

max
i∈I<

j∈I≤

[
wi(Si(x, γi)− zIi ), wj(Sj(x, γj)− ẑj)

]
+ ρ

p∑
i=1

wiSi(x, γi)

s.t. Si(x, γi) ≤ max
ξi∈Ui

1

2
ξTi F̄i(x

h)ξi + ξTi f̄i(x
h), i ∈ I< ∪ I≤ ∪ I=,

Si(x, γi) ≤ ϵi, i ∈ I≥,

Si(x, ξ̂i) ≤ Si(x
∗, ξ̂i) + δi, i ∈ I,

γi ≥ 0,

x ∈ X,
(24)

where Si(x, γi) :=
1

2
γT
i Di(x)γi + γT

i ci(x)−
1

2
f̄i(x)

T F̄i(x)
−1f̄i(x).

Proof The main part of the proof of this theorem is similar to that of Theorem
3.5 and is hence omitted. The only point worth mentioning is the duality of
quadratic programming problems. The dual of the quadratic problem

ki(x) := max
1

2
ξTi F̄i(x)ξi + ξTi f̄i(x)

s.t. Hiξi ≤ hi

(25)

can be written as [1]

min
1

2
uTDi(x)u+ uT ci(x)−

1

2
f̄i(x)

T F̄i(x)
−1f̄i(x)

s.t. u ≥ 0,
(26)

where
Di(x) = −HiF̄i(x)

−1Hi,

ci(x) = −hi −HiF̄i(x)
−1f̄i(x).

(27)

⊓⊔

4 Numerical example in portfolio selection

Portfolio selection is an important, widely studied and challenging problem in
applied mathematics and finance. The traditional aim is concerning how to
find optimal ways for assembling a portfolio of assets such that the expected
return is maximized while the investment risk is minimized. Presented in the
pioneering works [25,26], the financial risk in terms of the variance of the
random variable is associated with the return of the portfolio. An efficient
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portfolio is defined as a feasible portfolio with the highest expected return for
a given amount of risk. In multiobjective optimization terms, for an efficient
portfolio it is not possible to get a higher return without accepting more risk
and vice versa.

Several theoretical and practical developments have been done, e.g., in
[32,33,37,41] among others. In this section, we formulate a multiobjective
portfolio selection problem with uncertainty in return. We solve the problem
to demonstrate the ability of the LR-NIMBUS method in incorporating the
DM’s preferences and generating a satisfactory lightly robust efficient solution.

The objective functions of our model are

• maximization of the return;
• minimization of the risk;
• maximization of the sustainability index;
• and maximization of the liquidity index.

We do not have certain information about return and risk in the future. It
means these two factors are uncertain in their essence and the DM does not
exactly know about the return and risk associated with each asset. However,
the intervals in which these two factors may change could be estimated using
the historical data in a time window. Here, we consider the data of 7 assets in
S&P 500 stocks for one year (as a time window). The data is extracted from
Yahoo Finance, https://finance.yahoo.com/.

Consider a financial market with n risky assets. Let ri, i = 1, 2, . . . , n, be
the parameter corresponding to the rate of return of asset i. We do not know
the exact value of ri, though we suppose it varies within the interval [ri, r̄i]
where ri = minj r(i, j) and r̄i = maxj r(i, j), in which r(i, j) is the rate of
return of investment in asset i in jth day. Indeed, r(i, j) is equal to

the selling price of asset i in jth day − the purchase price of asset i in first day

the purchase price of asset i in first day
.

Assume the decision variable xi, i = 1, 2, . . . , n, represents the fraction of the
initial wealth invested in asset i. So, the objective function corresponding to
the return is maximization of

∑n
i=1 rixi. Here, we assume short-selling is not

allowed, and hence the decision variables are nonnegative. Evidently, we have∑n
i=1 xi = 1 as a constraint.

There are various ways for defining risk in portfolio selection literature [34,

8]. In this paper, we use the risk measure defined as |1 −
∑n

i=1

ri
r̃
xi| in [14].

In this formula, ri, i = 1, 2, . . . , n, are uncertain parameters. Furthermore,
r̃ represents the market rate of return which is calculated based upon the
information of the whole market [34]. So, we have the following uncertain
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multiobjective programming problem. Here, r := (r1, r2, . . . , rn).

min (f1(x, r), f2(x, r), f3(x), f4(x)) = (−
n∑

i=1

rixi, |1−
n∑

i=1

ri
r̃
xi|,−

n∑
i=1

sixi,−
n∑

i=1

lixi)

s.t.
n∑

i=1

xi = 1,

xi ≥ 0.
(28)

The third objective function of the problem is associated with sustainabil-
ity. There is no uncertain parameter in this objective function. Here, si, i =
1, 2, . . . , n, represents the sustainability index of the asset i. Recent studies
show that many of investors in developed societies are interested in investing
in companies which care about sustainability. Sustainability index is calcu-
lated with respect to three main scores: environmental, social, and governance.
There are various ways for calculating the sustainability index of companies,
and usually the sustainability score is a number between 1 and 100.

The fourth objective function of the above problem is the liquidity index.
In this function, li, i = 1, 2, . . . , n, represents the liquidity ratio of the asset i,
which has been defined in various ways in the literature. One of these ratios is
the so-called “Current Liquidity Ratio”, which measures company’s ability to
pay off its current liabilities (payable within one year) with its current assets
such as cash, receivable accounts and inventories. The higher ratio, the better
the company’s liquidity position. The current liquidity ratio can be calculated
as follows:

current liquidity ratio :=
current assets

current liabilities
.

Now, we want to apply LR-NIMBUS to find a lightly robust portfolio for
problem (28) taking the DM’s preferences into account. Here, the uncertainty
set is a bounded box. The first objective function, f1(x, ·) is linear with respect
to the uncertain parameter, r. The third and fourth objective functions are
deterministic ones. The second objective function is not linear, but it does not
destroy the tractability of the method. It is a convex function with respect to
the uncertain parameter r, and hence it takes its maximum over the uncer-
tainty box at some extreme point of the box. Therefore, the theory presented
in Subsection 3.2 (Theorem 3.3) works here. So, LR-NIMBUS can be imple-
mented operationally. We need a nominal scenario for starting the algorithm.
Assume the DM considers the scenario corresponding to maximum rates of
return, i.e. r̄ = (r̄1, r̄2, . . . , r̄n), as a nominal scenario.

We extracted information of 7 companies (assets) from the Yahoo finance
website https://finance.yahoo.com/. This includes the opening prices on Febru-
ary 22, 2018 and the closing prices of all days during February 22, 2018 until
February 22, 2019 (except holidays). We considered the opening and closing
prices as purchase and selling prices, respectively. The sustainability scores of
the considered companies, for 2018, were extracted from the Yahoo finance
website directly. This is available in the aforementioned website since 2018.
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Also, we extracted the current assets and current liabilities of these compa-
nies, for four years 2015, 2016, 2017 and 2018, from the Yahoo finance website.
Then, we calculated the current liquidity ratio for these four years and esti-
mated it for 2019 using extrapolation.

After extracting the required information from the above-mentioned web-
site, we started the process of finding a most preferred lightly robust portfolio
(solution) by Algorithm 2. We considered one of our colleagues as a DM and
asked him to choose a favorable scenario among the existing ones as a nominal
scenario. His choice was

r̄ = (0.1147, 0.1784, 0.0746, 0.1842, 0.1009, 0.0625, 0.2247).

By considering a reference point

z̄ = (−0.1247, 0.2000,−0.1616,−2.5764),

and applying the ASF method, we derived an initial efficient solution

x0 = (0.0000, 0.0000, 0.0019, 0.3136, 0.0000, 0.6845, 0.0000),

in which the vector of the objective function values is

z0 = (−0.1007, 0.2592,−0.1459,−1.8373).

Our implementation, including solving the single-objective problems, has
been done in MATLAB.

Remark 1 The reference point z0 has been chosen taking an interval, in which
the desired values are reasonable and consistent with reality, into account. This
interval is corresponding to the lower bounds (ideal point) and upper bounds
(nadir point) of the objective functions, as follows:

zINom = (−0.2247, 0.0000,−0.1816,−2.7764),

zNNom = (−0.0800, 1.8085,−0.1375,−1.2763).

Notice that, these two vectors are corresponding to the nominal scenario. There
is not any efficient tool for calculation of the nadir point. Here, we considered
an estimation of this point by a pay-off table approach [3]. ⊓⊔

Remark 2 We have converted all objectives to be minimized, that is, consid-
ered the first objective function as minimization of the negative of the return.
So, in the vector z0, the return associated with portfolio x0 is 0.1007 (i.e., the
first component of z0 should be multiplied by (−1)). A similar clarification in
needed for sustainability and liquidity as well. ⊓⊔

The DM was not satisfied with the objective values at x0 (Step 1). We
should get preference information, as a classification of the objective functions,
from the DM (Step 2). He preferred to improve the first function (return) as
much as possible and the liquidity to an aspiration level 2 (so, for the fourth
function, we have z̄4 = −2). On the other hand, the value of the second
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function (risk) is close to the ideal situation. So, he allowed to impair this
function up to an upper bound ϵ2 = 0.3. Indeed, the DM preferred to sacrifice
the second objective function (increase the risk) within an acceptable tolerance
in order to improve other objective functions. The DM was satisfied with the
value of the third function (sustainability) and preferred to keep its current
value. The solution obtained from the NIMBUS problem (6), imposing the
mentioned preferences of the DM (Step 3), is

x1 = (0.0000, 0.0000, 0.0000, 0.2998, 0.0000, 0.6695, 0.0307).

The vector of the objective values at this point is

z1 = (−0.1040, 0.3000,−0.1459,−1.8689).

The DM was satisfied with the value of the first objective function. How-
ever, he preferred to continue the improvement of the fourth objective func-
tion as much as possible and the third function to an aspiration level 0.18
(i.e., z̄3 = −0.18), allowing the second function to be increased until the upper
bound ϵ2 = 0.4. This led to the efficient solution

x2 = (0.0000, 0.0000, 0.0000, 0.2628, 0.0000, 0.6294, 0.1078),

whose corresponding objective vector is

z2 = (−0.1120, 0.4000,−0.1459,−1.9404).

Here, the DM was satisfied with the solution derived for the nominal sce-
nario. So, we started the second phase of the process of finding a most preferred
lightly robust efficient solution (Step 4). Throughout the second phase, x2 was
utilized as an efficient solution for the nominal scenario. To choose a reference
point properly, we computed lower and upper bounds for the objective func-
tions as follows. These two vectors are respectively the ideal and estimated
nadir points for the worst-case (wc) problem, denoted by zIwc and zNwc:

zIwc = (0.0851, 2.0636,−0.1603,−2.2120),

zNwc = (0.3469, 5.3358,−0.1383,−1.6404).

Due to two vectors zIwc and zNwc, for the worst-case scenario, the return belongs
to [−0.3469,−0.0851]. The negativity of these return values is natural, because
of considering the worst-case scenario. Invoking the above two vectors, we
considered a reference point as z̄ = (0.2, 4,−0.15,−1.9). We need it to perform
ths ASF method.

As we were looking for a lightly robust efficient solution, we asked the
DM to choose a tolerance for the objective functions in the nominal case.
This tolerance means how much the image point corresponding to the robust
solution can be far from the image point associated with the efficient solution
obtained for the nominal case. The DM’s answer was

δ = (0.01, 0.23, 0.01, 0.3).
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The initial lightly robust efficient solution obtained from the ASF method was
equal to

x3 = (0.0000, 0.0000, 0.0000, 0.1848, 0.3621, 0.2689, 0.1842),

and the objective function vector at this point was

z3 = (0.2115, 3.6434,−0.1452,−1.8799).

Notice that, here the return value is negative.
The DM was not satisfied with the objective values at x3 (Step 5). We

should get preference information, as a classification of the objective functions,
from the DM (Step 6). He preferred to improve the first function as much
as possible and the fourth function to an aspiration level 2.2120 (so, z̄4 =
−2.2120). On the other hand, the value of the second function satisfied the
DM. Moreover, he agreed to decrease sustainability to a lower bound 0.1383
(Step 6). The solution obtained from problem (8), imposing the mentioned
preferences of the DM (Step 7), is

x4 = (0.0000, 0.0000, 0.0000, 0.0127, 0.3981, 0.2844, 0.3049).

The vector of the objective values at this point is

z4 = (0.2115, 3.6434,−0.1390,−1.9721).

In this stage, since the value of the third function was very bad, the DM
preferred to improve it as much as possible. To do this, he agreed to sacrifice
the fourth function up to 1.9 (i.e., ϵ4 = −1.9). Also, he preferred to improve
the second function to an aspiration level 2.0636 and keep the first function in
its current value. The derived solution and its objective vector were

x5 = (0.0000, 0.0000, 0.0000, 0.1549, 0.3731, 0.2714, 0.2077),

z5 = (0.2115, 3.4501,−0.1452,−1.9096),

respectively.
The solution x5 also did not satisfy the DM and he wants to improve the

return, no matter what it takes. So he decided to impair the second, third
and fourth functions, simultaneously. The upper bounds for increasing these
functions were ϵ2 = 3.5000, ϵ3 = −0.1420, and ϵ4 = −1.8900, respectively.
This led to a new solution

x6 = (0.0000, 0.0000, 0.0000, 0.0932, 0.4482, 0.2260, 0.2326),

whose corresponding objective vector is

z6 = (0.1888, 3.4906,−0.1420,−1.8900).

The solution x6 satisfied the DM, as all objective function values were in a
satisfactory status (taking zIwc and zNwc into account).
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Computing zjnom, as the vector of the objective function values (in nominal
case) at xj , we have (zjnom)i−z2i 5 δi for each i = 1, 2, 3 and each j = 3, 4, 5, 6.
Here, we have not reported the zj vectors.

Finally, the DM was satisfied with the last lightly robust efficient solu-
tion as the final point (Step 8). The efficient portfolio derived from the LR-
NIMBUS method is corresponding to investment in fourth, fifth, sixth and
seventh companies with 0.0932, 0.4482, 0.2260, and 0.2326 as fractions of the
capital, respectively.

As demonstrated by the example, some of the strengths of our algorithm
are the participation of the DM in the solution process, taking the uncertainty
in the problem into account, and the proximity of the final solution to the so-
lution obtained for the most preferred scenario. The algorithm allows the DM
to control this proximity. The participation of the DM resulted with a port-
folio with characteristics (risk, return, liquidity, and sustainability) following
the DM’s preferences as well as possible. Furthermore, the lightly robustness
notion helped us to generate a solution which was reasonably close to the
solution corresponding to the most preferred scenario. Although, return is un-
certain in its essence, it is usually considered as deterministic in the models in
the literature. We overcame this contradiction by incorporating an uncertainty
set in the model. This includes all possible scenarios and increases the trust
in the results derived from the historical data.

5 Conclusions

We have proposed an interactive method called LR-NIMBUS for solving mul-
tiobjective optimization under uncertainty. Uncertainty is assumed to be in
the objective functions and the method supports a decision maker in finding
a most preferred lightly robust solution.

We have proven several theorems devoted to problem types in which the
proposed method is tractable. We also demonstrated the applicability of the
method with a portfolio optimization problem involving four objective func-
tions.
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Appendix A: ASF method

The Achievement Scalarizing Function (ASF), used for generating initial effi-
cient solutions is the objective function of the following problem corresponding
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to MOP (1):

min max
i=1,2,...,p

[
wi(fi(x)− z̄i)

]
+ ρ

p∑
i=1

wifi(x)

s.t. x ∈ X.

(29)

Here, wi =
1

zNi − zUi
for i = 1, 2, . . . , p are the weights assigned to the objective

functions. The vector z̄ = (z̄1, z̄2, . . . , z̄p) is a reference point, which here is the
average of nadir and ideal points, and ρ > 0 is a sufficiently small scalar to
prevent generating weakly efficient solutions [39].
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