JYVASKYLA STUDIES IN COMPUTING
102

Timo Aittokoski

On Challenges of
Simulation-Based Global and
Multiobjective Optimization

¢

JYVASKYLAN YLIOPISTO

JYVASKYLA STUDIES IN COMPUTING 102

Timo Aittokoski

On Challenges of
Simulation-Based Global and
Multiobjective Optimization

Esitetédén Jyvéskyldn yliopiston informaatioteknologian tiedekunnan suostumuksella
julkisesti tarkastettavaksi yliopiston Villa Ranan Blomstedtin salissa
tammikuun 31. pdivand 2009 kello 12.

Academic dissertation to be publicly discussed, by permission of
the Faculty of Information Technology of the University of Jyvaskyld,
in the Building Villa Rana, Blomstedt Hall, on January 31, 2009 at 12 o'clock noon.

®

UNIVERSITY OF ” JYVASKYLA

JYVASKYLA 2009

On Challenges of

Simulation-Based Global and
Multiobjective Optimization

JYVASKYLA STUDIES IN COMPUTING 102

Timo Aittokoski

On Challenges of

Simulation-Based Global and
Multiobjective Optimization

@

i
UNIVERSITY OF [l JYVASKYLA

JYVASKYLA 2009

Editors

Timo Miannikko

Department of Mathematical Information Technology, University of Jyvéskyld
Pekka Olsbo, Marja-Leena Tynkkynen

Publishing Unit, University Library of Jyvaskyld

Cover image by Timo Aittokoski: A predicted surface of the Matlab Peaks
function as seen by the FDE algorithm

URN:ISBN:978-951-39-9034-3
ISBN 978-951-39-9034-3 (PDF)
ISSN 1456-5390

Jyvaskylan yliopisto, 2022

ISBN 978-951-39-3457-6
ISSN 1456-5390

Copyright © 2009, by University of Jyvéiskyld

Jyviskyld University Printing House, Jyvéaskyld 2009

ABSTRACT

Aittokoski, Timo

On Challenges of Simulation-Based Global and Multiobjective Optimization
Jyvaskyla: University of Jyvaskyld, 2009, 80 p.(+included articles)
(Jyvaskyla Studies in Computing

ISSN 1456-5390; 102)

ISBN 978-951-39-3457-6

Finnish summary

Diss.

In this thesis, we address some challenges arising when solving real life simu-
lation based optimization problems, for example, in system, device or process
design. Often problems of this type are highly nonlinear, nonconvex, compu-
tationally expensive, gradient information is not available at a reasonable cost,
and often there are several conflicting objectives to be considered simultaneously.
These facts suggest that we should use carefully constructed optimization sys-
tems utilizing global, efficient and multiobjective approaches to solve these prob-
lems comfortably.

Multiobjective optimization problems can be solved in several different ways.
In this thesis, we concentrate on interactive scalarization based approaches and
on evolutionary multiobjective optimization (EMO) approaches. Our main em-
phasis in this thesis lays on dealing with two issues, problems due to the compu-
tational complexity of objective functions (running the simulator may be very time
consuming), and difficulties of choosing the final solution among a possibly large
set of Pareto optimal solutions.

In response to the above mentioned challenges, in this thesis we first con-
struct a heterogenous optimization system capable of accommodating virtually
any optimization algorithm and simulator combination. Then, to save in objec-
tive function evaluations, we propose an interactive approach with an adjustable
solution accuracy during the process. On the algorithmic level, we propose a
new and efficient single objective global optimization algorithm, which may be,
for example, used in conjunction with the interactive approach to solve scalarized
problems. On the other hand, to create an approximation of the Pareto optimal set
in a single run, we propose a new and efficient EMO algorithm, that overcomes
some drawbacks (e.g., lack of convergence) of the currentapproaches. In order to
select the most preferred Pareto optimal solution, we propose an approach where
the characteristics of the Pareto optimal set are condensed by using advanced
clustering algorithms, thus reducing the cognitive burden of the decision maker.

Keywords: Global optimization, multiobjective optimization, evolutionary opti-
mization, black box simulation, Pareto optimality

Author

Supervisor

Reviewers

Opponent

Timo Aittokoski

Department of Mathematical Information Technology
University of Jyvaskyld

Finland

Professor Kaisa Miettinen

Department of Mathematical Information Technology
University of Jyvaskyla

Finland

D.Sc. Jouni Lampinen
Department of Computer Science
University of Vaasa

Finland

Professor Eckart Zitzler

Computer Engineering and Networks Laboratory (TIK)
ETH Ziirich

Switzerland

Associate Professor Kyriakos Giannakoglou
Laboratory of Thermal Turbomachines
School of Mechanical Engineering

National Technical University of Athens
Greece

ACKNOWLEDGEMENTS

First of all, I would like to thank my supervisor, professor Kaisa Miettinen for her
encouragement, support, expertise and insights during the work of this thesis.

For their interest to my work, and for evaluating my thesis, I would like to
thank Doctor Jouni Lampinen and Professor Eckart Zitzler. I have also been priv-
ileged to work with, and have some good advice from and fruitful discussions
with (in no special order) Dr. Sami Ayramg, Dr. Jussi Hakanen, Mr. Sauli Ru-
uska and Mr. Saku Kukkonen. For some technical issues related to the NIMBUS
software I am indebted to Mr. Vesa Ojalehto. My lifetime fascination with engine
design and improvement, which has also motivated the work of this thesis to
some extent, originates from my boyhood years and writings of S. Tiittanen and
late and widely appreciated Gordon Jennings.

Further, I would like to thank my parents for creation of my essence, and al-
lowing me to pursue several seemingly precarious goals during the years, which,
of course, were retrospectively necessary to get me where I am now. Last but not
least, I also want to thank all my loved ones, friends and rest of my colleagues for
being there, and once again, Fourmyle of Ceres for his necessary and sufficient
optimality conditions for life.

This study was financially supported by COMAS graduate school, Academy
of Finland (grant number 104641), Ellen & Artturi Nyyssénen Foundation, Jenny
& Antti Wihuri Foundation and University of Jyvdskyld’s Grant for Doctoral
Studies.

Jyviaskyld, 18th December 2008
Timo Aittokoski

LIST OF FIGURES

FIGURE 1
FIGURE 2
FIGURE 3
FIGURE 4

FIGURE 5
FIGURE 6

An example of a non-convex function with two local and one

global minima.00 15
[lustration of Pareto optimal set (bold lines), ideal and nadir
objective vectors in case of two objectives. 32
Different Pareto optimal solutions produced using ACH, STOM,
and GUESS scalarizations and the same reference point. . . . 38
Sample screenshot of IND — NIMBUS® software. 40
A flowchart of the NIMBUS algorithm. 41

Overview of the modules of a heterogenous optimization sys-
T P R R 47

CONTENTS

ABSTRACT
ACKNOWLEDGEMENTS
LIST OF FIGURES
CONTENTS
LIST OF INCLUDED ARTICLES
T IR E T NI eemessaggass o= sswssnamnats s e ssaiins svumas s tsuusesss seets et aneensss 9
2 OPTIMIZING BLACK-BOX ENGINEERING PROBLEMS 14
2.1 Global optimizationccovviiiiiiiiiniiiiiii 16
2.1.1 MetaheuristicS......ooooovviiiiiiiiiiiiii 21
2.1.2 Bayesian algorithms................ccccooiiiiiiiiiiii 25
2.1.3 Performance assessment.................cceueviiiiiiiiiiiiniaiiiiinn... 28
2.2 Multiobjective optimization...........ccceevvvviiiiiiiiii, 30
2.2.1 Scalarization methodsccccooviiiiiiiiiiiiiiiiiiiiiiiiiiiiniin, 35
2.2.2 Evolutionary multiobjective optimization 40
3 CHALLENGES AND POSSIBLE RESPONSESovuese0e000ssoonseaessssssens 46
3.1 Problem of algorithm selectioncccoeoiiiiiiiiiiiiiii, 49
3.2 Computational complexityccccvvviiiiiiiiiiiiiiii, 50
3.2.1 Single objective optimization...............cccoeviiiiiiiiiiiiiinnnns 50
3.2.2 Scalarization based methods................cccevviviii, 53
3.23 EMO approaches for multiobjective optimization.............. 55
3.3 Selecting the most preferred Pareto optimal solution.................... 57
4 AUTHOR'S-EONTRIBUTICIN 5.5 58 08n 5o« 55t T aRacsssssssssonssasanssssssse 61
5 CONCLUSIONS AND FUTURE WORK .secsecs0ssoeosseesusossssssssssensesssess 63
YHTEENVETO (FINNISH SUMMARY) 1630 sveesm 0 osssssns csommosssorsanssscssesgpoass 66
ERIRATA .. e ouees e e e do - e 1 4o 8> See€ sy e s » et s g oo oo B 67
REFERENCES

INCLUDED ARTICLES

LIST OF INCLUDED ARTICLES

PI

PII

PIIT

PIV

PV

Timo Aittokoski and Kaisa Miettinen. Cost Effective Simulation-Based
Multiobjective Optimization. Engineering Optimization 40(7), 593-612, 2008.

Timo Aittokoski and Kaisa Miettinen. Decreasing Computational Cost
of Simulation Based Interactive Multiobjective Optimization with Ad-
justable Solution Accuracy. Reports of the Department of Mathematical Infor-
mation Technology, Series B. Scientific Computing, No. B 19/2008, University of

Jyvdskyld, 2008.

Timo Aittokoski, Sami Ayramo and Kaisa Miettinen. Clustering Aided Ap-
proach for Decision Making in Computationally Expensive Multiobjective
Optimization. Optimization Methods and Software, to appear.

Timo Aittokoski and Kaisa Miettinen. Efficient Evolutionary Method to
Approximate the Pareto Optimal Set in Multiobjective Optimization. Pro-
ceedings of International Conference on Engineering Optimization EngOpt 2008,
Rio de Janeiro, Brazil, June 1-5, 2008.

Timo Aittokoski. Efficient Evolutionary Optimization Algorithm: Filtered
Differential Evolution. Reports of the Department of Mathematical Informa-
tion Technology, Series B. Scientific Computing, No. B 20/2008, University of
Jyvdskyld, 2008.

https://doi.org/10.1080/03052150801914429
https://doi.org/10.1080/10556780802525331
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.576.9001
http://urn.fi/URN:ISBN:978-951-39-9035-0
http://urn.fi/URN:ISBN:978-951-39-9036-7

1 INTRODUCTION

In many industrial design or control problems it is imperative to be able to adjust
features (like quality, production cost, strength, etc.) of the end product or a sys-
tem. Usually there are design variables in the design, which affect the end result,
objective. For example, in the very simple case of a rectangular container design,
we may have three design variables, width, height, and depth, which determine
the objective value of the design, which is the volume of the container in this case.
In many design and control problems the main problem can be simply posed as:
what design variable values will produce the best end result?

Traditionally, a design engineering team has been responsible for answering
the question stated above. By some careful selection of design variable values
they have to create a functional and satisfactory design for the given product.
Obviously, the quality of the product is relative to the expertise of the design
engineering team, and also to the amount of real world trial-and-error-testing and
redesign performed. It is easy to see that this kind of an iteratively progressing
procedure of design-testing cycles is time consuming, expensive, may be even
dangerous, and worst of all, the end result may be suboptimal.

Nowadays, the behavior of many real-world systems and devices can be
expressed with mathematical models. If such a model is implemented using a
computer, it can simulate the behavior of the system, and thus such a software
is called a simulator. The simulator evaluates the behavior of the system using
specific values for the input (or design) variables and calculates corresponding
values for the output variables. For a review of simulation methodology, we re-
fer, for example, to [6] and [54].

In industry, simulators are increasingly used to study the behavior of some
system instead of extensive testing with small scale models, simplified mechani-
cal models, or with the actual system itself. There are different simulators rang-
ing from simulation of chemical processes of a paper making line [13] to flows
around aircraft [139] and internal combustion engine processes [84]. The behav-
ior of different structures, flows etc. is often simulated using the finite element
method (FEM), see, for example, [24, 86]. There are many reasons for the growing

10

popularity of simulator use; for example, the ever increasing speed of computing
and inexpensive computers make their use more appealing in terms of invested
time and money. Running the simulator is usually far more cheaper, faster and
in some cases also safer than implementing the prototype of a real system or de-
vice. Simulation, among other things, allows the designer to rapidly try several
different designs and to explore their advantages and disadvantages.

Although the benefits of simulator usage are undisputed, as they may dras-
ticly cut down the product design time and especially the testing time, certain
problems still remain. A simulator merely mimics the behavior of some system.
For example, an engine simulator may predict the output of a given engine con-
figuration. Nevertheless, the simulator cannot give information of how exactly
that behavior can be improved, or how some desired property could be attained.
The core of the design process is essentially the same as with the traditional trial-
and-error approach: what design variable values will produce the best end re-
sult? The designer must try to find an answer to this question, and decide what
kind of design to evaluate next, but in this case, instead of the real world testing,
the end result of the design is evaluated using the simulator.

In practice, the task of the designer is not easy, because there usually are too
many variables for a human to control systematically while pursuing some pre-
defined property for the end result. It is also often impossible to see the delicate
interactions between the separate design variables with regard to the pursued
objective.

Further, with real life engineering problems, the designer is rarely so lucky
that he/she needs to deal with only a single objective. Often there are several ob-
jectives that should be simultaneously improved and they usually are conflicting.
For example, in the field of engine design, the designer may want to create a pow-
erful engine, while he/she must keep its fuel consumption as low as possible, and
further, the production costs should be minimized. These three objectives are ob-
viously conflicting. As another example, in the trivial case of a container design,
we may have two objectives: the volume of the container should be as large as
possible, while the amount of material needed to build the container should be
kept as low as possible. It may be useful to point out here that in many cases,
there may be more objectives than only two or three.

As it seems, for the human designer it may prove to be extremely difficult
to gain results that he/she is aiming for by manually adjusting the design vari-
able values. Further, if some acceptable design is found with a trial-and-error
method, it is by no means guaranteed to be optimal; it could be possible to find
even better design by some other means. This is where the optimization steps
in and provides tools to generate optimal solutions with only minimal human
effort. In the following paragraphs, we discuss shortly, on a general level, some
essential concepts of optimization.

We all are familiar with the basic concepts of optimization, probably without
even being aware of it. In our everyday life, we continually come across with
optimization problems. For example, while planning a visit to our friend on the

11

other side of the city, we may plan our route so that it is the shortest or the fastest
possible. While driving on a highway and noticing that we are a little bit short
of fuel, we may adjust our way of driving in order to save fuel and to get to the
next gas station. In both of these situations we are optimizing some quantity of
the system. In the first example we are optimizing our route, and our objective
(function) is to minimize either the distance or the time to the destination. In the
second example, we are optimizing our fuel consumption, and the objective is to
maximize the length of travel before the fuel runs out.

In both of these cases, some single property of the system is identified as
an objective, and then optimized (either minimized or maximized). Because the
value of the chosen objective is a function of the values of design variables, we
refer to the mechanism that produces objective values as an objective function.

Sometimes it may be necessary to apply some constraints to the design vari-
able values for the mathematical model to be meaningful and for the design to be
implementable. For example, the length of some physical item may not be neg-
ative, or the volume of some object must be sufficient to house some specified
apparatus: e.g., the nose cone of the aircraft may need to house a radar disc. Ac-
ceptable values for design variables define a region, where the optimum value
can be searched for, i.e., the search space (also known as a design space).

If there is only one objective to be improved, we have a single objective op-
timization problem. However, in real life, as seen above, we often face problems
with several, often conflicting objectives. Problems of this type are called multi-
objective optimization problems.

Design (as well as any other) optimization problems can be solved using
appropriate optimization (a.k.a search) algorithm, which can be described as a
routine where the aim is to find the best possible value for a given objective by
iteratively and systematically manipulating design variable values. Optimiza-
tion algorithms automatize the search procedure using different means in judg-
ing what values for the design variables should produce good objective function
values. In some sense, an optimization algorithm explores the objective function
surface, and uses intelligent means to deduce where peaks (maxima) and valleys
(minima) are located.

In contrast to testing several hundred different design variable combina-
tions manually, with optimization algorithms the designer needs only to con-
struct an objective function (which reflects the goodness of a particular design) to
meet his/her needs and define ranges and other possible constraints for the de-
sign variables, i.e., the boundaries for the search space. After this, the optimiza-
tion algorithm searches for the optimum by relentlessly testing possibly a myriad
number of different design variable value combinations, until the optimal design
is found, or some other stopping condition is met. There are lots of different op-
timization algorithms available for different types of optimization problems. A
thorough discussion of these can be found, for example, in [10], [52] and [90] and
references therein.

Although optimization tools may essentially speed up the design process,

12

and also produce optimal results, the implementation of the optimization system
consisting of the optimization algorithm, objective function(s) (and related design
variables and constraints), and interfaces between these two, is not necessarily
an easy task. Simulation based optimization, where the objective function values
(as well as possible constraint values) are derived from the output (files) of the
simulator run, places some special requirements on the optimization system.

In simulation based optimization, the objective function value is often pro-
duced by some simulation software, and, thus, it can be the result of a complex
sequence of calculations. Due to the complex nature of calculations, relationships
between the decision variables and objective function values do not necessarily
exist in a closed form, but the objective function is a so-called black box function.
In this case, the internal mechanism and structure of the function is unknown or
unavailable, and only the input and output characteristics can be utilized. For
this reason, we cannot usually assume that the objective function is convex or
unimodal, i.e., that it contains only one unambiguous optimum. Often there are
several local optima, and the problem is to avoid poor local optima and to find the
global one among them. Also computational complexity of objective function eval-
uations may be a problem. In contrast to easy closed form functions, running the
simulation is often time consuming; one run may take time from a few seconds
to hours or even days in the worst case, for example, with some complex flow
model. To cope with computational complexity, it is necessary to use algorithms
with as high efficiency as possible, i.e., algorithms which produce good objective
function values using as few objective function evaluations as possible.

Further, derivatives which are commonly used to guide the optimization
process are usually unavailable with black-box problems. Derivatives can be es-
timated using finite differences, i.e., by calculating differences in objective function
values close to the current point along each dimension, but this, in turn, would
increase computational load significantly. Also the selection of the optimal step
length to calculate the finite differences is not a straightforward matter.

Another method to calculate gradient information numerically is a so-called
automatic differentiation (AD), see, for example, [7]. The basic process of AD is to
take the underlying program which calculates a numerical function value, and to
transform it into a transformed program which calculates the desired derivative
values. Obviously, the use of automatic differentiation may be very difficult, or
evenimpossible (if the source code is not available), with black-box type software.
For the reasons above, neither finite differences nor AD is used in this thesis.
Instead, it is assumed that gradient information is not available at a reasonable
cost. For a general discussion about simulation based optimization, we refer, for
example, to [56].

All the facts above suggest that we are not able to use traditional and effi-
cient optimization algorithms such as the steepest descent (gradient) method or
the sequential quadratic programming method (SQP), which require gradient in-
formation and are local search methods. In other words, these methods will find
the nearest optimum from the starting point, which could be quite far from the
real global optimum.

13

To summarize, when solving real life simulation based black-box engineer-
ing problems, we need to use global, multiobjective and efficient (in terms of
objective function evaluations) approaches to tackle problems caused by several
local optima, several conflicting objectives, and computational cost of objective
function evaluation, respectively. In this thesis, we discuss some special require-
ments of and difficulties in the aforementioned problems and possible responses
to them. We concentrate on dealing with two issues mainly, namely problems due
to the computational complexity of objective function(s), and difficulties of choos-
ing the final solution among a large set of mathematically equivalent (Pareto op-
timal) solutions in the multiobjective case. In [PI] we show an example of how a
simulation based optimization system can be constructed. To handle costly objec-
tive functions, we propose a method to reduce the number of required objective
function evaluations in an interactive multiobjective approach in [PII], and fur-
ther we propose efficient single and multiobjective optimization algorithms in
[PV] and [PIV], respectively. To help in choosing the final solution among the set
of Pareto optimal solutions, we propose a clustering based approach in [PIII].

In this thesis, we restrict our consideration to box-constrained black-box
problems of global nature, with a reasonable number of both design variables
(in the order of dozens) and objective functions (less than one dozen) to keep
problems at a solvable level, although the characteristics of objective function(s)
involved may strongly affect this, as discussed later in Section 2.1. Other types
of approaches would be needed for larger problems. Throughout the text we as-
sume that no gradient information is available at a reasonable cost. Further, we
assume that a single objective function evaluation is somewhat costly (ranging
from seconds to a few minutes), but not extremely costly (hours or days). Thus,
we can solve problems using evaluations in the range of hundreds or thousands,
instead of only tens, as would be the case with extremely costly problems.

The rest of this study is organized as follows. In Chapter 2 we discuss opti-
mization methods and tools from our perspective in the field of global single ob-
jective optimization, and also proceed to a multiobjective treatment. In Chapter
3 we discuss some challenges originating mainly from the computational com-
plexity of objective function evaluations and the difficulty in choosing the final
solution among the mathematically equivalent set of Pareto optimal solutions in
the multiobjective case. In the same chapter, with regard to challenges discussed,
we describe the main contribution of this thesis, that is, we propose some possible
treatments to the above mentioned problems. In Chapter 4 we describe the au-
thor’s contribution in this study. Finally, in Chapter 5 we draw some conclusions
and discuss some ideas for future work.

2 OPTIMIZING BLACK-BOX ENGINEERING
PROBLEMS

Optimization can be regarded as a means to find the best solution to a problem
among all allowed solutions, i.e., the optimum of one or more objective functions
must be found by varying the design variable values with respect to some con-
straints. Several different methods have been developed for different types of
optimizations problems, usually based on the type and number of design vari-
ables and on the properties of the objective and possible constraint functions [52].

Let us first consider cases where we are interested in solving of a global
single objective optimization problem formulated as

minimize f(x)

subjectto x € S. @

Objective function f : R* — R is minimized by altering values of the deci-
sion or design variables forming a vector x € IR". The points (or vectors) defined
by values of decision variables will lie then within the search (a.k.a. decision or
design) space, i.e., in a box constrained domain in R” in our case. Sometimes all
the points in the search space are not acceptable, and an acceptable subset of the
search space is called feasible region S. If only box constraints are used, the search
space equals to the feasible region. Point x* is a global minimum, if f(x*) < f(x)
with all x € S. If there exists § > 0 so that f(x*) < f(x) with all x € S, for which
is valid ||x — x*|| < 6, point x* is the local optimum.

The set is convex if all the points in the line between any two points of the set
belong to the set. Similarly, a function f is convex if f(tx + (1 —t)y) < tf(x) +
(1—-1t)(f(y) forany t € [0,1] and x # y. Optimization problem (1) is convex
if the feasible region S and the function f are convex. Otherwise, the problem
is nonconvex. If the problem is convex, it has only one optimal solution, i.e.,
local and global optima are the same, and it can be solved in a local manner, see,
e.g., [10]. Unimodality is a less restrictive concept than convexity, but a unimodal
function has also only one optimal solution. A function f is said to be unimodal
(over S) if there exists a path from x to x* (global optimum) over which f is strictly
increasing, for all x € S [125].

15

Local minsmum

Local runitmum

Gle®al minimum

FIGURE1 Anexample of a non-convex function with two local and one global minima.

On the other hand, if the problem is nonconveyx, it may contain several local
optima, and the aim is to find the best of these, the global optimum !. A function
with several local optima is called multimodal.

Conventionally, problems of the form (1) have been considered in a local
manner [10, 52], but in the recent decades there has been a growing interest to
handle problems in a global manner [14, 53, 62, 105, 106, 133]. Further, problems
with several objectives have drawn wide attention [22, 26, 32, 66, 90, 126], and
we shall return to multiobjective optimization in Section 2.2. The trend towards
proliferation of different methods is easily explained by the fact that local single
objective algorithms have only limited applicability, especially in the field of real
life optimization problems.

In Figure 1 differences of local and global minima are illustrated. When
some local optimization algorithm is used, one of the local minima is found, but it
depends completely on a given starting point which one. Thus there is a good
chance to miss the global optimum, and get only a poor objective function value.
On the other hand, with global optimization algorithms, a global optimum is
usually found.

As our topic is simulation based optimization, we restrict our consideration
to global and multiobjective optimization, which both are discussed in the fol-
lowing sections. We also assume that we have nonlinear, typically multimodal
objective functions in the box-constrained search space involving continuous de-
sign variable values.

3 It may be useful to point out that the global optimum is not necessarily unique; in some
cases there may exist several global optima in the different parts of the search space. How-
ever, in the literature it is often implicitly assumed that the global optimum is a single point.
We rely on a similar assumption also in this thesis.

16

2.1 Global optimization

The need to use global optimization algorithms arises from the characteristics of
the objective function. If the objective function is unimodal and differentiable,
there exists a plethora of local optimization algorithms to solve it efficiently and
accurately, see, e.g., [10, 52]. On the other hand, if the objective function is mul-
timodal and possibly otherwise difficult, i.e., non-differentiable, discontinuous,
and probably even having discrete variables, some global optimization algorithm
is needed in order to solve the problem. There are several different factors con-
tributing to the difficulty of finding the optimum for the certain objective func-
tion. In the following we discuss effects of the characteristics of minima (sizes
of basins of attractions, number of them, dispersion), characteristics of objective
function landscape (variation, ruggedness, neutrality, deceptiveness), and gen-
eral issues such as dimensionality and the cost of evaluation of objective function.

Each of the minima x} has a basin of attraction, which is defined as the largest
set of points in the search space such that the steepest descent algorithm which
uses infinitely small steps will converge to x; for any starting point inside that
particular set of points [133]. The size of each basin may be related to the size of
the whole search space, and thus each of the minima x} has a probability p; to
be reached from a random starting point by using a local optimization algorithm.
Thus, p; is an important factor to characterize the optimization problem. If some
pi = 1, the function is unimodal, and thus rather easy to solve. If p; < 1, there
must exist several local minima, and the smaller the p; for a global minimum
is, the more difficult it is to find. An obvious consequence of a high number of
minima is that each basin is generally smaller, although as a rule of thumb it
seems (at least for some test problems) that the basin of attraction of the global
minimum is the largest basin of all [132]. One possible explanation to this could
be that if the function has almost the same Lipschitz constant (rate of change)
around all the minima, then the one with the best value will have the largest
basin.

If minima are clustered around a certain area of the search space, exploring
the neighborhood of one minimum may lead to the detection of a neighboring
and better minimum, thus improving the efficiency of the search. On the contrary,
if the minima are dispersed all around the search space, lots of search etfort may
be wasted exploring neighborhoods of each of them.

In [141], some difficult properties of the objective function landscape are
discussed, and here we mention some of them. Although global optimization al-
gorithms do not usually utilize gradient information, they nevertheless depend
on information about trends in the objective function landscape, based on objec-
tive function values. Thus, functions that are easy to optimize are continuous
and exhibit low total variation in the objective function landscape, i.e., there is
no fluctuation in function values. If the objective function landscape has lots of
ups and downs, it is rugged, and ruggedness can be defined as a multimodality
accompanied with steep ascends and descends. In that case, small changes in

17

decision variable values may cause large changes in the objective function value,
the optimization algorithm cannot find reliable trends in the objective function
surface, and it becomes harder to decide what part of the search space should be
explored. Thus, efficiency of the search is decreased due to ruggedness.

Another difficulty related to information about trends in the objective func-
tion landscape is neutrality, i.e., objective functions with large plateaus. In a
plateau, there is no information available to guide the search, and in an extreme
case of neutrality, efficiency of the search is similar to that of random sampling
[141]. One very difficult objective function landscape is a so called needle-in-a-
haystack scenario, where the global minimum is located in a small and deep pit,
which is isolated and surrounded by a large plateau. In this case, the extreme
local ruggedness is combined with a general lack of information.

With a deceptive objective function landscape, the trend in objective function
values tend to lead the search away from the global minimum. For example, a
hill sloping down to the right leads the search to that direction, while the real
global minimum may be located to the left, on the other side of the peak. In this
case, the basin of attraction of the global minimum is rather small, and difficult
to detect.

In addition to the above aspects, problem dimension, i.e., the number of
design variables n, also affects the problem difficulty. In general, higher dimen-
sional problems are more difficult to solve than lower dimensional ones. This is
due to the curse of dimensionality, i.e., the fact that the volume of the higher dimen-
sional space increases exponentially with the dimension 7. This causes difficulties
particularly if the search space is to be covered with some specified density. For
example, if a one-dimensional line of length [is to be covered with a density of
points located /10 apart, 10 points are needed. In a two-dimensional case, i.e., a
square, for the same density, 100 points are needed. In a three dimensional case
of a cube, 1000 points are needed, etc. In this case, by adding one dimension,
the number of points must be tenfold. It is obvious that with high dimensional
problems extensive coverage becomes next to an impossible task.

Another possible difficulty with problems of higher dimensionality is that
the number of local minima may be increasing with 7. In this case, relative sizes
of basins of attractions may be reduced, thus leading to a more difficult detection
of the global minimum. Naturally, contemplation about an increasing dimension-
ality is reasonable only with artificial test problems. In other cases, the problem
has a fixed dimensionality per se, and if more variables are included, the whole
objective function landscape may change completely.

One concept loosely related to the dimensionality of the problem is decom-
posability of the problem. In [122], a function f is defined as decomposable if it
can be written as a sum of n one-dimensional functions. In this case, accord-
ing to [110], it is possible to replace the task of optimizing one function having
n dimensions with the task of optimizing n one-dimensional functions. Thus,
each variable can be optimized independently. Decomposable functions are also
known as separable functions. If decomposability of the problem is known or it
can be assumed, this feature should be utilized in the selection of the solution

18

method or the parameter values of it to make the optimization run more efficient.

Rotationally invariant search is such that its performance does not depend on
the orientation of the coordinate system in which the objective function is eval-
uated [110]. For example, if the search is not rotationally invariant, more search
effort may be directed along the coordinate axes. In relation to decomposable
problems, it may be noted that they can be solved more efficiently if the search is
not rotationally invariant. In general case, where decomposability of the problem
cannot be assumed, it is more reasonable to use rotationally invariant search.

One obvious feature, in addition to the characteristics of the objective func-
tion landscape itself that may hinder the solution process is the computational
cost (time) of the evaluation of the objective function value. If evaluations are
very inexpensive, a huge amount of them can be afforded, and a mathematically
difficult problem becomes in this sense "easy". On the contrary, even a relatively
simple objective function landscape may be difficult to optimize if the evalua-
tions are very expensive, e.g., taking hours or even days.

In general, a global optimization problem is not solvable. By this we mean
that there exists no algorithm that can solve every global optimization problem
using only a finite number of objective function evaluations [132]. On the other
hand, if it was possible to use an infinite number of objective function evalua-
tions, every problem could be solved with certainty using for example random
sampling. Thus, with a limited budget for objective function evaluations, correct-
ness of the final solution can be guaranteed only when very restrictive mathemat-
ical assumptions are valid [133], and for this reason, in methods with probabilistic
features, the guaranteed correctness must be traded with a shorter runtime of the
algorithm.

With methods with probabilistic features, increasing the number of objec-
tive function evaluations usually improves the quality of the solution up to a
certain phase of the process, i.e., until the convergence is reached. When the algo-
rithm has converged, it cannot reach new unseen solutions anymore, or solutions
produced are located in a very small subset of the search space (stagnation) [141].
In convergence, there is usually no means to determine whether the algorithm
has converged to a some local optimum, or to a global optimum, i.e., whether the
convergence was premature or not. Convergence properties of some evolution-
ary algorithms have been discussed for example in [115] and [118].

To prevent premature convergence, and also to allow efficient and reliable
search, global optimization algorithms consist of global and local techniques. The
global technique is responsible for finding areas of the search space that have
not been explored yet, thus the global technique is often referred to also as explo-
ration. It is obvious that to detect the region of attraction of the global minimum,
the search space should be sufficiently covered. With the local technique the al-
ready found good solutions are exploited by incorporating small changes into
them to further improve the solution quality. The local technique is also referred
to as exploitation. The division between local and global techniques is not nec-
essarily explicit, as it may be in the simplest forms of so called hybrid methods,

19

where promising regions of the search space may be identified by some sampling
procedure, and the best solutions found are then refined using some local op-
timization algorithm. Instead, the transition from a global technique to a local
technique may be gradual and implicit, i.e., an adaptive technique. In this case,
increasingly more points are sampled in the regions of the search space where
promising solutions have already been found.

Different search operators may emphasize more either global or local search
properties of the algorithm. It is obvious that algorithms emphasizing more the
local search have a higher convergence speed, but they also have a higher risk
of premature convergence to some local minimum. On the other hand, an algo-
rithm lacking local search properties converges very slowly, or may even fail to
converge to a global minimum completely. These two aspects of the search, local
and global, lead to a compromise between convergence speed and reliability, of-
ten referred to as the exploration-exploitation dilemma: what would be the optimal
rate to transition from global sampling to a more local procedure? Usually, em-
phasis between local and global search may be changed by tuning the parameters
of the optimization algorithm before the optimization run. For example, in pop-
ulation based algorithms a larger population leads to a slower convergence but
a higher reliability. Similarly, in simulated annealing the slow cooling schedule
results with a more reliable search. In evolutionary algorithms, there are often
parameters to control mutation and crossover rates, which affect the local-global
search balance.

Unfortunately, tweaking the parameters of the optimization algorithm for
fast and reliable search is an optimization problem in itself, and for the user of
the algorithm it may be very difficult to find the proper values for a certain prob-
lem. This is especially the case if objective function evaluations are expensive,
and the optimization run can be executed only once. Often, the only reasonable
choice is to select some frequently used parameter values from the literature, but
presumably these are not the best ones for the problem at hand.

The facts above suggest that it is beneficial if the optimization algorithm
has only few parameters, and if the algorithm is not very sensitive to the choice
of parameter values. In the optimal case, there would not be even the first pa-
rameter value for the end user to set. Attempts towards completely self-adaptive
algorithms have been made, for example, by embedding the parameters of the al-
gorithm inside the optimization problem, see, e.g., [17]. However, with this kind
of approaches it may be reasonable to assume that the price to be paid for the
lower number of parameters is a slower convergence rate.

Asdiscussed above, the optimization problems may pose several difficulties
for the optimization algorithm. By tweaking parameters of the algorithm it may
be tuned more suitable for that particular problem, or it is even possible that
the algorithm itself may tune itself to the problem at hand. Anyhow, it seems
clear that for every problem it is possible to construct an algorithm that solves
that particular problem most efficiently, but performs poorly on different types
of problems. Mathematically, Wolpert and Macready have defined this behavior

20

in their No-Free-Lunch theorem (NFL) [146], postulating that over all possible
problems the average performance of all algorithms is similar. With regard to
NFL, no single algorithm can be superior in solving all given problems. Anyhow,
it seems questionable how applicable NFL is with regard to real life optimization
problems, or even with regard to problems which bear even remote resemblance
to the physical world where we can assume some trends and logical coherence of
the objective function landscapes.

In NFL, an optimization problem is considered as any arbitrary mapping
from the discretized design space to the discretized objective space. By this def-
inition, a vast majority of the objective functions considered have no noticeable
structure, rather they are depicted by extreme ruggedness and apparent look of
pure, drastic noise. We deem functions of this type senseless with regard to the
physical reality, and beyond any hope to be solved efficiently.

In this light, we allow ourselves the possibility to believe that all "solvable”
real life problems form a distinct subset of all possible problems, and for this
subset the NFL is not necessarily applicable. The fact that optimization algo-
rithms are used, instead of pure random sampling, supports our belief. If the
NFL was applicable to a subset of real life problems, random sampling as a solu-
tion method should work as well as optimization algorithms.

Further, if the NFL was considered applicable for real life problems, all per-
formance comparisons conducted in thousands of research publications would
be rendered completely useless. By our reasoning, if the NFL was applicable,
all algorithms should pose almost exactly the same performance, which does not
seem to be the case. In performance comparisons differences are almost always
detected, which, if the NFL was applicable, readily suggests that the set of test
problems applied was insufficient. In this light, applicability of the NFL would
render all performance testing useless, at least for general solvers, because the
results would either be similar, or in case of differences the test setup should be
deemed insulfficient.

To tackle the difficulties posed by global optimization problems, many dif-
ferent methods have been suggested since the early years of the discipline. These
methods share common ideas thus making it possible to define classes cover-
ing most of the methods. Striving for any complete classification is beyond the
scope of this study, but instead we use a crude classification given in [133]. Meth-
ods are primarily divided into two non-overlapping classes with respect to the
accuracy of the solution: those with guaranteed accuracy, deterministic methods,
and those without one probabilistic methods. Deterministic, i.e., exact methods are
covering methods (e.g., branch and bound), that iteratively detect and exclude re-
gions of the search space which can be judged not to contain the global optimum.
Although these methods guarantee that a solution with a given accuracy is ob-
tained, the price to be paid for this guarantee is that some a priori information of
the objective function must be available or some rather restricting mathematical
assumptions must be valid [133]. In the case of simulation based optimization,
these conditions cannot typically be met, and thus these methods are not of inter-
est to us.

21

Among probabilistic methods, we devote our interest to two classes, namely
metaheuristics and Bayesian methods. Both of these are often cited, and both
have been successfully applied to real life engineering problems [104], the latter
ones excelling in extremely costly problems [16, 49]. The concept of metaheuris-
tics is not well defined, but in general applies to methods that contain some sort of
metastrategy to guide the heuristic search method towards the global optimum.
The list of metaheuristic methods may contain according to [53, 124], among
others, simulated annealing, scatter search, tabu search, genetic algorithms, ant
colony optimization, particle swarm optimization, controlled random search and
differential evolution.

2.1.1 Metaheuristics

Metaheuristics may be further divided into single solution (e.g., simulated an-
nealing and tabu search) and population based methods (e.g., genetic algorithms
and differential evolution). In single solution methods, the neighborhood of the
current solution is under consideration, and by certain rules a transition to the
next location is allowed. For example, in simulated annealing, the new point is
directlyaccepted if it is better than the current point, but in order to escape a local
optimum during the solution process it is also possible to accept occasionally a
worse point with a decreasing probability.

In population based algorithms, a population of points is initially scattered
all around the search space. By certain rules, points in the population are replaced
by new points, and a child population (i.e., the next generation) is produced, usu-
ally with a better average objective function value than in the parent population.
With an increasing number of generations the population is expected to concen-
trate around the global optimum.

It is interesting to notice that essentially all population based algorithms
have similar basic operations, although they use very colorful terminology, of-
ten inspired by some phenomena of the nature, i.e., evolution, or the flocking
behavior of ants, birds, or bees. Sometimes it seems that the terminology itself
may hinder the understanding of the algorithm behavior. Basically these algo-
rithms have some mechanism to generate new points around the current points,
and some mechanism to select points for the next population. If the functioning
of a point generation mechanisms of these algorithms is studied geometrically, it
can be seen that there are only subtle differences, although one could imagine the
contrary based on the complex terminology used.

As we have utilized two often referred and rather effective metaheuristic
algorithms in our work, Controlled Random Search in [PI] and [PII], and Differ-
ential Evolution in [PIV] and [PV], it is in order to introduce them in more detail.

22

Controlled Random Search, CRS

The Controlled Random Search (CRS) algorithm was presented originally by W.L.
Price [108] already in 1977. Price proposed several versions of the algorithm, the
widely cited method being CRS2 [109].

In general, CRS is a population based search algorithm. In the Price’s origi-
nal version the search space is randomly sampled (objective function values eval-
uated at the given locations) to form a population P of size NP, which is much
larger than the number of design variables n. The suggested value for NPis 10 x
[2]. In the next step, a simplex is formed by selecting # + 1 points randomly from
P. A new trial point is generated by selecting one of the points in the simplex
which is reflected through the centroid of the remaining points (as in the Nelder
and Mead simplex method [102]). If the objective function value of the trial point
is better than the current worst point in P, the worst point is replaced in the pop-
ulation by the new trial point. The process of forming a new random simplex and
generating the trial point is then repeated until some stopping criterion is met.

Price himself made the first two improvements to the original CRS algo-
rithm, producing version CRS2 and version CRS3. In the second version (CRS2)
a different mechanism to obtain new trial points is proposed. The difference be-
tween CRS1 and CRS2 lies in the way the simplex is formed. In CRS2, the first
point of the simplex is always the current best point in the population P (others
are randomly chosen), whereas the first point is randomly chosen in CRS1. CRS3
is otherwise similar to CRS2, but it also incorporates a Nelder-Mead type local
search from the best n + 1 points of the set P.

After Price’s initial work, the ideas of CRS algorithms have been further
extended for example by M.M. Ali and C. Storey [3], who produced the variants
called CRS4 and CRS5. Experiments have proved CRS4 to be superior to CRS5
[4]. Both CRS4 and CRS5 employ a local search phase, which is gradient based in
CRS5.

Unlike in CRS3, in CRS4 there is no Nelder-Mead type local search. Instead,
whenever a new best point x,,;, is found by a manner similar to that in CRS2, it is
"rewarded" by an additional search around it by sampling a predetermined num-
ber r of points (e.g., 7 = 4) from the beta-distribution using the current x,,;, as its
mean and the distance between x,,;, and Xyqx (the worst point in the population)
as the standard deviation. This method is reported to be very efficient [2]. In our
studies [PI] and [PII] we used version CRS2 based on a comparison made in [1],
and a Pascal implementation for the algorithm was supplied by M.M. Ali.

Differential Evolution, DE

The Differential Evolution algorithm [110, 128] is a member in the family of evo-
lutionary algorithms, and, to be more accurate, a form of evolution strategies (ES)
[11]. As such, differential evolution is a simple, population based stochastic i.e.,
probabilistic optimization algorithm. It was developed and successfully applied
to the optimization of some well known nonlinear, non-differentiable and non-
convex functions by Storn and Price [128] in 1997. DE combines simple arithmetic

23

operators with the genetic operators (familiar from evolutionary algorithms) of
selection, crossover and mutation. The basic principle of the DE is that a ran-
domly generated starting population evolves to a final population concentrated
around the global optimum. From the final population an individual with the
best objective function value is picked up as the final solution when the search
procedure terminates.

Genetic Algorithms (GAs) [55] and ESs have both similarities and differ-
ences. The crossover (also known as mating or recombination) processes of both
methods are similar in that they facilitate the search process by mixing the suc-
cessful information contained in more fit members, i.e., points in the search space,
of the population to create new members. In GAs, the crossover step is the main
search step, while ESs uses it as a secondary operator, or not at all.

In GAs, the mutation operator ensures that the genetic material (different
design variable values) contained within a population between successive gen-
erations is sufficiently diverse to prevent premature convergence to some local
optimum. In ESs, mutation is the main search step, and was originally imple-
mented as a Gaussian-distributed move away from the current solution. This
technique is effective when the average mutation step length, i.e., the amount of
change in design variables, away from the current solution is comparable to the
standard deviation of the actual distribution of the design variable values in the
population. In this way, the extent of the search scales relatively to the scatter of
the population. However, according to [12], the Gaussian distribution approach
is computationally expensive to implement.

Ideally, the mutation step length is a function of the design variable (range
of variable values) in question and the state of the evolutionary process, thus al-
lowing large steps in the beginning of the process, and only small steps in the
final phase of the search procedure. DE avoids the problem of selecting a proper
mutation step length explicitly by using difference vectors formed from design
variable values in the generation by generation evolving population as a conve-
nient and appropriately scaled source of perturbations. Therefore, as the region of
the search space which is occupied by current population contracts and expands
over generations, the random step length in each dimension adapts accordingly.
This crucial idea differs from the idea of a mutation operator as used by tradi-
tional ESs in which predetermined probability distribution functions determine
vector perturbations.

As the execution of the DE algorithm starts, the initial population P of DE
is formed and consists of NP individuals (vectors), each with n components. NP
does not change during the optimization process. The initial population of vec-
tors (of real coded design variables) is chosen randomly and should cover the en-
tire search space to encompass sufficient diversity. If some already known good
design is available, the initial population might be generated by disturbing its
coordinates by adding normally distributed random deviations to them.

After the initialization phase, where the first parent population is created,
the main loop of the DE algorithm is started with its two basic tasks: point gen-
eration and survivor selection mechanisms. Point generation mechanism encom-

24

passes two distinctive operators, mutation and crossover. In the mutation phase
DE generates the same number of mutated i.e., perturbed vectors as there are
members in the parent (current) population. These mutated vectors are later used
in the crossover phase as mates for each member in the parent population. The
mutation process begins by choosing three distinct vectors, x,,, x;,, and x;,, ran-
domly from the parent population, each with a uniform selection probability. The
first selected vector forms the base value for the mutated vector. The other two
vectors are paired to create a difference vector, whose components represent a
random mutation step length for each dimension. The difference vector is multi-
plied by a mutation scale factor F, and a mutated point v is created as

V =Xp +F - (Xp; — Xpp). (2)

The whole mutation process is repeated in each DE iteration NP times so that a
new mate for each member in the parent population is created.

The rationale of the mutation process above is that the length of the muta-
tion step in each dimension will evolve proportionally over generations, taking
small steps when the variation in the values of a given design variable within a
population is small, and large steps when that variation is large.

In the crossover phase (parameter mixing), the mutated point v is recom-
bined with another predetermined vector from the parent population, the target
(i.e., the parent) vector x, to yield a so-called trial vector. In DE, each member
of the parent population serves as a target vector one after another. Thus, each
parent is allowed to undergo recombination exactly once per iteration of DE by
mating with a mutated vector. The crossover process in DE thus creates a child
population of the same size as the parent population.

In recombination, the crossover constant, CR, is used to control the rate at
which trial vector components are taken from the target vector or the mutated
vector. If rand(0,1) < CR, the component is taken from the mutated vector,
otherwise from the target vector. If CR =1, then the trial vector is identical to the
mutated vector.

In the survivor selection phase, each vector in the child population is evalu-
ated for fitness (measured as the objective function value), on a competitive basis,
against the fitness of its parent vector. The one with a better fitness of the two sur-
vives into the next generation. Thus, the trial vector replaces the target vector in
the following generation if the trial vector yields a better objective function value
than the target vector. The primary benefit of this scheme is that it resists loss of
diversity by forbidding both the parent vector and its respective child vector to
survive. The parent and the child vectors typically have some identical variable
values, and if they both survive, the population may be driven to a homogenous
state, where the diversity of individuals will be low and, thus, the DE will be
unable to continue the search.

After the selection phase, the new population becomes a new parent popu-
lation and the evolutionary process with mutation, crossover and selection con-
tinues until some termination criterion is valid, e.g,, the best objective function
value in the population converges to some specified value (e.g., to satisfactory

25

level), the predetermined budget for generations or function evaluations is ex-
hausted, or the difference between the population’s worst and best objective func-
tion values falls below some predetermined limit.

The behavior of the DE can be altered by using different values for parame-
ters F and CR. As summarized in [110], the role of CR is to provide the means to
exploit decomposability of the problem, if it exists, and to provide extra diversity
to the pool of possible trial vectors, especially near CR = 1. In the general case of
nondecomposable (parameter dependent functions), CR should be close to 1 so
that the performance losses associated with using a low mutation rate (elements
from mutated vector are utilized more) are minimized. When CR = 1, the DE
performs rotationally invariant search, i.e., it does not generate more trial vectors
in the direction of coordinate axes.

The parameter F is used to scale the mutation step length. In [110] it is
stated that in DE the selection operator tends to reduce the diversity of a popu-
lation, whereas mutation operator increases it. As a consequence, when F gets
smaller, the convergence speeds up, but also the risk of premature convergence is
increased, and eventually the population can converge even if the selection pres-
sure is absent if F is too small. For this reason, it is crucial that F is of sufficient
magnitude to counteract this selection pressure.

Usual parameter values are CR = 0.9 and F = 0.8, as given in [127]. Any-
how, it may require some serious parameter tuning to achieve the best perfor-
mance for some certain problem. See [110] and references therein for details.

2.1.2 Bayesian algorithms

The approach of using Bayesian methods in global optimization aims at pro-
ducing algorithms that despite having a rather poor efficiency in the worst case
analysis can be used to solve average case problems efficiently [98]. Bayesian
methods are based on a meta-modelling scheme, where the computationally ex-
pensive high fidelity objective function is replaced with a lower fidelity, and less
expensive surrogate model (a.k.a meta model), and this model is used with the
optimization algorithm instead of the original objective function. The surrogate
model may be implemented for example by kriging [29], artificial neural net-
works (ANN) [59], radial basis function networks (RBFN) [19], support vector
machines (SVM) [27, 135] etc. The surrogate is created by sampling the initial
set of points within the search space, and after the initial sampling, a stochastic
model of the objective function based on all sampled points is computed.

The simplest meta-modelling schemes utilize merely a static surrogate [8,
68], which is build once in the beginning of the optimization process, and no fur-
ther updates are made. The selected optimization algorithm then evaluates val-
ues of the surrogate instead of the original objective function until the stopping
condition is met. The use of a static surrogate, which may not describe the be-
havior of the original objective function very accurately, may obviously and very
easily lead the algorithm to converge to a some false optimum, i.e., optimum of
the surrogate, which is not the optimum of the original objective function.

26

A more realistic approach is to update the surrogate during the process,
which leads to an improved accuracy of the surrogate, and thus the algorithm
should avoid converging to a false optimum. Several algorithms with some sur-
rogate update scheme have been proposed, to mention a few, assisting GA with
ANN [20], GA with kriging [111], GA with RBEN [51, 100], and ES with krig-
ing [40, 41]. It is also possible to use an ensemble of different surrogate schemes
in unison, as in [85]. With a surrogate updating approach it is not a trivial task
to decide when and how should the surrogate be updated so that the optimiza-
tion algorithm would converge correctly with as few expensive objective function
evaluations as possible. These issues are referred to as model management or in the
context of evolutionary algorithms as evolution control, and they are discussed for
example in [37], [69] and [112]. For a more profound discussion about the meta-
model assisted evolutionary algorithms, the reader is referred to [68] and [50].
Useful information about meta-modelling can be found also in [76], although
emphasis is on a multiobjective approach.

The highest level of sophistication within a meta-modelling scheme is
achieved with utility function based methods, i.e., with methods that use the meta-
model and uncertainty of it to determine at what location should the next ex-
pensive objective function evaluation be made in order to improve the surrogate
model, and thus exploit all the information available to the full extent. The lo-
cation is determined by maximizing a utility function (known also as a figure of
merit) reflecting the rewards of taking more samples in a particular region. The
purpose of the utility function is to balance local and global search by finding
a trade-off between taking samples in known, promising regions versus taking
samples in under-explored regions or regions where the variation in function val-
ues and uncertainty of the objective function value prediction are both high.

It may be worth to mention that computational overhead (required to run the
algorithm itself) of algorithms employing utility functions may be high as the
number of evaluated points increases. This is due to fact that maximizing the
utility function is itself a global optimization problem, as is the fitting of the sur-
rogate model. So, in order to select a location for the next sample, two global
optimization problems must be solved, and this must be iterated as many times
as samples are taken. Due to the large overhead in fitting a sampled dataset to the
surrogate model and in selection of sample points, these methods are best suited
for problems where the original objective function is very expensive to evaluate.

Probably the two most well known algorithms employing utility functions
are the Efficient Global Optimization (EGO) [70] and a radial basis function method
for global optimization [57], which both bear some resemblance to a method intro-
duced more than a decade earlier, namely the P-algorithm [148]. Roots of meth-
ods of this type can be traced back as far as to 1964, to the work of H. Kushner
[82]. Both algorithms have been shown to perform efficiently in terms of objective
function evaluations with known test problems [57].

As we have utilized ideas borrowed from Bayesian algorithms in our work
in [PV], it is in order to introduce the often referred and efficient EGO [70] algo-
rithm in more detail.

27
Efficient Global Optimization, EGO

The Efficient Global Optimization (EGO) algorithm to solve optimization prob-
lems involving expensive black-box functions was first introduced and described
in [70]. In EGO, the original objective function is sampled only in those points
where the surrogate model with the utility function suggests that the value of the
objective function could improve the most, and the surrogate model is updated
accordingly. In this way, the number of expensive original objective function calls
should be reduced, because only after a modest number of evaluations the surro-
gate model should describe the behavior of the original objective function quite
accurately in the neighborhood of the global optimum. However, it is worth men-
tioning that fitting the surrogate model to the existing data may be very time con-
suming as fitting the model itself is an optimization task, as already discussed. In
some cases, this computational load may result in prohibitive costs, as was the
case in the comparison made in [1].

TO form a surrogate, EGO makes use of kriging [29], which is originally a
geostatistical technique to interpolate the value of some quantity at unobserved
locations based on values of nearby observations. In EGO, kriging is used to
model the objective function surface based on the points sampled during the op-
timization procedure. More specifically, EGO exploits a version of the design and
analysis of a computer experiments (DACE) model [121], based on Gaussian pro-
cesses. The DACE model has such a favorable property that it estimates its own
uncertainty in predicting objective function values. Knowledge of the possible er-
ror in the surrogate model is a useful property while trying to locate an optimum
on the objective function surface, and EGO makes use of this property explicitly,
as described in the following paragraphs.

In a box-constrained search space the EGO algorithm begins by first gen-
erating a number of sampling points (approximately ten times the number of
design variables [70]) within the search space. Locations for these points are de-
termined using a Latin hypercube (i.e., space filling) [142] design. A square grid
containing sample point positions is a Latin square if and only if, there is only
one sample point in each row and each column of the grid. In a two dimensional
case (i.e., n = 2) it means that there cannot be two sample points with the same x
or y coordinate values. A Latin hypercube is a generalization of the Latin square
concept to an arbitrary number of dimensions i.e., design variables. By this ar-
rangement, sample points are distributed at different locations along each axis
instead of lumping them together, and as a result of that a maximum amount of
information about the objective function surface is extracted using a minimum
number of sample points.

In the next step, a DACE model is fitted to the points obtained by the Latin
hypercube sampling. In this phase, some optimization algorithm is needed to fit
the DACE model parameters to the existing data so that the model follows the
given data as accurately as possible.

To generate a new sample point to evaluate, EGO optimizes the figure of
merit (known also as an infill sampling criterion, ISC) to decide what point in the

28

search space should be included in the sampled points next. In this phase the
EGO algorithm searches (and this is another optimization task within EGO itself
in addition to the surrogate model fitting task) for the point that maximizes what
is called in [70] "the expected improvement".

The idea of the expected improvement lies in the fact that the surrogate
model provides confidence intervals on the predicted function values at unsam-
pled points. Thus, different amounts of possible improvement are associated
with different unexplored regions in the search space. The use of the expected
improvement effectively means that EGO weighs up both the predicted objective
function values and the error in this prediction in order to find the point that has
the greatest potential to improve so far the best original objective function value.
EGO does not just choose the solution that the model predicts would minimize
the objective function value. Rather, it automatically balances exploitation and
exploration (global and local search). A solution which has a good predicted ob-
jective function value and low error may not be as desirable as a solution whose
predicted objective function value is worse but whose error of prediction is also
higher. This is due to the fact that the worse solution with a higher prediction
error may actually produce better values when evaluated with the original objec-
tive function.

Every time a new sampling point has been chosen and evaluated using the
original expensive objective function (e.g., simulator run) the DACE model is
updated with this new information and again the next sampling point is chosen
from the location that maximizes the expected improvement using the updated
DACE model, and this loop is iterated until some stopping criterion is met. The
steps of the EGO algorithm as given in [123] are the following

1. Use a space-filling design of experiments to obtain an initial sample of the
true expensive objective function.

2. Fit a surrogate model (kriging, DACE) to the data of points sampled so far.

3. Numerically maximize an infill sampling criterion (ISC) known as the ex-
pected improvement function to determine where to sample the next point.

4. Evaluate the value of the original expensive objective function at the given
sample point and update the surrogate model.

5. Stop if the expected improvement function has become sufficiently small.
Otherwise return to 2.

For a thorough discussion of the EGO algorithm, see [70] and [123].
2.1.3 Performance assessment

In a glimpse, performance assessment or comparison of different global optimiza-
tion algorithms may seem a trivial task. With a more careful examination we may
identify several issues that should be addressed. As stated in [30], performance

29

measures have tended to cluster in three areas: solution quality, computational
effort required, and robustness of the algorithm.

Solution quality can be measured as the difference between the known op-
timal value and value reached by the algorithm before some stopping condition
is met. Obviously, this approach is suitable only for the test problems where the
global optimum is known in advance.

Computational effort required to solve the optimization problem arises usu-
ally from two sources: the computational cost of running the optimization algo-
rithm itself (computational overhead) and the computational cost of evaluating
the objective and/or constraint functions of the problem. Usually, with simu-
lation based optimization problems, the computational effort due to running the
algorithm is negligible compared to that of evaluating the objective functions. For
this reason, it is often reasonable to measure the computational effort required to
solve a certain problem (i.e., efficiency of the algorithm) merely by the number
of objective function evaluations required. A common approach in performance
testing is to choose some predefined target level of objective function value, and
then record the number of objective function evaluations required to reach the
target level. This approach can also be reversed. In this case the algorithm has
some predefined budget of objective function evaluations to use, and after the
budget has been exhausted, the best objective function value achieved so far is
recorded.

Robustness may be defined as the ability of an algorithm to perform well
over a wide range of test problems [30], and it is usually captured through mea-
sures of variability in solution quality, computational effort required etc. As al-
gorithms perform differently with different problems, test functions possessing
qualities that cause different difficulties to optimization algorithms should be se-
lected to complement each other, to get as wide a perspective as possible to the
performance of the algorithms. If the algorithm performs well over a wide vari-
ety of test problems, it is more likely that it will perform well also with some real
life problems. Further, varying the number of design variables should be used in
order to see how well the algorithmscales up with growing problem dimensions.

Another perspective to robustness is reliability. As global optimization al-
gorithms contain very often stochastic elements, the result of the optimization
process varies from run to run, and it is necessary to repeat each run several
times to reach some level of statistical credibility in estimating the reliability of
the algorithm. The number of required runs to achieve statistical reliability could
probably be mathematically determined, but in the literature the tests are often
repeated between 20 and 200 times, and the results are averaged. Sometimes an
optimization algorithm may completely miss the global optimum and converge
to some local optimum instead, or otherwise stagnate. These occurrences can also
be recorded as a part of a reliability assessment.

After the performance testing has been carried out with a sufficient num-
ber of test functions, with a variation in design variable dimensions and with
enough repetitions of a single setup (function, dimension, algorithm parameters)
it is time to interpret the results. This might prove difficult: for example, algo-

30

rithm A may outperform algorithm B with some test functions, but with other
functions B may outperform A. Further, with the same test function, algorithm
A may converge more rapidly in the beginning of the process, but after a certain
number of objective function evaluations algorithm B may catch up with it, and
eventually bypass it. Which algorithm performed better in this case? If only a
limited number of objective function evaluations were to be used, A would be
better, but without limitations B would be better. In this sense, the results should
be interpreted with regard to the purpose of use, and the optimization algorithm
itself should also be selected with regard to the problem at hand. These issues are
discussed in Section 3.1.

In the field of global optimization there exists no single test suite of test
problems. Instead, there are different sources [38, 46, 47, 60] containing a variety
of test problems. In [132], an attempt to classify test problems based on their dif-
ficulty is given. For a more thorough discussion about performance assessment,
the reader is referred to [9, 15, 30, 61].

2.2 Multiobjective optimization

Multiobjective optimization is needed whenever there are several conflicting ob-
jective functions to be optimized simultaneously. A general form of a multiobjec-
tive minimization problem is

minimize {f1(x), fa(x),..., fr(x)} (3)

subjectto x €S

involving k (> 2) conflicting objective functions f; : R* — R, i = 1,.., k. Here,
the design variable vector x € R" and the search space are defined as in (1). An
objective vector z = £(x) = (f1(x), f2(x), ..., fc(x))T in the objective space R¥ consists
of k objective function values calculated in the design (variable) vector x.

In multiobjective optimization, we want to optimize the values of several
objectives at the same time, but usually there exists no single point within the
search space where all the objectives reach their individual optima. Instead, we
have a set of solutions that we can regard as optimal. This set of so-called Pareto
optimal solutions is called a Pareto optimal set 2. A solution belongs to the Pareto
optimal set if none of the objective function values can be improved without im-
pairing the value of, at least, one other objective. This behavior is referred to as
tradeoff between objectives, and it indicates that we are dealing with compromise
solutions. In other words, if we want to gain something, we must give away
something else. To be more specific, in (3), a design variable vector x' € S and the
corresponding objective vector z are called Pareto optimal if there does not exist
another x C S such that fj(x) < fi(x) foralli = 1,...,k and f;(x) < f;(x’) for

2

In this thesis we assume that all interesting characteristics of the problem at hand are con-
tained in the objective functions. In this case, we may restrict our consideration purely to
the solutions in the Pareto optimal set.

31

at least one index j. The previous definition applies for global Pareto optimality.
Also local Pareto optimality may be defined. A decision vector x* € S is locally
Pareto optimal if there exists a neighborhood N(x*) of x* such that x* is Pareto
optimal in N(x*) N'S. The objective vector f(x*) is locally Pareto optimal if the
corresponding point x* is locally Pareto optimal. Corresponding to the case of
single objective optimization, the multiobjective optimization problem is convex
if all the objective functions and the feasible region are convex [90].

The concept of dominance is related to Pareto optimality. In (3), an objective
vector z! is said to dominate another vector z2 if z} < 22 foralli = 1,...,k, and
the inequality is strict for at least one index j. Furthermore, an objective vector
z! is non-dominated if there does not exist another objective vector z? such that
z? dominates z!. Obviously, Pareto optimal points are non-dominated points,
whereas non-dominated points are not necessarily Pareto optimal.

As the solutions in the Pareto optimal set cannot be further ordered without
some additional preference information, it is usually up to the decision maker (also
known as the designer) to provide such information. With this information, it is
possible to select the most preferred solution, to be called the final solution, for the
problem in question.

In several multiobjective optimization methods, the original multiobjective
optimization problem is converted into a single objective optimization problem
by using a scalarization method involving a scalarizing function [90] (see Section
2.2.1). The resulting subproblem is then solved using an appropriate single objec-
tive solver. It is important to emphasize that depending on whether the solver is
local or global, the resulting solutions are either locally or globally Pareto opti-
mal. With this respect, in addition to challenges posed by several objectives, also
the same difficulties apply as with global optimization in general, as discussed in
Section 2.1.

For many scalarization methods, some information about the ranges of so-
lutions in the Pareto optimal set is needed. The lower bounds are defined by an
ideal objective vector z*, whose components are obtained by minimizing each of the
objective functions individually in the search space. With conflicting objectives,
the ideal objective vector is not reachable, but it can be considered as a reference
point, something to go for, and it dominates any Pareto optimal solution. A vec-
tor strictly better than z* is called a utopian objective vector z**, and it is used for
computational reasons, for example to avoid division by zero.

The upper bounds of the Pareto optimal set are much more difficult to ob-
tain. A vector in the objective space containing the upper bounds is called a nadir
objective vector 2", and its components can be estimated from a payoff table,
which is formed by using information obtained when calculating the ideal objec-
tive vector. The row i of the payoff table displays the values of all the objective
functions calculated at the point where the objective function f; obtains its min-
imal value. Hence, the components of the ideal objective vector are at the main
diagonal of the table. The maximal value of the column i in the payoff table can
be selected as an estimate of the upper bound of the objective function f;. This
estimated nadir objective vector may not be very good in all cases. For further

32
2

B nadir

ideal

Z2

FIGURE 2 Illustration of Pareto optimal set (bold lines), ideal and nadir objective vec-
tors in case of two objectives.

details, see [90] and the references therein.

For a survey of multiobjective optimization methods for engineering prob-
lems, see, for example, [87]. For more general discussion about the multiobjective
optimization, see monographs [22, 66, 67, 90, 126].

To illustrate the key concepts of multiobjective optimization, in Figure 2
there are two objectives z; and z; and the feasible objective region Z (the set of
all possible solutions of an optimization problem in the objective function space).
The ideal objective vector is represented by a black point, the grey point repre-
sents the nadir objective vector, and the bold line is the Pareto optimal set.

The aim of multiobjective optimization can be regarded to be supporting a
decision maker in finding the most preferred solution to be implemented among
the Pareto optimal ones [77]. In this process, the preference information specified
by the decision maker is required. Methods can be classified according to the role
of the decision maker in the solution process [66, 90]. The classification given in
[90] is as follows:

1. Methods where no articulation of preference information is used (no-pref-
erence methods).

2. Methods where a posleriori articulalion of preference information is used
(a posteriori methods).

3. Methods where a priori articulation of preference information is used (a
priori methods).

4. Methods where progressive articulation of preference information is used
(interactive methods).

33

In no-preference methods, the opinions of the decision maker are not taken into
consideration. The decision maker may either accept or reject the solution. It
seems reasonable to assume that the solution best satisfying the decision maker
cannot be found using methods in this category. This is why these methods are
suitable only for situations where no decision maker is available or the decision
maker does not have any special expectations for the solution, and he/she is sat-
isfied simply with some Pareto optimal solution.

In a posteriori methods (see, e.g., [120]), the Pareto optimal set or at least a
representation of it is generated and presented to the decision maker, who then
selects a solution that pleases him /her most. Methods of this type are also called
approximation methods. One widely used but not a very good representative of
a posteriori methods is the weighting method, see e.g., [48], where the idea is to
associate an evenly distributed set of weighting vectors to objectives and mini-
mize each of these weighted sums. Among the many problems of the weighting
method let us mention that it does not work with nonconvex problems, and an
evenly distributed set of weights does not necessarily produce evenly distributed
set of Pareto optimal solutions [31]. Further, the weighting method requires high
number of objective function evaluations, as for each weighting vector one op-
timization problem must be solved. It is worth mentioning that the weighting
method can be used also as an a priori method if the decision maker specifies a
weighting vector representing his/her preference information.

Most evolutionary multiobjective optimization (EMO) algorithms (e.g., [34,
75,153]) used especially in the field of engineering [25, 32] also fall by this classifi-
cation in the category of a posteriori methods; the algorithm produces a represen-
tative set of solutions aiming at approximating the Pareto optimal set (although
solutions can only be guaranteed to be non-dominated ones), and the decision
maker can afterwards choose the final solution. With EMO methods, problems
may occur as generating the representation of a Pareto optimal set may prove
to be computationally expensive, and visualization of the resulting representa-
tion is innate only in the case of two objective functions, which may hinder the
selection of the final solution. With three objective functions, visualizations can
be produced, for example, as projections to two dimensions, but with four or
more objectives intuitive and easily understandable visualization is practically
impossible, and thus it gets difficult to represent the information to the decision
maker. Strangely, the latter aspect of visualization and decision making has been
largely neglected by the EMO community, and a problem is often considered
solved when the approximation of the Pareto optimal set is produced. In this the-
sis we have touched the issue of computational efficiency in [PIV], and problems
of selecting the final solution in [PIII].

In a priori methods, the decision maker must specify his/her preferences
before the solution process. The difficulty here is that the decision maker does
not necessarily know beforehand what kinds of solutions it is possible to at-
tain or how realistic his/her expectations are. Some known a priori methods are

34

value function method [73] (where the decision maker should be able to give an
accurate and explicit mathematical form for the value function that represents
his/her preferences globally), lexicographic ordering [44] (where the decision
maker should arrange the objectives according to their absolute importance) and
goal programming [23] (where the decision maker specifies goals or optimistic
aspiration levels for the objective functions and deviations from these levels are
minimized).

In interactive methods, a solution pattern is formed and repeated iteratively,
overcoming many weak points of the three classes above. Only part of the Pareto
optimal set has to be generated and evaluated, and based on this data the deci-
sion maker can further adjust his/her preferences as the solution process contin-
ues. In contrast to some other classes, the decision maker does not need to have
knowledge about one’s global preference structure. Due to the interactive solu-
tion process he/she will learn about the nature of the problem and will probably
have more confidence in the final solution. Further, the amount of information
that the decision maker should process at a time remains at a reasonable level,
thus keeping the cognitive load acceptable.

From the perspective of simulation based optimization, interactive methods
and EMO approaches from a posteriori class seem most appealing. With interac-
tive methods the designer should be able to solve the problem at hand with a
reasonable number of objective function evaluations, because in principle only
those regions of the Pareto optimal set are explored that are of interest. Yet, the
interactive nature of the process is largely lost with computationally expensive
problems, because the decision maker may have to wait for a possibly long pe-
riod of time after expressing his/her preference information for a new (or a set
of new) Pareto optimal solutions to be generated. During the waiting period,
the decision maker may forget what he/she was aiming at, or get otherwise con-
fused. On the other hand, with EMO approaches the decision maker is involved
in the solution process only after the most time consuming off-line computation
is finished, and thus he/she can afterwards explore the Pareto optimal set rapidly
once its representation has been generated. This approach seems attractive, if a
high number of off-line objective function evaluations needed (feature often as-
sociated with EMO approaches) is tolerable. Further, the EMO field is an active
research area, and approaches of this type are widely utilized because they do
not pose special restrictions for the objective functions to be considered. In this
thesis we have proposed an approach to overcome computational burden with
the interactive NIMBUS approach in [PII]. In [PIV] we have addressed the issue
of computational efficiency by proposing a new EMO algorithm, and in [PIII] we
proposed a clustering based approach to aid the decision maker in the selection
of the final solution.

In the following sections we discuss, in more detail, different scalarization
functions, the interactive NIMBUS method employing them, and some evolu-
tionary multiobjective optimization algorithms which are often used to solve en-
gineering problems.

35

2.2.1 Scalarization methods

As mentioned earlier, in the case of an optimization problem with multiple objec-
tives, one common approach is to scalarize it, i.e., convert it into a single objective
optimization problem. For an ideal scalarization method there are two require-
ments: it must be able to find any Pareto optimal solution, and every solution it
gives must be Pareto optimal [90, p 62]. Due to the nature of multiobjective opti-
mization, some sort of a preference information over mathematically equivalued
Pareto optimal solutions is needed. Typically, we assume that we have a human
decision maker available who can give the preference information, and we can
then define a Pareto optimal solution that satisfies the decision maker most as a
final solution. For example, driving on a highway in a hurry and with little fuel
in the tank, the driver has to balance between fuel consumed and time spent as
driving faster consumes more fuel. One driver/decision maker may prefer the
certainty of arriving to the destination to being there on time. Another driver, un-
der the same circumstances, might be anxious to get to the destination on time,
accepting the risk of not getting there at all. This example clarifies how the final
solution depends on the decision maker.

In this subsection we consider some scalarization functions and methods.
The first of the functions (neutral compromise solution) belongs to the class where
no articulation of preference information is used. The next three functions (achieve-
ment scalarizing function, GUESS and STOM) are taken from interactive meth-
ods where a priori articulation of preference information is given in a recurrent
fashion, and they are based on a decision maker specified reference point, i.e., a
vector consisting of aspiration levels (function values that are satisfactory or desir-
able) for each objective function. A reference point is a natural and intuitive way
to express preference information, because it directly utilizes objective function
values, which have certain and clear meaning to the decision maker. Finally we
discuss the interactive NIMBUS method, which is based on the decision maker’s
continuous involvement in the search process via classification of objective func-
tions and utilizes the previous scalarization functions.

These methods have been selected to give a short overview of the differ-
ent methods available, and the three reference point based functions are used
because different scalarization functions tend to produce slightly different solu-
tions (see Figure 3). All these functions were selected for consideration, because
they are used in the synchronous version of the NIMBUS method [97], which
we utilized in [PI] and [PII]. Their inclusion in NIMBUS is based on the results of
[96], where 15 scalarizing functions were numerically and theoretically compared
with regard to relation between the preference information provided and the re-
sults obtained. Further, in [PIII] we used the achievement scalarizing function.

36
Neutral compromise solution

The first of our scalarization functions belongs to the class of methods with no-
preference information. It produces a neutral compromise solution (NCS) [145],
which is Pareto optimal, by solving the problem

(X) — Zi,mia fi (%) — Zimia
minimize 1252k [flzna . ZI*’T E lz”” : ’*':’ , (4)
i 1 i=1

subject tox € S,

where foreachi =1, ...,k
- z* -zl

Zimid = ~—3—
fi(x) = value of i:th objective function at x

2! = approximated nadir objective vector component

z;* = approximated utopian objective vector component

p = some small positive value.

The latter part of (4) is a so-called augmentation term, and it is incorporated
to guarantee Pareto optimality of the solutions, and p must be strictly positive.
A solution gained by this method should be located somewhere in the middle of
the Pareto optimal set because the reference point Z; ;4 is located precisely in the
middle of the approximated ranges between the upper and lower bounds, i.e.,
the nadir and ideal objective values. Thus, the solution of (4) is a neutral com-
promise between conflicting objectives, as its name suggests. It is stated in [145]
that neutral solutions like the one defined above might serve as a starting point
for interaction with the decision maker. Starting with this solution the decision
maker may iteratively balance between different objectives, and emphasize the
ones he/she wishes.

Achievement scalarizing function

One approach relying on designer supplied reference point information is the
achievement scalarizing function (ACH) [144, 145]. It finds the Pareto optimal
solution closest to the reference point z, and different Pareto optimal solutions
can be obtained by adjusting the reference point accordingly. The problem to be
solved is similar to (4) (only the reference point is different), and it is formulated
in [97] as:

nad __
i

minimize ;1% [f’ b9 **] +PZ nad 2 (5)

subject to x € S.

37

STOM

Our second scalarization function exploiting the reference point information comes
from the interactive satisficing trade-off method (STOM) [101], and here we present
the formulation given in [97]

minimize ;1% ; [fl—_(x—)—_z—**] 2 f’ (6)

.....]
Z; ;

subject to x € S.

GUESS

The third scalarization function which uses reference point is related to the one
used originally in the GUESS method [18] and slightly modified in [97]. An aug-
mentation term that was not used in the original formulation is included, and we
assume that z; < z{’”d foralli=1,..,k

x Zrmd
minimize ;21° [ﬁT(na)TT} Z md 7)
1

subject tox € S.

Solutions produced by all the previous scalarization functions are Pareto optimal
[97].

To illustrate differences between the ACH, STOM, and GUESS scalariza-
tions, in Figure 3 we show graphically how different Pareto optimal solutions are
produced when the same reference point is projected on to the Pareto optimal set.
With ACH, the Pareto optimal point is found which is closest to the line spanned
from the reference point to the direction between ideal and nadir points. With
STOM, the Pareto optimal point closest to the line directed between the ideal and
the reference point is found, and with GUESS the direction of line is spanned
between the reference and the nadir points.

NIMBUS method

NIMBUS (Nondifferentiable Interactive Multiobjective BUndle-based optimiza-
tion System) [90, 93, 94, 95, 97] is an interactive multiobjective optimization method
designed especially for efficient handling of nonlinear functions. For that reason
it is capable of solving complicated real-world problems.

In the NIMBUS method, the interaction phase has been aimed to be compar-
atively simple and easy to understand for the decision maker. At each iteration
the NIMBUS method offers flexible ways to direct the search according to the de-
signer’s wishes by means of classification including aspiration levels and upper

38

nadir

ideal

Zy

FIGURE 3 Different Pareto optimal solutions produced using ACH, STOM, and GUESS
scalarizations and the same reference point.

bounds. The use of classification with aspiration levels avoids using other diffi-
cult and artificial concepts for preference information extraction. As the decision
maker expresses his/her preferences as desirable objective function values, the
preference information has a concrete and readily understandable meaning.

The classification of the objective functions means that the decision maker
indicates what kinds of improvements are desirable and what kinds of impair-
ments are tolerable. The basic idea in classification is that the decision maker
contemplates the current Pareto optimal objective function values f;(x¢) at each
iteration of the NIMBUS method and assigns each of the objective functions f;
into one of the following five classes depending on his/her preferences:

1. I'™P, function value should be improved as much as possible.

2. 17, function value should be improved to a certain aspiration level.
3. I*", function value is satisfactory at the moment.

4. 1"*"d function value is allowed to impair to a certain upper bound.

5. Ife¢, function value is temporarily allowed to change freely.

Due to the concept of Pareto optimality, a classification is feasible only if at least
one of the objective functions is bound o improve and al least one is allowed to
impair from their current levels.

After the decision maker has classified the objective functions using the
above classes, and specified aspiration levels Z;, j € 1”7 and upper bounds ¢;,

39

i € I (if required), the original multiobjective optimization problem is trans-
formed into a single objective optimization subproblem, which is then solved.
The resulting Pareto optimal solution reflects the classification as well as possi-
ble. Then a new iteration of method execution starts. In the synchronous version
of the NIMBUS method [97], several scalarizing functions leading to different
subproblems may be utilized using the same preference information. In the syn-
chronous version the decision maker must define how many (one to four) differ-
ent solutions (i.e., scalarizations) he/she wishes to use at each step. The standard
NIMBUS scalarization (STD) given in [97] produces Pareto optimal solutions and
is formulated as

max [fi (x) — 2} f; -2 & fi(x)
inimize i€l'™ + ———— 8
LTI) I“SPL nad ;md Z}‘*J pﬁzlz?ad_zf* ®)
subject to f;(x) < fi(x¢) foralli € I'™P U [P U [*,
fi(x) < g;forallie [bound,

x € S.

Other scalarization functions used in NIMBUS, namely ACH, STOM and
GUESS are given in (5), (6) and (7), respectively. Use of several scalarizations
synchronously typically results with a set of slightly different Pareto optimal so-
lutions from which the decision maker can choose the best as a starting point for
a new classification. The decision maker can also generate an arbitrary number
of intermediate solutions between any two Pareto optimal solutions found so far,
and use them as a base for a new classification, if desired.

In Figure 4 we present an example screenshot of the IND-NIMBUS software
[92, 103] (Which implements the NIMBUS method) tackling a problem with three
objective functions to be minimized. On the left side of the screen, the Pareto
optimal solution to be classified is displayed in the form of bars. The end points of
the bars represent the ranges of each objective function in a set of Pareto optimal
solutions. The length of the bar represents the current value of the corresponding
objective function (the less coloured the area is, the better the value).

Classification can be adjusted either by entering the desirable objective func-
tion values to fields f1, f2 and f3, or by clicking the bar with the mouse to in-
dicate a desirable value. Clicking the current value means that it is considered
satisfactory and clicking the end point on the left means that the corresponding
function should get as good values as possible. Clicking the right end point or
leaving the function unclassified means that it can change freely for a while. The
right side of the panel contains already found solutions, and any of them can be
freely chosen as a starting point for a new classification. When a solution from
the right side is selected, it is shaded on the right side, and details of it are dis-
played on the left side. On the bottom right corner there is an area labelled "Best
candidates". This is an area where the designer can drag and drop potentially
promising solutions for later inspection or to be used as a starting point for a new
classification.

40

M IND-NIMBUS _ . =101 xj
Fie Command View Display Method Help
Bl X] b= |crso x| s JacH _stom | cuess | @
Classifier ’Gemrate Alternatives | Visualization | Legend | Values | Method parameters | Messages |
i,"C!assﬂtaﬁlm Alternat
; 9 i . 9 1
| =34 ~26 “ 2 3
o .
| =1 .78
|
o .
~18 -11.3
L
$

FIGURE4 Sample screenshot of IND — NIMBUS® software.

In Figure 5 a flowchart of the NIMBUS algorithm is given to illustrate the
role and possibilities of the decision maker in the solution process. For further
details and more recent advances in the NIMBUS method, see [90] and [97].

2.2.2 Evolutionary multiobjective optimization

With scalarizing function based approaches it may be difficult for the decision
maker to express his/her preference information at the beginning of the solution
process, without prior knowledge of the problem. Although interactive treatment
may help with this regard, it is still possible that the decision maker misses some
region of the Pareto optimal set, which could be of even more interest to him /her,
than the region that has been discovered. Further, every time the preference in-
formation is adjusted, the scalarized problem must be solved once again, which
may take time if the problem is computationally costly.

In contrast to scalarization based approach, EMO algorithms strive to pro-
duce a discrete approximation of the Pareto optimal set, and atterwards the de-
cision maker can select the most preferred solution as the final solution. Usually
the goodness of the approximation set is characterized by two factors. First, the
approximation should be well distributed, i.e., it should cover the entire Pareto
optimal set with a sufficient density. Second, the approximated points should be
as close as possible to the real Pareto optimal set. With regard to the first factor, it
is to some extent open to discussion what "well distributed" means. At least two

41

Calculate the neutral compromise
solution as a starting point

DM: Classify the objective functions and specify
—=| aspiration levels and upper bounds, if necessary.
Specify the number of new solutions (subproblems)

|

Formulate the subproblems and solve them.
Present the old and the new solutions to the DM.

j—,

A Do you Yes : i
T in@ﬁ DM' Specify | |) Calcu!ate and present the

i e their number. intermediate solutions to the DM.
I]
} DM: Select the most preferred solution. \

J_

e

T
——ﬁs’ﬂ Do you want\)—»m

to contmue’?
\\‘\/x

FIGURE5 A flowchart of the NIMBUS algorithm.

schools of thought exist, the one sees that the points should be spread as evenly
as possible throughout the Pareto optimal set, whereas the other sees that more
points should be concentrated on the areas where there are significant tradeoff
changes between objectives.

To produce a good approximation set, most of the current EMO approaches
are based on the concept of dominance, added with some mechanism to maintain
a good diversity of the solutions in the objective space. With this approach, the
population is usually ranked based on dominance, and naturally non-dominated
solutions are considered better, and favored in reproduction. Further, if two so-
lutions with the same rank must be ordered (typically while selecting members
for the next generation), it is usually done using some mechanism to select the
one which is located in a less crowded region of the objective space. In addition
to the current population, also some external archive of good solutions may be
maintained and used both for dominance and diversity assessment.

Often referred algorithms in the above mentioned category are for exam-
ple Pareto Archived Evolution Strategy (PAES) [75], second version of Strength
Pareto Evolutionary Algorithm (SPEA2) [153] and Elitist Non-Dominated Sort-
ing GA (NSGA-II) [34]. Some EMO algorithms are referred to as elitist, meaning
that they maintain the best found solution during the process. Unfortunately, the
concepts of elitism and the best solution are not as straightforward in the case of
EMO as in the case of single objective optimization. In fact, at certain stage of
the process, the approximation of the Pareto optimal set no longer improves, but

42

instead the population starts to oscillate because some solution located very near
the Pareto optimal set may be replaced by some other non-dominated solution
which improves diversity but is at the same time located much farther from the
Pareto optimal set. For this reason, algorithms relying on the concept of domi-
nance and diversity preservation mechanism actually never converge [83]. This
is one fact that seems not to be widely understood in the EMO community. We
have discussed some problematic issues, such as elitism, lack of convergence, di-
versity maintenance and deterioration of population in the EMO context in [PIV]
(see also Subsection 3.2.3). In the same paper we also demonstrated occurrence
of oscillation using the ZDT1 test problem [150] and the NSGA-II algorithm.

There are also further problems with dominance based EMO approaches.
In [65] it is stated that "optimisers that use Pareto ranking based methods to sort
the population will be very effective for small numbers of objectives, but not per-
form as effectively for many-objectives when compared to optimisers based on
non-Pareto ranking methods". In the same study it was found that it is, at least
with certain problems, more effective to use many scalarized single objective op-
timization runs than the single NSGA-II run if there are more than two objectives.
The performance tests were conducted using the same amount of objective func-
tion evaluations in both approaches, effectively meaning that in the single objec-
tive case the number of evaluations was dramatically lower. Decreased perfor-
mance of the dominance based approach is due to the fact that as the number of
objectives increases, a larger portion of the population becomes non-dominated
and the selective pressure of evolutionary mechanisms falls rapidly and fails to
drive the population towards the Pareto optimal set [65, 107]. As the diversity
preservation mechanism is often used as a secondary selection operator, its im-
portance grows as the importance of dominance diminishes, and eventually most
of the selective pressure arises from the diversity preservation mechanism, and
the quality of the approximation of the Pareto optimal set remains poor.

Presumably due to the above mentioned drawbacks, some of the recent
methods have given up using the concepts of dominance and diversity preser-
vation. Probably the most promising of these rely on the concept of hypervolume
[154], the volume in a hypercube, spanned by the extent of known solutions,
that is dominated by the current population, and as such it can give information
about both closeness to the Pareto optimal set and diversity of the population at
the same time. In [45], a proof is presented that the maximization of hypervol-
ume constitutes the necessary and sufficient condition to produce the maximally
diverse set of Pareto optimal solutions for a multiobjective optimization prob-
lem. Furthermore, it possesses a desirable property to be used either as a perfor-
mance metric or to guide the optimization process, as stated in [149]: "whenever
one approximation completely dominates another approximation, the hypervol-
ume of the former will be greater than the hypervolume of the latter." Two ex-
amples of algorithms employing the hypervolume indicator to guide the search
are Indicator-Based Evolutionary Algorithm (IBEA) [152] and S Metric Selection
Evolutionary Multiobjective Optimization Algorithm (SMS-EMOA) [39]. Both of
these are reported to outperform established algorithms, such as NSGA-II and

43

SPEA2 in respective papers.

One drawback with hypervolume indicator based algorithms may be the
high computational cost due to the computation of the indicator value. For this
reason, with inexpensive objective function evaluations, methods of this type are
bestsuited for problems with a small number of objectives and small populations.
On the contrary, if objective function evaluations are expensive, cost of comput-
ing the indicator value may be considered negligible compared to the enhanced
efficiency of the algorithm.

Performance assessment

With EMO algorithms that produce a set of solutions approximating the Pareto
optimal set, evaluating the performance of a given algorithm is far from trivial.
The same difficulties apply as in the case of a single objective optimization, as dis-
cussed in Section 2.1.3. Further, as mentioned earlier, to characterize the goodness
of the approximation or solution set, all solutions should be as close as possible
to the real Pareto optimal set and the solutions should cover the Pareto optimal
set as well as possible, meaning that the distribution of the solutions along the set
should be even (no excess gaps), and the extent of solutions should be as high as
possible. We refer to these two properties as closeness and diversity, respectively.
It is obvious that a good diversity is easier to achieve with a higher number of
non-dominated solutions.

Different indicators have been proposed for both closeness (e.g., genera-
tional distance) and diversity (e.g., spacing, spread and maximum spread) [32].
If the results of several algorithms are compared using two different indicators,
this may easily lead to a situation where value of one indicator is better with some
algorithm, and value of another is worse. In this case, there is no way of judging
which one of them is actually better.

Recently, a hypervolume indicator [154] discussed earlier has gained popu-
larity as a performance measure. It is useful, as it condenses information about
both closeness and diversity into a single value, which can be readily utilized to
compare the quality of two or more approximated Pareto optimal sets. In [143]
it is claimed that the fastest known algorithm for calculating the hypervolume
exactly is the HSO (Hypervolume by Slicing Objectives) algorithm, presented
in the same paper. One way to estimate the hypervolume is to use the Monte
Carlo based hypervolume computation. In this case the hypercube spanned by
the nadir and ideal points is filled with some high number of random points,
and the number of those which are dominated by the current approximation is
computed. We used implementation [21] of this approach in [PIV].

Another metric giving information about closeness and diversity in a sin-
gle value is inverted generational distance, IGD [138]. A normal generational
distance GD [136] measures how far the solutions of population P are on the av-
erage from the nearest real Pareto optimal solutions in set P*. To calculate GD,
for every solution in P, the closest point in P is located. As to IGD, for every

44

solution in Px, the closest point in P is located. As a result, if a part of the Pareto
optimal set is missing or very poorly approximated by P, the value of IGD grows.
Obviously, to reliably compute either GD or IGD, a sufficiently dense set Px of
real Pareto optimal points is needed. Thus, these metrics are usable only with
(test) problems where the exact Pareto optimal set is known. For a more thor-
ough discussion about different performance metrics, we refer to [32, 151, 156].

In the EMO field there exist some test problem suites for performance as-
sessment. Probably the two most often referred are the Zitzler-Deb-Thiele (ZDT)
problems [150] containing six bi-objective test problems with varying number of
design variables, and the Deb-Thiele-Laumanns-Zitzler (DTLZ) [36] test prob-
lems which are scalable to any number of objectives. Both of these suites contain
synthetic problems, whose exact solutions are known. In addition to ZDT and
DTLZ test suites, also the Walking Fish Group (WFG) test suite has been pro-
posed in [63, 64] to increase variety and difficulty level of previous suites.

In [PIV] we solved few test problems from ZDT and DTLZ test suites, and
we used the generational distance GD, the inverted generational distance IGD
and the Monte Carlo based hypervolume HV [21] as performance measures.

Visualization and selection of the final solution

It is necessary to emphasize that the multiobjective optimization problem is not
solved when a (good) approximation of the Pareto optimal set is produced. After
that, the decision maker should be able to select one final solution, i.e., the one
which is ultimately to be implemented or manufactured, among all solutions in
the approximated Pareto optimal set. This is a trivial issue only in the case of
two (or at most three) objectives, when visualization is straightforward, and it
is easy to view all possible solutions. With a higher number of objectives it gets
more difficult to represent the information of many non-dominated solutions to
the decision maker, and it gets harder to explore the solutions.

In [90, 91], different visualization techniques, including methods such as
scatter-plot matrices, value paths, bar charts and star coordinates are presented.
Anyhow, these methods have been directed and are thus the best in presenting
a small number of solutions at the time, as interpretation of these visualizations
gets more challenging with the growth in the number of solutions .

Fortunately, in the literature several more or less sophisticated methods
(e.g., [28, 42, 99, 134]) are presented to explore the high dimensional approxi-
mated Pareto optimal set. Additionally, in Section 3.3 we present a simple ap-
proach to explore the Pareto optimal set using a reference point based approach.
Also clustering methods may be used to condense information contained in the
original approximation of the Pareto optimal set, and make it thus easier to grasp
for the decision maker. We used the clustering based approach in [PIII], and in
the literature there exist also similar approaches in [129, 130, 131].

Further, there are also other, non-clustering based approaches, e.g., [71, 81,
88, 137], that strive to to reduce the cognitive burden of the decision maker in
selecting the final solution by condensing the information contained in the ap-

45

proximation by different means.

In this chapter we have discussed basic concepts and approaches related to
the simulation based black-box optimization. In the following chapter we discuss
in more detail some challenges that solving real-life engineering problem poses
to optimization systems, and we also discuss some possible responses to these
challenges.

3 CHALLENGES AND POSSIBLE RESPONSES

In this chapter, we describe the main contribution of this thesis by discussing

certain challenges posed by simulation based optimization problems, and by

proposing respective responses to these challenges. Later, in Chapter 5, we present
the chronological steps of our work in a concise manner, and point out how work-

ing first with a particular engine design problem led logically, step by step, to im-

prove first interactive methods in general, and then to the development of both

single and multiobjective optimization algorithms, as well as a clustering based

method to select the final solution from the approximated Pareto optimal set.

As discussed in the previous chapters, solving real life simulation based
black-box optimization problems is not a trivial task. Problems of this type may
need to be solved using global, multiobjective and efficient (in terms of objec-
tive function evaluations) approaches to tackle difficulties caused by several lo-
cal optima, several conflicting objectives, and computational cost of objective
function evaluations, respectively. As there exists a large number of possible ap-
proaches and algorithms (different optimization algorithms, scalarizations, EMO
approaches, visualizations, etc.) that can be utilized throughout the solution pro-
cess, it may require some judgement to select different tools needed in different
phases of the solution process. Further, simulation based black-box optimization
problems may cause some challenges to methods originally developed for ana-
lytic or otherwise easier problems.

In the following, we discuss the structure of a simulation based optimiza-
tion system and describe the process of creating it, and along the way we point
out some challenges that may complicate either the construction of the optimiza-
tion system or the solution process. Further on, we focus on the two issues we
consider as the most challenging, namely difficulties caused by computational
complexity of the objective functions, and difficulties of choosing the final solu-
tion among a large set of Pareto optimal or non-dominated solutions.

In general, as discussed in [PI], a simulation based optimization system con-
sists of two main parts, namely the optimization algorithm and the part which
computes values of the objective function(s), in this case, the simulator. Usu-

47

_— —
1) Optimization >

S algorithm S o

2) Input interface S 7 >74) @utput
(design model) e interface >

S I W NG e, -

Th—— \\3) Simulator :}f R

—— e

FIGURE 6 Overview of the modules of a heterogenous optimization system.

ally, the optimization algorithm cannot directly access the simulator, thus some
interface from the optimizer (implementing some optimization algorithm) to the
simulator, and vice versa, is needed. Now the general optimization system can
be represented by four separate modules as in Figure 6: Optimizer (1), Input
interface for the simulator (2), Simulator (3) and Output interface (4) from the
simulator to the optimizer.

As the optimization system consists of several modules, it may be very
heterogenous and modules may be implemented using different tools and lan-
guages, and they can even reside on separate physical computers. For seam-
less operation of the system, interfaces 2 and 4 in Figure 6 must be implemented
with rigour to allow reliable exchange of the information between the modules.
In [PI], we addressed the engine design problem, which possessed several typi-
cal characteristics of simulation based optimization problems: the problem was
computationally expensive (one simulation, i.e., objective function evaluation,
took several minutes), had three objectives, and was of global nature. Further,
the simulator was an external stand-alone software thus being a black-box sys-
tem for the optimization algorithm. To solve the problem, in [PI] we constructed
a heterogenous optimization system, and all the necessary interfaces for it.

In the input interface to the simulator, six design variables were first con-
verted into a Bezier curve defining the shape of the exhaust pipe. Then the re-
sulting pipe shape was discretized to nine sections, and the dimensions of these
were parsed into an input file of the simulator as a list of lengths and start and
end diameters for each separate section. With a proper input file, the simulator
run was executed as an external stand-alone program, producing an output file,
which was parsed to evaluate objective function values. The output file of the
simulator contained all the necessary information such as power, torque, bmep
and fuel consumption for all rpm steps that were used during the simulation run.
For further details about interfacing, see, [1] and [PI].

As a result of [PI], we enhanced the interactive IND-NIMBUS software in
a way that with some modifications to the new interfaces it virtually enables the
use of any optimization algorithm and simulator combination. For its represen-
tative characteristics, we utilized the same problem also in papers [PII] and [PIII].

First, when some simulation based optimization problem is considered, the
problem must be modelled in an appropriate form so that optimization tools can

48

be applied, i.e.,, we must be able to change the design, control the process, etc.,
by varying design variable values, and then we can check the resulting objective
function value reflecting the goodness of the current design. It may be useful to
point out the existence of two different models, one being the model of the phe-
nomenon (which is usually implemented as the simulator), and another one, the
so-called design model, which is a model for mapping design variable values for
proper input configurations (i.e., input interface) for the simulator, see item 2 in
Figure 6. For example, in our engine design problem discussed in [PI], [PII] and
[PIII], the phenomenon modelled by the simulator was the behavior of a two-
stroke internal combustion engine, and our aim was to affect the power output of
the engine by altering the shape of the exhaust pipe, which was modelled using
a Bezier model (see [1] and [PI]) having six design variables.

In the design modelling phase there are already two often conflicting re-
quirements: the design model should have as few design variables as possible
to reduce the size of the search space, and at the same time it should be flexible
enough to be able to represent all possible and necessary design configurations.
For example, in [1] we developed four different models to represent the shape of
the exhaust pipe of the two-stroke engine. Models were varying in their flexibility
to cover different shapes and in their number of design variables.

It is necessary to emphasize that by means of optimization it is not possible
to cure the weaknesses of either the design model or the simulator. For exam-
ple, if the design model is too rigid, incomplete or contains unnecessarily high
number of design variables, or if the simulator is very inaccurate, even the best
of optimization algorithms cannot overcome these difficulties and produce good
solutions. For this reason, it is central that design models and simulators are im-
plemented with rigour, and that they are by some means verified to possess a
sufficient accuracy.

After the simulator is chosen or otherwise obtained, and the design model
of the phenomenon to be optimized is created, it is necessary to select a proper
optimization algorithm, based on the characteristics of the problem and the de-
sign model. These issues are discussed in Section 3.1.

Often the computational complexity in evaluating the objective function(s)
may hinder the solution process in different ways. Obviously, the use of efficient
algorithms is always beneficial, and other possible ways to reduce the computa-
tional burden are welcome where simulation based problems arc concerned. We
discuss these issues in Section 3.2.

Finally, especially with approaches producing an approximation of the Pareto
optimal set as a finite point set (as is the case with EMO approaches), it may not
be straightforward to select one of the solutions as the final one. This is discussed
in Section 3.3. To summarize, in the following sections we discuss the above men-
tioned challenges, and point out some possible improvements we have realized
during this work.

49

3.1 Problem of algorithm selection

As we have seen in the previous chapters, there are different types of optimiza-
tion problems with many characteristics, e.g., problems of global and multiob-
jective nature. These can be further divided into different subclasses based on
certain properties of the problem. With this perspective, it seems plausible that
there exists no single optimization algorithm which is superior for all types of
problems. For this reason, whenever there is available some a priori information
about the problem, that should be exploited.

For example, if we know that the problem is convex, it is not reasonable
to solve it using genetic or other evolutionary algorithms, because some efficient
local optimization algorithm would solve it significantly faster. Also, if gradient
information is available, that should be put to use.

In the case of simulation based optimization, we may usually assume that
the problem is nonconvex. This assumption can be verified, for example, by tak-
ing few different starting points, and executing local optimization runs from each
of them. If the results are clearly different, the algorithm has found separate local
optima, and the problem requires global optimization methods.

With simulation based optimization problems, it may be very difficult to
obtain information about special characteristics of the particular problem to be
solved. This is probably one reason of the popularity of different heuristics and
evolutionary algorithms; they are known to perform reasonably well with a wide
variety of problems, at least if some effort to tune the parameters (e.g., CR and F
in case of DE) of the algorithm is acceptable. The drawback often associated with
these methods is a rather high number of objective function evaluations required,
which may not be acceptable if the evaluations are costly.

The cost of objective function evaluation may often be one important crite-
rion in the selection of an optimization algorithm. Inexpensive problems, where
objective function evaluation takes virtually no time at all, can usually be solved
using known heuristics or evolutionary algorithms, for example, differential evo-
lution, genetic algorithms, ant colony optimization, controlled random search,
etc. [53, 104, 124]. More expensive problems, where one objective function evalu-
ation takes something from a few seconds to some minutes, can be probably best
solved using more intelligent approaches, for example surrogate assisted evo-
lutionary algorithms (e.g., [20, 41, 100, 111]). And finally, very expensive prob-
lems, where one evaluation may take several hours or even days, benefit most of
more sophisticated (and also more complex) surrogate approaches, such as EGO,
where all sampled information is exploited to its full extent. We have touched
this topic in [PIV].

If similar types of problems are to be solved regularly, it may be reasonable
to do some testing with different algorithms, as well as with different parameter
settings for a certain algorithm. For example, the performance of the DE may
be altered significantly by adjusting its parameters. E.g., in [1] we made a com-
parison of several global optimization algorithms in solving an engine design

50

problem. Based on the results of this comparison, in further research related to
the same problem we could use best performing algorithms.

In the case of multiobjective optimization problems, we may encounter even
more difficulties. One basic choice to make is whether to use a scalarization based
approach (interactively) or some approximation method. If the approximation
method is some EMO algorithm, it may not work efficiently if the number of ob-
jectives is high. This is especially the case with dominance based EMO’s [65].
On the other hand, computational overhead of the indicator based EMO’s may
prove to be inacceptable in some cases. Further, in case of scalarization based
approaches, as discussed in Subsection 2.2.1, different scalarizing functions tend
to produce different solutions, and also the selection of a single objective solver
is not straightforward, as discussed above. As in the case of single objective op-
timization, also with multiobjective optimization, one key aspect in choosing the
solution approach may be the cost of objective function evaluations. These issues
are discussed in the following section.

3.2 Computational complexity

As discussed earlier, computational complexity often hinders the solution pro-
cess. Although this problem is central in single objective optimization, it is prob-
ably even more so in the context of multiobjective optimization. Both of these
cases will be discussed in the following subsections.

3.2.1 Single objective optimization

Some simulation based optimization problems are inherently single objective,
and in addition, often multiobjective problems are converted into single objec-
tive ones by scalarizing them.

Because simulation based objective function evaluations may often be costly,
as efficient methods as possible should be used to solve single objective prob-
lems. Sometimes with very efficient algorithms, computational overhead of the
optimization algorithm itself may prove to be prohibitive compared to the cost of
objective tunction evaluations. 'T'his is possible, e.g., with sophisticated surrogate
based algorithms such as EGO (e.g., fitting the surrogate model is expensive), and
we noticed this kind behavior in the comparison made in [1].

In [PI] and [PII] we solved a multiobjective engine design problem using
the interactive NIMBUS method and we noticed that solving the scalarized sub-
problems using the CRS2 or the DE algorithm took several hours or over night,
which was quite tedious for the decision maker. For this reason, in [PV] we tack-
led the problem of improving the efficiency of a population based single objective
evolutionary algorithm by filtering inefficient trial points away. As discussed ear-
lier, the basic idea of meta-modelling approaches seems reasonable; all evaluated
points are utilized in judging where the next sample point should be located. On

51

the other hand, model management may be a problematic issue, as may be fitting
of the surrogate model, and further, implementation of algorithms of this type
may be difficult. Bearing in mind pros and cons of meta-modelling approaches,
we strived for some improvement.

We had noticed earlier in [119] and [PIV] that the point generation mecha-
nism of often employed evolutionary algorithms, DE in this case, is not working
efficiently. Instead, DE generates trial points in the regions of the search space
where improvements in the objective function value are not probable (see, [119]
and [PIV]). To filter out these points, in [PV] we used an idea of a surrogate incor-
porating information contained in all previously sampled points, but instead of
a common and possibly costly approach of kriging or artificial neural networks,
etc., we used a simple method based on the nearest neighbor interpolation to es-
timate possible improvements in the objective function value. More specifically,
for each parent in the population one or more trial points are generated, the one
with the best predicted value is selected, and if the best predicted value is not
better than the parent’s objective function value, the trial point is filtered away,
i.e., excluded from consideration, and no expensive objective function evaluation
is made for it.

The rationale to generate more than one trial point for each parent is to ex-
tract more information about the search space using the inexpensive surrogate,
and thus to make the search more effective. In our approach, instead of explicitly
optimizing the surrogate, we simply select the trial point with the best predicted
objective function value. By varying the number of generated trial points, the
user may balance between efficiency of the search and the cost of the objective
function evaluation; with expensive objective function evaluations it is reason-
able to explore the surrogate more extensively by selecting a higher number of
trial points to be generated.

In the prediction of the trial point value, we do not merely interpolate objec-
tive function values between already known points, but instead incorporate also
some information about the uncertainty of the prediction, based on the objective
function value variations in the current population. In principle, the uncertainty
of the prediction increases as the distance from the predicted point to the near-
est known point increases, and if the variation in objective function values in the
current population is high, also uncertainty is high. Using predicted objective
function values, the balance in the proposed algorithun between local and global
search is realized in a similar fashion as in the EGO algorithm. In this way, the
trial point in a large unsearched area with relatively bad neighboring objective
function values may get better predicted value (due to higher uncertainty in the
prediction) than the trial point located in a more crowded area with better neigh-
boring objective function values.

The proposed filtering approach in [PV] does not require any model man-
agement procedure, as all evaluated points are always kept in memory, and there
is no possibly time consuming surrogate fitting involved. Further, implementa-
tion of the algorithm is very straightforward. The performance of the proposed
approach was compared to several other variants of the DE using well-known

52

test problems from the literature, namely Rosenbrock, Michalewicz, Rastrigin,
Griewangk, Ackley and Levy test functions. These test problems were selected
because they pose different difficulties for the optimization algorithms. Each vari-
ant of the algorithm was utilized in 100 independent runs using 2, 5 and 10 design
variable versions of the functions, and allowing a maximum budget of 500, 1000
and 2000 objective function evaluations, respectively. This budget was chosen
because we are interested in solving expensive problems, where the number of
objective function evaluations must be kept in a reasonable level.

In the light of the above described setup, the proposed approach produced
notable savings in the number of required objective function evaluations, and the
computational overhead of this approach remains negligible compared to the cost
of evaluating expensive objective functions. Based on the tests, the performance
of the proposed approach seems to be somewhere between traditional EA’s and
real surrogate algorithms, and thus it is best suited for problems with a mediocre
cost for objective function evaluations (taking something between a couple of
seconds and a few minutes). Further, the approach of generating more than one
trial point for each parent seemed promising, as the use of a modest number of
four trial points produced notable convergence speed-up when compared to the
use of one trial point only. Anyhow, it remains for further study to show how
the performance of the proposed algorithm is related to increased number of trial
points in general.

A similar approach to the one proposed in [PV] could be also incorporated
with the approach proposed in [PIV] (discussed below in Subsection 3.2.3), hope-
fully further enhancing the performance of the latter. Objective function values
for each of the objectives could be estimated in a similar fashion as in [PV]. The
already known objective function values (for all objectives) could be stored and
maintained in a single matrix along with the respective decision variable values.
In this way, while locating the nearest neighbor for some new trial point, the val-
ues for all the objectives at the nearest point would be found with the same effort
as in the case of a single objective. Thus, the procedure would scale up with the
number of objectives well.

With the predicted objective function values it could be judged whether the
trial point would dominate already existing solutions or not, and thus one could
decide if it is reasonable to evaluate it or not using the expensive objective func-
tions. It is open to further research whether this combined approach would work
or not. One possible problem lies in the estimation of the measure of irregularity
L, which is in [PV] computed from the current population. In the single objec-
tive case, the population is contracting during the optimization run, and also the
value of L is decreasing. This would not necessarily be the case in the multiob-
jective approach, where the population is expected to be as diverse as possible.
In this case, different means to compute L would be required, for example, using
some number of nearest neighbors of the trial point, etc.

53

3.2.2 Scalarization based methods

Often scalarization based methods are most naturally used in a recurrent fashion,
i.e., interactively. Some preference information is defined and used to form a
scalarized subproblem, a solution to the subproblem is produced, and after this,
the decision maker may refine the preference information, and the loop is started
once again. As a consequence, the decision maker learns about how the problem
behaves and may finally find a solution that pleases him /her the most.

As discussed earlier, if the problem is to be treated in a global fashion,
the subproblems involved must be solved using global optimization algorithms.
With costly problems, this is obviously rather time consuming, and it is obvious
that the interactive nature of the process suffers, that is, the decision maker has to
wait too long for the new solutions to be generated before he/she can define new
preferences. This behavior was evident in [PI], where scalarized problems were
solved using the CRS2 algorithm.

In [PII], we tackled the aforementioned hindrance by increasing accuracy
as the interactive NIMBUS solution process progresses instead of replacing the
single objective optimization algorithm with a more efficient one. Our rationale
behind thisapproach was that at the beginning of an interactive optimization pro-
cess, the decision maker is many times also at the beginning of a learning curve:
he/she is learning how different objectives are interrelated, what the trade-offs
between the objectives are and, also, what kind of objective function values can
be reached in general. It seemed safe to assume, that in the learning phase the
accuracy of the solution can be sacrificed to some extent in order to save a signif-
icant number of objective function evaluations.

After the learning phase, the decision maker has a better understanding of
the problem behavior, and he/she can decide what the most satisfactory objec-
tive function values for the final solution are. In our approach, we demonstrated
that the computational cost can be affected by adjusting the required accuracy
of the solutions of the single objective optimization algorithm (by using a pre-
determined threshold for objective function evaluations in each iteration of the
NIMBUS method) during the interactive solution process.

Based on the assumptions above, at the beginning of the optimization pro-
cess, quite a coarse accuracy of solutions may be used, and only a rather small
amount of objective function evaluations is needed to get a general understand-
ing about the problem. As the decision maker learns more about the problem
and its behavior, and consequently feels more confident about it, he/she may
approach the final solution with an ever increasing accuracy and with a higher
number of objective function evaluations. As the final step of the optimization
procedure, the final solution can be calculated using the budget that assures the
decision maker of a good enough solution quality.

As deciding the proper budget for objective function evaluations in advance
is not trivial (although the decision maker has probably gained some feeling
about the budget needed in previous iterations of the NIMBUS method) we pro-
posed a measure called maximum difference percentage (MDP) in [PII] to assess the

54

quality of each solution produced during a single objective run (used to solve the
scalarized subproblem of the NIMBUS method) with regard to a given classifica-
tion.

As the name suggests, the maximum difference percentage is the maximum
difference between the components of the current solution and the given refer-
ence point (with desirable objective values) as percentages for each of the objec-
tives, and formally it is calculated (in the case of minimization) as

MDP = z:"iaxk i(xz)i—Zi ,
Zi 75 0.

This formulation bears some resemblance with the structure of the achievement
scalarizing function presented in Subsection 2.2.1.

While the single objective optimization run progresses, the values of MDP
are continuously plotted, and the decision maker can extract different types of
information about the status of the current optimization run. The decision maker
can see how far the solution is from the given reference point measured as per-
centage, whether the values are improving in general or if the process has already
stagnated, and how much there is variation among adjacent solutions produced
by the optimizer. Using this information, and also information absorbed in pre-
vious iterations, the decision maker can decide when a sufficient number of ob-
jective function evaluations has been reached. Naturally, if online monitoring of
the process is not possible, some predetermined budget or stopping conditions
based on the MDP may be constructed. Further discussion of these topics is given
in [PII].

With the proposed approach that uses increasing accuracy, we could reduce
the number of objective function evaluations by some 60-70% compared to the
normal NIMBUS approach without deteriorating the quality of the overall solu-
tion process. These results are reported in [PII].

Another natural way to save in objective function evaluations with the inter-
active approach would be to utilize all information obtained in previously made
objective function evaluations. Every time a subproblem is solved, lots of infor-
mation about the behavior of the objective functions is produced. Thus, during
the optimization process, an increasing amount of data is produced (e.g., objec-
tive function values with regard to design variable values). This data could be
used in solving the following subproblems, for example, by computing scalariz-
ing function values for all evaluated points with a new preference information
(very cheap operation), and then selecting a proper subset of these to be used as
an initial population in a single objective optimization algorithm that solves the
current subproblem. In this way, the interaction between the decision maker and
the optimization system would be more fluent, and the use of objective function
evaluations more sparing. Further, all evaluated data could be used to predict
values of unknown points, as can be done with the EGO algorithun or in the al-
gorithm proposed in [PV]. Intelligent implementation and possible integration
to the NIMBUS method of both of the aforementioned ideas is open to further
research.

©)

55

3.2.3 EMO approaches for multiobjective optimization

In contrast to scalarization based approaches, in EMO approaches, an approxi-
mation of the Pareto optimal set is created without any user intervention, which
makes the basic idea of such approaches rather appealing; the decision maker is
involved in the solution process only after the most time consuming computation
is finished. Anyhow, if creating the approximation takes a large number of ob-
jective function evaluations, even this offline waiting period may be considered
prohibitive. For this reason, efficiency is one of the key issues also with EMO
approaches.

In [PIV], where our aim was to develop a more efficient EMO algorithm,
we pointed out some difficulties with widely used dominance based EMO ap-
proaches. . We summoned up some issues such as convergence problems, dete-
rioration of population, and difficulties in choosing the proper population size.
Also diversity maintenance seemed to be problematic. We discuss these issues in
the following paragraphs.

As discussed earlier in Subsection 2.2.2, convergence problems [58, 83, 115,
116, 117, 118] of widely used EMO algorithms stem from the concept of domi-
nance, in conjunction with the diversity preservation mechanisms used. If there
is an excess of non-dominated solutions to fit into the population, some of them
must be pruned using a diversity preservation mechanism. In this case, some
non-dominated solution located very near the Pareto optimal set may be replaced
by some other non-dominated solution which improves diversity but is at the
same time located much farther from the Pareto optimal set. This behavior leads
to oscillation in the solution quality, and prevents convergence to the Pareto op-
timal set.

By deterioration of population we mean that, in the history of all evaluated
points during the optimization run, there exist solutions that dominate solutions
in the current population. This behavior is closely related to the aforementioned
convergence problems. When the population deteriorates, we can say that some
number of objective function evaluations has been wasted, and the population
does not reflect the best possible solutions encountered during the optimization
process.

Choosing the proper population size is not straightforward, because too few
points cannot represent the characteristics of the Pareto optimal set properly. On
the other hand, too many points may hinder the performance, because a large
portion of the population may consist of dominated solutions, especially in the
beginning of the optimization process when there are not enough non-dominated
solutions found to fill the population. The population size is also related to the
convergence problems, and deterioration. Obviously, the larger the population,
the closer to the Pareto optimal set the algorithm may converge before the popu-
lation starts to oscillate. This behavior was demonstrated in [PIV].

Diversity maintenance may also be a problematic issue. For example, the
crowding distance of NSGA-II [34] (used also in other algorithms, e.g., [113, 114]),
actually works only in two dimensions, and may fail also in this case [78]. In [79],

56

a viable way to implement the pruning needed in the diversity maintenance is
presented. A relatively high computational cost may be considered as a draw-
back of this approach, but this in turn is probably not very significant if objective
functions are costly.

In the proposed algorithm in [PIV], we utilize the point generation mech-
anism of DE (as it is known to perform reasonably well among its peers), but
the focal point of our approach is that we give up the idea of a fixed population
size, and instead keep all the non-dominated solutions in the population. In this
way, all problems discussed above can be overcome, at least to some extent. The
convergence to the Pareto optimal set is gained because the population cannot
oscillate. There is no need to select the population size, and because of that in
the beginning of the process the algorithm performs efficiently because the pop-
ulation is not filled to some predetermined size with bad quality dominated solu-
tions. Also the number of solutions in the population is increasing over time, thus
having a better capability to capture the characteristics of the Pareto optimal set.
The population of the proposed algorithm cannot deteriorate, because it always
contains all non-dominated solutions. Further, no explicit diversity preservation
mechanism is needed. This may seem counter-intuitive, but it is essential to real-
ize that neither NSGA-II nor DE-based EMO's (see, for example, [80, 147]) strive
to actively generate evenly spread solutions around the Pareto optimal set, rather
they just select solutions located in less crowded regions to following popula-
tions. Thus, if all solutions are kept, also the diversity is maintained at least as
well as, for example, in NSGA-II.

As discussed in Subsection 2.2.2, diversity is often used as a secondary se-
lection operator, and in this case the selective pressure of evolutionary mecha-
nisms fails to drive the population towards the Pareto optimal set when there is a
higher number of objective functions involved. We assume that the performance
of our approach does not deteriorate with an increased number of objectives in
a similar fashion as in traditional approaches, because we do not utilize any di-
versity preservation mechanism but instead rely merely on the dominance of the
solutions. However, no empirical tests have yet been conducted to verify this
assumption.

Because the size of the population is increasing all the time in our approach,
it is obvious that not every point in that population can serve in turn as a target
point, as in DE. For this reason, all four points involved in generating the next trial
point are selected at random. Non-dominated solutions may be identified either
after every new trial point is evaluated, or alternatively after some predetermined
number of trial points is evaluated. Obviously, with very expensive objective
functions it is reasonable to identify non-dominated solutions as often as possible,
thus allowing the use of the most up-to-date information.

With the proposed algorithm all data about the behavior of objective func-
tions gained during the optimization run is put in use, in contrast to several EMO
approaches which exploit only information contained in the current population,
and possibly in some rather small additional external archive. Intuitively our ap-
proach feels advantageous, and numerical results presented in [PIV] comparing

57

the performance of NSGA-II and the proposed algorithm also support this con-
ception, as the proposed algorithm clearly outperformed NSGA-II. The NSGA-II
algorithm was selected as a counterpart to the performance test, because it is
widely utilized in several different fields, and in thatrespect it can be considered
as de facto algorithm today. In performance comparison we used three bi-objective
test problems (ZDT1, ZDT2, ZDT4) and three tri-objective test problems (DTLZ2,
DTLZ5, DTLZ7) in 30 independent runs with a budget of 8000 objective function
evaluations for each run. The choice of the stopping criterion was motivated by
limitations of real engineering problems where the solution typically must be ob-
tained within some specific budget, and in this sense we were more interested in
how the algorithms behave with quite low numbers of evaluations.

It is open to discussion whether our approach is appropriate or not with
problems with very inexpensive objective function evaluations, as the number of
all nondominated solutions may grow very high and eventually lead to an in-
creased computational overhead of the algorithm itself. In that case, it could be
more efficient to use some fast running approach with abounded population size.
On the other hand, as discussed earlier, at some point the traditional approach is
likely to start to oscillate, and after that it can no longer improve the solutions.
Thus, to ultimately judge which algorithm to apply it is necessary to ponder dif-
ferent aspects of the solution process, i.e., quality of the approximation set, wall
clock time used, number of required objective function evaluations, etc.

In the single objective field, meta-modelling has been utilized for a long
time to reduce the number of objective function evaluations needed. Similar ap-
proaches may be applied also in the multiobjective case, for example, by simply
using separate surrogates for each of the objectives (which may be somewhat
costly) or by representing the multiobjective problem with one surrogate (which
may be difficult). Intuitively, meta-modelling based multiobjective optimization
approaches seem plausible, and it seems also that there is an ascending trend
to improve the efficiency of multiobjective algorithms with a meta-modelling
scheme [40, 74, 76, 85, 89, 140].

3.3 Selecting the most preferred Pareto optimal solution

With EMO algorithms, it may be necessary to use relatively large population sizes
to be able to capture and represent the behavior of the Pareto optimal set. With the
algorithm proposed in [PIV], the population size is allowed to increase on pur-
pose. When the approximation of the Pareto optimal set contains a large number
of points it may become cognitively very challenging for the decision maker to
select a certain solution as the final one. As stated earlier, in the literature several
methods (e.g., [28, 42, 99, 134]) have been presented to explore the high dimen-
sional Pareto optimal set.

In [42] and [99] (and implementation of it [28]) the polyhedral approxima-

58

tion of the Pareto optimal set is generated using a previously obtained finite set of
solutions. The user can then navigate through the approximated Pareto optimal
set and get a grasp on the problem behavior. These two methods are differing in
the way how the navigation is implemented. In [134], a closed polygon within a
star-shaped scale arrangement visualizes Pareto optimal solutions as a so-called
spider web chart. The decision maker can move through the solutions by pulling
ata vertex of the navigation polygon, at a so-called grip point, towards smaller or
larger values (inwards or outwards). As a result, the polygon moves to a neigh-
boring polygon, representing another Pareto optimal solution.

In [PIII], we take a different approach to many Pareto optimal or non-domi-
nated solutions, and use advanced clustering algorithms to reveal the essential
characteristics of the Pareto optimal set. This is done by clustering [43, 72] the
finite point set approximating the Pareto optimal set, and then using only a hand-
ful of solutions closest to the cluster prototypes (the most representative points in
each cluster) as representatives of the Pareto optimal set. In this way, the decision
maker is involved in the solution process only after most of the time consuming
computation is finished. Because of the small number of representative solutions,
it is easy for the decision maker to get grasp of the problem behavior on a general
level and direct his/her interest into some specific cluster, wherein solutions can
be studied in more detail.

In our approach, we use robust clustering methods [5] to avoid sensitivity
to deviating or erroneous data and to get a global solution for the clustering prob-
lem. After clustering, the cluster prototypes are projected on the Pareto optimal
set (using the scalarizing function (5)), to get information about the quality of the
current approximation, i.e., how far the prototypes are from the Pareto optimal
set. All clustering data is displayed to the decision maker, as discussed in the fol-
lowing. A two dimensional plot (produced using principal component analysis)
of cluster prototypes and solutions belonging to each cluster is displayed to the
decision maker, who can get an understanding of how solutions are distributed
to clusters. Further, for each cluster, all solutions belonging to that cluster are
displayed as value paths [90, 91], with respect to both design variables and ob-
jective values. Design variable plots help the decision maker to judge whether
the solutions are robust or not. If there is only a small variation in some design
variable value, it suggests that the solution is sensitive to changes in that partic-
ular value; if the value is changed, the solution belongs to another cluster. The
objective value plot shows to the decision maker how similar or how different
solutions are within one cluster.

Often multiobjective problems are studied merely in the objective space.
However, values in the design space may contain some useful information. For
this reason, in our approach it is possible to further cluster solutions within some
specified cluster, this time with respect to design variable values. This may help
to identify different design families, leading to same kind of end results. Ob-
viously, some design variable value combination may be more appealing to the
decision maker considering that the end result is almost the same. For example,
in the case of the exhaust pipe design for the two stroke engine, if two pipes, one

59

thicker and one thinner, produce almost exactly the same end result, it may be
more convenient to fit the thinner pipe to the frame of the motorcycle.

In [33, 35], analysis of interaction between design and objective spaces has
been taken even further. In that approach, Pareto optimal solutions are analyzed
to investigate if there exist some common principles among all or many of the
solutions. If some relationship between design variables and objective function
values is found, such information can be used in a general level to decide how
some design can be done in an optimal manner, probably even without resorting
to solving a completely new optimization problem again.

The clustering based method proposed in [PIII] bears some resemblance to
approaches presented in [129, 130, 131]. Our method differs from these primarily
in a way that we use robust clustering algorithms, we study the problem behavior
also in the design space, and we present the information to the decision maker
using various intuitive plots.

In addition to methods described above, there are also other, non-clustering
based approaches, e.g., [71, 81, 88, 137], that strive to reduce the cognitive burden
of the decision maker in selecting the final solution by condensing the informa-
tion contained in the approximation by different means. In this thesis we did not
consider these methods, because they often seem to require at least some prior
understanding of the problem: for example, the decision maker should be able to
rank the objectives according to their importance, or define thresholds for signif-
icant tradeoffs, etc.

To complement other methods capable of exploring the approximation of
the Pareto optimal set, we now present one additional, rather simple approach,
which works on a previously created finite approximation set P, iteratively with
user defined reference points. In this way, the decision maker can explore the
whole solution set, even in higher dimensions. The proposed approach works as
follows:

1. Compute the ideal (best seen values in P for all objectives) and nadir (worst
seen values in P for all objectives) vectors.

2. Compute the mean value of all objectives (objective-wise), and use this vec-
tor initially as the reference point p,.s giving a neutral starting solution.

3. For a given pyy, select four similar points in set P. The first of these is the
point with the minimal Euclidean distance between points in P and py.y.
The other three are located along the projections from py,s to P, and they
are selected using three different scalarization functions, namely satisficing
trade-off method (STOM), achievement scalarizing function, and GUESS
(see Subsection 2.2.1). For each scalarization, the point which produces a
minimum scalarized function value is selected. With this procedure it is
possible to produce up to four different solutions. However, there is no
guarantee that all four are different.

60

4. The objective function values of the four selected points are displayed to the
decision maker, along with the Euclidean distance information to the given
Pres. From this information the decision maker can deduce what the pro-
jected solutions are like, and how far they are from p,,r, and decide whether
he/she wants to further refine current p,,s or not. If the decision maker is
satisfied, the process is stopped. Otherwise, the decision maker defines a
new pys according to his/her wishes, and the process continues from Step
3.

As can be seen, the whole procedure bears close resemblance to interactive mul-
tiobjective optimization methods, for example such as NIMBUS, and also the
method in [134], where a set of previously produced solutions is navigated. The
major difference to the NIMBUS method is that after the reference point is de-
fined, in the system proposed here, no optimization is done (as the solution set is
already available). Instead, best points with regard to a given reference point are
selected. With computationally costly problems this is a major benefit, as all time
consuming computation is done in advance. Compared to a method in [134], in
our approach four different solutions "near" the given p,.s are displayed, which
may give additional information about the variety in solutions to the decision
maker.

Further, the decision maker is supported with information about distances
between p,.s and four selected points to get a grasp on how close to some already
known solution the given p,.s actually is. This may help the decision maker to
judge how probable it is to find a solution similar to p,.

4 AUTHOR’S CONTRIBUTION

In the first paper [PI], the problem setting of simulation based optimization is de-
scribed in a general level, and in particular a computationally expensive triobjec-
tive problem of optimizing the performance of a two-stroke internal combustion
engine is solved with the interactive NIMBUS method. During this research, the
IND-NIMBUS software was enhanced with new input and output interfaces in
a way that it enables the use of virtually any simulator and optimization algo-
rithm combination. The author implemented all the connections between differ-
ent parts of a very heterogenous optimization system consisting of the optimiza-
tion algorithm, the simulator, and wrappers to turn design variables to simulator
input files, and also for deriving objective function values from the simulator out-
put files. Further, the author had developed four different models to represent the
exhaust pipe shape in [1], and used one of them with only a modest number of
design variables in this study. In the optimization model, also the performance of
the whole vehicle was taken into account (by incorporating the effects of gearbox
ratios), instead of only engine characteristics. Thus, the engine design problem
with a somewhat more practical value than in some previous studies was solved
in a multiobjective manner. The paper was written mainly by the author. Pro-
fessor Kaisa Miettinen brought in her expertise in multiobjective optimization, as
well as providing some perspectives and finishing touches.

The second paper [PII] is based on the author’s observations about diffi-
culties in solving computationally expensive problems in an interactive fashion
in [PI]. The engine design problem was used as an example also in this paper,
along with the NIMBUS method. The author developed an idea of using coarse
accuracy (and less objective function evaluations) to solve NIMBUS subproblems
in the beginning of the interactive solution process when the decision maker is
only in the beginning of the learning process about the problem at hand. Further
in the process, as the decision maker gains understanding and starts approach-
ing the final solution, the accuracy is improved. Also some tools were proposed
for judging when a sufficient number of objective function evaluations has been
reached. The above mentioned ideas were matured with Professor Miettinen, and
the paper was written mainly by the author.

62

After using scalarization based methods in [PI] and [PII], the author did
some experimenting with sampling procedures and EMO approaches, which did
not require recurrent involvement of the decision maker during the process. How-
ever, it became clear that the selection of the final solution among the large set of
non-dominated solutions is not necessarily an easy task. For this reason, in [PIII]
the author developed an idea that essential characteristics of the Pareto optimal
set could be captured using clustering methods, and thus one could reduce the
cognitive burden of the decision maker in the selection of the final solution. The
engine design problem was used as an example also in this paper. In this work,
Dr. Sami Ayramo brought in his expertise about advanced clustering algorithms
[5], along with required implementations. The paper was written mainly by the
author, excluding the parts concerning clustering, which were exclusively writ-
ten by Dr. Ayramé. Professor Miettinen contributed to structuring the ideas and
material, and provided her expertise in multiobjective optimization.

Contribution in [PIV] is based on the author’s ideas about how the efficiency
of EMO approaches could be improved. The author had evidenced that several
EMO approaches have detrimental characteristics, such as lack of convergence,
deterioration of the population, difficulty to select a proper population size, and
partly due to these, poor efficiency. To overcome these deficiencies, the author de-
veloped, implemented, and performance tested an algorithm which essentially
utilizes an unrestricted population size. The paper was written mainly by the
author, while Professor Miettinen brought in some perspectives and finishing
touches.

Finally, [PV] is based on the author’s observations on the behavior of evo-
lutionary algorithms - mainly on how their trial point generation mechanisms
work. The author noted that a large number of trial points are generated in re-
gions of the search space where improvement of the objective function value is
not probable. To improve this behavior, the author developed an idea of filter-
ing out inefficient points, by using and simplifying some ideas borrowed from
meta-modelling schemes. To be more specific, more than one trial point may be
generated, and only the best one is evaluated using the real expensive objective
function. The implementation of the algorithm and all the performance testing
were done by the author. The paper was written by the author, while Professor
Miettinen brought in some perspectives during proof reading.

5 CONCLUSIONS AND FUTURE WORK

In this thesis, we have discussed special features and challenges of simulation
based black-box optimization. The characteristics of these types of problems sug-
gest that we need to use global, multiobjective and efficient (in terms of objective
function evaluations) approaches to tackle the difficulties caused by several local
optima, several conflicting objectives, and computational cost of objective func-
tion evaluations, respectively.

In this work, our main emphasis has been on dealing with two issues: prob-
lems due to the computational complexity of objective functions, and difficul-
ties of choosing the final solution among a large set of Pareto optimal or non-
dominated solutions. As a result of the research, we have developed a heteroge-
neous optimization system for simulation based problems, an approach to reduce
the computational burden of the interactive method, a clustering based method
to select the final solution from the approximated Pareto optimal set, and two
new optimization algorithms (one for global single objective optimization, and
another for multiobjective optimization).

In the beginning of the research, we considered the problem of optimizing
the performance of a two-stroke internal combustion engine by optimizing the
shape of the exhaust pipe of the engine in [PI]. This problem is computationally
demanding (one simulator run, i.e., objective function evaluation, takes several
minutes), it has three objectives, is of global nature, and as such it was a good
example of multiobjective simulation based engineering problem. To solve this
problem, we used the IND-NIMBUS software implementing the interactive NIM-
BUS method, and developed some new functionality to it to allow aggregation of
a heterogenous optimization system. In this work, we noticed that its compu-
tational complexity hinders the interactive nature of the solution process, as the
decision maker had to wait quite long time before he could continue the solution
process.

To improve the efficiency of the overall interactive process, in [PII] we con-
tinued with the same problem as in [PI], again using the IND-NIMBUS software.
This time our aim was to reduce the computational burden, and to make the
overall optimization process more fluent to the decision maker. Our basic idea

64

was that in the beginning of the interactive solution process, the decision maker
is in the beginning of the learning curve about the problem, and thus it is not
necessary to solve scalarized subproblems very accurately. Further in the pro-
cess, when the decision maker has learned what is possible to gain, and what is
not, the scalarized subproblems of NIMBUS are solved with a higher accuracy
to obtain the final solution. By this approach we could save some 60-70% of the
objective function evaluations compared to the previous approach presented in
[PI], without compromising the quality of the final solution. It is worth pointing
out that the ideas presented in [PII] can be used with other interactive methods
as well.

After dealing with scalarization based approaches, we continued in the di-
rection of approximation methods, and to be more accurate, methods such as
sampling procedures or EMO approaches producing an approximation of the
Pareto optimal set as a finite point set. In this approach, the decision maker is
involved in the optimization process only after the most time consuming compu-
tation is finished, and tedious waiting periods are avoided. Anyhow, we noticed
that it might be difficult for the decision maker to get a grasp of the behavior of
the Pareto optimal set, and select one solution as the final one. To overcome this
difficulty, in [PIII] we proposed an approach where essential characteristics of
the Pareto optimal set are condensed by use of advanced clustering algorithms,
and only handful of the most representative points of the Pareto optimal set are
presented to the decision maker. In this way, the decision maker may concentrate
his/her interest in the most interesting part of the Pareto optimal set conveniently.

In [PIII], we had noticed that the approach of approximating methods seems
appealing, but computational cost often associated with EMO approaches seemed
disadvantageous. For this reason, in [PIV] we delved into the basic structures of
EMO approaches, and noticed some deficiencies in their functioning, such as lack
of convergence, ignorance of some good solutions, and difficulty in selecting a
proper population size. With our approach, essentially utilizing a population of
a varying size, we could overcome several deficiencies, and also improve the effi-
ciency over that of NSGA-II, which is often regarded as one of the state-of-the-art
EMO approaches.

In the process of developing our new EMO approacly, we liad (o carefully
examine also the functioning of single objective evolutionary algorithms as they
utilize similar trial point generation mechanisms. We noticed that the point gen-
eration mechanism of DE is not working as efficiently as it could; it seemed to pro-
duce trial points in regions of the search space where gains in objective function
values seemed highly unlikely. To overcome this behavior, in [PV] we proposed
an algorithm where trial points are rejected or accepted based on their predicted
objective function value. In the prediction, we used some ideas borrowed from
meta-modelling approaches, but to avoid computational overhead associated for
example with kriging, we used a simple prediction based on the nearest neigh-
bor interpolation. With this approach, we could gain notable savings compared
to some efficient versions of DE.

Although we have proposed some improvements to make simulation based

65

optimization processes more fluent, there still remain several issues for further
study. In the interactive approaches, where the scalarized subproblem must be
solved several times, and usually in a global fashion, all objective function evalu-
ations made during the whole process should be exploited to their full extent. In
this way, information produced in solving previous subproblems, could be em-
ployed in solving further subproblems. It is open for further study how this could
be done most efficiently, but obviously the efficiency of the approach presented
in [PII] could be further improved, as more information about the behavior of the
objective functions is gained during the solution process.

Our EMO approach presented in [PIV] could benefit from a filtering ap-
proach similar to that used in [PV], which itself should be tested more exten-
sively to find out how the performance of the proposed algorithm is related to
the number of trial points that are generated for each parent. Further, it would
be useful to be able to provide guideline or even implement self-adaptivity in the
algorithm itself to balance between the cost of the objective function evaluation,
and the number of trial points used.

On a general level, we feel that meta-modelling based approaches are very
powerful, and will probably become the de-facto algorithms of the future. For
this reason, we want to develop our simple nearest neighbor interpolation based
meta-modelling scheme further, and we consider the low computational over-
head of it advantageous. Further, in the case of multiobjective optimization, we
feel that meta-models could be used also within interactive schemes in addition to
all evaluated points, thus reducing the need for expensive original objective func-
tion evaluations. With regard to EMO methods we feel that approaches based on
the concept of dominance and some diversity measure of individual points are on
the way out, and giving way to different indicator- and set-based approaches (as,
e.g., in [155]), and we also want to move our research efforts to that direction. To
conclude our future plans, we state that every objective function evaluation must
count, and based by our current knowledge it seems that this is best achieved by
exploiting meta-modelling schemes and indicator based EMO’s in various com-
binations.

YHTEENVETO (FINNISH SUMMARY)

Taman vditoskirjan, "Lahestymistapoja monitavoitteisen, globaalin ja simulaa-
tiopohjaisen optimoinnin haasteisiin”, motivaationa ovat olleet kdaytdannon sovel-
luksissa kohdattavien simulaatiopohjaisten optimointiongelmien hankaluudet.
Usein jdrjestelmén, laitteen, tai prosessin toimintaa voidaan kuvata simulaatto-
rilla, mutta simulaattori itsessddn ei kerro kuinka jarjestelméan toimintaa voitaisiin
tehostaa eli optimoida. Simulaattorissa, kuten oikeassa elamassakin, jarjestelman
toimintaan voidaan vaikuttaa tiettyjen suunnittelumuuttujien arvojen valinnalla.
Jarjestelmédn optimoimiseksi on tarpeen 16ytdd optimaaliset arvot suunnittelu-
muuttyjille, mutta tdméa on yrityksen ja erehdyksen menetelmailld inhimillisesti
katsottuna erittdin hidas, kuluttava sekd virheherkka prosessi, eikd lopputulok-
sen hyvyyttd voida taata. Edellimainittujen hankaluuksien vuoksi onkin jarke-
vampdd hakea suunnittelumuuttujien arvot optimaalisiksi kdyttden tietokoneella
ajettavia optimointimenetelmia.

Usein kdytannon sovelluksissa kohdattavat optimointiongelmat ovat luon-
teeltaan haastavia. Yksittdinen simulaatioajo, joka kertoo kuinka hyvin tietty
suunnittelumuuttujien arvoasetus toimii, saattaa kestdd minuutteja, tunteja, tai
jopa vuorokausia. Ndin muodoin on selvdd, ettd optimointiprosessiin kuluvien
simulaatioajojen maéra tulisi pitdd mahdollisimman pienend. Usein ei riitd myos-
kédn se, ettd jarjestelmdd optimoitaisiin suhteessa yhteen ainoaan tavoitteeseen
(yksitavoiteoptimointi), vaan erilaisia tavoitteita saattaa olla useita (monitavoite-
optimointi), ja tyypillisesti nama tavoitteet ovat ristiriitaisia keskendan, kuten
esimerkiksi lopputuotteen hinta ja laatu. Tdssa tapauksessa ratkaisut muodosta-
vat ns. Pareto-optimaalisen joukon, jonka kaikki ratkaisut ovat matemaattisesti
tarkasteltuna yhta hyvid, ja siksi tarvitaankin inhimillinen paatoksentekija valit-
semaan ratkaisuista paras.

Tassa tyossa kasitellddn erilaisia tapoja ratkaista seké yksi- ettd monitavoit-
teisia simulaatiopohjaisia optimointiongelmia tehokkaasti, jolloin aikaavievia si-
mulaatioajoja tarvitaan mahdollisimman vahidn. Taméan tyon puitteissa on ke-
hitetty tehokkaat populaatiopohjaiset algoritmit seka yksi- ettd monitavoitteiseen
optimointiin, laskennan tarkkuuden sddtdmiseen perustuva tapa interaktiivisen
monitavoiteoptimoinnin menetelmien tehostamiseksi, seka tiedonlouhinta- ja klus-
terointimenetelmiin perustuva tapa inhimillisen paitiksentekijan kognitiivisen
kuorman vahentdmiseksi valittaessa lopullista ratkaisua moniulotteisesta Pareto-
optimaalisesta joukosta. Kehitettyjen menetelmien suorituskyky ndyttdd seka
synteettisten testiongelmien ettd kdytdnnon ongelmien (mm. polttomoottorin
tehontuoton optimointi) ratkaisemisen valossa lupaavalta.

ERRATA

In publications [PIV] and [PV] we have used DE’s control parameter CR for
crossover probability in a different manner than for example in [110], where a
higher values of CR actually mean a smaller probability for crossover (in crossover
the element to the trial vector is taken from the target vector instead of the mu-
tated vector). In publications [PIV] and [PIV], the higher value of CR means also
a higher probability to take the element to the trial vector from the target vector
instead of the mutated vector.

69

REFERENCES

[1] T. Aittokoski (2007): On Optimization of Simulation Based Design. Li-
centiate Thesis. Jyvdskyld Licentiate Thesis in Computing 8. University of
Jyvéskyla.

[2] M. M. Ali, C.Khompatrapornand Z. B. Zabinsky (2005): A Numerical Eval-
uation of Several Stochastic Algorithms on Selected Continuous Global Op-
timization Test Problems. Journal of Global Optimization 31, 635-672.

[3] M. M. Ali and C. Storey (1994): Modified Controlled Random Search Algo-
rithms. International Journal of Computer Mathematics 54, 229-235.

[4] M. M. Ali, C. Storey and A. Torn (1997): Application of some Stochas-
tic Global Optimization Algorithms to Practical Problems. Journal of Op-
timization Theory and Applications 95, 545-563.

[5] S. Ayramd (2006): Knowledge Mining Using Robust Clustering. Doctoral
Thesis. Jyvaskyld Studies in Computing 63. University of Jyvaskyla.

[6] J. Banks (1998): Handbook of Simulation: Principles, Methodology, Ad-
vances, Applications, and Practice. John Wiley & Sons, New York.

[7] M. Bartholomew-Biggs, S. Brown, B. Christianson and L. Dixon (2000): Au-
tomatic Differentiation of Algorithms. Journal of Computational and Ap-
plied Mathematics 124, 171-190.

[8] J.- F. M. Barthelemy and R. T. Haftka (1993): Approximation Concepts for
Optimum Structural Design - A Review. Structural Optimization 5, 129-144.

[9] T. Bartz-Beielstein (2006): Experimental Research in Evolutionary Compu-
tation: The New Experimentalism. Springer-Verlag, Berlin.

[10] M. S. Bazaraa, H. D. Sherali and C.M. Shetty (1993): Nonlinear Program-
ming: Theory and Algorithms, 2nd edition. John Wiley and Sons, New
York.

[11] H. -G. Beyer and H. -P. Schwefel (2002): Evolution Strategies: A Compre-
hensive Introduction. Natural Computing 1(1), 3-52.

[12] P. K. Bergey and C. Ragsdale (2005): Modified Differential Evolution: A
Greedy Random Strategy for Genetic Recombination. Omega 33, 255-265.

[13] L. T. Biegler (1989): Chemical Process Simulation. Chemical Engineering
Progress 85(10), 50-61.

[14] T. Back (1996): Evolutionary Algorithms in Theory and Practice. Oxford
University Press, Oxford.

70

[15] R. S. Barr, B. L. Golden, J. P. Kelly, M. G. C. Resende and W. R. Stewart,
Jr. (1995): Designing and Reporting on Computational Experiments with
Heuristic Methods. Journal of Heuristics 1(1), 9-32.

[16] M. Bjorkman and K. Holmstrém (2001): Global Optimization of Costly
Nonconvex Functions Using Radial Basis Functions. Optimization and En-
gineering 1, 373-397.

[17] J. Brest, S. Greiner, B. Boskovic, M. Mernik, and V. Zumer (2006): Self-
Adapting Control Parameters in Differential Evolution: A Comparative
Study on Numerical Benchmark Problems. IEEE Transactions on Evolu-
tionary Computation, 10(6), 646-657.

[18] J. T. Buchanan (1997): A Naive Approach for Solving MCDM Problems: the
GUESS Method. Journal of the Operational Research Society 48, 202-206.

[19] M. D. Buhmann (2003): Radial Basis Functions. Cambridge University
Press, Cambridge.

[20] L. Bull (1999): On Model-based Evolutionary Computation. Soft Comput-
ing 3, 76-82.

[21] Y. Cao (2008): Matlab Central File Exchange: Hypervolume Indicator.
http://www.mathworks.com/matlabcentral/fileexchange/
loadFile.do?objectId=19651l&objectType=file

[22] V. Chankong and Y. Y. Haimes (1983): Multiobjective Decision Making The-
ory and Methodology. Elsevier Science Publishing, New York.

[23] A.Charnes and W. W. Cooper (1977): Goal Programming and Multiple Ob-
jective Optimization; Part 1. European Journal of Operational Research 1(1),
39-54.

[24] Z. Chen (2005): Finite Element Methods and Their Applications. Springer-
Verlag, Berlin.

[25] C. A. Coello Coello and G. B. Lamont, Eds. (2004): Applications of Multi-
Objective Evolutionary Algorithms. World Scientific Publishing Company,
Singapore.

[26] C. A. Coello Coello, G. B. Lamont and D. A. Van Veldhuizen (2007): Evo-
lutionary Algorithms for Solving Multi-Objective Problems, 2nd Edition.
Springer-Verlag, Berlin.

[27] C. Cortes and V. Vapnik (1995): Support Vector Networks. Machine Learn-
ing 20, 273-297.

[28] D. Craft (2008): Matlab Central File Exchange: Pareto Surface Navigator.
http://www.mathworks.com/matlabcentral/fileexchange/
loadFile.do?objectId=13875&0bjectType=£file

71

[29] N. Cressie (1990): The Origins of Kriging. Mathematical Geology 22, 197-
202.

[30] H. Crowder, R. S. Dembo and J. M. Mulvey (1979): On Reporting Compu-
tational Experiments with Mathematical Software. ACM Transactions on
Mathematical Software 5(2), 193-203.

[31] I. Das and]. E. Dennis (1997): A Closer Look at Drawbacks of Minimiz-
ing Weighted Sums of Objectives for Pareto Set Generation in Multicriteria
Optimization Problems. Structural Optimization 14(1), 63-69.

[32] K. Deb (2001): Multi-Objective Optimization using Evolutionary Algo-
rithms. John Wiley & Sons, New York.

[33] K. Deb (2003): Unveiling Innovative Design Principles by Means of Multi-
ple Conflicting Objectives. Engineering Optimization 35(5),445-470.

[34] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan (2002): A Fast and Elitis Multi-
objective Genetic Algorithm: NSGA-II. IEEE Transactions in Evolutionary
Computation 6(2), 182-197.

[35] K. Deb and A. Srinivasan (2005): Innovization: Innovative Design Princi-
ples Through Optimization. KanGAL Report Number 2005007.

[36] K. Deb, L. Thiele, M. Laumanns and E. Zitzler (2002): Scalable Multi-
objective Optimization Test Problems. In Proceedings of the 2002 Congress
on Evolutionary Computation CEC2002, 825-830.

[37] J. E. Dennis and V. Torczon (1996): Managing Approximation Models in
Optimization. In N. Alexandrov and M. Y. Hussaini, eds., Multidisciplinary
Design Optimization: State of the Art, 330-347.

[38] L. Dixon and G. Szego (1978): The Global Optimization Problem: An Intro-
duction. In Towards Global Optimization 2, 1-15. Amsterdam, Holland.

[39] M. Emmerich, N. Beume and B. Naujoks (2005): An EMO Algorithm us-
ing the Hypervolume Measure as Selection Criterion. In Proceedings of the
3rd International Conference on Evolutionary Multi-Criterion Optimiza-
tion, 62-76.

[40] M. Emmerich, K. Giannakoglou and B. Naujoks (2006): Single- and Multi-
objective Evolutionary Optimization Assisted by Gaussian Random Field
Metamodels. IEEE Transactions on Evolutionary Computation 10(4), 421-
439.

[41] M. Emmerich, A. Giotis, M. Ozdenir, T. Back and K. Giannakoglou (2002):
Metamodel-assisted Evolution Strategies. In Parallel Problem Solving from
Nature, number 2439 in Lecture Notes in Computer Science, 371-380.
Springer-Verlag, Berlin.

72

[42] P.Eskelinen, K. Miettinen, K. Klamroth and J. Hakanen (2008): Pareto Navi-
gator for Interactive Nonlinear Multiobjective Optimization. OR Spectrum,
to appear.

[43] B. Everitt, S. Landau and M. Leese (2001): Cluster Analysis, 4th Edition.
Oxford University Press, Oxford.

[44] P. C. Fishburn (1974): Lexicographic Orders, Utilities and Decision Rules:
A Survey. Management Science 20(11), 1442-1471.

[45] M. Fleischer (2002): The Measure of Pareto Optima - Applications to Multi-
Objective Metaheuristics. Lecture Notes in Computer Science 2632, 519-533.
Springer-Verlag, Berlin.

[46] C. A. Floudas and P. M. Pardalos (1991): A Collection of Test Problems for
Constrained Global Optimization Algorithms. Springer-Verlag, Berlin.

[47] C. A. Floudas, P. M. Pardalos, C. S. Adjiman, W. R. Esposito, J. L. Klepeis,
Z. H. Gumus, C. A. Meyer and C. A. Schweiger (1999): Handbook of Test
Problems in Local and Global Optimization. Kluwer Academic Publishers,
Boston.

[48] S.Gass and T. Saaty (1955): The Computational Algorithm for the Paramet-
ric Objective Function. Naval Research Logistics Quarterly 2, 39-45.

[49] K. C. Giannakoglou (2002): Design of Optimal Aerodynamic Shapes
using Stochastic Optimization Methods and Computational Intelligence.
Progress in Aerospace Sciences 38, 43-76.

[50] K. C. Giannakoglou, M. K. Karakasis and I. C. Kampolis (2006): Evolution-
ary Algorithms with Surrogate Modeling for Computationally Expensive
Optimization Problems. In Proceedings of ERCOFTAC 2006 Design Opti-
mization International Conference, April 5-7 2006, Gran Canaria, Spain.

[51] A. P. Giotis, M. Emmerich, B. Naujoks, K. C. Giannakoglo and T. Back
(2002): Low-cost Stochastic Optimization for Engineering Applications. In
Proceedings of International Conference on Evolutionary Methods for De-
sign, Optimization and Control, Barcelona, Spain.

[52] P. E. Gill, W. Murray, M. H. Wright (1981): Practical Optimization. Aca-
demic Press, London.

[53] I. Glover and G. A. Kochenberger (2003): Handbook of Metaheuristics.
Kluwer Academic Publishers, Boston.

[54] T.J. Gogg and J. R. A. Mott (1996): Improve Quality & Productivity with
Simulation, 3rd Edition. JMI Consulting Group, Palos Verdes.

[55] D. E. Goldberg (1989): Genetic Algorithms in Search, Optimization and
Machine Learning. Addison-Wesley, New York.

73

[56] A. Gosavi (2003): Simulation-Based Optimization: Parametric Optimiza-
tion Techniques and Reinforcement Learning. Kluwer Academic Publish-
ers, Boston.

[57] H.-M. Gutmann (2001): A Radial Basis Function Method for Global Opti-
mization. Journal of Global Optimization 19, 201-227.

[58] T. Hanne (1999): On the Convergence of Multiobjective Evolutionary Algo-
rithms. European Journal of Operational Research 117(3), 553-564.

[59] S. Haykin (1998): Neural Networks: A Comprehensive Foundation, 2nd
Ed. Prentice Hall, New Jersey.

[60] A.Hedar (2008): Test Functions for Unconstrained Global Optimization.
http://www—optima.amp.i.kyoto—u.ac.jp/member/student/
hedar/Hedar_files/TestGO_files/Page364.htm

[61] K. E. Hillstrom (1977): A Simulation Test Approach to the Evaluation of
Nonlinear Optimization Algorithms. ACM Transactions on Mathematical
Software 3(4), 305-315.

[62] R.Horstand P. M. Pardalos, Eds. (1995): Handbook of Global Optimization.
Kluwer Academic Publishers, Boston.

[63] S. Huband, L. Barone, L. While and P. Hingston (2005): A Scalable Mul-
tiobjective Test Problem Toolkit. In Proceedings of Evolutionary Multi-
Criterion Optimization: 3rd International Conference, 280-294.

[64] S. Huband, P. Hingston, L. Barone and L. While (2006): A Review of Multi-
objective Test Problems and a Scalable Test Problem Toolkit. IEEE Transac-
tions on Evolutionary Computation 10(5), 477-506.

[65] E.]J. Hughes (2005): Evolutionary Many-Objective Optimisation: Many
Once or One Many? In Proceedings of the 2005 Congress on Evolutionary
Computation (CEC-205), 222-227.

[66] C.-L. Hwang and A. S. M. Masud (1979): Multiple Objective Decision Mak-
ing - Methods and Applications. Springer-Verlag, Berlin.

[67]]. Jahn (2004): Vector Optimization: Theory, Applications, and Extensions.
Springer-Verlag, Berlin.

[68] Y.Jin (2005): A Comprehensive Survey of Fitness Approximation in Evolu-
tionary Computation. Soft Computing 9(1), 3-12.

[69] Y. Jin, M. Olhofer and B. Sendhoff (2001): Managing Approximate Models
in Evolutionary Aerodynamic Design Optimization. In Proceedings of IEEE
Congress on Evolutionary Computation 1, 592-599.

74

[70] D. R. Jones, M. Schonlau and W. J. Welch (1998): Efficient Global Opti-
mization of Expensive Black-Box Functions. Journal of Global Optimization
13(4), 455-492.

[71] E. M. Kasprzak and K. E. Lewis (2000): An Approach to Facilitate Deci-
sion Tradeoffs in Pareto Solution Sets. Journal of Engineering Valuation and
Cost Analysis 3(1), 173-187.

[72] L. Kaufman and P. J. Rousseeuw (2005): Finding Groups in Data: An Intro-
duction to Cluster Analysis. John Wiley & Sons, New York.

[73] R. L. Keeney and H. Raiffa (1976): Decisions with Multiple Objectives: Pref-
erences and Value Tradeoffs. John Wiley & Sons, New York.

[74]]J. Knowles (2006): ParEGO: A Hybrid Algorithm with On-line Landscape
Approximation for Expensive Multiobjective Optimization Problems. IEEE
Transactions on Evolutionary Computation 10(1), 50-66.

[75] J. Knowles and D. Corne (2000): Approximating the Nondominated Front
Using the Pareto Archived Evolution Strategy. Evolutionary Computation
8, 149-172.

[76]]J. Knowles and H. Nakayama (2008): Meta-modeling in Multi-objective Op-
timization. In Multi-objective Optimization - Interactive and Evolutionary
Approaches. Springer-Verlag, Berlin. Forthcoming.

[77] P. Korhonen, H. Moskowitz and J. Wallenius (1992): Multiple Criteria Deci-
sion Support - A Review. European Journal of Operational Research 63(3),
361-375.

[78] S. Kukkonen and K. Deb (2006): Improved Pruning of Non-Dominated So-
lutions Based on Crowding Distance for Bi-Objective Problems. In Proceed-
ings of 2006 IEEE Congress on Evolutionary Computation, Vancouver, BC,
Canada July 16-21.

[79] S. Kukkonen and K. Deb (2006): A Fast and Effective Method for Pruning
of Non-dominated Solutions in Many-Objective Problems. Parallel Problem
Solving from Nature - PPSN IX, 553-562. Springer-Verlag, Berlin.

[80] S. Kukkonen and]. Lampinen (2005): GDE3: the Third Evolution Step of
Generalized Differential Evolution. In Proceedings of IEEE Congress on
Evolutionary Computation, 443-450, Edinburgh, Scotland.

[81] S. Kulturel-Konak, D. W. Coit and F. Baheranwala (2005): Pruned Pareto-
optimal Sets for the System Redundancy Allocation Problem Based on Mul-
tiple Prioritized Objectives. Rutgers University ISE working paper 05-009.

[82] H. J. Kushner (1964): A New Method of Locating the Maximum Point of
an Arbitrary Multipeak Curve in the Presence of Noise. Journal of Basic
Engineering 86, 97-106.

75

[83] M. Laumans, L. Thiele, K. Deb and E. Zitzler (2002): Combining Conver-
gence and Diversity in Evolutionary Multi-Objective Optimization. Evolu-
tionary Computation 10(3), 263-282.

[84] J. van Leersum (1998): A Numerical Model of a High Performance Two-
stroke Engine. Applied Numerical Mathematics 27, 83-108.

[85] D. Lim, Y. Jin, Y. S. Ong and B. Sendhoff (2008): Generalizing Surrogate-
assisted Evolutionary Computation. IEEE Transactions on Evolutionary
Computation, in press.

[86] G.- R. Liu and S. S. Quek (2003): The Finite Element Method: A Practical
Course. Butterworth-Heinemann, Oxford.

[87] R.T. Marler and J. S. Arora (2004): Survey of Multi-objective Optimization
Methods for Engineering. Structural and Multidisciplinary Optimization
26, 369-395.

[88] C. A. Mattson, A. A. Mullur and A. Messac (2004): Smart Pareto Filter:
Obtaining a Minimal Representation of Multiobjective Design Space. Engi-
neering Optimization 36(6), 721-740.

[89] A.Messac and A. A. Mullur (2008): A Computationally Efficient Metamod-
eling Approach for Expensive Multiobjective Optimization. Optimization
and Engineering 9(1), 37-67.

[90] K. Miettinen (1999): Nonlinear Multiobjective Optimization. Kluwer Aca-
demic Publishers, Boston.

[91] K. Miettinen (2003): Graphical Illustration of Pareto Optimal Solutions. In
Multi- Objective Programming and Goal Programming: Theory and Appli-
cations, T. Tanino, T. Tanaka, M. Inuiguchi (Eds.), 197-202. Springer-Verlag,
Berlin.

[92] K. Miettinen (2006): IND-NIMBUS for Demanding Interactive Multiobjec-
tive Optimization. In Multiple Criteria Decision Making '05, Ed. by T. Trza-
skalik, The Karol Adamiecki University of Economics in Katowice, Katow-
ice, 137-150, 2006.

[93] K. Miettinen and M. M. Mékel4 (1995): Interactive Bundle-Based Method
for Non-differentiable Multiobjective Optimization: NIMBUS. Optimiza-
tion 34(3), 231-246.

[94] K. Miettinen and M. M. Mikeld (1999): Comparative Evaluation of Some
Interactive Reference Point-based Methods for Multi-Objective Optimisa-
tion. Journal of the Operational Research Society 50, 949-959.

[95] K. Miettinen and M. M. Mékeld (2000): Interactive Multiobjective Opti-
mization System WWW-NIMBUS on the Internet. Computers & Operations
Research 27, 709-723.

76

[96] K. Miettinen and M. M. Mikeld (2002): On Scalarizing Functions in Multi-
objective Optimization. OR Spectrum 24, 193-213.

[97] K. Miettinen and M. M. Mékeld (2006): Synchronous Approach in Inter-
active Multiobjective Optimization. European Journal of Operational Re-
search 170, 909-922.

[98] J.Mockus (1994): Application of Bayesian Approach to Numerical Methods
of Global and Stochastic Optimization. Journal of Global Optimization 4,
347-365.

[99] M. Monz, K. H. Kiifer, T. R. Bortfeld and C. Thieke (2008): Pareto Naviga-
tion - Algorithmic Formulation of Interactive Multi-criteria IMRT Planning.
Physics in Medicine and Biology 53, 985-998.

[100] H. Nakayama, M. Arakawa and R. Sasaki (2002): Simulation-Based Opti-
mization Using Computational Intelligence. Optimization and Engineering
3,201-214.

[101] H. Nakayama and Y. Sawaragi (1984): Satisficing Trade-Off Method for
Multiobjective Programming. In M. Grauer and A. P. Wierzbicki, Eds. In-
teractive Decision Analysis, 113-122. Springer-Verlag, Berlin.

[102] J. A. Nelder and R. Mead (1965): A Simplex Method for Function Mini-
mization. Computer Journal 7, 308-313.

[103] V. Ojalehto, K. Miettinen and M. M. Mikeld (2007): Interactive Software
for Multiobjective Optimization: IND-NIMBUS. WSEAS Transactions on
Computers 6(1), 87-94.

[104] G. C. Onwubolu and B. V. Babu (Eds.) (2004): New Optimization Tech-
niques in Engineering. Springer-Verlag, Berlin.

[105] P. M. Pardalos and H. E. Romeijn, Eds. (2002): Handbook of Global Opti-
mization Volume 2. Springer-Verlag, Berlin.

[L06] J. D. Pinter (1996): Global Optimization in Action - Continuous and
Lipschitz Optimization: Algorithms, Implementations and Applications.
Kluwer Academic Publishers, Boston.

[107] R. C. Purshouse and P. J. Fleming (2003): Evolutionary Many-objective Op-
timisation: An Exploratory Analysis. In Proceedings of The 2003 Congress
on Evolutionary Computation (CEC 2003) 3, 2066-2073, Canberra, Aus-
tralia, 8-12 December 2003.

[108] W. L. Price (1977): A Controlled Random Search Procedure for Global Op-
timization. Computer Journal 20(4), 367-370.

[109] W. L. Price (1983): Global Optimization by Controlled Random Search.
Journal of Optimization Theory and Applications 40, 333-348.

77

[110] K. V. Price, R. M. Storn and]. A. Lampinen (2005): Differential Evolution -
A Practical Approach to Global Optimization. Springer-Verlag, Berlin.

[111] A.Ratle (1998): Accelerating the Convergence of Evolutionary Algorithms
by Fitness Landscape Approximation. In A. Eiben, T. Back, M. Schoenauer
and H.-P. Schwefel, eds., Parallel Problem Solving from Nature, volume V,
87-96.

[112] A.Ratle (1999): Optimal Sampling Strategies for Learning a Fitness Model.
In Proceedings of 1999 Congress on Evolutionary Computation 3, 2078-
2085, Washington D.C., July 1999.

[113] C. R. Raquel and P. C. Naval Jr. (2005): An Effective Use of Crowding Dis-
tance in Multiobjective Particle Swarm Optimization. In Proceedings of the
Genetic and Evolutionary Computation (GECCO 2005), Washington DC,
USA, 2005, 257-264.

[114] T.Robic and B. Filipic (2005): DEMO: Differential Evolution for Multiobjec-
tive Optimization. In Proceedings of the 3rd International Conference on
Evolutionary Multi-Criterion Optimization (EMO 2005), Guanajuato, Mex-
ico, 2005, 520-533.

[115] G. Rudolph (1996): Convergence of Evolutionary Algorithms in General
Search Spaces. In Proceedings of the Third IEEE Conference on Evolution-
ary Computation, 50-54.

[116] G. Rudolph (1998): Evolutionary Search for Minimal Elements in Partially
Ordered Finite Sets. In Proceedings of the 7th Annual Conference on Evo-
lutionary Programming, 345-353. Springer-Verlag, Berlin.

[117] G.Rudolph (1999): Evolutionary Search under Partially Ordered Sets. Tech-
nical Report CI-67/99. University of Dortmund.

[118] G.Rudolph and A. Agapie (2000): Convergence Properties of Some Multi-
objective Evolutionary Algorithms. In Proceedings of IEEE Congress on
Evolutionary Computation, 1010-1016.

[119] S. Ruuska and T. Aittokoski (2008): The Effect of Trial Point Generation
Schemes on the Efficiency of Population-Based Global Optimization Algo-
rithms. In Proceedings of International Conference on Engineering Opti-
mization, Rio de Janeiro, Brazil, 2008.

[120] S. Ruzika and M. M. Wiecek (2005): Survey Paper - Approximation Meth-
ods in Multiobjective Programming. Journal of Optimization Theory and
Applications 126(3), 473-501.

[121] J. Sacks, W. Welch, T. Mitchell and H. Wynn (1989): Design and Analysis of
Computer Experiments (with Discussion). Statistical Science 4, 409-435.

78

[122] R. Salomon (1996): Reevaluating Genetic Algorithm Performance Under
Coordinate Rotation of Benchmark Functions. BioSystems, 39(3), 263-278.

[123] M.]. Sasena (2002): Flexibility and Efficiency Enhancements for Con-
strained Global Design Optimization with Kriging Approximations. Doc-
toral dissertation. University of Michigan.

[124] P. Siarry and Z. Michalewicz, Eds. (2007): Advances in Metaheuristics for
Hard Optimization. Springer-Verlag, Berlin.

[125] B.D. Sivazlian and L. E. Stanfel (1975): Optimization Techniques in Opera-
tions Research. Prentice-Hall, New Jersey.

[126] R. E. Steuer (1986): Multiple Criteria Optimization: Theory, Computation,
and Application. John Wiley & Sons, New York.

[127] R. Storn (2008): Differential Evolution Homepage.
http://www.icsi.berkeley.edu/~storn/code.html

[128] R. Storn and K. Price (1997): Differential evolution - A Simple and Effi-
cient Heuristic for Global Optimization over Continuous Spaces. Journal of
Global Optimization 11, 341-359.

[129] H. A. Taboada and D. W. Coit (2005): Post-Pareto Optimality Analysis to
Efficiently Identify Promising Solutions for Multi-Objective Problems. Rut-
gers University ISE working paper 05-015.

[130] H. A. Taboada and D. W. Coit (2006): Data Mining Techniques to Facilitate
the Analysis of the Pareto-Optimal Set for Multiple Objective Problems.
Rutgers University ISE working paper 06-001.

[131] H. A. Taboada and D. W. Coit (2007): Data Clustering of Solutions for Mul-
tiple Objective System Reliability Optimization Problems. Quality Technol-
ogy and Quantitative Management 4(2), 191-210.

[132] A. To6rn, M. M. Ali and S. Viitanen (1999): Stochastic Global Optimization :
Problem Classes and Solution Techniques. Journal of Global Optimization
14(4), 437-447.

[133] A. Torn and A. Zilinskas (1989): Global Optimization. Springer-Verlag,
Berlin.

[134] H. L. Trinkaus and T. Hanne (2005): knowCube: A visual and Interactive
Support for Multicriteria Decision Making. Computers & Operations Re-
search 32, 1289-1309.

[135] V. N. Vapnik (1998) Statistical Learning Theory. John Wiley & Sons, New
York.

79

[136] D. V. Veldhuizen (1999): Multiobjective Evolutionary Algorithms: Classi-
fications, Analyses, and New Innovations, Ph. D. Thesis, Dayton, OH: Air
Force Institute of Technology, Technical Reports No. AFIT/DS/ENG /99-
01.

[137] V. Venkat, S. H. Jacobson and]. A. Stori (2004): A Post-Optimality Analysis
Algorithm for Multi-Objective Optimization. Computational Optimization
and Applications 28, 357-372.

[138] M. A. Villalobos-Arias, G. T. Pulido and C. A. Coello Coello (2005): A
Proposal to Use Stripes to Maintain Diversity in a Multi-objective Parti-
cle Swarm Optimizer. In Proceedings of Swarm Intelligence Symposium
SIS2005, 22-29.

[139]]. B. Vosa, A. Rizzib, D. Darracqc and E. H. Hirschel (2002): Navier-Stokes
Solvers in European Aircraft Design. Progress in Aerospace Sciences 38,
601-697.

[140] I. Voutchkov and A.]J. Keane (2006): Multiobjective Optimization Using
Surrogates. In Proceedings of the 7th International Conference on Adaptive
Computing in Design and Manufacture, 167-175.

[141] T. Weise (2008): Global Optimization Algorithms - Theory and Application.
eBook, www.it-weise.de/projects/book.pdf.

[142] W.]. Welch, R.]. Buck, J. Sacks, H. P. Wynn, T. J. Mitchell and M. D. Morris
(1992): Screening, Predicting, and Computer Experiments. Technometrics
34, 15-25.

[143] L. While, P. Hingston, L. Barone and S. Huband (2006): A Faster Algorithm
for Calculating Hypervolume. IEEE Transactions on Evolutionary Compu-
tation 10(1), 29-38.

[144] A.P. Wierzbicki (1982): A Mathematical Basis for Satisficing Decision Mak-
ing. Mathematical Modelling 3(25), 391-405.

[145] A. P. Wierzbicki (1999): Reference Point Approaches. In Multicriteria Deci-
sion Making: Advances in MCDM Models, Algorithms, Theory, and Ap-
plications. T. Gal, T.]. Stewart and T. Hanne (Eds.). Kluwer Academic Pub-
lishers, Boston.

[146] D. H. Wolpert and W. G. Macready (1997): No Free Lunch Theorems for
Optimization. IEEE Transactions on Evolutionary Computation, 1, 67-82.

[147] D. Zaharie (2003): Multi-objective Optimization with Adaptive Pareto Dif-
ferential Evolution. In Proceedings of Symposium on Intelligent Systems
and Applications (SIA 2003), Iasi, Romania.

80
[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

A. Zilinskas (1985): Axiomatic Characterization of a Global Optimization
Algorithm and Investigation of its Search Strategy. Operations Research
Letters 4(1), 35-39.

E. Zitzler, D. Brockhoff and L. Thiele (2007): The Hypervolume Indicator
Revisited: On the Design of Pareto-compliant Indicators Via Weighted In-
tegration. In EMO 2007, LNCS 4403, 862-876. Springer-Verlag, Berlin.

E. Zitzler, K. Deb and L. Thiele (2000): Comparison of Multiobjective Evo-
lutionary Algorithms: Empirical Results. Evolutionary Computation 8(2),
173-195.

E. Zitzler,]. Knowles and L. Thiele (2008): Quality Assessment of Pareto Set
Approximations. In Multiobjective Optimization - Interactive and Evolu-
tionary Approaches, J. Branke, K Deb, K. Miettinen and R. Slowinski (Eds.),
LNCS 5252, 373-404. Springer-Verlag, Berlin.

E. Zitzler and S. Kiinzli (2004): Indicator-based Selection in Multiobjective
Search. In Proceedings of the 8th International Conference on Parallel Prob-
lem Solving from Nature, 832-842.

E. Zitzler, M. Laumanns and L. Thiele (2001): SPEA2: Improving the
Strength Pareto Evolutionary Algorithm. Swiss Federal Institute of Tech-
nology, technical report TIK-Report 103.

E. Zitzler and L. Thiele (1998): Multiobjective Optimization Using Evolu-
tionary Algorithms - A Comparative Case Study. In Conference on Parallel
Problem Solving from Nature (PPSN V), 292-301, Amsterdam.

E. Zitzler, L. Thiele and J. Bader (2008): On Set-Based Multiobjective Op-
timization. Swiss Federal Institute of Technology, technical report TIK-
Report 300.

E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca and V. G. da Fonseca
(2003): Performance Assessment of Multiobjective Optimizers: An Analy-
sis and Review. IEEE Transactions on Evolutionary Computation 7(2), 117-
132.

ORIGINAL PAPERS

PI

COST EFFECTIVE SIMULATION-BASED MULTIOBJECTIVE
OPTIMIZATION

by

Timo Aittokoski and Kaisa Miettinen 2008

Engineering Optimization 40(7), 593-612

Reproduced with kind permission of Taylor & Francis.

https://doi.org/10.1080/03052150801914429

https://doi.org/10.1080/03052150801914429

PII

DECREASING COMPUTATIONAL COST OF SIMULATION
BASED INTERACTIVE MULTIOBJECTIVE OPTIMIZATION
WITH ADJUSTABLE SOLUTION ACCURACY

by

Timo Aittokoski and Kaisa Miettinen 2008

Reports of the Department of Mathematical Information Technology, Series B.
Scientific Computing, No. B 19/2008, University of Jyvaskyla

http://urn.fi/URN:ISBN:978-951-39-9035-0

http://urn.fi/URN:ISBN:978-951-39-9035-0

PIII

CLUSTERING AIDED APPROACH FOR DECISION MAKING
IN COMPUTATIONALLY EXPENSIVE MULTIOBJECTIVE
OPTIMIZATION

by

Timo Aittokoski, Sami Ayrdmé and Kaisa Miettinen

Optimization Methods and Software, to appear

Reproduced with kind permission of Taylor & Francis.

https://doi.org/10.1080/10556780802525331

https://doi.org/10.1080/10556780802525331

PIV

EFFICIENT EVOLUTIONARY METHOD TO APPROXIMATE
THE PARETO OPTIMAL SET IN MULTIOBJECTIVE
OPTIMIZATION

by
Timo Aittokoski and Kaisa Miettinen 2008

Proceedings of International Conference on Engineering Optimization EngOpt
2008, Rio de Janeiro, Brazil, June 1-5

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.576.9001

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.576.9001

PV

EFFICIENT EVOLUTIONARY OPTIMIZATION ALGORITHM:
FILTERED DIFFERENTIAL EVOLUTION

by

Timo Aittokoski 2008

Reports of the Department of Mathematical Information Technology, Series B.
Scientific Computing, No. B 20/2008, University of Jyvaskyla

http:/ /urnfi/URN:ISBN:978-951-39-9036-7

http://urn.fi/URN:ISBN:978-951-39-9036-7

	ABSTRACT
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	CONTENTS
	LIST OF INCLUDED ARTICLES
	1 INTRODUCTION
	2 OPTIMIZING BLACK-BOX ENGINEERING PROBLEMS
	2.1 Global optimization
	2.2 Multiobjective optimization

	3 CHALLENGES AND POSSIBLE RESPONSES
	3.1 Problem of algorithm selection
	3.2 Computational complexity
	3.3 Selecting the most preferred Pareto optimal solution

	4 AUTHOR'S CONTRIBUTION
	5 CONCLUSIONS AND FUTURE WORK
	YHTEENVETO
	ERRATA
	REFERENCES
	ORIGINAL PAPERS
	PI COST EFFECTIVE SIMULATION-BASED MULTIOBJECTIVE OPTIMIZATION
	PII DECREASING COMPUTATIONAL COST OF SIMULATION BASED INTERACTIVE MULTIOBJECTIVE OPTIMIZATION WITH ADJUSTABLE SOLUTION ACCURACY
	PIll CLUSTERING AIDED APPROACH FOR DECISION MAKING IN COMPUTATIONALLY EXPENSIVE MULTIOBJECTIVE OPTIMIZATION
	PIV EFFICIENT EVOLUTIONARY METHOD TO A PPROXIMATE THE PARETO OPTIMAL SET IN MULTIOBJECTIVE OPTIMIZATION
	PV EFFICIENT EVOLUTIONARY OPTIMIZATION ALGORITHM: FILTERED DIFFERENTIAL EVOLUTION

