
Reports of the Department of Mathematical Information Technology

Series B. Scientific Computing

No. B 20/2008

Efficient Evolutionary Optimization Algorithm:

Filtered Differential Evolution

Tirno Aittokoski

University of Jyvaskyla 2008

Reports of the Department of Mathematical Information Technology

Series B. Scientific Computing

Editor

Technical editor

Raino A. E. Makinen

Paula Takala

Reports of the Department of Mathematical Information Technology
Series B. Scientific Computing

No. B 20/2008

Efficient Evolutionary Optimization

Algorithm: Filtered Differential Evolution

Timo Aittokoski

University of Jyvaskyla
Department of Mathematical Information Technology

P.O. Box 35 (Agora)
FI-40014 University of Jyvaskyla

FINLAND
fax +35814 260 2731

http:/ /www.mit.jyu.fi/

Copyright © 2008
Tuno Aittokoski

and University of Jyviiskylii

ISBN 978-951-39-3354-8

ISSN 1456-436X

URN:ISBN:978-951-39-9036-7
ISBN 978-951-39-9036-7 (PDF)

ISSN 1456-436X

Jyväskylän yliopisto, 2022

Efficient Evolutionary Optimization Algorithm:
Filtered Differential Evolution

Timo Aittokoski*

Abstract

Solving many real-life engineering problems requires often global and ef­
ficient (in terms of objective function evaluations) treatment, because function
values involved are produced via time consuming simulations. In this study,
we consider optimization problems of this type by discussing some drawbacks
of the current surrogate assisted methods and then introduce a new popula­
tion based optimization algorithm, which borrows features of the well-known
Differential Evolution algorithm, but improves its efficiency by filtering away
ineffective trial points.

1 Introduction

Many real-life industrial optimization problems are computationally expensive, i.e.
they involve time consuming steps, for example black box -simulations, in evaluat­
ing the objective or constraint functions. These problems are often nondifferentiable,
at least in practice due to various difficulties in calculating the derivatives, as well
as multimodal, which prevents from using the classical (e.g. derivative based) opti­
mization methods. Therefore, there is a high demand for easy-to-use and efficient
(in terms of objective function evaluations needed) global optimization algorithms.
To this end, in Section 3 we propose a new efficient optimization algorithm, Fil­
tered Differential Evolution (FOE). It is based on Differential Evolution [38, 31] and
improves its efficiency by filtering away ineffective trial points.

We are interested in solving a global single objective optimization problem for­
mulated as

minimize f(x) (1)

subject to x E S.
Function f : !Rn

-----+ lR to be minimized is called an objective function. Minimization of
the objective function is done by altering values of the decision or design variables
forming the vector x E !Rn. The decision variable values will lie then within the

*timo.aittokoski@jyu.fi
Deparhnent of Mathematical Information Technology, University of Jyvaskyla, PO Box 35 (Agora),
FI-40014 University of Jyvaskyla, Finland

1

search (a.k.a. decision or design) space, i.e. in box constrained domain in]Rn in our
case. Sometimes all the points in the search space are not acceptable, and acceptable
subset of the search space is called as the feasible region S. If only box constraints are
used, the search space equals to the feasible region. The aim of the minimization
process is to find the point with the minimum value of the objective function 1

,

i.e. optimum, and the corresponding design variable values. Point x* is a global
minimum, if f(x*) ::; f(x) with all x E S. If there exists o > 0 so that f(x*) ::; f(x)
with all x E S, for which is valid llx - x* II ::; o, point x* is a local minimum.

There are several different methods to solve problem (1), and Evolutionary Algo­
rithms (EA's) are a family of widely employed algorithms suitable for the task. EA's
are general purpose stochastic and global optimization techniques inspired by the
phenomena of evolution in the nature. EA's have been used with success to solve
several different types of real life engineering optimization problems [11]. Differen­
tial Evolution (DE) [16, 31, 38] is an often cited and widely used population based
evolutionary algorithm. It has been successfully applied to a wide range of engi­
neering optimization problems, (e.g., ranging from optimization of water pumping
systems [4] to internal combustion engine design [21). Also in comparison with
several types of evolutionary algorithms, for example such as Stochastic Genetic Al­
gorithm (StGA) [39], Fast Evolutionary Strategies (FES) [43], Fast Evolutionary Pro­
gramming (FEP) [44], Particle Swarm Optimization (PSO) [3], a Simple Evolutionary
Algorithm (SEA) [41] and the Evolutionary Optimization (EO) [3] algorithm, the DE
algorithm has performed favorably. For a summary of the results, see [31].

However, when dealing with computationally expensive problems, the use of
even well developed EAs, such as DE, may not be reasonable, as the number of ob­
jective function evaluations required may prove to be prohibitive. This situation has
led researches to consider how the efficiency of EAs could be improved. As a result,
so-called meta-modelling or surrogate assisted schemes have been developed. In
these, the computationally expensive original objective function is replaced with an
inexpensive, lower fidelity surrogate model, which is utilized by EA (or in a more
general level, by any other type of optimization algorithm) in solving the optimiza­
tion problem. The surrogate model [23] may be implemented for example by using
kriging [10], artificial neural networks (ANN) [21], radial basis function networks
(RBFN) [7], support vector machines (SVM) [9],[40] etc. The surrogate is created by
sampling, i.e., by evaluating the function values of an initial set of points within the
search space. After the initial sampling, a surrogate model of the objective function
based on the sampled points is computed. In the actual optimization process, the
surrogate model is used by the optimization algorithm instead of the real expen­
sive objective function, and the surrogate model may be updated occasionally to
improve its accuracy.

The simplest meta-modelling schemes utilize merely a static surrogate, which is

1It may be useful to point out that the global optimum is not necessarily unique; in some cases
there may exist several equally good global optima in the different parts of the search space. How­
ever, in the literature it is often implicitly assumed that the global optimum is a single point. In this
study we rely on the similar assumption.

2

built in the beginning of the optimization process. No further updates are made of
the surrogate [5, 23]. The selected optimization algorithm then uses the surrogate
instead of the real objective function until the stopping condition of the optimiza­
tion algorithm used is met. The use of a static surrogate may obviously and very
easily lead the algorithm to converge to some false global optimum, i.e., optimum
of surrogate, which is not the optimum of the real expensive objective function.

A more realistic approach is to update the surrogate during the process, which
leads to improved accuracy of the surrogate, and thus the optimization algorithm
should avoid converging to a false optimum. Several algorithms with some surro­
gate update scheme have been proposed. These include the assisting Genetic Al­
gorithm (GA) with ANN [8], GA with kriging [32], GA with RBFN [28], and ES
with kriging [15], to mention a few. With a surrogate updating approach it is not
a trivial task to decide when and how should the surrogate be updated so that the
optimization algorithm converges correctly with as few expensive objective func­
tion evaluations as possible. These issues are referred to as model management or in
the context of evolutionary algorithms as evolution control, and they are discussed
for example in [12], [24] and [33]. For a more profound discussion of meta-model
assisted evolutionary algorithms, the reader is referred, for example, to [17, 23, 30].

A higher level of sophistication within a meta-modelling scheme is achieved
with methods that reject the framework of the surrogate assisted evolutionary al­
gorithms, and instead use the meta-model itself to determine at what point should
the next expensive objective function evaluation be made, and thus exploit all the
information available to the full extent. The point is determined by maximizing an
utility function (known also as a figure of merit) reflecting the rewards of continuing
sampling in a particular region [25], [35]. The purpose of the utility function is to
balance local and global search by finding a trade-off between sampling in known,
promising regions of the search space versus sampling in under-explored regions or
regions where the variation in function values and the uncertainty of the prediction
are both high. In this paper we refer to methods of this type as utility function based
algorithms.

It is worth mentioning that the computational overhead (due to running the al­
gorithm itself) of utility function based algorithms may be high as the number of
evaluated points increases. This is due to the fact that maximizing the utility func­
tion is itself a global optimization problem, as is the fitting of the meta-model. So, in
order to select a point to be sampled next, two global optimization problems must
be solved, and this must be iterated as many times as samples are taken.

Probably the two most well-known utility function based algorithms are Efficient
Global Optimization (EGO) [25] and a radial basis function method for global optimiza­
tion [19], which both bear some resemblance to a method introduced more than a
decade earlier, namely the P-algorithm [45]. The roots of the methods of this type
can be traced back as far as to 1964 and work of H. Kushner [26]. Both EGO and the
radial basis function method for global optimization have been shown to be very
efficient in terms of objective function evaluations with known test problems [19].

Based on the discussion above, we can note that each type of the algorithms is

3

best suited for a certain type of problems. Problems where objective function eval­
uations take virtually no time at all, can usually be solved using known EA's, for
example, DE. More expensive problems, where one objective function evaluation
takes time from a few seconds to some minutes, can be solved for example by using
surrogate assisted evolutionary algorithms. And finally, very expensive problems,
where one function evaluation may take several hours, benefit most of more sophis­
ticated (and also more complex) utility function based surrogate approaches, such
as EGO, where alf sampled information is exploited to its full extent.

In this work, we consider an approach which can be characterized to combine
ideas of surrogate assisted approaches and standard evolutionary algorithms. The
approach proposed is based on the DE algorithm, which we refine using some ideas
borrowed from the meta-modelling community. Although we do not explicitly con­
struct the surrogate, we use the information of previously sampled points to filter
away some of the trial points so that expensive function evaluations are avoided in
uninteresting areas of the search space. With this approach we aim to tackle prob­
lems of mediocre expense (where one objective function evaluation takes time from
a few seconds to some minutes), where the performance of the traditional EA ap­
proach may not suffice.

The remainder of this study is organized as follows. In Section 2 we discuss some
difficulties of the current EAs and meta-modelling algorithms. Then, in Section 3,
we propose some alternate ways to treat these difficulties and formulate a corre­
sponding algorithm. In Section 4 we show some experimental results, comparing
the variants of the new algorithm with variants of DE using test problems from the
literature. Finally, we conclude in Section 5.

2 Some drawbacks of the current approaches

2.1 Evolutionary algorithms

Population based evolutionary algorithms, such as DE, use a population of points to
keep track of good solutions and to attain a more thorough search to avoid getting
trapped in local optima. The basic idea of such algorithms, as we see it, is to exploit
the information available in the population to focus the search to certain, promising
areas of the search space. In other words, it is assumed that the population somehow
approximates the distribution of the good solutions in the search space, and thus,
during the optimization proc.P.ss the pop11lation should spatially shrink towards the
global optimum.

The idea that the population somehow approximates the distribution of the good
solutions in the search space can be expressed also by utilizing the concept of a sub­

level set, which is a subset of the search space where the function attains values less
than or equal to a given threshold value. The population P with its near neighbor­
hood can be considered as a rough approximation of the sublevel set of the objective
function f, where the threshold value is the objective function value of the worst
population member. For a more thorough discussion, the reader is referred to [34].

4

With the concept where the population is seen as an approximation of a certain
sublevel set, it seems plausible that the algorithm should ideally sample only the
area inside and near the given sublevel set, i.e., near the current population. This
idea may be further clarified by noting that an optimization process begins with an
initial population (with a sufficient size and diversity) which is somewhat evenly
distributed around the search space, but then the population starts to adapt to some
shape based on the objective function landscape. This particular shape is assumed,
because the points from other areas are detected as inferior by the objective function
value and excluded from the population. In this sense, when a population adapts
and shrinks to a certain shape, it happens for a reason, and it makes little sense to
evaluate more points from the areas which supposedly caused the contraction to a
certain shape in the first place.

Unfortunately, several EA's may severely fail to sample the search space inside
or near a given sublevel set in certain cases. If the sublevel set is disconnected, i.e.,
the population forms separate clusters (as it is often the case with multimodal func­
tions where global optimization is needed in the first place), or if the sublevel set is
strongly curved, elongated, or otherwise of irregular shape, the trial point genera­
tion strategy is inefficient because of the high number of the generated trial points
that do not coincide with the given sublevel set, but are instead located outside
of it. This behavior is clearly demonstrated in Figure 1, where the distribution of
the population of 22 individuals in the search space is shown (as gray diamonds)
after 300 objective function evaluations using DE with trial point generation strat­
egy DE/rand/1 (see Section 3) to solve the Rosenbrock and Michalewicz test func­
tions (see Section 4). Using this static population of 22 individuals (no updates were
made to population), 1100 trial points (black dots in the figure) were produced with
the help of the DE's trial point generation strategy to illustrate which regions of
the search space are attainable. In both of the cases the population, after 300 objec­
tive function evaluations, follows already the shape of the sublevel set of the given
function, which definitely is not the case with the generated trial points. Indeed,
when the objective function values of the generated trial points are checked using
the worst objective function value in the population as the threshold level (which
defines the sublevel set of the current population), it is to be noted that with the
Rosenbrock function only 31 % of the points have a better value than the chosen
threshold, i.e., reside inside the given sublevel set, and with the Michalewicz func­
tion 60%. The better percentage with the Michalewicz function is explained by the
fact that the sublevel set of the function consists of perpendicular straight regions,
and these regions are easier to reach by linear combinations (used in the DE point
generation mechanism) of the current population members. With the population
distributed to separate clusters, the percentages would be even worse. This example
shows that a remarkable number of objective function evaluations is unnecessarily
wasted.

As seen in the figures above, the actual behavior of DE contradicts with the in­
tuitive need to follow the shape of a given sublevel set. Within this framework of
thought it also seems obvious that the well-known exploration/ exploitation (i.e.,

5

Figure 1: Population after 300 evaluations (gray diamonds), and 1100 points (black
dots) generated using the population as the source of perturbations.

Rosenbrock Michalewicz

-05

balance between global and local search) dilemma [13, 27, 29] within the EA com­
munity originates from the use of less developed trial point generation strategies.
Once we have been able to shrink the sublevel set justifiably, we should no longer
explore farther locations of the search space, as we already implicitly know that
these areas contain only inferior solutions.

Irrational behaviour of DE, as well as several other EA's, is mainly due to an in­
efficient point generation strategy and lack of memory; only points in the current
population are kept in memory, and all previously evaluated points are completely
neglected by the trial point generation mechanism. For these reasons, the algorithm
may repeatedly sample trial points at regions where only solutions with bad objec­
tive function values have been found earlier during the optimization process, and
intuitively it seems clear that on these regions there is nothing to gain. Further,
there is no mechanism to prevent sampling very close to, or even at the location of
the already sampled solutions. This behaviour leads to splurging of objective func­
tion evaluations, which is not acceptable in the case of computationally expensive
problems.

2.2 Surrogate assisted evolutionary algorithms

As mentioned earlier in Section 1, with a surrogate assisted approach, model man­
agement, i.e., evolution control, is not a trivial task; it is difficult to decide when and
how should the surrogate be updated so that the EA converges correctly with as
few expensive objective function evaluations as possible. In [24], two basic methods
for evolution control are identified: individual based control, and generation based
control.

In the individual based control, a certain number of individuals in a population is
chosen and evaluated with the expensive objective function, and the surrogate is up­
dated with this new additional information. Individuals may be chosen randomly,

6

or by selecting the best ones based on the predicted function value of the surrogate.
This approach is used for example in [18] and [15]. An obvious problem in this ap­
proach is to select the most efficient number for individuals to be controlled, and
also the strategy to choose the individuals.

In the generation based control, the whole population is evaluated with the ex­
pensive objective function after a certain number of generations. This approach is
used for example in [8]. The surrogate may also be updated after some local conver­
gence criterion for running the EA on the surrogate has been fulfilled. This approach
is used in [32], where convergence is obtained when the best solution of a predeter­
mined number of generations has not changed by more than a user-defined value.
Also with the generation based control it may be problematic to decide the most
efficient schedule for controlling the population. Further, it may be problematic to
define the problem specific user defined values for the change in solutions.

Obviously, there may be also combinations of individual and generation based
control (e.g. [14]), or the surrogate may even be updated incrementally, after each
evaluated point (e.g., [28]). Some evolution control methods are discussed and com­
pared in [33], but there are no obvious answers on how to manage evolution control
in the most efficient manner.

Unless all sampled points are used in the creation of the surrogate model, it may
also be difficult to select a proper set of points to be used. If all sampled points
are used, the surrogate is globally most accurate, but may lack some local details
of the objective function landscape if the surrogate model is not flexible enough.
Further, creation of the surrogate model may become prohibitively time consuming
as the number of sample points grows [23], even to the point where the original
and expensive objective function is more economical to evaluate. One example of
this was encountered in [1] where EGO was used to solve an engine optimization
problem.

Usually not all sampled points are used in the surrogate, as it is sufficient to
model some neighborhood of the current population, as shown by, e.g., [18] and [8].
It is interesting to note that the idea of modelling the neighborhood of the current
population coincides with the concept of sublevel sets: the accuracy of the surrogate
model is emphasized only in the areas near the current population. A common way
to select a subset (i.e., a training set) of all sampled points to fit the surrogate is to
use some or all points of the population immediately after generation based control,
or in the case of individual based control, to replace some number of the worst or
randomly selected sample points from the current training set with freshly evalu­
ated better individuals. Also more intelligent approaches exist, see e.g., [15] where
local surrogates are constructed using k-nearest neighbors and kriging. In [14], mu­
tual distance and objective function values of the points are taken into account, in
order to keep the points of the training set scattered and yet sufficiently close to the
current population.

Based on the issues discussed in this subsection, we can conclude that evolution
control is far from being a self-evident task, and may require serious tweaking with
various parameters. Further, unless local approximations are used, fitting the surro-

7

gate may become very time consuming as the optimization process progresses and
the number of evaluated sample points grows.

2.3 Surrogate algorithms

Although utility function based surrogate algorithms, i.e., the ones that use the
meta-model itself to determine at what point should the next expensive objective
function evaluation be made, are the most efficient in terms of number of objec­
tive function evaluations. They are also the most complex ones to implement. For
example, in case of RBFs, it may not be obvious how to select the parameters of
the algorithm. In [19], issues such as selection of the type of radial basis functions
and polynomial degree, the decision to trust the model (no need to explore the un­
searched areas) or not to trust it (need to explore the unsearched area) and how to
maximize the utility function are considered as open problems.

Especially with kriging based approaches, e.g., EGO [25], a cumulative number
of sample points may make the fitting of the surrogate overly expensive at some
point of the optimization process. This is in contradiction with the fact that with
these approaches all evaluated points should be used to fit the surrogate in order to
get globally as accurate surrogate as possible.

We conclude this section by noting that traditional EA's suffer from the lack of
memory and inefficient trial point generation strategies, and it may be difficult to set
proper values for the control parameters (e.g., population size, F and CR in the case
of DE). On the other hand, these algorithms themselves are rather easy to implement
and use, and their computational overhead is negligible.

With surrogate assisted EA's, evolution control may be a problematic issue and
it may require some tedious parameter tuning. Also, it is not obvious which type of
surrogate should be selected. Further, implementing the surrogate model may not
be straightforward, as it may require some profound understanding.

Utility function based surrogate algorithms are obviously the most efficient ones
of the three types discussed, but they are complex in their implementation. Running
them may require more computational power, as two global optimization problems
need to be solved in order to decide the location for the next sample.

From these premises we propose our algorithm, striving for simplicity and effi­
ciency, in the fulluw ing 8edio1t.

3 Filtered Differential Evolution, FDE

In the previous section, we discussed some problems of the current, widely used
approaches. Here we propose a complementary algorithm as a partial response to
the presented difficulties.

Although our general approach of filtering presumably inefficient trial points
away could in principle be adapted to enhance the performance of several different

8

population based algorithms (such as GA, DE, PSO, etc.), we chose to utilize the
basic mechanisms of DE, because it is rather efficient and widely utilized. Thus, the
basic structure of our algorithm is similar to that of DE, except the fact that we filter
out some inefficient trial points, and try to select only better ones for expensive eval­
uation. For this reason, we refer to the proposed algorithm as Filtered Differential
Evolution, FDE.

As we use the DE as an integral part of our proposed algorithm, it is in order
to briefly describe the basic functioning of it. DE is a stochastic, population-based,
direct search algorithm for global optimization, and it employs the population to
produce the perturbations necessary for the trial point generation. In each iteration
of the DE, the new trial points must compete against a prescribed target i.e. parent
point. Each member of the population serves in turn as a target point, and the better
one of the target and trial points is selected for the population in the next genera­
tion. During the years several different trial point generation strategies have been
proposed, see, for example, [31], but in this study we utilize two trial point gener­
ation strategies: one originating from a so-called classic DE, denoted as DE/rand/1
strategy, and another one, DE/local-to-best/1 strategy [37].

In DE, each point in the population is selected in turn as a target point xi, and a
new trial point is generated. In the DE/rand/1 trial point generation strategy, three
distinct points, Xro, Xru

and Xr2
, are randomly selected from the population to create

a perturbed, i.e., mutated point vi,

(2)

where the scale factor F is a positive real number that controls the rate at which the
population evolves. In the DE/local-to-best/1 strategy, the perturbed point is created
as,

(3)

where x* is best individual in the population.
The perturbed point vi may be recombined with the target point xi to create the

trial point ti using uniform crossover, where the trial point is constructed by select­
ing vector components from either the perturbed point or the target point. The user­
defined crossover probability CR controls the fraction of the vector components that
are copied from the perturbed point; for more information, see [38]. If the crossover
is not used, the perturbed point vi itself becomes the trial point. The trial point is
allowed to replace the target point in the population for the following generation if
and only if it yields an equal or better objective function value than the target point.
Otherwise, the target point xi remains in the population. The population is updated
once at the end of each generation.

As shown in Subsection 2.1, the point generation mechanism of DE is wasting
some function evaluations as the points produced by it do not necessarily follow
the shape of the sublevel set, partly due to lack of memory. To change this behavior,
in FDE, all evaluated points are kept in memory, with the corresponding objective
function value, and this data is used to filter out the trial points that presumably
would not be accepted to the next generation. More specifically, for each parent

9

in the population one or more trial points are generated, the one with the best pre­
dicted value is selected, and if the best predicted value is not better than the parent's
objective value, the trial point is filtered away, i.e., excluded from consideration, and
the expensive objective function evaluation is avoided.

The rationale to generate more than one trial point for each parent is to extract
more information about the search space, and thus make the search more effective.
In some algorithms, such as EGO, an explicit optimization run is executed on the
surrogate to select the point which maximizes the expected improvement in the ob­
jective function value. In our approach, we simply select the trial point with best
predicted objective function value. It may be worth pointing out that the compu­
tational overhead of our algorithm increases relative to the number of trial points
generated, and we suppose that a higher number of trial points produces also better
efficiency. Thus, the user may balance between efficiency of the search and cost of
the objective function evaluation by selecting a different number of trial points to be
generated; with expensive objective function evaluations it is reasonable to explore
the surrogate more extensively by selecting a higher number of trial points to be
generated.

To filter out bad trial points, previous samples are used to predict the objective
function value. In contrast to all methods discussed earlier, no explicit surrogate
model is constructed to predict the objective function value, but in FDE we rather
use a simple nearest neighbor interpolation as a base of the prediction. Further, also
in contrast to most surrogate assisted EA's, we take into account the uncertainty of
the prediction (in a somewhat similar manner as in the EGO algorithm) by checking
how far the trial point is from the closest known sample point and multiply this dis­
tance with factor L, which depicts the variation in the objective function landscape,
and is derived (see below) from the current population.

After this short introduction, we now can present the steps of the FDE algorithm
as follows:

l. Initialize the population (randomly or using some space filling pseudo ran­
dom sequence to guarantee a sufficient diversity of solutions).

2. While stopping criterion is not met:

(a) For each parent in the population:

i. generate the user specified number (one or more) of trial points (us­
ing mutation ;mci c.rossover operators of DE),

ii. predict the objective function values of all the trial points, select the
best value, and set this value as a trial point value,

iii. filtering: if the trial point value is better than the parent's objective
value, evaluate the trial point using the rea 1 ohjec.tive hmc.tion, and
set this value as a trial point value,

iv. add the current trial point to the child population.

10

(b) Select the members for the next population by choosing in a pairwise
manner the better member from the parent and the child populations,
using the respective parent and child pairs in comparison

As predicting the objective function value of the new trial point is a focal point
of the proposed algorithm, we give here a more detailed explanation of it. Because
the prediction of the trial point value will inevitably be more or less inaccurate, this
must be somehow taken into account. There are two factors affecting the accuracy
of the prediction: the distance to the closest evaluated sample point, and irregularity
of the objective function landscape. Obviously, the closer we are to some evaluated
sample point, the more accurate will the prediction be. Also, when the objective
function landscape is very flat (low irregularity), there won't be much error. Thus,
it seems logical to assume that the predicted objective function value may deviate
from the objective function value of the closest already evaluated point by the prod­
uct of the distance (from the trial point to the closest evaluated sample point) and
the measure of irregularity.

As a measure of irregularity we use factor L, which is calculated based on the
information contained in the current population. For each point, i.e., member m
in the population, a distance dm to the closest neighbor me is computed, and the
slope Lm between these two points is calculated with respective objective function
values as Lm = lf(m)i�(mc)I. Now, L is chosen as the maximum of all Lm values,
and thus it reflects the maximum irregularity in the given population. The value for
L is computed once for every generation. To accomplish this, the computation of
a point-to-point distance matrix of the whole population is required to identify the
nearest neighbors for each point. It may be noted that in some sense L is a rough
estimate of a local Lipschitz constant (a measure of the maximum rate of change of
a function in some given region, see, for example, [20] and [42]) for the objective
function.

One may argue that L should be calculated based on all sampled points, instead
of only points of the current population. Unfortunately, this approach would not
work, because we wish to estimate the irregularity of the search landscape in the
neighborhood of the given sublevel set, i.e., locally. Essentially this means that in
the beginning of the optimization process the sublevel set defined by the population
covers almost the whole search space, and thus the value of L may be expected to be
very high. When the optimization process progresses, the sublevel set shrinks, and
also the value of L decreases. Finally, in the end of the process, when the population
has concentrated around the global optimum, the search landscape occupied by the
population is (and actually must be) very flat, the corresponding sublevel set is very
small, and the value of L is zero or very close to it.

If the value of L was calculated based on all sampled points, it would remain
high throughout the optimization process, and hinder the convergence to a global
optimum. This is due to the fact that the population should concentrate around
the global optimum during the process, and in this phase the points in the popula­
tion are more densely distributed than the other evaluated points surrounding the

11

population. In this case, the predicted objective function values would get good val­
ues around the population (because of the large inter-point distances), i.e., outside
the sublevel set defined by the population, and thus the search would concentrate
mainly outside the desired sublevel set. This explains why the value of L should
approach zero as the optimization process progresses, and this is realized by com­
puting L from the current population.

With the factor L, and given the trial point t we can now compute the prediction
of the objective function value. As we are dealing with minimization problems, we
are interested to know how much the objective function value can improve at the
maximum at a given point. Thus, we are making an optimistic prediction. First we
compute the distance dt from t to its nearest neighbor tnn among all so far evalu­
ated sample points. This requires computation of distances between t and all so far
evaluated samples, which is a negligible cost (compared to that of one expensive ob­
jective function evaluation) if the number of evaluated points remains in the order
of thousands. The predicted objective function value is now f

pred = J(tnn) - (L * dt)­
In short, we use the objective function value of the nearest already evaluated neigh­
bor as an estimate, and this estimate is reduced by the product of the current L and
the distance to the evaluated neighbor. In this way, the possible inaccuracy of the
prediction is incorporated into a predicted value in an optimistic way.

The prediction of the objective function value by the aforementioned method
possesses some intuitively appealing features. First, in the beginning of the opti­
mization process while the population is very diverse, also the irregularity (and the
value of L) is high. In this phase, it is obviously possible, by the predicted objec­
tive function values, to exclude only few solutions at very bad areas of the search
space, thus allowing good global search properties. When the process progresses,
the value of L decreases, and the prediction becomes a little bit less optimistic, thus
reducing the allowable search area, wherein the trial points are not directly filtered
away, more to a shape of the sublevel set defined by the current population. This
greatly improves its efficiency over the basic DE. Anyhow, if the trial point at this
phase appears at the large unsearched area (where the distance to the closest eval­
uated sample is large, and thus the predicted objective function value is good), it
still has a chance to get evaluated with the real expensive objective function. Finally,
when the population concentrates more and more, the value of L further decreases,
and the filtering by the predicted objective function values allows the search only
very close to the current population, thus changing emphasis more in to direction
of local search. At the same time, the proposed method avoids sampling at, or very
near, already known points, as the predicted value allains ils maximwn value in
between two already known solutions (because this maximizes the distance to the
closest evaluated point).

4 Numerical results

In this section, we compare the results of our new algorithm to other DE imple­
mentations. More specifically, we use the Matlab implementation of the original DE

12

(ODE) from [36], our own implementations of DE without filtering (DE), with fil­
tering using only a single trial point (FDE), and with filtering with four trial points
(FDE-4). All algorithms are tested with a similar setup, i.e. using the same popula­
tion size, control parameters, and trial point generation strategy using test problems
from the literature.

We have selected six test problems with varying levels of complexity from the
literature, and used their implementations given in [22]. Although our aim is to
provide an algorithm suitable for solving real-life engineering problems, for perfor­
mance testing we used only analytical test problems, as results of these are easier
to compare, and they possess certain features that test the different abilities of opti­
mization algorithms.

The Rosenbrock function has its global minimum in a deep, curved valley, the
Michalewicz function contains constant valued grooves with differing orientation,
and one rather deep global minimum, and the Rastrigin and Griewangk functions
contain both numerous local minima in the otherwise bowl-shaped surface. The
Ackley function is essentially flat, but with a wrinkled surface, and the global op­
timum is located in a very deep valley in the middle, whereas the Levy function
contains grooves and barriers around a rather flat area around the global minimum.
Formulations, ranges of search spaces and optimal objective function and design
variable values for the test functions are given in Table l.

In all algorithms, we used two different trial point generation strategies, namely
DE/rand/1 (denoted by ODEl, DEl, FDEl, FDEl-4, and strategy=l in figures) and
DE/local-to-best/1 (denoted by ODE2, DE2, FDE2, FDE2-4 , and strategy=2 in figures).
See [31, 36, 37] for details and comparisons of different point generation strategies.
In this study the scale factor F was set to 0.8, crossover probability CR to 0.1, and
the population size to lln, n standing for the number of variables. No attempt was
made to tune these parameters for a better performance. For each of the six test
functions, versions with 2, 5 and 10 design variables were tested, using a maximum
budget of 500, 1000, and 2000 evaluations, respectively. The best results gained at
10 different evaluation levels (e.g. in 2D case results after 50, 100, 150, etc. evalua­
tions) were logged for each of the algorithms for 100 test runs using the same initial
populations.

Using this test setup it is possible to compare the differences of various imple­
mentations of the same algorithm, as well as the differences of the same implemen­
tation using different trial point generation strategies. Further, comparison of all
different algorithms is possible head to head. The averaged results for each of the
test functions are shown in Figures 2, 3, 4, 5, 6 and 7. In each of the figures in the
left column are the results of all algorithms using the strategy DE/rand/1, and at the
right column using the strategy DE/local-to-best/1. In both columns, results are given
for 2, 5, and 10 design variable versions of the test functions.

In Tables 2 and 3 we show statistics of the best results for all the test runs after
the evaluation budget has exhausted. This data includes mean, minimum and max­
imum objective values, and also standard deviation (Std) and variance (Var) of the
values.

13

Function

Rosenbrock

Range

Optimum

Michalewicz

Range

Optimum

Rastrigin

Range

Optimum

Griewangk

Range

Optimum

Ackley

Range

Optimum

Levy

Range

Optimum

Table 1: Test problems used in this study.

Formulation

f(x) = I:7�/[lOO(x; - Xi+1)2
+ (xi - 1)2]

-5.12:::; Xi :::; 5.12

x* = (1, ... , 1), f(x*) = 0

f(x) = - I:7=1 sin(xi)(sin(ix;l1r))2m;m = 10

0:::; Xi:::; 7r

n = 2, f(x*) = -1.8013; n = 5, f(x*) = -4.687; n = 2, f(x*) = -9.66

f (x) = 10n + I:7=1 (x; - 10cos(21rxi))

-5.12 :::; Xi :::; 5.12

x* = (0, ... , 0), f(x*) = 0
2

f(x) = I:7=1 To5o - IT7=1 cos(xi/0) + 1

-600 :::; Xi :::; 600

x* = (0, ... , 0), f(x*) = 0
1

f(x) = 20 + e - 20e --g

.l I: n 2 1 I: n (n i=l Xi _ e-ri i=l cos 21rxi)

-32.768:::; Xi:::; 32.768

x* = (0, ... , 0), f(x*) = 0

f(x) = sin2(1ry1) + I::1 [(Yi -1)2(1 + 10sin2(1ryi + 1))]

+(Yn - 1)2(1 + 10sin2(21ryn)), Yi= 1 + x;4
l

, i = 1, . . . n.

-10:::; Xi:::; 10

x* = (1, ... , 1), f(x*) = 0

14

--

Figure 2: Evaluation histories of Rosenbrock function with 2, 5 and 10 dimensions.
Rosenbrock 2D, strategy=1

so�--�-- ------- --=--�

30·

� 25·
>

15

10

5

� 1200
1ii >1000

800
600
400·
200

0

12000

g: 10000

� 8000

6000

4000

2000

0

200

200 300
of function evals

Rosenbrock 5D, strategy=1

400 600
of function evals

Rosenbrock 10D, strategy=1

-ODE1
·····DE1 i

��--�g�u

400

-ODE1
-·-··DE1

FDE1
•••. FDE14[

800 1000

-ODE1
----·DE1 :

FDE1 [
:
:

:·F�E14;

i

- .. - - - - .. - - - .. - - .-- -�

500 1000 1500 2000
of function evals

15

Rosenbrock 2D, strategy=2
50

�---- - ------- --�.-.... -0-D_E_:2� ..
45· •·••· DE2

15

10·

5

·FDE2
•.••. FOE24

�-- -'�/:!' � -"'"-""' -
0

800
600
400
200

0

12000

� 10000 ·

� 8000

6000

4000

2000

100

200

200 300
of function evals

Rosenbrock 5D, strategy=2

400 600
of function evals

Rosenbrock 10D, strategy=2

400 500

.
.:'::.::06E2

1 ·····DE2
FDE2

•••.. FDE24

800 1000

-ODE2
·--··DE2 '

·· FDE2 j
•••. F?.E24 j

1500 2000

Figure 3: Evaluation histories of Michalewicz function with 2, 5 and 10 dimensions.
Michalewicz 2D, strategy=1

·1 ..-------------a===
o
=
o

=
E

=
1

.,

:,

-1.1

-1.3

ro -1.4
>

-1.5

-1.6 ·

-1.7

-2.2

-2.4

·2.6

� -2.8
1il
> .3

-3.2

-3.4

-3.6

0

-4.6

-4.8

-5,

200

Michalewicz 5D, strategy=1

400 600
of function evals

----·DE1
· FDE1 ,
.... FOE\

500

---oDEi :
-----DE1 :
·•· FDE1 ,
..... FDE14[

800 1000

--J

'-' - - - -�- - -�----�-- - - �

500 1000 1500 2000
of function evals

16

Michalewicz 2D, strategy=2
.1.------�------,;=====

-ODE2 I

<l)

:,

-1.1

-1.3

ro -1.4
>

-1.5

-1.6

-2.2

-2.4

-2.6·

�-2.8·
1il
> -3·

-3.2

.3.4

-3.6

0

.3.4--------

-3.6

-3.8 ·

.4

-4.6

-4.8

100 200 300

200

of function evals

Michalewicz 5D, strategy=2

400 600
of function evals

Michalewicz 1 OD, strategy=2

----·DE2 1
FDE2 .

.... FDE2
4_!

---ODE2 i
·----DE2 i
.. ·FDE2 '
•••. FDE2

4 i

800

! :::I_ .5

o� -- --
500
� -- --1-

ooo
�- - -1-

soo
�---�2000·

of function evals

Figure 4: Evaluation histories of Rastrigin function with 2, 5 and 10 dimensions.

.. 6 :,
� 5

4

3
2-

0

35

"30 :,

25·

20

15-

100

Rastrigin 2D, strategy=1

200 300

of function evals

Rastrigin 5D, strategy=1

--=--ooo\i
-----DE1 '

------ -FDE1
-------FDE1

4
:

400 500

:.:=.ooEii
---··DE1 ;

FDE1 I
----FDE14:

� --�- - -�- --�- --

0 200 400 600 800

105

100

95

90

85

80

75

70

65

60

0

of function evals

Rastrigin 1 OD, strategy=1

-ODE:i]
-----DE1 ;

FDE1
----FDE14i

500 1000 1500 2000
of function evals

17

" 6-::,
� 5

4

3

2

Rastrigin 2D, strategy=2

r

-ODE2 :!
----DE2 i
- FDE2 ;

••.•.• FDE2 1
4;

- --�- - -�- - -�----------"'•�---"!!3.---1
0

35

ru 30· :,

25

20·

15,-
0

85

� 80·

75-

70-

65

60-

0

100 200 300 400 500

of function evals

Rastrigin 5D, strategy=2

Rastrigin 10D, strategy=2

-ODE2 i
·····DE2

FDE2

500 1000 1500 2000
of function evals

Figure 5: Evaluation histories of Griewangk function with 2, 5 and 10 dimensions.

3.5

"ffi 3-
> 2.5

Griewangk 2D, strategy=1

-ODE1
·····DE1
· ·· ·· FDE1
•••.. FDE14 i'

151
1!

0.5�
L_��--�-:::::;:::, ����,.,.,
0

20
"'

> 15

10

5

100

30

20·

10,

100 200 300

200

of function evals

Griewangk 5D, strategy=1

400 600
of function evals

Griewangk 10D, strategy=1

400 500

-ODE1
----·DE1

- FDE1
- - --FDE\l

800 1000

�-- -�----�----�- - -�
0 GOO 1000 1500

of function evals

2000

18

Griewangk 2D, strategy=2

::.=obE2)!
----·DE2 ;i

·FDE2)
- - --FDE24l1

o.5L;' - -�·_:·-�::::_-����=="""'""""........i - �-. - .� � ,. � - -"" - "
0 100 200 300 400 500

20
"'

> 15

10·

5

80

70

� 60·

50

40

30

20

10·
0

200

of function evals

Griewangk 5D, strategy=2

400 600
of function eva!s

Griewangk 1 OD, strategy=2

-ODE2
----·DE2 !

·FDE2 !
•.••. FDE24i

800 1000

-ODE2 :i
--···DE2
·· ··FDE2 ,

\
•••. FDE24!

'\\
\'i

\�\

'<::�:�:�-�
500 1000 1500

of function evals

2000

Figure 6: Evaluation histories of Ackley function with 2, 5 and 10 dimensions.

4.

2·

0 100

Ackley 2D, strategy= 1

200 300

of function evals

Ackley 5D, strategy=1

-DDE1
----·DE1 ,

FDE1 !
•••.. FDE14f

400 500

'', --,.� ... =O�D=E=1
7
!

� :� <:�·::::�-----�,--.:1:i::'.
> ' -------

I
'·-

:L ·· ---�---�--�------�------_-_- _--_-�·

8

0 200 400 600 800 1000

12

10

8
0

of function evals

Ackley 10D, strategy=1

500 1000 1500

of function evals
2000

19

>

12·

10

8

6

100

2L·- -��-

0 200

18

16

Ackley 2D, strategy=2

200 300

of function evals

Ackley 5D, strategy=2

400 600

of function evals

Ackley 10D, strategy=2

�00E2i
·····DE2

I ·· FDE2
..... FDE24,

400 500

BOO 1000

-cibE2·
·····DE2

FDE2

� 14
'"

12·

10

a�- - -�- - - -�-- --

o 500 1000 1500

of function evals
2000

Figure 7: Evaluation histories of Levy function with 2, 5 and 10 dimensions.
Levy 20, strategy=1

-ODE1
·····DE1

FDE1
••.•.. FDE14

�--�·_c••,.,:"••· . ······:'.c•·;;-,:., ____ __J

!g 4
ro >

3

0

25

20

100 200 300 400 500

200

of function evals

Levy 50, strategy=1

400 600
of function evals

Levy 1 OD, strategy=1

-=00E1j:
·····DE1

FDE1
.... FDE14i

800 1000

-ODE1
-----DE1

FDE1
..... FDE14

500 1 ooo ·1 soo 2000
of function evals

20

7

!g 4
ro >

3

2

25
\

\\
�\ 20

100

200

� \�\

Levy 20, strategy=2

200 300
of function evals

Levy 5D, strategy=2

400 600
of function evals

Levy 1 OD, strategy=2

ru 15 \\
> I \\;>·--.:-.10!

-ODE2
-----DE2

FDE2
.... FDE24

400 500

'
-ODE2
-----DE2

·FDE2
•••• FDE24

800 1000

-0DE2
···--DE2

FDE2
.... FOE24

5L____I �·.::::�>-'.-·:--------�---------
------1

500 1000 1500
of function evals

2000

Table 2: Statistics of objective function values of Rosenbrock, Michalewicz and Ras­
trigin test functions.

Rosenbrock

Alg. Dim. Mean Min Max Std Vac

ODEI 2D 0.13933 0.()()11829 1.2031 0.2064 0.042599

DEi 0.10267 0.0002514 0.71448 0.12992 0.016879

PDE! 0.0051592 6.67c--07 0.30827 0.031333 0.00098175

PDEl-4 0.00022297 2.86c--07 0.0050053 0.00070582 4.98c--07

ODE2 0.049814 4.40c--06 0.81035 0.11481 0.013181

DE2 0.020344 7.79c--06 0.43632 0.050369 0.002537

PDE2 0.00010014 l.25c--08 0.0086671 0.00086564 7.49c--07

PDE2-4 9.37c--06 l.68c--08 9.50c--05 l.55c--05 2.40e-10

ODE! 5D 95.152 9.817 265.83 50.361 2536.3

DEi 65.052 5.8807 200.51 37.508 1406.9

PDE! 24.379 6.8257 69.179 12.075 145.8

PDEl-4 12.459 3.7832 31.294 5.9154 34.992

ODE2 16.916 1.8072 49.011 8.3409 69.571

DE2 12.952 3.0554 31.746 5.6007 31.368

PDE2 7.5358 2.3445 18.301 2.9544 8.7285

PDE2-4 4.5609 2.003 8.2543 1.4095 1.9866

ODE! !OD 3688.3 928.24 8431.2 1631 2.66e+06

DEi 1537.7 318.97 3009.6 633.35 4.0le+05

FDEI 1121.2 214.47 2704.7 498.67 2.49c+05
FDEl-4 749.75 194.3 1537.4 328.8 l.08c+05

ODE2 571.97 88.942 1627.2 262.4 68853

DE2 395.54 105.03 1082.5 164.23 26973

FDE2 300.59 90.228 638.16 116.94 13674

FDE2-4 209.26 95.84 382.31 70.654 4992

Mi •n::uewicz

ODEI 2D -1.7975 -1.8013 -1.7714 0.0050179 2.52c--05

DEi -1.8001 -1.8013 -1.7932 0.0014807 2.19c--06

PDE! -1.8013 -1.8013 -1.8012 l.lSc--05 l.32e-10

PDEl-4 -1.8013 -1.8013 -1.8013 4.02e--09 l.62e-17

ODE2 -1.8009 -1.8013 -1.7968 0.00081231 6.60c--07

DE2 -1.8011 -1.8013 -1.7982 0.00041874 l.75c--07

FDE2 -1.8013 -1.8013 -1.8013 4.76c--07 2.26e-13

PDE2-4 -1.8013 -1.8013 -1.8013 3.07e--08 9.41e-16

ODE! 5D -3.0357 -4.0281 -2.5076 0.29944 0.089663

DEi -3.3112 -4.3251 -2.6711 0.33934 0.11515

PDE! -3.4151 -4.3432 -2.7847 0.26525 0.070358

PDEl-4 -3.5505 -4.1775 -2.9042 0.26236 0.068835

ODE2 -3.399 -4.1911 -2.7683 0.34017 0.11572

DE2 -3.4459 -4.2158 -2.7565 0.28644 0.082046

PDE2 -3.579 -4.2791 -2.6737 0.32099 0.10303

PDE2-4 -3.7426 -4.597 -3.0953 0.28832 0.08313

ODE! !OD -4.3632 -5.8381 -3.643 0.39037 0.15239

DEi -4.945 -6.4729 -4.1635 0.44341 0.19661

PDE! -4.8562 -6.1639 -4.175 0.38355 0.14711

PDEl-4 -4.9425 -6.2233 -4.1579 0.47112 0.22195

ODE2 -4.7897 -5.8447 -4.0173 0.36469 0.133

DE2 -4.9409 -5.9533 -4.3711 0.35175 0.12373

FDE2 -5.0466 -6.3121 -4.2761 0.39339 0.15476

FDE2-4 -5.1154 -6.3622 -4.3308 0.3%13 0.15692

Rastrie.in
ODE! 2D 1.2652 0.039037 3.6711 0.69544 0.48363

DEi 1.1558 0.025507 3.7253 0.78223 0.61188

PDE! 0.04337 8.BBc--06 1.0009 0.17217 0.02%43

FDEl-4 0.017031 2.95c--06 0.99533 0.12844 0.016497

ODE2 0.96201 0.015212 2.3392 0.6412 0.41114

DE2 0.92531 0.0048362 3.3515 0.6955 0.48372

PDE2 0.044176 4.00c--06 0.99567 0.19528 0.038133

FDE2-4 0.036352 4.99c--07 0.99508 0.17964 0.032269

ODE! 51) 21.085 5.5753 32.581 5.0979 25.989

DEi 18.308 8.2619 27.726 4.4469 19.775

FDEI 16.501 7.4347 23.906 3.61 13.032

FDEl-4 15.274 6.9825 25.754 4.4782 20.054

ODE2 16.144 4.%01 25.534 4.5482 20.686

DE2 15.242 4.8189 25.32 4.0509 16.41

FDE2 14.379 4.6423 23.716 3.9838 15.871

FDE2-4 13.924 4.3374 20.29 4.3467 18.894

ODEI !OD 78.442 55.564 102.09 8.5632 73.328

DEi 65.048 37.947 78.627 7.3014 53.311

PDE! 62.731 42.552 78.608 7.9112 62.587

PDEl-4 60.68 42.776 75.687 7.5012 56.267

ODE2 63.066 36.655 77.442 9.1629 83.959

DE2 57.051 36.888 73.259 7.9219 62.757

FDE2 56.529 38.047 69.551 7.8482 61.595

FDE2-4 55.194 39.882 69.159 6.5264 42.594

21

Table 3: Statistics of objective function values of Griewangk, Ackley and Levy test
functions.

Griewanl!k

AI2. Dim. Mean Min Max Std Var

ODE! 2D 0.15828 0.015902 0.62475 0.098673 0.0097363

DEi 0.12045 0.010989 0.37088 0.070397 0.0049558

FDEI 0.077168 0.00051745 0.21885 0.048762 0.0023777

FDEl-4 0.078194 0.0079527 0.24222 0.051369 0.0026388

ODE2 0.089289 0.015299 0.36469 0.060016 0.0036019

DE2 0.086146 0.0027124 0.26114 0.053509 0.0028632

FDE2 0.047309 0.0027585 0.18224 0.032163 0.0010345

FDE2-4 0.044792 0.0074184 0.14827 0.028018 0.00078499

ODE! 5D 4.4451 1.2716 11.375 1.8272 3.3387

DEi 3.2407 !.1328 7.8422 1.1855 1.4054

FDEI 1.7922 0.8%38 2.87% 0.39925 0.1594

FDEl-4 1.053 0.47794 1.3756 0.19257 0.037082

ODE2 1.4537 0.70289 2.2839 0.322% 0.1043

DE2 1.3769 o.m65 2.069 0.29379 0.086315

FDE2 0.99204 0.44286 1.5092 0.2015 0.040603

FDE2-4 0.60009 0.24967 1.0213 0.15221 0.023167

ODE! !OD 46.486 15.592 73.724 9.7731 95.513

DEi 27.202 11.394 43.745 6.4303 41.349

FDEI 24.071 10.687 43.423 5.8795 34.568

FDEl-4 15.86 8.0157 24.205 4.0717 16.579

ODE2 12.493 4.7809 22.074 3.2822 10.773

DE2 10.634 5.7312 21.011 3.0984 9.6003

FDE2 8.9361 3.9286 16.064 2.4632 6.0674

FDE2-4 4.0786 2.3326 7.8508 1.1273 1.2709

Aclde
ODE! 2D 0.87119 0.029443 2.6731 0.63714 0.40594

DEi 0.71839 0.028378 2.503 0.5597 0.31327

FDEI 0.022522 0.0006528 0.25714 0.029161 0.00085039

FDEl-4 0.00018045 l.68e-05 0.00052317 0.00013568 1.84e--08

ODE2 0.11096 0.0058637 1.3049 0.14731 0.0217

DE2 0.082308 0.0020054 0.47114 0.078768 0.0062045

FDE2 0.0038188 0.00039338 0.0462% 0.0053189 2.83c-05

FDE2-4 l.57e-05 1.55e-06 7.58c-05 l.48e-05 2.19e-10

ODE! 5D 10.534 5.2078 14.467 1.9167 3.6739

DEi 9.1868 4.2638 12.735 1.5805 2.498

FDEI 8.1576 3.5055 12.932 1.6107 2.5944

FDEl-4 4.428 2.8381 6.6601 0.80722 0.6516

ODE2 5.5387 3.0095 7.9144 1.03% 1.0807

DE2 5.1995 3.3695 7.7681 0.9162 0.83942

FDE2 4.3941 2.3573 5.7381 0.70847 0.50194

FDE2-4 1.6077 0.65515 2.5346 0.48062 0.23099

ODE! !OD 17.201 13.78 18.77 0.88176 0.7775

DEi 15.269 11.%5 17.082 1.0199 1.0403

FDEl 15.292 12.276 17.165 0.98665 0.97347

FDEl-4 13.365 11.587 15.19 0.82879 0.6869

ODE2 12.37 7.8045 14.73 1.1944 1.4266

DE2 11.581 8.2956 13.901 !.173 1.376

FDE2 11.327 8.583 14.052 1.0974 1.2043

FDE2-4 7.9283 5.3189 9.816 1.0149 1.03

Levy

ODE! 2D 0.0010884 l.9le-06 0.010404 0.00159 2.53e-06

DEi 0.00058036 1.86e-06 0.012404 0.0013374 l.79e..Q6
FDEI 9.20e-07 2.26c--09 6.35e-06 l.22e-06 1.50e-12

FDEl-4 1.41e-08 5.31e-11 l.50e-07 2.95e--08 8.70e-16

ODE2 2.14e-05 2.60e-08 0.00024394 3.24e-05 1.05e-09

DE2 l.13e-05 5.lBe-08 7.04e-05 l.61e-05 2.58e-10

FDE2 1.00e-07 6.46e-lO 9.09e-07 l.52e-07 2.30e-14

FDE2-4 6.48e-10 6.63e-12 1.27e-08 l.67c-09 2.79e-18

ODE! 5D 1.5163 0.42048 344?1 ()�7(:,.(, 0 47?AA

DEi 0.99509 0.2359 2.2107 0.42471 0.18038

FDEI 0.39701 0.091409 0.98924 0.19043 0.036263

FDEl-4 0.20058 0.057588 0.50282 0.076989 0.0059274

ODE2 0.28163 0.022181 0.86838 0.11988 0.022163

DE2 0.24506 0.018783 0.67668 0.13881 0.019268

FDE2 0.11329 0.01355 0.26834 0.050271 0.0025272

FDE2-4 0.030253 0.0051786 0.0%573 0.018185 0.00033069

ODE! !OD 13.866 4.5205 21.458 3.5869 12.866

DEi 7.5849 3.3281 12.802 2.1542 4.6406

FDEI 6.6402 3.0326 10.36 1.7888 3.1999

FDEl-4 5.264 2.4893 8.3384 1.3582 1.8418

ODE2 5.3854 1.6434 12.87 1.8516 3.4285

DE2 4.0206 1.8946 8.:)759 !.1549 1.3339

FDE2 3.0407 !.1679 6.0894 0.85864 0.73727

FDE2-4 2.0024 0.73066 3.7209 0.6377 0.40666

22

From the results we can first notice that in several cases there is a big difference in
performances of ODE and DE implementations, although they represent basically
the same algorithm. There are at least two possible factors explaining the perfor­
mance difference. First is how the box constrained search space is handled. In ODE,
trial points which are not inside the box are bounced i.e. reflected back, whereas
in DE these points are neglected and new points are generated until one is found
which is inside the given box. Another difference is that in ODE, the random se­
lection of vectors in trial point generation is performed by shuffling the population
array (to reduce computational overhead of the algorithm), and hence a certain vec­
tor cannot be chosen twice in the same term of the perturbation expression. This
obviously cuts down the number of possible combinations, and it may be detrimen­
tal to the performance (with regard to objective function evaluations needed) of the
algorithm.

Another observation is that in some cases the performance difference of FDE over
DE is only a minor one, suggesting that the filtered approach with only a single
trial point does not offer remarkable advantage. In a sense this is very natural,
because the only decision to make is whether to evaluate the trial point or not, and as
our approach to predict the objective function value is rather crude, no remarkable
advantage is gained.

On the other hand, FDE-4 with only four trial points (which must be considered
as a very low number if we are dealing with computationally expensive objective
function) for each parent produced in most cases clearly better performance than
DE and FDE approaches. Obviously this is due to the fact that when compared to
its single point counterpart, in some sense, FDE-4 gathers four times more informa­
tion about the search space via the surrogate, and this approach seems to be more
effective.

From the results we can make the general remark that the comparable efficiency
of the FDE variants seems to be inversely proportional to the efficiency of the chosen
point generation strategy. This is probably due to the fact that the point generation
strategy DE/local-to-best/1 seems to be far more efficient in itself, and there are not
so many points which can be readily judged inefficient by the proposed filtering
method. However, in all the cases (except the Michalewicz, lOD, with strategy=l)
the proposed algorithm is more efficient than the respective DE version without
filtering.

With respect to the problem dimensions, it seems that the proposed approach,
especially with the FDE-4 variant maintains it efficiency with increasing dimensions.
Anyhow, with a higher number of dimensions than used in this study, it is possible
that at some stage the proposed algorithm starts to lose its efficiency. This is due to
the fact that the concept of nearest neighbor may not be meaningful in some cases in
high dimensions [6], and thus also the nearest neighbor interpolation may not work
efficiently.

In every example case, the difference between the least (ODE) and the most (FDE-
4) efficient algorithm is notable. In some cases, the difference between the non­
filtered and the filtered approach is rather small, but in most of the cases the use

23

of more trial points in the filtered approach produces remarkable performance ad­
vantage. A strange anomaly is the Michalewicz function in lOD, with strategy=l,
where the non-filtered approach seems to be more efficient than either of the filtered
approaches.

5 Discussion and conclusions

In this work, we have discussed some drawbacks of the widely used global opti­
mization approaches. As our emphasis is to provide tools to solve some real engi­
neering problems where the number of affordable objective function evaluations is
somewhat restricted, we have proposed a new algorithm which seems to be com­
putationally rather efficient and complements previous approaches by overcoming
some of the drawbacks discussed. Namely, the proposed approach follows the sub­
level set framework by generating set of trial points, and filtering presumably in­
efficient ones away using some ideas borrowed from meta-modelling approaches.
Yet, our approach does not require any model management procedure, and there is
no explicit surrogate fitting, which may be a difficult or time consuming task in it­
self. Also, computational cost required to predict the objective function value of the
trial point is negligible (compared to that of the expensive objective function evalua­
tion), as it requires computation of a point-to-point distance matrix of the population
once in each generation, and computation of a distance vector from the trial point
to all evaluated points for every trial point. Further, the proposed algorithm is very
straightforward to implement, and the proposed filtering mechanism could prob­
ably be adapted to enhance the performance of several different population based
algorithms (for example, GA or PSO).

The computational efficiency of the new algorithm is explained by the fact that
some of the trial points are excluded from the expensive objective function evalua­
tion, based on the information contained in the previously sampled points. In this
way, based on the numerical tests conducted in this study, savings up to 80% in the
number of objective function evaluations, compared to that of commonly available
implementation of DE (ODE), could be realized.

The performance comparisons presented in this study encourage us to believe
that our approach has some real potential, but there is still need for further study.
For example, a more thorough testing is needed to find out how the performance
of the proposed algorithm is related to the number of trial points that are generated
for each parent. Further, it would be useful to be able to provide guideline or even
self-adaptivity for the algorithm itself to balance between the cost of the objective
function, and a reasonable number of trial points.

In our approach, there is also room for other types of improvement. For exam­
ple, a more accurate interpolation could be implemented, accompanied by different
means to estimate the prediction error, and the results of both these could be verified
by some sort of a cross validation scheme, i.e., against the objective function value
of some other neighboring point. Conversely to the current approach, more intelli­
gent trial point generation strategies should be developed (to follow the sublevel set

24

framework), as this would decrease the need for filtering the trial points in general.
The proposed algorithm has been designed to suit best for the problems where

the expense of the objective function evaluations is mediocre, i.e., one objective func­
tion evaluation takes from a few seconds to some minutes. Inexpensive problems
can be easily solved using known EA's, for example, Differential Evolution. On the
other hand, very expensive problems, where one evaluation may take several hours,
benefit most of more sophisticated (and also more complex) utility function based
surrogate approaches, such as EGO, where all sampled information is exploited to
its full extent.

It is reasonable to assume, but open to further research, that with the problems
of mediocre computational cost the efficiency of our approach can be adjusted by
using suitable number of trial points for each parent. In this manner, the computa­
tional overhead of our algorithm can be balanced with the cost of objective function
evaluation, thus minimizing the wall clock time needed to solve a certain problem.

6 Acknowledgements

The author would like to thank Professor Kaisa Miettinen for support, insights, per­
spectives and proof reading during the research and preparation of this article. Fur­
ther, the author would like to thank Mr. Sauli Ruuska, Dr. Jussi Hakanen, Dr. Sarni
Ayramo and Dr. Ferrante Neri for some advice and valuable discussions.

References

[1] T. Aittokoski (2007): On Optimization of Simulation Based Design. Licentiate
Thesis. Jyvaskyla Licentiate Thesis in Computing 8. University of Jyvaskyla.

[2] T. Aittokoski and K. Miettinen (2008): Cost Effective Simulation-Based Multiob­
jective Optimization in Performance of Internal Combustion Engine. Engineer­
ing Optimization 40(7), 593-612.

[3] P. J. Angeline (1998): Evolutionary Optimization versus Particle Swarm Opti­
mization. In V. W. Porto, N. Saravanan, D. Waagen, A. E. Eiben (eds.) Evolution­
ary programming VII, 601-610. Springer, Berlin.

[4] B. V. Babu and R. Angira, Optimization of Water Pumping System Using Dif­
ferential Evolution Strategies. In Proceedings of The Second International Con­
ference on Computational Intelligence, Robotics, and A�tonomous Systems
(CIRAS-2003), Singapore, 2003.

[5] J.- F. M. Barthelemy and R. T. Haftka (1993): Approximation concepts for opti­
mum structural design - a review. Structural Optimization 5, 129-144.

25

[6] K. Beyer, J. Goldstein, R. Ramakrishnan and U. Shaft (1999): When Is "Nearest
Neighbor" Meaningful? In Proceedings of International Conference on Database
Theory, 217-235.

[7] M. D. Buhmann (2003): Radial Basis Functions. Cambridge University Press,
Cambridge.

[8] L. Bull (1999): On model-based evolutionary computation. Soft Computing 3,
76-82.

[9] C. Cortes and V. Vapnik (1995): Support vector networks. Machine Learning 20,
273-297.

[10] N. Cressie (1990): The origins of kriging. Mathematical Geology 22, 197-202.

[11] D. Dasgupta and Z. Michalewicz (Eds.) (1997): Evolutionary Algorithms in En­
gineering Applications. Springer, Berlin.

[12] J. E. Dennis and V. Torczon (1997): Managing approximation models in opti­
mization. In N. Alexandrov and M. Y. Hussaini, eds., Multidisciplinary Design
Optimization: State of the Art, 330-347. Society for Industrial & Applied Mathe­
matics.

[13] A. E. Eiben and C. A. Schippers (1998): On Evolutionary Exploration and Ex­
ploitation. Fundamenta Informaticae 35(1-4), 35-50.

[14] M. A. El-Beltagy, P. B. Nair and A. J. Keane (1999): Metamodeling techniques
for evolutionary optimization of computationally expensive problems: promises
and limitations. In Proceedings of Genetic and Evolutionary Conference, 196-
203, Orlando, 1999.

[15] M. Emmerich, A. Giotis, M. Ozdenir, T. Back and K. Giannakoglou (2002):
Metamodel-assisted evolution strategies. In Parallel Problem Solving from Na­
ture, number 2439 in Lecture Notes in Computer Science, 371-380. Springer,
Berlin.

[16] V. Feoktistov (2006): Differential Evolution - In Search of Solutions. Springer,
Berlin.

[17] K. C. Giannakoglou, M. K. K,mikasis ,mcl T. C. Kampolis (2006): Evolutionary
Algorithms with Surrogate Modeling for Computationally Expensive Optimiza­
tion Problems. ERCOFTAC 2006 Design Optimization International Conference,
April 5-7 2006, Gran Canaria, Spain.

[18] A. P. Giotis, M. Emmerich, B. Naujoks, K. C. Giannakoglou and T. Back (2002):
Low-cost stochastic optimization for engineering applications. Evolutionary
Methods for Design, Optimisation and Control, K. Giannakoglou, D. Tsahalis,
J. Periaux, K. Papailiou and T. Fogarty (Eds.).

26

[19] H. -M. Gutmann (2001): A Radial Basis Function Method for Global Optimiza­
tion. Journal of Global Optimization 19, 201-227.

[20] P. Hansen, B. Jaumard and S. H. Lu (1992): On Using Estimates of Lipschitz
Constants in Global Optimization. Journal of Optimization Theory and Appli­
cations 75(1), 195-200.

[21] Simon Haykin (1998): Neural Networks: A Comprehensive Foundation, 2nd
Ed. Prentice Hall, New Jersey.

[22] A Hedar (2008): Test Functions for Unconstrained Global Optimization.
http://www-optima.amp.i.kyoto-u.ac.jp/member/student/
hedar/Hedar_files/TestGO_files/Page364.htm

[23] Y. Jin (2005): A Comprehensive Survey of Fitness Approximation in Evolution­
ary Computation. Soft Computing 9(1), 3-12.

[24] Y. Jin, M. Olhofer and B. Sendhoff (2001): Managing approximate mod­
els in evolutionary aerodynamic design optimization. In Proceedings of IEEE
Congress on Evolutionary Computation 1, 592-599, May 2001.

[25] D. R. Jones, M.Schonlau and W. J. Welch (1998): Efficient Global Optimization
of Expensive Black-Box Functions. Journal of Global Optimization 13(4), 455-
492.

[26] H.J. Kushner (1964): A new method of locating the maximum point of an arbi­
trary multipeak curve in the presence of noise. Journal of Basic Engineering 86,
97-106.

[27] N. Muttil and S.-Y. Liong (2004): Superior Exploration-Exploitation Balance in
Shuffled Complex Evolution. Journal of Hydraulic Engineering 130(12), 1202-
1205.

[28] H. Nakayama, M. Arakawa and R. Sasaki (2002): Simulation-Based Optimiza­
tion Using Computational Intelligence. Optimization and Engineering 3, 201-
214.

[29] B. Naudts and A Schippers (1999): A motivated definition of exploitation and
exploration. Technical report 02-99, University of Antwerp, Belgium.

[30] Y. S. Ong, P. B. Nair, A J. Keane and K. W. Wong (2004): Surrogate-assisted evo­
lutionary optimization frameworks for high-fidelity engineering design prob­
lems. In Y. Jin (ed.), Knowledge Incorporation in Evolutionary Computation,
307-332. Springer, Berlin.

[31] K. V. Price, R. M. Storn and J. A Lampinen (2005): Differential Evolution - A
Practical Approach to Global Optimization. Springer, Berlin.

27

[32] A. Ratle (1998): Accelerating the convergence of evolutionary algorithms by
fitness landscape approximation. In A. Eiben, Th. Back, M. Schoenauer and H.-P.
Schwefel, eds., Parallel Problem Solving from Nature, volume V, 87-96. Springer,
Berlin.

[33] A. Ratle (1999): Optimal sampling strategies for learning a fitness model.
In Proceedings of 1999 Congress on Evolutionary Computation, 3, 2078-2085,
Washington D.C., July 1999.

[34] S. Ruuska and T. Aittokoski (2008): The Effect of Trial Point Generation
Schemes on the Efficiency of Population-Based Global Optimization Algorithms.
In Proceedings of International Conference on Engineering Optimization, Rio de
Janeiro, Brazil, 2008.

[35] M. J. Sasena (2002): Flexibility and Efficiency Enhancements for Constrained
Global Design Optimization with Kriging Approximations. Doctoral Thesis.
University of Michigan.

[36] R. Storn (2008): Differential Evolution Homepage.
http://www.icsi.berkeley.edu/~storn/code.html

[37] R. Storn and K. Price (1995): Differential Evolution - a simple and efficient
adaptive scheme for global optimization over continuous spaces. ICSI Techni­
cal Report tr-95-012.

[38] R. Storn and K. Price (1997): Differential evolution - a simple and efficient
heuristic for global optimization over continuous spaces. Journal of Global Op­
timization 11, 341-359.

[39] z. Tu and Y. Lu (2004): A robust stochastic genetic algorithm for global numeri­
cal optimization. IEEE Transactions on Evolutionary Computation 8(5), 456-470.

[40] V. N. Vapnik (1998): Statistical Learning Theory. John Wiley & Sons, New York.

[41] J. Vesterstrom and R. Thomsen (2004): A comparative study of differential evo­
lution, particle swarm optimization, and evolutionary algorithms on numeri­
cal benchmark problems. In Proceedings of the 2004 Congress on Evolutionary
Computing 2, 1980-1987.

[42] G. R. Wood and B. P. Zhang (1996): Estimation of the Lipschitz Constant of a
Function. Journal of Global Optimization 8, 91-103.

[43] X. Yao and Y. Liu (1997): Fast Evolution Strategies. In P. J. Angeline, R. J.
Reynolds, J. R. McDonnell, R. Eberhart (eds.), Evolutionary programming V I,
151-161. Springer, Berlin.

[44] X. Yao, Y. Liu and G. M. Lin (1999): Evolutionary programming made faster.
IF.RR Transactions on Evolutionary Computation 3, 82-102.

28

[45] A. Zilinskas (1985): Axiomatic Characterization of a Global Optimization Algo­
rithm and Investigation of its Search Strategy. Operations Research Letters 4(1),
35-39.

29

	ABSTRACT
	1 INTRODUCTION
	2 SOME DRAWBACKS OF THE CURRENT APPROACHES
	2.1 Evolutionary algorithms
	2.2 Surrogate assisted evolutionary algorithms
	2.3 Surrogate algorithms

	3 FILTERED DIFFERENTIAL EVOLUTION, FDE
	4 NUMERICAL RESULTS
	5 DISCUSSION AND CONCLUSIONS
	6 ACKNOWLEDGEMENTS
	REFERENCES

