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Efficient Evolutionary Optimization Algorithm: 
Filtered Differential Evolution 

Timo Aittokoski* 

Abstract 

Solving many real-life engineering problems requires often global and ef
ficient (in terms of objective function evaluations) treatment, because function 
values involved are produced via time consuming simulations. In this study, 
we consider optimization problems of this type by discussing some drawbacks 
of the current surrogate assisted methods and then introduce a new popula
tion based optimization algorithm, which borrows features of the well-known 
Differential Evolution algorithm, but improves its efficiency by filtering away 
ineffective trial points. 

1 Introduction 

Many real-life industrial optimization problems are computationally expensive, i.e. 
they involve time consuming steps, for example black box -simulations, in evaluat
ing the objective or constraint functions. These problems are often nondifferentiable, 
at least in practice due to various difficulties in calculating the derivatives, as well 
as multimodal, which prevents from using the classical (e.g. derivative based) opti
mization methods. Therefore, there is a high demand for easy-to-use and efficient 
(in terms of objective function evaluations needed) global optimization algorithms. 
To this end, in Section 3 we propose a new efficient optimization algorithm, Fil
tered Differential Evolution (FOE). It is based on Differential Evolution [38, 31] and 
improves its efficiency by filtering away ineffective trial points. 

We are interested in solving a global single objective optimization problem for
mulated as 

minimize f(x) (1) 

subject to x E S. 
Function f : !Rn 

-----+ lR to be minimized is called an objective function. Minimization of 
the objective function is done by altering values of the decision or design variables 
forming the vector x E !Rn. The decision variable values will lie then within the 
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search (a.k.a. decision or design) space, i.e. in box constrained domain in ]Rn in our 
case. Sometimes all the points in the search space are not acceptable, and acceptable 
subset of the search space is called as the feasible region S. If only box constraints are 
used, the search space equals to the feasible region. The aim of the minimization 
process is to find the point with the minimum value of the objective function 1

, 

i.e. optimum, and the corresponding design variable values. Point x* is a global
minimum, if f(x*) ::; f(x) with all x E S. If there exists o > 0 so that f(x*) ::; f(x)
with all x E S, for which is valid llx - x* II ::; o, point x* is a local minimum.

There are several different methods to solve problem (1 ), and Evolutionary Algo
rithms (EA's) are a family of widely employed algorithms suitable for the task. EA's 
are general purpose stochastic and global optimization techniques inspired by the 
phenomena of evolution in the nature. EA's have been used with success to solve 
several different types of real life engineering optimization problems [11]. Differen
tial Evolution (DE) [16, 31, 38] is an often cited and widely used population based 
evolutionary algorithm. It has been successfully applied to a wide range of engi
neering optimization problems, (e.g., ranging from optimization of water pumping 
systems [4] to internal combustion engine design [21). Also in comparison with 
several types of evolutionary algorithms, for example such as Stochastic Genetic Al
gorithm (StGA) [39], Fast Evolutionary Strategies (FES) [43], Fast Evolutionary Pro
gramming (FEP) [44], Particle Swarm Optimization (PSO) [3], a Simple Evolutionary 
Algorithm (SEA) [41] and the Evolutionary Optimization (EO) [3] algorithm, the DE 
algorithm has performed favorably. For a summary of the results, see [31]. 

However, when dealing with computationally expensive problems, the use of 
even well developed EAs, such as DE, may not be reasonable, as the number of ob
jective function evaluations required may prove to be prohibitive. This situation has 
led researches to consider how the efficiency of EAs could be improved. As a result, 
so-called meta-modelling or surrogate assisted schemes have been developed. In 
these, the computationally expensive original objective function is replaced with an 
inexpensive, lower fidelity surrogate model, which is utilized by EA ( or in a more 
general level, by any other type of optimization algorithm) in solving the optimiza
tion problem. The surrogate model [23] may be implemented for example by using 
kriging [10], artificial neural networks (ANN) [21], radial basis function networks 
(RBFN) [7], support vector machines (SVM) [9],[40] etc. The surrogate is created by 
sampling, i.e., by evaluating the function values of an initial set of points within the 
search space. After the initial sampling, a surrogate model of the objective function 
based on the sampled points is computed. In the actual optimization process, the 
surrogate model is used by the optimization algorithm instead of the real expen
sive objective function, and the surrogate model may be updated occasionally to 
improve its accuracy. 

The simplest meta-modelling schemes utilize merely a static surrogate, which is 

1It may be useful to point out that the global optimum is not necessarily unique; in some cases 
there may exist several equally good global optima in the different parts of the search space. How
ever, in the literature it is often implicitly assumed that the global optimum is a single point. In this 
study we rely on the similar assumption. 
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built in the beginning of the optimization process. No further updates are made of 
the surrogate [5, 23]. The selected optimization algorithm then uses the surrogate 
instead of the real objective function until the stopping condition of the optimiza
tion algorithm used is met. The use of a static surrogate may obviously and very 
easily lead the algorithm to converge to some false global optimum, i.e., optimum 
of surrogate, which is not the optimum of the real expensive objective function. 

A more realistic approach is to update the surrogate during the process, which 
leads to improved accuracy of the surrogate, and thus the optimization algorithm 
should avoid converging to a false optimum. Several algorithms with some surro
gate update scheme have been proposed. These include the assisting Genetic Al
gorithm (GA) with ANN [8], GA with kriging [32], GA with RBFN [28], and ES 
with kriging [15], to mention a few. With a surrogate updating approach it is not 
a trivial task to decide when and how should the surrogate be updated so that the 
optimization algorithm converges correctly with as few expensive objective func
tion evaluations as possible. These issues are referred to as model management or in 
the context of evolutionary algorithms as evolution control, and they are discussed 
for example in [12], [24] and [33]. For a more profound discussion of meta-model 
assisted evolutionary algorithms, the reader is referred, for example, to [17, 23, 30]. 

A higher level of sophistication within a meta-modelling scheme is achieved 
with methods that reject the framework of the surrogate assisted evolutionary al
gorithms, and instead use the meta-model itself to determine at what point should 
the next expensive objective function evaluation be made, and thus exploit all the 
information available to the full extent. The point is determined by maximizing an 
utility function (known also as a figure of merit) reflecting the rewards of continuing 
sampling in a particular region [25], [35]. The purpose of the utility function is to 
balance local and global search by finding a trade-off between sampling in known, 
promising regions of the search space versus sampling in under-explored regions or 
regions where the variation in function values and the uncertainty of the prediction 
are both high. In this paper we refer to methods of this type as utility function based 
algorithms. 

It is worth mentioning that the computational overhead (due to running the al
gorithm itself) of utility function based algorithms may be high as the number of 
evaluated points increases. This is due to the fact that maximizing the utility func
tion is itself a global optimization problem, as is the fitting of the meta-model. So, in 
order to select a point to be sampled next, two global optimization problems must 
be solved, and this must be iterated as many times as samples are taken. 

Probably the two most well-known utility function based algorithms are Efficient 
Global Optimization (EGO) [25] and a radial basis function method for global optimiza
tion [19], which both bear some resemblance to a method introduced more than a 
decade earlier, namely the P-algorithm [45]. The roots of the methods of this type 
can be traced back as far as to 1964 and work of H. Kushner [26]. Both EGO and the 
radial basis function method for global optimization have been shown to be very 
efficient in terms of objective function evaluations with known test problems [19]. 

Based on the discussion above, we can note that each type of the algorithms is 
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best suited for a certain type of problems. Problems where objective function eval
uations take virtually no time at all, can usually be solved using known EA's, for 
example, DE. More expensive problems, where one objective function evaluation 
takes time from a few seconds to some minutes, can be solved for example by using 
surrogate assisted evolutionary algorithms. And finally, very expensive problems, 
where one function evaluation may take several hours, benefit most of more sophis
ticated (and also more complex) utility function based surrogate approaches, such 
as EGO, where alf sampled information is exploited to its full extent. 

In this work, we consider an approach which can be characterized to combine 
ideas of surrogate assisted approaches and standard evolutionary algorithms. The 
approach proposed is based on the DE algorithm, which we refine using some ideas 
borrowed from the meta-modelling community. Although we do not explicitly con
struct the surrogate, we use the information of previously sampled points to filter 
away some of the trial points so that expensive function evaluations are avoided in 
uninteresting areas of the search space. With this approach we aim to tackle prob
lems of mediocre expense (where one objective function evaluation takes time from 
a few seconds to some minutes), where the performance of the traditional EA ap
proach may not suffice. 

The remainder of this study is organized as follows. In Section 2 we discuss some 
difficulties of the current EAs and meta-modelling algorithms. Then, in Section 3, 
we propose some alternate ways to treat these difficulties and formulate a corre
sponding algorithm. In Section 4 we show some experimental results, comparing 
the variants of the new algorithm with variants of DE using test problems from the 
literature. Finally, we conclude in Section 5. 

2 Some drawbacks of the current approaches 

2.1 Evolutionary algorithms 

Population based evolutionary algorithms, such as DE, use a population of points to 
keep track of good solutions and to attain a more thorough search to avoid getting 
trapped in local optima. The basic idea of such algorithms, as we see it, is to exploit 
the information available in the population to focus the search to certain, promising 
areas of the search space. In other words, it is assumed that the population somehow 
approximates the distribution of the good solutions in the search space, and thus, 
during the optimization proc.P.ss the pop11lation should spatially shrink towards the 
global optimum. 

The idea that the population somehow approximates the distribution of the good 
solutions in the search space can be expressed also by utilizing the concept of a sub

level set, which is a subset of the search space where the function attains values less 
than or equal to a given threshold value. The population P with its near neighbor
hood can be considered as a rough approximation of the sublevel set of the objective 
function f, where the threshold value is the objective function value of the worst 
population member. For a more thorough discussion, the reader is referred to [34]. 
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With the concept where the population is seen as an approximation of a certain 
sublevel set, it seems plausible that the algorithm should ideally sample only the 
area inside and near the given sublevel set, i.e., near the current population. This 
idea may be further clarified by noting that an optimization process begins with an 
initial population (with a sufficient size and diversity) which is somewhat evenly 
distributed around the search space, but then the population starts to adapt to some 
shape based on the objective function landscape. This particular shape is assumed, 
because the points from other areas are detected as inferior by the objective function 
value and excluded from the population. In this sense, when a population adapts 
and shrinks to a certain shape, it happens for a reason, and it makes little sense to 
evaluate more points from the areas which supposedly caused the contraction to a 
certain shape in the first place. 

Unfortunately, several EA's may severely fail to sample the search space inside 
or near a given sublevel set in certain cases. If the sublevel set is disconnected, i.e., 
the population forms separate clusters (as it is often the case with multimodal func
tions where global optimization is needed in the first place), or if the sublevel set is 
strongly curved, elongated, or otherwise of irregular shape, the trial point genera
tion strategy is inefficient because of the high number of the generated trial points 
that do not coincide with the given sublevel set, but are instead located outside 
of it. This behavior is clearly demonstrated in Figure 1, where the distribution of 
the population of 22 individuals in the search space is shown (as gray diamonds) 
after 300 objective function evaluations using DE with trial point generation strat
egy DE/rand/1 (see Section 3) to solve the Rosenbrock and Michalewicz test func
tions (see Section 4). Using this static population of 22 individuals (no updates were 
made to population), 1100 trial points (black dots in the figure) were produced with 
the help of the DE's trial point generation strategy to illustrate which regions of 
the search space are attainable. In both of the cases the population, after 300 objec
tive function evaluations, follows already the shape of the sublevel set of the given 
function, which definitely is not the case with the generated trial points. Indeed, 
when the objective function values of the generated trial points are checked using 
the worst objective function value in the population as the threshold level (which 
defines the sublevel set of the current population), it is to be noted that with the 
Rosenbrock function only 31 % of the points have a better value than the chosen 
threshold, i.e., reside inside the given sublevel set, and with the Michalewicz func
tion 60%. The better percentage with the Michalewicz function is explained by the 
fact that the sublevel set of the function consists of perpendicular straight regions, 
and these regions are easier to reach by linear combinations (used in the DE point 
generation mechanism) of the current population members. With the population 
distributed to separate clusters, the percentages would be even worse. This example 
shows that a remarkable number of objective function evaluations is unnecessarily 
wasted. 

As seen in the figures above, the actual behavior of DE contradicts with the in
tuitive need to follow the shape of a given sublevel set. Within this framework of 
thought it also seems obvious that the well-known exploration/ exploitation (i.e., 
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Figure 1: Population after 300 evaluations (gray diamonds), and 1100 points (black 
dots) generated using the population as the source of perturbations. 

Rosenbrock Michalewicz 

-05 

balance between global and local search) dilemma [13, 27, 29] within the EA com
munity originates from the use of less developed trial point generation strategies. 
Once we have been able to shrink the sublevel set justifiably, we should no longer 
explore farther locations of the search space, as we already implicitly know that 
these areas contain only inferior solutions. 

Irrational behaviour of DE, as well as several other EA's, is mainly due to an in
efficient point generation strategy and lack of memory; only points in the current 
population are kept in memory, and all previously evaluated points are completely 
neglected by the trial point generation mechanism. For these reasons, the algorithm 
may repeatedly sample trial points at regions where only solutions with bad objec
tive function values have been found earlier during the optimization process, and 
intuitively it seems clear that on these regions there is nothing to gain. Further, 
there is no mechanism to prevent sampling very close to, or even at the location of 
the already sampled solutions. This behaviour leads to splurging of objective func
tion evaluations, which is not acceptable in the case of computationally expensive 
problems. 

2.2 Surrogate assisted evolutionary algorithms 

As mentioned earlier in Section 1, with a surrogate assisted approach, model man
agement, i.e., evolution control, is not a trivial task; it is difficult to decide when and 
how should the surrogate be updated so that the EA converges correctly with as 
few expensive objective function evaluations as possible. In [24], two basic methods 
for evolution control are identified: individual based control, and generation based 
control. 

In the individual based control, a certain number of individuals in a population is 
chosen and evaluated with the expensive objective function, and the surrogate is up
dated with this new additional information. Individuals may be chosen randomly, 
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or by selecting the best ones based on the predicted function value of the surrogate. 
This approach is used for example in [18] and [15]. An obvious problem in this ap
proach is to select the most efficient number for individuals to be controlled, and 
also the strategy to choose the individuals. 

In the generation based control, the whole population is evaluated with the ex
pensive objective function after a certain number of generations. This approach is 
used for example in [8]. The surrogate may also be updated after some local conver
gence criterion for running the EA on the surrogate has been fulfilled. This approach 
is used in [32], where convergence is obtained when the best solution of a predeter
mined number of generations has not changed by more than a user-defined value. 
Also with the generation based control it may be problematic to decide the most 
efficient schedule for controlling the population. Further, it may be problematic to 
define the problem specific user defined values for the change in solutions. 

Obviously, there may be also combinations of individual and generation based 
control (e.g. [14]), or the surrogate may even be updated incrementally, after each 
evaluated point (e.g., [28]). Some evolution control methods are discussed and com
pared in [33], but there are no obvious answers on how to manage evolution control 
in the most efficient manner. 

Unless all sampled points are used in the creation of the surrogate model, it may 
also be difficult to select a proper set of points to be used. If all sampled points 
are used, the surrogate is globally most accurate, but may lack some local details 
of the objective function landscape if the surrogate model is not flexible enough. 
Further, creation of the surrogate model may become prohibitively time consuming 
as the number of sample points grows [23], even to the point where the original 
and expensive objective function is more economical to evaluate. One example of 
this was encountered in [1] where EGO was used to solve an engine optimization 
problem. 

Usually not all sampled points are used in the surrogate, as it is sufficient to 
model some neighborhood of the current population, as shown by, e.g., [18] and [8]. 
It is interesting to note that the idea of modelling the neighborhood of the current 
population coincides with the concept of sublevel sets: the accuracy of the surrogate 
model is emphasized only in the areas near the current population. A common way 
to select a subset (i.e., a training set) of all sampled points to fit the surrogate is to 
use some or all points of the population immediately after generation based control, 
or in the case of individual based control, to replace some number of the worst or 
randomly selected sample points from the current training set with freshly evalu
ated better individuals. Also more intelligent approaches exist, see e.g., [15] where 
local surrogates are constructed using k-nearest neighbors and kriging. In [14], mu
tual distance and objective function values of the points are taken into account, in 
order to keep the points of the training set scattered and yet sufficiently close to the 
current population. 

Based on the issues discussed in this subsection, we can conclude that evolution 
control is far from being a self-evident task, and may require serious tweaking with 
various parameters. Further, unless local approximations are used, fitting the surro-
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gate may become very time consuming as the optimization process progresses and 
the number of evaluated sample points grows. 

2.3 Surrogate algorithms 

Although utility function based surrogate algorithms, i.e., the ones that use the 
meta-model itself to determine at what point should the next expensive objective 
function evaluation be made, are the most efficient in terms of number of objec
tive function evaluations. They are also the most complex ones to implement. For 
example, in case of RBFs, it may not be obvious how to select the parameters of 
the algorithm. In [19], issues such as selection of the type of radial basis functions 
and polynomial degree, the decision to trust the model (no need to explore the un
searched areas) or not to trust it (need to explore the unsearched area) and how to 
maximize the utility function are considered as open problems. 

Especially with kriging based approaches, e.g., EGO [25], a cumulative number 
of sample points may make the fitting of the surrogate overly expensive at some 
point of the optimization process. This is in contradiction with the fact that with 
these approaches all evaluated points should be used to fit the surrogate in order to 
get globally as accurate surrogate as possible. 

We conclude this section by noting that traditional EA's suffer from the lack of 
memory and inefficient trial point generation strategies, and it may be difficult to set 
proper values for the control parameters ( e.g., population size, F and CR in the case 
of DE). On the other hand, these algorithms themselves are rather easy to implement 
and use, and their computational overhead is negligible. 

With surrogate assisted EA's, evolution control may be a problematic issue and 
it may require some tedious parameter tuning. Also, it is not obvious which type of 
surrogate should be selected. Further, implementing the surrogate model may not 
be straightforward, as it may require some profound understanding. 

Utility function based surrogate algorithms are obviously the most efficient ones 
of the three types discussed, but they are complex in their implementation. Running 
them may require more computational power, as two global optimization problems 
need to be solved in order to decide the location for the next sample. 

From these premises we propose our algorithm, striving for simplicity and effi
ciency, in the fulluw ing 8edio1t. 

3 Filtered Differential Evolution, FDE 

In the previous section, we discussed some problems of the current, widely used 
approaches. Here we propose a complementary algorithm as a partial response to 
the presented difficulties. 

Although our general approach of filtering presumably inefficient trial points 
away could in principle be adapted to enhance the performance of several different 
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population based algorithms (such as GA, DE, PSO, etc.), we chose to utilize the 
basic mechanisms of DE, because it is rather efficient and widely utilized. Thus, the 
basic structure of our algorithm is similar to that of DE, except the fact that we filter 
out some inefficient trial points, and try to select only better ones for expensive eval
uation. For this reason, we refer to the proposed algorithm as Filtered Differential 
Evolution, FDE. 

As we use the DE as an integral part of our proposed algorithm, it is in order 
to briefly describe the basic functioning of it. DE is a stochastic, population-based, 
direct search algorithm for global optimization, and it employs the population to 
produce the perturbations necessary for the trial point generation. In each iteration 
of the DE, the new trial points must compete against a prescribed target i.e. parent 
point. Each member of the population serves in turn as a target point, and the better 
one of the target and trial points is selected for the population in the next genera
tion. During the years several different trial point generation strategies have been 
proposed, see, for example, [31], but in this study we utilize two trial point gener
ation strategies: one originating from a so-called classic DE, denoted as DE/rand/1 
strategy, and another one, DE/local-to-best/1 strategy [37]. 

In DE, each point in the population is selected in turn as a target point xi, and a 
new trial point is generated. In the DE/rand/1 trial point generation strategy, three 
distinct points, Xro, Xru 

and Xr2
, are randomly selected from the population to create 

a perturbed, i.e., mutated point vi, 

(2) 

where the scale factor F is a positive real number that controls the rate at which the 
population evolves. In the DE/local-to-best/1 strategy, the perturbed point is created 
as, 

(3) 

where x* is best individual in the population. 
The perturbed point vi may be recombined with the target point xi to create the 

trial point ti using uniform crossover, where the trial point is constructed by select
ing vector components from either the perturbed point or the target point. The user
defined crossover probability CR controls the fraction of the vector components that 
are copied from the perturbed point; for more information, see [38]. If the crossover 
is not used, the perturbed point vi itself becomes the trial point. The trial point is 
allowed to replace the target point in the population for the following generation if 
and only if it yields an equal or better objective function value than the target point. 
Otherwise, the target point xi remains in the population. The population is updated 
once at the end of each generation. 

As shown in Subsection 2.1, the point generation mechanism of DE is wasting 
some function evaluations as the points produced by it do not necessarily follow 
the shape of the sublevel set, partly due to lack of memory. To change this behavior, 
in FDE, all evaluated points are kept in memory, with the corresponding objective 
function value, and this data is used to filter out the trial points that presumably 
would not be accepted to the next generation. More specifically, for each parent 
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in the population one or more trial points are generated, the one with the best pre
dicted value is selected, and if the best predicted value is not better than the parent's 
objective value, the trial point is filtered away, i.e., excluded from consideration, and 
the expensive objective function evaluation is avoided. 

The rationale to generate more than one trial point for each parent is to extract 
more information about the search space, and thus make the search more effective. 
In some algorithms, such as EGO, an explicit optimization run is executed on the 
surrogate to select the point which maximizes the expected improvement in the ob
jective function value. In our approach, we simply select the trial point with best 
predicted objective function value. It may be worth pointing out that the compu
tational overhead of our algorithm increases relative to the number of trial points 
generated, and we suppose that a higher number of trial points produces also better 
efficiency. Thus, the user may balance between efficiency of the search and cost of 
the objective function evaluation by selecting a different number of trial points to be 
generated; with expensive objective function evaluations it is reasonable to explore 
the surrogate more extensively by selecting a higher number of trial points to be 
generated. 

To filter out bad trial points, previous samples are used to predict the objective 
function value. In contrast to all methods discussed earlier, no explicit surrogate 
model is constructed to predict the objective function value, but in FDE we rather 
use a simple nearest neighbor interpolation as a base of the prediction. Further, also 
in contrast to most surrogate assisted EA's, we take into account the uncertainty of 
the prediction (in a somewhat similar manner as in the EGO algorithm) by checking 
how far the trial point is from the closest known sample point and multiply this dis
tance with factor L, which depicts the variation in the objective function landscape, 
and is derived (see below) from the current population. 

After this short introduction, we now can present the steps of the FDE algorithm 
as follows: 

l. Initialize the population (randomly or using some space filling pseudo ran
dom sequence to guarantee a sufficient diversity of solutions).

2. While stopping criterion is not met:

(a) For each parent in the population:

i. generate the user specified number (one or more) of trial points (us
ing mutation ;mci c.rossover operators of DE),

ii. predict the objective function values of all the trial points, select the
best value, and set this value as a trial point value,

iii. filtering: if the trial point value is better than the parent's objective
value, evaluate the trial point using the rea 1 ohjec.tive hmc.tion, and
set this value as a trial point value,

iv. add the current trial point to the child population.
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(b) Select the members for the next population by choosing in a pairwise
manner the better member from the parent and the child populations,
using the respective parent and child pairs in comparison

As predicting the objective function value of the new trial point is a focal point 
of the proposed algorithm, we give here a more detailed explanation of it. Because 
the prediction of the trial point value will inevitably be more or less inaccurate, this 
must be somehow taken into account. There are two factors affecting the accuracy 
of the prediction: the distance to the closest evaluated sample point, and irregularity 
of the objective function landscape. Obviously, the closer we are to some evaluated 
sample point, the more accurate will the prediction be. Also, when the objective 
function landscape is very flat (low irregularity ), there won't be much error. Thus, 
it seems logical to assume that the predicted objective function value may deviate 
from the objective function value of the closest already evaluated point by the prod
uct of the distance (from the trial point to the closest evaluated sample point) and 
the measure of irregularity. 

As a measure of irregularity we use factor L, which is calculated based on the 
information contained in the current population. For each point, i.e., member m 
in the population, a distance dm to the closest neighbor me is computed, and the 
slope Lm between these two points is calculated with respective objective function 
values as Lm = lf(m)i�(mc)I. Now, L is chosen as the maximum of all Lm values, 
and thus it reflects the maximum irregularity in the given population. The value for 
L is computed once for every generation. To accomplish this, the computation of 
a point-to-point distance matrix of the whole population is required to identify the 
nearest neighbors for each point. It may be noted that in some sense L is a rough 
estimate of a local Lipschitz constant (a measure of the maximum rate of change of 
a function in some given region, see, for example, [20] and [42]) for the objective 
function. 

One may argue that L should be calculated based on all sampled points, instead 
of only points of the current population. Unfortunately, this approach would not 
work, because we wish to estimate the irregularity of the search landscape in the 
neighborhood of the given sublevel set, i.e., locally. Essentially this means that in 
the beginning of the optimization process the sublevel set defined by the population 
covers almost the whole search space, and thus the value of L may be expected to be 
very high. When the optimization process progresses, the sublevel set shrinks, and 
also the value of L decreases. Finally, in the end of the process, when the population 
has concentrated around the global optimum, the search landscape occupied by the 
population is (and actually must be) very flat, the corresponding sublevel set is very 
small, and the value of L is zero or very close to it. 

If the value of L was calculated based on all sampled points, it would remain 
high throughout the optimization process, and hinder the convergence to a global 
optimum. This is due to the fact that the population should concentrate around 
the global optimum during the process, and in this phase the points in the popula
tion are more densely distributed than the other evaluated points surrounding the 
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population. In this case, the predicted objective function values would get good val
ues around the population (because of the large inter-point distances), i.e., outside 
the sublevel set defined by the population, and thus the search would concentrate 
mainly outside the desired sublevel set. This explains why the value of L should 
approach zero as the optimization process progresses, and this is realized by com
puting L from the current population. 

With the factor L, and given the trial point t we can now compute the prediction 
of the objective function value. As we are dealing with minimization problems, we 
are interested to know how much the objective function value can improve at the 
maximum at a given point. Thus, we are making an optimistic prediction. First we 
compute the distance dt from t to its nearest neighbor tnn among all so far evalu
ated sample points. This requires computation of distances between t and all so far 
evaluated samples, which is a negligible cost ( compared to that of one expensive ob
jective function evaluation) if the number of evaluated points remains in the order 
of thousands. The predicted objective function value is now f

pred = J(tnn) - (L * dt)
In short, we use the objective function value of the nearest already evaluated neigh
bor as an estimate, and this estimate is reduced by the product of the current L and 
the distance to the evaluated neighbor. In this way, the possible inaccuracy of the 
prediction is incorporated into a predicted value in an optimistic way. 

The prediction of the objective function value by the aforementioned method 
possesses some intuitively appealing features. First, in the beginning of the opti
mization process while the population is very diverse, also the irregularity (and the 
value of L) is high. In this phase, it is obviously possible, by the predicted objec
tive function values, to exclude only few solutions at very bad areas of the search 
space, thus allowing good global search properties. When the process progresses, 
the value of L decreases, and the prediction becomes a little bit less optimistic, thus 
reducing the allowable search area, wherein the trial points are not directly filtered 
away, more to a shape of the sublevel set defined by the current population. This 
greatly improves its efficiency over the basic DE. Anyhow, if the trial point at this 
phase appears at the large unsearched area (where the distance to the closest eval
uated sample is large, and thus the predicted objective function value is good), it 
still has a chance to get evaluated with the real expensive objective function. Finally, 
when the population concentrates more and more, the value of L further decreases, 
and the filtering by the predicted objective function values allows the search only 
very close to the current population, thus changing emphasis more in to direction 
of local search. At the same time, the proposed method avoids sampling at, or very 
near, already known points, as the predicted value allains ils maximwn value in 
between two already known solutions (because this maximizes the distance to the 
closest evaluated point). 

4 Numerical results 

In this section, we compare the results of our new algorithm to other DE imple
mentations. More specifically, we use the Matlab implementation of the original DE 
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(ODE) from [36], our own implementations of DE without filtering (DE), with fil
tering using only a single trial point (FDE), and with filtering with four trial points 
(FDE-4). All algorithms are tested with a similar setup, i.e. using the same popula
tion size, control parameters, and trial point generation strategy using test problems 
from the literature. 

We have selected six test problems with varying levels of complexity from the 
literature, and used their implementations given in [22]. Although our aim is to 
provide an algorithm suitable for solving real-life engineering problems, for perfor
mance testing we used only analytical test problems, as results of these are easier 
to compare, and they possess certain features that test the different abilities of opti
mization algorithms. 

The Rosenbrock function has its global minimum in a deep, curved valley, the 
Michalewicz function contains constant valued grooves with differing orientation, 
and one rather deep global minimum, and the Rastrigin and Griewangk functions 
contain both numerous local minima in the otherwise bowl-shaped surface. The 
Ackley function is essentially flat, but with a wrinkled surface, and the global op
timum is located in a very deep valley in the middle, whereas the Levy function 
contains grooves and barriers around a rather flat area around the global minimum. 
Formulations, ranges of search spaces and optimal objective function and design 
variable values for the test functions are given in Table l. 

In all algorithms, we used two different trial point generation strategies, namely 
DE/rand/1 (denoted by ODEl, DEl, FDEl, FDEl-4, and strategy=l in figures) and 
DE/local-to-best/1 (denoted by ODE2, DE2, FDE2, FDE2-4 , and strategy=2 in figures). 
See [31, 36, 37] for details and comparisons of different point generation strategies. 
In this study the scale factor F was set to 0.8, crossover probability CR to 0.1, and 
the population size to lln, n standing for the number of variables. No attempt was 
made to tune these parameters for a better performance. For each of the six test 
functions, versions with 2, 5 and 10 design variables were tested, using a maximum 
budget of 500, 1000, and 2000 evaluations, respectively. The best results gained at 
10 different evaluation levels (e.g. in 2D case results after 50, 100, 150, etc. evalua
tions) were logged for each of the algorithms for 100 test runs using the same initial 
populations. 

Using this test setup it is possible to compare the differences of various imple
mentations of the same algorithm, as well as the differences of the same implemen
tation using different trial point generation strategies. Further, comparison of all 
different algorithms is possible head to head. The averaged results for each of the 
test functions are shown in Figures 2, 3, 4, 5, 6 and 7. In each of the figures in the 
left column are the results of all algorithms using the strategy DE/rand/1, and at the 
right column using the strategy DE/local-to-best/1. In both columns, results are given 
for 2, 5, and 10 design variable versions of the test functions. 

In Tables 2 and 3 we show statistics of the best results for all the test runs after 
the evaluation budget has exhausted. This data includes mean, minimum and max
imum objective values, and also standard deviation (Std) and variance (Var) of the 
values. 
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Function 

Rosenbrock 

Range 

Optimum 

Michalewicz 

Range 

Optimum 

Rastrigin 

Range 

Optimum 

Griewangk 

Range 

Optimum 

Ackley 

Range 

Optimum 

Levy 

Range 

Optimum 

Table 1: Test problems used in this study. 

Formulation 

f(x) = I:7�/[lOO(x; - Xi+1)2 
+ (xi - 1)2] 

-5.12:::; Xi :::; 5.12

x* = (1, ... , 1), f(x*) = 0 

f(x) = - I:7=1 sin(xi)(sin(ix;l1r))2m;m = 10 

0:::; Xi:::; 7r 

n = 2, f(x*) = -1.8013; n = 5, f(x*) = -4.687; n = 2, f(x*) = -9.66 

f (x) = 10n + I:7=1 (x; - 10cos(21rxi)) 

-5.12 :::; Xi :::; 5.12

x* = (0, ... , 0), f(x*) = 0 
2 

f(x) = I:7=1 To5o - IT7=1 cos(xi/0) + 1 

-600 :::; Xi :::; 600

x* = (0, ... , 0), f(x*) = 0 
1 

f(x) = 20 + e - 20e --g 

.l I: n 2 1 I: n ( n i=l Xi _ e-ri i=l cos 21rxi) 

-32.768:::; Xi:::; 32.768

x* = (0, ... , 0), f(x*) = 0 

f(x) = sin2(1ry1) + I::1 [(Yi -1)2(1 + 10sin2(1ryi + 1))] 

+(Yn - 1)2(1 + 10sin2(21ryn)), Yi= 1 + x;4
l

, i = 1, . . .  n.

-10:::; Xi:::; 10

x* = (1, ... , 1), f(x*) = 0 
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Figure 2: Evaluation histories of Rosenbrock function with 2, 5 and 10 dimensions. 
Rosenbrock 2D, strategy=1 
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Figure 3: Evaluation histories of Michalewicz function with 2, 5 and 10 dimensions. 
Michalewicz 2D, strategy=1 
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Figure 4: Evaluation histories of Rastrigin function with 2, 5 and 10 dimensions. 
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Figure 5: Evaluation histories of Griewangk function with 2, 5 and 10 dimensions. 
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Figure 6: Evaluation histories of Ackley function with 2, 5 and 10 dimensions. 
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Figure 7: Evaluation histories of Levy function with 2, 5 and 10 dimensions. 
Levy 20, strategy=1 
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Table 2: Statistics of objective function values of Rosenbrock, Michalewicz and Ras
trigin test functions. 

Rosenbrock 

Alg. Dim. Mean Min Max Std Vac 

ODEI 2D 0.13933 0.()()11829 1.2031 0.2064 0.042599 

DEi 0.10267 0.0002514 0.71448 0.12992 0.016879 

PDE! 0.0051592 6.67c--07 0.30827 0.031333 0.00098175 

PDEl-4 0.00022297 2.86c--07 0.0050053 0.00070582 4.98c--07 

ODE2 0.049814 4.40c--06 0.81035 0.11481 0.013181 

DE2 0.020344 7.79c--06 0.43632 0.050369 0.002537 

PDE2 0.00010014 l.25c--08 0.0086671 0.00086564 7.49c--07 

PDE2-4 9.37c--06 l.68c--08 9.50c--05 l.55c--05 2.40e-10 

ODE! 5D 95.152 9.817 265.83 50.361 2536.3 

DEi 65.052 5.8807 200.51 37.508 1406.9 

PDE! 24.379 6.8257 69.179 12.075 145.8 

PDEl-4 12.459 3.7832 31.294 5.9154 34.992 

ODE2 16.916 1.8072 49.011 8.3409 69.571 

DE2 12.952 3.0554 31.746 5.6007 31.368 

PDE2 7.5358 2.3445 18.301 2.9544 8.7285 

PDE2-4 4.5609 2.003 8.2543 1.4095 1.9866 

ODE! !OD 3688.3 928.24 8431.2 1631 2.66e+06 

DEi 1537.7 318.97 3009.6 633.35 4.0le+05 

FDEI 1121.2 214.47 2704.7 498.67 2.49c+05 
FDEl-4 749.75 194.3 1537.4 328.8 l.08c+05 

ODE2 571.97 88.942 1627.2 262.4 68853 

DE2 395.54 105.03 1082.5 164.23 26973 

FDE2 300.59 90.228 638.16 116.94 13674 

FDE2-4 209.26 95.84 382.31 70.654 4992 

Mi •n::uewicz 

ODEI 2D -1.7975 -1.8013 -1.7714 0.0050179 2.52c--05 

DEi -1.8001 -1.8013 -1.7932 0.0014807 2.19c--06 

PDE! -1.8013 -1.8013 -1.8012 l.lSc--05 l.32e-10 

PDEl-4 -1.8013 -1.8013 -1.8013 4.02e--09 l.62e-17 

ODE2 -1.8009 -1.8013 -1.7968 0.00081231 6.60c--07 

DE2 -1.8011 -1.8013 -1.7982 0.00041874 l.75c--07 

FDE2 -1.8013 -1.8013 -1.8013 4.76c--07 2.26e-13 

PDE2-4 -1.8013 -1.8013 -1.8013 3.07e--08 9.41e-16 

ODE! 5D -3.0357 -4.0281 -2.5076 0.29944 0.089663 

DEi -3.3112 -4.3251 -2.6711 0.33934 0.11515 

PDE! -3.4151 -4.3432 -2.7847 0.26525 0.070358 

PDEl-4 -3.5505 -4.1775 -2.9042 0.26236 0.068835 

ODE2 -3.399 -4.1911 -2.7683 0.34017 0.11572 

DE2 -3.4459 -4.2158 -2.7565 0.28644 0.082046 

PDE2 -3.579 -4.2791 -2.6737 0.32099 0.10303 

PDE2-4 -3.7426 -4.597 -3.0953 0.28832 0.08313 

ODE! !OD -4.3632 -5.8381 -3.643 0.39037 0.15239 

DEi -4.945 -6.4729 -4.1635 0.44341 0.19661 

PDE! -4.8562 -6.1639 -4.175 0.38355 0.14711 

PDEl-4 -4.9425 -6.2233 -4.1579 0.47112 0.22195 

ODE2 -4.7897 -5.8447 -4.0173 0.36469 0.133 

DE2 -4.9409 -5.9533 -4.3711 0.35175 0.12373 

FDE2 -5.0466 -6.3121 -4.2761 0.39339 0.15476 

FDE2-4 -5.1154 -6.3622 -4.3308 0.3%13 0.15692 

Rastrie.in 
ODE! 2D 1.2652 0.039037 3.6711 0.69544 0.48363 

DEi 1.1558 0.025507 3.7253 0.78223 0.61188 

PDE! 0.04337 8.BBc--06 1.0009 0.17217 0.02%43 

FDEl-4 0.017031 2.95c--06 0.99533 0.12844 0.016497 

ODE2 0.96201 0.015212 2.3392 0.6412 0.41114 

DE2 0.92531 0.0048362 3.3515 0.6955 0.48372 

PDE2 0.044176 4.00c--06 0.99567 0.19528 0.038133 

FDE2-4 0.036352 4.99c--07 0.99508 0.17964 0.032269 

ODE! 51) 21.085 5.5753 32.581 5.0979 25.989 

DEi 18.308 8.2619 27.726 4.4469 19.775 

FDEI 16.501 7.4347 23.906 3.61 13.032 

FDEl-4 15.274 6.9825 25.754 4.4782 20.054 

ODE2 16.144 4.%01 25.534 4.5482 20.686 

DE2 15.242 4.8189 25.32 4.0509 16.41 

FDE2 14.379 4.6423 23.716 3.9838 15.871 

FDE2-4 13.924 4.3374 20.29 4.3467 18.894 

ODEI !OD 78.442 55.564 102.09 8.5632 73.328 

DEi 65.048 37.947 78.627 7.3014 53.311 

PDE! 62.731 42.552 78.608 7.9112 62.587 

PDEl-4 60.68 42.776 75.687 7.5012 56.267 

ODE2 63.066 36.655 77.442 9.1629 83.959 

DE2 57.051 36.888 73.259 7.9219 62.757 

FDE2 56.529 38.047 69.551 7.8482 61.595 

FDE2-4 55.194 39.882 69.159 6.5264 42.594 
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Table 3: Statistics of objective function values of Griewangk, Ackley and Levy test 
functions. 

Griewanl!k 

AI2. Dim. Mean Min Max Std Var 

ODE! 2D 0.15828 0.015902 0.62475 0.098673 0.0097363 

DEi 0.12045 0.010989 0.37088 0.070397 0.0049558 

FDEI 0.077168 0.00051745 0.21885 0.048762 0.0023777 

FDEl-4 0.078194 0.0079527 0.24222 0.051369 0.0026388 

ODE2 0.089289 0.015299 0.36469 0.060016 0.0036019 

DE2 0.086146 0.0027124 0.26114 0.053509 0.0028632 

FDE2 0.047309 0.0027585 0.18224 0.032163 0.0010345 

FDE2-4 0.044792 0.0074184 0.14827 0.028018 0.00078499 

ODE! 5D 4.4451 1.2716 11.375 1.8272 3.3387 

DEi 3.2407 !.1328 7.8422 1.1855 1.4054 

FDEI 1.7922 0.8%38 2.87% 0.39925 0.1594 

FDEl-4 1.053 0.47794 1.3756 0.19257 0.037082 

ODE2 1.4537 0.70289 2.2839 0.322% 0.1043 

DE2 1.3769 o.m65 2.069 0.29379 0.086315 

FDE2 0.99204 0.44286 1.5092 0.2015 0.040603 

FDE2-4 0.60009 0.24967 1.0213 0.15221 0.023167 

ODE! !OD 46.486 15.592 73.724 9.7731 95.513 

DEi 27.202 11.394 43.745 6.4303 41.349 

FDEI 24.071 10.687 43.423 5.8795 34.568 

FDEl-4 15.86 8.0157 24.205 4.0717 16.579 

ODE2 12.493 4.7809 22.074 3.2822 10.773 

DE2 10.634 5.7312 21.011 3.0984 9.6003 

FDE2 8.9361 3.9286 16.064 2.4632 6.0674 

FDE2-4 4.0786 2.3326 7.8508 1.1273 1.2709 

Aclde 
ODE! 2D 0.87119 0.029443 2.6731 0.63714 0.40594 

DEi 0.71839 0.028378 2.503 0.5597 0.31327 

FDEI 0.022522 0.0006528 0.25714 0.029161 0.00085039 

FDEl-4 0.00018045 l.68e-05 0.00052317 0.00013568 1.84e--08 

ODE2 0.11096 0.0058637 1.3049 0.14731 0.0217 

DE2 0.082308 0.0020054 0.47114 0.078768 0.0062045 

FDE2 0.0038188 0.00039338 0.0462% 0.0053189 2.83c-05 

FDE2-4 l.57e-05 1.55e-06 7.58c-05 l.48e-05 2.19e-10 

ODE! 5D 10.534 5.2078 14.467 1.9167 3.6739 

DEi 9.1868 4.2638 12.735 1.5805 2.498 

FDEI 8.1576 3.5055 12.932 1.6107 2.5944 

FDEl-4 4.428 2.8381 6.6601 0.80722 0.6516 

ODE2 5.5387 3.0095 7.9144 1.03% 1.0807 

DE2 5.1995 3.3695 7.7681 0.9162 0.83942 

FDE2 4.3941 2.3573 5.7381 0.70847 0.50194 

FDE2-4 1.6077 0.65515 2.5346 0.48062 0.23099 

ODE! !OD 17.201 13.78 18.77 0.88176 0.7775 

DEi 15.269 11.%5 17.082 1.0199 1.0403 

FDEl 15.292 12.276 17.165 0.98665 0.97347 

FDEl-4 13.365 11.587 15.19 0.82879 0.6869 

ODE2 12.37 7.8045 14.73 1.1944 1.4266 

DE2 11.581 8.2956 13.901 !.173 1.376 

FDE2 11.327 8.583 14.052 1.0974 1.2043 

FDE2-4 7.9283 5.3189 9.816 1.0149 1.03 

Levy 

ODE! 2D 0.0010884 l.9le-06 0.010404 0.00159 2.53e-06 

DEi 0.00058036 1.86e-06 0.012404 0.0013374 l.79e..Q6 
FDEI 9.20e-07 2.26c--09 6.35e-06 l.22e-06 1.50e-12 

FDEl-4 1.41e-08 5.31e-11 l.50e-07 2.95e--08 8.70e-16 

ODE2 2.14e-05 2.60e-08 0.00024394 3.24e-05 1.05e-09 

DE2 l.13e-05 5.lBe-08 7.04e-05 l.61e-05 2.58e-10 

FDE2 1.00e-07 6.46e-lO 9.09e-07 l.52e-07 2.30e-14 

FDE2-4 6.48e-10 6.63e-12 1.27e-08 l.67c-09 2.79e-18 

ODE! 5D 1.5163 0.42048 344?1 ()�7(:,.(, 0 47?AA 

DEi 0.99509 0.2359 2.2107 0.42471 0.18038 

FDEI 0.39701 0.091409 0.98924 0.19043 0.036263 

FDEl-4 0.20058 0.057588 0.50282 0.076989 0.0059274 

ODE2 0.28163 0.022181 0.86838 0.11988 0.022163 

DE2 0.24506 0.018783 0.67668 0.13881 0.019268 

FDE2 0.11329 0.01355 0.26834 0.050271 0.0025272 

FDE2-4 0.030253 0.0051786 0.0%573 0.018185 0.00033069 

ODE! !OD 13.866 4.5205 21.458 3.5869 12.866 

DEi 7.5849 3.3281 12.802 2.1542 4.6406 

FDEI 6.6402 3.0326 10.36 1.7888 3.1999 

FDEl-4 5.264 2.4893 8.3384 1.3582 1.8418 

ODE2 5.3854 1.6434 12.87 1.8516 3.4285 

DE2 4.0206 1.8946 8.:)759 !.1549 1.3339 

FDE2 3.0407 !.1679 6.0894 0.85864 0.73727 

FDE2-4 2.0024 0.73066 3.7209 0.6377 0.40666 
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From the results we can first notice that in several cases there is a big difference in 
performances of ODE and DE implementations, although they represent basically 
the same algorithm. There are at least two possible factors explaining the perfor
mance difference. First is how the box constrained search space is handled. In ODE, 
trial points which are not inside the box are bounced i.e. reflected back, whereas 
in DE these points are neglected and new points are generated until one is found 
which is inside the given box. Another difference is that in ODE, the random se
lection of vectors in trial point generation is performed by shuffling the population 
array (to reduce computational overhead of the algorithm), and hence a certain vec
tor cannot be chosen twice in the same term of the perturbation expression. This 
obviously cuts down the number of possible combinations, and it may be detrimen
tal to the performance (with regard to objective function evaluations needed) of the 
algorithm. 

Another observation is that in some cases the performance difference of FDE over 
DE is only a minor one, suggesting that the filtered approach with only a single 
trial point does not offer remarkable advantage. In a sense this is very natural, 
because the only decision to make is whether to evaluate the trial point or not, and as 
our approach to predict the objective function value is rather crude, no remarkable 
advantage is gained. 

On the other hand, FDE-4 with only four trial points (which must be considered 
as a very low number if we are dealing with computationally expensive objective 
function) for each parent produced in most cases clearly better performance than 
DE and FDE approaches. Obviously this is due to the fact that when compared to 
its single point counterpart, in some sense, FDE-4 gathers four times more informa
tion about the search space via the surrogate, and this approach seems to be more 
effective. 

From the results we can make the general remark that the comparable efficiency 
of the FDE variants seems to be inversely proportional to the efficiency of the chosen 
point generation strategy. This is probably due to the fact that the point generation 
strategy DE/local-to-best/1 seems to be far more efficient in itself, and there are not 
so many points which can be readily judged inefficient by the proposed filtering 
method. However, in all the cases (except the Michalewicz, lOD, with strategy=l) 
the proposed algorithm is more efficient than the respective DE version without 
filtering. 

With respect to the problem dimensions, it seems that the proposed approach, 
especially with the FDE-4 variant maintains it efficiency with increasing dimensions. 
Anyhow, with a higher number of dimensions than used in this study, it is possible 
that at some stage the proposed algorithm starts to lose its efficiency. This is due to 
the fact that the concept of nearest neighbor may not be meaningful in some cases in 
high dimensions [ 6], and thus also the nearest neighbor interpolation may not work 
efficiently. 

In every example case, the difference between the least (ODE) and the most (FDE-
4) efficient algorithm is notable. In some cases, the difference between the non
filtered and the filtered approach is rather small, but in most of the cases the use
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of more trial points in the filtered approach produces remarkable performance ad
vantage. A strange anomaly is the Michalewicz function in lOD, with strategy=l, 
where the non-filtered approach seems to be more efficient than either of the filtered 
approaches. 

5 Discussion and conclusions 

In this work, we have discussed some drawbacks of the widely used global opti
mization approaches. As our emphasis is to provide tools to solve some real engi
neering problems where the number of affordable objective function evaluations is 
somewhat restricted, we have proposed a new algorithm which seems to be com
putationally rather efficient and complements previous approaches by overcoming 
some of the drawbacks discussed. Namely, the proposed approach follows the sub
level set framework by generating set of trial points, and filtering presumably in
efficient ones away using some ideas borrowed from meta-modelling approaches. 
Yet, our approach does not require any model management procedure, and there is 
no explicit surrogate fitting, which may be a difficult or time consuming task in it
self. Also, computational cost required to predict the objective function value of the 
trial point is negligible (compared to that of the expensive objective function evalua
tion), as it requires computation of a point-to-point distance matrix of the population 
once in each generation, and computation of a distance vector from the trial point 
to all evaluated points for every trial point. Further, the proposed algorithm is very 
straightforward to implement, and the proposed filtering mechanism could prob
ably be adapted to enhance the performance of several different population based 
algorithms (for example, GA or PSO). 

The computational efficiency of the new algorithm is explained by the fact that 
some of the trial points are excluded from the expensive objective function evalua
tion, based on the information contained in the previously sampled points. In this 
way, based on the numerical tests conducted in this study, savings up to 80% in the 
number of objective function evaluations, compared to that of commonly available 
implementation of DE (ODE), could be realized. 

The performance comparisons presented in this study encourage us to believe 
that our approach has some real potential, but there is still need for further study. 
For example, a more thorough testing is needed to find out how the performance 
of the proposed algorithm is related to the number of trial points that are generated 
for each parent. Further, it would be useful to be able to provide guideline or even 
self-adaptivity for the algorithm itself to balance between the cost of the objective 
function, and a reasonable number of trial points. 

In our approach, there is also room for other types of improvement. For exam
ple, a more accurate interpolation could be implemented, accompanied by different 
means to estimate the prediction error, and the results of both these could be verified 
by some sort of a cross validation scheme, i.e., against the objective function value 
of some other neighboring point. Conversely to the current approach, more intelli
gent trial point generation strategies should be developed (to follow the sublevel set 
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framework), as this would decrease the need for filtering the trial points in general. 
The proposed algorithm has been designed to suit best for the problems where 

the expense of the objective function evaluations is mediocre, i.e., one objective func
tion evaluation takes from a few seconds to some minutes. Inexpensive problems 
can be easily solved using known EA's, for example, Differential Evolution. On the 
other hand, very expensive problems, where one evaluation may take several hours, 
benefit most of more sophisticated (and also more complex) utility function based 
surrogate approaches, such as EGO, where all sampled information is exploited to 
its full extent. 

It is reasonable to assume, but open to further research, that with the problems 
of mediocre computational cost the efficiency of our approach can be adjusted by 
using suitable number of trial points for each parent. In this manner, the computa
tional overhead of our algorithm can be balanced with the cost of objective function 
evaluation, thus minimizing the wall clock time needed to solve a certain problem. 
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