
Reports of the Department of Mathematical Information Technology

Series B. Scientific Computing

No. B 1912008

Decreasing Computational Cost of Simulation

Based Interactive Multiobjective Optimization

with Adjustable Solution Accuracy

Timo Aittokoski Kaisa Miettinen

University of Jyvaskyla 2008

Reports of the Department of Mathematical Information Technology

Series B. Scientific Computing

Editor

Technical editor

Raino A. E. Makinen

Paula Takala

Reports of the Department of Mathematical Information Technology
Series B. Scientific Computing

No. B 19/2008

Decreasing ·computational Cost of Simulation

Based Interactive Multiobjective Optimization

with Adjustable Solution Accuracy

Timo Aittokoski Kaisa Miettinen

University of Jyvaskyla
Department of Mathematical Information Technology

P.O. Box 35 (Agora)
FI--40014 University of Jyvaskyla

FINLAND
fax +35814 260 2731

http:/ /www.mit.jyu.fi/

URN:ISBN:978-951-39-9035-0
ISBN 978-951-39-9035-0 (PDF)

ISSN 1456-436X

Jyväskylän yliopisto, 2022

Copyright © 2008
Timo Aittokoski and Kaisa Miellinen

and University of Jyvaskyla

ISBN 978-951-39-3353-1

ISSN 1456-436X

Decreasing Computational Cost of Simulation
Based Interactive Multiobjective Optimization

with Adjustable Solution Accuracy

Timo Aittokoski * Kaisa Miettinen t

Abstract

Solving real-life engineering problems can be time-consuming and difficult
because problems may have multiple conflicting objectives, functions involved
highly nonlinear and containing multiple local minima, and function values
are often produced via a time-consuming simulation process. Problems of this
type can be solved using global multiobjective optimization methods, prefer­
ably with interactive approaches, which allow the designer (or decision maker
in general) to learn about the behaviour of the problem during the solution pro­
cess.

In an interactive approach the designer specifies preferences and Pareto opti­
mal solution(s) following these preferences are generated, typically by forming
a scalarizing function and solving it. In simulation based optimization this may
take time. Thus, the designer may have to wait for a long before (s)he can con­
tinue the solution process. Although some efficient global optimization algo­
rithms exist, it is of outmost importance to be able to reduce the computational
burden.

In our study, we show that substantial savings in calculation time can be
achieved using a decreased number of function evaluations at the beginning
of the interactive solution process, without compromising the quality of the fi­
nal solution too much. Furthermore, at each iteration we use simple heuristics
to judge sufficient amount for computation. As the designer has gained more
understanding about the problem, (s)he may approach the final solution with
an ever increasing accuracy and number of objective function evaluations. We
show results using several different budget schemes for calculation, and iden­
tify levels where a sufficient quality for final solutions is retained.

*timo.aittokoski@jyu.fi
tkaisa.miettinen@jyu.fi

Department of Mathematical Information Technology, University of Jyviiskylii, PO Box 35 (Agora),
FI-40014 University of Jyviiskylii., Finland

1

1 Introduction

Behavior of many real world systems and devices can often be expressed using spe­
cific computer implemented mathematical models, simulators. In industry, simula­
tors are often used instead of more concrete appliances, since running the simulator
is usually far cheaper, faster and in some cases also safer than real world prototyp­
ing. Although simulators allow, for example, a designer to try multitude of different
designs and explore their advantages and disadvantages, they give no information
about how exactly that behavior can be improved. For this reason, an advanced
design protocol should employ optimization algorithms to systematically explore
different design variable combinations.

When an optimization system is build on top of a simulation software, this poses
some special requirements on the optimization algorithm. Objective function eval­
uations can be computationally very expensive, as the execution time of a few min­
utes for one single simulation run can be considered normal. Also partial deriva­
tives which are commonly used to guide (local) optimization processes are usually
unavailable as the output data of the simulation software is often the result of a
complex sequence of calculations. The simulator may be a black box when not even
automatic differentiation can be applied. Further, the objective function itself may
have lots of locally optimal values, and there often are several conflicting objectives
(instead of only one objective function) that should be considered at the same time.
All these facts suggest that for general simulation based optimization systems, one
should use efficient (in terms of objective function evaluations) global optimization
algorithms in a multiobjective manner.

In multiobjective optimization, we can identify compromise solutions, so-called
Pareto optimal solutions (where, by definition, none of the conflicting objectives can
be improved without impairing at least one of the others), and the multiple objec­
tives are often handled by converting them into a problem having a single objective
function (see, e.g., [31]). These, so-called scalarization functions, typically also in­
corporate designer's preference information about the conflicting objectives, that is,
what kind of values of objectives are desirable. By solving the scalarized problem
with an appropriate single objective solver, we get Pareto optimal solutions to the
original problem. In case of nonconvex problems, depending on the properties of
the optimization algorithm used (i.e., local or global), the resulting solutions are
either locally or globally Purcto optimal.

In interactive multiobjective approaches, the most satisficing Pareto optimal so­
lution is looked fur so that the Jesig1ter can adjusl preference informalion stepwise
and at the same time learn about the problem characteristics. This is important be­
cause the designer does not necessarily have profound understanding about the be­
havior of the complete problem at the beginning of the solution process, or in other
words, what kind of solutions can be reached and which ones are unattainable.. In
an iterative and interactive solution process, the designer directs the search and only
those Pareto optimal solutions are generated that are interesting to him/her.

With simulation based optimization problems, the computational complexity of

2

the objective functions may hinder the solution process. To cope with computational
complexity, it is necessary to use algorithms with as high efficiency as possible, i.e.
algorithms which produce good objective function values using as few objective
function evaluations as possible. On the level of global optimization algorithms,
several improvements to efficiency have been made, for example, using response
surface methods. Our approach is somewhat different, as we are dealing with the
efficiency of the whole interactive optimization process, instead of only efficiency of
the particular optimization algorithm.

In this study we present a new approach to aim at computational efficiency with
regard to interactive, simulation based multiobjective optimization, and we show,
that at least in some cases, substantial savings in calculation time can be achieved
using a decreased number of function evaluations at the beginning of an interac­
tive solution process, without compromising in the quality of the final solution too
much. We show results using several different budget levels, and show that even
rather small amounts of function evaluations may be sufficient at the beginning of
the optimization procedure.

Particularly, we aim at improving the computational efficiency of a whole inter­
active simulation based optimization system, which we have earlier introduced in
[1] and [2]. We strive to accomplish this by exploiting the well-known fact that many
global optimization algorithms are stochastic by nature, and thus the quality of the
solution improves as the number of objective function evaluations is increased. It
is also known that at the beginning of an interactive optimization process, the de­
signer is many times also at a beginning of the learning curve: (s)he is learning of
how different objectives are interrelated, what the trade-offs between the objectives
are and, also, what kind of objective values can be reached in general. Thus, at the
beginning of the optimization process, quite a coarse accuracy may be sufficient,
and thus only a small amount of objective function evaluations is needed to get the
grasp of the problem. During the interactive solution process we adjust the compu­
tational accuracy of the optimization algorithm by stopping each of the iterations
when a sufficient number of objective function evaluations has been reached. To
help judge what is a sufficient number of objective function evaluations, we intro­
duce a maximum difference percentage (MDP) measure.

As the designer has gained more understanding about the problem, (s)he may
approach the final solution with an ever increasing accuracy and number of ob­
jective function evaluations. Ultimately, the final solution can be calculated using
a MDP threshold that assures the designer of a good enough solution quality. We
demonstrate these ideas with a problem related to the optimal design of a two-stroke
engine expansion chamber. Even though the ideas presented are not limited to de­
sign problems only, we here call the decision maker involved in the solution process
as a designer.

The rest of this study is organized as follows. In Section 2 we shortly describe
an overview of a simulation based optimization system. In Section 3 we give some
general references about multiobjective optimization, and we also introduce the in­
teractive NIMBUS method used in this study. We introduce our interactive method

3

with increasing accuracy in Section 4. In Section 5 we present our example case of
internal combustion engine design with three objective functions. Section 6 summa­
rizes results of numerical tests, and in Section 7 we discuss some findings concerning
the optimization system. Finally, in Section 8 we draw some conclusions.

2 Simulation based optimization

When considering any optimization task, the problem must first be identified and
modelled as an optimization problem. This means that some properties of the sys­
tem studied must be identified and selected to be improved, i.e., optimized. These
properties are referred to as objective functions. They depend on a set of design
variables. Typically, we also have constraint functions defining feasible values for
the design variables. Feasible design variable values define a so called search space
for the particular problem.

From this setting, an optimization algorithm strives to improve (possibly scalar­
ized) objective function value by altering design variable values systematically. When
the objective and/ or constraint function values are derived from a simulator out­
put, we have a simulation based optimization system in question. In this section
we briefly discuss essential elements of a simulation based optimization system and
then one part involved, that is, global optimization.

2.1 System overview

While speaking of a simulation based optimization system, it is reasonable to dis­
tinguish two main parts of the optimization system, namely the optimizer (the op­
timization algorithm itself) and the part which calculates values for the objective
functions, the simulator (together with some additional software). With analytic
problems, which can be expressed in a closed form, one can sometimes use one ho­
mogenous system, i.e., the optimization algorithm and objective function calcula­
tion can be implemented using the same programming language, and they can even
reside in the same executable file. While speaking of more general cases, and es­
pecially simulation based optimization, the whole system evidently becomes very
heterogenous and consists of several modules, which may be implemented using
different tools and languages. In general, the whole system can be divided into four
separate modules: optimizer, input interface from the optimizer to the simulator,
simulator software, and the output interface from the simulator to the optimizer.

The optimizer module guides the whole optimization procedure by deciding
what design variable values should be passed forward. The second module, the
input interface for the simulator, receives design variable values and generates from
those values suitable input configuration files for the third module, the simulator.
For example, for an engine simulator, the engine design variables must be converted
to depict the whole internal engine geometry, or some more specific part of the en­
gine, which is to be optimized. To the optimization system the simulator is seen

4

as "black box": it merely receives system configuration data which reflects current
design variable values and produces simulation output files which contain detailed
information on how the simulated system performed with a given system config­
uration. The simulator itself may be an arbitrarily complex set of calculations and
even consist of several software modules. The execution time for a single simulation
run may vary from milliseconds to weeks.

In the fourth module, output files of the simulator must be handled to constitute
values for the objective functions, which are finally passed back to the optimiza­
tion algorithm. Then the whole loop starts all over again, and the optimization
algorithm uses information of the objective function value to decide new values for
design variables. The iterative process is continued until the optimizer meets some
pre-defined stopping criterion, for example, until an allocated number of function
evaluations has been used, i.e. the budget for objective function evaluations is ex­
hausted.

As can be seen, the whole optimization system may be very heterogeneous as
each of the four modules may be implemented using different programming lan­
guages and platforms and they may even run on physically separate computers.
Regardless of the implementation and structure of the modules, they must interface
with each others seamlessly. For further details of the four modules, see [2].

2.2 Global optimization in brief

As motivated in the introduction, we often need global methods for optimization
problems because the objective function(s) may be nonconvex, i.e., have several lo­
cally optimal values, and any local optimization algorithm is able to find only the
closest one to the given starting point. In this way, it is very easy to miss the real
optimum for the problem at hand using only local algorithms. As many real life
engineering problems require by their very nature global solvers, only these are in
the scope of our interest.

On the other hand, global optimization algorithms aim at determining the best
local optimum among all the local optima in the search space. In the field of local
optimization, it is easy to judge when the optimum has been found by checking
whether the solution satisfies optimality conditions or not, see, e.g., [16]. Unfortu­
nately, there exists no such general criterion for asserting that the real global op­
timum has been found. Furthermore, in case of global optimization, there is no
information similar to the gradient information, that could be efficiently used to lo­
cally decide where to search next. Thus, many global optimization algorithms are
stochastic by nature, that is, the probability of finding the global optimum increases
when the optimization process is continued further. In other words, this usually
means that the more objective function evaluations are used, the better will be the
solution gained. This is one feature we utilize here to reduce the number of required
objective function evaluations.

A plethora of global optimization methods has been suggested in the literature.
For a thorough discussion of global optimization algorithms in general, see, for ex-

5

ample, [21, 22, 38, 47]. For this study we chose to use two population based op­
timization algorithms, namely the controlled random search (CRS) [40], and espe­
cially the CRS2 [5] variant of it, and differential evolution (DE) [46], where the pop­
ulation is expected to concentrate around the global minimum during the optimiza­
tion procedure. The use of these is based on the comparisons made in [l], [4] and
[44].

In the CRS method, the search space is initially sampled randomly to form a
population P. In each of the following steps, a new trial point is generated, and if
the objective function value of the trial point is better than the current worst point
in P, the worst point is replaced in the population by the new trial point. By this
repeated process, points in the population are expected to concentrate around the
global optimum. The ideas of the basic CRS algorithms have been further extended,
for example, in [5].

The differential evolution is a simple stochastic optimization algorithm. The
essence of the DE algorithm is a process for generating trial parameter vectors to
be used in mutation. In DE, the weighted difference of two member vectors of the
population is added to a third vector. With this scheme, there is no need to use sep­
arate probability distribution to create new trial vectors, and this makes the process
completely self-organizing, because each dimension of the problem will evolve pro­
portionally over time, taking small steps when the variation in the values of a given
design variable within a population is small, and large steps when that variation is
large.

Next, we pay attention to another element in the optimization module of a gen­
eral simulation based optimization system, that is, multiobjective optimization.

3 Multiobjective optimization

Multiobjective optimization is needed whenever there are several conflicting ob­
jective functions to be optimized simultaneously, as the case is with many real-life
engineering problems. A general form of a multiobjective maximization problem is

maximize
subject to

{fi(x), h(x), ... , fk(x)}
xES (1)

involving k (:;::: 2) conflicting objective func:-tions f, · !Rn --, lR. HPrP, WP hr1vP n
design variables x E !Rn and S c !Rn stands for the feasible design variable space,
i.e., search space defined in a general case by inequality and equality constraints.
An objective vector z = (!1 (x), h(x), ... , fk(x) f E JRk consists of k objective function
values depending on the design variable vector x. Without loss of generality, we
restrict our consideration to maximization because if we need to minimize f it is
equivalent to maximize -f.

In multiobjective optimization, the concept of optimality is not as straightfor­
ward and unambiguous as it is in the single objective case. In the multiobjective
case, we want to optimize the values of several objectives at the same time, but usu­
ally there exists no single point within the feasible design variable space where all

6

the objectives reach their optima. Because of this conflict, we have a set of optimal
compromise solutions. This set of optimal solutions is called a Pareto optimal set.
A solution belongs to the Pareto optimal set if none of the objective function values
can be improved without impairing the value of at least one other objective.

Because the solutions in the Pareto optimal set cannot be completely ordered
mathematically, some additional information is needed to select one of them as the
final, most preferred, solution. This information, called preference information, is
given by a decision maker or a designer who is supposed to have expertise of the
problem domain and be able to express preference information about what kind of
solutions are preferred.

Multiobjective optimization problems are often solved by converting the multi­
ple objectives together with the preference information into a single objective opti­
mization problem using so-called scalarizing functions [31]. Scalarizing functions
are constructed so that solutions produced by them are Pareto optimal. For many
scalarization methods, as well as for designers, some information about the ranges
of points in the Pareto optimal set is needed. The upper bounds are defined by an
ideal objective vector z*, whose components are obtained by maximizing each of the
objective functions individually. A vector strictly better than z* is called a utopian
objective vector z**. The nadir objective vector znad consists of worst objective func­
tion values in the Pareto optimal set. Typically, it can only be estimated [31].

The scalarized single objective optimization problem can be solved using any ap­
propriate algorithm, and it is very important to notice that if the problem is noncon­
vex, depending on the type of the optimization algorithm, results are either globally
or locally optimal and, thus, Pareto optimal. Local Pareto optimality means that a
solution is Pareto optimal only in some small region near that particular solution,
instead of the whole search space. This leaves the decision maker into an unin­
tuitive state, as there may exist essentially better (global) solutions in the search
space. In other words, settling for locally Pareto optimal solutions violates the idea
of Pareto optimality. Thus, in order to get globally Pareto optimal solutions for non­
convex problems, we must use a global single objective optimizer. For a survey of
multiobjective optimization methods see, for example, [30], or for a more thorough
discussion including different scalarizing functions, see [31] and references therein.

3.1 Computational efficiency in multiobjective optimization

As mentioned above, scalarizing functions can be used to generate one Pareto opti­
mal solution at a time. Methods of this type may be used in an interactive fashion,
gaining one solution at a time, then letting the designer adjust the preference infor­
mation based on the current solution, and solving the new scalarized problem again.
Some scalarizing based approaches also produce several solutions for the designer
to compare at a time.

The most obvious way to improve the efficiency of scalarization based methods is
by improving the algorithmic efficiency, i.e., using more efficient solvers with regard
to the amount of function evaluations or absolute calculation time. As motivated

7

earlier, we here consider global optimization only. There exist several global opti­
mization algorithms which strive for efficiency, for example DIRECT [39], Multilevel
Coordinate Search (MCS) [23], GROPE [11], Differential Evolution (DE) [46], Con­
trolled Random Search (CRS) [40] (and its variants) [5], Recursive Random Search
algorithm [51], Efficient Global Optimization (EGO) [24], a variant of it, ParEGO
[25], an enhancement of EGO called SuperEGO [42], hybrid methods Simplex Cod­
ing GeneticAlgorithm (SCGA) [18] and the Simulated Annealing Heuristic Pattern
Search method (SAHPS) [19].

Efficiency for some of the abovementioned methods is reported in [4], [18], [19]
and [44]. Furthermore, a comparison between DE, CRS, SuperEGO, SCGA and
SAHPS was conducted in [l].

Another approach for solving multiobjective optimization problem, known in
the literature as a posteriori methods or approximating methods [31], produce a
discrete approximation and representation of the whole Pareto optimal set. In this
case, no preference information is needed before the representative set of Pareto
optimal solutions has been generated, and the decision maker can decide afterwards
which solution satisfies him/her the most.

By their very nature, these methods, like evolutionary algorithms [9, 53], tend
to lack computational efficiency, although some attempts towards better efficiency
have been made, e.g. in [3, 13, 43]. For a review of the approximation methods, see,
for example, [41].

Another problem with these methods lies in the selection of the most preferred,
the final solution among the set of nondominated solutions. An usual way to ac­
complish the selection of the final solution is by visualization of the resulting Pareto
optimal set; though, it is innate only in the case of two objective functions. With
three objective functions, some visualizations can be produced, for example, as pro­
jections to two dimensions, but with four or more objectives, intuitive and easily un­
derstandable visualization is practically impossible. However, without such tools it
is really hard for the designer to select the most preferred solution among dozens
of k-dimensional objective vectors forming the representative set. In our study we
want to retain the efficiency and expandability of the system to more than only two
or three objective functions.

As approximating methods aim at producing an approximation of the whole
Pareto optimal set, it is intuitively obvious that a great majority of these solutions
is not of interest to the decision maker, as (s)he is looking for some very certain
compromise between the objectives. As a direct consequence of that, lots of com­
putational effort may be wasted to produce uninteresting solutions. And as already
mentioned, representing the plethora of multidimensional Pareto optimal solutions
to the decision maker may often surpass his/her cognitive capacity, and the selec­
tion of the final solution from the big set may become a problem in itself.

For the reasons mentioned so far, we focus in this study at interactive methods,
where only those solutions of the Pareto optimal set are generated that the decision
maker considers appealing.

8

3.2 The NIMBUS method

From our point of view, an interesting type of methods is interactive methods, where
a solution pattern is formed and repeated iteratively. With these methods, only
relatively few Pareto optimal solutions have to be generated and evaluated, and
the decision maker can further adjust his/her preferences as the solution process
continues. In contrast to several other methods, the decision maker does not need to
have knowledge about the global preference structure before the solution process.
Due to the interactive solution process he/she will learn about the nature of the
problem and will most likely have more confidence in the final solution.

One example of methods of this type is NIMBUS [31, S. 5.12.], [33], [35]. It is an
interactive classification based multiobjective optimization method designed espe­
cially for an efficient handling of nonlinear problems. For that reason, it is capable of
solving complicated real-world problems. The NIMBUS method has been success­
fully applied to some real world engineering problems, such as chemical process
design [17], paper machine design [28], ultrasonic transducer design [20], and inter­
nal combustion engine design [2].

Each interactive method must be started from some initial solution. In the case
of NIMBUS, this solution is either a solution specified by the decision maker, or a so
called neutral compromise solution [35]. For the initial Pareto optimal solution, the
decision maker produces in NIMBUS a classification, i.e. decides whether each of
the objective function values should be improved, could be degraded, or if it should
keep the current value. By this preference information the decision maker indicates
how the current solution should be improved. Then one or more Pareto optimal
solutions are created, and the decision maker may select one of them as a basis for
a new classification. With an interactive procedure the decision maker proceeds
stepwise towards the final solution, whose objective function values represent the
most satisfying compromise to him/her.

In the NIMBUS method, the interaction phase has been aimed at being compar­
atively simple and easy to understand for the decision maker. At each iteration, the
NIMBUS method offers flexible ways to direct the search for the best Pareto optimal
solution according to the decision maker's wishes by means of classification. Clas­
sification does not require consistency from the decision maker and reflects his/her
wishes well. The use of classification avoids using difficult and artificial concepts
for extracting preference information.

The classification of the objective functions means that the designer indicates
what kinds of improvements are desirable and what kinds of impairments are toler­
able in objective function values in order to get a better solution than the current one.
The basic idea in classification is that the designer contemplates the current Pareto
optimal objective function values fi (xc) at each iteration of the NIMBUS method
and assigns each of the objective functions fi into one of the following five classes
depending on his/her preferences:

• Jimp, function value should be improved as much as possible,

• 1asp, function value should be improved to a certain aspiration level,

9

• 1sat, function value is satisfactory at the moment,

• Jbound, function value is allowed to impair to a certain acceptable bound, and

• Jfree, function value is temporarily allowed to change freely.

While classifying Pareto optimal solutions, it must be remembered that if the
designer wishes to improve some objective(s), at the same time (s)he must accept
impairment in some other objective(s). Based on the classification, we can form a
reference point zi, which consists of desirable values for each of the objectives. In
other words, components of the reference point are derived depending on in which
class each objective function belongs to. With regard to the classes above, corre­
sponding components of the reference point are selected as follows: Jimp ------► z; = z;,

1asp ------► Z;=aspiration level, 1sat ------► z;=current value f;(xc), Jb0und ------► Z;=acceptable
bound and Jfree- --- - -► Zi = zfad_

In the synchronous version of the NIMBUS method [35], several scalarizing func­
tions leading to different subproblems, may be utilized. This is motivated by the fact
that different scalarizing functions based on the same preference information may
produce different solutions [34]. The decision maker can choose to see one to four
different Pareto optimal solutions. In this study, based on the only negligible differ­
ences between different scalarizations with this problem, we employed only one of
the four scalarizing functions, namely the one based on an achievement scalarizing
function [48], which is formulated as:

. . . max [Z; - fi (x)] � f; (x)minimize i=l, ... ,k •• _ nad + P � •• _ nad,
zi Z; i=l Z; zi

subject to x E S.

where for each i = 1, ... , k
z; = component of the reference point
zfad

= approximated nadir objective vector component
z;* = approximated utopian objective vector component
p = some small positive value.
It is quaranteed that solution of (2.) is Pc1reto optim-11 ['.i.S].

(2)

Besides classification, with NIMBUS the designer can also generate an arbitrary
number of intermediate solutions between any two Pareto optimal solutions found
so far, and use them as a base for a new classification, if desired. When the decision
maker finds a Pareto optimal solution that satisfies his/her preference information
with conflicting objectives, this is regarded as the final solution.

With an interactive decision process the designer can learn about the nature and
interdependencies of the problem. By directing the solution process with the prefer­
ence information it is possible to learn how objectives affect each other (trade offs),
and also what kinds of solutions in general can or cannot be reached. This gives the
designer a good opportunity to solve the problem as a whole, instead of having to

10

consider each of the objectives at a time. A deeper understanding of the problem
most likely also makes the designer feel more confident of the quality of the final
solution.

4 Interactive method with increasing accuracy

Our approach arises from the use of an interactive multiobjective optimization method,
and the nature of interactive solution processes. At the beginning of an interactive
optimization process, the designer is many times also at the beginning of a learn­
ing curve: (s)he is learning of how different objectives are interrelated, what the
trade-offs between the objectives are and, also, what kind of objective values can
be reached in general. After the learning phase, the designer has a better under­
standing of the problem, and (s)he can decide what the most satisfactory objective
function values for the final solution are.

In our approach, we wish to demonstrate that the computational cost can be af­
fected by adjusting the required accuracy of the solutions of the optimization algo­
rithm (by using a predetermined threshold for objective function evaluations in each
iteration) during the interactive solution process. At the beginning of the process,
while the designer is still learning about the problem, quite a coarse accuracy may
be used, and only rather small amount of objective function evaluations is needed
to get grasp of the problem. As the designer learns more about the problem and
its behavior, and consequently feels more confident about it, (s)he may approach
the final solution with an ever increasing accuracy and number of objective function
evaluations. As the final step of the optimization procedure, the final solution can
be calculated using the budget that assures the designer of a good enough solution
quality.

One important issue with this kind of adjustable approach is to help the decision
maker to judge when a sufficient amount of objective function evaluations at each
iteration has been reached. Although several tools of different types could be de­
veloped, for example, based on the scalarizing function value, the solution quality
or on the budget of allowed objective function evaluations, we want to provide the
decision maker with an easy and intuitive way to monitor how the solution process
is progressing.

To this end, we propose a measure, which we refer to as a maximum difference
percentage (MDP), to assess the quality of each solution with regard to the given
classification. As the name suggests, the maximum difference percentage is the
maximum difference between the components of the current solution and the given
reference point of classification as percentages for each of the objectives, and for­
mally it is calculated as

M DP= ·=max [Zi-!i(x)]. z l, ... ,k
Zi

This formulation bears some resemblance with the structure of the achievement
scalarizing function presented in Subsection 3.2.

11

As we are discussing simulation based optimization, it may be useful to relate
the sufficient amount of objective function evaluations to the the accuracy of the
simulation software itself. With, for example, engine simulators accuracy above,
say, 95 percent can generally be considered good, and thus it is useless to solve the
problem itself beyond the inherent accuracy of the simulator. In the following, we
employ this idea with regard to MDP values.

With the continuously plotted values of MDP the decision maker can extract at
least three different types of information about the status of the current optimization
run, and thus decide when a sufficient amount of objective function evaluations has
been used.

Firstly, the decision maker can readily see as a percentage how far the worst
objective/ component of the current solution is from the given reference point. This
information can be related to some extent to the accuracy of the simulator used. For
example, in some sense, if it is known that the simulator error is around 5%, it may
be sufficient to stop computation when the MDP first drops below 5%.

Anyhow, it should be noted that MDP is always related to the given reference
point. As a result of that, if the reference point is impossible to reach, MDP will
never reach satisfying values. Vice versa, if given reference point is very easy to
reach, MDP values will evidently fall below zero.

Secondly, by observing how values of the MDP develop while number of ob­
jective function evaluations grows, the decision maker can see if there is a trend
of improving values (curve falling downwards), or whether the improvement has
already stagnated (curve almost horizontal). When the stagnation occurs, it is rea­
sonable to assume that sufficient amount of objective function evaluations has been
reached.

Thirdly, the decision maker can observe the variation of MDP values ("tail thick­
ness"). Usually, in the beginning of the optimization run (using a population based
global solver), the values are varying widely, but after certain amount of evalua­
tions, the variation of values starts to diminish. This implies with population based
optimization algorithms that the population is converging. Again, the amount of
variation can be related to the accuracy of the simulator used. For example, if the
simulator error is the same 5% as above, it may be reasonable to stop computation
at the latest when variation in MDP values approaches the range of 5%.

There are several other distance measures (between the reference point and the
current solution) that coukl have been utilized, bul lhe MDP was developed and
chosen because of its resemblance to the type of scalarizing function employed, and
its intuitive meaning to the decision maker, as percentages are readily understand­
able, unlike scalarized objective function values. Further, as the MDP measure gives
maximum difference of the solution components to the reference point, no compo­
nent of the current solution can be worse than the MDP value indicates.

To sum up the main building blocks of our method, let us remind that as a gen­
eral framework of the interactive optimization system of our study we have chosen
to use the interactive NIMBUS method (discussed in Subsection 3.2). Multiple ob-

12

jectives are scalarized using the scalarizing function (2), and as global optimizers we
use CRS and DE algorithms. Further, in every iteration of the NIMBUS method we
employ the MOP values to judge a sufficient amount for objective function evalua­
tions.

Logical steps of our method are as follows:

1. At the beginning of the procedure the initial solution for NIMBUS (e.g. neutral
compromise solution) is calculated.

2. In a classification step, based on the current solution, the decision maker clas­
sifies objective functions and adjusts desired values for objectives to reflect
his/her preference information. In this step, the decision maker can also de­
cide to create intermediate solutions (instead of classifying) between any two
already known Pareto optimal solutions.

3. The decision maker may define a stopping criterion for the next iteration, by
giving a threshold values for MOP, or for the variation in MOP ("tail thick­
ness") values. If this stopping criterion is not given, the decision maker can
stop the optimization run based on the continuously plotted MOP graph when­
ever it seems reasonable.

4. If the decision maker wishes to further refine the solution either with a new
classification or with a higher accuracy, he/she may continue the process from
the Step 2.

In Section 6 we demonstrate our method, and show how much the amount of
objective function evaluations could be decreased in our example problem without
deteriorating the overall quality of the solution process.

5 Example case of IC engine design optimization

To elucidate our approach, in the following paragraphs we shortly introduce an ex­
ample problem using the particular building blocks of a general system depicted in
Subsection 2.1. The optimization system setup on a general level is similar to the
ones presented in [l, 2], and further, we use the same engine design problem as in
[2] to allow the comparison between proposed approaches in this and the previous
paper. We study the performance of a two stroke engine and optimize it by altering
the shape of the exhaust pipe, while we concentrate on improving the computa­
tional efficiency.

Objective functions
Our objective functions represent three different properties of the engine or en­
gine/ vehicle combination. Two of these properties are derivatives of the engine per­
formance only, namely maximum power and bmep (efficiency). The third one, namely

13

coverage, reflects compatibility of the engine properties with gearing and transmis­
sion from the perspective of vehicle performance. These objectives are covered in
detail in [l].

Maximum power is simply the maximum output of the engine. Besides the max­
imum power we are also interested in how that power is produced. There are only
two ways to improve the maximum power of an engine: by increasing the operat­
ing speed of the engine or by increasing the average pressure inside the cylinder
during the power stroke (volumetric efficiency). The latter is to be preferred, since
increasing the operating speed of the engine results in increased mechanical stresses,
decreased mechanical efficiency due to increased friction, and exposes the engine to
a failure. As the measure of volumetric efficiency, we use the factor which describes
the average pressure inside the cylinder during the power stroke and it is known as
bmep (brake mean effective pressure).

In addition to maximum power and bmep, we are interested in coverage, which
reflects how well some specific engine suits a particular gearing. In essence, cover­
age is the ratio between maximum performance of the engine if maximum power
was usable at all speeds, compared to real performance which is degraded by the
fact that due to different gear ratios, only some fraction of maximum power is gen­
erally usable.

In real-life, the overall performance of an engine/vehicle combination can be de­
termined and controlled by three factors: coverage, maximum power and bmep. It
is possible to have an engine-gearbox combination with a very high coverage, while
the peak power of the engine is low. This is obviously not a good solution. There­
fore, the coverage and the maximum power are conflicting objectives and they must
be considered in unison. In addition, bmep must be taken into account in order to
control rpm (revolutions per minute) for the maximum power. Thus, when con­
sidering the goodness of a particular vehicle as a whole (including engine-gearbox
combination), all the three factors must be studied simultaneously as three objective
functions.

Engine configuration modelling
In this study, engine configuration modelling refers to a dual technique for the ex­
haust pipe shape representation and it should not be mixed with the engine model
in the simulator. On the one hand, an engine configuration model is used to produce
a general and modifiable exhaust pipe shape using as few design variables as pos­
sible (to lower the dimension of the optimization problem, and thus improving the
computational efficiency). On the other hand, the exhaust pipe shape which is cre­
ated using as few design variables as possible must be converted to a form which is
usable for the simulator (i.e., a list of lengths and diameters). For example, a diffuser
shape can be represented by a continuous curve. For the simulator, this continuous
shape must be converted to separate sections whose start diameter, end diameter,
and length is given.

In this study we use a so-called Bezier model developed in [1] to represent the
shape of an exhaust pipe. This model [2] is capable of representing very dissimilar

14

pipe shapes using a Bezier curve and only six design variables. The first of them is
the total length of the pipe, which is defined similarly to the empirical models given
in [8]. The next four variables are x and y coordinates for the two control points of
the Bezier curve. The last design variable, the tail pipe diameter coefficient, deter­
mines the diameter of the end pipe, that is, the stinger. Bounds for the variables are
given in [l],[2], and they define the feasible region S, that is, the search space.

The simulator
In this study, values for the three objective functions are derived from output files
of an engine simulator. The simulator, MOTA 6.1 by J. van Leersum [27] and Ian
Williams Tuning [49], was selected because it was necessary to consider especially
the time consumed in a single simulation run and the possibility to link the simula­
tor with an optimization tool. The execution time of MOTA for a single simulation
run is a good average for an example case of simulation based optimization. A sin­
gle run takes typically a few minutes using a modern PC (AMD Athlon 2.09 GHz,
1.0 GB of RAM), depending on the complexity of the pipe design and the grid gran­
ularity (total amount of rpm steps) for the end results.

MOTA is widely used among the two-stroke enthusiasts and semi-professional
engine designers. The engine model used in MOTA is described in [27].

Optimization problem
Now, having defined our objective functions, we can formulate our multiobjective
optimization problem

maximize
subject to

{Ji (x), h(x), h(x)}
X E 8, (3)

where we have six design variables x = (x1, ... ,x6), and fi(x) represents the max­
imum power of the engine, h(x) describes the coverage and fa(x) stands for the
effectiveness of the engine (bmep).

The feasible design variable space S is limited by upper and lower bounds for
each variable and, thus, the problem has box constraints. Specifically, the tuned
length Lt of the pipe was bounded to be between 700 and 800 mm.

6 Numerical example - solution process with NIMBUS

with increasing accuracy

In this section, we describe the interactive solution process when a desiS!l problem
of an internal combustion engine was solved with the IND-NIMBUS® software
[32] (implementation of the NIMBUS method) and the CRS2 and DE algorithms
were used as underlying global single objective solvers. We made three separate
runs: two different runs using the CRS2 algorithm, and the second CRS2 run was
duplicated using the DE algorithm (instead of CRS2) in order to see whether the
optimization algorithm itself has major impact on the solution process.

15

For the first CRS run the MDP plots are omitted, and focus is merely on the
numerical values. On the other hand, for the second CRS run, and corresponding
DE run we present also MDP plots to show how they can be employed, and we
wish that these plots may also give some insight to the behaviour of two different
optimization algorithms. It is worth to mention, that in these runs MDP values were
not actually used to stop the optimization procedure. Rather, each iteration was
executed to the maximum number of evaluations, but we give some suggestions
retrospectively how process could have been terminated based on MDP values and
plots. Each of three runs is discussed more detail below in their own subsections.

For each run and each iteration of the interactive solution process we report the
best objective function values gained at various levels of objective function evalu­
ations. Number of objective function evaluations also corresponds to the number
of simulator runs, since all three objective function values are derived from output
files of the single simulator run.

As mentioned earlier, the synchronous NIMBUS algorithm can produce up to
four different Pareto optimal solutions after each classification. In preliminary test­
ing [l], [2] it turned out that in this example differences between them were quite
small and, thus, only a single Pareto optimal solution was calculated in order to
decrease the computational burden. This solution is produced by the so-called
achievement scalarizing function, presented for example in [35],[48]. In the follow­
ing, we show solutions where objective function values are in the order (power (in
hp), coverage, bmep (in bar)). The objective function devoted to coverage has no
units because it describes a ratio where the maximum value is 1.

Some information about the ranges of the objective functions in the Pareto opti­
mal set is used for scaling purposes in NIMBUS. Normally, IND-NIMBUS® initially
calculates so-called ideal (upper bound) and nadir (lower bound) objective vectors
[31]. In order to save computation time, information for scaling was given here
manually. The lower bounds were set as (0.00, 0.00, 0.00), and the upper bounds as
(34.00, 1.00, 15.00). The values for both vectors were selected based on a decision
maker's expertise, so that they are not reachable in real-life.

In Tables 1, 2 3, and 4, we present summaries of three different solution processes
(first example is divided in to Tables 1 and 2 for space limitations) where a different
budget for objective function evaluations were used at each iteration. The purpose
of this is to see how the overall solution process is affected by the number of function
evaluations used, and whether it is possible or not to reduce the evaluation count in
the early phases of the optimization process without degrading the final solution.
This design problem is similar to the one presented in [2] to allow the performance
comparison, and the solution process follows quite closely classifications made in
that study.

In rows of Tables 1, 2, 3, and 4 below horizontal lines we show the classifica­
tions made at each iteration with the desirable objective function values (Cls), and
below them the corresponding values for each of the objectives at different evalu­
ation levels. In order to see how the solution process is affected by the number of
the objective function evaluations, at each iteration, results can be examined with

16

increments of 30 objective function evaluations, this number corresponding to the
population size of CRS and DE algorithms. These increments of 30 evaluations are
seen in "Eval level" column. Column "Best", gives the evaluation number where
so far the best scalarized objective function value occurred before the given evalua­
tion level. The next three columns display values for each of the separate objective
functions (power, coverage, and bmep), or the given classification in the form of de­
sired objective function values. For clarity, objective function values at evaluation
levels where no further improvement was gained are left empty. In the last column
"Seal. f 1:1", the absolute change within each iteration in the scalarizing function
value between the initial sampling phase and the best solution at that iteration is
display ed.

It is necessary to mention that the form of the achievement scalarizing function
[35, 48] we used here, does not require the information about the current solution.
Thus, it was not necessary to replicate results of the whole run using solutions
gained at different evaluation levels as the current solution for the next classifica­
tion.

Some examples of how the MDP values can be used to judge sufficient number
of objective function evaluations are discussed in Subsection 6.4.

6.1 First CRS run

In our first test run we were aiming at gaining good overall performance by having
quite high maximum power, reasonable coverage, and fairly high efficiency. In Iter­
ation 1, to begin the interactive solution process, the neutral compromise solution,
which should be located roughly in the middle of the Pareto optimal set, was calcu­
lated as a starting point for the classification using 240 function evaluations. After
that, the following iterations were executed also up to 240 function evaluations for
each classification. The best objective function values are reported in the steps of 30
evaluations up to 240 function evaluations. The final iteration of the optimization
procedure was executed allowing 480 function evaluations, in order to get a more
accurate final result.

The neutral compromise solution for the problem was (26.17, 0.79, 11.54). Ac­
tually quite a similar solution, (26.02, 0. 78, 11.25), was found already in the initial
sampling phase (during 30 first random evaluations to create the initial population)
of the CRS algorithm at the 28th evaluation. After that bmep and power improved
slightly.

In Iteration 2, a classification was done in order to improve the neutral solution.
The aim was to gain a higher coverage and for that reason power was allowed to
decrease till 25.00, coverage was desired to improve till 0.85 and for bmep, a slight
decrease till 11.00 was allowed. We can see that the solution (24.88, 0.85, 10.98) pretty
close to the classification specified could be found very early, also in the initial sam­
pling phase as with the neutral compromise solution, and this solution was slightly
improved with further evaluations to a final value (25.13, 0.86, 11.09).

In Iteration 3, the classification was continued from the result of Iteration 2, and

17

Table 1: First example. Effect of the number of function evaluations to the interactive
solution process.

Eval level Best Power(he) Cov Dmee:(bar) Seal. f Seal. f .6.
lterl Neut"

30 28 26.02 0.78 11.25 -0.2475
60 28
90 28

120 118 26.30 0.77 11.38 -0.2393
150 127 26.17 0.77 11.55 -0.2304
180 169 26.17 0.79 11.54 -0.2281
210 169
240 169 0.0194

lter2 Os Jbound(25.00) 1 a8P(0.8S) 16ound(ll.OO)
30 5 24.88 0.85 10.98 0.0011
60 5
90 5
120 116 25.09 0.85 11.07 0.0021
150 116
180 151 25.13 0.86 11.09 0.0062
210 151
240 151 0.0073

lter3 Cls 16ound(24.00) l aap(0.92) J"'P(ll.50)
30 23 23.08 0.87 10.83 0.0452
60 23
90 23

120 104 22.77 0.88 10.92 0.0401
150 104
180 104
210 104
240 235 23.38 0.88 10.97 0.0347 0.0104

Iter4 Cls 16ot.md(22.00) JBBP(Q.90) J'"'(l0.80)
30 22 23.08 0.87 10.83 -0.0252
60 32 23.89 0.88 10.54 -0.0205
90 32
120 99 23.55 0.90 10.82 0.0004
150 99
180 162 22.60 0.91 10.84 0.0048
210 162
240 162 0.0300

IterS From 22.60 0.91 10.80
To 25.00 0.85 11.00
1

30 23 23.08 0.87 10.83 -0.0167
60 23
90 83 23.22 0.89 10.67 -0.0152

120 111 22.91 0.89 10.75 -0.0099
150 111
180 111
210 111
240 240 23.00 0.89 10.80 -0.0070 0.0096

2
30 22 24.36 0.84 11.43 -0.0498
60 54 23.79 0.85 10.71 -0.0356
90 82 24.11 0.89 11.08 -0.0029

120 82
150 130 23.74 0.89 11.14 0.0015
180 130
210 130
240 130 0.0512

3

30 1 24.59 0.85 10.85 -0.0230
60 46 23.% 0.86 11.Dl -0.0122
90 65 24.59 0.86 11.30 -0.0047
120 65

15() l?R ?.4.?.4 O.AA 11.14 -0.0017
180 128
210 128
240 128 0.0193

4

30 1 23.44 0.83 10.55 -0.0372
60 1
90 87 24.41 0.86 11.22 -0.0123

150 87
180 87
210 198 24.73 0.86 11.13 -0.0082
240 217 24.67 0.87 11.10 -0.0022 0.0350

18

Eval level

lter6
30
60
90

120
120
150
180
210
240
270
300
330
360

390
420
450
480

Table 2: First example, continued.
Best Power(hp)
Cls 1"""(25.50)
15 16.92
15
15
87
99 24.58
137 25.08
137
137
137
137
137
137
137
137
410 25.10
437 25.16
137

Cov

1•••co.BB)
0.86

0.86
0.87

0.88
0.87

Bmep (bar)
1•••c11.20>

7.94

11.06
11.07

11.07
11.10

Seal. f

-0.0254

-0.0249
-0.0099

-0.0093
-0.0076

Scal.fLl.

0.0179

the aim was to gain even more coverage and slightly more bmep and, thus, power
was allowed to decrease till 24.00, and coverage and bmep were hoped to improve
till 0.92 and 11.50, respectively. Even the final solution (23.38, 0.88, 10.97) of this iter­
ation gained with 235 evaluations failed to reach the given classification, suggesting
that high coverage is preventive for power and bmep. Also in this case differences
between solutions with different evaluation levels remained quite small.

In Iteration 4, we continued from the previous solution. In the quest for higher
coverage till 0.90, power was allowed to decrease further till 22.00, and for the bmep

a slight degradation till 10.80 was regarded acceptable. Solution (22.60, 0.91, 10.84)
was obtained at the 162nd evaluation, and at lower evaluation levels we see that
continuous decrement of power levels was traded with higher coverage levels. In
this iteration, solution (23.08, 0.87, 10.83) gained at the CRS2 algorithm's initial sam­
pling phase at the 22nd evaluation is improved quite continuously with an increas­
ing number of evaluations, resulting also in one of the biggest improvements in
scalarizing function value compared to all iterations within this test run.

At this stage of the solution process we wanted to study more Pareto optimal
solutions to see how the behavior of power and coverage interacts. To achieve this,
in Iteration 5 we used the option of generating new Pareto optimal alternatives be­
tween two already known Pareto optimal solutions. As the end points two already
known solutions we used: (25.13, 0.86, 11.09) from Iteration 2 (which has a good
value for power) and (22.60, 0.91, 10.84) from Iteration 4 (which has a good value
for coverage). Between these points we chose to get 4 new solutions, which were
(23.00, 0.89, 10.80), (23.74, 0.89, 11.14), (23.24, 0.88, 11.14), and (24.67, 0.87, 11.10). The
last of these results, (24.57, 0.87, 11.10), encouraged us to believe that there could ex­
ist a solution with a power level above 25 hp, with coverage close to 0.90, and bmep

over 11.
In the first new alternative of the Iteration 5 the solution of initial sampling was

only slightly improved with more evaluations, as is also seen in the improvement of
the scalarizing function value. In the second new alternative the initial solution is
obviously changing, but for the human observer it is not clear how much the solu­
tion actually improves. By the change of scalarizing function value, this solution has
improved most with an increasing number of evaluations during this experiment.

19

The third new alternative does not seem to benefit much of increasing evaluation
numbers as the solutions are quite close to each other. The fourth new alternative
improves all the way through the increasing number of evaluations, and also the
change in scalarizing function value is quite big.

Although the last intermediate solution of the Iteration 5 was rather satisfactory,
we wanted to take one more iteration using more function evaluations in order to
achieve a high accuracy for the final solution, reflecting our possibly optimistic be­
liefs. With our final classification we aimed at a quite high demand for power as
we hoped it to improve till 25.50, similarly we hoped to improve bmep and coverage
till 0.88 and 11.20, respectively. As this classification is not allowed by definition of
Pareto optimality from the last result of the previous iteration (one cannot improve
all the objectives at the same time), we used the neutral compromise solution as the
base for the new classification. This procedure does not compromise integrity of
the solution process, since our optimization algorithm is global instead of a local
one, and as such it does not employ information about the current solution. Instead,
the initial population of the CRS2 algorithm is always created randomly, regard­
less of the current solution. Besides that, contrary to some sclarizing functions [34]
the scalarizing function used here does not employ information about the current
solution.

With 480 function evaluations devoted for getting the solution in the final itera­
tion, we obtained solution (25.16, 0.87, 11.10). Although the desired levels were not
quite achievable, this solution was considered satisfactory and selected as the fi­
nal solution. In this iteration, with an increasing number of function evaluations, it
seems difficult to gain any improvement, and although 480 evaluations were used,
only minor change in scalarizing function value was achieved. This probably sug­
gests that the given classification is close to the performance limits of the engine to
be optimized. In our final solution, the power peak settled at a reasonable level with
25.16 hp at 12500 rpm and also coverage and bmep reached good values.

6.2 Second CRS run

Because it seemed that our example problem is not very sensitive to the number of
objective function evaluations, we wanted to change our classifications, and pursue
other kind of trade-off between our objectives. Thus, in the secuml example we
were pursuing very high coverage with the expense of both bmep and power. A
summary of results is seen in Table 3. Results of Iteration l are naturally the same as
the ones in the first example because we begun with the same neutral compromise
solution as a starting point.

In Iteration 2 we allowed power and bmep to decrease till 23.00 and 10.50, respec­
tively, and at the same time we were aiming to get coverage at least to 0.94. The solu­
tion changed quite a lot during the evaluations of this iteration, as also the change in
the scalarizing function value suggests. With the solution (22.43, 0.92, 10.76), power
fell below requirement, coverage did not achieve the given value, and in bmep there

20

Table 3: Second example. Effect of the number of function evaluations to the inter-
active solution process.

Eval level Best Power(he) Cov Bmee(bar) Seal. f Seal.IA

Iter1 Neu�
30 28 26.02 0.78 11.25 -0.2475
60 28
90 28
120 118 26.30 0.77 11.38 -0.2393
150 127 26.17 0.77 11.55 -0.2304
180 169 26.17 0.79 11.54 -0.2281
210 169
240 169 0.0194

Iter2 a,
1bound(23_QO) I"'P(0.94) Jbound(l0.50)

30 23 23.08 0.87 10.83 -0.0651
60 52 21.90 0.88 10.50 -0.0573
90 69 21.53 0.91 10.32 -0.0410
120 111 22.07 0.91 10.36 -0.0251
150 111
180 111
210 197 22.33 0.92 10.48 -0.0175
240 236 22.43 0.92 10.76 -0.0159 0.0492

lter3 a, /bound(22.00) J"'P(0.94) 16ound(l0.00)
30 6 20.04 0.90 10.04 -0.0556
60 37 21.31 0.93 10.22 -0.0180
90 37

120 115 21.47 0.92 10.08 -0.0174
150 115
180 176 21.92 0.93 10.07 -0.0096
210 176
240 211 21.81 0.93 10.02 -0.0070 0.0486

Iter4 0s 1asp(24.00) Ias p(0.94) [bound(9.50)
30 23 23.08 0.87 10.83 -0.0651
60 23
90 82 22.42 0.88 10.75 -0.0595
120 113 24.33 0.89 10.52 -0.0465
150 144 23.54 0.91 10.38 -0.0300
180 144

210 207 23.64 0.91 10.23 -0.0259
240 221 23.10 0.92 10.19 -0.0241 0.0411

Iter5 Os J6ound(21.00) lasp(0.98) 1bound(9.00)
30 6 20.04 0.90 10.04 -0.0803
60 6
90 69 21.89 0.95 8.94 -0.0271
120 69
150 69
180 69
210 69
240 69 0.0532

still was some room for acceptable decrement. Thus, it was not possible to obey the
classification completely.

In Iteration 3 we were further compromising values of power and bmep by al­
lowing them to decrease till 22.00 and 10.00, respectively. At the same time coverage
was required to be at least 0.94. The solution (20.04, 0.90, 10.04) of the initial sam­
pling phase was improved quite a lot with additional evaluations. The final solution
(21.81, 0.93, 10.02) of this iteration could follow quite closely the given classification:
power and coverage were only slightly below their minimum values, and bmep was
little bit higher than required.

In Iteration 4, coverage requirement was still kept at 0.94, and power was re­
quired to reach higher for 24.00, and for bmep decrement further down to 9.50
was accepted. Also in this iteration the initial solution (23.08, 0.87, 10.83) benefited
from the additional evaluations, as the scalarizing function value changed quite a
lot. Anyhow, with the the final solution (23.10, 0.92, 10.19) of this iteration, power
and coverage were lagging behind the desired ones, whereas bmep was essentially
higher than required. Thus, it was not possible to find a feasible solution that would
accurately correspond to the given classification.

In Iteration 5 we made the final attempt towards extremely high coverage by

21

setting a requirement for it to 0.98 (considering that 1.00 is an unreachable theoret­
ical maximum this was a very optimistic setting), and further allowing power and
bmep to decrease till 21.00 and 9.00, respectively. The solution of the initial sampling
phase (20.04, 0.90, 10.04) was improved only once at iteration 69 resulting with solu­
tion (21.89, 0.95, 8.94). Regardless of the only single improved solution, the absolute
improvement in the initial sampling and final scalarizing function value was great­
est within the iterations of this example. As we were here aiming at the maximum
coverage while having power and bmep values at least within some reasonable lim­
its, we regarded solution (21.89, 0.95, 8.94) of Iteration 5 as the final solution of this
example. This high coverage with regard to reasonable values of maximum power
and bmep may be close to a theoretical limit.

It is worth mentioning that direct comparison of scalarizing function values be­
tween different classifications (i.e. iterations) is not reasonable. This is because the
scalarized problem to be solved, based on different classifications, is different. Thus,
consideration of scalarization function values of different iterations with different
classifications leads us to compare apples and oranges, so to speak. Anyhow, within
one single iteration scalarized function values may give the decision maker some
additional information about the solution development.

6.3 DE run

Our third run is identical to the second run, with regard to the classifications made.
The only difference is that in this example we used DE as a solver, instead of CRS
as in two previous examples. The results are seen in Table 4. The results of Iter­
ation 1 are naturally the same as the ones in the two previous examples, because
the initial (neutral compromise) solution is computed. In contrast to the two previ­
ous examples, Table 4 contains one additional column "Comp" to highlight perfor­
mance differences between CRS and DE. Markings in this column indicate whether
DE performed better (+), worse (-), or similarly (0) in that particular evaluation level
compared to CRS in the previous example.

In iterations 2, 4 and 5 DE performed initially somewhat better, up to 90 evalu­
ations, but beyond that, CRS performed exclusively better. As a consequence, total
improvement in scalarized function value was higher with CRS in all iterations. For
this reason, while the CRS method was used, the given classification was followed
somewhat more accurately. Of course, these conclusions are not necessarily very
well generalizeable beyond these examples.

Although the CRS performed slightly better in this example, differences in real
objective function values were not very large, and thus it seems that our example
problem is not very sensitive to the selection of the optimization algorithm. Thus,
we can make some conclusions that are not limited merely to one global optimiza­
tion method.

22

Table 4: Third example. Effect of the number of function evaluations to the inter-
active solution process. Similar to second example, but instead of the CRS, the DE
algorithm was used.

Eval level Best Power(h£) Cov Bmep (bar) Seal. f Seal. f � Comp
Iterl Neu�

30 28 26.02 0.78 11.25 -0.2475 0
60 28 0
90 28 0

120 118 26.30 0.77 11.38 -0.2393 0
150 127 26.17 0.77 11.55 -0.2304 0
180 169 26.17 0.79 11.54 -0.2281 0
210 169 0
240 169 0.0194 0

Iter2 Cls 16ound(23.00} Jaap(0.94) 1bound(l0.50)
30 23 23.08 0.87 10.83 -0.0651 0
60 47 21.92 0.90 10.29 -0.0378
90 47 +

120 117 22.23 0.90 10.43 -0.0344
150 117
180 117
210 181 22.38 0.91 10.50 -0.0321
240 181 0.0330

Iter3 Os Jbound(22.00) J"'P(0.94) 16ound(l0.00)
30 6 20.04 0.90 10.04 -0.0556
60 36 21.24 0.89 9.97 -0.0455
90 88 22.11 0.89 9.% -0.0445
120 115 21.99 0.92 9.90 -0.0216
150 115
180 115
210 195 22.15 0.92 9.97 -0.0139
240 219 21.93 0.93 10.08 -0.0095 0.0461

lter4 Cls J08P(24.00) Iasp(0.94) 16ound(g,50)
30 23 23.08 0.87 10.83 -0.0651
60 47 21.92 0.90 10.29 -0.0590 +

90 47
120 47
150 135 23.09 0.88 9.79 -0.0550
180 135
210 205 22.05 0.92 9.73 -0.0550
240 237 22.39 0.89 10.51 -0.0519 0.0133

IterS Os Jbound(21.00) JO.BP(Q.98) 1bound(g,QO)
30 6 20.04 0.90 10.04 -0.0803
60 32 19.40 0.93 9.95 -0.0512
90 32

120 102 19.40 0.95 9.30 -0.0450
150 102
180 102
210 102
240 226 21.87 0.94 9.85 -0.0408 0.03%

6.4 MDPplots

In Figure 1 we have collected eight MDP plots depicting two identical (with regard
to classifications made) runs of Subsections 6.2 and 6.3. The first iteration, compu­
tation of neutral compromise solution, is omitted in both cases, because there is no
preference information available, needed to compute the MDP value. In the figures,
on x-axis is the number of function evaluations, and on y-axis is the MDP value
of each objective function evaluation. In other words, any 30 adjacent points (with
regard to x-axis) represent the current population of the optimization algorithm.

The inspection of the plots of the CRS run reveal, that for the majority of the iter­
ations only one to four evaluation levels (which corresponds to 30 - 120 evaluations,
one evaluation level being 30 objective function evaluations) would be sufficient to
see that MDP improvement stagnates (lower values of MDP are not improving i.e.
getting smaller), best MDP values are already quite small, and the variation in MDP
has already reduced. Especially in the early iterations, while the decision maker is
still learning about the problem, already one or two evaluation levels seem to show
sufficient stagnation to stop the current iteration. This probably suggests that the

23

problem is quite easy to solve with regard to the the given classification.
In the plot of the 5th Iteration, it is seen that the MDP variance remains higher

than in other plots. This is probably due to the more strict classification, i.e. the
given classification is quite hard, or even impossible to reach.

The plots of the DE run are little bit more difficult to interpret, but the same
behaviour as in the CRS run, is seen with somewhat higher variation (notice the
different scaling of MDP values in y-axis). It is clearly visible in the variation of MDP
within population, that the convergence rate of the CRS is somewhat faster (possibly
due to the parameter settings of the DE), as also numerical results suggested.

Figure 1: MDP plots for the second CRS run and the DE run.
Iter CRS, 2nd run DE run

2

3

4

5

30 60 90 110 ISO 180 210 240

. . .30 • • •
..

15
10 ,.
0 0 30 60 90 120 150 180 210 240

35

1'

30 60 90 120 !50 180 210 240

30+-,4�"----------;

25 -�-· -·-'·-----�-----; •t •• •

,,-..-�.=-.-��-------<
0 JO 60 90 120 150 180 110 240

24

70·-------------

oo+---�--------;

50 .#
40 � ·' ., f • • '· JO •••• •• '"- •• ♦

..

20 •• -·•• ... t ... • ••
10 ♦ ,f • • •• , • :� • ..:,. � .. � ♦ ·.-..:.

♦ • ♦ •
. · ,� �- � ..0 +-'"'-,a-,........,..--,,...._....._. __ -;

0 JO 60 90 120 150 180 110 240

.. , ____________ _
70+--------------i

40 ,.,. •• ,· •••
30 ;• ♦ • ♦ ""

.

. ...

···- ♦ • • • 20

�+#\��#;_!___� +t ._ T♦l4.••i•;•+;,!�� 1:-.;�-.. �,.�: •. ;. .
JO 60 90 120 150 180 210 240

30 60 90 120 150 180 210 2�0

30 60 90 120 150 180 210 240

7 Discussion

In the examples reported, the interactive optimization procedure allowed us to guide
the solution process to a desired direction step by step, and also to learn of what
kind of solutions are attainable. In a majority of the iterations, only smallish num­
ber of 240 function evaluations were used but, yet, the solutions obtained followed
the given classifications accurately enough to allow moving to a desired direction in
the Pareto optimal set. In the final iteration of the first example, up to 480 function
evaluations were used, and this lead to a sufficiently good final solution. The solu­
tion process was computationally efficient in all because in this example, only nine
or five Pareto optimal solutions had to be generated to find the most preferred one.
The whole optimization procedure consumed in the first run 2400 and in the second
and third run 1200 objective function evaluations, which equals roughly to 48 and
24 hours of computation on a modern workstation.

While inspecting the data in all three tables and in MOP plots, we can deduce
that only one to four evaluation levels (corresponding to 30 - 120 evaluations) for
the majority of the iterations would be sufficient to be able to reconstruct a similar
path of classifications as was done in the three examples. This suggests that the
number of 1200 or 2400 evaluations could be cut down to approximately one third
(400 or 800, respectively) without deteriorating the quality of the final solution using
this technique. This would correspond roughly to 8 or 16 hours of computation,
respectively. In other words, we could achieve considerable savings.

One major issue (also with general applicability) for further study for this kind of
a technique is to develop more sophisticated tools to judge when a sufficient amount
of objective function evaluations at each iteration has been reached. In our study we
used a simple, but intuitive MOP plots, possibly with predefined thresholds. This
idea could be further refined and automated by calculating more key figures of the
plots, for example, median of MOP values with a sliding window could be plotted,
as well as range wherein, for example, 80% of solutions reside. These mechanisms,
especially with arbitrarily selected problems, remain topics for further study.

All the information above could be presented in real time to the decision maker as
various graphical plots to help his/her judgement. Thus, either the decision maker
or a heuristic based on MOP values could restrict the number of function evalua­
tions to a sufficient level at each iteration. As one iteration may take several hours,
the use of a heuristic is needed whenever the decision maker is not able to occasion­
ally check the status of the optimization run, for example, during night time.

Concerning the classification, especially in the second example we noticed that
while using only small amounts of objective function evaluations, it may be benefi­
cial to set preferred function levels on to a bit optimistic side, as solutions satisfying
the given classifications can not always be found. For example, in our second ex­
ample maximum coverage was gained when requirement for it was set to a very
high level. Anyhow, it is worth to mention that naturally not all classifications can
be followed if they are too demanding, and this is also something that the decision
maker must learn about the problem during the process.

25

While inspecting all three objective function values at various numbers of evalu­
ations, we noticed that in several cases already sampling of the search space with a
tiny initial population (5 * d, 30 in our case) of the CRS algorithm produced quite a
good accuracy with regard to the given classification. On the other hand, especially
in the second example, solutions continuously benefited from additional evalua­
tions. In all three test runs, the last classification seemed to be hard to reach. This
is probably due the accumulation of understanding of the problem behavior, and
as a consequence of strive to achieve maximum performance, classifications in all
cases were quite demanding. As a result of the strict classification the satisfactory
solution is not so easy to find, indicating either a need for more objective function
evaluations, or a less demanding classification. Either way, in the final stage of
the optimization procedure, it may be reasonable to use higher number of objective
function evaluations to be assured of a final high quality solution.

In the implementation of CRS, the initial sampling of the search space is done
similarly at each iteration of the process, and it does not depend, for example, on
the classification the decision maker made, or the current solution. For this reason,
the first 5 * d, (30 in our case) iterations in all iterations (except in the Iteration 5 of
the first example where alternative solutions were created) are identical, and in this
sense this is time wasted duplicating already known results. This behavior could
be optionally changed by using a different random seed for the initial sampling in
CRS2 algorithm, but it remains open to discussion whether this would benefit the
overall process or not.

8 Conclusions

Our study arises from the fact that real-life engineering problems have very of­
ten multiple objectives, objective functions involved are highly nonlinear and they
contain multiple local minima, and function values are often produced via a time­
consuming simulation process. In this study, our aim was to show that the computa­
tional complexity (due to time consuming objective function evaluations) of interac­
tive solution processes can be decreased. Our idea is to improve the efficiency of the
whole interactive optimization system by exploiting fewer objective function eval­
uations in the beginning of the optimization procedure, by expense of the solution
accuracy, and stopping each of the iterations when sufficient number of obje,tive
function evaluations has been reached. To help judge what is a sufficient number
of objective function evaluations, we introduced a maximum difference percentage
(MDP) measure.

Our example case concerned internal combustion engine design. More specifi­
cally, we optimized the performance of a two-stroke engine by altering the exhaust
pipe shape. We formulated a multiobjective optimization problem using three ob­
jective functions measuring the goodness of a particular engine design. The prob­
lem was solved by the interactive NIMBUS method together with efficient global
optimization algorithms (CRS2, DE), observing along the procedure how objective
function values develop at growing levels of objective function evaluations.

26

As we noticed, in the early phases of the solution process it is not necessary to
have very accurate solutions, but instead use more coarse accuracy to get grasp of
the problem. While employing this principle, interactive methods may be a con­
venient way to reduce the number of objective function evaluations required, and
yet be able to control the solution process. With this approach we could reduce the
number of required objective function evaluations by some 60-70%, without deteri­
orating the overall solution process.

As the approach of this study was based on the concept of accuracy, one thing
to consider in the field of simulation based optimization is the accuracy of the sim­
ulation software itself. With engine simulators accuracy above, say, 95 percent can
generally be considered good, and thus it is useless to solve the problem itself be­
yond the inherent accuracy of the simulator. This further justifies our approach.
Moreover, at least in our case, although the problem contains lots of local optima,
equally good optima are rather easy to find, as results of this study also suggest.

With regard to the solution quality, we may notice that results gained by the
optimization system of this study look very credible by the traditions of the trade.
The optimized pipe shape resembles closely the ones seen in the aftermarket per­
formance exhaust pipes, and respective power curve suggests high usability for the
optimized pipe.

References

[1] T. Aittokoski (2007): On optimization of simulation based design. Licentiate
Thesis. Jyviiskylii Licentiate Thesis in Computing 8. University of Jyviiskylii.

[2] T. Aittokoski and K. Miettinen (2007): Cost Effective Simulation-Based Multiob­
jective Optimization in Performance of Internal Combustion Engine. Engineer­
ing Optimization 40(7), 593-612.

[3] T. Aittokoski and K. Miettinen (2008): Efficient evolutionary method to approx­
imate the Pareto optimal set in multiobjective optimization. In Proceedings of
International Conference on Engineering Optimization EngOpt 2008, Rio de
Janeiro, Brazil,June 1-5, 2008.

[4] M.M. Ali, C. Khompatraporn and Z.B. Zabinsky (2005): A Numerical Evaluation
of Several Stochastic Algorithms on Selected Continuous Global Optimization
Test Problems. Journal of Global Optimization 31, 635-672.

[5] M.M. Ali and C. Storey (1994): Modified Controlled Random Search Algorithms.
International Journal of Computer Mathematics 54, 229-235.

[6] M.S. Bazaraa, H.D. Sherali, and C.M. Shetty (1993): Nonlinear Programming:
Theory and Algorithms. John Wiley and Sons, New York, 2nd edition.

[7] L.T. Biegler (1989): Chemical Process Simulation. Chemical Engineering
Progress 85(10), 50-61.

27

[8] G. P. Blair (1996): Design and Simulation of Two-Stroke Engines. Society of Au­
tomotive Engineers, Inc. Warrendale, Pa.

[9] K. Deb (2001): Multi-Objective Optimization Using Evolutionary Algorithms.
John Wiley & Sons, Chichester.

[10] K. Deb (0000). Unveiling Innovative Design Principles by Means of Multiple
Confilicting Objectives. KanGAL Report Number 2002007.

[11] J. F. Elder IV (1992): Global Rd Optimization when Probes are Expensive:
the GROPE Algorithm. Proceedings IEEE International Conference on Systems,
Man, and Cybernetics, Chicago, Illinois, October 18-21, 1992.

[12] H. Eschenauer, J. Koski and A. Osyczka (editors) (1990): Multicriteria Design
Optimization - Procedures and Applications. Springer-Verlag, Berlin.

[13] Y. Fu and U. M. Diwekar (2004): An Efficient Sampling Approach to Multiob­
jective Optimization. Annals of Operations Research 132, 109-134.

[14] A. Gaspar-Cunha and A. S. Vieira (2004):. A hybrid multi-objective evolution­
ary algorithm using an inverse neural network. Hybrid Metaheuristics (HM
2004) Workshop at ECAI 2004, 25-30.

[15] A. Gaspar-Cunha and A. Vieira (2005): A multi-objective evolutionary algo­
rithm using neural networks to approximate fitness evaluations. International
Journal of Computers, Systems, and Signals 6(1), 18-36.

[16] P. E. Gill, W. Murray and M. H. Wright (1981): Practical Optimization. Aca­
demic Press, New York.

[17] J. Hakanen, K. Miettinen, M.M. Makela and J. Manninen (2005): On Interactive
Multiobjective optimization with NIMBUS in Chemical Process Design. Journal
of Multi-Criteria Decision Analysis 13, 125-134.

[18] A-R. Hedar and M. Fukushima (2003): Minimizing multimodal functions by
simplex coding genetic algorithm. Optimization Methods and Software 18, 265-
282.

[19] A-R. Hedar and M. Fukushima (2003): Heuristic Pattern Search and Its Hy­
bridization with Simulated Annealing for Nonlinear Global Optimization. Op­
timization Methods and Software 19, 291-308.

[20] E. Heikkola, K. Miettinen and P. Nieminen (2006): Multiobjective Optimization
of an Ultrasonic Transducer using NIMBUS. Ultrasonics 44(4), 368-380.

[21] R. Horst and P. M. Pardalos (Eds.) (1995): Handbook of Global Optimization.
Kluwer Academic Publishers, Boston.

28

[22] R. Horst, P.M. Pardalos and N.V. Thoai (2000): Introduction to Global Opti­
mization, 2nd Edition. Kluwer Academic Publishers, Boston.

[23] W. Huyer and A. Neumaier (1999), Global optimization by multilevel coordi­
nate search. Journal of Global Optimization 14, 331-355

[24] D.R. Jones, M.Schonlau and W.J.Welch (1998): Efficient Global Optimization of
Expensive Black-Box Functions. Kluwer Academic Publishers, Boston.

[25] J. Knowles (2006): ParEGO: A Hybrid Algorithm with On-line Landscape Ap­
proximation for Expensive Multiobjective Optimization Problems. IEEE Trans­
actions on Evolutionary Computation 10(1), 50-66.

[26] J. Knowles and E. J. Hughes (2005): Multiobjective Optimization on a Budget of
250 Evaluations. C. A. Coello Coello et al. (Eds.), Evolutionary Multi-Criterion
Optimization 2005, Lecture Notes in Computer Science 3410, 176190. Springer­
Verlag, Berlin.

[27] J. van Leersum (1998): A Numerical Model of A High Performance Two-Stroke
Engine. Applied Numerical Mathematics 27, 83-108.

[28] E. Madetoja, K. Miettinen, P. Tarvainen (2006): Issues Related to the Computer
Realization of a Multidisciplinary and Multiobjective Optimization System. En­
gineering with Computers 22(1), 33-46.

[29] R. T. Marler (2005): A Study of Multi-Objective Optimization Methods for Engi­
neering Applications. A doctoral thesis in Mechanical Engineering in The Grad­
uate College of The University of Iowa. http:/ /www.digital-humans.org/Tim­
Thesis.pdf.

[30] R. T. Marler and J. S. Arora (2004): Survey of multi-objective optimization meth­
ods for engineering. Structural and Multidisciplinary Optimization 26, 369-395.

[31] K. Miettinen (1999): Nonlinear Multiobjective Optimization. Kluwer Academic
Publishers, Boston.

[32] K. Miettinen (2006): IND-NIMBUS for Demanding Interactive Multiobjective
Optimization, in "Multiple Criteria Decision Making '05", Ed. by T. Trzaskalik,
The Karol Adamiecki University of Economics in Katowice, Katowice, 137-150,
2006.

[33] K. Miettinen and M.M. Makela (1995): Interactive Bundle-Based Method for
Nondifferentiable Multiobjective Optimization: NIMBUS. Optimization 34, 231-
246.

[34] K. Miettinen and M.M. Makela (2002): On Scalarizing Functions in Multiobjec­
tive Optimization. OR Spectrum 24, 193-213.

29

[35] K. Miettinen and M.M. Makela (2006): Synchronous Approach in Interactive
Multiobjective Optimization. European Journal of Operational Research 170,
909-922.

[36] P. K. S. Nain and K. Deb (2002): A computationally effective multi-objective
search and optimization technique using coarse-to-fine grain modeling. Techni­
cal Report Kangal Report No. 2002005, IITK, Kanpur, India, 2002.

[37] J.A. Nelder and R. Mead (1965): A Simplex Method for Function Minimization.
Computer Journal 7, 308-313.

[38] P. M. Pardalos and H. E. Romeijn (Eds.) (2002): Handbook of Global Optimiza­
tion, Volume 2. Kluwer Academic Publishers, Boston.

[39] C.D. Perttunen, D.R. Jones and B.E. Stuckman (1993): Lipschitzian optimiza­
tion without the Lipschitz constant. Journal of Optimization Theory and Appli­
cation 79, 157-181.

[40] W.L. Price (1977): Global Optimization by Controlled Random Search. Com­
puter Journal 20, 367-370.

[41] S. Ruzika and M. M. Wiecek (2005): Survey Paper - Approximation Methods in
Multiobjective Programming. Journal of Optimization Theory and Applications
126(3), 473-501.

[42] M.J. Sasena (2002): Flexibility and Efficiency Enhancements for Constrained
Global Design Optimization with Kriging Approximations. Dissertation. Uni­
versity of Michigan.

[43] S. Shan and G. G. Wang (2005): An Efficient Pareto Set Identification Approach
for Multiobjective Optimization on Black-Box Functions. Journal of Mechanical
Design 127(5), 866-874.

[44] D.P. Solomatine (1998): Genetic and other global optimization algorithms -
comparison and use in calibration problems. Balkema Publishers.

[45] W. Stadler and J. Dauer (1993): Multicriteria Optimization in Engineering: A
Tutorial and Survey. Structural Optimization: Status and Promise. M. P. Kamat,
ed., AIAA: Washington, D.C., 209-249.

[46] R. Storn, K. Price (1997): Differential evolution - a simple and efficient heuristic
for global optimization over continuous spaces. Journal of Global Optimization
11, 341-359.

[47] A. Torn and A. Zilinskas (1989): Global Optimization. Springer-Verlag, Berlin.

[48] A. P. Wierzbicki (1999): Reference point approaches. Published in Multicriteria
Decision Making: Advances in MCDM Models, Algorithms, Theory, and Appli­
cations. T. Gal, T. J. Stewart and T. Hanne (editors). Kluwer Academic Publish­
ers, Boston.

30

[49] I. Williams (referenced at 3.4.2007): Ian Williams Tuning Homepage.
http:/ /www.iwt.com.au/index2.html.

[50] B. Wilson, D. Cappellari, T. W. Simpson and M. Frecker (2001): Efficient Pareto
Frontier Exploration using Surrogate Approximations. Optimization and Engi­
neering 2, 31-50.

[51] T. Ye and S. Kalyanaraman (2003): A Recursive Random Search Algorithm For
Large-Scale Network Parameter Configuration. Published in Proceedings of the
2003 ACM SIGMETRICS, 196-205.

[52] J.B. Vosa, A. Rizzib, D. Darracqc and E.H. Hirsche! (2002): Navier-Stokes
Solvers in European Aircraft Design. Progress in Aerospace Sciences 38, 601-697.

[53] E. Zitzler, K. Deb and L. Thiele (2000): Comparison of Multiobjective Evolution­
ary Algorithms: Empirical Results. Evolutionary Computation 8(2), 173-195.

31

	ABSTRACT
	1 INTRODUCTION
	2 SIMULATION BASED OPTIMIZATION
	2.1 System overview
	2.2 Global optimization in brief

	3 MULTIOBJECTIVE OPTIMIZATION
	3.1 Computational efficiency in multiobjective optimization
	3.2 The NIMBUS method

	4 INTERACTIVE METHOD WITH INCREASING ACCURACY
	5 EXAMPLE CASE OF IC ENGINE DESIGN OPTIMIZATION
	6 NUMERICAL EXAMPLE - SOLUTION PROCESS WITH NIMBUS WITH INCREASING ACCURACY
	6.1 First CRS run
	6.2 Second CRS run
	6.3 DE run
	6.4 MDPplots

	7 DISCUSSION
	8 CONCLUSIONS
	REFERENCES

