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Decreasing Computational Cost of Simulation 
Based Interactive Multiobjective Optimization 

with Adjustable Solution Accuracy 

Timo Aittokoski * Kaisa Miettinen t 

Abstract 

Solving real-life engineering problems can be time-consuming and difficult 
because problems may have multiple conflicting objectives, functions involved 
highly nonlinear and containing multiple local minima, and function values 
are often produced via a time-consuming simulation process. Problems of this 
type can be solved using global multiobjective optimization methods, prefer­
ably with interactive approaches, which allow the designer (or decision maker 
in general) to learn about the behaviour of the problem during the solution pro­
cess. 

In an interactive approach the designer specifies preferences and Pareto opti­
mal solution(s) following these preferences are generated, typically by forming 
a scalarizing function and solving it. In simulation based optimization this may 
take time. Thus, the designer may have to wait for a long before (s)he can con­
tinue the solution process. Although some efficient global optimization algo­
rithms exist, it is of outmost importance to be able to reduce the computational 
burden. 

In our study, we show that substantial savings in calculation time can be 
achieved using a decreased number of function evaluations at the beginning 
of the interactive solution process, without compromising the quality of the fi­
nal solution too much. Furthermore, at each iteration we use simple heuristics 
to judge sufficient amount for computation. As the designer has gained more 
understanding about the problem, (s)he may approach the final solution with 
an ever increasing accuracy and number of objective function evaluations. We 
show results using several different budget schemes for calculation, and iden­
tify levels where a sufficient quality for final solutions is retained. 

*timo.aittokoski@jyu.fi
tkaisa.miettinen@jyu.fi

Department of Mathematical Information Technology, University of Jyviiskylii, PO Box 35 (Agora), 
FI-40014 University of Jyviiskylii., Finland 
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1 Introduction 

Behavior of many real world systems and devices can often be expressed using spe­
cific computer implemented mathematical models, simulators. In industry, simula­
tors are often used instead of more concrete appliances, since running the simulator 
is usually far cheaper, faster and in some cases also safer than real world prototyp­
ing. Although simulators allow, for example, a designer to try multitude of different 
designs and explore their advantages and disadvantages, they give no information 
about how exactly that behavior can be improved. For this reason, an advanced 
design protocol should employ optimization algorithms to systematically explore 
different design variable combinations. 

When an optimization system is build on top of a simulation software, this poses 
some special requirements on the optimization algorithm. Objective function eval­
uations can be computationally very expensive, as the execution time of a few min­
utes for one single simulation run can be considered normal. Also partial deriva­
tives which are commonly used to guide (local) optimization processes are usually 
unavailable as the output data of the simulation software is often the result of a 
complex sequence of calculations. The simulator may be a black box when not even 
automatic differentiation can be applied. Further, the objective function itself may 
have lots of locally optimal values, and there often are several conflicting objectives 
(instead of only one objective function) that should be considered at the same time. 
All these facts suggest that for general simulation based optimization systems, one 
should use efficient (in terms of objective function evaluations) global optimization 
algorithms in a multiobjective manner. 

In multiobjective optimization, we can identify compromise solutions, so-called 
Pareto optimal solutions (where, by definition, none of the conflicting objectives can 
be improved without impairing at least one of the others), and the multiple objec­
tives are often handled by converting them into a problem having a single objective 
function (see, e.g., [31]). These, so-called scalarization functions, typically also in­
corporate designer's preference information about the conflicting objectives, that is, 
what kind of values of objectives are desirable. By solving the scalarized problem 
with an appropriate single objective solver, we get Pareto optimal solutions to the 
original problem. In case of nonconvex problems, depending on the properties of 
the optimization algorithm used (i.e., local or global), the resulting solutions are 
either locally or globally Purcto optimal. 

In interactive multiobjective approaches, the most satisficing Pareto optimal so­
lution is looked fur so that the Jesig1ter can adjusl preference informalion stepwise 
and at the same time learn about the problem characteristics. This is important be­
cause the designer does not necessarily have profound understanding about the be­
havior of the complete problem at the beginning of the solution process, or in other 
words, what kind of solutions can be reached and which ones are unattainable.. In 
an iterative and interactive solution process, the designer directs the search and only 
those Pareto optimal solutions are generated that are interesting to him/her. 

With simulation based optimization problems, the computational complexity of 
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the objective functions may hinder the solution process. To cope with computational 
complexity, it is necessary to use algorithms with as high efficiency as possible, i.e. 
algorithms which produce good objective function values using as few objective 
function evaluations as possible. On the level of global optimization algorithms, 
several improvements to efficiency have been made, for example, using response 
surface methods. Our approach is somewhat different, as we are dealing with the 
efficiency of the whole interactive optimization process, instead of only efficiency of 
the particular optimization algorithm. 

In this study we present a new approach to aim at computational efficiency with 
regard to interactive, simulation based multiobjective optimization, and we show, 
that at least in some cases, substantial savings in calculation time can be achieved 
using a decreased number of function evaluations at the beginning of an interac­
tive solution process, without compromising in the quality of the final solution too 
much. We show results using several different budget levels, and show that even 
rather small amounts of function evaluations may be sufficient at the beginning of 
the optimization procedure. 

Particularly, we aim at improving the computational efficiency of a whole inter­
active simulation based optimization system, which we have earlier introduced in 
[1] and [2]. We strive to accomplish this by exploiting the well-known fact that many
global optimization algorithms are stochastic by nature, and thus the quality of the
solution improves as the number of objective function evaluations is increased. It
is also known that at the beginning of an interactive optimization process, the de­
signer is many times also at a beginning of the learning curve: (s)he is learning of
how different objectives are interrelated, what the trade-offs between the objectives
are and, also, what kind of objective values can be reached in general. Thus, at the
beginning of the optimization process, quite a coarse accuracy may be sufficient,
and thus only a small amount of objective function evaluations is needed to get the
grasp of the problem. During the interactive solution process we adjust the compu­
tational accuracy of the optimization algorithm by stopping each of the iterations
when a sufficient number of objective function evaluations has been reached. To
help judge what is a sufficient number of objective function evaluations, we intro­
duce a maximum difference percentage (MDP) measure.

As the designer has gained more understanding about the problem, (s)he may 
approach the final solution with an ever increasing accuracy and number of ob­
jective function evaluations. Ultimately, the final solution can be calculated using 
a MDP threshold that assures the designer of a good enough solution quality. We 
demonstrate these ideas with a problem related to the optimal design of a two-stroke 
engine expansion chamber. Even though the ideas presented are not limited to de­
sign problems only, we here call the decision maker involved in the solution process 
as a designer. 

The rest of this study is organized as follows. In Section 2 we shortly describe 
an overview of a simulation based optimization system. In Section 3 we give some 
general references about multiobjective optimization, and we also introduce the in­
teractive NIMBUS method used in this study. We introduce our interactive method 
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with increasing accuracy in Section 4. In Section 5 we present our example case of 
internal combustion engine design with three objective functions. Section 6 summa­
rizes results of numerical tests, and in Section 7 we discuss some findings concerning 
the optimization system. Finally, in Section 8 we draw some conclusions. 

2 Simulation based optimization 

When considering any optimization task, the problem must first be identified and 
modelled as an optimization problem. This means that some properties of the sys­
tem studied must be identified and selected to be improved, i.e., optimized. These 
properties are referred to as objective functions. They depend on a set of design 
variables. Typically, we also have constraint functions defining feasible values for 
the design variables. Feasible design variable values define a so called search space 
for the particular problem. 

From this setting, an optimization algorithm strives to improve (possibly scalar­
ized) objective function value by altering design variable values systematically. When 
the objective and/ or constraint function values are derived from a simulator out­
put, we have a simulation based optimization system in question. In this section 
we briefly discuss essential elements of a simulation based optimization system and 
then one part involved, that is, global optimization. 

2.1 System overview 

While speaking of a simulation based optimization system, it is reasonable to dis­
tinguish two main parts of the optimization system, namely the optimizer (the op­
timization algorithm itself) and the part which calculates values for the objective 
functions, the simulator (together with some additional software). With analytic 
problems, which can be expressed in a closed form, one can sometimes use one ho­
mogenous system, i.e., the optimization algorithm and objective function calcula­
tion can be implemented using the same programming language, and they can even 
reside in the same executable file. While speaking of more general cases, and es­
pecially simulation based optimization, the whole system evidently becomes very 
heterogenous and consists of several modules, which may be implemented using 
different tools and languages. In general, the whole system can be divided into four 
separate modules: optimizer, input interface from the optimizer to the simulator, 
simulator software, and the output interface from the simulator to the optimizer. 

The optimizer module guides the whole optimization procedure by deciding 
what design variable values should be passed forward. The second module, the 
input interface for the simulator, receives design variable values and generates from 
those values suitable input configuration files for the third module, the simulator. 
For example, for an engine simulator, the engine design variables must be converted 
to depict the whole internal engine geometry, or some more specific part of the en­
gine, which is to be optimized. To the optimization system the simulator is seen 
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as "black box": it merely receives system configuration data which reflects current 
design variable values and produces simulation output files which contain detailed 
information on how the simulated system performed with a given system config­
uration. The simulator itself may be an arbitrarily complex set of calculations and 
even consist of several software modules. The execution time for a single simulation 
run may vary from milliseconds to weeks. 

In the fourth module, output files of the simulator must be handled to constitute 
values for the objective functions, which are finally passed back to the optimiza­
tion algorithm. Then the whole loop starts all over again, and the optimization 
algorithm uses information of the objective function value to decide new values for 
design variables. The iterative process is continued until the optimizer meets some 
pre-defined stopping criterion, for example, until an allocated number of function 
evaluations has been used, i.e. the budget for objective function evaluations is ex­
hausted. 

As can be seen, the whole optimization system may be very heterogeneous as 
each of the four modules may be implemented using different programming lan­
guages and platforms and they may even run on physically separate computers. 
Regardless of the implementation and structure of the modules, they must interface 
with each others seamlessly. For further details of the four modules, see [2]. 

2.2 Global optimization in brief 

As motivated in the introduction, we often need global methods for optimization 
problems because the objective function(s) may be nonconvex, i.e., have several lo­
cally optimal values, and any local optimization algorithm is able to find only the 
closest one to the given starting point. In this way, it is very easy to miss the real 
optimum for the problem at hand using only local algorithms. As many real life 
engineering problems require by their very nature global solvers, only these are in 
the scope of our interest. 

On the other hand, global optimization algorithms aim at determining the best 
local optimum among all the local optima in the search space. In the field of local 
optimization, it is easy to judge when the optimum has been found by checking 
whether the solution satisfies optimality conditions or not, see, e.g., [16]. Unfortu­
nately, there exists no such general criterion for asserting that the real global op­
timum has been found. Furthermore, in case of global optimization, there is no 
information similar to the gradient information, that could be efficiently used to lo­
cally decide where to search next. Thus, many global optimization algorithms are 
stochastic by nature, that is, the probability of finding the global optimum increases 
when the optimization process is continued further. In other words, this usually 
means that the more objective function evaluations are used, the better will be the 
solution gained. This is one feature we utilize here to reduce the number of required 
objective function evaluations. 

A plethora of global optimization methods has been suggested in the literature. 
For a thorough discussion of global optimization algorithms in general, see, for ex-
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ample, [21, 22, 38, 47]. For this study we chose to use two population based op­
timization algorithms, namely the controlled random search (CRS) [40], and espe­
cially the CRS2 [5] variant of it, and differential evolution (DE) [46], where the pop­
ulation is expected to concentrate around the global minimum during the optimiza­
tion procedure. The use of these is based on the comparisons made in [l], [4] and 
[44]. 

In the CRS method, the search space is initially sampled randomly to form a 
population P. In each of the following steps, a new trial point is generated, and if 
the objective function value of the trial point is better than the current worst point 
in P, the worst point is replaced in the population by the new trial point. By this 
repeated process, points in the population are expected to concentrate around the 
global optimum. The ideas of the basic CRS algorithms have been further extended, 
for example, in [5]. 

The differential evolution is a simple stochastic optimization algorithm. The 
essence of the DE algorithm is a process for generating trial parameter vectors to 
be used in mutation. In DE, the weighted difference of two member vectors of the 
population is added to a third vector. With this scheme, there is no need to use sep­
arate probability distribution to create new trial vectors, and this makes the process 
completely self-organizing, because each dimension of the problem will evolve pro­
portionally over time, taking small steps when the variation in the values of a given 
design variable within a population is small, and large steps when that variation is 
large. 

Next, we pay attention to another element in the optimization module of a gen­
eral simulation based optimization system, that is, multiobjective optimization. 

3 Multiobjective optimization 

Multiobjective optimization is needed whenever there are several conflicting ob­
jective functions to be optimized simultaneously, as the case is with many real-life 
engineering problems. A general form of a multiobjective maximization problem is 

maximize 
subject to 

{fi(x), h(x), ... , fk(x)} 
xES (1) 

involving k (:;::: 2) conflicting objective func:-tions f, · !Rn --, lR. HPrP, WP hr1vP n
design variables x E !Rn and S c !Rn stands for the feasible design variable space,
i.e., search space defined in a general case by inequality and equality constraints.
An objective vector z = (!1 (x), h(x), ... , fk(x) f E JRk consists of k objective function
values depending on the design variable vector x. Without loss of generality, we
restrict our consideration to maximization because if we need to minimize f it is
equivalent to maximize -f.

In multiobjective optimization, the concept of optimality is not as straightfor­
ward and unambiguous as it is in the single objective case. In the multiobjective 
case, we want to optimize the values of several objectives at the same time, but usu­
ally there exists no single point within the feasible design variable space where all 
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the objectives reach their optima. Because of this conflict, we have a set of optimal 
compromise solutions. This set of optimal solutions is called a Pareto optimal set. 
A solution belongs to the Pareto optimal set if none of the objective function values 
can be improved without impairing the value of at least one other objective. 

Because the solutions in the Pareto optimal set cannot be completely ordered 
mathematically, some additional information is needed to select one of them as the 
final, most preferred, solution. This information, called preference information, is 
given by a decision maker or a designer who is supposed to have expertise of the 
problem domain and be able to express preference information about what kind of 
solutions are preferred. 

Multiobjective optimization problems are often solved by converting the multi­
ple objectives together with the preference information into a single objective opti­
mization problem using so-called scalarizing functions [31]. Scalarizing functions 
are constructed so that solutions produced by them are Pareto optimal. For many 
scalarization methods, as well as for designers, some information about the ranges 
of points in the Pareto optimal set is needed. The upper bounds are defined by an 
ideal objective vector z*, whose components are obtained by maximizing each of the 
objective functions individually. A vector strictly better than z* is called a utopian 
objective vector z**. The nadir objective vector znad consists of worst objective func­
tion values in the Pareto optimal set. Typically, it can only be estimated [31]. 

The scalarized single objective optimization problem can be solved using any ap­
propriate algorithm, and it is very important to notice that if the problem is noncon­
vex, depending on the type of the optimization algorithm, results are either globally 
or locally optimal and, thus, Pareto optimal. Local Pareto optimality means that a 
solution is Pareto optimal only in some small region near that particular solution, 
instead of the whole search space. This leaves the decision maker into an unin­
tuitive state, as there may exist essentially better (global) solutions in the search 
space. In other words, settling for locally Pareto optimal solutions violates the idea 
of Pareto optimality. Thus, in order to get globally Pareto optimal solutions for non­
convex problems, we must use a global single objective optimizer. For a survey of 
multiobjective optimization methods see, for example, [30], or for a more thorough 
discussion including different scalarizing functions, see [31] and references therein. 

3.1 Computational efficiency in multiobjective optimization 

As mentioned above, scalarizing functions can be used to generate one Pareto opti­
mal solution at a time. Methods of this type may be used in an interactive fashion, 
gaining one solution at a time, then letting the designer adjust the preference infor­
mation based on the current solution, and solving the new scalarized problem again. 
Some scalarizing based approaches also produce several solutions for the designer 
to compare at a time. 

The most obvious way to improve the efficiency of scalarization based methods is 
by improving the algorithmic efficiency, i.e., using more efficient solvers with regard 
to the amount of function evaluations or absolute calculation time. As motivated 
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earlier, we here consider global optimization only. There exist several global opti­
mization algorithms which strive for efficiency, for example DIRECT [39], Multilevel 
Coordinate Search (MCS) [23], GROPE [11], Differential Evolution (DE) [46], Con­
trolled Random Search (CRS) [40] (and its variants) [5], Recursive Random Search 
algorithm [51], Efficient Global Optimization (EGO) [24], a variant of it, ParEGO 
[25], an enhancement of EGO called SuperEGO [42], hybrid methods Simplex Cod­
ing GeneticAlgorithm (SCGA) [18] and the Simulated Annealing Heuristic Pattern 
Search method (SAHPS) [19]. 

Efficiency for some of the abovementioned methods is reported in [4], [18], [19] 
and [44]. Furthermore, a comparison between DE, CRS, SuperEGO, SCGA and 
SAHPS was conducted in [l]. 

Another approach for solving multiobjective optimization problem, known in 
the literature as a posteriori methods or approximating methods [31], produce a 
discrete approximation and representation of the whole Pareto optimal set. In this 
case, no preference information is needed before the representative set of Pareto 
optimal solutions has been generated, and the decision maker can decide afterwards 
which solution satisfies him/her the most. 

By their very nature, these methods, like evolutionary algorithms [9, 53], tend 
to lack computational efficiency, although some attempts towards better efficiency 
have been made, e.g. in [3, 13, 43]. For a review of the approximation methods, see, 
for example, [41]. 

Another problem with these methods lies in the selection of the most preferred, 
the final solution among the set of nondominated solutions. An usual way to ac­
complish the selection of the final solution is by visualization of the resulting Pareto 
optimal set; though, it is innate only in the case of two objective functions. With 
three objective functions, some visualizations can be produced, for example, as pro­
jections to two dimensions, but with four or more objectives, intuitive and easily un­
derstandable visualization is practically impossible. However, without such tools it 
is really hard for the designer to select the most preferred solution among dozens 
of k-dimensional objective vectors forming the representative set. In our study we 
want to retain the efficiency and expandability of the system to more than only two 
or three objective functions. 

As approximating methods aim at producing an approximation of the whole 
Pareto optimal set, it is intuitively obvious that a great majority of these solutions 
is not of interest to the decision maker, as (s)he is looking for some very certain 
compromise between the objectives. As a direct consequence of that, lots of com­
putational effort may be wasted to produce uninteresting solutions. And as already 
mentioned, representing the plethora of multidimensional Pareto optimal solutions 
to the decision maker may often surpass his/her cognitive capacity, and the selec­
tion of the final solution from the big set may become a problem in itself. 

For the reasons mentioned so far, we focus in this study at interactive methods, 
where only those solutions of the Pareto optimal set are generated that the decision 
maker considers appealing. 
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3.2 The NIMBUS method 

From our point of view, an interesting type of methods is interactive methods, where 
a solution pattern is formed and repeated iteratively. With these methods, only 
relatively few Pareto optimal solutions have to be generated and evaluated, and 
the decision maker can further adjust his/her preferences as the solution process 
continues. In contrast to several other methods, the decision maker does not need to 
have knowledge about the global preference structure before the solution process. 
Due to the interactive solution process he/she will learn about the nature of the 
problem and will most likely have more confidence in the final solution. 

One example of methods of this type is NIMBUS [31, S. 5.12.], [33], [35]. It is an 
interactive classification based multiobjective optimization method designed espe­
cially for an efficient handling of nonlinear problems. For that reason, it is capable of 
solving complicated real-world problems. The NIMBUS method has been success­
fully applied to some real world engineering problems, such as chemical process 
design [17], paper machine design [28], ultrasonic transducer design [20], and inter­
nal combustion engine design [2]. 

Each interactive method must be started from some initial solution. In the case 
of NIMBUS, this solution is either a solution specified by the decision maker, or a so 
called neutral compromise solution [35]. For the initial Pareto optimal solution, the 
decision maker produces in NIMBUS a classification, i.e. decides whether each of 
the objective function values should be improved, could be degraded, or if it should 
keep the current value. By this preference information the decision maker indicates 
how the current solution should be improved. Then one or more Pareto optimal 
solutions are created, and the decision maker may select one of them as a basis for 
a new classification. With an interactive procedure the decision maker proceeds 
stepwise towards the final solution, whose objective function values represent the 
most satisfying compromise to him/her. 

In the NIMBUS method, the interaction phase has been aimed at being compar­
atively simple and easy to understand for the decision maker. At each iteration, the 
NIMBUS method offers flexible ways to direct the search for the best Pareto optimal 
solution according to the decision maker's wishes by means of classification. Clas­
sification does not require consistency from the decision maker and reflects his/her 
wishes well. The use of classification avoids using difficult and artificial concepts 
for extracting preference information. 

The classification of the objective functions means that the designer indicates 
what kinds of improvements are desirable and what kinds of impairments are toler­
able in objective function values in order to get a better solution than the current one. 
The basic idea in classification is that the designer contemplates the current Pareto 
optimal objective function values fi (xc) at each iteration of the NIMBUS method 
and assigns each of the objective functions fi into one of the following five classes 
depending on his/her preferences: 

• Jimp, function value should be improved as much as possible,

• 1asp, function value should be improved to a certain aspiration level,
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• 1sat, function value is satisfactory at the moment, 

• Jbound, function value is allowed to impair to a certain acceptable bound, and 

• Jfree, function value is temporarily allowed to change freely.

While classifying Pareto optimal solutions, it must be remembered that if the 
designer wishes to improve some objective(s), at the same time (s)he must accept 
impairment in some other objective(s). Based on the classification, we can form a 
reference point zi, which consists of desirable values for each of the objectives. In 
other words, components of the reference point are derived depending on in which 
class each objective function belongs to. With regard to the classes above, corre­
sponding components of the reference point are selected as follows: Jimp ------► z; = z;, 

1asp ------► Z;=aspiration level, 1sat ------► z;=current value f;(xc), Jb0und ------► Z;=acceptable 
bound and Jfree- --- - -► Zi = zfad_ 

In the synchronous version of the NIMBUS method [35], several scalarizing func­
tions leading to different subproblems, may be utilized. This is motivated by the fact 
that different scalarizing functions based on the same preference information may 
produce different solutions [34]. The decision maker can choose to see one to four 
different Pareto optimal solutions. In this study, based on the only negligible differ­
ences between different scalarizations with this problem, we employed only one of 
the four scalarizing functions, namely the one based on an achievement scalarizing 
function [48], which is formulated as: 

. . . max [Z; - fi (x)] � f; (x)minimize i=l, ... ,k •• _ nad + P � •• _ nad,
zi Z; i=l Z; zi 

subject to x E S.

where for each i = 1, ... , k 
z; = component of the reference point 
zfad 

= approximated nadir objective vector component 
z;* = approximated utopian objective vector component 
p = some small positive value. 
It is quaranteed that solution of (2.) is Pc1reto optim-11 ['.i.S]. 

(2) 

Besides classification, with NIMBUS the designer can also generate an arbitrary 
number of intermediate solutions between any two Pareto optimal solutions found 
so far, and use them as a base for a new classification, if desired. When the decision 
maker finds a Pareto optimal solution that satisfies his/her preference information 
with conflicting objectives, this is regarded as the final solution. 

With an interactive decision process the designer can learn about the nature and 
interdependencies of the problem. By directing the solution process with the prefer­
ence information it is possible to learn how objectives affect each other (trade offs), 
and also what kinds of solutions in general can or cannot be reached. This gives the 
designer a good opportunity to solve the problem as a whole, instead of having to 
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consider each of the objectives at a time. A deeper understanding of the problem 
most likely also makes the designer feel more confident of the quality of the final 
solution. 

4 Interactive method with increasing accuracy 

Our approach arises from the use of an interactive multiobjective optimization method, 
and the nature of interactive solution processes. At the beginning of an interactive 
optimization process, the designer is many times also at the beginning of a learn­
ing curve: (s)he is learning of how different objectives are interrelated, what the 
trade-offs between the objectives are and, also, what kind of objective values can 
be reached in general. After the learning phase, the designer has a better under­
standing of the problem, and (s)he can decide what the most satisfactory objective 
function values for the final solution are. 

In our approach, we wish to demonstrate that the computational cost can be af­
fected by adjusting the required accuracy of the solutions of the optimization algo­
rithm (by using a predetermined threshold for objective function evaluations in each 
iteration) during the interactive solution process. At the beginning of the process, 
while the designer is still learning about the problem, quite a coarse accuracy may 
be used, and only rather small amount of objective function evaluations is needed 
to get grasp of the problem. As the designer learns more about the problem and 
its behavior, and consequently feels more confident about it, (s)he may approach 
the final solution with an ever increasing accuracy and number of objective function 
evaluations. As the final step of the optimization procedure, the final solution can 
be calculated using the budget that assures the designer of a good enough solution 
quality. 

One important issue with this kind of adjustable approach is to help the decision 
maker to judge when a sufficient amount of objective function evaluations at each 
iteration has been reached. Although several tools of different types could be de­
veloped, for example, based on the scalarizing function value, the solution quality 
or on the budget of allowed objective function evaluations, we want to provide the 
decision maker with an easy and intuitive way to monitor how the solution process 
is progressing. 

To this end, we propose a measure, which we refer to as a maximum difference 
percentage (MDP), to assess the quality of each solution with regard to the given 
classification. As the name suggests, the maximum difference percentage is the 
maximum difference between the components of the current solution and the given 
reference point of classification as percentages for each of the objectives, and for­
mally it is calculated as 

M DP= ·=max [Zi-!i(x)]. z l, ... ,k 
Zi 

This formulation bears some resemblance with the structure of the achievement 
scalarizing function presented in Subsection 3.2. 
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As we are discussing simulation based optimization, it may be useful to relate 
the sufficient amount of objective function evaluations to the the accuracy of the 
simulation software itself. With, for example, engine simulators accuracy above, 
say, 95 percent can generally be considered good, and thus it is useless to solve the 
problem itself beyond the inherent accuracy of the simulator. In the following, we 
employ this idea with regard to MDP values. 

With the continuously plotted values of MDP the decision maker can extract at 
least three different types of information about the status of the current optimization 
run, and thus decide when a sufficient amount of objective function evaluations has 
been used. 

Firstly, the decision maker can readily see as a percentage how far the worst 
objective/ component of the current solution is from the given reference point. This 
information can be related to some extent to the accuracy of the simulator used. For 
example, in some sense, if it is known that the simulator error is around 5%, it may 
be sufficient to stop computation when the MDP first drops below 5%. 

Anyhow, it should be noted that MDP is always related to the given reference 
point. As a result of that, if the reference point is impossible to reach, MDP will 
never reach satisfying values. Vice versa, if given reference point is very easy to 
reach, MDP values will evidently fall below zero. 

Secondly, by observing how values of the MDP develop while number of ob­
jective function evaluations grows, the decision maker can see if there is a trend 
of improving values (curve falling downwards), or whether the improvement has 
already stagnated (curve almost horizontal). When the stagnation occurs, it is rea­
sonable to assume that sufficient amount of objective function evaluations has been 
reached. 

Thirdly, the decision maker can observe the variation of MDP values ("tail thick­
ness"). Usually, in the beginning of the optimization run (using a population based 
global solver), the values are varying widely, but after certain amount of evalua­
tions, the variation of values starts to diminish. This implies with population based 
optimization algorithms that the population is converging. Again, the amount of 
variation can be related to the accuracy of the simulator used. For example, if the 
simulator error is the same 5% as above, it may be reasonable to stop computation 
at the latest when variation in MDP values approaches the range of 5%. 

There are several other distance measures (between the reference point and the 
current solution) that coukl have been utilized, bul lhe MDP was developed and 
chosen because of its resemblance to the type of scalarizing function employed, and 
its intuitive meaning to the decision maker, as percentages are readily understand­
able, unlike scalarized objective function values. Further, as the MDP measure gives 
maximum difference of the solution components to the reference point, no compo­
nent of the current solution can be worse than the MDP value indicates. 

To sum up the main building blocks of our method, let us remind that as a gen­
eral framework of the interactive optimization system of our study we have chosen 
to use the interactive NIMBUS method (discussed in Subsection 3.2). Multiple ob-
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jectives are scalarized using the scalarizing function (2), and as global optimizers we 
use CRS and DE algorithms. Further, in every iteration of the NIMBUS method we 
employ the MOP values to judge a sufficient amount for objective function evalua­
tions. 

Logical steps of our method are as follows: 

1. At the beginning of the procedure the initial solution for NIMBUS ( e.g. neutral
compromise solution) is calculated.

2. In a classification step, based on the current solution, the decision maker clas­
sifies objective functions and adjusts desired values for objectives to reflect
his/her preference information. In this step, the decision maker can also de­
cide to create intermediate solutions (instead of classifying) between any two
already known Pareto optimal solutions.

3. The decision maker may define a stopping criterion for the next iteration, by
giving a threshold values for MOP, or for the variation in MOP ("tail thick­
ness") values. If this stopping criterion is not given, the decision maker can
stop the optimization run based on the continuously plotted MOP graph when­
ever it seems reasonable.

4. If the decision maker wishes to further refine the solution either with a new
classification or with a higher accuracy, he/she may continue the process from
the Step 2.

In Section 6 we demonstrate our method, and show how much the amount of 
objective function evaluations could be decreased in our example problem without 
deteriorating the overall quality of the solution process. 

5 Example case of IC engine design optimization 

To elucidate our approach, in the following paragraphs we shortly introduce an ex­
ample problem using the particular building blocks of a general system depicted in 
Subsection 2.1. The optimization system setup on a general level is similar to the 
ones presented in [l, 2], and further, we use the same engine design problem as in 
[2] to allow the comparison between proposed approaches in this and the previous
paper. We study the performance of a two stroke engine and optimize it by altering
the shape of the exhaust pipe, while we concentrate on improving the computa­
tional efficiency. 

Objective functions 
Our objective functions represent three different properties of the engine or en­
gine/ vehicle combination. Two of these properties are derivatives of the engine per­
formance only, namely maximum power and bmep (efficiency). The third one, namely 
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coverage, reflects compatibility of the engine properties with gearing and transmis­
sion from the perspective of vehicle performance. These objectives are covered in 
detail in [l]. 

Maximum power is simply the maximum output of the engine. Besides the max­
imum power we are also interested in how that power is produced. There are only 
two ways to improve the maximum power of an engine: by increasing the operat­
ing speed of the engine or by increasing the average pressure inside the cylinder 
during the power stroke (volumetric efficiency). The latter is to be preferred, since 
increasing the operating speed of the engine results in increased mechanical stresses, 
decreased mechanical efficiency due to increased friction, and exposes the engine to 
a failure. As the measure of volumetric efficiency, we use the factor which describes 
the average pressure inside the cylinder during the power stroke and it is known as 
bmep (brake mean effective pressure). 

In addition to maximum power and bmep, we are interested in coverage, which 
reflects how well some specific engine suits a particular gearing. In essence, cover­
age is the ratio between maximum performance of the engine if maximum power 
was usable at all speeds, compared to real performance which is degraded by the 
fact that due to different gear ratios, only some fraction of maximum power is gen­
erally usable. 

In real-life, the overall performance of an engine/vehicle combination can be de­
termined and controlled by three factors: coverage, maximum power and bmep. It 
is possible to have an engine-gearbox combination with a very high coverage, while 
the peak power of the engine is low. This is obviously not a good solution. There­
fore, the coverage and the maximum power are conflicting objectives and they must 
be considered in unison. In addition, bmep must be taken into account in order to 
control rpm (revolutions per minute) for the maximum power. Thus, when con­
sidering the goodness of a particular vehicle as a whole (including engine-gearbox 
combination), all the three factors must be studied simultaneously as three objective 
functions. 

Engine configuration modelling 
In this study, engine configuration modelling refers to a dual technique for the ex­
haust pipe shape representation and it should not be mixed with the engine model 
in the simulator. On the one hand, an engine configuration model is used to produce 
a general and modifiable exhaust pipe shape using as few design variables as pos­
sible (to lower the dimension of the optimization problem, and thus improving the 
computational efficiency). On the other hand, the exhaust pipe shape which is cre­
ated using as few design variables as possible must be converted to a form which is 
usable for the simulator (i.e., a list of lengths and diameters). For example, a diffuser 
shape can be represented by a continuous curve. For the simulator, this continuous 
shape must be converted to separate sections whose start diameter, end diameter, 
and length is given. 

In this study we use a so-called Bezier model developed in [1] to represent the 
shape of an exhaust pipe. This model [2] is capable of representing very dissimilar 
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pipe shapes using a Bezier curve and only six design variables. The first of them is 
the total length of the pipe, which is defined similarly to the empirical models given 
in [8]. The next four variables are x and y coordinates for the two control points of 
the Bezier curve. The last design variable, the tail pipe diameter coefficient, deter­
mines the diameter of the end pipe, that is, the stinger. Bounds for the variables are 
given in [l],[2], and they define the feasible region S, that is, the search space. 

The simulator 
In this study, values for the three objective functions are derived from output files 
of an engine simulator. The simulator, MOTA 6.1 by J. van Leersum [27] and Ian 
Williams Tuning [49], was selected because it was necessary to consider especially 
the time consumed in a single simulation run and the possibility to link the simula­
tor with an optimization tool. The execution time of MOTA for a single simulation 
run is a good average for an example case of simulation based optimization. A sin­
gle run takes typically a few minutes using a modern PC (AMD Athlon 2.09 GHz, 
1.0 GB of RAM), depending on the complexity of the pipe design and the grid gran­
ularity (total amount of rpm steps) for the end results. 

MOTA is widely used among the two-stroke enthusiasts and semi-professional 
engine designers. The engine model used in MOTA is described in [27]. 

Optimization problem 
Now, having defined our objective functions, we can formulate our multiobjective 
optimization problem 

maximize 
subject to 

{Ji (x), h(x), h(x)} 
X E 8, (3) 

where we have six design variables x = (x1, ... ,x6), and fi(x) represents the max­
imum power of the engine, h(x) describes the coverage and fa(x) stands for the 
effectiveness of the engine (bmep ). 

The feasible design variable space S is limited by upper and lower bounds for 
each variable and, thus, the problem has box constraints. Specifically, the tuned 
length Lt of the pipe was bounded to be between 700 and 800 mm. 

6 Numerical example - solution process with NIMBUS 

with increasing accuracy 

In this section, we describe the interactive solution process when a desiS!l problem 
of an internal combustion engine was solved with the IND-NIMBUS® software 
[32] (implementation of the NIMBUS method) and the CRS2 and DE algorithms
were used as underlying global single objective solvers. We made three separate
runs: two different runs using the CRS2 algorithm, and the second CRS2 run was
duplicated using the DE algorithm (instead of CRS2) in order to see whether the
optimization algorithm itself has major impact on the solution process.
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For the first CRS run the MDP plots are omitted, and focus is merely on the 
numerical values. On the other hand, for the second CRS run, and corresponding 
DE run we present also MDP plots to show how they can be employed, and we 
wish that these plots may also give some insight to the behaviour of two different 
optimization algorithms. It is worth to mention, that in these runs MDP values were 
not actually used to stop the optimization procedure. Rather, each iteration was 
executed to the maximum number of evaluations, but we give some suggestions 
retrospectively how process could have been terminated based on MDP values and 
plots. Each of three runs is discussed more detail below in their own subsections. 

For each run and each iteration of the interactive solution process we report the 
best objective function values gained at various levels of objective function evalu­
ations. Number of objective function evaluations also corresponds to the number 
of simulator runs, since all three objective function values are derived from output 
files of the single simulator run. 

As mentioned earlier, the synchronous NIMBUS algorithm can produce up to 
four different Pareto optimal solutions after each classification. In preliminary test­
ing [l], [2] it turned out that in this example differences between them were quite 
small and, thus, only a single Pareto optimal solution was calculated in order to 
decrease the computational burden. This solution is produced by the so-called 
achievement scalarizing function, presented for example in [35],[48]. In the follow­
ing, we show solutions where objective function values are in the order (power (in 
hp), coverage, bmep (in bar)). The objective function devoted to coverage has no 
units because it describes a ratio where the maximum value is 1. 

Some information about the ranges of the objective functions in the Pareto opti­
mal set is used for scaling purposes in NIMBUS. Normally, IND-NIMBUS® initially 
calculates so-called ideal (upper bound) and nadir (lower bound) objective vectors 
[31]. In order to save computation time, information for scaling was given here 
manually. The lower bounds were set as (0.00, 0.00, 0.00), and the upper bounds as 
(34.00, 1.00, 15.00). The values for both vectors were selected based on a decision 
maker's expertise, so that they are not reachable in real-life. 

In Tables 1, 2 3, and 4, we present summaries of three different solution processes 
(first example is divided in to Tables 1 and 2 for space limitations) where a different 
budget for objective function evaluations were used at each iteration. The purpose 
of this is to see how the overall solution process is affected by the number of function 
evaluations used, and whether it is possible or not to reduce the evaluation count in 
the early phases of the optimization process without degrading the final solution. 
This design problem is similar to the one presented in [2] to allow the performance 
comparison, and the solution process follows quite closely classifications made in 
that study. 

In rows of Tables 1, 2, 3, and 4 below horizontal lines we show the classifica­
tions made at each iteration with the desirable objective function values (Cls), and 
below them the corresponding values for each of the objectives at different evalu­
ation levels. In order to see how the solution process is affected by the number of 
the objective function evaluations, at each iteration, results can be examined with 
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increments of 30 objective function evaluations, this number corresponding to the 
population size of CRS and DE algorithms. These increments of 30 evaluations are 
seen in "Eval level" column. Column "Best", gives the evaluation number where 
so far the best scalarized objective function value occurred before the given evalua­
tion level. The next three columns display values for each of the separate objective 
functions (power, coverage, and bmep ), or the given classification in the form of de­
sired objective function values. For clarity, objective function values at evaluation 
levels where no further improvement was gained are left empty. In the last column 
"Seal. f 1:1", the absolute change within each iteration in the scalarizing function 
value between the initial sampling phase and the best solution at that iteration is 
display ed. 

It is necessary to mention that the form of the achievement scalarizing function 
[35, 48] we used here, does not require the information about the current solution. 
Thus, it was not necessary to replicate results of the whole run using solutions 
gained at different evaluation levels as the current solution for the next classifica­
tion. 

Some examples of how the MDP values can be used to judge sufficient number 
of objective function evaluations are discussed in Subsection 6.4. 

6.1 First CRS run 

In our first test run we were aiming at gaining good overall performance by having 
quite high maximum power, reasonable coverage, and fairly high efficiency. In Iter­
ation 1, to begin the interactive solution process, the neutral compromise solution, 
which should be located roughly in the middle of the Pareto optimal set, was calcu­
lated as a starting point for the classification using 240 function evaluations. After 
that, the following iterations were executed also up to 240 function evaluations for 
each classification. The best objective function values are reported in the steps of 30 
evaluations up to 240 function evaluations. The final iteration of the optimization 
procedure was executed allowing 480 function evaluations, in order to get a more 
accurate final result. 

The neutral compromise solution for the problem was (26.17, 0.79, 11.54). Ac­
tually quite a similar solution, (26.02, 0. 78, 11.25), was found already in the initial 
sampling phase (during 30 first random evaluations to create the initial population) 
of the CRS algorithm at the 28th evaluation. After that bmep and power improved 
slightly. 

In Iteration 2, a classification was done in order to improve the neutral solution. 
The aim was to gain a higher coverage and for that reason power was allowed to 
decrease till 25.00, coverage was desired to improve till 0.85 and for bmep, a slight 
decrease till 11.00 was allowed. We can see that the solution (24.88, 0.85, 10.98) pretty 
close to the classification specified could be found very early, also in the initial sam­
pling phase as with the neutral compromise solution, and this solution was slightly 
improved with further evaluations to a final value (25.13, 0.86, 11.09). 

In Iteration 3, the classification was continued from the result of Iteration 2, and 
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Table 1: First example. Effect of the number of function evaluations to the interactive 
solution process. 

Eval level Best Power(he) Cov Dmee:(bar) Seal. f Seal. f .6. 
lterl Neut" 

30 28 26.02 0.78 11.25 -0.2475 
60 28 
90 28 

120 118 26.30 0.77 11.38 -0.2393 
150 127 26.17 0.77 11.55 -0.2304 
180 169 26.17 0.79 11.54 -0.2281 
210 169 
240 169 0.0194 

lter2 Os Jbound(25.00) 1 a8P(0.8S) 16ound(ll.OO) 
30 5 24.88 0.85 10.98 0.0011 
60 5 
90 5 
120 116 25.09 0.85 11.07 0.0021 
150 116 
180 151 25.13 0.86 11.09 0.0062 
210 151 
240 151 0.0073 

lter3 Cls 16ound(24.00) l aap(0.92) J"'P(ll.50) 
30 23 23.08 0.87 10.83 0.0452 
60 23 
90 23 

120 104 22.77 0.88 10.92 0.0401 
150 104 
180 104 
210 104 
240 235 23.38 0.88 10.97 0.0347 0.0104 

Iter4 Cls 16ot.md(22.00) JBBP(Q.90) J'"'(l0.80) 
30 22 23.08 0.87 10.83 -0.0252 
60 32 23.89 0.88 10.54 -0.0205 
90 32 
120 99 23.55 0.90 10.82 0.0004 
150 99 
180 162 22.60 0.91 10.84 0.0048 
210 162 
240 162 0.0300 

IterS From 22.60 0.91 10.80 
To 25.00 0.85 11.00 
1 

30 23 23.08 0.87 10.83 -0.0167 
60 23 
90 83 23.22 0.89 10.67 -0.0152 

120 111 22.91 0.89 10.75 -0.0099 
150 111 
180 111 
210 111 
240 240 23.00 0.89 10.80 -0.0070 0.0096 

2 
30 22  24.36 0.84 11.43 -0.0498 
60 54 23.79 0.85 10.71 -0.0356 
90 82 24.11 0.89 11.08 -0.0029 

120 82 
150 130 23.74 0.89 11.14 0.0015 
180 130 
210 130 
240 130 0.0512 

3 

30 1 24.59 0.85 10.85 -0.0230 
60 46 23.% 0.86 11.Dl -0.0122 
90 65 24.59 0.86 11.30 -0.0047 
120 65 

15() l?R ?.4.?.4 O.AA 11.14 -0.0017 
180 128 
210 128 
240 128 0.0193 

4 

30 1 23.44 0.83 10.55 -0.0372 
60 1 
90 87 24.41 0.86 11.22 -0.0123 

150 87 
180 87 
210 198 24.73 0.86 11.13 -0.0082 
240 217 24.67 0.87 11.10 -0.0022 0.0350 
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Eval level 

lter6 
30 
60 
90 

120 
120 
150 
180 
210 
240 
270 
300 
330 
360 

390 
420 
450 
480 

Table 2: First example, continued. 
Best Power(hp) 
Cls 1"""(25.50) 
15 16.92 
15 
15 
87 
99 24.58 
137 25.08 
137 
137 
137 
137 
137 
137 
137 
137 
410 25.10 
437 25.16 
137 

Cov 

1•••co.BB) 
0.86 

0.86 
0.87 

0.88 
0.87 

Bmep (bar) 
1•••c11.20> 

7.94 

11.06 
11.07 

11.07 
11.10 

Seal. f 

-0.0254 

-0.0249 
-0.0099 

-0.0093 
-0.0076 

Scal.fLl. 

0.0179 

the aim was to gain even more coverage and slightly more bmep and, thus, power 
was allowed to decrease till 24.00, and coverage and bmep were hoped to improve 
till 0.92 and 11.50, respectively. Even the final solution (23.38, 0.88, 10.97) of this iter­
ation gained with 235 evaluations failed to reach the given classification, suggesting 
that high coverage is preventive for power and bmep. Also in this case differences 
between solutions with different evaluation levels remained quite small. 

In Iteration 4, we continued from the previous solution. In the quest for higher 
coverage till 0.90, power was allowed to decrease further till 22.00, and for the bmep 

a slight degradation till 10.80 was regarded acceptable. Solution (22.60, 0.91, 10.84) 
was obtained at the 162nd evaluation, and at lower evaluation levels we see that 
continuous decrement of power levels was traded with higher coverage levels. In 
this iteration, solution (23.08, 0.87, 10.83) gained at the CRS2 algorithm's initial sam­
pling phase at the 22nd evaluation is improved quite continuously with an increas­
ing number of evaluations, resulting also in one of the biggest improvements in 
scalarizing function value compared to all iterations within this test run. 

At this stage of the solution process we wanted to study more Pareto optimal 
solutions to see how the behavior of power and coverage interacts. To achieve this, 
in Iteration 5 we used the option of generating new Pareto optimal alternatives be­
tween two already known Pareto optimal solutions. As the end points two already 
known solutions we used: (25.13, 0.86, 11.09) from Iteration 2 (which has a good 
value for power) and (22.60, 0.91, 10.84) from Iteration 4 (which has a good value 
for coverage). Between these points we chose to get 4 new solutions, which were 
(23.00, 0.89, 10.80), (23.74, 0.89, 11.14), (23.24, 0.88, 11.14), and (24.67, 0.87, 11.10). The 
last of these results, (24.57, 0.87, 11.10), encouraged us to believe that there could ex­
ist a solution with a power level above 25 hp, with coverage close to 0.90, and bmep 

over 11. 
In the first new alternative of the Iteration 5 the solution of initial sampling was 

only slightly improved with more evaluations, as is also seen in the improvement of 
the scalarizing function value. In the second new alternative the initial solution is 
obviously changing, but for the human observer it is not clear how much the solu­
tion actually improves. By the change of scalarizing function value, this solution has 
improved most with an increasing number of evaluations during this experiment. 
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The third new alternative does not seem to benefit much of increasing evaluation 
numbers as the solutions are quite close to each other. The fourth new alternative 
improves all the way through the increasing number of evaluations, and also the 
change in scalarizing function value is quite big. 

Although the last intermediate solution of the Iteration 5 was rather satisfactory, 
we wanted to take one more iteration using more function evaluations in order to 
achieve a high accuracy for the final solution, reflecting our possibly optimistic be­
liefs. With our final classification we aimed at a quite high demand for power as 
we hoped it to improve till 25.50, similarly we hoped to improve bmep and coverage 
till 0.88 and 11.20, respectively. As this classification is not allowed by definition of 
Pareto optimality from the last result of the previous iteration (one cannot improve 
all the objectives at the same time), we used the neutral compromise solution as the 
base for the new classification. This procedure does not compromise integrity of 
the solution process, since our optimization algorithm is global instead of a local 
one, and as such it does not employ information about the current solution. Instead, 
the initial population of the CRS2 algorithm is always created randomly, regard­
less of the current solution. Besides that, contrary to some sclarizing functions [34] 
the scalarizing function used here does not employ information about the current 
solution. 

With 480 function evaluations devoted for getting the solution in the final itera­
tion, we obtained solution (25.16, 0.87, 11.10). Although the desired levels were not 
quite achievable, this solution was considered satisfactory and selected as the fi­
nal solution. In this iteration, with an increasing number of function evaluations, it 
seems difficult to gain any improvement, and although 480 evaluations were used, 
only minor change in scalarizing function value was achieved. This probably sug­
gests that the given classification is close to the performance limits of the engine to 
be optimized. In our final solution, the power peak settled at a reasonable level with 
25.16 hp at 12500 rpm and also coverage and bmep reached good values. 

6.2 Second CRS run 

Because it seemed that our example problem is not very sensitive to the number of 
objective function evaluations, we wanted to change our classifications, and pursue 
other kind of trade-off between our objectives. Thus, in the secuml example we 
were pursuing very high coverage with the expense of both bmep and power. A 
summary of results is seen in Table 3. Results of Iteration l are naturally the same as 
the ones in the first example because we begun with the same neutral compromise 
solution as a starting point. 

In Iteration 2 we allowed power and bmep to decrease till 23.00 and 10.50, respec­
tively, and at the same time we were aiming to get coverage at least to 0.94. The solu­
tion changed quite a lot during the evaluations of this iteration, as also the change in 
the scalarizing function value suggests. With the solution (22.43, 0.92, 10.76), power 
fell below requirement, coverage did not achieve the given value, and in bmep there 
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Table 3: Second example. Effect of the number of function evaluations to the inter-
active solution process. 

Eval level Best Power(he) Cov Bmee(bar) Seal. f Seal.IA 

Iter1 Neu� 
30 28 26.02 0.78 11.25 -0.2475 
60 28 
90 28 
120 118 26.30 0.77 11.38 -0.2393 
150 127 26.17 0.77 11.55 -0.2304 
180 169 26.17 0.79 11.54 -0.2281 
210 169 
240 169 0.0194 

Iter2 a, 
1bound(23_QO) I"'P(0.94) Jbound(l0.50) 

30 23 23.08 0.87 10.83 -0.0651 
60 52 21.90 0.88 10.50 -0.0573 
90 69 21.53 0.91 10.32 -0.0410 
120 111 22.07 0.91 10.36 -0.0251 
150 111 
180 111 
210 197 22.33 0.92 10.48 -0.0175 
240 236 22.43 0.92 10.76 -0.0159 0.0492 

lter3 a, /bound(22.00) J"'P(0.94) 16ound(l0.00) 
30 6 20.04 0.90 10.04 -0.0556 
60 37 21.31 0.93 10.22 -0.0180 
90 37 

120 115 21.47 0.92 10.08 -0.0174 
150 115 
180 176 21.92 0.93 10.07 -0.0096 
210 176 
240 211 21.81 0.93 10.02 -0.0070 0.0486 

Iter4 0s 1asp(24.00) Ias p(0.94) [bound(9.50) 
30 23 23.08 0.87 10.83 -0.0651 
60 23 
90 82 22.42 0.88 10.75 -0.0595 
120 113 24.33 0.89 10.52 -0.0465 
150 144 23.54 0.91 10.38 -0.0300 
180 144 

210 207 23.64 0.91 10.23 -0.0259 
240 221 23.10 0.92 10.19 -0.0241 0.0411 

Iter5 Os J6ound(21.00) lasp(0.98) 1bound(9.00) 
30 6 20.04 0.90 10.04 -0.0803 
60 6 
90 69 21.89 0.95 8.94 -0.0271 
120 69 
150 69 
180 69 
210 69 
240 69 0.0532 

still was some room for acceptable decrement. Thus, it was not possible to obey the 
classification completely. 

In Iteration 3 we were further compromising values of power and bmep by al­
lowing them to decrease till 22.00 and 10.00, respectively. At the same time coverage 
was required to be at least 0.94. The solution (20.04, 0.90, 10.04) of the initial sam­
pling phase was improved quite a lot with additional evaluations. The final solution 
(21.81, 0.93, 10.02) of this iteration could follow quite closely the given classification: 
power and coverage were only slightly below their minimum values, and bmep was 
little bit higher than required. 

In Iteration 4, coverage requirement was still kept at 0.94, and power was re­
quired to reach higher for 24.00, and for bmep decrement further down to 9.50 
was accepted. Also in this iteration the initial solution (23.08, 0.87, 10.83) benefited 
from the additional evaluations, as the scalarizing function value changed quite a 
lot. Anyhow, with the the final solution (23.10, 0.92, 10.19) of this iteration, power 
and coverage were lagging behind the desired ones, whereas bmep was essentially 
higher than required. Thus, it was not possible to find a feasible solution that would 
accurately correspond to the given classification. 

In Iteration 5 we made the final attempt towards extremely high coverage by 
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setting a requirement for it to 0.98 (considering that 1.00 is an unreachable theoret­
ical maximum this was a very optimistic setting), and further allowing power and 
bmep to decrease till 21.00 and 9.00, respectively. The solution of the initial sampling 
phase (20.04, 0.90, 10.04) was improved only once at iteration 69 resulting with solu­
tion (21.89, 0.95, 8.94). Regardless of the only single improved solution, the absolute 
improvement in the initial sampling and final scalarizing function value was great­
est within the iterations of this example. As we were here aiming at the maximum 
coverage while having power and bmep values at least within some reasonable lim­
its, we regarded solution (21.89, 0.95, 8.94) of Iteration 5 as the final solution of this 
example. This high coverage with regard to reasonable values of maximum power 
and bmep may be close to a theoretical limit. 

It is worth mentioning that direct comparison of scalarizing function values be­
tween different classifications (i.e. iterations) is not reasonable. This is because the 
scalarized problem to be solved, based on different classifications, is different. Thus, 
consideration of scalarization function values of different iterations with different 
classifications leads us to compare apples and oranges, so to speak. Anyhow, within 
one single iteration scalarized function values may give the decision maker some 
additional information about the solution development. 

6.3 DE run 

Our third run is identical to the second run, with regard to the classifications made. 
The only difference is that in this example we used DE as a solver, instead of CRS 
as in two previous examples. The results are seen in Table 4. The results of Iter­
ation 1 are naturally the same as the ones in the two previous examples, because 
the initial (neutral compromise) solution is computed. In contrast to the two previ­
ous examples, Table 4 contains one additional column "Comp" to highlight perfor­
mance differences between CRS and DE. Markings in this column indicate whether 
DE performed better ( + ), worse (-), or similarly (0) in that particular evaluation level 
compared to CRS in the previous example. 

In iterations 2, 4 and 5 DE performed initially somewhat better, up to 90 evalu­
ations, but beyond that, CRS performed exclusively better. As a consequence, total 
improvement in scalarized function value was higher with CRS in all iterations. For 
this reason, while the CRS method was used, the given classification was followed 
somewhat more accurately. Of course, these conclusions are not necessarily very 
well generalizeable beyond these examples. 

Although the CRS performed slightly better in this example, differences in real 
objective function values were not very large, and thus it seems that our example 
problem is not very sensitive to the selection of the optimization algorithm. Thus, 
we can make some conclusions that are not limited merely to one global optimiza­
tion method. 
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Table 4: Third example. Effect of the number of function evaluations to the inter-
active solution process. Similar to second example, but instead of the CRS, the DE 
algorithm was used. 

Eval level Best Power(h£) Cov Bmep (bar) Seal. f Seal. f � Comp 
Iterl Neu� 

30 28 26.02 0.78 11.25 -0.2475 0 
60 28 0 
90 28 0 

120 118 26.30 0.77 11.38 -0.2393 0 
150 127 26.17 0.77 11.55 -0.2304 0 
180 169 26.17 0.79 11.54 -0.2281 0 
210 169 0 
240 169 0.0194 0 

Iter2 Cls 16ound(23.00} Jaap(0.94) 1bound(l0.50) 
30 23 23.08 0.87 10.83 -0.0651 0 
60 47 21.92 0.90 10.29 -0.0378 
90 47 + 

120 117 22.23 0.90 10.43 -0.0344 
150 117 
180 117 
210 181 22.38 0.91 10.50 -0.0321 
240 181 0.0330 

Iter3 Os Jbound(22.00) J"'P(0.94) 16ound(l0.00) 
30 6 20.04 0.90 10.04 -0.0556 
60 36 21.24 0.89 9.97 -0.0455 
90 88 22.11 0.89 9.% -0.0445 
120 115 21.99 0.92 9.90 -0.0216 
150 115 
180 115 
210 195 22.15 0.92 9.97 -0.0139 
240 219 21.93 0.93 10.08 -0.0095 0.0461 

lter4 Cls J08P(24.00) Iasp(0.94) 16ound(g,50) 
30 23 23.08 0.87 10.83 -0.0651 
60 47 21.92 0.90 10.29 -0.0590 + 

90 47 
120 47 
150 135 23.09 0.88 9.79 -0.0550 
180 135 
210 205 22.05 0.92 9.73 -0.0550 
240 237 22.39 0.89 10.51 -0.0519 0.0133 

IterS Os Jbound(21.00) JO.BP(Q.98) 1bound(g,QO) 
30 6 20.04 0.90 10.04 -0.0803 
60 32 19.40 0.93 9.95 -0.0512 
90 32 

120 102 19.40 0.95 9.30 -0.0450 
150 102 
180 102 
210 102 
240 226 21.87 0.94 9.85 -0.0408 0.03% 

6.4 MDPplots 

In Figure 1 we have collected eight MDP plots depicting two identical (with regard 
to classifications made) runs of Subsections 6.2 and 6.3. The first iteration, compu­
tation of neutral compromise solution, is omitted in both cases, because there is no 
preference information available, needed to compute the MDP value. In the figures, 
on x-axis is the number of function evaluations, and on y-axis is the MDP value 
of each objective function evaluation. In other words, any 30 adjacent points (with 
regard to x-axis) represent the current population of the optimization algorithm. 

The inspection of the plots of the CRS run reveal, that for the majority of the iter­
ations only one to four evaluation levels (which corresponds to 30 - 120 evaluations, 
one evaluation level being 30 objective function evaluations) would be sufficient to 
see that MDP improvement stagnates (lower values of MDP are not improving i.e. 
getting smaller), best MDP values are already quite small, and the variation in MDP 
has already reduced. Especially in the early iterations, while the decision maker is 
still learning about the problem, already one or two evaluation levels seem to show 
sufficient stagnation to stop the current iteration. This probably suggests that the 
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problem is quite easy to solve with regard to the the given classification. 
In the plot of the 5th Iteration, it is seen that the MDP variance remains higher 

than in other plots. This is probably due to the more strict classification, i.e. the 
given classification is quite hard, or even impossible to reach. 

The plots of the DE run are little bit more difficult to interpret, but the same 
behaviour as in the CRS run, is seen with somewhat higher variation (notice the 
different scaling of MDP values in y-axis). It is clearly visible in the variation of MDP 
within population, that the convergence rate of the CRS is somewhat faster (possibly 
due to the parameter settings of the DE), as also numerical results suggested. 

Figure 1: MDP plots for the second CRS run and the DE run. 
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7 Discussion 

In the examples reported, the interactive optimization procedure allowed us to guide 
the solution process to a desired direction step by step, and also to learn of what 
kind of solutions are attainable. In a majority of the iterations, only smallish num­
ber of 240 function evaluations were used but, yet, the solutions obtained followed 
the given classifications accurately enough to allow moving to a desired direction in 
the Pareto optimal set. In the final iteration of the first example, up to 480 function 
evaluations were used, and this lead to a sufficiently good final solution. The solu­
tion process was computationally efficient in all because in this example, only nine 
or five Pareto optimal solutions had to be generated to find the most preferred one. 
The whole optimization procedure consumed in the first run 2400 and in the second 
and third run 1200 objective function evaluations, which equals roughly to 48 and 
24 hours of computation on a modern workstation. 

While inspecting the data in all three tables and in MOP plots, we can deduce 
that only one to four evaluation levels (corresponding to 30 - 120 evaluations) for 
the majority of the iterations would be sufficient to be able to reconstruct a similar 
path of classifications as was done in the three examples. This suggests that the 
number of 1200 or 2400 evaluations could be cut down to approximately one third 
(400 or 800, respectively) without deteriorating the quality of the final solution using 
this technique. This would correspond roughly to 8 or 16 hours of computation, 
respectively. In other words, we could achieve considerable savings. 

One major issue (also with general applicability) for further study for this kind of 
a technique is to develop more sophisticated tools to judge when a sufficient amount 
of objective function evaluations at each iteration has been reached. In our study we 
used a simple, but intuitive MOP plots, possibly with predefined thresholds. This 
idea could be further refined and automated by calculating more key figures of the 
plots, for example, median of MOP values with a sliding window could be plotted, 
as well as range wherein, for example, 80% of solutions reside. These mechanisms, 
especially with arbitrarily selected problems, remain topics for further study. 

All the information above could be presented in real time to the decision maker as 
various graphical plots to help his/her judgement. Thus, either the decision maker 
or a heuristic based on MOP values could restrict the number of function evalua­
tions to a sufficient level at each iteration. As one iteration may take several hours, 
the use of a heuristic is needed whenever the decision maker is not able to occasion­
ally check the status of the optimization run, for example, during night time. 

Concerning the classification, especially in the second example we noticed that 
while using only small amounts of objective function evaluations, it may be benefi­
cial to set preferred function levels on to a bit optimistic side, as solutions satisfying 
the given classifications can not always be found. For example, in our second ex­
ample maximum coverage was gained when requirement for it was set to a very 
high level. Anyhow, it is worth to mention that naturally not all classifications can 
be followed if they are too demanding, and this is also something that the decision 
maker must learn about the problem during the process. 
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While inspecting all three objective function values at various numbers of evalu­
ations, we noticed that in several cases already sampling of the search space with a 
tiny initial population (5 * d, 30 in our case) of the CRS algorithm produced quite a 
good accuracy with regard to the given classification. On the other hand, especially 
in the second example, solutions continuously benefited from additional evalua­
tions. In all three test runs, the last classification seemed to be hard to reach. This 
is probably due the accumulation of understanding of the problem behavior, and 
as a consequence of strive to achieve maximum performance, classifications in all 
cases were quite demanding. As a result of the strict classification the satisfactory 
solution is not so easy to find, indicating either a need for more objective function 
evaluations, or a less demanding classification. Either way, in the final stage of 
the optimization procedure, it may be reasonable to use higher number of objective 
function evaluations to be assured of a final high quality solution. 

In the implementation of CRS, the initial sampling of the search space is done 
similarly at each iteration of the process, and it does not depend, for example, on 
the classification the decision maker made, or the current solution. For this reason, 
the first 5 * d, (30 in our case) iterations in all iterations (except in the Iteration 5 of 
the first example where alternative solutions were created) are identical, and in this 
sense this is time wasted duplicating already known results. This behavior could 
be optionally changed by using a different random seed for the initial sampling in 
CRS2 algorithm, but it remains open to discussion whether this would benefit the 
overall process or not. 

8 Conclusions 

Our study arises from the fact that real-life engineering problems have very of­
ten multiple objectives, objective functions involved are highly nonlinear and they 
contain multiple local minima, and function values are often produced via a time­
consuming simulation process. In this study, our aim was to show that the computa­
tional complexity ( due to time consuming objective function evaluations) of interac­
tive solution processes can be decreased. Our idea is to improve the efficiency of the 
whole interactive optimization system by exploiting fewer objective function eval­
uations in the beginning of the optimization procedure, by expense of the solution 
accuracy, and stopping each of the iterations when sufficient number of obje,tive 
function evaluations has been reached. To help judge what is a sufficient number 
of objective function evaluations, we introduced a maximum difference percentage 
(MDP) measure. 

Our example case concerned internal combustion engine design. More specifi­
cally, we optimized the performance of a two-stroke engine by altering the exhaust 
pipe shape. We formulated a multiobjective optimization problem using three ob­
jective functions measuring the goodness of a particular engine design. The prob­
lem was solved by the interactive NIMBUS method together with efficient global 
optimization algorithms (CRS2, DE), observing along the procedure how objective 
function values develop at growing levels of objective function evaluations. 
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As we noticed, in the early phases of the solution process it is not necessary to 
have very accurate solutions, but instead use more coarse accuracy to get grasp of 
the problem. While employing this principle, interactive methods may be a con­
venient way to reduce the number of objective function evaluations required, and 
yet be able to control the solution process. With this approach we could reduce the 
number of required objective function evaluations by some 60-70%, without deteri­
orating the overall solution process. 

As the approach of this study was based on the concept of accuracy, one thing 
to consider in the field of simulation based optimization is the accuracy of the sim­
ulation software itself. With engine simulators accuracy above, say, 95 percent can 
generally be considered good, and thus it is useless to solve the problem itself be­
yond the inherent accuracy of the simulator. This further justifies our approach. 
Moreover, at least in our case, although the problem contains lots of local optima, 
equally good optima are rather easy to find, as results of this study also suggest. 

With regard to the solution quality, we may notice that results gained by the 
optimization system of this study look very credible by the traditions of the trade. 
The optimized pipe shape resembles closely the ones seen in the aftermarket per­
formance exhaust pipes, and respective power curve suggests high usability for the 
optimized pipe. 

References 

[1] T. Aittokoski (2007): On optimization of simulation based design. Licentiate
Thesis. Jyviiskylii Licentiate Thesis in Computing 8. University of Jyviiskylii.

[2] T. Aittokoski and K. Miettinen (2007): Cost Effective Simulation-Based Multiob­
jective Optimization in Performance of Internal Combustion Engine. Engineer­
ing Optimization 40(7), 593-612.

[3] T. Aittokoski and K. Miettinen (2008): Efficient evolutionary method to approx­
imate the Pareto optimal set in multiobjective optimization. In Proceedings of
International Conference on Engineering Optimization EngOpt 2008, Rio de
Janeiro, Brazil,June 1-5, 2008.

[4] M.M. Ali, C. Khompatraporn and Z.B. Zabinsky (2005): A Numerical Evaluation
of Several Stochastic Algorithms on Selected Continuous Global Optimization
Test Problems. Journal of Global Optimization 31, 635-672.

[5] M.M. Ali and C. Storey (1994): Modified Controlled Random Search Algorithms.
International Journal of Computer Mathematics 54, 229-235.

[6] M.S. Bazaraa, H.D. Sherali, and C.M. Shetty (1993): Nonlinear Programming:
Theory and Algorithms. John Wiley and Sons, New York, 2nd edition.

[7] L.T. Biegler (1989): Chemical Process Simulation. Chemical Engineering
Progress 85(10), 50-61.

27 



[8] G. P. Blair (1996): Design and Simulation of Two-Stroke Engines. Society of Au­
tomotive Engineers, Inc. Warrendale, Pa.

[9] K. Deb (2001): Multi-Objective Optimization Using Evolutionary Algorithms.
John Wiley & Sons, Chichester.

[10] K. Deb (0000). Unveiling Innovative Design Principles by Means of Multiple
Confilicting Objectives. KanGAL Report Number 2002007.

[11] J. F. Elder IV (1992): Global Rd Optimization when Probes are Expensive:
the GROPE Algorithm. Proceedings IEEE International Conference on Systems,
Man, and Cybernetics, Chicago, Illinois, October 18-21, 1992.

[12] H. Eschenauer, J. Koski and A. Osyczka (editors) (1990): Multicriteria Design
Optimization - Procedures and Applications. Springer-Verlag, Berlin.

[13] Y. Fu and U. M. Diwekar (2004): An Efficient Sampling Approach to Multiob­
jective Optimization. Annals of Operations Research 132, 109-134.

[14] A. Gaspar-Cunha and A. S. Vieira (2004):. A hybrid multi-objective evolution­
ary algorithm using an inverse neural network. Hybrid Metaheuristics (HM
2004) Workshop at ECAI 2004, 25-30.

[15] A. Gaspar-Cunha and A. Vieira (2005): A multi-objective evolutionary algo­
rithm using neural networks to approximate fitness evaluations. International
Journal of Computers, Systems, and Signals 6(1), 18-36.

[16] P. E. Gill, W. Murray and M. H. Wright (1981): Practical Optimization. Aca­
demic Press, New York.

[17] J. Hakanen, K. Miettinen, M.M. Makela and J. Manninen (2005): On Interactive
Multiobjective optimization with NIMBUS in Chemical Process Design. Journal
of Multi-Criteria Decision Analysis 13, 125-134.

[18] A-R. Hedar and M. Fukushima (2003): Minimizing multimodal functions by
simplex coding genetic algorithm. Optimization Methods and Software 18, 265-
282.

[19] A-R. Hedar and M. Fukushima (2003): Heuristic Pattern Search and Its Hy­
bridization with Simulated Annealing for Nonlinear Global Optimization. Op­
timization Methods and Software 19, 291-308.

[20] E. Heikkola, K. Miettinen and P. Nieminen (2006): Multiobjective Optimization
of an Ultrasonic Transducer using NIMBUS. Ultrasonics 44(4), 368-380.

[21] R. Horst and P. M. Pardalos (Eds.) (1995): Handbook of Global Optimization.
Kluwer Academic Publishers, Boston.

28 



[22] R. Horst, P.M. Pardalos and N.V. Thoai (2000): Introduction to Global Opti­
mization, 2nd Edition. Kluwer Academic Publishers, Boston.

[23] W. Huyer and A. Neumaier (1999), Global optimization by multilevel coordi­
nate search. Journal of Global Optimization 14, 331-355

[24] D.R. Jones, M.Schonlau and W.J.Welch (1998): Efficient Global Optimization of
Expensive Black-Box Functions. Kluwer Academic Publishers, Boston.

[25] J. Knowles (2006): ParEGO: A Hybrid Algorithm with On-line Landscape Ap­
proximation for Expensive Multiobjective Optimization Problems. IEEE Trans­
actions on Evolutionary Computation 10(1), 50-66.

[26] J. Knowles and E. J. Hughes (2005): Multiobjective Optimization on a Budget of
250 Evaluations. C. A. Coello Coello et al. (Eds.), Evolutionary Multi-Criterion
Optimization 2005, Lecture Notes in Computer Science 3410, 176190. Springer­
Verlag, Berlin.

[27] J. van Leersum (1998): A Numerical Model of A High Performance Two-Stroke
Engine. Applied Numerical Mathematics 27, 83-108.

[28] E. Madetoja, K. Miettinen, P. Tarvainen (2006): Issues Related to the Computer
Realization of a Multidisciplinary and Multiobjective Optimization System. En­
gineering with Computers 22(1), 33-46.

[29] R. T. Marler (2005): A Study of Multi-Objective Optimization Methods for Engi­
neering Applications. A doctoral thesis in Mechanical Engineering in The Grad­
uate College of The University of Iowa. http:/ /www.digital-humans.org/Tim­
Thesis.pdf.

[30] R. T. Marler and J. S. Arora (2004): Survey of multi-objective optimization meth­
ods for engineering. Structural and Multidisciplinary Optimization 26, 369-395.

[31] K. Miettinen (1999): Nonlinear Multiobjective Optimization. Kluwer Academic
Publishers, Boston.

[32] K. Miettinen (2006): IND-NIMBUS for Demanding Interactive Multiobjective
Optimization, in "Multiple Criteria Decision Making '05", Ed. by T. Trzaskalik,
The Karol Adamiecki University of Economics in Katowice, Katowice, 137-150,
2006.

[33] K. Miettinen and M.M. Makela (1995): Interactive Bundle-Based Method for
Nondifferentiable Multiobjective Optimization: NIMBUS. Optimization 34, 231-
246.

[34] K. Miettinen and M.M. Makela (2002): On Scalarizing Functions in Multiobjec­
tive Optimization. OR Spectrum 24, 193-213.

29 



[35] K. Miettinen and M.M. Makela (2006): Synchronous Approach in Interactive
Multiobjective Optimization. European Journal of Operational Research 170,
909-922.

[36] P. K. S. Nain and K. Deb (2002): A computationally effective multi-objective
search and optimization technique using coarse-to-fine grain modeling. Techni­
cal Report Kangal Report No. 2002005, IITK, Kanpur, India, 2002.

[37] J.A. Nelder and R. Mead (1965): A Simplex Method for Function Minimization.
Computer Journal 7, 308-313.

[38] P. M. Pardalos and H. E. Romeijn (Eds.) (2002): Handbook of Global Optimiza­
tion, Volume 2. Kluwer Academic Publishers, Boston.

[39] C.D. Perttunen, D.R. Jones and B.E. Stuckman (1993): Lipschitzian optimiza­
tion without the Lipschitz constant. Journal of Optimization Theory and Appli­
cation 79, 157-181.

[40] W.L. Price (1977): Global Optimization by Controlled Random Search. Com­
puter Journal 20, 367-370.

[41] S. Ruzika and M. M. Wiecek (2005): Survey Paper - Approximation Methods in
Multiobjective Programming. Journal of Optimization Theory and Applications
126(3), 473-501.

[42] M.J. Sasena (2002): Flexibility and Efficiency Enhancements for Constrained
Global Design Optimization with Kriging Approximations. Dissertation. Uni­
versity of Michigan.

[43] S. Shan and G. G. Wang (2005): An Efficient Pareto Set Identification Approach
for Multiobjective Optimization on Black-Box Functions. Journal of Mechanical
Design 127(5), 866-874.

[44] D.P. Solomatine (1998): Genetic and other global optimization algorithms -
comparison and use in calibration problems. Balkema Publishers.

[45] W. Stadler and J. Dauer (1993): Multicriteria Optimization in Engineering: A
Tutorial and Survey. Structural Optimization: Status and Promise. M. P. Kamat,
ed., AIAA: Washington, D.C., 209-249.

[46] R. Storn, K. Price (1997): Differential evolution - a simple and efficient heuristic
for global optimization over continuous spaces. Journal of Global Optimization
11, 341-359.

[47] A. Torn and A. Zilinskas (1989): Global Optimization. Springer-Verlag, Berlin.

[48] A. P. Wierzbicki (1999): Reference point approaches. Published in Multicriteria
Decision Making: Advances in MCDM Models, Algorithms, Theory, and Appli­
cations. T. Gal, T. J. Stewart and T. Hanne (editors). Kluwer Academic Publish­
ers, Boston.

30 



[49] I. Williams (referenced at 3.4.2007): Ian Williams Tuning Homepage.
http:/ /www.iwt.com.au/index2.html.

[50] B. Wilson, D. Cappellari, T. W. Simpson and M. Frecker (2001): Efficient Pareto
Frontier Exploration using Surrogate Approximations. Optimization and Engi­
neering 2, 31-50.

[51] T. Ye and S. Kalyanaraman (2003): A Recursive Random Search Algorithm For
Large-Scale Network Parameter Configuration. Published in Proceedings of the
2003 ACM SIGMETRICS, 196-205.

[52] J.B. Vosa, A. Rizzib, D. Darracqc and E.H. Hirsche! (2002): Navier-Stokes
Solvers in European Aircraft Design. Progress in Aerospace Sciences 38, 601-697.

[53] E. Zitzler, K. Deb and L. Thiele (2000): Comparison of Multiobjective Evolution­
ary Algorithms: Empirical Results. Evolutionary Computation 8(2), 173-195.

31 


	ABSTRACT
	1 INTRODUCTION
	2 SIMULATION BASED OPTIMIZATION
	2.1 System overview
	2.2 Global optimization in brief

	3 MULTIOBJECTIVE OPTIMIZATION
	3.1 Computational efficiency in multiobjective optimization
	3.2 The NIMBUS method

	4 INTERACTIVE METHOD WITH INCREASING ACCURACY
	5 EXAMPLE CASE OF IC ENGINE DESIGN OPTIMIZATION
	6 NUMERICAL EXAMPLE - SOLUTION PROCESS WITH NIMBUS WITH INCREASING ACCURACY
	6.1 First CRS run
	6.2 Second CRS run
	6.3 DE run
	6.4 MDPplots

	7 DISCUSSION
	8 CONCLUSIONS
	REFERENCES



