
This is a self-archived version of an original article. This version 
may differ from the original in pagination and typographic details. 

Author(s): 

Title: 

Year: 

Version:

Copyright:

Rights:

Rights url: 

Please cite the original version:

CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

Blind source separation for non-stationary random fields

© 2021 The Author(s). Published by Elsevier B.V.

Published version

Muehlmann, Christoph; Bachoc, François; Nordhausen, Klaus

Muehlmann, C., Bachoc, F., & Nordhausen, K. (2022). Blind source separation for non-stationary
random fields. Spatial Statistics, 47, Article 100574.
https://doi.org/10.1016/j.spasta.2021.100574

2022



Spatial Statistics 47 (2022) 100574

K
a

b

c

h
2

Contents lists available at ScienceDirect

Spatial Statistics

journal homepage: www.elsevier.com/locate/spasta

Blind source separation for non-stationary
random fields
Christoph Muehlmann a,∗, François Bachoc b,
laus Nordhausen c

Computational Statistics, Vienna University of Technology, Austria
Institut de Mathématiques de Toulouse, Université Paul Sabatier, France
Department of Mathematics and Statistics, University of Jyväskylä, Finland

a r t i c l e i n f o

Article history:
Received 30 June 2021
Received in revised form 7 December 2021
Accepted 13 December 2021
Available online 21 December 2021

Keywords:
Spatial statistics
Linear latent variable model

a b s t r a c t

Regional data analysis is concerned with the analysis and model-
ing of measurements that are spatially separated by specifically
accounting for typical features of such data. Namely, measure-
ments in close proximity tend to be more similar than the
ones further separated. This might hold also true for cross-
dependencies when multivariate spatial data is considered. Of-
ten, scientists are interested in linear transformations of such
data which are easy to interpret and might be used as dimension
reduction. Recently, for that purpose spatial blind source sepa-
ration (SBSS) was introduced which assumes that the observed
data are formed by a linear mixture of uncorrelated, weakly
stationary random fields. However, in practical applications, it
is well-known that when the spatial domain increases in size
the weak stationarity assumptions can be violated in the sense
that the second order dependency is varying over the domain
which leads to non-stationary analysis. In our work we ex-
tend the SBSS model to adjust for these stationarity violations,
present three novel estimators and establish the identifiability
and affine equivariance property of the unmixing matrix func-
tionals defining these estimators. In an extensive simulation
study, we investigate the performance of our estimators and also
show their use in the analysis of a geochemical dataset which is
derived from the GEMAS geochemical mapping project.
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1. Introduction

In spatial data analysis observations x(si), i = 1, . . . , n are collected in a domain S ⊂ Rd where
i ∈ S specifies the location of the observation x(si). In most applications d = 2, which will be
ssumed in the following if not mentioned otherwise. It is meanwhile well-established that when
nalyzing spatial data the proximity of different sample locations has to be taken into account as
bservations located close to each other are expected to be more similar than observations further
part. The common way to consider this is via the covariance function

Cx(si, sj) = E
(
(x(si) − E(x(si)))(x(sj) − E(x(sj)))

)
. (1)

To make working with spatial data more tractable one assumes that the spatial observations are
realizations of a weakly stationary square-integrable random field which means one assumes that
(i) E(x(si)) = µ for all si ∈ S and that (ii) Cx(si, sj) = Cx(h), where h = si − sj is the separation
ector between the two considered sample locations. These assumptions state that the mean is
onstant over the domain and the covariance function is invariant under shifts. If additionally the
ovariance function does only depend on the distance h = ∥si − sj∥ then it is said to be isotropic.
sually, parametric covariance functions are specified and fitted to the data. One of the most popular
arametric covariance functions is the isotropic stationary Matérn covariance function (Guttorp and
neiting, 2006)

C(h; σ 2, ν, φ) =
σ 2

2ν−1Γ (ν)

(
h
φ

)ν

Kν

(
h
φ

)
, (2)

where Kν is the modified Bessel function of second kind, Γ is the gamma function and σ 2 > 0,
> 0 and φ > 0 are the variance, shape and range parameter respectively.
In many applications not only one variable is measured at each sample location but rather

any, which yields multivariate spatial data where also cross-dependencies between the different
ariables have to be taken into account. Many suggestions and approaches for modeling the spatial
ross-covariance functions for a p-variate random field x(s),

Cx(si, sj) = E
(
(x(si) − E(x(si)))(x(sj) − E(x(sj)))⊤

)
(3)

re reviewed for example in Genton and Kleiber (2015) where it is also pointed out that it is not
hat easy to create flexible and valid spatial cross-covariance functions. One of the most popular
pproaches is the linear model of coregionalization (LMC) (Goulard and Voltz, 1992; Wackernagel,
003), where the multivariate covariance function is formed by r summands of p × p positive
emi-definite coregionalization matrices Tk multiplied by univariate, parametric spatial correlation
unctions ρk(h). Formally, the LMC is stated as

C(h) =

r∑
k=1

Tkρk(h). (4)

Multivariate extensions of the Matérn covariance function are introduced by Gneiting et al.
2010) and Apanasovich et al. (2012). Specifically, Gneiting et al. (2010) formulate a model where
he marginal and the cross-covariances are of the above Matérn covariance form. The marginal
ovariance functions yield

Cii(h; σ 2
ii , νii, φii) = σ 2

ii C(h; 1, νii, φii) for i = 1, . . . , p, (5)

nd the cross-covariances write as

Cij(h; ρij, σii, σjj, νij, φij) = ρijσiiσjjC(h; 1, νij, φij) for i, j = 1, . . . , p, i ̸= j. (6)

Conditions for the shape, range, variance and correlation parameters νij, φij, σ
2
ii and ρij for i, j =

1, . . . , p which result in a valid multivariate cross-covariance function can be formulated, however,
these conditions are rather involved and therefore the interested reader is referred to Gneiting et al.
(2010). Similar as in the univariate case, the two above families of cross-covariance functions, and
many others, make the assumption of weak stationarity and isotropy.
2
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As the domains in modern applications are however often huge it is meanwhile commonly
ccepted that the weak stationarity assumption is convenient but not realistic. Stationarity seems
ather justifiable on a local scale but not globally. Thus, recent years saw an increased interest in
eveloping spatial methods which do not assume weak stationarity where the focus was mainly
n univariate approaches. For example Sampson (2010) reviews four different strategies to develop
on-stationary covariance functions where the most popular approach seems to be based on spatial
eformations. Anderes and Stein (2011) focus on extending the Matérn covariance for the non-
tationary case by letting the shape, scale and variance parameters vary in the spatial domain. For
he multivariate case Vu et al. (2021) point out that extensions of non-stationary cross-covariance
unctions are even more challenging to develop. Gelfand et al. (2004) extend the LMC to account
or non-stationarity and Kleiber and Nychka (2012) extend the multivariate Matérn model, both
y introducing spatially varying parameters. Vu et al. (2021) on the other side extend the spatial
eformation approach to the multivariate setting and also review some other approaches. In any
ay all the discussed approaches start with the selection of one or more cross-covariance functions
hich are then fitted to the data.
Often, the analysis of multivariate spatial data is started with an exploratory step where the

ain goal is to find linear transformations of the data that are easy to interpret and show the main
eatures. A natural first candidate of suitable methods would be the classical principal component
nalysis (PCA). However, PCA treats the data as an iid sample discarding the possible spatial
ependence completely. Efforts of accounting for spatial dependence in the context of PCA have
een made in the literature. The geographically weighted principal component analysis (Harris et al.,
015; Cartone and Postiglione, 2021) considers spatial dependence by carrying out the eigenvalue
ecomposition of locally weighted covariance matrices resulting in a set of different loadings
or each sample location. A different direction is taken by Nordhausen et al. (2015) and Bachoc
t al. (2020) where the methodology of blind source separation (BSS) (Comon and Jutten, 2010)
s combined with (stationary) geostatistics (Bailey and Krzanowski, 2012) denoted as spatial blind
ource separation (SBSS). In SBSS it is assumed that the observable random field is formed by the
o-called location scatter model

x(s) = Az(s) + b. (7)

ere, x(s) and z(s) are the observed and latent random fields where the latter one consists of p
ncorrelated/independent stationary entries. A and b are the invertible mixing matrix and a location
ector. The aim of SBSS is to recover the latent field by simultaneous/joint diagonalization of so-
alled local covariance matrices. Joint diagonalization of suitable matrices is already considered in
patial data analysis by De Iaco et al. (2013) and Cappello et al. (2021) where the joint diagonalizer
s restricted to be orthogonal which is not the case for SBSS. Recovering z(s) has great advantages as
he interpretations of the resulting components follow the same scores-loadings principle as in PCA
nd the uncorrelatedness/independence property allows for further univariate modeling. The latter
roperty is investigated in Muehlmann et al. (2021d) in the context of spatial prediction. In this
ublication it is pointed out that when applying SBSS prior spatial prediction the task of modeling
he univariate data (cross-dependencies) can be discarded in favor of p univariate models. E.g.: The
nivariate predictions might be carried out with simple methods such as inverse distance weighting,
arious forms of Kriging, more sophisticated methods such as neural networks (Wang et al., 2019),
eneral statistical/machine learning methods (Li and Heap, 2014; Jiang, 2019) or specifically for the
on-stationary case designed methods such as the one given in Thakur et al. (2018). Note that the
ovariance structure of the above location-scatter model yields a special case of an LMC leading
o rank-one coregionalization matrices and r = p, see Bachoc et al. (2020) for details. Hence,
redictions of the latent field entries might be viewed as predicting the factors leading to a LMC
hich is considered by factorial Kriging, see Goovaerts (1992) or Wackernagel (2003, Chapter 27).
Our main contribution is to state a second order spatial non-stationary blind source separation

odel (the non-constant drift case is investigated in Muehlmann et al., 2021b) which is a reformula-
ion of the already known non-stationary time series model in the first part of Section 2. Moreover,
s SBSS is a relatively new field in the spatial statistics community we concisely present desired
roperties of general BSS unmixing matrix functionals in the second part of Section 2. Section 3
3
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adapts the non-stationary time series estimators for the model outlined in Section 2 and studies
the identifiability and affine equivariance properties of the underlying unmixing matrix functionals.
The core of the work is formed by extensive simulation studies in Section 4 and the analysis of a
geochemical dataset in Section 5 which are meant to persuade the spatial readership to account
for the practical usefulness of the introduced methods. Lastly, we conclude the paper in Section 6
and hint ideas for further research. The appendix contains the proofs of the stated propositions and
more simulation results.

2. A non-stationary spatial blind source separation model

For the remainder of the paper we assume that the random field x(s) at hand follows a spatial
on-stationary (blind) source separation (SNSS) model which is defined as follows.

efinition 1 (Spatial Non-Stationary Source Separation Model). A p-variate random field x(s) defined
n a d-dimensional spatial domain S ⊆ Rd follows a spatial non-stationary source separation model
SNSS) if it can be formulated as

x(s) = Az(s) + b, (8)

here A is a deterministic invertible p × p mixing matrix, b is a p-variate deterministic location
ector and z(s) is a p-variate latent random field which fulfills the following assumptions

(SNSS 1) E(z(s)) = 0 for all s ∈ S ,
(SNSS 2) Cov(z(s)) = E

(
z(s)z(s)⊤

)
= Σ s where Σ s is a positive definite diagonal matrix for all

s ∈ S and
(SNSS 3) Cov(z(s), z(s′)) = E(z(s)z(s′)⊤) = Σ ss′ , for all s ̸= s′

∈ S where Σ ss′ is a diagonal matrix
depending on s and s′.

In practical considerations the random field x(s) of Definition 1 is observed on a set of n
eterministic sample locations C = {s1, . . . , sn} ⊂ S which is a natural assumption for geostatistical
pplications. The domain S can be thought of as a continuous version of the sample locations C and
an in principle be of any shape, but for convenience it is often a d-dimensional hyperrectangle,
hich so-to-speak covers C.
Assumption (SNSS 1) states that the mean of each entry of the latent random field is a constant

or the whole domain. In contrast, assumptions (SNSS 2) and (SNSS 3) allow the diagonal covariance
s well as the diagonal spatial cross-covariance matrices to be dependent on the specific sample
ocations. In total, the observed random field is formed by uncorrelated latent random fields that
re non-stationary in the sense that the second order dependencies are allowed to vary across the
patial domain. Often however the assumption of uncorrelated latent components is replaced by
he stronger assumption of mutual independence. For general overviews of blind source separation
BSS) methods and their assumptions see for example Comon and Jutten (2010) and Nordhausen
nd Oja (2018). The SNSS model here can be seen as a spatial variant of the non-stationary time
eries model which is for example considered in Choi and Cichocki (2000a,b), Choi et al. (2001)
nd Nordhausen (2014).
If (SNSS 2) and (SNSS 3) are forced to be stationary, i.e, Σ s is constant and the diagonal matrix

ss′ carries stationary covariance functions on its diagonal elements, i.e. functions only of the
ifference vector h between s and s′, then the model of Definition 1 corresponds to the (stationary)
BSS model discussed in detail in Nordhausen et al. (2015) and Bachoc et al. (2020).
The main goal of SNSS is to recover the true latent random field z(s) based on x(s) alone. Thus,

n unmixing matrix functional W = W(x(s)) and a location functional T = T(x(s)) are required such
hat z(s) = W(x(s)) (x(s) − T(x(s))). Note that assumptions (SNSS 1)-(SNSS 3) are not sufficient to
ake this a well-defined problem as the conditions do not fix the order, signs and scales of the

atent components of z(s). That is, let J = PSD where P denotes a permutation matrix, S a sign-
hange matrix and D a diagonal matrix with positive diagonal values. Then, the pairs (A, z(s)) and
AJ−1, Jz(s)) both lead to the same x(s) and fulfill all requirements of Definition 1, hence, they are
ot distinguishable. This leads to the fact that recovering z(s) is only possible up to order, signs and
4
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scale which is an ambiguity present in all BSS models and not considered a problem. For a detailed
discussion about identifiability and general ambiguities in BSS models see for example Bachoc et al.
(2020), Tong et al. (1991) and Eriksson and Koivunen (2004).

Another requirement of unmixing matrix functionals is the affine equivariance property (Mietti-
en et al., 2015) which states that the same latent random field is recovered (up to order and sign)
ndependent of the exact way of mixing. Let x(s) be a random field and x∗(s) = Bx(s) + a its affine
ransformed version, where B is any invertible p × p matrix and a is any p-dimensional vector. For
n affine equivariant unmixing matrix functional it holds that W(Bx(s)+a) = W(x(s))B−1

= A−1B−1

p to order and sign of the row vectors. Multivariate statistical tools fulfilling this property belong
o the more general invariant coordinate system (ICS) framework (Ilmonen et al., 2012).

The following definition formally states identifiability and the affine equivariance property of
nmixing matrix functionals discussed before.

efinition 2 (Unmixing Matrix Functional). For a random field x(s) following the SNSS model
Definition 1) a p×pmatrix-valued functionalW(x(s)) is an unmixing matrix functional if it satisfies:

Identifiability) W(x(s))A = PSD for some permutation matrix P, sign change matrix S and
diagonal matrix with strictly positive diagonal elements D.

Affine equivariance) W(Bx(s) + a) = PSW(x(s))B−1 where B is an invertible p × p matrix, a is a
p-dimensional vector, P is some permutation matrix and S is some sign change matrix.

In the subsequent section we introduce three unmixing matrix functionals that solve the above
tated SNSS problem and investigate their identifiability and affine equivariance properties.

. Three SNSS methods

The goal of this section is to introduce three different unmixing matrix functionals W(x(s)) that
an be used in conjunction with any location functional T(x(s)) to recover the latent random field
(s) by W(x(s)) (x(s) − T(x(s))). For T(x(s)) we simply use the expectation and in the following
ocus our discussion solely on W(x(s)). The key quantities for all three following unmixing matrix
unctionals are so-called local covariance matrices which are defined as

MS,f (x(s)) =
1

|S ∩ C|

∑
si,sj∈S∩C

f (si − sj)E
[
[x(si) − E(x(si))][x(sj) − E(x(sj))]⊤

]
. (9)

Local covariance matrices were introduced in Nordhausen et al. (2015) and refined in Bachoc
t al. (2020) and Muehlmann et al. (2020) in the context of SBSS for the second order stationary
ase. Note that in Eq. (9) we allow the considered spatial domain S not to contain C which is
lightly different in comparison with the original definition, this will be useful when considering
ubdomains below. The matrices MS,f (x(s)) compute a weighted average of the spatial covariances
f all available pairs of coordinates S∩C, where the weights are determined by the so-called spatial
ernel function f : Rd

→ R. Three options are introduced in Bachoc et al. (2020) as follows.

• Ball kernel: fb(s; r) = I(∥s∥ ≤ r) where r ≥ 0.
• Ring kernel: fr (s; r1, r2) = I(r1 < ∥s∥ ≤ r2) where r1, r2 ≥ 0 and r1 < r2.
• Gauss kernel: fg (s; r) = exp(−0.5(Φ−1(0.95)∥s∥/r)2) where r > 0 and Φ−1(0.95) is the 95%

quantile of the standard Normal distribution.

Here I(·) denotes the indicator function. All three kernel functions above assume isotropic
andom fields as they only operate on the norm of s. It is possible to define spatial kernel functions
ifferently and account for possible anisotropies present in the random fields, this is however
eyond the scope of this paper.
For the special case of a ball kernel with parameter r = 0, denoted as f0, local covariance matrices

educe to the average covariance in S where no spatial dependence is utilized. Formally

MS,f0 (x(s)) =
1

|S ∩ C|

∑
E
[
[x(s) − E(x(s))][x(s) − E(x(s))]⊤

]
. (10)
s∈S∩C

5
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Considering a finite sample, the estimation of the subsequently introduced mixing matrix
unctionals is carried out by replacing the population quantities from Eq. (9) by their sample
ounterparts. Specifically, the corresponding sample version of Eq. (9) is given by

M̂S,f (x(s)) =
1

|S ∩ C|

∑
si,sj∈S∩C

f (si − sj)(x(si) − x̄)(x(sj) − x̄)⊤, (11)

where x̄ = n−1 ∑n
i=1 x(si), which also defines the sample version of MS,f0 (x(s)). Additionally, we

estimate the location functional T(x(s)) always by x̄.
For a random field x(s) following the SNSS model (Definition 1) we observe that MS,f0 (z(s)) as

well as MS,f (z(s)) yield diagonal matrices for all formerly discussed kernel function options which
motivates the following three estimators.

3.1. Simultaneous diagonalization of two average covariance matrices

The first unmixing matrix functional is based on the simultaneous diagonalization (sd) of two
average covariance matrices which is formalized in the following definition.

Definition 3 (SNSS.sd Functional). Consider a random field x(s) following the SNSS model (Defini-
tion 1) and a partition of the spatial domain S into S1, S2 where S1∩S2 = ∅. The SNSS.sd functional
W = W(x(s)) is defined as the simultaneous diagonalizer satisfying

WMS1,f0 (x(s))W
⊤

= Ip and WMS2,f0 (x(s))W
⊤

= DS1S2 , (12)

where DS1S2 is a diagonal matrix with decreasingly ordered diagonal elements.

Given a sample, an unmixing matrix W can be found by solving the generalized eigenvalue–
eigenvector problem, which always yields exact diagonalization of the former two matrices. Further-
more, the decreasing ordering of the diagonal elements of DS1S2 comes without loss of generality
as the order of the latent random field can be anyhow only recovered up to permutations. The
following proposition gives a necessary condition for the identifiability of the above unmixing
matrix functional as well as the desired affine equivariance property.

Proposition 1. The SNSS.sd functional seen in Definition 3 is

(1) identifiable as seen in Definition 2 if and only if elements of the diagonal matrix M−1
S1,f0

(z(s))
MS2,f0 (z(s)) are pairwise distinct,

(2) affine equivariant as seen in Definition 2.

Following Nordhausen (2014, Result 1), identifiability is ensured if there exist at least two sample
ocations s1, s2 ∈ C ⊂ S for which the diagonal elements of the diagonal matrix Σ−1

s1 Σ s2 are
pairwise distinct (where Σ s1 and Σ s2 refer to the covariance matrices of the latent field at the
corresponding sample locations s1, s2, see also Definition 1). If the former holds then it is possible
to find two disjoint sub-domains S1, S2 of S in such a way that all elements of the diagonal matrix
M−1

S1,f0
(z(s))MS2,f0 (z(s)) are pairwise distinct. Note that Nordhausen (2014, Result 1) is formulated

for the times series non-stationary blind source separation model, the above outline is the natural
extension of this statement to the spatial non-stationary case. However, in practical considerations
the desired partition is unknown, therefore the a-priori choice of the partition of the domain is not
trivial and greatly affects the performance of the method. This issue is addressed in the following
extension of the former unmixing matrix functional.

3.2. Joint diagonalization of more than two average covariance matrices

In contrast to the former method the spatial domain is divided into more than two subdomains

and the corresponding average covariance matrices are jointly diagonalized (jd) as follows.

6
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Definition 4 (SNSS.jd Functional). Consider a random field x(s) following the SNSS model (Defini-
ion 1). Standardize x(s) by xst (s) = M−1/2

S,f0
(x(s))(x(s) − b) and partition the spatial domain S into

1, . . . , SK where Sm ∩ Sn = ∅ for m, n = 1, . . . , K and m ̸= n. Let U be the orthogonal p × p joint
iagonalizer of the matrices MSk,f0 (x

st (s)) for k = 1, . . . , K , which maximizes

K∑
k=1

∥diag(UMSk,f0 (x
st (s))U⊤)∥2

F . (13)

hen, the SNSS.jd functional equals W(x(s)) = UM−1/2
S,f0

(x(s)).

In the above definition diag(·) is a diagonal matrix with the diagonal elements equaling the
nes of the matrix-valued argument, and ∥ · ∥F denotes the Frobenius norm. U is denoted an
rthogonal joint diagonalizer of the matrices MSk,f0 (x

st (s)) for k = 1, . . . , K as maximizing the
iagonal elements is equal to minimize the off-diagonal elements by the orthogonal invariance
f the Frobenius norm. Note that for a finite sample, usually the sample versions of the matrices
Sk,f0 (x

st (s)) for k = 1, . . . , K given by Eq. (11) do not commute, hence, exact joint diagonalization
s impossible. Therefore, algorithms that find an approximate joint diagonalizer are needed. We
hoose one such algorithm that relies on Givens rotations (Cardoso and Souloumiac, 1996), but
any others are available, see for example Illner et al. (2015).
The next proposition is concerned with identifiability as well as affine equivariance.

roposition 2. The SNSS.jd functional seen in Definition 4 is

(1) identifiable iff for all pairs i, j = 1, . . . , p and i ̸= j there exists a k ∈ {1, . . . , K } such that
(M−1

S,f0
(z(s))MSk,f0 (z(s)))ii ̸= (M−1

S,f0
(z(s))MSk,f0 (z(s)))jj,

(2) affine equivariant as seen in Definition 2.

The condition for identifiability given in Proposition 2 is more general than the one in Proposi-
ion 1 as a finer partition of the domain is allowed. Therefore, the exact partition of the domain for
he SNSS.jd method should have less influence on the performance as long as enough sub-domains
re considered. In practical applications it might be useful to overlay the spatial domain by a grid
hich is formed by equally sized squared shaped blocks. These blocks are meant to define the sub-
ivision of S. This procedure is investigated in more detail in the simulation study in Section 4.
he advantage of less sensitivity on the exact domain sub-partition of the SNSS.jd methods comes
t the cost of giving up exact diagonalization from the SNSS.sd method, which introduces more
omputational complexity as joint diagonalization algorithms need to be applied.
Both former methods have in common that only the spatial ordering of the sample locations is

aken into account but not the spatial dependencies between them when computing the unmixing
atrix. A trivial example which would cause problems is the case when the matrices Σ s are

he identity matrix for all s ∈ S but Σ ss′ is non-zero and spatial dependent. In that case the
dentifiability conditions of Definition 4 and consequently the one of Definition 3 do not hold
nd the two methods fail. In that case recovering the latent random field is still possible when
onsidering second order spatial dependencies as suggested in the following approach.

.3. Joint diagonalization of more than two local covariance matrices

The following SNSS.sjd divides the domain into at least two parts and jointly diagonalizes the
orresponding local covariance matrices for a set of kernel functions, therefore, it utilizes second
rder spatial dependence (sjd).

efinition 5 (SNSS.sjd Functional). Consider a random field x(s) following the SNSS model (Defini-
ion 1). Standardize x(s) by xst (s) = M−1/2

S,f0
(x(s))(x(s) − b) and partition the spatial domain S into

, . . . , S where S ∩ S = ∅ for m, n = 1, . . . , K and m ̸= n. For a set of spatial kernel functions
1 K m n

7
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{f1, . . . , fL}, U is an orthogonal p × p joint diagonalization matrix of the matrices MSk,fl (x
st (s)) for

ll k = 1, . . . , K and l = 1, . . . , L, which maximizes
K∑

k=1

L∑
l=1

∥diag(UMSk,fl (x
st (s))U⊤)∥2

F . (14)

Then, the SNSS.sjd functional is given as W(x(s)) = UM−1/2
S,f0

(x(s)).

Again, as in the case of the SNSS.jd method, for a finite sample joint diagonalization approximate
algorithms need to be used.

When setting the number of spatial kernel functions L = 1 and the resulting spatial kernel
function to f = f0, then the SNSS.sjd method reduces to the SNSS.jd method. If additionally the
spatial domain is only divided into two parts and the transformation step is adapted accordingly,
the SNSS.sjd method further reduces to the SNSS.sd method. In similar manner, if the choice of the
spatial kernel functions is free but the domain is not partitioned, then the original SBSS method as
introduced in Nordhausen et al. (2015) and Bachoc et al. (2020) is obtained.

Identifiability and affine equivariance results are given in the following proposition.

Proposition 3. The SNSS.sjd functional defined in Definition 5 is

(1) identifiable iff for all pairs i, j = 1, . . . , p and i ̸= j there exists a pair k, l with k ∈ {1, . . . , K }

and l ∈ {1, . . . , L} such that (M−1
S,f0

(z(s))MSk,fl (z(s)))ii ̸= (M−1
S,f0

(z(s))MSk,fl (z(s)))jj,
(2) affine equivariant as seen in Definition 2.

Proposition 3 is again more general than Proposition 2 as more kernel functions can be consid-
red. The most general case is achieved when one member of the set of kernel functions {f1, . . . , fL}
s f0.

. Simulations

In this part we investigate the performance of the different unmixing matrix estimators which
re introduced beforehand in an extensive simulation study. All simulations are carried out in
version 3.6.1 (Team, 2019) with the help of the packages JADE (Miettinen et al., 2017), Ran-
omFields (Schlather et al., 2015) and SpatialBSS (Muehlmann et al., 2021c), where the latter one
ontains functions for all introduced estimators.

.1. Simulation settings and performance measure

We use always squared two-dimensional domains of the form S = [0, n] × [0, n] (later denoted
lso as n × n) where n ∈ {20, 30, 40, 50, 60, 70}. The set of sample locations C is formed by two
ifferent patterns, namely a uniform and skewed pattern. For the uniform coordinate pattern n2 x
nd y values are sampled from the uniform distribution U(0, 1) and then the sampled values are
ultiplied by n. The skewed coordinate pattern is formed by n2 x values that are sampled from the
eta distribution β(2, 5) and n2 y values that are sampled from the uniform distribution U(0, 1),
gain all values are multiplied by n. This way of sampling coordinates ensures that the density of
ample locations is the same for all domain sizes. In the case of the uniform pattern it equals one
hroughout the whole domain, whereas the skewed pattern shows more dense sample locations
n the left half of the domain. Fig. 1 depicts one example for the uniform and skewed coordinate
attern for different domain sizes. As the qualitative meaning of the following simulations are equal
or the uniform and the skewed setting we focus the subsequent discussions on the uniform setting
nd present the results for the skewed setting in the appendix.
Moreover, we randomly divide the spatial domain at hand into three different parts. This is done

y randomly placing three locations on the spatial domain that act as cluster centers, which is
epicted by the crosses (×) in Fig. 1. The three clusters of sample locations are then determined by
8
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Fig. 1. Sample coordinates for a domain size of 20 × 20 of the uniform coordinate pattern (left) and for a domain size
f 30 × 30 for the skewed coordinate pattern (right). The black crosses (×) depict the three randomly placed cluster
enters, and the three different colors and shapes hint the corresponding clusters for the sample locations. The dashed
ines depict different partitions of the spatial domain. The ring with radius two depicts the parameter used for the spatial
ernel functions. (For interpretation of the references to color in this figure legend, the reader is referred to the web
ersion of this article.)

he lowest Euclidean distance of the sample locations to the cluster centers, this is illustrated by
he different colors and shapes for the sample locations in Fig. 1.

Using these locations we simulate random fields that follow in all but one setting the SNSS Model
Model 1). The dimension is set to p = 3 for all simulations. As our introduced methods are affine
quivariant (as seen in Propositions 1–3) we choose without loss of generality A = I3 and b = 0
hich determines x(s) = z(s). The six considered Gaussian distributed random field settings for the

atent random field z(s) are as follows.

etting 1. This setting is formed by iid Gaussian distributed 3-variate random vectors with different
ovariance matrices in each cluster of sample locations. Σ s equals diag(1, 3, 2) for cluster one,
iag(2, 4, 2) for cluster two and diag(1, 3, 5) for cluster three. Thus, Σ ss′ = 0 for the whole spatial

domain.

Setting 2 and 3. We sample in each coordinate cluster different random fields independently
following the Matérn covariance function introduced in Section 1. In particular for Setting 2
the covariance function of z1(s), Cz1 (h) equals C(h; 1.0, 0.5, 0.5) for cluster 1, C(h; 1.0, 1.0, 1.0)
for cluster 2 and C(h; 1.0, 1.0, 2.0) for cluster 3. Cz2 (h) equals C(h; 1.0, 1.5, 2.7) for cluster 1,
C(h; 1.0, 0.7, 1.0) for cluster 2 and C(h; 1.0, 1.2, 1.9) for cluster 3. Cz3 (h) equals C(h; 1.0, 1.2, 1.4)
for cluster 1, C(h; 1.0, 0.5, 3.0) for cluster 2 and C(h; 1.0, 0.7, 0.7) for cluster 3. Setting 3 is formed
in the same fashion as Setting 2 with the only difference that the variance parameters are changed
to the ones from Setting 1.

Setting 4 and 5. These settings are based on the non-stationary extension of the Matérn covariance
function presented in Anderes and Stein (2011) given by

C(s, s′
; σ , ν, φ) = σ (s)σ (s′)

(
φ2(s)/4ν(s)

Γ (ν(s))2ν(s)−1

)1/2 (
φ2(s′)/4ν(s′)

Γ (ν(s′))2ν(s′)−1

)1/2

(
φ2(s)
8ν(s)

+
φ2(s′)
8ν(s′)

)−1 h̃(ν(s)+ν(s′))/2
K(ν(s)+ν(s′))/2

(h̃)
,

h̃ =

(
φ2(s)

+
φ2(s′)

′

)−1/2

(s − s′),

(15)
8ν(s) 8ν(s )
9
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where Kν is the modified Bessel function of second kind, σ 2
: S → R+, ν : S → R+ and φ : S → R+

are the local variance, shape and range parameter functions. We choose these functions to be of the
form g(x) =

∑3
i=1 ci1(x ∈ Ci), where Ci are the three clusters of sample locations as defined above.

he ci coefficients are the same as the ones from the independently sampled random fields of Setting
and 3 for Setting 4 and 5 respectively.

etting 6. Setting 6 is a stationary SBSS setting, where the entries of the latent field are fol-
owing a Matérn covariance function. Explicitly, Cz1 (h) equals C(h; 1.0, 0.5, 1.0), Cz2 (h) equals
(h; 1.0, 1.0, 1.5) and Cz3 (h) equals C(h; 1.0, 1.5, 2.0).
Note that Setting 1 can be viewed as different white noise for the different clusters of sample

ocations. For Setting 2 and 3 the random fields are independent between clusters which is not the
ase for Setting 4 and 5. Setting 2 and 4 have a global constant variance of 1 for all entries of the
andom field, whereas in Setting 3 and 5 also the variances are different in each cluster of sample
ocations. Setting 6 is globally stationary with constant variance for each entry of the latent random
ield. Thus, Setting 6 does not really fit into the SNSS framework but rather into the SBSS framework.

To evaluate the quality of the unmixing matrix estimate Ŵ from the different methods we use
he minimum distance index (MDI) (Ilmonen et al., 2010; Lietzen et al., 2020) which is defined as

MDI(ŴA) =
1

√
p − 1

inf
J∈J

∥JŴA − Ip∥F . (16)

ere, J is the set of all matrices that carry exactly one non-zero element in each row and column
hich corresponds to all matrices of the form PSD that are exactly the indeterminacies of our model
efinition. The MDI is a function MDI : Rp×p

→ [0, 1] where zero indicates that the estimated
nmixing matrix meets exactly the real one up to scale, sign and permutation of its rows and one
ndicates a very poor estimate.

.2. Comparison to contender methods

For this part of the simulations we estimate the unmixing matrix Ŵ with all SNSS methods
escribed above. For the SNSS.sd method given by Definition 3 we divide the domain in half across
he coordinate x axis (SNSS.sd x) and the coordinate y axis (SNSS.sd y). For the SNSS.jd method
een in Definition 4 and SNSS.sjd given by Definition 5 we define the sub-domains by dividing the
omain at hand in four equal squared blocks as shown on the right panel of Fig. 1. Additionally,
or the SNSS.sjd method we use a ring kernel with (r1, r2) = (0, 2) and f0 (SNSS.sjd). This choice
eeps the average number of sample locations at r2π ≈ 12 for the uniform setting. As contender
ethods we estimate the unmixing matrix with the SBSS method, introduced in Nordhausen et al.

2015) and Bachoc et al. (2020), with the same spatial kernel function settings as before but without
0 (SBSS). Lastly, we use the fourth order blind identification (FOBI) method which is a popular
ndependent component analysis (ICA) method that does not utilize spatial information but fourth
rder cumulants, see Cardoso (1989) and Nordhausen and Virta (2019).
The average MDI based on 2000 simulation iterations for the above estimators for all six

onsidered random field models are presented in Fig. 2 for the uniform sample location pattern.
s in Setting 1 the random field shows no spatial dependence all SBSS methods completely fail as
hey only rely on spatial dependencies and the SNSS.jd method outperforms all contender methods.
NSS.sd is inferior which might be explained by the fact that it only halves the spatial domain,
hereas SNSS.jd uses four equally sized sub-domains. Even though the SNSS.sjd methods use the
ample covariance matrix inside each sub-domain, additionally (non-informative) local covariance
atrices are used which might bring noise into the joint diagonalization algorithm and therefore

educe its performance in this setting. In contrast to Setting 1 only methods that rely on spatial
ependencies perform well in Setting 2 and 4 as the variance for this setting equals one for each
ntry of the random field globally. Interestingly, the SBSS methods still perform well in Setting 2,
his might result from the fact that this Setting is based on stationary covariance functions. In Setting
SBSS is clearly outperformed by the SNSS.sjd method. As the covariance is non-constant for Setting

and 5 also the SNSS.sd and SNSS.jd methods improve their performance compared to Setting 2

10
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Fig. 2. Average MDI based on 2000 simulation repetitions for all random field models, different estimators and sample
sizes for the uniform sample location pattern.

and 4 where the covariance is constant. Lastly, as Setting 6 is formed by stationary latent fields
with global constant variances (namely a SBSS model), only the SBSS and the SNSS.sjd are expected
to deliver meaningful results. However, SBSS shows a better performance because the domain is
not split into parts, therefore the effective sample size for the local covariance estimation is higher
leading to a better separation. Interestingly, for all simulations where the variance is non-constant
FOBI increases its performance as the sample size increases. The impact of different kernel function
settings and domain subdivisions is studied in the subsequent part.

4.3. Different domain subdivisions

The former simulations are carried out for a fixed partition of the spatial domain for the SNSS.jd
and SNSS.sjd methods. In this part we investigate the influence of different partitions on the overall
performance of the unmixing matrix estimation. We consider sub-divisions into four (2 × 2), nine
3 × 3) and 16 (4 × 4) equally sized squared blocks for both methods. Exemplary, 3 × 3 is depicted
n the left panel and 2 × 2 is depicted on the right panel of Fig. 1. Additionally, we half the domain
cross the x and the y axes for the SNSS.sjd method. The spatial kernel function settings equal the
nes from the former simulations. The mean MDIs based on 2000 simulation repetitions are shown
n Fig. 3 for the uniform sample location pattern. Overall, the influence of the domain sub-division
s very minor except for the SNSS.sjd method in Setting 1 and 6. Again, in Setting 6 the performance

ncreases as the sub-division of the domain decreases, and more information is available to estimate

11
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Fig. 3. Average MDI based on 2000 simulation repetitions for all random field models, different block sub-domain
structures for the SNSS.jd and SNSS.sjd methods and sample sizes for the uniform sample location pattern.

the matrices of interest. The optimal case is given when the domain is not divided at all, which leads
to the original SBSS method.

4.4. Different kernel functions

In the last part of the simulations we investigate the influence of different kernel function
settings on the performance of the SBSS and the SNSS.sjd methods. For the SNSS.sjd method we
again quarter the domain as before. For the kernel settings we consider a ball and a Gauss kernel
with the parameter r = 2 and a ring kernel with the parameter (r1, r2) = (0, 2) denoted as B(2),
(2), R(0,2) respectively. Additionally, for the SNSS.sjd method we use the covariance per sub-
omain f0 or do not use it (denoted as SNSS.sjd w/c and SNSS.sjd wo/c respectively). The average
DI based on 2000 simulation iterations for these simulations are depicted in Fig. 4. The choice
f the kernel function setting does not seem to be of great influence for the settings with spatial
ependence (Setting 2 - Setting 6). For Setting 1 constituted of different iid samples in the clusters it
s interesting to see that SBSS and SNSS.sjd without f0 and a ring kernel fail. The latter is due to the
act that f0 is absent and the ring kernel does not account for on-site variance which in total leads
o a method that separates the signal by only relying on spatial dependence. But, Setting 1 does not
xhibit spatial dependence resulting in meaningless results for this method/kernel combination.
Generally, the simulation study shows that SNSS.sjd might be the favorable method as it always

mproves its performance with increasing sample size which reflects its ability to deliver meaningful
12
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Fig. 4. Average MDI based on 2000 simulation repetitions for all random field models, different kernel functions for the
BSS and SNSS.sjd methods and sample sizes for the uniform sample location pattern.

esults in a broad range of applications. Its performance is never among the last and it is among
he best in four out of six simulation settings which hints that it might be the go-to choice when
he underlying structure of the data is unclear. Surprisingly, the original SBSS method shows good
erformance in almost all settings with overall best performance when the SBSS model holds true
ut worst performance when all the information is only present in on-site variance. In the following,
e investigate the usefulness of the SNSS.sjd method on a real data example.

. Data example

In this section we illustrate the use of the above introduced methods on an environmental ap-
lication. Specifically, we consider a dataset that is derived from the GEMAS geochemical mapping
roject (Reimann et al., 2014) which consists of concentration measurements of 18 elements (Al,
a, Ca, Cr, Fe, K, Mg, Mn, Na, Nb, P, Si, Sr, Ti, V, Y, Zn, Zr) in 2017 agricultural soil samples. This
ataset is freely available in the R package robCompositions (Filzmoser et al., 2018).
As it is common practice in geochemical applications we respect the relative information of

he data by performing typical compositional data analysis transformations prior the actual SNSS
nalysis. In a BSS context this is for example discussed in Muehlmann et al. (2021a) and Nordhausen
t al. (2015) and we follow in the exact same fashion as outlined in Nordhausen et al. (2015). We
irst perform an isometric log-ratio (ilr) transformation by using pivot coordinates, and then apply
he SNSS method. The loadings matrix is formed by combining the contrast matrix and the estimated
13
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Fig. 5. Sample locations for the GEMAS dataset (left panel). The four different colors and shapes illustrate the sub-division
f the spatial domain into four equally shaped rectangular blocks. Blocks one to four contain 720, 654, 258 and 475
ample locations respectively. The ring of radius 1.5◦ depicts the parameter choice for the ring kernel function. Number
f considered neighboring sample locations defined by the ring kernel choice for each of the four blocks (right panel).
ap tiles by Stamen Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL. (For interpretation of the references

o color in this figure legend, the reader is referred to the web version of this article.)

nmixing matrix. Here the contrast matrix is an orthogonal matrix that transforms the data from
entered log-ratio (clr) into ilr coordinates. Details on clr, ilr and compositional data analysis in
eneral are given for example in Aitchison (2003). Note that the ilr transformation reduces the
imension of the dataset by one, therefore p = 17.
We carry out the analysis with the SNSS.sjd method as it makes the overall best impression

in the simulation study. We divide the domain into four equally sized rectangles where the four
resulting blocks of sample locations are depicted in the left panel of Fig. 5. The circle on that Figure
illustrates the parameter (r1, r2) = (0◦, 1.5◦) for the used ring kernel function and the right panel
f Fig. 5 shows boxplots of the number of neighboring sample locations defined by the ring kernel
hoice for each of the four considered blocks of sample locations. Additional to the ring kernel
unction choice we also include the covariance matrix for each of the four blocks (kernel function
0). Fig. 6 depicts the variograms of all component of the ilr data computed for each of the four
locks individually. Clearly, all panels show strong differences for each sub-domain indicating the
on-stationarity of the data at hand.
We compute moving block variance maps for each entry of the latent random field. Specifically,

e overlaid the domain by a grid with a resolution of one degree where the center is placed on the
inimum longitude and latitude value present in the dataset. The variance for each cell of the grid

s computed by considering all sample locations that lie inside a block of size 3◦
× 3◦ that is placed

n that cell.
After visual inspection of all recovered entries of the latent random field and the corresponding

oving block variance maps we exemplary present the first two entries in Figs. 7 and 8. The
orresponding combined loadings (matrix product of the contrast and the estimated unmixing
atrix) that transform the clr data into the first and second entry of the latent random field are
resented in Table 1. A cluster of high values for the first component of the latent random field
s found on the Iberian Peninsula. This cluster is mostly formed by the high balance between the
air Al, Ti and Na, V as the corresponding loadings show roughly equal values with opposite signs.
he second component of the latent random field shows a cluster of high variance as well as high
alues in Greece, along the Balkan up to the northern and central part of Italy. The high loading
14
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Fig. 6. Sample variograms of all components of the ilr data individually computed for each sub-domain defined by the
left panel of Fig. 5. Note that the maximum distance is different for each sample variogram as it is chosen to be a third
of the diagonal of the smallest rectangle containing the sample locations.

of clr(Al) and the roughly equal absolute values of the clr(Cr) and clr(Zr) loadings suggest that this
entry is mostly driven by a positive log-ratio between Cr and Zr combined with the high relative
dominance of Al. The opposite effect is observed for the cluster of low values from mid to east
Europe and the southern part of Scandinavia. Deeper investigation of the found latent random field
and the possible driving physical phenomena can be achieved by geological experts. The moving
block variance maps show a non-constant variance for all found components of the latent field.
This again hints the non-stationarity of the data as it is highly likely that linear combinations of the
non-stationary latent components (which are the observable random fields) are non-stationary.
15
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Fig. 7. Map of the first entry of the estimated latent field (left) and its corresponding moving block variance map (right).
Map tiles by Stamen Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL.

Fig. 8. Map of the second entry of the estimated latent field (left) and its corresponding moving block variance map
(right). Map tiles by Stamen Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL.
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Table 1
Values of the combined loadings matrix that transforms the clr data into the first two components of the estimated latent
random field.

z1 z2 z1 z2
clr(Al) 1.72 1.47 clr(Nb) −0.50 0.02
clr(Ba) −0.23 −0.29 clr(P) −0.15 −0.40
clr(Ca) 0.06 0.09 clr(Si) 0.71 −0.32
clr(Cr) −0.55 1.01 clr(Sr) 0.42 −0.15
clr(Fe) 0.86 −0.18 clr(Ti) 1.38 −0.12
clr(K) 0.13 −0.27 clr(V) −1.29 −0.68
clr(Mg) 0.30 −0.17 clr(Y) −0.05 0.53
clr(Mn) −0.36 0.26 clr(Zn) −0.60 −0.06
clr(Na) −1.22 0.18 clr(Zr) −0.63 −0.91

To illustrate the usefulness of the SNSS methods as a data pre-processing tool for spatial
rediction tasks we conclude this section by discussing a possible three-step prediction blueprint
s follows.

tep 1: One of the formerly introduced SNSS methods is applied on the data to estimate the
unmixing matrix Ŵ and the latent random field ẑ(s) = (ẑ1(s), . . . , ẑp(s))⊤.

Step 2: As all entries of ẑ are uncorrelated, each entry can be predicted individually on an
unobserved location s∗ by any spatial prediction method available. Preferably a method that
meets the constant drift and non-stationarity assumptions of the latent field components.

Step 3: The individual predictions from Step 2 are collected again into a vector ẑ(s∗) = (ẑ1(s∗), . . . ,
ẑp(s∗))⊤. The prediction of the original data is formed by mixing the predicted latent vector
with the quantities estimated in Step 1 leading to x̂(s∗) = Ŵ−1ẑ(s∗) + T̂(x(s)), where T̂(x(s))
is an estimator of the used location functional.

his procedure is especially appealing as only univariate models need to be defined and fitted in
tep 2. Hence, the estimation and modeling of cross dependencies is completely discarded. For
he SBSS model and estimators Muehlmann et al. (2021d) outline and compare this approach with
ultivariate prediction methods in an extensive simulation study and on a geochemical application.

. Conclusion

BSS has been successfully used in many scientific applications (Comon and Jutten, 2010). It
as a long tradition for iid data where it is known as independent component analysis (ICA) and
or stationary and non-stationary time series (Pan et al., 2021). Recently, BSS approaches were
uggested for stationary spatial data (Nordhausen et al., 2015; Bachoc et al., 2020). In this paper,
e combine ideas from non-stationary time series methods and spatial stationary BSS to develop
pproaches for non-stationary spatial data. We formulate a spatial non-stationary blind source
eparation model and provide three different estimators that are based on the joint diagonalization
f covariance and local covariance matrices for sub-divisions of the spatial domain. These estimators
an be easily applied on spatial datasets with irregular sample locations and their use is illustrated
n an extensive simulation study and on an environmental application.

Interesting future research would be to derive asymptotic results for the different estimators.
urthermore, it is of great interest to explore the use of the SNSS methods in the context of spatial
rediction. The entries of the latent random field are uncorrelated, therefore, p univariate non-
tationary models can be built which is much simpler as building one multivariate model for the
riginal data. In the stationary case, such an approach seemed promising as discussed in Muehlmann
t al. (2021d). Another interesting question would be to test if all latent components are actually
nformative and non-stationary, perhaps some exhibit spatial dependence but are stationary and

thers might be just white noise. In such cases modeling could be simplified. The separation of
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Fig. B.9. Average MDI based on 2000 simulation repetitions for all random field models, different estimators and sample
izes for the skewed sample location pattern. See Section 4.2 for details.

tationary from white noise processes in SBSS is for example discussed in Muehlmann et al. (2020).
astly, the introduced SNSS methods need a subdivision of the spatial domain at hand a priory.
s the optimal number and shapes of the sub-domains are not clear we focus our discussion on
ifferent numbers of rectangular sub-domains which show good performance in the simulation
tudy. One theoretical argument is given by the identifiability conditions which loosely state that
he (spatial) second-order dependencies of the latent fields need to be as different as possible across
he sub-domains to ensure optimal signal separation. However, as the latent fields are unknown in
he first place the practical use of this statement is limited and interesting future research might
e to find more practical rules for choosing the domain subdivision.
In a time series context Pfister et al. (2019) viewed such a partition of the data as a realization

f grouped data and adapted the BSS model to such a case. A motivating example would be
lectroencephalography (EEG) signals where the sensors are placed on the same locations for
ifferent patients ensuring the same way of mixing. The measurements for each patient then form
he different groups. However, motivation for the adaptation to the spatial setting is a future
roblem.
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Appendix A. Proof of the propositions

Proof of Proposition 1. Identifiability: For a given simultaneous diagonalizer W the first optimiza-
tion equation writes

Ip = WMS1,f0 (x(s))W
⊤

= WAA−1MS1,f0 (x(s))A
−⊤A⊤W⊤

= WAMS1,f0 (z(s))A
⊤W⊤.

(A.1)

As MS1,f0 (z(s)) is a diagonal matrix with strictly positive diagonal elements by assumption it
follows that WAM1/2

S1,f0
(z(s)) = V where V is a p × p orthogonal matrix. With that the second

optimization equations write as

DS1S2 = WAMS2,f0 (z(s))A
⊤W⊤

= VM−1
S1,f0

(z(s))MS2,f0 (z(s))V
⊤. (A.2)

⇐: As the diagonal elements of the matrix M−1
S1,f0

(z(s))MS2,f0 (z(s)) are pairwise distinct the
atrix DS1S2 has p unique one-dimensional eigenspaces that are orthogonal. Therefore, V can only
e of the form PS, and hence WA = PSMS1,f0 (z(s))

−1/2 which is of the form PSD.
⇒: Assume w.l.o.g. that the first two diagonal elements of M−1

S1,f0
(z(s))MS2,f0 (z(s)) are equal,

enoted as λ. Then from the second optimization equation the first two eigenvalue equations
rite D v = v λ and D v = v λ where the eigenvectors can be written as v =
S1S2 1 1 S1S2 2 2 1
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Fig. B.11. Average MDI based on 2000 simulation repetitions for all random field models, different kernel functions for
the SBSS and SNSS.sjd methods and sample sizes for the skewed sample location pattern. See Section 4.4 for details.

(1/
√
2, 1/

√
2, 0, . . . , 0)⊤ and v2 = (1/

√
2, −1/

√
2, 0, . . . , 0)⊤. But then V is not of the form PS

nd consequently WA is not of the form PSD.
Affine equivariance: Consider an affine transformation of x(s) written as x∗(s) = Bx(s)+a, where
is an invertible p × p matrix. The unmixing matrix functional W∗

= W∗(x∗(s)) satisfies

W∗MS1,f0 (x
∗(s))W∗⊤

= Ip,W∗MS2,f0 (x
∗(s))W∗⊤

= D∗

S1S2
, (A.3)

for a diagonal matrix D∗
S1S2

. But because of the affine equivariance of local covariance matrices
t also follows that

W∗BMS1,f0 (x(s))B
⊤W∗⊤

= Ip,W∗BMS2,f0 (x(s))B
⊤W∗⊤

= D∗

S1S2
. (A.4)

From the last equations W∗B can be identified as the unmixing matrix W(x(s)), this leads to
∗(x∗(s)) = W(x(s))B−1 which concludes the proof. □

roof of Proposition 2. Definition 4 is a special case of Definition 5, therefore, the proof of
roposition 2 is a special case of the proof of Proposition 3 for L = 1. □
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Proof of Proposition 3. Identifiability: For a given unmixing matrix W = UM−1/2
S,f0

(x(s)) from the
ransformation step it follows that

Ip = UIpU⊤
= UM−1/2

S,f0
(x(s))MS,f0 (x(s))M

−1/2
S,f0

(x(s))U⊤

= WAMS,f0 (z(s))A
⊤W⊤.

(A.5)

As MS,f0 (z(s)) is a diagonal matrix with strictly positive diagonal elements by assumption it
follows that WAM1/2

S,f0
(z(s)) = V where V is a p × p orthogonal matrix. From the maximization

quation it follows that
K∑

k=1

L∑
l=1

∥diag(UMSk,fl (x
st (s)))U⊤

∥
2
F

=

K∑
k=1

L∑
l=1

(∥UMSk,fl (x
st (s))U⊤

∥
2
F − ∥off(UMSk,fl (x

st (s)))U⊤
∥
2
F ),

(A.6)

ere off(·) is obtained by setting all off-diagonal elements of the squared-matrix argument to
ero. We have M−1/2

S,f0
(x(s)) = OM−1/2

S,f0
(z(s))A−1, with a unique orthogonal matrix O, from Ilmonen

t al. (2012, Theorem 2.1). Hence, one can show that there is an orthogonal matrix U′ such that
′MSk,fl (x

st (s))U′⊤, k = 1, . . . , K , l = 1, . . . , L are diagonal (see the equivariance proof below).
s U maximizes the sum of Frobenius norms of the diagonals we have that UMSk,fl (x

st (s))U⊤,
= 1, . . . , K , l = 1, . . . , L are diagonal. But also

UMSk,fl (x
st (s))U⊤

= WAMSk,fl (z(s))A
⊤W⊤

= VM−1
S,0(z(s))MSk,fl (z(s))V

⊤. (A.7)

Therefore, all matrices VM−1
S,f0

(z(s))MSk,fl (z(s))V
⊤ for k = 1, . . . , K and l = 1, . . . , L are diagonal.

⇐: For all pairs i, j = 1, . . . , p and i ̸= j there exists a pair k, l with k ∈ {1, . . . , K } and
∈ {1, . . . , L} such that (M−1

S,f0
(z(s))MSk,fl (z(s)))ii ̸= (M−1

S,f0
(z(s))MSk,fl (z(s)))jj. Hence, only choices

f V = PS keep all matrices VM−1
S,f0

(z(s))MSk,fl (z(s))V
⊤ for k = 1, . . . , K and l = 1, . . . , L diagonal.

his is for instance shown in Bachoc et al. (2020). Therefore, WA = PSM−1/2
S,f0

(z(s)) which is of the
orm PSD.

⇒: Assume that there exists one pair i, j ∈ {1, . . . , p} with i ̸= j where for all pairs k, l with
= 1, . . . , K and l = 1, . . . , L, it holds that (M−1

S,f0
(z(s))MSk,fl (z(s)))ii = (M−1

S,f0
(z(s))MSk,fl (z(s)))jj.

.l.o.g assume that i = 1 and j = 2 then V could be a block diagonal matrix with the first block
(1/

√
2, 1/

√
2, )⊤, (1/

√
2, −1/

√
2, )⊤) and the second block Ip−2. This choice of V still keeps all

matrices VM−1
S,f0

(z(s))MSk,fl (z(s))V
⊤ for k = 1, . . . , K and l = 1, . . . , L diagonal. But then V is not of

the form PS and consequently WA is not of the form PSD.
Affine equivariance: Consider an affine transformation of x(s) written as x∗(s) = Bx(s) + c,

where B is an invertible p × p matrix. From Ilmonen et al. (2012) Theorem 2.1 it follows that
M−1/2

S,f0
(x∗(s)) = VM−1/2

S,f0
(x(s))B−1, where V is a unique p×p orthogonal matrix. The unmixing matrix

functional W∗(x∗(s)) = U∗M−1/2
S,f0

(x∗(s)) maximizes

K∑
k=1

L∑
l=1

∥diag(U∗MSk,fl (x
st∗(s))U∗⊤)∥2

F

=

K∑
k=1

L∑
l=1

∥diag(U∗M−1/2
S,f0

(x∗(s))MSk,fl (x
∗(s))M−1/2

S,f0
(x∗(s))U∗⊤)∥2

F

=

K∑
k=1

L∑
l=1

∥diag(U∗VM−1/2
S,f0

(x(s))B−1BMSk,fl (x(s))B
⊤B−⊤M−1/2

S,f0
(x(s))V⊤U∗⊤)∥2

F

=

K∑ L∑
∥diag(U∗VMSk,fl (x

st (s))V⊤U∗⊤)∥2
F .

(A.8)
k=1 l=1
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Therefore, U = U∗V is the joint diagonalizer of the matrices MSk,fl (x
st (s)), k = 1, . . . , K ,

l = 1, . . . , L. This leads to

W∗(x∗(s)) = U∗M−1/2
S,f0

(x∗(s)) = UV⊤VM−1/2
S,f0

(x(s))B−1
= UM−1/2

S,f0
(x(s))B−1

= W(x(s))B−1,
(A.9)

which concludes the proof. □

Appendix B. Simulation results for the skewed setting

Figs. B.9, B.10 and B.11 show the simulation results for the skewed sample location pattern
discussed in Sections 4.2, 4.3 and 4.4 respectively. The qualitative results are very similar to the
ones of the uniform sample location pattern seen in Figs. 2–4 with two minor differences. Firstly,
the overall performance is worsened for all methods due to the imbalanced distribution of the
sample locations. Secondly, the SNSS.sd method where the domain is halved across the y axis clearly
increases its performance as the sample locations density is still constant along the y axis.
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