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Abstract. Sulfuric acid and dimethylamine vapours in the
atmosphere can form molecular clusters, which participate
in new particle formation events. In this work, we have pro-
duced, measured, and identified clusters of sulfuric acid and
dimethylamine using an electrospray ionizer coupled with a
planar-differential mobility analyser, connected to an atmo-
spheric pressure interface time-of-flight mass spectrometer
(ESI-DMA-APi-TOF MS). This set-up is suitable for eval-
uating the extent of fragmentation of the charged clusters in-
side the instrument. We evaluated the fragmentation of 11
negatively charged clusters both experimentally and using a
statistical model based on quantum chemical data. The re-
sults allowed us to quantify the fragmentation of the studied
clusters and to reconstruct the mass spectrum by removing
the artifacts due to the fragmentation.

1 Introduction

Our climate is heavily impacted by atmospheric aerosol par-
ticles. These particles also play an important role in our daily
lives. They determine the quality of the air we breathe and
thus affect our health directly (Hirsikko et al., 2011; Zhao
et al., 2021). The majority of particles in the Earth’s atmo-
sphere are formed from gaseous precursors. Both laboratory
and field measurements indicate that sulfuric acid, often with
various amines, acts as the main precursor for atmospheric

new particle formation events by forming nanometre-scale
clusters (Chen et al., 2012; Kiirten et al., 2014; Mikeli et al.,
2001; Qiu and Zhang, 2013; Smith et al., 2010; Thomas et
al., 2016; Zhao et al., 2011). In recent years, developments
in high-resolution mass spectrometry have facilitated an in-
creased understanding of the chemical composition, concen-
tration, and stability of these molecular clusters. A central
tool in detecting the elemental composition of these clus-
ters is the chemical ionization atmospheric pressure interface
time-of-flight mass spectrometer (CI-APi-TOF MS) (Joki-
nen et al.,, 2012; Yao et al., 2018). However, due to the
lower stability of clusters in comparison to molecules, clus-
ters are more susceptible to fragmentation and/or evaporation
caused for example by ionization processes, low-pressure en-
vironments, and high-energy collisions inside the instrument.
Previous studies have shown that theoretical models often
predict higher cluster concentrations compared to APi-TOF
measurements (Kurtén et al., 2011; Olenius et al., 2013).
Cluster fragmentation processes inside the instrument (Ole-
nius et al., 2013) have been speculated to be an explanation
for this difference.

Our recent studies have made considerable progress in un-
derstanding the transformation of clusters inside the APi and
in simulating collision-induced cluster fragmentation (CICF)
(Passananti et al., 2019; Zanca et al., 2020; Zapadinsky et al.,
2019). One of these studies (Passananti et al., 2019) investi-
gated the fate of sulfuric acid trimer ions ((H2SO4);HSO, )
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inside an APi-TOF MS by exploring the effects of the volt-
ages applied in the APi chambers on the CICF and identi-
fying the regions of the APi in which the fragmentation is
most likely to occur. Experimental results were found to be
in good agreement with a theoretical model describing the
CICF (Zapadinsky et al., 2019). This model simulates the
motion of the charged clusters and the energy exchange with
the carrier gas molecules inside the APi-TOF MS based on
statistical principles combined with energy-level data from
quantum chemical calculations. The simulated dynamics are
defined by the electric fields inside the chambers of the in-
strument and the random collisions of the charged clusters
with carrier gas molecules (Zapadinsky et al., 2019).

In this study, we extend our previous work to atmospher-
ically relevant two-component clusters consisting of sulfuric
acid and dimethylamine. Due to their varying size and shape,
different clusters tend to have different electrical mobilities.
We use a planar-differential mobility analyser (planar-DMA)
(Amo-Gonzailez and Pérez, 2018) to utilize this fact and se-
lect only one (known) cluster type at a time to enter the APi-
TOF. We use an instrumental set-up (Fig. 1) consisting of an
electrospray ionizer (ESI) and planar-DMA coupled with the
APi-TOF MS.

Our main goals are to use this set-up to identify the clusters
that are fragmented inside the APi-TOF MS and to quantify
the fragmentation. We also compare our findings to theoreti-
cal fragmentation probabilities predicted by the CICF model
(Zapadinsky et al., 2019). The combination of experimental
and modelling data allows us to reconstruct a mass defect
plot of the detected cluster ions, removing the artifacts due
to the fragmentation.

2 Methodology
2.1 Experimental set-up

As mentioned above, the ESI is coupled with a DMA which
is in turn connected to an electrometer and finally to the APi-
TOF MS. The APi-TOF MS is an atmospheric pressure inter-
face connected to a time-of-flight mass spectrometer (Tofw-
erk). The APi part acts as a guide for the ions and charged
clusters from ambient pressure into high vacuum inside the
TOF (~ 10~* mbar). The TOF MS allows for the unambigu-
ous identification of ion and cluster composition due to re-
solving power up to 3000 Th / Th (Junninen et al., 2010).
Through the APi-TOF, charged clusters are subjected to a se-
ries of applied voltages (TOF power supply (TPS) voltages)
which guide and focus them. These voltages hugely impact
the fragmentation of the charged clusters and the instrument
transmission.

Molecular ions are generated using an ESI from a solu-
tion of 100mM / 100 mM dimethylamine / sulfuric acid in
methanol and water with a ratio of 4: 1 v:v. The sample is
negatively charged using an electrode inserted into the lig-
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uid solution, and then the charged sample is electrosprayed
into the planar-DMA model type PS5 (by SEADM) with a
sheath flow of N carrier gas to separate charged clusters
(with diameters up to a few nanometres) according to their
electrical mobility. Thus, if we apply a certain voltage at
the DMA, then only clusters of one electrical mobility will
be passed onward. In the DMA two types of scans are con-
ducted: full voltage scans and fixed voltage scans. Full volt-
age scans are done within a range of —900 to —2900 V with
a voltage step of 5V. Fixed voltage scans are done at the
voltages where dimethylamine and sulfuric acid clusters ap-
peared. Fixed voltage scans are done at the voltages where
dimethylamine and sulfuric acid clusters appeared. Further
details on the experimental procedure are found in the Sup-
plement.

2.2 Cluster fragmentation simulation

We simulated the fragmentation of sulfuric acid and dimethy-
lamine clusters using our statistical model (Zapadinsky et al.,
2019). As mentioned above, this model describes the motion
of the charged clusters through the APi-TOF MS and the
energy exchange caused by collisions between the charged
clusters and the carrier gas molecules. These collisions may
cause the fragmentation of the cluster ions inside the instru-
ment if they convey a sufficient amount of energy (Zapadin-
sky et al., 2019). The model needs as input data on the exper-
imental conditions (temperature and voltages and pressures
inside the APi chambers) and information about the (vibra-
tional and rotational) energy levels which are used to evalu-
ate the densities of states. These latter were obtained using
quantum chemistry data from calculations carried out within
our group (Myllys et al., 2019), where vibrational frequency
analyses were carried out at the wB97X-D/6-31++G(d,p)
level of theory. Further details on the model and quantum
chemistry calculations are given in the Supplement.

3 Results and discussion

Figure 2 shows a 2D plot of the combined and synchronized
signals from the DMA and the APi-TOF MS, with the DMA
voltage on the x axis, the cluster mass / charge ratio on the y
axis, and the signal intensity on a colour scale. This type of
data visualization allows us to evaluate the presence of multi-
charged compounds, the presence of fragmented clusters,
and the range of m/z and mobility of the clusters produced
in the ESI. Indeed, this plot gives a convenient overview of
the cluster fragmentation in the (negatively charged) sulfuric
acid—dimethylamine system. For a given DMA voltage, in an
ideal situation only singly charged clusters with a unique ele-
mental composition (and thus mass) enter the APi-TOF MS.
In the absence of fragmentation, this should result in one nar-
row peak in the mass spectrum and thus only one line in the
2D plot. Any deviation from this means that there are either
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Figure 1. Schematic figure (not to scale) representing the experimental set-up of an electrospray ionizer and planar-differential mobility
analyser, connected to an atmospheric pressure interface time-of-flight mass spectrometer (ESI-DMA-APi-TOF MS). Figure modified from

Passananti et al. (2019).

multi-charged clusters, singly charged clusters with different
masses with the same mobility, and/or cluster fragmentation.
As seen in Fig. 2, in our experimental conditions, the groups
of peaks present are concentrated largely along one linear
line, which means that we mainly observe singly charged
clusters. In case of multi-charged clusters in 2D plots, sev-
eral groups of peaks are concentrated along different linear
lines (one line for each charge state); as an example of multi-
charged 2D plots, see Fig. 1b in Larriba et al. (2014). More-
over, considering our sample composition and the resolution
of the DMA, the likelihood of detecting singly charged clus-
ters with different masses with the same mobilities are low.
This leaves us with cluster fragmentation, which can be high-
lighted from the 2D plots.

If a cluster, upon entering the APi-TOF, becomes frag-
mented, multiple signals are seen at the same voltage but
at different mass / charge ratios. In Fig. 2, an example of a
cluster and its fragment are shown (circled by dashed red
lines). Moreover, upon entering the APi-TOF MS, several
clusters undergo neutral evaporation or fragmentation, espe-
cially when the produced cluster or ion is a highly stable one.
This could result in continuous horizontal lines as seen in
Fig. 2 for the 1B ion where M1B — M + 1B (M is an arbi-
trary cluster).

Using the full voltage scan mode, it is possible to detect
all negatively charged clusters of dimethylamine and sulfuric
acid produced by the ESI within the scanned DMA voltage
range given the APi-TOF transmission is good enough. To
identify sulfuric acid—dimethylamine clusters, the MS data
have been analysed, and clusters are reported in Fig. 3. In
particular, Fig. 3 shows a mass defect plot of all 11 dimethy-
lamine and sulfuric acid charged clusters produced and de-
tected in our system. Other clusters or impurities are not
shown in the figure as they are not relevant for this study.
The DMA voltages and the m/z values for each detected
cluster are reported in Table S3 of the Supplement. For sim-
plicity, throughout the whole paper we refer to sulfuric acid
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as S, dimethylamine as D, bisulfate ion as B, and clusters
as for example 2D2S1B, which corresponds to a cluster of
two dimethylamine molecules, two sulfuric acid molecules,
and one bisulfate ion. The majority of the charged clusters
had either a 1:1 ratio of sulfuric acid and dimethylamine
with a bi-sulfate ion attached or a N 4 1: N ratio, i.e. with
one more sulfuric acid than dimethylamine molecule (in ad-
dition to the bi-sulfate ion). The smallest detected 1 : 1 ratio
cluster is 2D2S1b; we do not observe the 1D1S1B cluster,
probably due to its lower stability compared to a larger clus-
ter. This is in agreement with the computed trend of stabil-
ity of negatively charged sulfuric acid—dimethylamine clus-
ters (Myllys et al., 2019). Moreover, our detected clusters are
similar to those detected in a previous study of the same sul-
furic acid and dimethylamine solution (Thomas et al., 2016)
produced in gas-phase chamber experiments (Almeida et al.,
2013; Kiirten et al., 2014) and in ambient measurements (Yao
etal., 2018).

The full voltage scan and the 2D plot (Fig. 2) are use-
ful for providing a fast qualitative interpretation of the data.
However, for an in-depth analysis of the data and a quan-
titative measure of the fragmentation or survival probabil-
ity of each cluster type, experiments with fixed voltage and
longer data acquisition times are needed. In a fixed voltage
scan experiment a single cluster type is selected, and the
mass spectrum is recorded for that specific cluster. We per-
formed fixed voltage scan experiments for each cluster type
to identify the fragmentation pathways and quantify the sur-
vival probability. For the clusters not fragmented inside the
APi, only the signal of the original cluster is observed in
the mass spectrum. In case of fragmentation, two or more
signals are observed in the mass spectrum. For the larger
clusters, we observed several fragmentation pathways. Fig-
ure 4 shows the MS spectrum of the fixed scan experiment
for cluster 1D2S1B as an example. In the MS spectrum there
is the signal of the original cluster (1D2S1B) at 337.95 Th,
and there are three signals at lower m/z representing a frag-

Atmos. Meas. Tech., 15, 11-19, 2022
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Figure 2. The 2D plot of the differential mobility spectrum and the mass spectrum of negatively charged sulfuric acid and dimethylamine
clusters generated by the ESI. The plot shows the mass / charge versus the DMA voltage with the signal intensity as a colour scale. Dashed
red lines highlight the fragmentation of cluster 1D2S1B and its fragments 2S1B and 1S1B as an example, where D is dimethylamine, S is
sulfuric acid, and B is bisulfate ion.
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Figure 4. The MS spectrum of the fixed scan experiment for cluster 1D2S1B.

mented cluster. Each signal is a cluster deriving from a dif-
ferent fragmentation pathway, and 1D2S1B can fragment via
these three pathways.

1D2S1B — 2S1B + 1D (R1)
1D2S1B — 1SIB + IS1D (R2)
1D2S1B — 1B + 1D2S (R3)

We calculated the overall survival probability of 1D2S1B
(using the ratio between the signal intensity of the parent
cluster and the sum of the parent and fragmented clusters; all
signal intensities have been corrected by the mass-dependent
transmission of the APi-TOF) and the probability of frag-
mentation for each pathway. We also take into account an
average background signal of the 1B ion (seen as a horizon-
tal line in Fig. 2).

The fragmentation region inside the APi is relatively short
(Passananti et al., 2019), and the daughter clusters are likely
to leave this region before having a chance to fragment again,
and thus we ignore subsequent fragmentation events. The
fragmentation pathways and the survival probability for each
cluster are reported in the Supplement.

We compared experimental data with the survival prob-
abilities calculated with the CICF model to understand the
fragmentation processes. To simulate the CICF inside an
APi-TOF, we needed to define all fragmentation pathways
for each studied cluster. However, only single fragmentation
pathways can be considered for each specific simulation. To
identify the most probable fragmentation pathways, we com-
puted the reaction (kinetic) rate constants at different internal
energies of the cluster for each possible fragmentation path-
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way and selected the pathways with the highest rate constants
at the typical/average internal energy (see the Supplement for
more detailed information). All clusters except 1S1B may
fragment through at least two different pathways, and the
number of pathways increases with the cluster size. Finally
we calculated an overall survival probability for each cluster
using the selected most probable fragmentation pathways.

Figure 5 shows the comparison of the overall survival
probability according to experiments and model simulations
for all studied clusters. For most of the clusters detected, the
experimental and model results of the survival probability
are in good agreement. There can be several reasons for the
discrepancies in the survival probability between the experi-
ments and the model.

1. For some parent clusters multiple fragmentation path-
ways can occur simultaneously within the same experi-
ment.

2. The fragmentation of a multi-charged cluster with the
same mobility as a different singly charged cluster can
produce the same fragments, which leads to an underes-
timation of the experimental survival probability of the
studied singly charged cluster.

3. Clusters with mobility peaks very close to each other
can have overlapping signals which are difficult to sep-
arate.

For most of the clusters the model underestimates the sur-
vival probability compared to the experimental results, which
could be explained by reason 1 and/or 2 in the list above.

Atmos. Meas. Tech., 15, 11-19, 2022
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Figure 6. The reconstructed mass defect versus mass / charge (Th) plot based on that shown in Fig. 3 after accounting for all fragmentation
processes. Note that cluster 3D4S1B is not seen here as it is only a fragmented product of cluster 4D4S1B.

Only for clusters 2D3S1B and 4D4S1B does the model over-
estimate the survival probability, and for these clusters there
is a large discrepancy between the model and the experi-
ments. The reason for this discrepancy might be the har-
monic potential description of the vibrations used in deriv-
ing the energy levels of the cluster from quantum chemistry.
For large clusters, ignoring the anharmonicity may result in
overestimates for the survival probability. On the one hand,
the trend in clusters 2D2S1B, 3D3S1B, and 4D4S1B could
be explained by this increasing role of anharmonicity with

Atmos. Meas. Tech., 15, 11-19, 2022

cluster size, while 2D3S1B does not fit to this trend, proba-
bly due to different ratios of dimethylamine to sulfuric acid
molecules. 2D3S1B has fewer hydrogen bonds since there
are only two dimethylamine molecules in the cluster: this
corresponds to a weaker bond network which may lead to
a higher uncertainty. In addition to that, as indicated by Ta-
ble S1 in the Supplement, more simultaneous fragmentation
pathways were experimentally observed for cluster 2D3S1B
in comparison to all the other clusters. This contributes to
a higher uncertainty in the experimental survival probability

https://doi.org/10.5194/amt-15-11-2022
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calculation for this cluster. Thus, the larger discrepancy for
the 2D3S1B cluster could be a combined reason for both the
experimental and model uncertainty in the evaluation of the
survival probability.

Knowing the instrumental transmission (see Supplement
Sect. S6), cluster fragmentation pathways and survival prob-
abilities allow for reconstruction of the mass defect plot, re-
moving the effects of fragmentation (Fig. 6). In particular,
the intensity of a cluster was increased in case it has a sur-
vival probability lower than 1 and/or decreased if it was pro-
duced as a result of a fragmentation of another cluster. More
details on the procedure to reconstruct the mass defect plot
are reported in the Supplement. This procedure enables the
removal of artifacts due to the fragmentation of clusters and
gives more accurate information about the actual concentra-
tion and composition of detected clusters.

4 Conclusion

In this work we tested our experimental set-up (ESI-DMA-
APi-TOF MS), which consists of two high-resolution instru-
ments, and a first-principle-based CICF model to study the
fragmentation of atmospheric-relevant clusters. We gener-
ated and identified 11 charged sulfuric acid and dimethy-
lamine clusters, and for each of these clusters, we quanti-
fied the extent of the fragmentation inside the instrument
both experimentally and using a statistical model. The results
showed a good agreement between the experiment and the
model, shedding light on the nature of the fragmentation pro-
cesses within this instrument. Our study revealed that larger
clusters may undergo multiple fragmentation pathways. Our
data allowed us to reconstruct the mass spectrum (i.e. a mass
defect plot) of the identified clusters, so that we were able to
define the original signal intensities of the detected clusters
as if they had remained intact inside the instrument, remov-
ing artifacts due to the fragmentation. In the future, we antic-
ipate that these proof-of-concept results can be extended also
to other cluster-forming systems, and fragmentation correc-
tions could be incorporated into standard data-analysis tools
related to these instruments. This kind of sophisticated data
analysis would significantly increase the accuracy of atmo-
spheric cluster measurements, allowing for a better under-
standing of the conditions that lead to new particle formation.

Data availability. The data are publicly available in a
GitHub  repository  (https://github.com/DinaAlfaouri/A-study-
on-the-fragmentation-of-atmospheric-clusters-inside-an- APi-
TOF-MS/tree/v1.12.21, last access: 23 December
https://doi.org/10.5281/zenodo.5801564, Alfaouri, 2021).

2021;

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/amt-15-11-2022-supplement.
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