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Instance-Based Multi-Label Classification
via Multi-Target Distance Regression

Joonas Hämäläinen, Paavo Nieminen, Tommi Kärkkäinen ∗

University of Jyvaskyla, Faculty of Information Technology,
P.O. Box 35, FI-40014 University of Jyvaskyla, Finland

Abstract. Interest in multi-target regression and multi-label classifica-
tion techniques and their applications have been increasing lately. Here,
we use the distance-based supervised method, minimal learning machine
(MLM), as a base model for multi-label classification. We also propose
and test a hybridization of unsupervised and supervised techniques, where
prototype-based clustering is used to reduce both the training time and the
overall model complexity. In computational experiments, competitive or
improved quality of the obtained models compared to the state-of-the-art
techniques was observed.

1 Introduction

Applications of supervised learning, where models are constructed to predict
multiple target variables at once, rapidly increase their popularity. This research
field within machine learning is referred as Multi-Output Learning [1], which can
be divided into two main categories: i) Multi-Label Classification (MLC); and
ii) Multi-Target Regression (MTR). In MLC, an instance is associated with
multiple labels contrary to the conventional Single-Label Classification (SLC),
where a single label is determined. There exists a plethora of methods for MLC,
which can be divided into two main groups [2]: i) algorithm adaptation; and ii)
problem transformation. In general, the distinction is made based on whether the
classifier or the MLC problem itself is being modified. In algorithm adaptation, a
specific classification method is tailored so it can be applied to MLC directly. The
problem transformation methods modify the multi-label problem to be suitable
for any single-label classifier.

A supervised distance-based method, the Minimal Learning Machine (MLM)
[3], has been shown a promising performance in many experiments [4, 5, 6, 7].
Lately, MLM and the Extreme MLM (EMLM) [7], were identified to have appeal-
ing characteristics for MTR with problem transformation [8]. It has been demon-
strated that the MLM avoids over-fitting for high-dimensional input spaces in
classification [7] and regression [9, 4]. Therefore, tuning the MLM’s only hyper-
parameter, the number of reference points, is mostly an issue of balancing the
model complexity and the generalization capability in a straightforward man-
ner: increasing the model complexity (the number of reference points) increases
the generalization accuracy. However, increasing the accuracy of the model in
this way comes with a cost, since the computational complexity of the training
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phase behaves quadratically with respect to the number of reference points and
linearly with respect to the number of observations [3].

In [10], it was shown that clustering application to MLC can be useful, espe-
cially for a large number of labels. In terms of high-dimensional output spaces,
large-scale MLC problem arise from the application domains such as of im-
age annotation [10] and text categorization [11]. In this paper, our aim is to
adapt MLM to MLC and reduce the complexity of training and resulting mod-
els using clustering of input data. First, a straightforward Multi-Label MLM
formulation is introduced based on the Nearest Neighbour MLM (NN-MLM)
[6]. Then, the Clustering-Based ML-MLM (CBML-MLM) is proposed by uti-
lizing the prototype-based clustering [12, 13]. Note that this technique readily
supports federated learning scenarios [14].

2 Multi-Label Minimal Learning Machines

Suppose we have N input data points X = {xi}Ni=1, where xi ∈ RM , and the cor-
responding 1-of-L encoded output vectors Y = {yi}Ni=1, yi ∈ {0, 1}L. Suppose
we have selected a subset of the so-called reference points R = {rk}Kk=1 from
X, and the corresponding subset of points T = {ti}Ki=1 from Y. In the MLM,
the main idea is to learn a linear regression between the distance matrices Dx ∈
RN×K and Dy ∈ RN×K , where Dx(i,j) = d(xi, rj) and Dy(i,j) = d(yi, tj) for

the Euclidean distance d(·, ·). The Multi-Target Distance Regression (MTDR)
model is then formed by utilizing the Ordinary Least Squares (OLS) ([3])

B = (Dx
TDx)−1Dx

TDy, (1)

where the K×K matrix B contains the coefficient for the MTDR model. As can
seen from (1), the distance-based approach is especially beneficial for problems
with high feature spaces and large number of classes, becauseM and L only affect
construction of distance matrices but not the complexity of learning. Therefore,
in off-the-shelf scenario, the distance-based regression can be more efficient and
generalize better than deep learning models [5].

In the MLM prediction, for a given input x, distances to the reference points
R are computed and the MTDR model is used to predict the output space
distances δ̃ = (δ1, ..., δK)T to the reference points T. In [6], it was proved for
SLC that assigning class label of the nearest output space reference point as a
prediction y, so that y = tq where q = argmink δ̃(k), is an optimal solution to the
multilateration problem [3]. Note that solving the multilateration problem for
the MLC problems with testing all the label combinations would be very complex
and time-consuming, because the number of different label combinations could
be huge for hundreds or even thousands of labels.

In here, we extent the NN-MLM approach straightforwardly to MLC so that
the predicted set of labels is assigned directly from a set of labels associated with
the nearest predicted output space reference point. We assume that the set of
labels associated with the predicted nearest neighbour is a reasonable approx-
imate solution to the multilateration problem. Furthermore, because this kind



Algorithm 1: CBML-MLM training

Input: Input data X, output labels Y, #clusters Kc, #clusters for distance
regression fit K̃, prototype-based clustering algorithm fc.

Output: Set of regression models {Bk}Kc

k=1, cluster-wise input space reference

points {Rk}Kc

k=1, cluster-wise output space reference points {Tk}Kc

k=1,

cluster prototypes {ck}Kc

k=1.

1: {Ik}Kc

k=1, {ck}
Kc

k=1 ← fc(X,Kc) // Indices Ik refer to clustering partition k
2: for k ∈ {1, . . . ,Kc} do
3: Rk,Tk ← select subsets from X and Y according to Ik
4: Ĩk ← for ck, find K̃ closest prototypes from {ck}Kc

k=1

5: Dxk,Dyk ← compute cluster-wise distance matrices for
{xi | i ∈

⋃
k∈Ĩk Ik} and Rk, and for, {yi | i ∈

⋃
k∈Ĩk Ik} and Tk

6: Bk ← solve Eq. (1) for Dxk and Dyk

of an approach relies on assigning a set of labels to an instance directly from a
reference point, use of full MLM would ensure that all the possible label combi-
nations occured in the training data are contained within possible predictions.

We will refer to this direct MLC algorithmic adaption as Multi-Label MLM
(ML-MLM). In the categorization of MLC algorithms, the ML-MLM approach
can be referred as an instance-based multi-label classifier similar to the ML-
kNN method [15], where predicted set of labels is computed with the Maximum
A Posteriori (MAP) method from the sets of labels related to the k nearest
neighbours in the input space. ML-MLM identifies the nearest neighbour via
the distance regression model while ML-kNN uses directly the input space.

Since ML-MLM selects all the data points as reference points, computational
complexity of ML-MLM’s training is O(N3). To improve this high training cost,
we propose a novel Clustering-Based ML-MLM (CBML-MLM) approach with
reduced time complexity. However, we still will utilize all the data points as
reference points to again ensure that the full diversity of the label combinations
is preserved. The training algorithm for the proposed method is given in Algo-
rithm 1 and the prediction phase is given in Algorithm 2. The training requires
a prototype-based clustering algorithm fc for partitioning the input space to
local subsets. Prototype-based clustering methods such as K-means++ and K-
spatialmedians++ [12] could be used. Both of these methods have linear time
complexities and can be implemented in parallel for large-scale data sets [16, 13].

In the training phase, Kc local MTDR models are trained where each cluster’s
points are selected as reference points. For each local MTDR model, training
data is formed from the union of data points belonging to the nearest K̃ clusters.
For K̃ = 1, the MTDR training data is the same as the local set of reference
points, and for K̃ = Kc, the whole data is utilized as training data. Note
that the size of the final model is independent of parameter K̃. Similar to ML-
MLM, CBML-MLM spends most of the training time solving the OLS from Eq.
(1). For K̃ = 1, the time complexity for training each cluster-wise model is



Algorithm 2: CBML-MLM prediction

Input: Input x, a set regression models {Bk}Kc

k=1, cluster-wise input space

reference points {Rk}Kc

k=1, cluster-wise output space reference points

{Tk}Kc

k=1, cluster prototypes {ck}Kc

k=1.
Output: Set of labels y.

1: k∗ ← argmink d(x, ck) // identify nearest prototype
2: dx ← [d(x,Rk∗(1)), ..., d(x,Rk∗(Nk∗ ))], where Nk∗ = |Rk∗ |
3: δ̃ ← dxBk∗ // predict distances with a local regression model
4: q ← argmink δ̃(k) // identify nearest neighbour with predicted distances
5: y← Tk∗(q).

O(N3
k ), where Nk is the number of observations in a cluster k. Therefore, the

time complexity is O(N3
∗ ), where N∗ denotes the number of observations in the

largest cluster. For the other extreme, K̃ = Kc, the cluster-wise training time
complexity is O(N2

kN) which implies that the overall training time complexity is

O(N2
∗N). Note that if N∗ << N , the CBML-MLM with K̃ = 1 is clearly faster

to train than the CBML-MLM with K̃ = Kc. Moreover, if we have N∗ << N ,
CBML-MLM is significantly faster to train than ML-MLM. In the prediction
phase, the cluster prototypes are used for selecting the local MTDR model for
classification.

3 Results

We selected six MLC data sets from http://mulan.sourceforge.net and uti-
lized given training and testing data set division in order to be able compare
our results to the results given in [17]. For the selected data sets, number of
observations varied from 593 to 43907, number of features varied from 72 to
1001, number of labels varied from 6 to 374, and label cardinality varied from
1.1 to 4.4. We scaled all the input features to the range of [0, 1]. We selected
ML-kNN as a main baseline, and fixed k = 10, similar to many other works [10].
For CBML-MLM, we used K-spatialmedians++ [12] with 100 repetitions as a
clustering method, and selected Kc = 10 and K̃ = {1, 10}. We did not per-
form any hyper-parameter optimization for CBML-MLM. In the experiments,
the largest cluster size normalized by the number of training observations varied
from 0.13 to 0.26. We used the existing MATLAB implementation of the ML-
kNN [15] given in http://www.lamda.nju.edu.cn/. The proposed methods
were implemented with MATLAB as well. For the evaluation of the classifiers’
performance, we used two uncorrelated and recommended measures from [18]:
hamming loss and accuracy (or example-based accuracy).

In Table 1, results for the experimented methods are shown in columns two
to five. Moreover, in [17], Random Forest of Predictive Clustering Trees (RF-
PCT) was the best performing method in the comparison. The results regarding
RF-PCT for hamming loss and accuracy are shown in the last column. The best



Data set ML-kNN ML-MLM CBML-MLM K̃ = 1 CBML-MLM K̃ = 10 Best from [17]

Emotions 0.21/0.51 0.20/0.57 0.21/0.57 0.21/0.57 0.19/0.52

Scene 0.10/0.66 0.08/0.77 0.10/0.72 0.09/0.74 0.09/0.54

Yeast 0.20/0.51 0.20/0.55 0.21/0.52 0.20/0.55 0.20/0.48

Enron 0.05/0.25 0.03/0.40 0.04/0.39 0.04/0.39 0.05/0.42

Corel5k 0.01/0.02 0.01/0.18 0.01/0.16 0.01/0.15 0.01/0.01

Mediamill 0.03/0.42 0.03/0.48 0.03/0.47 0.03/0.48 0.03/0.44

O(N2) O(N3) O(N3
∗ ) O(N2

∗N) O(Nlog(N))

Table 1: Results for the hamming loss (hl) and accuracy metrics (acc). The
elements in the table are formatted as hl/acc. For hl, a smaller value is better,
for acc, a larger value is better. In the last row, the training time complexities
are shown with respect to the data size N . The number of observations in the
largest cluster is denoted as N∗.

results are emphasized in bold for each data set. The training time complexities
of RF-PCT and ML-kNN are given in [19]. In Table 1, these are represented with
respect to the data size. In terms of the evaluated metrics, CBML-MLM and ML-
MLM methods clearly outperform the ML-kNN baseline. Moreover, compared
to the best performing method in [17], CBML-MLM and ML-MLM have better
accuracy than RF-PCT for four data sets, and for the Scene and Corel5k data
sets, the accuracy difference is significant. In terms of hamming loss, the CBML-
MLM and ML-MLM have similar performance to RF-PCT. This means that
in particular CBML-MLM with K̃ = 1 provides learning efficiency, locality of
models and therefore natural data parallelism, and high accuracy. Increasing
size of the training data for the local MTDR models with the choice K̃ = Kc

seems, only in some cases, slightly improve the CBML-MLM performance.

4 Conclusions

In this paper, we adapted and tested the minimal learning machine (MLM) in
multi-label classification (MLC) problems for the first time. Experimental re-
sults showed that a state-of-the-art performance in MLC was reached with the
proposed techniques. We adapted the nearest neighbor MLM (NN-MLM) ap-
proach to MLC, because in this way, the label correlations can be taken into
account. Moreover, we showed that clustering can be applied to reduce the
MLM’s training time and model complexity with only a small sacrifice in ac-
curacy and hamming loss. For the largest data set, this sacrifice was smallest
which suggests that the proposed clustering-based MLM approach would be es-
pecially suited for large-scale MLC problems. As future work, we aim to cover,
both methodologically and experimentally, the full scope of problem transforma-
tions in multi-target regression and classification problems using distance-based
machine learning techniques.
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[9] J. Hämäläinen, A. S. Alencar, T. Kärkkäinen, C. L. Mattos, A. H. Souza Júnior, and J. P.
Gomes, “Minimal learning machine: Theoretical results and clustering-based reference
point selection,” Journal of Machine Learning Research, vol. 21, 2020.

[10] G. Nasierding, G. Tsoumakas, and A. Z. Kouzani, “Clustering based multi-label classi-
fication for image annotation and retrieval,” in 2009 IEEE International Conference on
Systems, Man and Cybernetics, pp. 4514–4519, IEEE, 2009.

[11] M. Jiang, Z. Pan, and N. Li, “Multi-label text categorization using l21-norm minimization
extreme learning machine,” Neurocomputing, vol. 261, pp. 4–10, 2017.
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