
   

University of Jyväskylä 

Faculty of Information Technology 

Simo Ihalainen 

Automatic training data labeling for Finnish clinical narra-

tive NLP tasks 

Master’s thesis of mathematical information technology 

January 5, 2022 

 



 

i 

 

Author: Simo Ihalainen 

Contact information: sami.ayramo@jyu.fi 

Supervisors: Sami Äyrämö, Toni Ruohonen, Miika Moilanen 

Title: Automatic training data labeling for Finnish clinical narrative NLP tasks 

Työn nimi: Suomenkielisten potilaskertomusten automaattinen opetusdatan luonti NLP-

malleja varten  

Project: Master’s thesis 

Study line: Teknis-matemaattinen mallintaminen ja päätösanalytiikka 

Page count: 43 + 0 

Abstract: Large amounts of patient data is stored in electronic health records in unstructured 

data form as clinical narratives. The efficient use of clinical narratives in day-to-day care 

and clinical research requires advanced natural language processing methods to extract data 

from the texts. The common problem for many deep learning algorithms is the requirement 

for vast amounts of labeled training data, which is time consuming and expensive to acquire 

in the clinical narrative context. The purpose of this thesis was to assess a weak supervision 

based approach in automatic training data labeling, and the subsequent machine learning 

model performance in classifying two medical risk factors in Finnish language clinical nar-

ratives: high cholesterol and alcohol consumption. Heuristic rules were developed to auto-

matically label sentences collected from clinical narratives to create a training dataset. Dif-

ferent machine learning models were trained with automatically labeled training dataset and 

with 200 manually labeled sentences. BERT model achieved the highest overall classifica-

tion accuracy of 94 % in cholesterol task and 91 % in alcohol task. BERT model was able to 

capture hidden patterns in the data and leverage the natural language understanding to pro-

duce better classification results and classify cases which were not captured by the rules used 

to create the training data. All machine learning models trained with the automatically la-

beled data produced better classification results compared to the models trained with a small 

manually labeled dataset. Weak supervision approach might be a valuable tool to reduce the 
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costs of applying machine learning algorithms in low-resource settings, where manual label-

ing process is time consuming, expensive, or requires the expertise of subject specialist. 

Keywords: Natural language processing, clinical narratives, text analytics, medical risk fac-

tors, weak supervision, automatic training data labeling 

Suomenkielinen tiivistelmä: Terveydenhuollossa suuri määrä dataa on tallennettuna elekt-

ronisiin potilastietojärjestelmiin potilaskertomusten muodossa. Potilaskertomustekstien te-

hokas hyödyntäminen päivittäisessä hoitotyössä ja kliinisessä tutkimuksessa vaatii edisty-

neiden luonnollisen kielen käsittelyalgoritmien käyttöä oleellisen data poimimiseksi potilas-

teksteistä. Monet tähän tarkoitukseen soveltuvat koneoppimisen menetelmät vaativat suuria 

määriä luokiteltua opetusdataa käytettäväksi mallin koulutukseen, mikä on potilaskertomus-

ten tapauksessa aikaa vievää ja kallista toteuttaa. Tämän opinnäytetyön tarkoituksena oli 

tutkia automaattista opetusdatan luokittelua ja automaattisesti luodulla opetusdatalla koulu-

tettujen mallien suorituskykyä kahden lääketieteellisen riskitekijän (korkea kolesteroli, hai-

tallinen alkoholinkäyttö) luokitteluun potilaskertomuksista. Kehitettyjen sääntöjen avulla 

luotiin automaattisesti luokiteltu opetusdatasetti, jota käytettiin eri koneoppimismallien kou-

luttamiseen. Samat mallit koulutettiin myös manuaalisesti luokitellulla 200 lauseen opetus-

datasetillä. BERT-malli saavutti parhaan luokittelutarkkuuden sekä kolesterolin (94 %) että 

alkoholin (91 %) tapauksessa. BERT-malli pystyi hyödyntämään luonnollisen kielen ym-

märrystä ja saavuttamaan paremman luokittelutarkkuuden kuin mihin opetusdatan luomi-

seen käytetyt säännöt pystyivät. Kaikki automaattisesti luodulla opetusdatalla koulutetut 

mallit pääsivät parempaan luokittelutarkkuuteen kuin mihin vastaavat pienellä manuaalisesti 

luokitellulla opetusdatalla koulutetut mallit pystyivät. Automaattinen opetusdatan luokittelu 

saattaisi olla arvokas työkalu koneoppimisprojektien kustannusten pienentämiseen tilan-

teissa, joissa opetusdatan manuaalinen luokittelu on aikaa vievää, kallista ja vaatii sovel-

lusalan asiantuntijan työpanosta.  

Avainsanat: potilaskertomus, tekstianalytiikka, lääketieteelliset riskitekijät, automaattinen 

opetusdatan luokittelu  
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Glossary 

AUROC Area under receiver operating curve 

BERT Bidirectional encoder representations from transformers 

EHR Electronic health record 

ELMo Embeddings from Language Model 

FN False negative 

FP False positive 

NB Naïve Bayes 

NLP Natural language processing 

ROC Receiver operating curve 

SVM Support vector machine 

TF-IDF Term frequency – inverse document frequency 

TN True negative 

TP True positive 
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1 Introduction 

Electronic health records (EHRs) provide a clinically relevant data source which serves in 

two main functions. EHRs aid decision making processes in patient day-to-day point of care 

at the hospitals, providing health care professionals fast and reliable access to patient data. 

On the other hand, secondary use of EHRs data in clinical research can be utilized to improve 

quality of care and patient safety, optimize health care costs, and provide population level 

health statistics.  

Clinical narratives have traditionally been the main form of communication within the health 

care system. Clinical narratives provide a convenient and concise summary of patient history 

for health care professionals, enabling them to make quick and informed decisions in patient 

care. However, patient data in clinical narratives is stored as unstructured text data, compli-

cating the secondary use of patient data in research and development settings. During the 

recent years, immense efforts have been made to transform these unstructured data sources 

into structured ones.  

In clinical narrative text analytics and data extraction, one frequently used technology has 

been an artificial intelligence subfield called natural language processing (NLP). NLP has 

shown great promise in various tasks including patient diagnosis extraction and tobacco and 

alcohol consumption identification. One of the downsides in the application of NLP models 

in clinical text analytics is the requirement for huge amounts of labeled training data. Train-

ing data for different clinical narrative NLP tasks is not readily available and using health 

care professionals for manual data labeling would be extremely expensive. Fortunately, the 

expensive training data labeling problem is present in many machine learning applications, 

and different solutions have been designed to tackle this issue.  

The techniques addressing low resource machine learning scenarios, where labeled training 

data is scares, include weak supervision, data augmentation and active learning. In weak 

supervision, heuristic rules are utilized to automatically label vast amounts of training data. 

This noisy and imprecise training data (weak labels) is then used to train the final model. 

Data augmentation and active learning on the other hand rely on a small set of labeled train-

ing data. In data augmentation small transformations are made to the training data without 
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changing the labels, increasing the amount of unique training data samples. In active learning 

an iterative process is performed, where the learning algorithm can query the user to label 

new most relevant data points during the model training and gradually increase the model 

precision through each iteration. 

The previously reported use cases in clinical narrative text analytics have covered mostly 

English language texts. No studies so far have reported the applicability of the low resource 

machine learning techniques (weak supervision, data augmentation, active learning) to Finn-

ish language clinical narrative text analytics problems. A low resource solution to Finnish 

clinical narrative text analytics would enable more efficient use of existing medical records 

and provide researchers with new possibilities for clinical studies. Therefore, the purpose of 

this thesis was to assess the applicability of weak supervision, a low resource machine learn-

ing technique, for clinical narrative text analytics tasks.  
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2 Review of the literature 

2.1 Electronic health records  

Electonic health records (EHRs) have been widely adopted in hospitals as a means to store, 

search and utilize patient data. EHRs contain longitudinal information related to the health 

and healthcare of an individual. Both structured data (for example billing information, med-

ications, diagnosis, and laboratory test results) as well as unstructured data (admission doc-

uments, nursing notes, clinical narratives) are stored in EHRs. (Koleck et al., 2019). The 

advantages of EHRs have been related to three different sections: clinical, organizational, 

and societal outcomes (Menachemi & Collum, 2011). 

2.1.1 EHRs and clinical outcomes 

Improvements in the quality of care and reductions in medical errors have been described as 

main clinical outcomes and benefits in adopting EHRs to hospital use (Menachemi & Col-

lum, 2011). EHRs often include clinical decision support systems, automated reminders and 

computerized physician order entry systems, which have been shown to increase adherence 

to vaccination guidelines (Dexter et al., 2001; Ledwich et al., 2009), reduce redundant un-

necessarily repeated laboratory tests (Bates, Kuperman, et al., 1999; Chen et al., 2003; Niès 

et al., 2010; Tierney et al., 1990; Wilson et al., 1982), reduce serious medication errors (Bates 

et al., 1998; Bates, Teich, et al., 1999; Devine et al., 2010), and increase the frequency of 

appropriate medication orders (Chertow et al., 2001). 

In addition to the patient level clinical outcomes described above, studies have also shown 

that hospitals with greater investments in EHRs have lower mortality rates, fewer complica-

tions, and lower costs (Amarasingham et al., 2009; Menachemi et al., 2008). However, some 

studies have shown only small benefits or mixed results in adopting EHRs to hospital use 

(DesRoches et al., 2010; McCullough et al., 2017). One possible reason for the conflicting 

results might be the differences in EHR systems provided by different vendors (T. Wang & 

Gibbs, 2019). 
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2.1.2 EHRs and organizational outcomes 

The benefits of organizational outcomes in adopting EHRs have included increased revenue, 

diminished costs, and improved job satisfaction among medical personnel (Schmitt & Wof-

ford, 2002; S. J. Wang et al., 2003). The increased revenue in adopting EHRs has been at-

tributed to accurate and timely patient charges and reductions in lost or disallowable bills 

(Agrawal, 2002; Erstad, 2003; Schmitt & Wofford, 2002). EHRs can also provide automatic 

reminders of routine health checks, leading to increased patient visits and revenues (Men-

achemi & Collum, 2011). 

The diminished costs related to EHRs include decreases in staff resources dedicated to pa-

tient management, substitution of paper records and removal of supplies needed to maintain 

paper files, decreased transcription costs, and lower malpractice claims for physicians using 

an EHR compared to physicians without EHR (Ewing & Cusick, 2004; Miskulin et al., 2009; 

Tierney et al., 1993; Virapongse et al., 2008). For example, Tierney et al. (1993) reported 

$887 lower per admission charges in intervention teams using EHRs for inpatient order writ-

ing compared to control teams. This reduction was estimated annually to amount to savings 

over $3 million in the given hospital. Another study showed nearly a 50% decrease in time 

spent by the dialysis unit staff in patient anemia management, when an EHR based decision 

support system was adopted (Miskulin et al., 2009). Regarding physician malpractice claims, 

Virapongse et al. (2008) reported that 6.1% of physicians with an EHR had malpractice 

claims compared to 10.8% of physicians without an EHR.   

2.1.3 EHRs and societal outcomes 

The societal benefits of EHRs have been attributed to improved research opportunities, ag-

gregated population level health statistics, monitoring and detection of disease outbreaks and 

biological threats, and job and career satisfaction among the hospital personnel (Aspden et 

al., 2004; Elder et al., 2010; Kukafka et al., 2007; Menachemi et al., 2009). The data availa-

bility and standardization offer many research opportunities, such as identifying evidence 

based best practices in patient care, providing data for national and international health sur-

veys, as well as recruitment of suitable patients matching the acceptance criteria for different 

clinical trials (Kukafka et al., 2007). It is also worth noting the improvement in physicians’ 
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job and career satisfaction through the adoption of EHRs, since physician career satisfaction 

has been associated with improved quality of care (Elder et al., 2010; Linzer et al., 2000; 

Menachemi et al., 2009; Pathman et al., 1996).     

2.1.4 Disadvantages related to EHRs 

In addition to the benefits of EHRs listed in many publications, a number of disadvantages 

and problems have been reported with the adoption of EHR use. These issues include finan-

cial issues, loss of productivity related to EHR implementation, unfavorable changes in pre-

viously established workflows, and patient privacy and data security (Agrawal, 2002; 

Schmitt & Wofford, 2002; S. J. Wang et al., 2003; Westin, 2005; Zurita & Nøhr, 2004).  

In addition to the aforementioned issues, the data format commonly used in day-to-day pa-

tient care has not been designed to be used in research settings. A large amount of clinical 

information is stored in the form of clinical narratives. It has been estimated that 80 percent 

of currently available health data is in the form of unstructured data sources (Martin-Sanchez 

& Verspoor, 2014), such as patient clinical history, description of present illness, narrative 

description of physical exam findings, radiology reports, and operative reports. Unstructured 

data sources present a major challenge for the use of EHR data in clinical research settings. 

Regarding this issue, many different natural language processing (NLP) approaches have 

been developed to extract information from clinical narratives in order to be used in clinical 

research (Juhn & Liu, 2020). 

2.2 Natural language processing 

Natural language processing (NLP) is a subfield of artificial intelligence and machine learn-

ing, encompassing a wide variety of methods and algorithms to process and analyze natural 

language data. The purpose of NLP is to understand the content and context of natural lan-

guage data sources, and then apply this understanding to for example information extraction 

or categorization of the data sources. A typical NLP task involves mapping textual data into 

vector representation (feature extraction) followed by a suitable model which takes the nat-

ural language feature representations as input and produces the desired output, for example 

classifies text into predefined categories. (Goldberg, 2017)  



 

6 

 

2.2.1 Feature extraction 

Feature extraction in NLP refers to the process of transforming textual data into real valued 

vectors, i.e. feature representations of the data. The feature extraction process varies depend-

ing on the use case and the model selected to achieve the NLP task in question, but common 

feature extraction methods include tokenization, stopword removal, stemming, lemmatiza-

tion, and word or sentence vectorization. 

Tokenization 

The tokenization process refers to splitting the text into pieces called tokens, and possibly 

removing some characters, such as punctuation, from the text data used in subsequent pro-

cessing steps. The purpose of the tokenization process is to produce semantically useful units 

encompassing a sequence of characters grouped together. In the simplest form this tokeni-

zation process is achieved by splitting the text at whitespace and removing all punctuations 

from the text. (Manning et al., 2008). Many NLP programming libraries provide readily 

available tokenizers to be used with different machine learning models. 

Stopword removal 

The stopword removal is designed to remove extremely common words from the text, which 

have little or no value to the NLP task in question. Usually, a list of stopwords is provided, 

and all instances of these stopwords are removed from the tokens used for subsequent feature 

extraction tasks. The stopword list might include words like {me, to, from, the, and, not}, 

which occur frequently in all texts, but provide no relevant information to for example clas-

sifying texts into different categories. This process helps to reduce the size of the vocabulary 

used in the machine learning model training phase and thus reduce the computational re-

quirements in the later stages of the NLP task. (Manning et al., 2008). However, caution 

should be taken in selecting the appropriate stopword list, since some NLP tasks might be 

heavily reliant on common stopwords to distinguish the semantic meaning in a text. A com-

mon stopword list used in Natural language toolkit (https://www.nltk.org/) would reduce the 

sentence “I am not happy” into “happy”, which would make NLP tasks such as sentiment 

analysis impossible. 

Stemming and lemmatization 

https://www.nltk.org/
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The stemming and lemmatization processes aim to transform words with semantically sim-

ilar meaning into one common base form without changing the meaning of the sentence. For 

grammatical reasons, natural language text contains various forms of the same word, such 

as look, looked, and looking. All these words have a similar meaning easily understood by 

a human reader. However, from the machine learning model perspective, all the different 

forms of a word with similar semantic meaning only increases the difficulty for the model 

to interpret natural language. This is why stemming or lemmatization process is applied to 

derive the base forms for words. The choice between stemming and lemmatization as a pro-

cessing method depends on the use case and the available resources. Lemmatization requires 

morphological analysis to accurately identify the correct base form (lemma) for each word, 

which might not be available for a given language. (Manning et al., 2008). 

Stemming and lemmatization differ in the process of how words are transformed. Stemming 

is a simpler approach, where the word prefixes and suffixes are removed, leaving only the 

word base form, stem, to be used in the following data transformations. Lemmatization on 

the other hand tries to transform words into their dictionary form. (Goldberg, 2017; Manning 

et al., 2008). In the case of the words look, looked, and looking, both stemming and lemma-

tization processes would yield the same results, look, for all of these words. However, the 

word flew might not be changed at all by the stemming process, whereas lemmatization 

would yield fly as a lemma for flew. 

Word, sentence, and document vectorization  

After all the previously mentioned natural language processing steps, the data is still in text 

form and has to be transformed into numerical vector representation (feature vector) in order 

to be used in a machine learning model. This transformation can be achieved with many 

different methods, such as bag of words, n-grams, term frequency-inverse document fre-

quency (TF-IDF), and word or sentence embedding (Liang et al., 2017). 

Bag of words is a commonly used method in text classification to produce feature vectors 

representing the documents to be classified. In bag of words a feature vector is calculated by 

summing the word occurrences for all the different words in a text or collection of texts and 

combining these counts into a vector. In this approach the exact ordering of the words is 

ignored, and only the number of occurrences of each word is preserved. (HaCohen-Kerner 
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et al., 2020). This means that the semantic meaning is lost in the process, since bag of words 

would represent the texts “Usain Bolt is faster than John” and “John is faster than Usain 

Bolt” identically. However, for the text classification task two documents with similar bag 

of words representations are usually also similar in content. (Manning et al., 2008). An ex-

tension of the bag of words approach is n-gram, where in addition to single word counts, 

also word pair counts (bigrams), triplet counts (trigrams), and up to n consecutive word 

counts are calculated and included in the feature vector (Majumder et al., 2002).  

One critical flaw in bag of words approach is that it considers all terms as equally important. 

However, for text classification tasks many words do not have any discriminating power in 

determining the class of a document. These would be words which appear in almost all doc-

uments. To tackle this issue, TF-IDF method weights each term frequency in a given docu-

ment by the inverse of the document frequency (IDF) for the corresponding term. IDF is 

calculated as a logarithm of the total number of documents divided by the number of docu-

ments where the term is present. This weighing of the term frequencies produces highest 

scores for those terms which occur many times within the given document but only in small 

number of other documents, thus implying a strong discriminatory power of the given term. 

(Manning et al., 2008). 

All the feature extraction methods presented above are well suited for text classification 

tasks but fail to represent syntactic and semantic meaning of the text. Word embeddings are 

a form of word representations in N-dimensional vector space, where words whit similar 

semantic meanings and context the words appear in are close to each other. Many different 

approaches have been developed to achieve this word embedding goal, such as continuous 

bag of words, skip-gram, and deep contextualized models. (B. Wang et al., 2019). A widely 

used word embedding algorithm is word2vec, which utilizes continuous bag of words or 

skip-gram to produce the word embeddings (Mikolov, Chen, et al., 2013; Mikolov, 

Sutskever, et al., 2013). During the recent years, huge advances have been made in deep 

learning, and models such as Bidirectional Encoder Representations from Transformers 

(BERT) (Devlin et al., 2018) and Embeddings from Language Model (ELMo) (Peters et al., 

2018) have been developed to produce context sensitive word embeddings. 
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2.2.2 Common machine learning models in NLP classification tasks 

After the textual data has been transformed into numerical feature vectors, the choice of 

machine learning model depends on the task at hand. The different machine learning algo-

rithms applicable to NLP classification tasks include Naïve bayes (NB), support vector ma-

chine (SVM), decision tree and random forest, k-nearest neighbors, k-Means, and various 

deep neural networks. 

Naïve bayes classifier is a probabilistic classifier, which learns the conditional posterior 

probability of different classes with a given feature vector. Bayes rule is used to calculate 

the conditional posterior probabilities. The model assumes that the features are conditionally 

independent. In practice this assumption is frequently violated since features are usually de-

pendent. However, the resulting model is easy to fit and works well in many different clas-

sification tasks. Another advantage of NB classifier is the low computational requirement 

during inference, i.e. classifying new data samples. (Murphy, 2006). 

SVM classifier is based on the construction of a hyper plane which separates datapoints 

belonging to different classes. Many different hyperplanes might separate the classes, so the 

optimal hyperplane which produces the maximal margin to positive and negative class ex-

amples is used in the SVM model. This means that the position of the optimal hyperplane is 

determined by the few examples closest to the hyperplane. (Bottou & Lin, 2007). When the 

original datapoints are not linearly separable, a kernel function is used to map the datapoints 

(feature vectors) into higher dimensional space, where the different classes are linearly sep-

arable (Pradhan, 2012). In the case of noisy datasets with non-linearly separable classes, a 

soft margin SVM which allows for some datapoints to be classified incorrectly is recom-

mended instead of complicated high dimensional kernel transformations (Bottou & Lin, 

2007).  

BERT model has been one of the most influential deep learning models which has been used 

in many different NLP tasks with superior results compared to the previously published 

models. At the time of its release, BERT reached state-of-the-art results in 11 natural lan-

guage processing tasks, such as question answering. The same model architecture can be 

used for various different NLP tasks with only minor variations in the output layer. (Devlin 

et al., 2018). The initial BERT model was for English language, but later pre-trained BERT 
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models have been presented for various other languages including Finnish (Virtanen et al., 

2019). 

The BERT model architecture is presented in Figure 1. The model architecture is a bidirec-

tional transformer encoder, which produces token embeddings as output. There are two steps 

in BERT model training: unsupervised pre-training and task specific fine-tuning. The pre-

training phase consisted of masked token prediction, where 15% of the tokens were ran-

domly masked, and the task for the model was to predict these masked words based on the 

surrounding unmasked words. In the second phase of the pretraining, sentence pairs were 

formed from the training data, where 50% of the sentence pairs were consecutive sentences, 

and 50% of the sentence pairs were not consecutive sentences. The model task was to clas-

sify the sentence pairs as consecutive or not consecutive sentence pairs. Books corpus and 

English Wikipedia were used as unlabeled data for both masked token and next sentence 

prediction pre-training tasks (Devlin et al., 2018). The data input embedding process is 

shown in Figure 2. 

The second step in BERT model training is fine-tuning. During fine-tuning, a smaller dataset 

with task specific labels is used to fine-tune the pre-trained model parameters to suit the 

specific NLP task at hand. The base model architecture during fine-tuning is identical to the 

pre-training phase. Only an additional output layer (classification head) is added to the base 

model to achieve the desired BERT model task at hand, and this output layer differs between 

different types of NLP tasks. (Devlin et al., 2018). 

 

 



 

11 

 

 

Figure 1. BERT model architecture (modified from Devlin et al., 2018). 

 

Figure 2. BERT model embeddings for input tokens (Devlin et al., 2018). 
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2.2.3 NLP in clinical narrative information extraction tasks 

Several examples of NLP applications in clinical narrative information extraction tasks are 

present in the literature. NLP has been used to extract cancer stage information (Cheng et 

al., 2010), disease characteristics (Zhu et al., 2012), pathological conditions (Séverac et al., 

2015), and medical risk factors from clinical narratives. Wang et al. (2019) presented weak 

supervision based model results for SVM, random forest, multilayer perceptron neural net-

work, and convolutional neural network in classifying smoking status and proximal femur 

fracture in clinical narratives. Their unique approach was to use rule-based training data 

labeling to automatically produce weak labels for vast amounts of training data, and then use 

this weakly labeled training data to train different machine learning models. The binary clas-

sification cases presented in the study showed that convolutional neural network achieved 

higher classification accuracies compared to rule-based classification method or other ma-

chine learning models studied. Convolutional neural network binary classifier precision, re-

call, and F1-score achieved were 0.93, 0.92, and 0.92 for smoking status classification, and 

0.97, 0.97, and 0.97 for proximal femur fracture classification.  (Y. Wang et al., 2019). A 

previous study without deep learning NLP methods reported lower precision, recall and F1-

scores of 0.86, 0.87, and 0.87, respectively, for the smoking status classification (Khalifa & 

Meystre, 2015). 

A more conventional smoking status classification NLP approach was used by Karlsson et 

al. (2021), who created a training dataset by manually labeling 5000 Finnish language med-

ical narrative smoking related sentences into never, former and current smoker categories. 

A BERT model pretrained in Finnish language was fine-tuned with the manually labeled 

training dataset. This BERT model reached 88.2% total classification accuracy for never, 

former, and current smoker, with 96%/96%, 96%/73%, and 90%/97% specificity and sensi-

tivity values for the classes, respectively. (Karlsson et al., 2021).  

In many classification cases, deep learning models have shown superior performance com-

pared to older traditional methods. However, in the case of identifying sudden cardiac death 

risk factors (syncope, family history of sudden cardiac death, or family history of hyper-

trophic cardiomyopathy) from clinical narratives, traditional rule-based NLP methods 

reached sensitivity and specificity values between 0.9 and 0.98 (Moon et al., 2019). The 

modern deep learning methods are often complex and computationally expensive, and one 
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should carefully select the appropriate method to meet the demands of the task in question. 

In the case of identifying sudden cardiac death risk factors, the accuracy acquired with the 

traditional rule-based method might be high enough to meet the demands of the task in ques-

tion, and the use of more complex and computationally expensive methods would be useless.  

One commonly faced problem in applying deep learning to clinical narrative NLP tasks is 

the annotation bottleneck (Spasic & Nenadic, 2020). Supervised learning requires large 

amounts of labeled training data, and in clinical domain the annotation process is harder than 

on many other application fields. Firstly, there are no publicly available datasets because of 

patient privacy concerns. Secondly, the annotation process requires medical expertise to cor-

rectly classify the clinical narratives, making the annotation process expensive and time con-

suming. The privacy concerns and requirements for medical expertise also prevent the use 

of crowdsourcing as a means to produce large amounts of training data. Lastly, the training 

data is in many cases restricted to the use case at hand and cannot be used for other NLP 

tasks. (Spasic & Nenadic, 2020; Y. Wang et al., 2019). The above-mentioned problem of the 

lack of labelled training data has been identified on many different application fields, and 

different solutions have been designed to tackle this issue. 

2.3 Weak supervision and training data labeling in low resource settings 

Low resource settings in NLP context refer to the task of carrying out NLP model training 

in a specific language or domain, where there are no parallel corpora, extensive monolingual 

corpora, annotated data or existing NLP tools available. In situations where the small amount 

of available labeled training data is the cause for low resource settings, methods such as 

active learning, data augmentation and weak supervision have been proposed as solutions to 

the problem. In active learning the amount of labeled training data required for model train-

ing is reduced by training the model iteratively and allowing the active learning training 

algorithm to query new labels from human labeler for the most informative data points (Set-

tles, 2009). Data augmentation is the process of constructing synthetic data from the availa-

ble dataset by introducing small changes in the data (Shorten et al., 2021). In case of labeled 

text data, the data augmentation process should keep the semantic meaning of the sentence 

intact, while introducing variation to the training dataset with such methods as synonym 

replacement, back translation, and spelling mistake insertions. 
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In addition to data augmentation and active learning, weak supervision has emerged as one 

promising technique to automatically create weakly labeled training datasets. In weak su-

pervision, heuristic rules are generated to automatically label large volumes of training data, 

producing noisy and imperfect labels. Weak supervision and deep learning approaches have 

produced good results with medical narrative smoking status classification, hip fracture clas-

sification, and suicidal ideation identification (Cusick et al., 2021; Y. Wang et al., 2019). 

One well documented library for applying weak supervision and heuristic rules on the train-

ing data is Snorkel (https://www.snorkel.org/). Snorkel has been used in many scientific 

publications (Bach et al., 2017, 2019; Callahan et al., 2019; Hancock et al., 2018; A. Ratner 

et al., 2016, 2017, 2017, 2018; Varma et al., 2019; Wu et al., 2017). The workflow in Snorkel 

encompasses the generation of labeling functions. Labeling functions apply heuristic rules, 

for example regex functions to the training data sample, and vote for a label to be assigned 

to the data sample. Labeling functions might also abstain from voting, when the data sample 

in question does not match the specified labeling function rules. The votes from all the la-

beling function are aggregated through a majority voter or probabilistic label model to pro-

duce the final weak labels for the training dataset. 

Weak supervision can be used in the scenarios where vast amounts of unlabeled training data 

is available. In these scenarios, similar or better results compared to weak supervision can 

be achieved by manually labeling more training data. In a topic classification task, 85000 

manually labeled training data samples were required to reach the same accuracy as weak 

supervision process with 684000 unlabeled data samples was able to produce (Figure 3). In 

a user study comparing the weak supervision process to hand labeled training data, partici-

pants with various backgrounds in machine learning and coding were able to produce more 

accurate models in 2.5 hours developing and applying Snorkel labeling functions and weak 

supervision, compared to models trained on 7 hours (2500 instances) of manually labeled 

data (A. Ratner et al., 2017). 

 

https://www.snorkel.org/
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Figure 3. Number of manually labeled training examples required to reach the accuracy 

achieved by weak supervision approach (Bach et al., 2019). 
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3 Research questions 

Electronic health records contain vast amounts of patient medical information in the form of 

unstructured clinical narratives. Efficient use of this data source both at the point of care in 

hospitals as well as secondary use in medical research require advanced automatic text ana-

lytics methods to extract relevant information from the clinical narratives. Acquisition of 

accurate labeled training data in medical narrative text analytics tasks is time consuming and 

expensive and has been identified as one major bottleneck in the application of NLP algo-

rithms for clinical narrative text analytics tasks. Weak supervision based approaches have 

been applied successfully to English language clinical narrative NLP tasks, greatly reducing 

the requirements for labeled training data. However, no study so far has investigated the use 

of weak supervision in the context of Finnish language clinical narrative NLP tasks. There-

fore, the purpose of this thesis was to assess weak supervision based approaches in Finnish 

clinical narrative text analytics tasks. More specifically, this thesis is focused on automatic 

rule-based training data labeling methods and subsequent NLP model performance in label-

ing two common medical risk factors in clinical narratives: high cholesterol and alcohol 

consumption. The research questions were formulated as follows: 

1) What is the machine learning model performance with manually labeled training data 

compared to automatically labeled training data in classifying medical risk factors in 

Finnish language clinical narrative sentences? 

2) What is the classification accuracy achieved with automatic training data labeling? 
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4 Methods 

4.1 Train, test and validation datasets 

4.1.1 Cholesterol 

The dataset for high cholesterol labeling task was collected by combining 2000 sentences in 

clinical narratives containing 1) “kolesterol” or “cholesterol”, 2) "hyperkolesterol", "hyper-

lipid" or "dyslipid", 3) “rasva-arvo”, 4) “lipid”, 5) “ldl”, “hdl” or “trigly, 6) list of cholesterol 

medication names (collected from https://sydan.fi/fakta/kolesterolilaakkeet/), and 7) none of 

the above mentioned words. Combining 7 categories of 2000 sentences yielded a total of 

14000 sentences as the total dataset used.  

The collected dataset was randomly sampled into training and validation datasets with 95%-

5% split, yielding a cholesterol training dataset of 13300 sentences and a validation dataset 

of 700 sentences. The validation dataset was not used or viewed until all the models had 

been trained, and validation dataset was only used to assess the generalizability of the mod-

els. The training dataset was further randomly sampled into train and test datasets (70%-30% 

split with NB and SVM, 90%-10% split with BERT). 

4.1.2 Alcohol consumption 

The dataset for bad alcohol consumption labeling task was collected by combining 3000 

sentences in clinical narratives containing 1) “alkohol”, 2) " viina”, “olut”, “olue”, “kalja”, 

“viini”, “lonkero”, “siideri”, “konjak”, or “viski", 3) “juoppohullu”, “delirium tremens”, or 

“alkodelirium”, 4) “humala”, “humaltun”, “päihdyksissä, “päihtynyt”, or “krapula”, 5) none 

of the above-mentioned words. Combining 5 categories of 3000 sentences yielded a total of 

15000 sentences as the total dataset used.  

The collected dataset was randomly sampled into training and validation datasets with 95%-

5% split, yielding an alcohol training dataset of 14250 sentences and a validation dataset of 

750 sentences. The training dataset was further randomly sampled into train and test datasets 

(70%-30% split with NB and SVM, 90%-10% split with BERT). 

https://sydan.fi/fakta/kolesterolilaakkeet/
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4.2 Automatic training data labeling 

4.2.1 Cholesterol 

Snorkel (https://github.com/snorkel-team/snorkel), an open-source weak supervision frame-

work was used to create labeling functions to automatically label training data with regex 

based heuristic rules. Labeling function regex rules were developed based on example sen-

tences drawn from the training data set in order to capture different ways of expressing high 

cholesterol, normal cholesterol, and no mention of cholesterol levels. A total of seven label-

ing functions were created, where each labeling function voted for bad cholesterol or good 

cholesterol label to be assigned for the sentence or abstained from voting if the regex rule 

conditions were not met for the particular labeling function and sentence in question. Snorkel 

majority label voter was then used to aggregate all labeling function votes and assign final 

labels for the training data set. In line with the purpose of this thesis, the automatically la-

beled training data set was converted into a binary dataset by combining the “normal cho-

lesterol” and “no mention of cholesterol levels” into one class, namely “not bad cholesterol”.   

4.2.2 Alcohol consumption 

Similar process was carried out with alcohol consumption as described in the case of auto-

matic cholesterol labeling. Snorkel labeling function regex rules were developed based on 

example sentences drawn from the training data set in order to capture different ways of 

expressing alcohol overuse, normal alcohol consumption, and no mention of alcohol con-

sumption. A total of five labeling functions were created, and a Snorkel majority label voter 

was used to aggregate the labeling function votes as in the case of automatic cholesterol 

labeling. Lastly, the automatically labeled training data set was converted into a binary da-

taset by combining the “normal alcohol consumption” and “no mention of alcohol consump-

tion” into one class, namely “not bad alcohol consumption”.   

4.3 Manual training and validation data labeling 

200 sentences were randomly sampled from the cholesterol and alcohol training datasets and 

manually labelled. Additional 200 sentences were randomly sampled from the cholesterol 

https://github.com/snorkel-team/snorkel
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and alcohol validation datasets and manually labelled. The labeler had no medical degree or 

medical background, which has to accounted for as a limitation of the study.  

4.4 Data preprocessing 

For the SVM and NB model training and evaluation pipelines, training, test and validation 

datasets were preprocessed with the same text processing pipeline. Non-character symbols 

except whitespaces were removed and all characters lower cased. Sentences were tokenized 

using whitespace as delimiter. Stopwords were removed using Natural language toolkit 

(NLTK, nltk.org) Finnish stopword list. Both stemmed and un-stemmed versions of data 

preprocessing pipelines were tested in model training and evaluation. Stemming was carried 

out with NLTK SnowballStemmer. 

Different feature extractions were tested, where Ngrams in range of one to four were fol-

lowed by either term frequeny (Tf) or term frequency-inverse term frequency (Tf-idf) calcu-

lations. The hyperparameter tuning for Ngram followed by Tf or Tf-idf vectorization was 

carried out using Sklearn.  

The BERT model implementation was carried out with HuggingFace tranformers library and 

a pretrained Finnish language model (Virtanen et al., 2019). The data preprocessing for the 

BERT model was carried out with HuggingFace tokenizer corresponding to the selected 

Finnish language BERT model. 

4.5 Model training 

The model trainings consisted of NB, SVM, and BERT binary classifier model trainings 

with automatically labeled training datasets and manually labeled training datasets. For the 

NB and SVM models, hyperparameter tuning was carried out using 5-fold cross validation. 

For NB, alpha values from 0.009 to 0.03 were used for hyperparameter tuning. For SVM, 

alpha, loss, learning rate, and eta parameters were used in hyperparameter tuning. After the 

hyperparameter tuning, the models were trained with the whole training dataset (manually 

labeled or automatically labeled) using the best obtained hyperparameter values for each 
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model. The NB and SVM model hyperparameter tuning and training were implemented us-

ing Sklearn. 

A pretrained Finnish BERT (Virtanen et al., 2019) was fine-tuned using HuggingFace pipe-

line for text classification with both automatically labeled training data and manually labeled 

training data. The manually labeled training data was randomly sampled into training and 

test datasets using a 70%-30% split. Because of GPU cost and time restrictions, no hyperpa-

rameter tuning was possible for the BERT model. The only regularization used was early 

stopping (test set classification accuracy with automatically labeled training data, test set 

loss with manually labeled training data) with early stopping patience set at 5 epochs (num-

ber of epochs tolerated without improvement in the early stopping metric). Training and 

evaluation batch sizes were set at 4, dictated by the available GPU cluster memory re-

strictions. Maximum number of training epochs was set at 100. 

4.6 Model evaluation 

Classification prediction accuracy, defined as the fraction of all correctly classified in-

stances, was calculated for all models with training, test, and validation datasets (when ap-

plicable). Snorkel labeling functions did not have training and test datasets, so the classifi-

cation prediction accuracy was calculated only for the validation dataset. NB and SVM mod-

els trained with manually labeled dataset did not have a test dataset, so the classification 

prediction accuracy was calculated only for the training and validation datasets. 

Model precision was calculated for both positive and negative classes with true positive 

(TP), false positive (FP), false negative (FN), and true negative (TN) predictions as defined 

in equations 1 and 2. Model recall and F1 scores were calculated for both positive and neg-

ative classes as defined in equations 3, 4, and 5. 

 

1) 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

2) 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 



 

21 

 

3) 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

4) 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

5) 𝐹1 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

The receiver operating characteristic (ROC) values and area under receiver operating char-

acteristic curve (AUROC) were calculated using sklearn.metrics roc_curve and 

roc_auc_score functions. 
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5 Results 

5.1 Cholesterol 

Summary of binary classifier model performances in classifying medical narrative sentences 

into bad and not bad cholesterol classes is presented in Table 1. Bert models achieved highest 

validation data classification accuracies both among models trained with automatically la-

beled training data as well as among models trained with manually labeled training data. It 

is worth noting that Snorkel labeling functions achieved a 0.91 classification accuracy on 

the validation dataset, which tied as a second-best classification accuracy after Bert model 

trained with automatically labeled training data (classification accuracy 0.94). 

Among the models trained with automatically labeled training data, Bert model achieved the 

highest validation data classification accuracy (0.94), followed by SVM (0.91) and Naïve 

Bayes (0.85). The receiver operating characteristic (ROC) curves and area under receiver 

operating characteristic curve scores (AUROC) for these models are presented in Figure 4. 

The ROC curves and AUROC scores for models trained with manually labeled training data 

are presented in Figure 5. All models trained with manually labeled training data had lower 

validation data classification accuracies compared to the models trained with automatically 

labeled training data. The ROC curve comparison between the best model trained with au-

tomatically labeled training data and the best model trained with manually labeled training 

data is presented in Figure 6. 
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Table 1. Binary classifier model accuracy, precision, recall and F1-score for 

classifying cholesterol sentences (train, test, and validation datasets). Results are 

presented for models trained with automatically labelled training data (Auto) or 

manually labelled training data (Manual).  

Model Training 

data 

Accuracy 

train-test-val 

Class Precision 

test-val 

Recall 

test-val 

F1-score 

test-val 

Labeling 

functions 
 N/A-N/A-0.91 

Bad chol N/A-0.95 N/A-0.86 N/A-0.90 

Not bad chol N/A-0.93 N/A-0.94 N/A-0.94 

Naïve 

bayes 
Auto 0.90-0.91-0.85 

Bad chol 0.90-0.85 0.90-0.81 0.90-0.83 

Not bad chol 0.91-0.84 0.91-0.88 0.91-0.86 

Naïve 

bayes 
Manual 0.84-N/A-0.81 

Bad chol  N/A-0.78 N/A-0.82 N/A-0.80 

Not bad chol N/A-0.83 N/A-0.80 N/A-0.82 

SVM Auto 0.93-0.93-0.91 

Bad chol 0.94-0.94 0.93-0.85 0.93-0.89 

Not bad chol 0.93-0.88 0.94-0.95 0.94-0.91 

SVM Manual 0.91-N/A-0.85 

Bad chol N/A-0.88 N/A-0.78 N/A-0.83 

Not bad chol N/A-0.83 N/A-0.91 N/A-0.87 

BERT Auto 1.00-0.99-0.94 

Bad chol  

Not bad chol 

0.99-0.97 

0.98-0.92 

0.98-0.90 

0.99-0.97 

0.98-0.93 

0.99-0.95 

BERT Manual 0.99-0.73-0.87 

Bad chol  

Not bad chol 

0.73-0.90 

0.74-0.84 

0.62-0.80 

0.82-0.93 

0.67-0.85 

0.78-0.88 
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Figure 4. ROC curves for models trained with automatically labeled training data to 

classify bad cholesterol sentences. 

 

Figure 5. ROC curves for models trained with manually labeled training data to clas-

sify bad cholesterol sentences. 
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Figure 6. ROC curves for the best validation accuracy model trained with manually la-

beled training data (BERT (manual)), and best validation accuracy model trained 

with automatically labeled training data (BERT (auto)) to classify bad cholesterol 

sentences. 

5.2 Alcohol consumption 

Summary of binary classifier model performances in classifying medical narrative sentences 

into bad and not bad alcohol consumption classes is presented in Table 2. As in the case of 

cholesterol classification models, Bert models achieved highest validation data classification 

accuracies both among models trained with automatically labeled training data as well as 

among models trained with manually labelled training data. Again, Snorkel labeling func-

tions achieved a 0.90 classification accuracy on the validation dataset, which tied as a sec-

ond-best classification accuracy after Bert model trained with automatically labeled training 

data (classification accuracy 0.91). 
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Table 2. Binary classifier model accuracy, precision, recall and F1-score for 

classifying alcohol sentences (train, test, and validation datasets). Results are 

presented for models trained with automatically labelled training data (Auto) or 

manually labelled training data (Manual). 

Model Training 

data 

Accuracy 

train-test-val 

Class Precision 

test-val 

Recall 

test-val 

F1-score 

test-val 

Labeling 

functions 

 

N/A-N/A-0.90 

Bad alco N/A-0.86 N/A-0.90 N/A-0.88 

 Not bad alco N/A-0.93 N/A-0.90 N/A-0.92 

Naïve 

bayes 
Auto 0.84-0.84-0.81 

Bad alco 0.79-0.76 0.83-0.76 0.81-0.76 

Not bad alco 0.88-0.84 0.85-0.84 0.87-0.84 

Naïve 

bayes 
Manual 0.74-N/A-0.68 

Bad alco N/A-0.59 N/A-0.64 N/A-0.61 

Not bad alco N/A-0.75 N/A-0.71 N/A-0.73 

SVM Auto 0.87-0.88-0.88 

Bad alco 0.85-0.82 0.85-0.89 0.85-0.85 

Not bad alco 0.90-0.92 0.90-0.87 0.90-0.89 

SVM Manual 0.78-N/A-0.75 

Bad alco N/A-0.73 N/A-0.59 N/A-0.65 

Not bad alco N/A-0.76 N/A-0.86 N/A-0.80 

BERT Auto 1.00-0.98-0.91 

Bad alco  

Not bad alco 

0.99-0.86 

0.98-0.95 

0.97-0.93 

0.99-0.90 

0.98-0.89 

0.99-0.92 

BERT Manual 1.00-0.80-0.81 

Bad alco  

Not bad alco 

0.70-0.75 

0.85-0.85 

0.70-0.78 

0.85-0.82 

0.70-0.76 

0.85-0.84 
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Among the models trained with automatically labeled training data, Bert model achieved the 

highest validation data classification accuracy (0.91), followed by SVM (0.88) and Naïve 

Bayes (0.81). ROC curves and AUROC scores for these models are presented in Figure 7. 

 

Figure 7. ROC curves for models trained with automatically labeled training data to 

classify bad alcohol consumption sentences. 

The ROC curves and AUROC scores for models trained with manually labeled training data 

are presented in Figure 8. All models trained with manually labeled training data had lower 

validation data classification accuracies compared to the models trained with automatically 

labeled training data. The ROC curve comparison between the best model trained with au-

tomatically labeled training data and the best model trained with manually labelled training 

data is presented in Figure 9. 
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Figure 8. ROC curves for models trained with manually labeled training data to clas-

sify bad alcohol consumption sentences. 

 

Figure 9. ROC curves for the best validation accuracy model trained with manually la-

beled training data (BERT (manual)), and best validation accuracy model trained 

with automatically labeled training data (BERT (auto)) to classify bad alcohol con-

sumption sentences. 
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6 Conclusion 

The purpose of this thesis was to evaluate and compare machine learning model perfor-

mances in clinical narrative NLP classification tasks, when models were trained with either 

a weak supervision based approach using automatically labeled training data or manually 

labeled training data. Two NLP classification tasks of identifying medical risk factors in 

clinical narrative sentences were selected for this thesis: classifying sentences containing 

mentions of bad/high cholesterol level and excessive alcohol use. All tested machine learn-

ing models achieved higher classification accuracies for both cholesterol and alcohol classi-

fication tasks with automatically labeled training dataset compared to the training dataset of 

200 manually labeled samples. The best classification accuracies achieved with automati-

cally labeled training dataset were with BERT model, reaching 94 % overall classification 

accuracy for cholesterol and 91 % for alcohol.  

The results of this thesis were in line with previously published results regarding weak su-

pervision in clinical narrative NLP tasks. Wang et al. (2019) reported precision, recall, and 

F1-score values of 0.91, 0.91 and 0.91, respectively, for rule-based binary smoking status 

classification. For proximal femur fracture classification, the corresponding values were 

0.97, 0.97, and 0.97. In the present study, the labeling functions (rule-based classification) 

achieved comparable precision, recall, and F1-score values of 0.95, 0.86, and 0.90 for cho-

lesterol classification and 0.86, 0.90, and 0.88 for alcohol classification. In the present thesis 

the traditional simpler machine learning models SVM and NB reached the same or lower 

classification accuracies as the rule-based labeling functions, indicating no benefit in utiliz-

ing these machine learning models. This same finding was evident in the previous smoking 

status classification results, but not in the proximal femur fracture classification task (Y. 

Wang et al., 2019). Both the present thesis and the previous study by Wang et al. (2019) 

showed that machine learning models utilizing word embeddings could capture additional 

hidden patterns not presented in the rules used for automatic training data labeling, since 

BERT model in the current thesis and convolutional neural network used in the previous 

study were able to achieve higher classification accuracies compared to the rule-based clas-

sification. 
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The results of the present thesis showed that machine learning models trained with automat-

ically labeled training data achieved 4-7 percentage points higher classification accuracies 

in cholesterol task and 10-13 percentage points higher classification accuracies in alcohol 

task compared to models trained with 200 manually labeled data samples. This result is not 

surprising, since a previous study showed that 85000 manually labeled data samples were 

required to reach similar classification accuracies in a topic classification task as acquired 

through weak supervision and automatic training data labeling (Bach et al., 2019). The re-

quirement for the amount of manually labeled training data to achieve similar results com-

pared to automatically labeled training data seems to be task specific, and the decision be-

tween investing in a manual labeling process or automatic rule-based process should be care-

fully analyzed. 

In the present thesis, BERT model trained with automatically labeled training data reached 

highest overall classification accuracies for both cholesterol and alcohol classification tasks. 

The overall accuracy was 0.94 for cholesterol task, and the F1-score for bad cholesterol was 

0.93. The overall accuracy for alcohol task was 0.91, and the F1-score for bad alcohol con-

sumption was 0.89. In a previous study using readily available NLP packages and rule-based 

high cholesterol extraction, F1-score of 0.44 was reported, which is far lower compared to 

the F1-score for bad cholesterol classification in the present thesis (Khalifa & Meystre, 

2015). Similar accuracy and F1-score values compared to the present thesis have been re-

ported in previous studies regarding smoking status classification in clinical narratives with 

machine learning models. Palmer et al. (2019) used SVM to identify smoking status, reach-

ing F1-score of 0.90. Another study used a BERT model pre-trained in Finnish and finetuned 

with 5000 manually labeled smoking-related sentences, reaching overall classification accu-

racy of 0.88 (Karlsson et al., 2021). And finally, a previous study using similar weak super-

vision approach as in the present thesis reached F1-score of 0.92 in smoking status classifi-

cation (Y. Wang et al., 2019). Even though the classification tasks differ between all of these 

studies and direct comparison between the results is unwarranted, the results of the present 

thesis suggest that weak supervision and automatic training data labeling might be a valuable 

tool to reduce the costs of training data labeling in clinical narrative NLP tasks. 

The weak supervision approach studied in the present thesis showed promising results in the 

two selected binary classification tasks. However, as noted also in a previous weak 
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supervision study (Y. Wang et al., 2019), it is still unclear how this automatic rule-based 

training data labeling approach would handle more complicated multiclass labeling tasks, 

and whether rules could even be constructed to meet the requirements for different types of 

NLP tasks. The application of weak supervision to more complex NLP tasks could be an 

interesting topic for future studies. 

A number of limitations are present in the current thesis. Firstly, it should be noted that the 

models and the training and validation data did not classify numerical values and measure-

ment results correctly. This was a conscious decision since language models such as BERT 

are ill suited to handle numerical values in classifications. The idea for a complete classifi-

cation process was to combine BERT classifier with a rule-based classifier, which could be 

easily constructed to extract numerical measurement values and use threshold values to clas-

sify for example LDL cholesterol measurement values above a certain threshold to high cho-

lesterol class.   

Secondly, the validation data set was sampled from the same data source that was used in 

the creation of the training and test dataset. Even though the same data samples were not 

used in training and validation, the sentences were collected with the same algorithm to in-

clude sentences containing alcohol and cholesterol related content. Even though random sen-

tences were also included in the datasets, some common expressions for high cholesterol or 

bad alcohol consumptions not captured by the dataset collection algorithm might have been 

missed. Furthermore, the labeling process was not carried out by a medical expert, which 

could result in misclassifications in the datasets. A manually labeled bigger validation da-

taset collected by medical experts would have been a better reference for the generalizability 

of the trained models. However, this was not attainable during the thesis process. Because 

of the above-mentioned limitations in the validation dataset, the results of this thesis might 

overestimate the accuracy of the presented models.    

The third major limitation is the BERT model training process used in the present thesis. 

Due to time constraints and GPU-cluster availability, the BERT model training process was 

carried out without any hyperparameter tuning and changes in the model architecture. The 

early stopping used as regularization method did not prevent the BERT model from overfit-

ting. The overfitting was evident in the training data classification accuracy of 1.00, whit a 

test data classification accuracy of 0.98 for alcohol and 0.99 for cholesterol. Even though the 
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validation data classification accuracies were high, they were far below the training and test 

data classification accuracies. The generalizability of the model might be compromised, and 

better regularization methods should be applied to develop the models further. 

In addition to the limitations of the present thesis, a number of alternative approaches could 

be explored to increase the understanding and benefits of weak supervision processes, and 

to improve the results presented in the current thesis. Firstly, the BERT model used in the 

present thesis was pretrained with Finnish Wikipedia, news articles, and online discussion 

forum texts (Virtanen et al., 2019).  A process of pre-training BERT with a medical corpus 

from scratch could allow more meaningful word embeddings to be used during the fine-

tuning process, resulting in better classification accuracies in medical narrative context. Sec-

ondly, a larger manual training dataset could be used to assess the cost benefits of a weak 

supervision based approach compared to more traditional manual labeling process. Thirdly, 

different amounts of automatically labeled training data could be used to assess the require-

ments for the availability of training data, establishing guidelines on the size of the required 

training data for weak supervision approaches. And lastly, alternative low-resource machine 

learning methods such as active learning could be combined and compared with weak su-

pervision approach. 

As a conclusion, the results of the present thesis showed that weak supervision based ap-

proach was able to produce accurate models in classifying two medical risk factors, high 

cholesterol and alcohol consumption in Finnish language medical narratives. A machine 

learning model encompassing word embeddings was able to capture hidden patterns in the 

data and utilize the natural language understanding for better classification results and clas-

sifying cases which were not captured by the rules used to create the training data. Weak 

supervision approach was also able to produce more accurate classification models com-

pared to the models trained with a small manually labeled dataset. Weak supervision ap-

proach might be a valuable tool to reduce the costs of applying machine learning algorithms 

in low-resource settings, where manual labeling process is time consuming, expensive, or 

requires the expertise of subject specialist. 
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