
Teemu Räsänen

REQUIREMENTS ENGINEERING FAILURE FACTORS
IN SOFTWARE PROJECTS

JYVÄSKYLÄN YLIOPISTO

INFORMAATIOTEKNOLOGIAN TIEDEKUNTA
2021

TIIVISTELMÄ

Räsänen, Teemu
Vaatimusmäärittelyn epäonnistumistekijät sovellusprojekteissa
Jyväskylä: Jyväskylän yliopisto, 2021, 60 s.
Tietojärjestelmätiede, pro gradu -tutkielma
Ohjaaja: Siponen, Mikko

Vaatimusmäärittely on olennainen osa sovellusprojekteja ja sen onnistumisella
on merkittävä vaikutus kaikkiin muihin sovellusprojektin osa-alueisiin. Tässä
tutkielmassa pyritään tuottamaan lisää tietoa vaatimusmäärittelyyn liittyvistä
epäonnistumistekijöistä kirjallisuuskatsauksen ja empiirisen tutkimuksen avul-
la. Kirjallisuuskatsauksessa käydään läpi olemassa olevia sovellusprojektien
epäonnistumistekijöitä käsitteleviä tutkimuksia ja selvitetään, mitkä tutkimuk-
sissa mainituista epäonnistumistekijöistä koskevat vaatimusmäärittelyä. Tut-
kielman empiirinen osa pohjautuu laadulliseen haastattelututkimukseen, jossa
selvitetään, mitä vaatimusmäärittelyyn liittyviä epäonnistumistekijöitä IT-alan
asiantuntijat pitävät merkittävimpinä. Tutkielman kirjallisuuskatsauksessa löy-
dettiin aiemmista tutkimuksista yhteensä 17 vaatimusmäärittelyyn liittyvää
epäonnistumistekijää, ja empiirisessä tutkimuksessa toteutetuista seitsemästä
haastattelusta epäonnistumistekijöitä tunnistettiin kahdeksan. Näistä kahdek-
sasta epäonnistumistekijästä neljä mainitaan kirjallisuuskatsauksessa läpikäy-
dyissä tutkimuksissa ja neljä on kokonaan uusia.

Asiasanat: vaatimusmäärittely, sovellusprojektit, epäonnistumistekijät

ABSTRACT

Räsänen, Teemu
Requirements Engineering Failure Factors in Software Projects
Jyväskylä: University of Jyväskylä, 2021, 60 pp.
Information Systems Science, Master’s Thesis
Supervisor: Siponen, Mikko

Requirements engineering is an essential part of software projects, and its suc-
cess has a significant impact to all other project activities. This study attempts to
produce more information regarding requirements engineering failure factors
by the means of a literature review and an empirical research. In the literature
review, existing scientific papers addressing software project failure factors are
examined to find out which of the mentioned failure factors concern require-
ments engineering. The empirical part of the study is based on a qualitative in-
terview research, where it is investigated what requirements engineering failure
factors are the most prominent according to IT professionals. A total of 17 re-
quirements engineering failure factors were identified in the literature review,
and eight failure factors were disclosed from the seven interviews of the empir-
ical research. Four of these eight failure factors are mentioned in the scientific
papers inspected in the literature review, whereas four are entirely novel.

Keywords: requirements engineering, software projects, failure factors

FIGURES

FIGURE 1 Proportion of failure factors concerning requirements engineering in
past studies ... 8

FIGURE 2 Requirements engineering process .. 18

FIGURE 3 Dimensions of requirements engineering techniques 24

FIGURE 4 Content analysis process .. 34

TABLES

TABLE 1 IS project failure factor categories .. 14

TABLE 2 Common requirements elicitation techniques 23

TABLE 3 Requirements engineering failure factors in existing literature 27

TABLE 4 Requirements engineering failure factor categories 28

TABLE 5 Interviewees of the semi-structured interviews 35

TABLE 6 Interview 1 results .. 36

TABLE 7 Interview 2 results .. 37

TABLE 8 Interview 3 results .. 39

TABLE 9 Interview 4 results .. 40

TABLE 10 Interview 5 results .. 41

TABLE 11 Interview 6 results .. 42

TABLE 12 Interview 7 results .. 43

TABLE 13 Compiled failure factors and their occurrences in the interviews 44

TABLE 14 Failure factors identified in the interviews divided into categories . 44

TABLE 15 Requirements engineering failure factors identified in existing
literature and in the empirical research.. 48

https://d.docs.live.net/56394609a7135f75/Tiedostot/gradu.docx#_Toc89796862

TABLE OF CONTENTS

TIIVISTELMÄ
ABSTRACT
FIGURES
TABLES

1 INTRODUCTION ... 7

1.1 Motivation for Research .. 7

1.2 Research Questions .. 9

1.3 Structure .. 9

2 SOFTWARE PROJECT FAILURE ... 11

2.1 Defining Failure ... 11

2.2 Incidence and Cost of Failure .. 12

2.3 General Failure Factors ... 13

3 REQUIREMENTS ENGINEERING .. 16

3.1 Definition .. 16

3.2 Requirements Engineering Process ... 17

3.3 Traditional Versus Agile Software Development 19

3.4 Requirements Elicitation Techniques ... 22

3.5 Frameworks and Methodologies ... 24

3.6 Success Factors ... 25

3.7 Failure Factors .. 27

4 RESEARCH DESIGN .. 30

4.1 Research Method ... 30

4.2 Data Analysis ... 32

5 EMPIRICAL RESULTS ... 35

5.1 Interview Results ... 35

5.1.1 Interview 1 ... 36

5.1.2 Interview 2 ... 37

5.1.3 Interview 3 ... 38

5.1.4 Interview 4 ... 40

5.1.5 Interview 5 ... 40

5.1.6 Interview 6 ... 42

5.1.7 Interview 7 ... 42

5.2 Compiled Results ... 44

6 DISCUSSION ... 46

6.1 Theoretical and Practical Implications ... 49

6.2 Limitations .. 49

6.3 Future Research .. 50

7 CONCLUSION .. 51

REFERENCES .. 52

APPENDIX 1 INTERVIEW GUIDE (ENGLISH) .. 57

APPENDIX 2 INTERVIEW GUIDE (FINNISH) ... 59

1 INTRODUCTION

1.1 Motivation for Research

Failure of software projects is an evergreen topic of information systems re-
search. A considerable portion of software projects ends up failing, which caus-
es annual expenses measured in billions to corporations worldwide (Charette,
2005; Wood-Harper, 2007). Understanding the reasons behind software project
failure can make avoiding failure easier, and many so-called failure factors have
been identified in past studies. Software project failure factors have been re-
searched quite extensively in general, but failure factors related to one some-
times overlooked part of software projects - requirements engineering - has not
been a focal point of many research papers.

When looking at past research regarding failure factors in software pro-
jects, it is apparent that failure factors related to requirements engineering are a
minority among all identified failure factors. When looking at six frequently
cited failure factor studies by Chow and Cao (2008), Clancy (1995), Ebad (2020),
Goedeke, Mueller and Pankratz (2017), McManus and Wood-Harper (2007),
and Verner, Sampson and Cerpa (2008), requirements engineering related fail-
ure factors make up only 6,3 % of all failure factors identified in the studies
(figure 1). Such small proportion of requirements engineering failure factors
seems contradictory with the significance of requirements engineering in soft-
ware projects: all other software project activities are dependent on it, and it can
be even argued that it is the single most critical process in software develop-
ment (Shams-Ul-Arif & Gahyyur, 2009; Pandey, Suman & Ramani, 2010). The
low representation of requirements engineering in the studies could hint that
requirements engineering doesn’t receive much attention compared to other
software project activities, or that there are requirements engineering related
failure factors that have not been identified yet.

8

FIGURE 1 Proportion of failure factors concerning requirements engineering in past studies

The goal of requirements engineering is to define and describe the purpose of
the software that is being developed. It is an important part of software projects
because it paves the way for other project activities, such as designing and de-
veloping the actual software that is the end product of the project. Thus, failure
in requirements engineering can potentially affect the whole project. Multiple
failure factors exist that are specifically related to requirements engineering and
increasing the information regarding them is a step towards better being able to
avoid them.

The purpose of this study is to provide a comprehensive view of what re-
quirements engineering failure factors are used in existing literature, as well as
to give insight about what IT professionals think are the most prominent re-
quirements engineering failure factors. The results of the study have both prac-
tical and theoretical implications. In practical terms, knowledge about require-
ments engineering factors that increase the chance of software project failure
can help avoiding these factors in real life situations. This information is useful
especially for managers of software projects, but for other project team mem-
bers as well. The results of the study also expand the existing theoretical
knowledge about requirements engineering failure factors by giving a compre-
hensive general view about what failure factors are used in existing literature.
From theoretical point of view, the empirical results of the study also introduce
several requirements engineering failure factors that are not mentioned in the
examined literature, thus hinting towards the need for additional research re-
garding the subject.

9

1.2 Research Questions

As pointed out in the previous chapter, there seems to be a shortage of studies
that examine software project failure factors mainly from the viewpoint of re-
quirements engineering. The following research questions were composed to
address this research gap:

• RQ1: What requirements engineering failure factors are mentioned in ex-
isting studies addressing software project failure factors?

• RQ2: What are the most recurrent requirements engineering failure fac-
tors in software projects according to IT professionals?

The first research question is answered by conducting a literature review on
past studies regarding software project failure factors. The results of the litera-
ture review give insight about what requirements engineering failure factors
are used in existing studies that focus on software project failure factors in gen-
eral. Seven scientific papers were closely analysed and a total of 17 require-
ments engineering failure factors were identified in our literature review.

For answering the second research question, an empirical study was con-
ducted to find out what IT professionals think are the most frequently occurring
requirements engineering failure factors in software projects. Seven IT profes-
sionals with various titles and professional experience ranging from 3 to 26
years were interviewed in a semi-structured manner. The empirical results give
an up-to-date view about the subject regarding the practitioners on the field.
Eight requirements engineering failure factors were derived in our empirical
study.

1.3 Structure

The structure of the thesis is as follows. After this introduction, there is a litera-
ture review that attempts to answer the first research question about what the
most recurrent requirements engineering related failure factors in software pro-
jects are according to existing research. The first literature review chapter dis-
cusses project failure in general. This includes addressing the varying defini-
tions of project failure found in existing literature, examining the incidence and
cost of software project failure, and finally analysing past studies to compile a
list of common failure factors in software projects. The following chapter pre-
sents requirements engineering, including how it manifests differently in tradi-
tional and agile software development, as well as what techniques, frameworks
and methodologies are related to it. Also, failure factors and success factors that
are specific to requirements engineering are identified, listed, and categorised.
Subsequently, an empirical study is displayed, including its research method,
methods for data collection and analysis, and results. After the research has
been presented, there is a section reserved for discussion about the study, in-

10

cluding examination of its reliability and validity, limitations, and options for
future research. Last, there is a conclusion chapter for the study.

11

2 SOFTWARE PROJECT FAILURE

2.1 Defining Failure

Before looking at factors leading to software project failure, it is essential to de-
fine what failure means in this context. Studies that address software project
failure use varying criteria to define failure, and as pointed out by Hughes, Ra-
na and Simintiras (2017), there seems to be no consensus about its exact defini-
tion. Ibraigheeth and Fadzli (2019) analysed several studies regarding software
project failure and identified that nearly all software projects that were labelled
as “failed” had at least one of the following attributes:

• Project was cancelled or its end product was never released.

• End product was lacking in quality.

• User requirements were not met.

• Budget was exceeded.

• Project was not completed on schedule.
It can be inferred that software project failure can happen in several areas re-
garding monetary and temporal limitations, user requirements and quality of
the end product.

From their first Chaos Report onward, Standish Group (1994) has used a
tripartite categorization system, where projects are classified as either failed,
challenged or successful. In this system, a project belongs to the category
“failed” only if it is cancelled completely. A challenged project is one that ex-
ceeded its budget or schedule, or whose final product needed to be stripped of
features that were included in the original plan. A project is seen as successful
only if it does not fall into either of these two categories and is delivered on
budget, on time and within defined requirements.

It is worth mentioning that the failure criteria used in the Chaos Reports
have been questioned on the basis that people might have a tendency to make
too optimistic predictions regarding budgets and schedules in the beginning of
projects (Eveleens & Verhoef, 2009). This raises a question if a project should be

12

considered failed if it is unable to meet these overwhelmingly optimistic budg-
ets and schedules that are set to it.

Goedeke, Mueller and Pankratz (2017) defined eight dimensions of an IS
project and stated that failure in any of them leads to the whole project being
labelled as failed. These dimensions are time, cost, quality, quality of the project
management process, stakeholder satisfaction related to process, project goal,
project purpose and stakeholder satisfaction related to product. In other words,
success in seven dimensions is nullified by failure in just one. It is worth noting
that the researchers do not recommend using this strict fashion of labelling a
project failed in general, and they justify using it in their study to be able to ac-
curately track the impact that different factors have regarding project failure.

It is also possible to define failure based on perceptions of people involved
in the project. In their study about factors leading to software project failure
Verner, Sampson and Cerpa (2008) deemed a project failed if an interviewed
developer that worked for the project considered it failed. This style of defining
failure seems to be more subjective in nature than those mentioned earlier, and
its results are dependent on who was asked about the project: two developers
could have different opinions about whether a project failed or not. However,
this methodology could be useful when interviewing a vast amount of people
about projects and not having enough time to gather relevant data about the
projects’ budgets, schedules and other properties that are needed to be able to
objectively assess whether the projects failed or not.

2.2 Incidence and Cost of Failure

A large portion of software projects end up failing, at least to some extent. Ac-
cording to the first Chaos Report of Standish Group (1994), the percentage of
successful projects at the time of the research was as low as 16,2 %. Their corre-
sponding report published in 2013 predicated that this number had risen to
29 % in 2004 and 39 % in 2013. Sauer, Gemino and Reich (2007) examined pro-
ject success rates in the UK and gave more encouraging results: out of the five
performance categories used in their study, the two most successful ones
(“good performers” and “star performers”) included 67 % of the surveyed pro-
jects. Comparing these results with those of Chaos Report is not straightforward
because of different categories used in the studies. Also, as pointed out by
Jørgensen and Moløkken (2005), the 1994 Chaos Report’s findings are not in line
with other studies published in the same period of time, and the results may
give an unrealistically grim view of project failure rates.

Moneywise, failure of software projects causes annual expenses measured
in billions to corporations worldwide (Charette, 2005). According to McManus
and Wood-Harper (2007), the cost of software project failure within the Europe-
an Union alone was 142 billion Euros in 2004. The total cost of failure is a sum
of direct and indirect expenses; in addition to direct monetary costs, failure of a
software project can negatively affect the company’s image, business value,

13

marketability, and perceived satisfaction of customers (Hussain, Mkpojiogu &
Mohmad Kamal, 2016). These effects can cause companies to suffer indirect
long-term losses, which may not be easily quantified or measured.

Software project failure can also negatively affect the company’s future
software projects. In case a software project failed because of poor software
quality, the created software might be difficult to maintain or expand. Also, if
the created software is a part of a larger system complex and performs poorly,
other system parts might suffer from the emerged bottlenecks. These phenome-
na can then cause additional costs long after the failed software project has been
completed. (Zamudio, Aguilar, Tripp & Misra, 2017.)

2.3 General Failure Factors

Software projects can fail for a grand number of reasons which can be related to
various project aspects ranging from technology and requirements to skillset of
project members and communication during project (Goedeke et al, 2017). Fail-
ure factors are factors that increase the chance of project failure. They have been
studied extensively in the past, especially from the viewpoint of IS projects.

Goedeke et al (2017) identified a total of 65 IS project failure factors among
23 failed IS projects they examined and grouped the failure factors into 13 cate-
gories (table 1). The six most frequently occurring failure factors were spread
among several categories: planning (poor project planning), scope (significant
integration & large-scale project), skills (lack of required skills & lacking project
management skills) and technology (unrealistic technological expectations).

14

TABLE 1 IS project failure factor categories (Goedeke, Mueller & Pankratz, 2017)

Failure factor category Description

Scope Factors related to the overall objective of the project
Planning Factors related to the estimating and planning of the project
Requirements Factors related to the definition and analysis of the IS re-

quirements
Technology Factors related to the used technology and technological en-

vironment
Project process/controlling Factors occurring during project execution and monitoring
Skills Factors related to the skill level, knowledge, and capabilities

of the project team
Contractor Factors related to the relationship with contractor
Contract Factors related to the project contract
Change management Factors related to the management of the implementation

and introduction of the IS in the customer organization
Communication Factors related to communication or coordination within the

project
Structure/Culture Factors related to structure and culture of customer organiza-

tion
Stakeholders Factors related to problems and challenges with the stake-

holders
Environment Factors imposed by the environment of the project

Verner et al (2008) analysed 70 failed software projects and investigated the in-
cidence of 57 failure factors in them. The amount of failure factors per observed
project ranged from 5 to 47. The researchers conveyed that the most prevalent
failure factors among the surveyed projects were:

1) Delivery date impacting the development process.
2) Underestimation of the project.
3) Inadequate re-assessment, control, and management of risks.
4) Not rewarding staff for working long hours.
5) Making delivery decision without sufficient information about re-

quirements.
6) Staff having a displeasing experience working on the project.

McManus and Wood-Harper (2007) listed several key reasons why software
projects are cancelled - which in this context equals to failure. The researchers
examined a total of 214 software projects, of which 51 were cancelled (and thus
failed). According to these numbers the failure rate of the examined projects
was 23,8 %. The researchers divided the key failure reasons into three categories:
business reasons, management reasons and technical reasons. 53 % of surveyed
(cancelled) projects were cancelled mainly because of management reasons (e.g.,
insufficient risk management or loss of key personnel), 27,4 % because of tech-
nical reasons (e.g., inappropriate coding language or poor systems integration)
and 19,6 % because of business reasons (e.g., poor requirements management or

15

misuse of financial resources). The researchers listed a total of 51 software pro-
ject failure factors.

Chow and Cao (2008) examined existing agile software development re-
lated literature and gathered software project failure factors mentioned in them.
The researchers were able to identify 19 failure factors, which they grouped into
four categories: organizational, people, process and technical. The amount of
failure factors listed by Chow and Cao (2008) was significantly lower than in
other reviewed studies, which might be explained by the fact that the research-
ers focused solely on studies related to agile software development.

16

3 REQUIREMENTS ENGINEERING

3.1 Definition

All activities of a software project are founded on the project’s requirements.
Requirements are like a blueprint of the system that is being developed, and
they direct where the project should be headed and what qualities the end
product should have. Institute of Electrical and Electronics Engineers (IEEE)
gives the following definition for a requirement:

1. A condition or capability needed by a user to solve a problem or achieve an ob-
jective.

2. A condition or capability that must be met or possessed by a system or system
component to satisfy a contract, standard, specification, or other formally im-
posed documents.

3. A documented representation of a condition or capability as in (1) or (2).

(IEEE, 1990)

While the definition of IEEE is widely cited and considered a classic definition
of a requirement, Glinz (2011) alters it slightly in order to make it more modern
and compact:

1. A need perceived by a stakeholder.

2. A capability or property that a system shall have.

3. A documented representation of a need, capability or property.

(Glinz, 2011)

17

Requirements can be divided into functional and non-functional requirements.
As mentioned by Van Lamsweerde (2009), functional requirements define what
properties the developed software should have and how it should behave in its
context. Non-functional requirements on the other hand describe softer prereq-
uisites for the software, such as usability, security, performance, and maintain-
ability (Chung & do Prado Leite, 2009; Pandey, Suman & Ramani, 2010).

Requirements engineering (RE) is an activity that is a part of software de-
velopment. Nuseibeh and Easterbrook (2000) state that its function is to clarify
and describe the purpose of the system that is being developed. This is achieved
by recognizing relevant stakeholders and their needs, and by documenting
these needs in a way that enables analysing them, communicating about them,
and finally fulfilling them in the implementation phase of the project (Nuseibeh
& Easterbrook, 2000). Shams-Ul-Arif and Gahyyur (2009) describe RE as “the
initial step of software development activity in which the requirements from
the customer are elicited and documented” and emphasize its significance for
software project success, as all other project activities are dependent on it.

3.2 Requirements Engineering Process

RE process can be split into smaller series of action, but as mentioned by
Zamudio et al (2017), multiple ways to do so are presented in the literature. One
of the broader ways is to divide RE into requirements development and re-
quirements management (Hussain et al, 2016). As Pandey et al (2010) elaborate,
requirements development consists of discovering, analysing, validating, and
documenting requirements, while requirements management is about traceabil-
ity and change management of requirements. Requirements development and
management are both iterative processes; requirements need to be gathered,
refined, documented, and managed in multiple cycles to ensure having up-to-
date and high-quality requirements throughout the project (Wiegers & Beatty,
2013).

Requirements development sees its biggest usage at the start of the project
whereas requirements management becomes more essential as the project
moves forward (Hussain et al, 2016). This is especially true in traditional soft-
ware development, where requirements are often mainly composed early in the
project’s lifecycle (De Lucia & Qusef, 2010). However, requirements develop-
ment and requirements management both span throughout the project. When
the project reaches its implementation and integration phases, requirements still
need attention as their changes need to be addressed and status updated ac-
cording to the phase of the project (Hoffmann, Kuhn, Weber & Bittner, 2004).

The RE process can also be expanded further. Zamudio et al (2017) split
RE activities into five parts. Their definition of the process differs from the
aforementioned broad definition in a way that requirements development is
split into five parts: requirements elicitation, requirements analysis, require-
ments specification and requirements validation. Requirements management

18

remains as a standalone part of the process. The RE process as it is defined by
Zamudio et al (2017) can be seen in figure 2 below.

Requirements elicitation consists of discovering problems that need to be
solved, identifying relevant stakeholders, and determining objectives of the
software that is being built (Zamudio et al, 2017). Hickey and Davis (2004) state
that the goal of requirements elicitation is to understand the needs of stake-
holders. These needs are then translated into requirements. There are many dif-
ferent requirements elicitation techniques that can be used to extract viable re-
quirements from the project’s stakeholders. (Hickey & Davis, 2004.)

In requirements analysis phase, a deeper understanding of each require-
ment is achieved through several means. Functional requirements are derived
from existing requirements information, and higher-level requirements are de-
composed into smaller and more detailed requirements. Also, the implementa-
tion priorities are negotiated in this phase. (Wiegers & Beatty, 2013.) For exam-
ple, models or prototypes can be created to aid in producing complete and sat-
isfactory requirements. During requirements analysis the understanding of the
organization’s structure and goals is sharpened, and it becomes more clear
what data is needed. (Zamudio et al, 2017.)

Requirements specification is a task where analysed requirements are
documented to be used by the project team. Traditionally this has been most
simply achieved by creating a single text document containing all requirements
during early stages of the software project. (Firesmith, 2003.) There are also
more intricate requirements specification techniques such as use case modelling,
templates, and global analysis (Bass et al, 2006). According to Wiegers and Beat-
ty (2013), the core principle of requirements specification is translating the gath-
ered user needs into actual requirements that can be comprehended, used, and
reviewed by their audiences.

Requirements validation is about verifying that the produced require-
ments accurately reflect the needs of stakeholders (Zamudio et al, 2017). Kamal-
rudin and Sidek (2015) state that the requirements validation process should
consider the consistency, completeness, and correctness (“the 3 C’s”) of the re-
quirements to catch errors, such as incompleteness and inconsistency. Require-

FIGURE 2 Requirements engineering process (Zamudio et al, 2017)

19

ments validation also helps determining that the project’s end product is com-
plete and that it fulfils the stakeholders’ original requirements. (Kamalrudin &
Sidek, 2015.)

Requirements management consists of recognizing changes to require-
ments and carrying out version control (Zamudio et al, 2017). It includes struc-
turing and administration of information that is generated by other RE activities
during the full lifecycle of the project (Hoffmann et al, 2004). Requirements
management is most effective when it is conducted with the help of a require-
ments management tool, which collects the requirements into a repository. Such
tools enable efficient collaboration among the project team and allow automa-
tion of requirements management processes, such as change history manage-
ment and request approval. (Pandey et al, 2010.)

3.3 Traditional Versus Agile Software Development

In traditional software development, RE usually takes place at the beginning of
a project: its purpose is to extensively describe what is wanted from the project
before moving on to designing and developing the required software (De Lucia
& Qusef, 2010). In this context RE appears to be an easily distinguishable part of
a development project that has a beginning and an end. This traditional way of
carrying out RE mainly at the beginning of a project has its downsides, since
project requirements often evolve and do not remain static throughout the pro-
ject. Reformation of requirements during a project can be driven by technologi-
cal or industrial advancements, or simply by customers changing their minds
about what they want from the project. Thus, it may not be sensible to try defin-
ing all-encompassing requirements before starting the project’s design and im-
plementation phases, as it may result in early defined requirements being par-
tially or completely useless later in the project. (De Lucia & Qusef, 2010.)

Software development began shifting towards agile methods at the be-
ginning of 2000’s (Dingsøyr, Nerur & Balijepally, 2012), and consequentially the
role of RE started to become increasingly less clear (Cao & Ramesh, 2008). Tra-
ditional and agile software development differ in how RE is conducted and at
which part of a project it takes place. When in traditional software development
RE usually happens at the beginning of a project (De Lucia & Qusef, 2010),
Paetsch, Eberlein and Maurer (2003) state that agile development projects do
not have a stiff chronological structure where RE would occur during a specific
project phase. As Hussain et al (2016) put it, RE in agile software development
is an “incremental and iterative process” that is “performed in parallel with
other software development activities”. Hence, requirements engineering spans
throughout the project and emerges on every development cycle. As follows,
requirements of developed software can change even near the very end of a
development project (Paetsch et al, 2003).

Paetsch et al (2003) point out that some principles of traditional RE can be
used in agile RE as well. As a notable similarity between the two worlds, the

20

elicitation, analysis, and validation phases exist in both of them. Also, both tra-
ditional and agile RE value the importance of customer involvement, even
though it is more prevalent in agile RE. However, the two schools of thought
have a couple of fundamental differences that cause contrast between the asso-
ciated RE processes. First, agile development is rather adaptive than predictive,
which can be an advantage when there are frequent changes during the project.
Second, agile development focuses more on people than on processes. This
means that agile methods prefer relying on the project team’s expertise and di-
rect collaboration rather than strict document-based processes. (Paetsch et al,
2003.)

While maintaining an extensive requirements documentation is a part of
the traditional development process, in agile development it is replaced with
periodic communication between the project team and customer (Ramesh et al,
2010). It is an assumption underlying agile development that developing en-
compassing documentation is counter-productive, partially because require-
ments can change later in the project, and the documentation might not be kept
up to date (Turk, Robert & Rumpe, 2005).

As mentioned by Sillitti and Succi (2005), requirements are more strongly
emphasized in agile software development than in traditional software devel-
opment. This manifests during iterations of agile projects, where the most im-
portant requirements brought up by the customer are concentrated on. It is typ-
ical in agile development to implement high priority features early in the pro-
ject to allow the customer to realize most business value (Ramesh et al, 2010).

In traditional RE most of the requirements are elicited before starting the
development phase of the project, whereas in agile RE requirements are formed
iteratively (De Lucia & Qusef, 2010). As mentioned by Sillitti and Succi (2005), it
is often difficult to correctly predict all necessary requirements in the early
phases of the project. This can lead to early requirements becoming obsolete
later in the project whereas late-emerging requirements may turn out to be par-
amount. Requirements that later become useless may cause resources to be
wasted in terms of spending time and money to develop unneeded features and
afterwards maintaining these features. (Sillitti & Succi, 2005.)

Customer involvement is important in both traditional and agile RE, but it
plays a bigger role in agile RE, as customer input is fundamental during the
lifecycle of the whole agile project (Ramesh et al, 2010). Traditional RE is mostly
based on the customer giving requirements for the wanted software at the be-
ginning of the project, whereas in agile RE the customer is constantly giving
feedback regarding the developed software. The customer’s role in agile RE is
so impactful that the customer can even be seen as a part of the project team.
(Sillitti & Succi, 2005.)

Another difference between traditional and agile RE concerns who carries
out requirements elicitation and management: in traditional RE only a part of
the project team is primarily involved in carrying out these activities, whereas
in agile RE it is the responsibility of the whole team to elicit and manage re-
quirements (Sillitti & Succi, 2005). Cooperating with the customer requires cer-

21

tain proficiency from the project team; it is not enough to possess “hard skills”
such as the ability to create excellent code, but the team members should be
able to carry out constant dialogue with the customer and understand their
needs (Cockburn & Highsmith, 2001). Agile RE can be said to be a mutual effort
where the project team provides the customer with quality software, and the
customer gives the project team feedback in return (Sillitti & Succi, 2005).

There are several practices that are characteristic to agile RE and thus dif-
ferentiate it from traditional RE. As formulated by Schön, Thomaschewski and
Escalona (2017), agile RE is more about using a list of prioritized requirements
than using a requirements specification document. Cao and Ramesh (2008) ex-
amined 16 organizations that utilize agile approaches and identified seven agile
RE practices within them:

1) Preferring face-to-face communication over written specifications
2) Iterative elicitation of requirements
3) Emphasizing requirement prioritization
4) Continual planning to cope with changing requirements
5) Prototyping
6) Test-driven development
7) Using review meetings and acceptance tests

Many of the identified practices quite accurately reflect the main principles of
agile software development:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

(Beck et al, 2001, p. 1)

Preferring face-to-face communication over written specifications is a clear
manifestation of valuing individuals and interactions over processes and tools,
as well as is using review meetings and acceptance tests. Iterative elicitation of
requirements and continual planning to cope with changing requirements re-
flect valuing responding to change over following a plan. Choosing not to em-
phasize written specifications corresponds to valuing working software over
comprehensive documentation.

RE in agile software development poses its own challenges, many of
which originate from the dynamic and fast-paced nature of the agile develop-
ment process. According to Cao and Ramesh (2008), minimal documentation is
one of these challenges. As documentation in agile projects if often limited to
user stories and product backlogs, the project’s traceability might be on a low
level. Poor traceability in turn can lead to issues with scaling the project and
introducing new members to the project team (Cao & Ramesh, 2008). Another

22

agile RE challenge mentioned by Cao and Ramesh (2008) is estimating the
budget and schedule of a project. As further explained by Inayat, Salim, Mar-
czak, Daneva and Shamshirband (2015), requirements are prone to change at
any point of an agile software project, which can lead to initial estimates of the
project’s time and cost to become obsolete. Ramesh, Cao and Baskerville (2010)
mention customer access and participation as a noteworthy agile RE challenge.
This means that project’s customers may not be available to negotiate require-
ments with, give feedback or answer questions regarding the project’s require-
ments as often as it would be optimal in an agile environment. As continued by
Inayat et al (2015), the consequence of low customer availability is an increase
in rework needed in the project.

3.4 Requirements Elicitation Techniques

Multiple techniques exist that can be used in eliciting requirements of a soft-
ware project. Some examples of requirements elicitation techniques are inter-
views, use cases, brainstorming and prototyping (Paetsch et al, 2003; Zamudio
et al, 2017). As mentioned by Hickey and Davis (2004), the shared objective of
all requirements elicitation techniques is to assist in understanding the needs of
the project’s stakeholders. Common requirements elicitation techniques and
their strengths and weaknesses are compared in table 2.

23

TABLE 2 Common requirements elicitation techniques

Technique Strengths Weaknesses Source(s)

Interviews + Enables getting a
rich collection of in-
formation

- Interview data can be
hard to analyse
- Different interviewees
may give conflicting
information

Fricker et al. (2015),
Paetsch et al. (2003),
Zamudio et al. (2017)

Use cases + Easy to use - Most effective when
used early in the project

Fricker et al. (2015),
Paetsch et al. (2003),
Zamudio et al. (2017)

Communication
analysis

+ Usage typically
leads to complete
models

- Complex to execute
when compared to more
straightforward tech-
niques (e.g., use cases)

España et al. (2010)

Focus groups
and workshops

+ Effective in extract-
ing requirements
+ Can be helpful in
solving conflicts
among stakeholders

- Hard to carry out be-
cause multiple stake-
holders need to be
available at the same
time

Fricker et al. (2015),
Zamudio et al. (2017)

Brainstorming + Allows various
viewpoints to be con-
sidered

- Is not typically useful
in solving major issues

Zamudio et al. (2017)

Prototyping + Prototypes can
sometimes be fully or
partially used in the
final product

- Does not function well
as a solely used RE
technique
- Expensive in terms of
time and cost

Fricker et al. (2015),
Paetsch et al. (2003),
Zamudio et al. (2017)

Jiang, Eberlein and Mousavi (2008) argue that context is an important factor
when choosing which RE techniques to use in a project, as certain RE tech-
niques work best in certain project environments. Despite this, people seem to
have a tendency to choose what RE techniques they use based on their personal
preferences rather than the context of the project at hand (Jiang et al, 2008). The
same phenomenon is also mentioned by Tsumaki and Tamai (2005), who fur-
thermore emphasize that choosing RE techniques that do not fit the ongoing
project often leads to project failure. Hickey and Davis (2004) argue that ana-
lysts choose a specific requirements elicitation technique for a combination of
four reasons:

1) The analyst does not know about other techniques
2) It is the favourite technique of the analyst
3) The analyst follows a methodology that instructs using the technique

in the prevailing situation
4) The analyst innately understands that the technique is effective in the

prevailing situation
Choosing an elicitation technique because of the fourth reason shows the most
expertise by the analyst, which is valuable in terms of understanding the stake-

24

holders’ needs. Most analysts do not possess enough professional know-how to
make such qualified decisions, so they often end up relying on one of the first
three reasons. (Hickey & Davis, 2004.)

3.5 Frameworks and Methodologies

Considering that using correct RE techniques is beneficial for a software pro-
ject’s success, it might be worthwhile to invest some time in choosing the said
techniques. Frameworks and methodologies can be helpful in this matter. Basi-
cally, frameworks and methodologies take certain input - in this regard the pro-
ject’s context - and then give an output of which RE techniques should be used
in the project. An example of such methodologies is Methodology for Require-
ments Engineering Techniques Selection (MRETS) by Jiang et al (2008), where
an RE technique is recommended for a given project based on several attributes
of the project. Some of these attributes are project complexity, time constraints,
team size and product type. There are also other methodologies that similarly
take certain project attributes and suggest an RE technique based on them.

Another example is Tsumaki’s and Tamai’s (2005) framework, where RE
techniques are classified on two dimensions, after which their compatibility
with a specific project is estimated based on the project’s characteristics. The
dimensions of RE techniques’ evaluation are static-dynamic and closed-open
(figure 3).

FIGURE 3 Dimensions of requirements engineering techniques (Tsumaki & Tamai, 2005)

25

A technique is considered static when it is used to extract requirements of a
domain’s invariant structure and dynamic when its focal point is on gathering
requirements from a domain’s mutable context. Closed-open dimension is used
to define the technique’s object space: a closed object space is one that is rela-
tively known and stable, whereas an open object space is unknown and unsta-
ble. Five characteristics of a project are considered when analysing the compati-
bility of an RE technique with the said project: application domain, require-
ments engineer types, user involvement, information resources and require-
ments properties. The framework includes rules about how each of the charac-
teristics affects the compatibility of a certain RE technique and the project.
(Tsumaki & Tamai, 2005.)

3.6 Success Factors

As mentioned by Sudhakar (2012), identifying the critical success factors (CSFs)
of a software project is a step towards making the project successful. Project
manager’s role is important in ensuring that CSFs are leveraged, but every
member of the project team affects the success of the project. CSFs can be found
regarding almost all activities of software projects, including RE. (Sudhakar,
2012.)

Defining success of RE and software projects in general is virtually as
complicated as defining their failure, and as mentioned by Sudhakar (2012),
various success definitions have been used in past studies. Logically, it can be
presumed that a finished software project is successful if it did not fail. As for-
mulated by Yousef, Gamal, Warda and Mahmoud (2006), a project’s success is
often defined by achieving project goals and features within established sched-
ule and budget. This definition is – quite logically - close to the opposite of the
earlier mentioned failure definition of Ibraigheeth and Fadzli (2019). Sudhakar
(2012) states that a project’s success is a combination of project management
success and project product success. In other words, success can be seen to con-
sist of quality of the end product that was created and also how well the crea-
tion process was carried out.

Since the role of RE is significant in terms of software projects’ failure, it is
also important regarding their success. As RE affects multiple aspects of a soft-
ware project, its successfulness cannot be evaluated solely based on the logical
end product of RE, which is the requirements specification. Fricker et al (2015)
surveyed participants of multiple software projects (n=419) and recognized fac-
tors that were commonly used to measure RE’s success in the projects. The
study’s findings give hint of what factors are most frequently used as indicators
of RE’s success in software projects. The said factors simultaneously act as RE’s
goals. The most prevalent RE goal identified in the study is establishing a
shared understanding among project team and project’s stakeholders. Good
specification quality is an almost equally recurrent goal. Other common RE
goals that were mentioned by at least 33 % of respondents are paving a clear

26

scope for upcoming development activities, performing RE efficiently, making
users satisfied and delivering RE results on schedule.

Nasir and Sahibuddin (2011) identified a total of 26 critical software pro-
ject success factors in 43 articles published between 1990 and 2010. Two of these
success factors are related to RE:

1) Clear requirements and specifications
2) Frozen requirements

"Clear requirements and specifications" had a higher frequency among re-
searched articles than any other success factor identified in the study; it was
present in 60,5 % of the articles. The appearance rate of “frozen requirements”
among the articles was 39,5 %. Requirements being frozen refers to them not
changing throughout the project. This may not always be desirable, as there can
arise situations where it is necessary to change existing requirements or intro-
duce new ones. However, according to the researchers, having frozen require-
ments contributes to a project being successful, or in other words, it staying on
budget and on schedule. (Nasir & Sahibuddin, 2011.)

Sudhakar (2012) carried out a literature review on past studies focusing on
critical success factors of software projects and identified 80 success factors in
them. Two of these success factors concern RE:

1) Realization of user requirements
2) Well-defined project requirements

The first one of these success factors is categorized as a product factor and the
second one as a project management factor. The two requirements could be
summarised as project’s requirements being clear and the project fulfilling these
requirements. (Sudhakar, 2012.)

Yousef et al (2006) list nine characteristics that are often present in highly
successful software projects. Three of these characteristics concern RE:

1) Project requirements result in well-defined software deliverables.
2) There exists a single repository for requirements.
3) Requirements are accurate and complete before the project ends.

The first two of these characteristics were identified as the two most highly re-
current factors predicting the success of a software project, which underlines
the importance of RE in regards of software project success. The third character-
istic was found to be less significant, but still present in a high amount of suc-
cessful software projects. (Yousef et al, 2006.)

Chow and Cao (2008) examined several case studies and meta-analyses
about success factors in agile software projects and compiled a list of 36 success
factors based on them. Two of the mentioned success factors are related to RE:

1) Project follows a requirement management process that is agile-
oriented.

2) Project has a variable scope with emergent requirements.
A relatively small part of all success factors identified by the researchers con-
cerns RE. The researchers focused solely on agile projects in their study, which
might at least partially explain RE’s low representation, since RE’s role is not as
clear in agile software development as it is in traditional software development

27

(Cao & Ramesh, 2008). This might make it harder to notice success factors that
are directly induced by RE.

3.7 Failure Factors

As mentioned by Shams-Ul-Arif and Gahyyur (2009), all activities of a software
project are dependent on RE. In the light of this information, it would make
sense that several RE related software project failure factors could be found
from existing studies. As it turns out, not much of the literature addressing
software project failure factors seems to be doing so from the viewpoint of re-
quirements engineering. Nevertheless, multiple RE related failure factors can be
found from studies that cover software project failure factors in general.

For this study, a total of seven research papers regarding software project
failure factors were analysed. The main criteria when choosing papers to in-
clude in the study was that the papers should address failure factors in general
and not from the viewpoint of a specific dimension of software projects. The
examined papers include 290 failure factors in total, of which 17 are related to
RE. These failure factors are listed in table 3.

TABLE 3 Requirements engineering failure factors in existing literature

Failure factor Source study

Ill-defined project requirements Chow & Cao (2008)
Changing requirements Clancy (1995)
Incomplete requirements Clancy (1995)
Missing requirements Ebad (2020)
Conflicting system requirements Goedeke, Mueller & Pankratz (2017)
Incomplete requirements analysis Goedeke, Mueller & Pankratz (2017)
Misinterpretation of requirements Goedeke, Mueller & Pankratz (2017)
Unclear system requirements Goedeke, Mueller & Pankratz (2017)
Unprioritized requirements Goedeke, Mueller & Pankratz (2017)
Poor requirements management McManus & Wood-Harper (2007)
Lack of frozen requirements Schmidt, Lyytinen, Keil & Cule (2001)
Misunderstanding the requirements Schmidt, Lyytinen, Keil & Cule (2001)
Customers/users did not make enough time for
requirements gathering

Verner, Sampson & Cerpa (2008)

No method for requirements gathering Verner, Sampson & Cerpa (2008)
No single requirements repository for
requirements

Verner, Sampson & Cerpa (2008)

Project did not have good requirements at
any stage

Verner, Sampson & Cerpa (2008)

Project not replanned after requirements changes Verner, Sampson & Cerpa (2008)

There seems to be variance among studies regarding what kind of RE related
failure factors are mentioned in them. Most failure factors brought up by Ver-
ner et al (2008) that can be associated with RE are about the requirements gath-

28

ering process being somehow faulty, with the only exception of “project did not
have good requirements at any stage” being related to inferior quality of re-
quirements. On the contrary, Goedeke et al (2017) mention only one failure fac-
tor that is related to the requirements gathering process (incomplete require-
ments analysis), whereas the rest of the brought-up failure factors are about
inferior quality of requirements and incorrect usage of requirements.

Three of the examined studies include only one RE related failure factor.
McManus and Wood-Harper (2007) mention a total of 51 failure factors, but
only one of them can be associated with RE: “poor requirements management”.
Chow and Cao (2008) also name just one RE related failure factor – “ill-defined
project requirements” - out of 19 failure factors identified in their study. The
same applies to Ebad (2020); “missing requirements” was the only failure factor
mentioned in the study that concerns RE.

The discovered failure factors can be divided into three categories based
on how they are related to RE:

• Requirements development

• Requirements management

• Quality of requirements
It would be straightforward to categorize failure factors according to which part
of the RE process they concern – requirements development or requirements
management. However, a major portion of the identified failure factors de-
scribes the requirements themselves, not the RE process. Thus, it is necessary to
include a third category: quality of requirements. Dividing the failure factors
into categories makes it easier to comprehend what aspects of RE different fail-
ure factors concern and how the failure factors are distributed among different
aspects. Failure factors and their corresponding categories can be seen in table 4.

TABLE 4 Requirements engineering failure factor categories

Category Failure factor

Requirements development No method for requirements gathering
 Customers/users did not make enough time for require-

ments gathering
 Incomplete requirements analysis
 Missing requirements

Requirements management No single requirements repository for requirements
 Poor requirements management
 Project not replanned after requirements changes
 Lack of frozen requirements

Quality of requirements Project did not have good requirements at any stage
 Unclear system requirements
 Misinterpretation of requirements
 Conflicting system requirements
 Unprioritized requirements
 Ill-defined project requirements
 Misunderstanding the requirements
 Changing requirements
 Incomplete requirements

29

The most of the listed failure factors are related to quality of requirements
(53 %), whereas failure factors concerning requirements development (23,5 %)
and requirements management (23,5 %) are in the minority. According to these
results, it seems that the examined studies mostly focus on failure factors re-
garding the properties of compiled requirements, rather than failure factors
concerning the RE process where the requirements are composed.

30

4 RESEARCH DESIGN

Poorly conducted RE is a common pitfall of software projects, but it has not
been a focal point of many prior studies that have examined software project
failure. The aim of this empirical study was to address this research gap by an-
swering the following research question:

• RQ2: What are the most recurrent requirements engineering failure fac-
tors in software projects according to IT professionals?

As the area of interest has not been researched extensively before, an explora-
tive approach was used in the study. Explorative research is typically applicable
when the subject area does not have much existing information and the re-
searcher wants to understand the problem better (Wohlin & Aurum, 2015).

In this chapter the study’s research method is introduced, along with con-
sideration about prerequisites for the interviews, such as what is an adequate
sample size for the study. Next, the used data analysis method is presented. It is
explained why the specific method was selected, and the whole data analysis
process is explained in detail.

4.1 Research Method

The empirical research was conducted by using a qualitative methodology, and
more precisely by carrying out semi-structured interviews. The interviewees
were IT professionals with professional experience of software projects and re-
quirements engineering. A qualitative methodology was selected because of the
explorative nature of the research. As mentioned by Mason (2010), qualitative
research is concerned of meaning rather than testing a hypothesis, which suits
the scope of this study well.

Semi-structured interviews were chosen as the research method for a cou-
ple of reasons. First, they allow interview participants to explore topics that
seem important to them (Longhurst, 2003). This kind of flexibility was consid-
ered important in this research, since it was possible that novel failure factors

31

that have not been mentioned in prior studies would emerge during the inter-
views. According to Bogdan and Biklen (1997), using open-ended questions
allows the interviewees to answer the questions on their own terms, without the
potential bias created by a fixed list of possible answers. Utilizing semi-
structured interviews also makes it possible to gain a deeper understanding of
surfacing failure factors, and as mentioned by Cohen and Crabtree (2006), semi-
structured interviews give an opportunity to understand the researched topic in
new ways.

There were several goals in selecting the interviewees for the research:
1) The interviewees should have worked with software projects.
2) The interviewees should have professional experience regarding re-

quirements engineering.
3) The interviewees should represent multiple organizations.
4) The interviewees should have varying roles in software projects.

Goals 1 and 2 were set so that the chosen interviewees would have experience
relevant to the research and goals 3 and 4 so that data could be gathered from
multiple viewpoints regarding requirements engineering. The interviewer as-
sessed the fulfilment of goals 1 and 2 individually for each interviewee, and
goals 3 and 4 as the research progressed by comparing the backgrounds of new
interviewees to those of prior ones.

An interview guide was prepared to assist in conducting the semi-
structured interviews. As mentioned by Longhurst (2003), an interview guide
can consist of either themes or complete questions. Questions were used in the
interview guide of this research. English and Finnish versions of the interview
guide were included because there were interviewees that preferred both lan-
guages.

Leech (2002) states that interviews should be started with questions that
the respondents are likely to feel comfortable answering, whereas more com-
plex questions should be handled later. This prerequisite was fulfilled in this
research by first asking questions about the interviewees’ professional back-
grounds, as most interviewees can probably talk about their personal histories
effortlessly. Questions requiring more thought were asked afterwards. Because
requirements engineering as a concept might be tough to grasp, the questions
were designed to gradually lead the interviewees into the subject. As men-
tioned by Longhurst (2003), it is not necessary to ask the interview questions in
the planned order, as keeping the interviews conversational allows interview-
ees to elaborate on topics that they feel are important. However, at the end of
the interview it should be checked that all questions have been dealt with to at
least some extent (Longhurst, 2003).

The results of several scientific papers were examined when considering
the adequate sample size of the study. Reaching saturation describes the situa-
tion where additional interviews do not provide new relevant information
about the researched topic. As the purpose of this study was to discover new
RE related failure factors – rather than test an existing hypothesis – reaching full
saturation was not considered practical. According to Francis et al (2010), a sat-

32

uration level between 86 % and 92 % should be expected after six interviews.
This saturation level seems reasonable for explorative research, so the goal was
to gather at least six – preferably seven - interviewees for the study.

Galvin (2015) presented a formula to determine how many interviews
need to be conducted to reach a certain probability that a belief or an attitude
held by a certain proportion of the population emerges during the interviews.
This formula is the following:

R represents the portion of the population holding a certain belief or attitude,
whereas n is the number of interviews conducted and P is the probability that a
belief or an attitude emerges during n number of interviews. By conducting 7
interviews and pursuing a 95 % confidentiality level, we can calculate R as fol-
lows:

The value of R being 0.35 means that by conducting 7 interviews there is a
probability of 95 % that beliefs or attitudes held by 35 % of the population will
emerge in the interviews. Because of the explorative nature of the research, we
are satisfied with this number.

4.2 Data Analysis

The data analysis method used in this study is content analysis. Krippendorff
(1980) defines content analysis as “a research technique for making replicable
and valid inferences from data to their context”. According to Elo and Kyngäs
(2008), content analysis makes it possible to comprise categories out of observed
words. Cavanagh (1997) further explains that the purpose of creating categories
is to combine words and phrases with similar meanings together.

The main purpose of analysing the interviews is to find out what RE fail-
ure factors the interviewed IT professionals consider occurring most frequently
in software projects. Thus, it is relevant to be able to identify failure factors
based on the expressions of the interviewees. To achieve this, the expressions
are compared with the failure factors that were found in our literature review. If
an expression is seen to represent an existing failure factor, the corresponding
failure factor is used. However, if an interviewee’s expression describes a fre-
quently occurring RE failure factor which was not found in our literature re-
view, a new failure factor is composed.

Elo and Kyngäs (2008) elaborate that content analysis can be used in either
deductive or inductive way. Deductive content analysis is feasible when testing
an existing theory and when the used analysis is structured based on prior
knowledge. Inductive content analysis is recommended if prior knowledge
about the studied phenomenon is scarce, or if this knowledge is fragmented.
(Elo & Kyngäs, 2008). As no existing theory is tested in this study, and since

33

past research papers do not provide comprehensive knowledge about RE fail-
ure factors, inductive content analysis is used.

Elo and Kyngäs (2008) present a process for deductive and inductive ap-
proaches of content analysis, which consists of three phases: preparation, organ-
izing and reporting. The complete process can be seen in figure 4. Deductive
and inductive approaches both share a similar preparation phase, but the or-
ganizing and reporting phases are different.

The preparation phase’s first step is selecting the unit of analysis, which
can be a word or a theme. As pointed out by Graneheim and Lundman (2004),
whole interviews are a feasible unit of analysis, as long as they are not too small
to be considered as a whole or too large to be kept in mind as a meaning unit’s
context. Elo and Kyngäs (2008) state that before starting the analysis, it should
be decided whether to analyse latent content in addition to manifest content.
According to Graneheim and Lundman (2004), latent content refers to the un-
derlying meaning and nuances of the analysed content (tone of voice, laughter,
etc.), whereas manifest content is its visible and most obvious part (text or spo-
ken words).

Next in the analysis process of Elo and Kyngäs (2008), the researcher gets
acquainted with the data at hand. This is done by reading the material multiple
times while trying to truly understand its meaning. After the researcher has
comprehended the data, analysis is carried out by using either a deductive or
inductive approach. (Elo & Kyngäs, 2008.)

When using an inductive approach, the next step is to organize the data.
This begins with open coding, where the analysed text is read and simultane-
ously marked with headings and notes. The purpose of open coding is to de-
scribe all sides of the content by writing down as many headings as necessary.
Subsequently, the headings are gathered into coding sheets and categories are
now freely developed. (Elo & Kyngäs, 2008.)

After open coding is finished, the resulting categories are arranged into
higher level groupings to scale down the number of categories. This is done by
taking similar categories and assembling them under the same grouping. (Elo &
Kyngäs, 2008.) Dey (1993) emphasizes that categories cannot be put together
just because they are similar, but rather they should share relevant properties
that separate them from other categories.

The last step of the organising phase is called abstraction. The goal of ab-
straction is to create a broad description of the topic that is being researched by
setting up categories. Similar categories are then arranged together into sub-
categories, and new categories are created to be their main categories. This is
continued for as long as it is feasible. (Elo & Kyngäs, 2008.)

34

FIGURE 4 Content analysis process (Elo & Kyngäs, 2008)

35

5 EMPIRICAL RESULTS

The empirical results of the semi-structured interviews are presented in this
chapter. First, the interviewees are introduced with information about their job
titles and the amount of professional experience they have. Next, each interview
is examined separately. The failure factors identified in each interview are
shown in tables, where it can also be seen what the original expressions behind
the derived failure factors were. Last, the compiled results of the interviews are
presented, including a compilation chart of all failure factors that were identi-
fied in the interviews.

5.1 Interview Results

A total of seven people were interviewed for the study. The interviewees repre-
sent four IT companies and have varying viewpoints towards RE, as some are
working with IT projects on a management level, and some take part in devel-
opment themselves. The amount of professional experience among the inter-
viewees ranges from 3 years to 26 years, with the average amount of profes-
sional experience being 20 years. A compilation of the interviewees can be seen
in table 5.

TABLE 5 Interviewees of the semi-structured interviews

Job title Professional experience (y)

1 Solution architect 14

2 Software developer 20

3 Manager 23

4 Platform architect 26

5 Software developer 3

6 IT consultant 26

7 Partnerships director 25

36

5.1.1 Interview 1

Interviewee #1 has worked with information technology for 14 years, of which
he has been associated with software projects for 12 years. His professional ex-
perience consists mainly of working with a large telephony system in a special-
ist role. His current job title is solution architect. Four software project failure
factors that are related to RE arose in the interview. These failure factors are
listed in table 6 below.

TABLE 6 Interview 1 results

Original expression Category Failure factor

I was a part of a project where
we just started working with
virtually no requirements,
and the project did not end
well.

Requirements development Missing requirements

Broad requirements were
defined for the project, but
there were no requirements
for the sub tasks of the pro-
ject.

Quality of requirements Requirements not specific
enough

Nobody had clear responsibil-
ity of handling requirements -
- and the requirements were
defined within a hassle of an
e-mail conversation.

Requirements management Poor requirements man-
agement

...we were at the point where
we could start carrying out
the migration, but then new
requirements arose because of
a recent business acquisition,
which brought the project to a
complete stop.

Requirements management Changing requirements

The first often occurring failure factor mentioned by the interviewee was miss-
ing requirements. To give an example, the interviewee described a software pro-
ject where the project team started working with very little requirements, which
caused difficulties in focusing on correct tasks and taking the project towards
the right direction. Because of missing requirements, the project team’s re-
sources were not used as efficiently as they could have been used with proper
requirements.

The second common failure factor that emerged in the interview was re-
quirements not being specific enough. According to the interviewee, requirements
being too broad causes similar difficulties in software projects as having little to
no requirements to work with, namely making it hard to know what exactly
needs to be done in the project.

37

 As an example of the third recurring failure factor, the interviewee
brought up a project where nobody had a clear responsibility of requirements
management, which caused the requirements to partially drown under other
project related communication as nobody was keeping track of them. Also, the
project’s requirements were mainly defined in an e-mail conversation with mul-
tiple participants. This made it even harder to get a grasp of the project’s re-
quirements, as they were scattered around a lengthy e-mail thread. The failure
factor that this description depicts is poor requirements management.

The last frequently occurring failure factor that came out in the interview
was changing requirements. As an example of this failure factor, the interviewee
described a software project which had been ongoing for several weeks and
where everything had been planned according to existing requirements. Then
suddenly new major requirements emerged, and the project had to be re-
planned. This brought the development phase of the project into a halt and
caused a noticeable delay in the project’s schedule.

5.1.2 Interview 2

Interviewee #2 works as a software developer for a medium-sized enterprise.
He has roughly 20 years of professional experience, which consists of working
for several IT companies. The interviewee has been associated with software
projects for his whole career. Five RE failure factors were derived from the in-
terview (table 7).

TABLE 7 Interview 2 results

Original expression Category Failure factor

Requirements are conducted
too late. Things could work
out better if more time would
be used to developing re-
quirements at the beginning of
the project.

Requirements development Requirements conducted
too late

Too little or no time is used for
requirements development…

Requirements development Rushed requirements de-
velopment

The requirements were half-
baked…

Quality of requirements Requirements not specific
enough

…and they (requirements)
kept changing throughout the
project.

Requirements management Changing requirements

Not enough people with dif-
ferent types of knowledge
took part in the planning of
the project.

Requirements development Wrong people carrying out
requirements development

38

The interviewee mentioned that it has been a common phenomenon in multiple
software projects he has participated in that requirements are conducted too late. In
such cases the software project has progressed too far with loose requirements
when some new essential requirements emerge. The effect of conducting re-
quirements too late resembles requirements changing during the project; re-
planning is often needed before continuing the development work, leading to
the project being delayed.

Another recurring RE related mistake brought up in the interview was
rushed requirements development. According to the interviewee, he has been a part
of several software projects where very little time was used to develop re-
quirements. The main problem caused by this has been requirements having
poor quality.

Requirements not being specific enough was mentioned by the interviewee as
he described a software project where the customer was not able to provide ac-
curate and good quality requirements at any point of the project. The customer
was not entirely sure what they wanted from the end product, which lead to the
project’s requirements being loose. The customer also changed their vision
about the end product often during the project, which meant that the project
had changing requirements.

The interviewee mentioned that software projects often do not have
enough people with different types of professional expertise carrying out RE.
This can lead to some important aspects of the project being neglected. For ex-
ample, if only programmers are involved in RE, there might be a deficiency of
requirements related to the UI or usability of the software. The failure factor
that can be derived here is wrong people carrying out requirements development.

5.1.3 Interview 3

Interviewee #3 works as a manager for a large IT corporation. He bears respon-
sibility and ownership over multiple information systems and has 23 years of
professional IT experience. RE failure factors that emerged during the interview
are listed in table 8.

39

TABLE 8 Interview 3 results

Original expression Category Failure factor

They (=requirements) are elic-
ited poorly, or they are not
elicited at all.

Requirements development Missing requirements

People who are specifying
requirements are unable to
foresee the end result (of the
project) closely enough, and
do not possess enough tech-
nical knowledge about what
needs to be done.

Requirements development Wrong people carrying out
requirements development

The "PowerPoint department"
usually has quite broad re-
quirements - - and usually it is
only a scratch on the surface.

Quality of requirements Requirements not specific
enough

Along the way they
(=requirements) change signif-
icantly for some reason.

Requirements management Changing requirements

When asked about what are the most often recurring RE related mistakes in
software projects, the interviewee first mentioned that requirements are often
elicited poorly or “not elicited at all”. Thus, the derived failure factor is missing
requirements. This means that the project was carried out with some important
requirements missing completely.

The second recurring failure factor that arose during the interview was
wrong people carrying out requirements development. The interviewee mentioned
that people who are specifying project requirements regularly lack technical
knowledge that is necessary to understand the constraints of the project and to
apprehend what is actually wanted from the end product. The interviewee
named a specific group of people as the “PowerPoint department”, which typi-
cally consists of middle managers that mainly understand the broad require-
ments but not the technical aspects of the project. According to the interviewee,
when these middle managers conduct requirements elicitation, the resulting
requirements are not specific enough.

Another frequent RE related failure factor mentioned by the interviewee
was changing requirements. The interviewee stated that during many projects the
requirements are not static and evolve a lot as the project progresses. This often
causes increased workload to the project team through new feature requests
and the need to make changes to existing software. Changing requirements can
also hamper the original estimations regarding the budget and schedule of the
project.

40

5.1.4 Interview 4

Interviewee #4 is a platform architect for a medium IT corporation. He has 26
years of professional experience, and his responsibilities have ranged from pro-
gramming and database maintenance to taking care of software projects on a
larger scale. Two RE failure factors could be extracted from the interview (table
9).

TABLE 9 Interview 4 results

Original expression Category Failure factor

Requirements are often de-
fined in an undetailed man-
ner, whereupon it is unclear
for both parties what needs to
be done.

Quality of requirements Requirements not specific
enough

People with enough experi-
ence and know-how should be
present so that requirements
of good quality can be con-
ducted.

Requirements development Wrong people carrying out
requirements development

From the interviewee’s point of view, it is a common phenomenon in software
projects that requirements are not specific enough. According to the interviewee,
requirements are often broad, which makes it difficult for both the vendor and
the client to understand what exactly needs to be achieved by the developed
software. This can cause struggles on the vendor’s side to work efficiently to-
wards the target. Moreover, the vendor spending excessive time on developing
the software can lead to unfulfilled expectations and disappointment on the
client’s side.

The interviewee mentioned that occasionally there is too little suitable ex-
pertise among people conducting RE, or in other words, wrong people are carry-
ing out requirements development. For example, a salesperson might not be the
correct individual to conduct any extensive technical requirements for a project.
The interviewee pointed out that people with enough relevant technical experi-
ence should take part in RE from very early stages of the project to increase the
chance of ending up with quality requirements.

5.1.5 Interview 5

Interviewee #5 works as a software developer for a medium IT corporation. He
has 3 years of professional experience, consisting mainly of developing software.
Four RE failure factors were inferred from the expressions of the interviewee
(table 10).

41

TABLE 10 Interview 5 results

Original expression Category Failure factor

Requirements might be broad,
and they do not actually tell
anything.

Quality of requirements Requirements not specific
enough

Fluctuating requirements - -
cause more work for the pro-
ject.

Requirements management Changing requirements

The person who carries out
requirements development is
not a part of the project team
and does not understand what
is actually required (from the
project).

Requirements development Wrong people carrying out
requirements development

The requirements are unclear
for those who carry out the
project - - and the customer
does not know what they
want.

Quality of requirements Unclear requirements

The interviewee described that it is typical for software projects that require-
ments are not specific enough. According to the interviewee, this is especially true
in large (hundreds of thousands of Euros) projects. The requirements being
broad means that developers need to spend time in “decoding” them and split-
ting them into smaller, more comprehensive parts.

Changing requirements was mentioned by the interviewee as another recur-
ring pitfall in software projects. When requirements fluctuate, the total amount
of work needed for the project grows. The interviewee pointed out that this can
be beneficial for the software vendor in case they are working with an hourly
wage, as they can charge more from the customer. However, if the project is
done with a piecework pay, the vendor generally does not want its workload to
increase.

The interviewee stated that often the person who performs RE is not a part
of the team that carries out the actual software development. Thus, the person
might not possess enough technical knowledge to be able to produce adequate
requirements. The interviewee mentioned that one area where this can cause
problems is scheduling and budgeting the project. The identifiable failure factor
here is wrong people carrying out requirements development.

Last common failure factor brought up by the interviewee was unclear re-
quirements. Often requirements being unclear originates from the customer’s
inability to recognize and communicate explicitly what they want from the pro-
ject’s end product. This typically leads to ambiguous requirements, which are
hard to interpret and cause additional work for the software developer.

42

5.1.6 Interview 6

Interviewee #6 works as a consultant for a large IT corporation. He is often in-
volved in software projects and is specialized in requirements engineering. Two
RE failure factors were remarked from the interviewee’s statements (table 11).

TABLE 11 Interview 6 results

Original expression Category Failure factor

If a requirement is made in a
way that it can be understood
in two different ways, the cus-
tomer will understand it in a
way that is better from their
perspective.

Quality of requirements Requirements not specific
enough

Transferring of information
fails. The customer’s actual
business needs or processes
have not been understood.

Quality of requirements Unclear requirements

The interviewee emphasized the importance of requirements being precise mul-
tiple times during the interview and stated that requirements not being specific
enough is a common failure factor in software projects. He argued that if a re-
quirement is vague enough to be understood in more than one way, the cus-
tomer will probably understand it in a way that suits them best, and which is
often overly optimistic. This can lead to disappointments on the customer’s side,
as the project’s end product might not fulfil the customer’s expectations well
enough.

Another recurring failure factor that arose during the interview was un-
clear requirements. According to the interviewee, this failure factor stems from
the project team not understanding the customer’s business needs or processes
clearly enough. Thus, the requirements do not enclose enough accurate infor-
mation of what the customer really wants from the project.

5.1.7 Interview 7

Interviewee #7 has worked with information technology for 25 years. His job
titles have ranged from technical sales support to product manager and project
manager, with the main emphasis of his career being on telecommunications
field of business. He currently works as a partnerships director for a medium IT
corporation. RE failure factors collected from the interview are listed in table 12
below.

43

TABLE 12 Interview 7 results

Original expression Category Failure factor

The requirements often ex-
plode during projects. People
think that new things can be
done within existing projects
with little effort.

Requirements management Changing requirements

Correct representatives from
every relevant stakeholder are
not present in requirements
development. An executive is
not necessarily the correct
representative.

Requirements development Wrong people carrying out
requirements development

Requirements are left incom-
plete and superficial, which
leads to bad general view of
the project and dependencies
being overlooked.

Quality of requirements Requirements not specific
enough

Changing requirements was the first recurring failure factor mentioned by the
interviewee. He stated that requirements often “explode” during projects,
which means that new requirements are added, or existing requirements are
modified lightly. Stakeholders seem to think that minor changes can be “smug-
gled” along with existing requirements, and they tend to think that this can be
done without any major impacts to overall cost or schedule of the project. The
interviewee emphasized that when changing requirements causes problems, the
project manager is at fault by letting it happen.

The interviewee argued that often project stakeholders do not have correct
representatives taking part in requirements development. For example, an ex-
ecutive might not have enough technical knowledge to be the sole representa-
tive of a stakeholder. The interviewee also described a “loud group of people”
from the customer’s side that regularly wants to take part in requirements de-
velopment and whose priority number one is that as little changes are made as
possible. This group of people can be seen as a manifestation of resistance to
change, and a strong project manager is needed to be able to negotiate quality
requirements with them. To summarise this description, there are often wrong
people carrying out requirements development.

The last failure factor that occurred in the interview was requirements not
specific enough. The interviewee elaborated that this causes problems with budg-
eting and scheduling of the project, as well as with understanding dependen-
cies that the developed software might have with other systems. According to
the interviewee, some dependencies often come as a surprise to the project team
after the project has progressed for a long time, which could have been avoided
by composing requirements more thoroughly. The worst-case scenario is that

44

some other system stops working because of dependencies that were not recog-
nized in the project.

5.2 Compiled Results

Out of the seven interviews that were carried out during this research, a total of
eight unique RE related failure factors were identified. These failure factors are
listed in table 13, where it is also shown how many interviews each failure fac-
tor appeared in.

TABLE 13 Compiled failure factors and their occurrences in the interviews

Failure factor Occurrences in interviews

Requirements not specific enough 7
Changing requirements 5
Wrong people carrying out requirements development 5
Missing requirements 2
Unclear requirements 2
Poor requirements management 1
Requirements conducted too late 1
Rushed requirements development 1

The data shows that according to the interviewees the most prevalent failure
factor in software projects is “requirements not specific enough”, which was
mentioned by every interviewee. Closely behind on shared second place are
“changing requirements” and “wrong people carrying out requirements devel-
opment” with five occurrences each.

By dividing the identified failure factors into the same three categories
that were used earlier in the study (requirements development, requirements
management, and quality of requirements), we can see how the failure factors
are diverged between different aspects of RE (table 14).

TABLE 14 Failure factors identified in the interviews divided into categories

Category Failure factor

Requirements development Wrong people carrying out requirements development
 Requirements conducted too late
 Rushed requirements development
 Missing requirements

Requirements management Poor requirements management
 Changing requirements

Quality of requirements Requirements not specific enough
 Unclear requirements

Four of the identified failure factors concern requirements development (50 %),
whereas two are about requirements management (25 %) and two are about

45

quality of requirements (25 %). When examining how often failure factors from
each category occurred in the interviews, the numbers look like following:

• Requirements development: 9 occurrences (37,5 %)

• Requirements management: 6 occurrences (25 %)

• Quality of requirements: 9 occurrences (37,5 %)

46

6 DISCUSSION

In this study, a literature review and an empirical research were conducted to
gain more information regarding RE failure factors. The goal of the study was
to answer these two research questions:

• RQ1: What requirements engineering failure factors are mentioned in ex-
isting studies addressing software project failure factors?

• RQ2: What are the most recurrent requirements engineering failure fac-
tors in software projects according to IT professionals?

The first research question can be answered by the results of the literature re-
view. From the seven scientific papers that were analysed for this study, a total
of 17 RE related failure factors were found. These failure factors are listed in
table 3.

Interestingly, all failure factors that were identified among the papers are
worded differently and only two of them are semantically identical. Failure fac-
tors “misinterpretation of requirements” (Goedeke, Mueller & Pankratz, 2017)
and “misunderstanding the requirements” (Schmidt et al, 2001) clearly mean
the same thing, but an equality sign cannot be drawn between any other two
failure factors. It can be argued that “incomplete requirements” (Clancy, 1995)
and “missing requirements” (Ebad, 2020) have similar intents, although the first
failure factor can be interpreted to mean that requirements exist, but they are
incomplete in some way, whereas the second one points towards some re-
quirements missing completely. The examined studies all mentioning different
RE failure factors might indicate that there is little steadily established scientific
knowledge about the subject. It can be assumed that if a more robust
knowledge base existed, the failure factors mentioned in the studies would be
more uniform.

As an answer to the second research question, the most recurrent RE fail-
ure factors in software projects according to our empirical research are:

• Requirements not specific enough

• Changing requirements

• Wrong people carrying out requirements development

47

All seven interviewees mentioned the failure factor "requirements not specific
enough", whereas “changing requirements” and “wrong people carrying out
requirements development” were brought up by five interviewees each. In ad-
dition to these three failure factors, five less frequently occurring failure factors
were identified. All identified failure factors can be seen in table 13.

“Requirements not specific enough” being indicated by every interviewee
as a recurring failure factor underlines its prevalence in software projects, and
the interviewees mentioned several effects that this failure factor has regarding
software project success. Multiple interviewees shared the opinion that re-
quirements not being specific enough makes it harder to work efficiently to-
wards the target of the project. According to the interviewees, the failure fac-
tor’s consequences also include challenges in budgeting and scheduling of the
project and difficulties in accurately fulfilling the customer’s expectations.

According to the interviewees, “changing requirements” has a more
straightforward impact on software projects, as almost every interviewee that
mentioned the failure factor stated that changing requirements mostly causes
additional work from the project team. Surplus work can naturally delay the
project at hand, as well as cause additional monetary costs for the project.

When it comes to “wrong people carrying out requirements development”,
the interviewees mentioned this failure factor indirectly causing similar reper-
cussions as the two previous failure factors. Unlike the two other failure factors,
this failure factor concerns the requirements development process rather than
the quality of requirements. Thus, this failure factor often leads to the emer-
gence of other failure factors, for example requirements not being specific
enough.

Four of the eight failure factors identified in our empirical study are men-
tioned in the scientific papers that were examined in our literature review,
whereas four are not. The four failure factors that are mentioned in the exam-
ined papers are:

• Changing requirements

• Missing requirements

• Poor requirements management

• Unclear requirements
As some of the answers of our empirical study’s interviewees could not be
matched with any failure factors found in the examined literature, these four
failure factors had to be conducted for the study:

• Requirements conducted too late

• Requirements not specific enough

• Rushed requirements development

• Wrong people carrying out requirements development
It is interesting that as many as four failure factors are not mentioned in the ex-
amined literature, especially when considering that “requirements not specific
enough” and “wrong people carrying out requirements development” were
among the three most frequently occurring failure factors identified in our em-
pirical research. Someone could argue that the newly conducted failure factor

48

“requirements not specific enough” has a similar meaning with “unclear re-
quirements”, which was found in existing literature. However, requirements
being unspecific and them being unclear are not the same: when requirements
are unspecific, there might exist completely clear requirements which are too
broad. On the other hand, requirements might be very specific but written in an
ambiguous fashion, resulting in the requirements being unclear and difficult to
understand.

The fact that half of the failure factors that were identified in our empirical
study are not mentioned in the examined literature further indicates that RE
failure factors have not yet been studied comprehensively. If a solid amount of
scientific groundwork about the subject existed, a higher proportion of identi-
fied failure factors would presumably have been found in existing scientific pa-
pers. Table 15 includes a compilation of all failure factors identified in our liter-
ature review and empirical research.

TABLE 15 Requirements engineering failure factors identified in existing literature and in
the empirical research

Failure factor Found in existing
literature

Found in the em-
pirical research

Changing requirements x x

Conflicting system requirements x

Customers/users did not make enough time for
requirements gathering

x

Ill-defined project requirements x

Incomplete requirements x

Incomplete requirements analysis x

Lack of frozen requirements x

Misinterpretation of requirements x

Missing requirements x x

Misunderstanding the requirements x

No method for requirements gathering x

No single requirements repository for require-
ments

x

Poor requirements management x x

Project did not have good requirements at any
stage

x

Project not replanned after requirements changes x

Requirements conducted too late x

Requirements not specific enough x

Rushed requirements development x

Unclear requirements x x

Unprioritized requirements x

Wrong people carrying out requirements devel-
opment

 x

49

6.1 Theoretical and Practical Implications

Software project failure factors have been studied quite extensively in the past,
but RE has not been a common focal point of scientific papers. This study at-
tempted to fill this research gap by providing insight of RE related failure fac-
tors. The study introduced several failure factors not mentioned in existing lit-
erature. These failure factors could be used as a partial baseline in studies that
examine failure factors and their rates of incidence in software projects. For ex-
ample, the newly identified RE failure factors could be included on a list of fail-
ure factors that are investigated in a failure factor study.

Another theoretical implication of this study is that there probably exists
failure factors that concern RE that have not been identified in existing failure
factor studies. Multiple failure factors that were mentioned in our empirical
study are not found in existing literature, which hints that more work is needed
to establish a rigid foundation of RE failure factors.

In a practical sense, this study gives project managers and other people
working with RE information about what are the most common RE related pit-
falls in software projects. Being aware of RE’s prevailing risks might help avoid-
ing them in real life scenarios. As RE plays a crucial role in software projects
and affects all other project activities, it is probably worthwhile to recognize
what can go wrong with it in order to increase the success rate of projects and to
save time and money.

6.2 Limitations

One limitation of the study concerns partial homogeneity of the interviewees, as
they all work for Finnish IT organizations. Even though the interviewees repre-
sent multiple different professional titles and have varying professional experi-
ence (ranging from 3 years to 26 years), the fact that they are all positioned in
Finnish organizations might skew the study’s results. Interviewing people from
organizations based in other countries could have resulted in different failure
factors to be discovered in the study.

It is also worth noting that semi-structured interviews give some freedom
to the interviewer to guide the interview process, which affects the reliability of
the study. What this means is that different interviewers could theoretically get
different results from the same interviewees. The interviewees would probably
mention failure factors that they consider to be the most significant to any in-
terviewer, but less impactful failure factors could remain unmentioned to some
interviewers.

Another limitation of the study is that some of the scientific papers refer-
enced are quite old. It was challenging to find more than few recent papers con-
cerning RE related failure factors, so there are a couple of papers included from
the beginning of 2000’s and one from 1990’s. The main limitation here is that the

50

prevalence of different failure factors in software projects might be different
today compared to what it was about twenty years ago. However, the main rea-
son to inspect existing literature was more to find a comprehensive list of exist-
ing failure factors rather than to find out how frequently each failure factor oc-
curs.

6.3 Future Research

Several new RE related failure factors arose in this qualitative study, but uni-
dentified failure factors probably still exist. Considering the importance of RE
in terms of software project success, additional explorative research in the area
would be valuable. Also, the impact and incidence rate of already identified RE
failure factors could be studied in a quantitative fashion to further increase the
understanding regarding the significance and prevalence of each RE failure fac-
tor. In other words, it would be valuable to increase the amount of existing in-
formation regarding what RE failure factors have the most significant impact to
software project success, and how often each failure factor appears in software
projects.

Failure factor studies that were examined in our literature review all men-
tion different RE failure factors, which hints that there might not be a broad
amount of well-established knowledge about what the most significant RE fail-
ure factors are. Software project failure factors in general have been studied
comprehensively before, but more research is needed to expand the knowledge
foundation regarding RE failure factors. Broadening this knowledge would
most likely help failure factor research in general by giving academics a better
understanding about what RE failure factors should be included in future stud-
ies.

51

7 CONCLUSION

The aim of this study was to identify the most prominent RE failure factors in
software projects. Past research papers have looked into software project failure
factors in general quite extensively, but RE has not been the primary focus of
many of the papers. This study attempts to broaden the information available
about RE failure factors in software projects by providing insight about the sub-
ject in terms of existing literature and opinions of experts of the field.

A total of 17 RE failure factors were identified in the literature review of
the study, and these failure factors were observed to concern three aspects of
RE: requirements development, requirements management, and quality of re-
quirements. Little over half of the identified failure factors are related to quality
of requirements, whereas the rest are evenly distributed between requirements
development and requirements management.

The empirical research that was conducted in the study yielded a total of
eight identified RE failure factors. Four of these failure factors were also found
in the literature review. Additionally, four failure factors could not be found in
existing literature and had to be conducted for this study. The failure factors
that were most frequently mentioned by the interviewees of the empirical re-
search were “requirements not specific enough”, “changing requirements” and
“wrong people carrying our requirements engineering”.

52

REFERENCES

Bass, L., Bergey, J., Clements, P., Merson, P., Ozkaya, I., & Sangwan, R. (2006). A
comparison of requirements specification methods from a software architecture
perspective. Carnegie-Mellon Univ Pittsburgh PA Software Engineering
Inst.

Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A., Cunningham, W.,
Fowler, M., ... & Kern, J. (2001). Manifesto for agile software development.

Bogdan, R., & Biklen, S. K. (1997). Qualitative research for education. Boston, MA:
Allyn & Bacon.

Cao, L., & Ramesh, B. (2008). Agile requirements engineering practices: An
empirical study. IEEE software, 25(1), 60-67.

Cavanagh, S. (1997). Content analysis: concepts, methods and
applications. Nurse researcher, 4(3), 5-16.

Charette, R. N. (2005). Why software fails. IEEE spectrum, 42(9), 36.

Chow, T., & Cao, D. B. (2008). A survey study of critical success factors in agile
software projects. Journal of systems and software, 81(6), 961-971.

Chung, L., & do Prado Leite, J. C. S. (2009). On non-functional requirements in
software engineering. In Conceptual modeling: Foundations and
applications (pp. 363-379). Springer, Berlin, Heidelberg.

Clancy, T. (1995). The chaos report. The Standish Group.

Cockburn, A., & Highsmith, J. (2001). Agile software development: The people
factor. Computer, 34(11), 131-133.

Cohen, D., & Crabtree, B. (2006). Qualitative research guidelines project.

De Lucia, A., & Qusef, A. (2010). Requirements engineering in agile software
development. Journal of emerging technologies in web intelligence, 2(3), 212-
220.

Dey, I. (2003). Qualitative data analysis: A user friendly guide for social scientists.
Routledge.

Dingsøyr, T., Nerur, S., Balijepally, V., & Moe, N. B. (2012). A decade of agile
methodologies: Towards explaining agile software development.

53

Ebad, S. A. (2020). Healthcare software design and implementation—A project
failure case. Software: Practice and Experience, 50(7), 1258-1276.

Elo, S., & Kyngäs, H. (2008). The qualitative content analysis process. Journal of
advanced nursing, 62(1), 107-115.

España, S., Condori-Fernandez, N., González, A., & Pastor, Ó. (2010). An
empirical comparative evaluation of requirements engineering
methods. Journal of the Brazilian Computer Society, 16(1), 3-19.

Eveleens, J. L., & Verhoef, C. (2009). The rise and fall of the chaos report
figures. IEEE software, (1), 30-36.

Firesmith, D. (2003). Modern requirements specification. Journal of Object
Technology, 2(2), 53-64.

Francis, J. J., Johnston, M., Robertson, C., Glidewell, L., Entwistle, V., Eccles, M.
P., & Grimshaw, J. M. (2010). What is an adequate sample size?
Operationalising data saturation for theory-based interview
studies. Psychology and health, 25(10), 1229-1245.

Fricker, S. A., Grau, R., & Zwingli, A. (2015). Requirements engineering: best
practice. In Requirements Engineering for Digital Health (pp. 25-46). Springer,
Cham.

Galvin, R. (2015). How many interviews are enough? Do qualitative interviews
in building energy consumption research produce reliable
knowledge?. Journal of Building Engineering, 1, 2-12.

Glinz, M. (2011). A glossary of requirements engineering terminology. Standard
Glossary of the Certified Professional for Requirements Engineering (CPRE)
Studies and Exam, Version, 1, 56.

Goedeke, J., Mueller, M., & Pankratz, O. (2017). Uncovering the Causes of
Information System Project Failure.

Graneheim, U. H., & Lundman, B. (2004). Qualitative content analysis in
nursing research: concepts, procedures and measures to achieve
trustworthiness. Nurse education today, 24(2), 105-112.

Hickey, A. M., & Davis, A. M. (2004). A unified model of requirements
elicitation. Journal of management information systems, 20(4), 65-84.

Hoffmann, M., Kuhn, N., Weber, M., & Bittner, M. (2004, September).
Requirements for requirements management tools. In Proceedings. 12th
IEEE International Requirements Engineering Conference, 2004. (pp. 301-308).
IEEE.

54

Hughes, D. L., Rana, N. P., & Simintiras, A. C. (2017). The changing landscape
of IS project failure: an examination of the key factors. Journal of Enterprise
Information Management.

Hussain, A., Mkpojiogu, E. O., & Mohmad Kamal, F. (2016). The role of
requirements in the success or failure of software projects. International
Review of Management and Marketing, 6(S7), 306-311.

Ibraigheeth, M., & Fadzli, S. A. (2019). Core factors for software projects
success. JOIV: International Journal on Informatics Visualization, 3(1), 69-74.

IEEE. (1990). IEEE standard glossary of software engineering terminology. IEEE
Std 610.12-1990, 1-84.

Inayat, I., Salim, S. S., Marczak, S., Daneva, M., & Shamshirband, S. (2015). A
systematic literature review on agile requirements engineering practices
and challenges. Computers in human behavior, 51, 915-929.

Jiang, L., Eberlein, A., Far, B. H., & Mousavi, M. (2008). A methodology for the
selection of requirements engineering techniques. Software & Systems
Modeling, 7(3), 303-328.

Jørgensen, M., & Moløkken, K. (2005). How large are software cost overruns. A
Review of the 1994 CHAOS Report, 8.

Kamalrudin, M., & Sidek, S. (2015). A review on software requirements
validation and consistency management. International journal of software
engineering and its applications, 9(10), 39-58.

Krippendorff, K. (1980). Content analysis: An introduction to its methodology.
Sage publications.

Leech, B. L. (2002). Asking questions: Techniques for semistructured
interviews. PS: Political science and politics, 35(4), 665-668.

Longhurst, R. (2003). Semi-structured interviews and focus groups. Key methods
in geography, 3(2), 143-156.

Mason, M. (2010, August). Sample size and saturation in PhD studies using
qualitative interviews. In Forum qualitative Sozialforschung/Forum:
qualitative social research (Vol. 11, No. 3).

McManus, J., & Wood-Harper, T. (2007). Understanding the sources of
information systems project failure.

Nasir, M. H. N., & Sahibuddin, S. (2011). Critical success factors for software
projects: A comparative study. Scientific research and essays, 6(10), 2174-
2186.

55

Nuseibeh, B., & Easterbrook, S. (2000, May). Requirements engineering: a
roadmap. In Proceedings of the Conference on the Future of Software
Engineering (pp. 35-46).

Paetsch, F., Eberlein, A., & Maurer, F. (2003, June). Requirements engineering
and agile software development. In WET ICE 2003. Proceedings. Twelfth
IEEE International Workshops on Enabling Technologies: Infrastructure for
Collaborative Enterprises, 2003. (pp. 308-313). IEEE.

Pandey, D., Suman, U., & Ramani, A. K. (2010, October). An effective
requirement engineering process model for software development and
requirements management. In 2010 International Conference on Advances in
Recent Technologies in Communication and Computing (pp. 287-291). IEEE.

Ramesh, B., Cao, L., & Baskerville, R. (2010). Agile requirements engineering
practices and challenges: an empirical study. Information Systems
Journal, 20(5), 449-480.

Sauer, C., Gemino, A., & Reich, B. H. (2007). The impact of size and volatility on
IT project performance. Communications of the ACM, 50(11), 79-84.

Schmidt, R., Lyytinen, K., Keil, M., & Cule, P. (2001). Identifying software
project risks: An international Delphi study. Journal of management
information systems, 17(4), 5-36.

Schön, E. M., Thomaschewski, J., & Escalona, M. J. (2017). Agile Requirements
Engineering: A systematic literature review. Computer Standards &
Interfaces, 49, 79-91.

Shams-Ul-Arif, Q. K., & Gahyyur, S. A. K. (2009). Requirements engineering
processes, tools/technologies, & methodologies. International Journal of
Reviews in Computing, 2(6), 41-56.

Sillitti, A., & Succi, G. (2005). Requirements engineering for agile methods.
In Engineering and Managing Software Requirements (pp. 309-326). Springer,
Berlin, Heidelberg.

Standish Group. (1994). The chaos report. The Standish Group.

Standish Group. (2013). CHAOS manifesto 2013. The Standish Group International.

Sudhakar, G. P. (2012). A model of critical success factors for software
projects. Journal of Enterprise Information Management.

Tsumaki, T., & Tamai, T. (2005). A framework for matching requirements
engineering techniques to project characteristics and situation
changes. Situational Requirements Engineering Processes, 44.

56

Turk, D., Robert, F., & Rumpe, B. (2005). Assumptions underlying agile
software-development processes. Journal of Database Management
(JDM), 16(4), 62-87.

Van Lamsweerde, A. (2009). Requirements engineering: From system goals to UML
models to software (Vol. 10, p. 34). Chichester, UK: John Wiley & Sons.

Verner, J., Cox, K., Bleistein, S., & Cerpa, N. (2005). Requirements engineering
and software project success: an industrial survey in Australia and the
US. Australasian Journal of information systems, 13(1).

Verner, J., Sampson, J., & Cerpa, N. (2008, June). What factors lead to software
project failure?. In 2008 Second International Conference on Research
Challenges in Information Science (pp. 71-80). IEEE.

Wiegers, K., & Beatty, J. (2013). Software requirements. Pearson Education.

Wohlin, C., & Aurum, A. (2015). Towards a decision-making structure for
selecting a research design in empirical software engineering. Empirical
Software Engineering, 20(6), 1427-1455.

Yousef, A. H., Gamal, A., Warda, A., & Mahmoud, M. (2006, November).
Software projects success factors identification using data mining. In 2006
International Conference on Computer Engineering and Systems (pp. 447-453).
IEEE.

Zamudio, L., Aguilar, J. A., Tripp, C., & Misra, S. (2017, July). A requirements
engineering techniques review in agile software development methods.
In International Conference on Computational Science and Its Applications (pp.
683-698). Springer, Cham.

57

APPENDIX 1 INTERVIEW GUIDE (ENGLISH)

1. Introduction
- Introduce yourself.
- Tell about the ongoing study.
- Inform the interviewee that the interview is confidential, and data col-

lected will be anonymized.
- Ask the interviewee for a permission for audio recording. Inform the

interviewee that the audio recording will be deleted after the study is
concluded.

2. Background of the interviewee

- “What kind of professional background do you have?”
- “What is your current job title?”
- “What areas of responsibility do you have related to your job?”
- “What is your role in software projects?”

3. Requirements engineering in general

- “In what work-related situations do you work with requirements en-
gineering?”

- “What requirements engineering techniques have you used in software
projects? Examples of requirements engineering techniques are inter-
views, brainstorming and prototyping.”

- “Think of the last software project you were a part of. How were the
project’s requirements developed and managed throughout the pro-
ject?”

- “How important do you think requirements engineering is in terms of
software project success?”

4. Requirements engineering and software project failure

- “What do you think have been the most frequently occurring mistakes
related to requirements engineering in software projects that you have
been a part of?”

- “What challenges have poor requirements caused in software projects
that you have been a part of?”

- Define software project failure to the interviewee:
“In this research, a software project is considered failed if it exceeded
its budget or schedule or if its end product was lacking planned fea-
tures."

- “Think of a software project that you were a part of and that you con-
sider was a failure.”

o “What went wrong?”
o “How was requirements engineering carried out in the project?”

58

o “Could requirements engineering have been done better?
How?”

- “In your opinion, what are the most important success factors related
to requirements engineering?”

5. Conclusion

- Thank the interviewee for taking part in the interview.
- Tell the interviewee that they can contact you in case they later have

further questions regarding the study or the interview.
- Conclude the interview.

59

APPENDIX 2 INTERVIEW GUIDE (FINNISH)

1. Johdanto
- Esittele itsesi.
- Kerro meneillään olevasta tutkimuksesta.
- Kerro, että haastattelu on luottamuksellinen, ja että kaikki kerätty data

anonymisoidaan lopulliseen tutkielmaan.
- Pyydä haastateltavalta lupa haastattelun nauhoittamiseen. Kerro, että

äänite poistetaan tutkielman valmistuttua.

2. Haastateltavan taustat
- ”Millainen ammatillinen tausta sinulla on?”
- ”Mikä on nykyinen työtehtäväsi?”
- ”Millaisia velvollisuuksia ja vastuualueita työtehtävääsi kuuluu?”
- ”Mikä on roolisi ohjelmistoprojekteissa?”

3. Vaatimusmäärittely yleisesti

- ”Millaisissa työhösi liittyvissä tilanteissa joudut työskentelemään vaa-
timusmäärittelyn kanssa?”

- ”Mitä vaatimusmäärittelytekniikoita olet käyttänyt ohjelmistoprojek-
teissa? Vaatimusmäärittelytekniikoita ovat esimerkiksi haastattelut, ai-
voriihet ja prototyyppien tekeminen.”

- ”Muistele viimeisintä ohjelmistoprojektia, jossa olit osallisena. Miten
projektin vaatimukset muodostettiin ja miten niitä hallinnoitiin projek-
tin aikana?”

- ”Kuinka tärkeänä pidät vaatimusmäärittelyä ohjelmistoprojektien on-
nistumisen kannalta?”

4. Vaatimusmäärittely ja ohjelmistoprojektien epäonnistuminen

- ”Mitkä ovat olleet useimmiten toistuvia vaatimusmäärittelyyn liittyviä
virheitä ohjelmistoprojekteissa, joissa olet ollut osallisena?”

- ”Millaisia haasteita heikkolaatuiset vaatimukset ovat aiheuttaneet oh-
jelmistoprojekteissa, joissa olet ollut osallisena?”

- Määrittele haastateltavalle ohjelmistoprojektin epäonnistuminen:
”Tässä tutkimuksessa ohjelmistoprojekti lasketaan epäonnistuneeksi,
jos se on ylittänyt budjettinsa, ei ole pysynyt aikataulussaan tai sen
lopputuotteesta on jouduttu karsimaan suunniteltuja ominaisuuksia.”

- ”Muistele jotakin ohjelmistoprojektia, jossa olit osallisena ja joka mie-
lestäsi epäonnistui.”

o ”Mikä meni pieleen?”
o ”Miten vaatimusmäärittely toteutettiin projektin aikana?”
o ”Olisiko vaatimusmäärittelyn voinut tehdä paremmin? Miten?”

60

- ”Mitkä ovat mielestäsi tärkeimpiä tekijöitä onnistuneessa vaatimus-
määrittelyssä?”

5. Yhteenveto

- Kiitä haastateltavaa haastatteluun osallistumisesta.
- Kerro haastateltavalle, että hän voi olla sinuun yhteydessä, jos hänelle

tulee myöhemmin mieleen haastatteluun tai tutkimukseen liittyviä ky-
symyksiä.

- Päätä haastattelu.

	1 INTRODUCTION
	1.1 Motivation for Research
	1.2 Research Questions
	1.3 Structure

	2 SOFTWARE PROJECT FAILURE
	2.1 Defining Failure
	2.2 Incidence and Cost of Failure
	2.3 General Failure Factors

	3 REQUIREMENTS ENGINEERING
	3.1 Definition
	3.2 Requirements Engineering Process
	3.3 Traditional Versus Agile Software Development
	3.4 Requirements Elicitation Techniques
	3.5 Frameworks and Methodologies
	3.6 Success Factors
	3.7 Failure Factors

	4 RESEARCH DESIGN
	4.1 Research Method
	4.2 Data Analysis

	5 EMPIRICAL RESULTS
	5.1 Interview Results
	5.1.1 Interview 1
	5.1.2 Interview 2
	5.1.3 Interview 3
	5.1.4 Interview 4
	5.1.5 Interview 5
	5.1.6 Interview 6
	5.1.7 Interview 7

	5.2 Compiled Results

	6 DISCUSSION
	6.1 Theoretical and Practical Implications
	6.2 Limitations
	6.3 Future Research

	7 CONCLUSION

