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ABSTRACT

Blagov, Mikhail

Exact lock-in range for classical phase-locked loops

Jyvaskyla: University of Jyvaskyld, 2021, 36 p. (+included articles)
(JYU Dissertations

ISSN 2489-9003; 469)

ISBN 978-951-39-8953-8 (PDF)

Phase-locked loops (PLLs) are are widely used in various applications: Wireless
communications, GPS navigation, gyroscope systems, computer architectures,
electrical grids, and others. PLLs are inherently non-linear, but in engineering
practice, they are actually designed and analyzed mostly using linear methods.
Recent development in the manufacturing of electronics has led to ever higher
operating frequencies and, hence, to more stringent requirements for the design
of PLLs.

This dissertation is devoted to the study of phase-locked loops, in particular
to their synchronization properties. The ability of the phase-locked loop to syn-
chronize fast without cycle slipping is characterized by the loop’s lock-in range.

The problem of determining the lock-in range is called the Gardner problem
for lock-in range, named after IEEE Fellow E. M. Gardner, who formulated the
problem in the 1960s. Mathematically rigorous formulation of the lock-in range
by N. Kuznetsov, however, is only a few years old, and the first approaches to im-
prove the estimates of the lock-in range using non-linear methods were proposed
by K.D. Aleksandrov in his doctoral dissertation.

This work furthers the mathematically rigorous study of the lock-in range
and is devoted to the exact calculation of the lock-in in range for a classical phase-
locked loop with active proportionally integrating and lead-lag filters. For phase
space, phase-locked loop models with piecewise-linear phase detectors character-
istized by an exact lock-in range is obtained for both the considered filter types.
For the phase-space phase-locked loop model with an active proportionally inte-
grating filter and tangential that is characteristic of a phase detector, the lock-in
range is proven to be infinite. All theorems have strict mathematical proof and
have been confirmed by numeric simulation.

Keywords: PLL, phase-locked loops, lock-in range, Gardner problem, exact lock-
in range



TIIVISTELMA (ABSTRACT IN FINNISH)

Blagov, Mikhail

Tarkka lukitusalue klassisille vaihelukituille silmukoille
Jyvaskyla: University of Jyvaskyld, 2021, 36 s. (+artikkelit)
(JYU Dissertations

ISSN 2489-9003; 469)

ISBN 978-951-39-8953-8 (PDF)

Vaihelukittuja silmukoita (PLL, phase locked loop) kdytetddn laajasti erilaisis-
sa sovelluksissa: langattomassa viestinndssd, GPS-navigaatiossa, gyroskooppi-
jarjestelmissd, tietokonearkkitehtuureissa, sdahkoverkoissa ja muissa. PLL:t ovat
toimintaperiaatteeltaan epdlineaarisia, mutta teollisuudessa niitd suunnitellaan
ja analysoidaan yhd enimmaékseen lineaarisilla menetelmilla. Jatkuvasti kehitty-
vé elektroniikan valmistusteknologia mahdollistaa yhd korkeammat toimintataa-
juudet, mikd puolestaan asettaa yha tiukempia vaatimuksia PLL-piirien suunnit-
telulle.

Tassd tyossa tutkitaan vaihelukittuja silmukoita ja erityisesti niiden synkro-
nointiominaisuuksia. Vaihelukitun silmukan keskeisin ominaisuus on kyky synk-
ronoitua nopeasti ohjaavaan signaaliin, hukkaamatta yhtdéan syklid ohjaussignaa-
lin taajuuden muuttuessa. Taajuusikkunaa, jossa tdimd onnistuu, kutsutaan silmu-
kan lukitusalueeksi.

IEEE-Fellow E. M. Gardner muotoili lukitusalueen maarittdimisen ongelman
ongelman 1960-luvulla.

Lukitusalueen matemaattisesti eksakti méaritelméa on kuitenkin vain muu-
taman vuoden vanha ja ensimmadiset arviot, jotka hyodyntavit silmukan epéline-
aarisia piirteitd esitti K.D. Aleksandrov viitoskirjassaan 2016.

Tama tyo jatkaa matemaattisesti tarkkaa lukitusalueen analyysid. TyOssa
johdetaan uusia tuloksia yleisesti kdytettyjen vaihelukittujen silmukoiden luki-
tusalueista. Ns. kanttiaaltoa kdyttaville silmukoille lukkiutumisalue voidaan méa-
rittdd tarkasti tapauksessa, jossa kdytetddn tavanomaisia aktiivisia suhteellisesti
integroivia PI-suotimia tai ns. lead-lag -suotimia. Silmukoille, joissa kdytetddn ak-
tiivista PI-suodatinta ja vaiheilmaisin kykenee antamaan rajattoman vasteen (ns.
tangentiaalinen vaiheilmaisin), lukitusalue on itseasiassa ddreton. Toisin sanoen
lukitus pystyy seuraamaan kaikkia taajuusmuutoksia. Silmukoiden ominaisuu-
det todistetaan matemaattisesti ja ominaisuuksia havainnollistetaan kattavin nu-
meerisin simuloinnein.

Avainsanat: PLL, vaihelukitut silmukat, lukitusalue, Gardner-ongelma, tarkka lu-
kitusalue
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1 INTRODUCTION

The interest to study phase-locked loops (PLL) comes from their wide applica-
tions. Initially described by A. Appleton in 1923 (Appleton (1923)) and H. Belles-
cize (Bellescize (1932)), PLL circuits have gained an important application in ra-
dio and telecommunication systems since the 1940s (Wendt and Fredentall (1943);
George (1951); Gruen (1953); Richman (1953, 1954)).

These circuits became widely used in wireless communications (Du and
Swamy (2010); Rouphael (2014); Best et al. (2016); Cho (2006); Ho (2005); Helalud-
din (2008); Rosenkranz and Schaefer (2016), GPS navigation systems (Kaplan and
Hegarty (2017)), gyroscope systems (Aaltonen and Halonen (2010); Senkal and
Shkel (2020); Kuznetsov et al. (2022)), computer architectures (Kolumban (2005);
Best (2007, 2018)), electrical grids (Karimi-Ghartemani (2014); Kuznetsov et al.
(2020, 2021b,a)), and others.

The first ideas of the mathematical analysis of such systems belong to Italian
academician F. Tricomi (Tricomi (1933)) and are based on the analysis of system
phase portraits. These ideas were further developed in the works of A.A. An-
dronov (Andronov and Khaikin (1937)). Fundamental monographs devoted to
the problems of numerical simulation and analysis of PLL were published in 1966
by F. Gardner (Gardner (1966)), A. Viterbi (Viterbi (1966)), V.V. Shakhgildyan,
and A.A. Lyakhovkin (Shakhgil’dyan and Lyakhovkin (1966)). These books are
devoted primarily to engineering approaches to analyse two-dimensional PLL
models.

PLL systems are substantially nonlinear, hence the full analysis must be
nonlinear. However, linear methods are still widely used in engineering practice,
and some problems of PLL analysis have not yet been solved using nonlinear
methods. This was stated by Daniel Abramovitch (Abramovitch (2002)): “In fact,
the control theory used in most PLL texts is straight linear system design with a small
amount of non- linear heuristics <...>. The stability analysis and design of the loops tends
to be done by a combination of linear analysis, rule of thumb, and simulation.” One of
the possible reasons for this is stated in Tranter et al. (2010): Nonlinear analysis
techniques are well beyond the scope of most undergraduate courses in communication
theory.
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The lack of adequate nonlinear analysis has resulted in the wide use of var-
ious conjectures and heuristics about the behaviour of PLLs that are based on
linear analysis and linear estimates of key engineering characteristics of PLL’s
pull-in range (corresponding to global stability of the dynamical system). As ex-
amples of such conjectures, one can consider Egan’s conjecture about the pull-
in range (Egan (2007, 2011)) and Kapranov’s conjecture that pull-in ranges of
the second-order type 1 PLLs are defined by self-exciting oscillations (Kapra-
nov (1956)). Corresponding counterexamples can be found in (Gubar” (1961);
Kuznetsov et al. (2021c¢)).

Along with this, by virtue of the development of electronics manufacturing
technologies, operational frequencies increased, which required further refine-
ment of the operation range estimates. On the other side, mathematical models
can now be accurately implemented in practice, including software realizations
of phase-locked loops. This unlocks the use of models with marginally stable fil-
ters (with pole at the origin) along with the classically stable ones. Marginally
stable filters allow the extention of the stability area of the closed system and in-
crease the speed of the frequency lock (Egan (2007, 2011)). These facts require
further development of nonlinear PLL analysis to increase the accuracy of the
system properties estimates.

Nonlinear approaches for PLL study have been actively developed as part
of the scope of the Educational and Research Double Degree Program organized
by University of Jyvaskyla (Faculty of Information Technology) and Saint Peters-
burg State University (Department of Applied Cybernetics). Several doctoral dis-
sertations have been devoted to the topic (Kuznetsov (2008); Kudryashova (2009);
Yuldashev (2013a,b); Aleksandrov (2016)). One of the actively studied problems
within the program is the Gardner problem of the lock-in range estimation (Gard-
ner (2005)), which is further refinement of the PLL behavior inside the pull-in
range. It considers the ability of the PLL to synchronize in a short time. “If,
for some reason, the frequency difference between input and VCO is less than the loop
bandwidth, the loop will lock up almost instantaneously without slipping cycles. The
maximum frequency difference for which this fast acquisition is possible is called the lock-
in frequency”. A rigorous approach to the Gardner problem was suggested by
N.V. Kuznetsov (Leonov and Kuznetsov (2014); Leonov et al. (2015b); Kuznetsov
etal. (2019, 2021c)). The first analytical estimate of the lock-in range was obtained
in the doctoral dissertation of K.D. Aleksandrov (Aleksandrov (2016)) and made
engineering estimates more accurate.

Research questions of this dissertation are related to the Gardner problem:

RQ1 Is the approximate estimate of the lock-in range by R.E. Best (Best (2007,
2018)) valid in general? Can it be refined using the rigorous analytical meth-
ods for phase-locked loops with an active proportionally-integrating filter
and piecewise-linear phase detector characteristic?

RQ2 Is the approximate estimate of the lock-in range by R.E. Best (Best (2007,
2018)) valid in general? Can it be refined using the rigorous analytical meth-
ods for phase-locked loops with a lead-lag filter and piecewise-linear phase
detector characteristic?
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RQ3 Can the lock-in range of a phase-locked loop be infinite (this question is in-
spired by Egan’s conjecture about the infinite pull-in range of phase-locked
loops (Egan (2011)))?

These questions are inspired by modern engineering applications of phase-locked
loops in satellite communication systems (Best (2007, 2018)), electrical grids (Karimi-
Ghartemani (2014); Kuznetsov et al. (2021b,a)), and gyroscopy (Senkal and Shkel
(2020); Kuznetsov et al. (2022)). These questions are also topics of interest for
Finnish researchers and engineers (see e.g. Kihara et al. (2002); Aaltonen and
Halonen (2010)).

In this dissertation, the definition of a lock-in range is modified according
to engineering requirements and an analytic exact lock-in range is obtained. Re-
sults, related to RQ1, are considered in included articles (PI), to RQ2 in included
articles (PII; PIV; PV), to RQ2 and in included article (PIII). See FIGURE 1 for the
detailed mapping to chapters.

et : Introduction e il :

Analytics I Simulation

Problem statement and main results

Exact lock-in range for

: classical PLL with active Pl ;
E k—) filter and piecewise-linear fj !
' phase detector characteristic i

RQ1 ;

Infinite lock-in range for
classical PLL with active PI
filter and tangential phase

detector characteristic.

RQ3

Exact lock-in range for
classical PLL with lead-lag
filter and piecewise-linear

phase detector characteristic.
RQ2

I
Conclusion : !
e H
References
[
Appendix

FIGURE 1 Structure of the chapters and their connection with included articles.



2 PROBLEM STATEMENT AND MAIN RESULTS ON
RESEARCH QUESTIONS

2.1 Mathematical model of PLL and lock-in range definition

Mathematical model of PLL in the signal’s phase space (Gardner (2005); Egan (2007);
Leonov et al. (2015b); Best (2018)) is shown in Fig.2. Here, the outputs of the

Gref(t) @(eref(t) - evco(t))

Ref > PD Filter A‘

Y

VCO[=

FIGURE 2 PLL model in the signal’s phase space.

reference oscillator and VCO are phases 6,c¢(t) and 6y (t) correspondingly. They
are supplied to the input of a nonlinear block called a phase detector. The output
of the phase detector — Kyco@(Oref(t) — Oyeo(t)). Here ¢(6.) — and functions of
phase difference 0, = 0,¢¢(t) — Oyvco(t) is called a phase detector characteristic. The
magnitude Ky, is called a VCO gain. The form of phase detector characteristic
¢(0,) depends on the form of reference and VCO signal’s waveforms. Various
signals” waveforms lead to different characteristic functions in the model (Leonov
et al. (2015a)).

The frequency of the input signal (reference frequency wf) is usually as-
sumed to be constant:

gref(t) = wref(t) = Wref- (1)

Consider the system of differential equations describing the loop filter:

X =Ax+be(6.(t)),

G(t) =c"x +ho(0.(t)). @)
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Tuning of the VCO is considered to be linear
Oyeo(t) = W + KyeoG(t). (3)

Combine equations (1), (2) and (3) to get an autonomous system of differen-
tial equations describing the model in FIGURE. 2:

{x = Ax + be(6.),

: free * (4)
0 = w;¢ — Kyeo (¢*x + hep(6,)) .

Here A — constant n x n matrix, x(t) € R" — vector describing filter state, b, ¢ and
h — constant vectors, f,(t) = wWyef — constant frequency of the reference oscillator,
wiree — free-running VCO frequency, Kyco > 0 — VCO gain. wf®® = w ¢ — wiree
is called a frequency detuning between the reference oscillator and VCO, and its
absolute value |w!™¢| is called a frequency deviation.

Consider the mathematical definitions of PLL operation ranges according

to (Kuznetsov et al. (2015); Leonov et al. (2015b); Best et al. (2016)).

Definition 1. Maximal interval of frequency deviation |wi™¢| € [0,wy,) such that an
asymptotically stable equilibrium exists and varies continuously while w'™ varies con-
tinuously within the interval is called a hold-in range.

The hold-in range corresponds to the local stability of the dynamical system
(4). It allows the system to return to a synchronized state (equilibrium) after a
small change in input frequency. The hold-in range is widely used in engineering
practice, see, e.g. (Viterbi (1966); Gardner (1966); Blanchard (1976); Best (2007);
Pederson and Mayaram (2008); Bakshi and Godse (2009); Best (2018)).

From a practical point of view, it is important to guarantee tending the sys-
tem towards a stationary set for any initial state of the model, see e.g. (Viterbi
(1966); Gardner (1966); Blanchard (1976); Best (2007); Talbot (2012); Best (2018)).

Definition 2. Maximal interval of frequency deviation |w'™¢| € 0, wy) from the hold-
in range such that mathematical model of PLL in signal’s phase space (4) is globally
asymptotically stable (i.e. every solution of the system (4) tends to some equilibrium as
t — +o0) is called a pull-in range.

Often, besides the tendence to the stationary set, the characteristics of the
transient process are important.

Definition 3. A cycle slipping occurs in PLL if

sup [6.(0) — 6.(t)] = 2.
t>0

The definition of cycle slipping in the present work is considered in accor-
dance to (Stensby (1997)). It is more practical oriented than that was previously-
studied in (Aleksandrov (2016)) definition, where the condition
limsup,_,, |0.(0) — 6.(t)| = 27t. was considered. Detailed discussion of the defi-
nitions can be found in (Kuznetsov et al. (2015); PII).
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Definition 4. A lock-in range is the largest interval of frequency errors |w®¢| from the
pull-in range such that the PLL model being in an equilibrium®, after any abrupt change
of wiree within the interval acquires an equilibrium without cycle slipping (sup |6,(0) —

t>0
0.(t)| < 270).

The boundary of the lock-in range wj is called the lock-in frequency. The
notion of the lock-in range defined above has appeared in many engineering
monographs, (see, e.g. Best (1984); Wolaver (1991); Hsieh and Hung (1996); Irwin
(1997); Craninckx and Steyaert (1998); Kihara et al. (2002); Abramovitch (2002);
De Muer and Steyaert (2003); Dyer (2004); Shu and Sanchez-Sinencio (2005); Gold-
man (2007); Best (2007); Egan (2007); Baker (2011); Kroupa (2012); Middlestead
(2017); Best (2018) and other).

2.2 Exact lock-in range for classical PLL with active PI filter and
piecewise-linear phase detector characteristic

Consider the main results related to the research question RQ1. Following the
classical monographs (Kolumbén (2005); Best (2007); Baker (2011); Best (2018))
and modern applications (Kuznetsov et al. (2021b)), consider the PLL with the

active proportionally integrating filter F(s) = 1“;%, wherey > 0,7, > Oare

filter parameters (see e.g. (Best (2007, 2018)) for their physical meaning). Then
system (4) takes the form of:

X = %190(@),

: (5)
6, = wi™® — Kyeo (x + %go(@e)) :

Consider the phase detector characteristic in the form

] kb, — 27tkn, if —1 +27n < 6.(t) < 1 + 27n,
9(0) = —nl -0, + % (m+2mm), if+2mn <6.(t) < —f+2n(n+1),
“r K
(6)
wheren € Z, k € (%, —{—oo> 2 This form of phase detector characteristic allows

one to not only obtain analytical estimates of operational ranges but also effec-
tively simulate PLL.

The hold-in and pull-in ranges of the classical second-order PLL with PI
filters are infinite, see e.g. (Kuznetsov et al. (2021c)). To prove that this a gener-
alization of classical stability theory, methods for systems with cylindrical phase

1 Note that the method of the lock-in range calculation suggested in (Aleksandrov (2016))

considers only stable equilibria, which allowed to obtain an estimate of the lock-in range
only. In this dissertation all equilibria are considered and analytical exact lock-in range is
obtained.

The classical triangular characteristic corresponds to the case k = %, see FIGURE. 3.
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‘P(ae)A
1
0 >
78 2T 0.
1

FIGURE 3 Piecewise-linear phase detector characteristic (6), k = %

spaces and discontinuous nonlinearities can be used. An extension of the Lya-
punov method for systems with non-unique equilibria was developed for this
purpose by Y.N. Bakaev (Bakaev (1959, 1960)) and G.A. Leonov (Leonov (1971,
1976); Gelig et al. (1978); Leonov and Kuznetsov (2014)).

Further refinement of the pull-in range in connection with the Gardner prob-
lem and cycle slipping estimation is provided by the following theorem:

Theorem 1. Exact lock-in frequency of model (5) with piecewise-linear PD characteristic
(6)is

7

i} 1\/ Kucold +5) 7' (4 = 52)F ?

where a, b and c are evaluated as

a= VCO =/ ]a%2 — = c—\/a2+4 7'(—— (8)

and d is the unique solution of one of the equations:

(d_%)T(d_#)b# + d>“+b a%k > 4,
d=75(1
2( +W(z\’;%exp >
(dz—ad—i—l)exp( arctan 2d)—71exp< arctanb> d>1%, a*k<4

©)
Here W(x) is the Lambert W function.

Notice that w; and w; are continuous functions of variable k (as a is fixed):
The cases a’k > 4 and 4k < 4 in formula (7) approach the case a*k = 4 as k — %
(asb — 0).

Proof. The proof of Theorem 1 is given in PI and is based on the following idea.
Hold-in and pull-in ranges are known to be infinite for the second-order PLL
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with an active PI filter. This is an interesting case when the Egan conjecture is
tulfilled (Kuznetsov et al. (2021c)). The phase detector characteristic of the sys-
tem is piecewise-linear, which allows it to analytically integrate in the intervals
of linearity. In order to do this, the system is converted into a single differential
equation using the approach suggested in (Belyustina (1959); Huque and Stensby
(2013)). Then, the lock-in range definition is interpreted in terms of phase plane
trajectories. The combination of the above steps allows to formulate two sub-
sequent Cauchy problems, which gives an exact formula for the lock-in range
calculation. O

Based on Theorem 1, an analytical-numerical method of the lock-in range
calculation is implemented and diagrams of the lock-in range dependent on the
system parameters useful for engineering practice (see e.g. (Belyustina et al.
(1972))) are composed (see. FIGURE 4). In FIGURE 5 the lock-in range estimates

T1

“ Koo

0.9 r ]
0.8 < ]
0.7 = ]
0.6 < ]
0.5 ¢ 722::0%9
0.4 > T
03 eI
0.2 e
0.1 T

10° 10! 107 10? 10t

FIGURE 4 The lock-in range of PLL with PI filter (5) and triangular characteristic of
phase detector (6).

obtained in this dissertation are compared with the results of K.D. Aleksandrov
(Aleksandrov (2016)) and linear estimate by R.E. Best (Best (2007, 2018)).

2.3 Infinite lock-in range for classical PLL with an active PI filter
and tangential phase detector characteristic

This chapter contains main results related to the research question RQ3. Consider
analog PLL model (5) with a tangential characteristic of phase detector. It was
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100 10t 102 1083 104 71

FIGURE 5 Comparison of the obtained lock-in range with earlier known results Alek-
sandrov (2016) and Best (2007, 2018). The diagram is given for » = 0.0225.
Here the blue dot-dash line is linear estimate by R.E. Best, the red solid line
is an estimate of K.D. Aleksandrov, and the green dashed line is the exact
lock-in range obtained in this dissertation. Note that the linear estimate is
more conservative for small KT%C" and is not valid for large %

introduced by American engineer L. Robinson® (Robinson (1965)), and allows
increasing the lock-in range in practice.

¢(0,) = tan(6,). (10)

Theorem 2. For a classical PLL with a PI filter and tangential phase detector character-
istic ¢(0,) = tan(6,), the pull-in and lock-in ranges are infinite.

Proof. The proof of Theorem 2 is given in PIII and is based on phase portrait
analysis of the system with discontinuous phase detector characteristics.

First, the hold-in and the pull-in ranges are considered. The first is infinite
as equilibria of the system exist for any phase errors. To prove the pull-in range
is infinite, a generalization of classic LaSalle’s invariance principle for periodic
functions with infinite number of equilibria is used (see Leonov and Kuznetsov
(2014)). The principle requires one to construct a Lyapunov function (11).

2 b
V) =P+ = /O tan 0,6 (11)

To study the lock-in range, phase plane trajectories are considered. Rigor-
ous consideration of their behavior proves the fact that all of them tend to the
equilibrium in the same band —% +7mn <0, < % + 7mn, n € Z and cycle slipping
is impossible. O

Complex implementation of the circuit allows one to construct a phase-
locked loop with an infinite lock-in range.

3 North American Aviation, Inc.
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FIGURE 6 Phase portrait of PLL model with tangential phase detector characteristic.

2.4 Exact lock-in range for classical PLL with lead-lag filter and
piecewise-linear phase detector characteristic

This chapter contains the main results related to the research question RQ2. For
some analog applications, it is necessary to use stable filters (without poles at
the origin) (Shakhgil’dyan and Lyakhovkin (1972); Best (2007, 2018)). In such
cases, a stable filter is used. Consider such a filter with a transfer function F(s) =
%, where 71 > T > 0 are filter parameters (see e.g. (Best (2007, 2018))
for the physical meaning of them), which is called a lead-lag filter. In this case,
system (4) takes form

1 T

X = X+ ¢(6e),

T+ T+

. 1 T
0 = wiree — K 0e) ) -
e = We veo (T1+T2x+ T1+T2q0( E))

(12)

Consider the piecewise-linear phase detector characteristic (6).

Theorem 3. The lock-in frequency of model (12) with triangular PD characteristic (6) is
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wy, which is the unique solution of the system of two variables (w;, Yap):

( k=1 /)
2 T+ =K\ K O+ qtK o\ F
(260[ ) ( kKyco kKyco > ( kKyco kKyco )
K=y
w+K [ w +K.
— <yAB — (77 — K) _;CKVC‘;CO> (yAB - ;7 + K l VCO)
r *é

(yaB — (¢ — P)w&ﬁ;’) (yaB — (C+P)w’+iff°) =
pte 2
=(k—n+¢—p) 7 (k—n+e+p)e (Bem)?, i g>1,
~ Kvcotwy
— e+ In(2lyap — Tl]) =
YAB™ IRyeo

== ,7+1+ln< (K—17+1) 2 w’>, if ¢=1,

VCo

Kveot Kyeot ¢ yan—C !
_ vco wl veo TW] S JAB 5 kKveo |
> In(yap — 28y as Semuin il G o )?) — 0 arCtan< — Koty ) =

(Frveo )
:%ln(<(1c—;7)2+2§(1<—17)+1> (%)3 _
—%arctan (lﬁ) + e if ¢<1

\ \ o 1Y
(13)
where
g o kTZcho +1
2\/kKVCO(T1 + Tz) ’
_ kT Kyeo — 2
2+/kKyeo(T1 + )
u=rmk—1,

p=/1¢>—1],
= /1% + .

Proof. The proof of Theorem 3 is given in PII and is based on the same ideas as
proof of Theorem 1. O

Based on Theorem 3, an analytical-numerical method of the lock-in range
calculation is implemented, and diagrams of the lock-in range useful for engi-
neering practice (see e.g. (Belyustina et al. (1972))) are composed (see. FIGURE 7).

The comparison of the obtained estimates is given in FIGURE 8. Here, the
lock-in range estimates obtained in this dissertation are compared with the linear
estimate by R.E. Best (Best (2007, 2018)).
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FIGURE 7 The lock-in range of PLL with a lead-lag filter (12) and triangular character-
istic of phase detector (6) for fixed 7.
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FIGURE 8 Comparison of the obtained lock-in range with earlier known results (Best
(2007, 2018)) and the pull-in range (PV,Gubar’ (1961); Shakhtarin (1969); Be-
lyustina et al. (1972)). The diagram is given for » = 0.0185. Parameters
below the red and yellow lines correspond to global stability, pull-in range.
The blue line is the estimate of an exact lock-in range obtained in this dis-
sertation, and the purple line is the linear estimate of the lock-in range by
R.E. Best. Note that the linear estimate is more conservative for some cases
and is not valid for others.



3 INCLUDED ARTICLES AND AUTHOR’S
CONTRIBUTION

The main results were published in the five included articles.

In PI (N.V. Kuznetsov, D.G. Arseniev, M.V. Blagov, Z. Wei, M.Y. Lobachev,
M.V. Yuldashev, R.V. Yuldashev. The Gardner problem and cycle slipping bifurca-
tion for type 2 phase-locked loops. Int. J. Bifurcation and Chaos, 2022 (accepted)),
the author obtained an exact analytic formula for the lock-in range of PLL with
an active PI filter and piecewise-linear characteristic of the phase detector and
provided numerical calculations of the lock-in range.

In PIII (M.V. Blagov, N.V. Kuznetsov, M.Y. Lobachev, M.V. Yuldashev, R.V. Yul-
dashev. The conservative lock-in range for PLL with lead-lag filterand triangular
phase detector characteristic. arXiv:2112.01602, 2021), the author proved that the
lock-in range of PLL with an active PI filter and tangential phase detector charac-
teristic is infinite.

In PII (M.V. Blagov, O.A. Kuznetsova, E.V. Kudryashova, N.V. Kuznetsov,
T.N. Mokaev, R.N. Mokaev, M.V. Yuldashev, R.V. Yuldashev. Hold-in, Pull- in
and Lock-in Ranges for Phase-locked Loop with Tangential Characteristic of the
Phase Detector. Procedia Computer Science, Vol. 150, pp. 558-566, 2019), the
author obtained an exact analytic formula for the lock-in range of PLL with lead-
lag filter and a triangular characteristic of the phase detector.

In PIV (M.V. Blagov, E.V. Kudryashova, N.V. Kuznetsov, G.A. Leonov, M.V. Yul-
dashev, R.V. Yuldashev. Computation of lock-in range for classic PLL with lead-
lag filter and impulse signals. IFAC-PapersOnLine, Vol. 49, I. 14, pp. 42—44, 2016)
and PV (M.V. Blagov, N.V. Kuznetsov, G.A. Leonov, M.V. Yuldashev, R.V. Yulda-
shev. Simulation of PLL with impulse signals in MATLAB: Limitations, hidden
oscillations, and pull-in range. 2015 7th International Congress on Ultra Modern
Telecommunications and Control Systems and Workshops (ICUMT), pp. 85-90,
2015) initial numerical estimates of the lock-in range and pull-in range for classi-
cal phase-locked loop with lead-lag filter were obtained by the author.

In all the above publications, the author’s contribution is proving analytical
theorems (obtaining exact analytic formulas for the lock-in range) and numerical
modeling.
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The results of the study were also reported at the 7th International Congress
on Ultra Modern Telecommunications and Control Systems and Workshops (Brno,
Czech Republic, 2015), 13th International Symposium «Intelligent Systems 2018»
(Saint-Petersburg, Russia, 2018), 11th Russian multiconference on control (Saint-
Petersburg, Russia, 2018), 11th IFAC Symposium on Nonlinear Control Systems
(Vienna, Austria, 2019), 13th Russian conference on control (Moscow, Russia, 2019),
at the seminars of the Department of Applied Cybernetics (St. Petersburg State
University, Russia), and at the seminars of the Faculty of Information Technology
(University of Jyvaskyld, Finland).



4 CONCLUSION AND DISCUSSION

This dissertation is devoted to the study of classical PLL systems with PI and
lead-lag filters, which are widely used in modern engineering applications in
electrical grids (Karimi-Ghartemani (2014); Kuznetsov et al. (2021b,a)), satellite
communications systems (Best (2007, 2018)), and gyroscopy (Senkal and Shkel
(2020); Kuznetsov et al. (2022)).

Answers to all the research questions were given:

RQ1 Well-known approximate estimates of the lock-in range by R.E. Best (Best
(2007,2018)) and K.D. Aleksandrov (Aleksandrov (2016)) were refined using
the rigorous analytical methods for phase-locked loops with active proportionally-
integrating filter and the piecewise-linear phase detector characteristic. The
estimate of the lock-in range by R.E. Best is not valid in general and may
cause incorrect conclusions about phase-locked loop behavior.

RQ2 Similar approximate estimates of the lock-in range by R.E. Best (Best (2007,
2018)) were refined for phase-locked loops with the lead-lag filter and piecewise-
linear phase detector characteristic. The estimate of the lock-in range by
R.E. Best is not valid in general and may cause incorrect conclusions about
phase-locked loop behavior.

RQ3 The lock-in range of a classical phase-locked loop with a proportionally-
integrating filter and tangential phase detector characteristic was proven to
be infinite.

The obtained diagrams of the lock-in range can be used for the synthesis and
design of phase-lock loops in various applications. Despite this, there is room
for further development of the theory and algorithms. As the next step of the
research, the lock-in range for a phase-locked loop with discontinuous sawtooth
phase detector characteristics can be calculated for given filters. Furthermore, the
same approach to study the lock-in range can be applied to phase-locked loops
with higher-order filters and piecewise-linear phase detector characteristics.



YHTEENVETO (SUMMARY IN FINNISH)

Tassa vaitoskirjassa tutkittiin monissa sovelluksissa, kuten sahkoverkoissa, satel-
liittiviestinndssa tai gyroskoopeissa, kdytettdavid vaihelukittuja silmukoita ((phase-
locked loop, PLL))ja niiden synkronotumista, kun silmukoissa kédytetdan yleisia
suhteellisesti integroivia (PI) ja johdinviive suodattimia.

Keskeiset tutkimuskysymykset liittyvat silmukoiden kykyyn synkronoitua
ohjaavan signaalin taajuusmuutoksiin. Téahan liittyvid kédsitteitd ovat “pull in” -
alue, (taajuusvili, jonka sisdlld pysyvistd hdirivistd silmukka ylipdatdan toipuu
synkrooniin), sekd lukitusalue ("lock-in’, jonka sisdlld yhtddn tahtia ei jaa véliin
synkronoitumisen aikana. Ndihin liittyvid konkreettisia tutkimuskysymyksid ovat:

RQ1 Onko vaihelukitun silmukan lukitusalueen koolle aiemmin esitetty arvio
(Best (2007, 2018)) yleisesti voimassa. Voidaanko sitd tarkentaa epélineaari-
sen analyysin keinoin tyypillisessad sovellustilanteessa, jossa kasitelldan suo-
rakaidepulsseja ja paloittain lineaarisia vaihetunnistimia sekd PI-suodattimia.

RQ2 Onko vastaava lukitussalueelle esitetty arvio (Best (2007, 2018)) yleisesti
voimassa silmukoille, joita suodatetaan stabiileilla johdinviivesuodattimil-
la.

RQ3 Voiko vaihelukitun silmukan lukitusalue olla ddretén. Egan (2011) on esit-
tanyt konjektuurin, jonka mukaan tietyissd tilanteissa faasilukitut silmu-
kat pystyvit toipumaan mielivaltaisen suurista héiridistd eli niiden "pull-in’
alue on dédrettoman suuri. Pateeko tdima myos lukitusalueille.

Ty0ssd annetaan vastaukset kaikkiin tutkimuskysymyksiin:

RQ1 R.E. Bestin ja K.D. Aleksandrovin aiemmin esittdmid arvioita tarkennettiin
johtamalla analyyttisesti tarkat lausekkeet lukitusalueen koolle vaihelukit-
tuille silmukoille, joissa on aktiivinen suhteellisesti integroiva suodatin ja
paloittain lineaarinen vaiheilmaisin. R.E. Bestin esittama arvio lukitusalu-
eesta ei ole yleisesti ottaen pédtevad ja voi aiheuttaa vddrid johtopaatoksid vai-
helukitun silmukan kédyttdytymisesta.

RQ2 R.E. Bestin aiemmat likimé&daraiset arviot lukitusalueesta tarkennettiin vai-
helukittuille silmukaoille, joissa on johdinviivesuodatin ja paloittain lineaa-
rinen vaiheilmaisin. R.E. Bestin arvio lukitusalueesta ei ole yleisesti ottaen
patevd ja voi aiheuttaa vadrid johtopadatoksia vaihelukitun silmukan kayt-
taytymisesta.

RQ3 Klassisen vaihelukitun silmukan, jossa on suhteellisesti integroiva suodatin
ja tangentiaalinen vaiheilmaisin, lukitusalue osoitettiin darettomaksi.

Tyossd johdettuja tarkkoja kaavioita lukitusalueesta voidaan kayttda vaiheluki-
tussilmukoiden synteesiin ja suunnitteluun eri sovelluksissa.
Téstd huolimatta teorian ja algoritmien kehittdmisen varaa on edelleen.
Tutkimuksen seuraavana vaiheena voidaan laskea annetuille suodattimille
lukitusalue vaihelukitulle silmukalle, jossa on epdjatkuva paloittain lineaarinen
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vaiheilmaisin. Lisdksi samaa ldhestymistapaa lukitusalueen tutkimiseen voidaan
soveltaa vaihelukittuihin silmukoihin, joissa on korkeamman asteen suodattimet
ja paloittain lineaarinen vaiheilmaisin.
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APPENDIX1 COMPUTATION OF THE EXACT LOCK-IN
RANGE FOR PLL WITH PI FILTER

Calculation of the lock-in frequency for PLL with PIfilter (5) and triangular phase-

detector characteristic (6) (k = %).

function omega_ 1 = omega_l formula_pi(tau_1, tau_2, k, K_vco)
%omega_Il_formula_pi Calculates the lock—in

%frequency for classical PLL with PI

%Dfilter

a = sqrt(K_vco/tau_1)+tau_2;
b = sqrt(abs(a."2—-4/k));
c = sqrt(a.r2—4/k + 4xpi);

syms y;

if (a"2+k < 4)
fcn = (y"2 — axy + 1/k) =
exp( 2+a/bratan(b/(a — 2xy))) —...
pi*exp(2+a/bxatan(b/c));
d = vpasolve(fcn, y, [a/2 Inf]);
else
if abs(a”2+xk — 4) < 0.001
d = a/2+(1 + 1/(lambertw(a/(2+sqrt(pi)))=...
exp(—a/(2+sqrt(pi)))));
else
fcn = (y — (a=b)/2)M((b—-a)/(b))=*...
(y — (a+b)/2)~((b+a)/ (b))
— pix((c+b)/(c—b))"(a/b);
d= vpasolve(fcn, y, [(a+b)/2 Inf]);
end
end

omega_l = 1/2+sqrt ((K_vcox(d + (c—a)/2)"((c—a)/c)*...
(d — (c+a)/2)"((c+a)/c))/tau_1);

end



APPENDIX2 COMPUTATION OF THE EXACT LOCK-IN
RANGE FOR PLL WITH LEAD-LAG FILTER

Calculation of the lock-in frequency for PLL with lead-lag filter (12) and triangu-

lar phase-detector characteristic (6) (k = %).

function out = omega_l_conservative(tau_1, tau_2, k, K_vco)
out = 0;
mu = pi*k — 1;

X1 (k#tau_2+K_ vco + 1)/ (2+sqrt(k*K_vcox(tau_1 + tau_2)));
eta = (kxtau_2+K_vco — mu)/(2+sqrt(k+«K_vco*(tau_1 + tau_2)));
rho = sqrt(abs(xi"2 — 1));

kappa = sqrt(eta”2 + mu);

syms y_ab zomega_lc;

curvel = (2+zomega_lc)"N2x...
(sqrt((tau_1l + tau_2)/(k*K_vco)) — ...
(eta — kappa)/(k*K_vco))”((kappa — eta)/kappa)=*...
(sqrt((tau_1 + tau_2)/(k*K_vco)) — ...
(eta + kappa)/(k+K_vco))”((kappa eta)/kappa) == ...
(y_ab — (eta — kappa)=*((zomega_lc + K_vco)/...
(k*K_vco)))"((kappa — eta)/kappa)=*...
(y_ab — (eta + kappa)=*((zomega_lc + K_vco)/...
(k*K_vco))) " ((kappa + eta)/kappa);

—+

if xi > 1
curve2 = (y_ab — (xi — rho)=*...
((zomega_lc + K_vco) /...
(k#*K_vco))) ((rho — xi)/(rho))=*...
(y_ab — (xi + rho)=...
((zomega_lc + K_vco)/(k+K_vco)))"...
((rho + xi)/(rho)) == ...
(kappa — eta + xi — rho)"((rho — xi)/...
(rho))+(kappa — eta + xi + rho)"...
((rho + xi)/(rho))=...
((K_vco — zomega_lc)/(k+K_vco))"2;
else
if (abs(xi — 1) < 0.001)
curve2 = (—(K_vco + zomega_lc) /...
(k*K_vco)) /...
(y_ab —(K_vco + zomega_lc)/(k*K_vco)) + ...
log (2+xabs(y_ab —(K_vco + zomega_lc) /...
(k*K_vco))) == ...
1/(kappa — eta + 1) + ...



36

In (2+(kappa — eta + 1)=*...
(K_vco — zomega_lc)/(k*K_vco));
else
curve2 = 1/2+log(y_ab”2 —
2+xi*y_abx*(K_vco + zomega_lc) /...
(k*K_vco) + ((K_vco + zomega_lc)/(k*K_vco))"2) —...
xi/rho+atan ((y_ab — xi=...
(K_vco + zomega_lc)/(k+K_vco)) /...
(—(K_vco + zomega_lc)/(k+*K_vco)+*rho)) ==
1/2+log (...
((kappa — eta)”2 + 2x+xix(kappa—eta) + 1)=*...
((K_vco — zomega_lc)/(k+xK_vco))"2

) — xi/rhoxatan ((kappa — eta + xi)/rho) + pixxi/rho;
end

end

res = vpasolve([curvel, curve2], [0 Inf; 0 K_vco]);
if ~isempty(eval(res.zomega_lc))
out = eval(res.zomega_lc);
end
end
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1. Introduction

Phase-locked loops (PLLs) are nonlinear control systems which are designed to synchronize a voltage-
controlled oscillator (VCO) signal with a reference one. PLLs have many applications in energy and robotic
systems, satellite navigation, wireless and optical communications, cyber-physical systems [Du & Swamy,
2010; Karimi-Ghartemani, 2014; Rosenkranz & Schaefer, 2016; Best et al., 2016; Kaplan & Hegarty, 2017;
Kuznetsov et al., 2020c; Zelenskii et al., 2021; Zelensky et al., 2021; Kuznetsov et al., 2022]. Analog PLLs
can be described by systems of nonlinear differential equations with periodic right-hand sides, which are
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also known as pendulum-like systems. In 1933, F. Tricomi was the first, who conducted nonlinear analysis
[Tricomi, 1933] of the systems which are equivalent to the second-order PLLs with lag filters (see, e.g.,
[Gardner, 2005]). It was proven that the global stability of those systems is determined by separatrices of
a saddle, which correspond to a heteroclinic bifurcation in the system. Further, bifurcations of the second-
order PLLs with lead-lag filters and different nonlinear characteristics of phase detectors were studied in
[Andronov et al., 1937; Kapranov, 1956; Belyustina, 1959; Gubar’, 1961; Shakhtarin, 1969].

PLL systems with lag and lead-lag loop filters can be classified as type 1 PLLs, because transfer
functions of such filters do not have poles at the origin. In engineering practice, so-called type 2 PLLs,
that have loop filters with exactly one pole at the origin, are most often used nowadays [Gardner, 2005].
The second-order type 2 analog PLLs are always globally stable (see, e.g., [Kuznetsov et al., 2021al), i.e.,
these PLLs acquire lock for any reference frequency. However, synchronization in the systems may take
long time. In order to reduce the long acquisition time, the lock-in concept has been introduced. According
to the concept, the locked PLL re-acquires a locked state without cycle slipping after an abrupt change of
the reference frequency. The problem of estimation of the reference frequencies where the concept is held
was posed by F. Gardner in his monograph [Gardner, 2005]. A rigorous approach to the Gardner problem
and analytical estimates of the lock-in range were suggested in [Kuznetsov et al., 2015, 2019b, 2021a,c,b].

The system where such abrupt reference frequency change occurs can be considered as a switching
system. The Gardner problem requires to study cycle slipping bifurcation of the system when a trajectory,
starting from an equilibrium of the system before the switch tends to an equilibrium of the system after
the switch. This task is similar to the problem of the heteroclinic bifurcation estimation in type 1 PLL
systems.

2. Mathematical Model and Stability Analysis

Fig. 1. Baseband model of analog PLLs.

Consider analog PLL baseband model in Fig. 1 [Gardner, 2005; Viterbi, 1966; Best, 2007; Leonov et al.,
2012, 2015b]. Here Oref(t) = wyert + brer(0) is a phase of the reference signal, a phase of the VCO is 0yco(t),
0c(t) = Oref(t) — Oyeo(t) is a phase error. A phase detector (PD) generates a signal ve(6,(t)) where ve(+) is
a characteristic of the phase detector. In the present paper, a piecewise-linear PD characteristic, which is
continuous and corresponds to square waveforms of the reference and the VCO signals, is considered:

(1)

0.+ —Lr(r+2mm),  L42rm <0.(t) < -1 +2n(m+1),

1
T T

kO, — 2wkm, —+ 4 2mm < 0.(t) < £ + 2m,
'Ue(ee) = 1

k

here k > 1, m € Z (see Fig. 2).
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Fig. 2. Triangular PD characteristic (piecewise-linear PD characteristic (1) with k = %)

The state of the loop filter is represented by z(t) € R and the transfer function is
1
Fls)= "2 550, m>0.
ST
The output of the loop filter vp(t) = %l(x(t) + T9ve(0e(t)) is used to control the VCO frequency wyeo(t),
which is proportional to the control voltage:

Wyco (t) = évco(t) = w‘f,rce(;e + KyeoVr (t)

where Ky, > 0 is a gain and w!I® is a free-running frequency of the VCO.

The behavior of PLL baseband model in the state space is described by a second-order nonlinear ODE:

T = ve(be),
. K. 2
e = wiree —— ( + TZUE(GQ)) ( )
T1
where w®® = w — Wi is a frequency error and wve(6,) is defined in (1). It is usually supposed that

the reference frequency (hence, w!™® too) can be abruptly changed and that the synchronization occurs
between those changes. Thus, existence of locked states, acquisition and transient processes after the
reference frequency change are of interest.

2.1. Local stability analysis

The PLL baseband model in Fig. 1 is locked if the phase error 6.(t) is constant. For the locked states of
practically used PLLs, the loop filter state is constant too and, thus, the locked states of model in Fig. 1
correspond to the equilibria of model (2) [Kuznetsov et al., 2015].

Definition 2.1. [Kuznetsov et al., 2015; Leonov et al., 2015a; Best et al., 2016] A hold-in range is the
largest symmetric interval of frequency errors |wi™| such that an asymptotically stable equilibrium exists

and varies continuously while wf®® varies continuously within the interval.

el wiree
KVCO
is

Observe that system (2) is 2w-periodic in 6, and has an infinite number of equilibria ( , wm),

el wzree
, T
co

m € Z. The characteristic polynomial of system (2) linearized at stationary states ( e

K K
x(s) = s2+ “veoT2 vl (mm)s + —=2) (7m).
T1 T1

1
1
™5

The nonlinearity v.(6.) decreases (vg(w +2mm) = — < O) for £ 4 2mm < 6e(t) < —3 + 2m(m + 1),

and equilibria (T};"E:C,ﬂ + 27rm) are saddles. The nonlinearity ve(6.) increases (v.(2mm) = k > 0) for




4 N.V. Kuznetsov, D.G. Arseniev, M.V. Blagov, M.Y. Lobachev, Z. Wei, M.V. Yuldashev, R.V. Yuldashev

7_1“)‘firee

—+ +2mm < 0.(t) < £ + 2mm, and the equilibria ( e

,27rm) are asymptotically stable:

2
o if KveoT2F o 4 then the equilibria (T}(v" 271'm) are asymptotically stable nodes,

T1

fre
o if VCOTQk = 4 then the equilibria (T};‘i“ 27rm) are asymptotically stable degenerate nodes,

KV(.UTZ k
71

fred
o if < 4 then the equilibria (% 27rm) are asymptotically stable focuses.
Since an asymptotically stable equilibrium exists for any frequency error wﬁree, the hold-in range of model
(2) is infinite for any loop parameters Kye, > 0, 71 > 0, 72 > 0.

2.2. Global stability analysis

Definition 2.2. [Kuznetsov et al., 2015; Leonov et al., 2015a; Best et al., 2016] A pull-in range is the
largest symmetric interval of frequency errors |w™| from the hold-in range such that an equilibrium is
acquired for an arbitrary initial state.

In 1959, Andrew J. Viterbi applied the phase-plane analysis and stated that the second-order type 2
PLL models with sinusoidal PD characteristic have infinite (theoretically) hold-in and pull-in ranges for
any loop parameters [Viterbi, 1959, p.12], [Viterbi, 1966]. However, his proof was incomplete (see, e.g.
discussion in [Alexandrov et al., 2015]). Later, Viterbi’s statement was rigorously proved using the direct
Lyapunov method ideas [Bakaev, 1963; Aleksandrov et al., 2016; Kuznetsov et al., 2021a].

To analyse the pull-in range of system (2) with piecewise-linear PD characteristic, we apply the direct
Lyapunov method and the corresponding theorem on global stability for the cylindrical phase space (see, e.g.
[Leonov & Kuznetsov, 2014; Kuznetsov et al., 2020b]). If there is a continuous function V'(z,6.) : R™ — R
such that

() V(x,0, +21) = V(z,0.) Vo€ R Vo, € R;

(ii) for any solution (z(t),6.(t)) of system (2) the function V' (z(t), 6.(t)) is nonincreasing;

(if) if V(2 (t), 8.(1)) = V (2(0),0.(0)), then (2(1),0.(1)) = (2(0),0c(0)

(iv) V(2,0.) + 62 — +o00 as ||z]| + 0| — +o0
then any trajectory of system (2) tends to an equilibrium (for brevity, we shall call such systems globally
stable).

Consider the following Lyapunov function:

e

K. T wfree 2
V(r,0,) = 2;’;0 (m }{ > +/ve(0)do. (3)
0

Its derivative along the trajectories of system (2) is

Keom 2

V(x,0.) = — 2(6,) <0 V0. #mm, m € Z.

T1
Since the derivative along any solution other than stationary states is not identically zero, system (2) is
globally stable for any wf®® and, hence, the pull-in range is infinite.

In 1981, William F. Egan conjectured [Egan, 1981, p.176] that a higher-order type 2 PLL with an
infinite hold—m range also has an infinite pull-in range, and supported it with some third-order PLL imple-
mentations (see also [Egan, 2007, p.161]). However, this conjecture is not valid in general and corresponding
counterexamples were recently provided in [Kuznetsov et al., 2021a].

Notice that a similar conjecture on the pull-in range for the second-order type 1 PLLs is known as the
Kapranov conjecture [Kapranov, 1956], where it is supposed that the global stability of the corresponding
model is determined by the birth of self-excited oscillations only, not hidden ones [Leonov & Kuznetsov,
2013; Chen et al., 2017]. Discussions of counterexamples to the Kapranov conjecture can be found in
[Kuznetsov et al., 2017; Kuznetsov, 2020].
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3. The lock-in range of second-order type 2 analog PLL with piecewise-linear
PD characteristic

Although a PLL model can be globally stable with infinite pull-in range, the acquisition process can take
long time. To decrease the synchronization time, a lock-in range concept is frequently exploited [Gardner,
2005; Kolumbén, 2005; Best, 2007].

Definition 3.1. [Kuznetsov et al., 2015; Leonov et al., 2015a; Best et al., 2016] A lock-in range is the
largest interval of frequency errors |w®| from the pull-in range such that the PLL model being in an
equilibrium, after any abrupt change of wgree within the interval acquires an equilibrium without cycle
slipping (sup [0.(0) — 0(t)| < 2m).

>0

Remark 3.1.  Sometimes the upper limit is considered in the cycle slipping definition instead of

the supremum: limsup|0.(0) — 6.(t)] > 2m. For any wf® the following inequality is valid:
t—+00

sup |0.(0) — 6.(t)] > limsup|6.(0) — O(t)|. However, bifurcation values determining the lock-in range

t>0 t—+o00

[0,w;) are the same for both definitions of cycle slipping (see Fig. 3).

47
lim sup |96( ) - ee(t”
i t——+oo
—  sup|fe(0) — 6c(2)]
t>0
27
0.(0)=0
-
_
0
0 20 40 60 Wy 100
wfree

e

Fig. 3. Comparison of cycle slipping definitions (see Remark 3.1) for model (2) with parameters 7 = 0.0633, T2 = 0.0225,
Kyeo = 250.

From a mathematical point of view, system (2) can initially be in an unstable equilibrium (at one of
the saddles) or can acquire it by a separatrix after a change of wf® (see [Kuznetsov et al., 2019a, 2020a]).
Corresponding behavior is not observed in practice: system state is disturbed by noise and can’t remain in
unstable equilibrium. In this paper, two cycle-slipping-related characteristics of the system are considered:
the lock-in range |w™®| € [0,w;) where the equilibria are considered to be stable and the conservative
lock-in range |we°| € [0,wf) C [0,w;) which takes into account the unstable behavior described above.

For the considered model boundary values w; and wj are determined by cycle slipping bifurcation.
It happens when the system being in an equilibrium state is exposed to an abrupt change of wf®, and
the corresponding trajectory of the system after the switch tends to the nearest unstable equilibrium by

the corresponding saddle separatrix. In other words, sup |0.(0) — 0.(t)| = limsup |6.(0) — 0.(t)| = = for
>0 t—+o0
0.(0) = 27 (see Fig. 4, lower left picture) and sup |6.(0) — 0. (¢)| = limsup |0.(0) — 6.(t)| = 27 for 6.(0) = 37
t>0 t—+o00
free

(see Fig. 4, upper right picture). For a larger w2 ®® supremum sup |0.(0) — 0.(t)| > 27 and cycle slipping
t>0

occurs. Since the lock-in range is defined as a half-open interval, boundary values wf™®® = w; and wfre® = wy
are not included in it.
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Fig. 4. Phase portraits for model (2) with the following parameters: F(s) = 1572 7 = 0.0633, 75 = 0.0225, Kyco = 250.

ST,
Black dots are equilibria of the model with positive w®® = |w|. Red color is for the model with negative w® = —|uw|.
Separatrices pass in and out of the saddles equilibria. Upper left subfigure: w = 69 < wy’, upper right subfigure: w = wj’ ~ 70.79

(evaluated by Theorem 2), lower left subfigure: w = w; ~ 85.27 (evaluated by Theorem 1), lower right subfigure: w = 86 > wj.

In practice, the lock-in range can be estimated in the following way. Without loss of generality we can fix
wiree and vary wyer only. Let initially wf® = w,er —wf = 0 and the system is in a stable equilibrium. Then
we abruptly increase the reference frequency by sufficiently small frequency step Aw > 0 (i.e., the reference
frequency becomes wret = wi®® + Aw) and observe whether corresponding transient process converges to a
locked state without cycle slipping (see Fig. 7?). After that we abruptly decrease the reference frequency
by 2Aw (i.e., the reference frequency becomes wyer = wi® — Aw). If the transient process converges to
the locked state without cycle slipping, then [0, Aw) C [0, w;). Frequency step Aw > 0 should be increased
until cycle slipping occurs.

Using changes of variables we represent system (2) as the first-order differential equation [Belyustina,
1959; Huque & Stensby, 2011] and following [Aleksandrov et al., 2016; Kuznetsov et al., 2019a] we formulate

and prove theorems providing exact values for the lock-in range and for the conservative lock-in range.

Theorem 1. The lock-in frequency of model (2) with the piecewise-linear PD characteristic (1) is

aﬁ<ib)i, ak > 4,

219 \ ¢c—b
w = %? exp(ﬁ)7 a’k = 4, (4)
aQ‘T/j exp (% arctan %), a’k < 4

where

K, 4 1
a=1/—2m, b=\/la®—=|, c=\/a®+4(r— ). (5)
sl k k

Theorem 2. The conservative lock-in frequency of model (2) with piecewise-linear PD characteristic (1)
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reference frequency @ (t)
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> cycle
Aw _— slipping
Y 4Aw
t Ll
Fig. 5. The lock-in range calculation.
18
. c—a cta
e _ VKV“(d“ﬂc(d—%c (6)
Wy = = B
2 T1

where a, b and ¢ are evaluated by (5), and d is the unique solution of one of the equations:

(d— o) (d = )" =n(E)T, d> o, a?k >4,

c—b
1
d=4%(1+ = ~ . a’k =4,
2( W(Mexp(m))) (7)

(d2 —ad + %) exp (%‘1 arctan a%d) = Texp (Q—ba arctang), d> 3, a’k < 4.

Here W (x) is the Lambert W function.

Proof. [Proof of Theorem 1 and Theorem 2] The proof given in Appendix A is based on the fact that
system (2) is piecewise-linear and can be integrated analytically on the linear segments. W

Notice that w; and w{ are continuous functions of variable k (as a is fixed): the cases a’k > 4 and
a’k < 4 in formulae (4), (6) approach the case a’k =4 as k — 2 (as b — 0).

4. Conclusions

In this work, the exact formulae for the lock-in range and the conservative lock-in range for the second-order
type 2 PLL with a piecewise-linear phase detector characteristic were derived. In engineering literature,
the following approximate estimate for the lock-in range can be found:

Kcom
wp ~

(8)
71

(see [Best, 2007, p.69] where w; = mCwn, wn = / KaKveo/T1, ¢ = wnT2/2, Kq = %, and [Gardner, 2005,
p.187] where Ky = 1, K, = Kyc,). However, estimate (8) intersects the exact lock-in frequency value (4)
for some values of parameters. Taking into account that for type 2 PLLs a pull-out frequency! wp, is twice

In 1966, such concept as pull-out frequency was introduced by F. Gardner [Gardner, 1966, p.37]. In the literature, the following
explanations of the pull-out frequency wpo can be found: “some frequency-step limit below which the loop does not slip cycles
but remains in lock” [Gardner, 1966, p.37], [Gardner, 2005, p.116], “the maximum value of the input reference frequency step
that can be applied to a phase-locked PLL, yet the loop is able to relock without slipping a cycle” [Stensby, 1997; Huque

free

& Stensby, 2011, 2013] (see also [Best, 2007, p.59]). Since using a linear change of variables the value w¢ ®® can be excluded
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the value of the lock-in frequency, one more approximate estimate for the lock-in range is exploited:

K. K.
wy & 0.7995, [ 220 4 1 93722 ve0
TT1 T

(see [Best, 2007, p.84] where 2w; = wpo & 2.46wy, (¢ + 0.65), wy, = /KiKyeo/T1, ( =wnm2/2, Kq= %)
A.S. Huque and J. Stensby analysed system (2) with a triangular PD characteristic [the piecewise-
linear PD characteristic (1) with & = 2] in [Huque & Stensby, 2011; Huque, 2011]. However, in those works
the global stability of system (2) was not analysed. In these works, the following formula for a pull-out
frequency was derived:
2

a 1 9 , 1—2m_
Wpo = — €XP (fln|m7—m_+a|—
T2 2

1 us
e s )
v40c’—1arC o (\/4a'—1) 2v4a' — 1

where o/ = 57y Mo = %(1 —+v/4a' +1). For a® < 27 the lock-in frequency w; = %wpo with wpe from (9)
coincides with the corresponding case in (4), however for a?> > 27 formula (9) is formally not applicable
and equations (4) should be used.

It’s important to note that obtained lock-in range formula (4) is also a lower analytical estimate for
the lock-in range of the second-order type 2 PLL with a sinusoidal PD characteristic. For these systems
several engineering estimates are known (see, e.g., [Gardner, 2005, p.117] and [Huque & Stensby, 2013]
for the pull-out range estimates, and [Gardner, 2005, p.187], [Kolumbén, 2005, p.3748], [Best, 2007, p.67],
[Best et al., 2016], [Best, 2018, p.18] for the lock-in range estimates).

The further development of such systems analysis is connected with consideration of higher-order loop
filters and discontinuous phase detector characteristics for revealing hidden oscillations and providing the
global stability [Zhu et al., 2020; Kuznetsov et al., 2021c].

(9)
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Appendix A Proof of Theorem 1 and Theorem 2
Proof. [Proof of Theorem 1 and Theorem 2] Let’s find the lock-in range of model (2) with piecewise-linear

PD characteristic (1). As it was noted in section 3, the lock-in frequency can be determined by such an
abrupt change of w™® that the corresponding trajectory tends to the nearest unstable equilibrium (by the

corresponding separatrix). Suppose that initially the frequency error was equal to w™® = —w < 0, but then
changed to wf®® = w > 0. Hence, initially the system is in equilibrium z°4 = — 2%, 01 =0, but after
the switch the corresponding trajectory tends to x4 = %7 o4 = 0 without cycle slipping if w < wj.
Such w; is determined by such frequency error w®® that a trajectory being in stable equilibrium (before
the switch) 2% = — 2L §¢ = 0 tends to saddle equilibrium (after the switch) 2°4 = 2*L 0% = 7 by
the corresponding separatrix. Thus, the lock-in frequency w; corresponds to the case
TIW,
- Klvl = Q(0,w) (A.1)

from the type 2 PLL systems [Kuznetsov et al., 2021a], such concept is consistent for them and corresponds to the lock-in
frequency in the following way: wpo = 2w;. However, equilibria of type 1 PLLs depend on the frequency error wffee and, hence,
the correct pull-out frequency definition should take into account the initial value of the frequency error corresponding to the

locked state.
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is x—coordinate of equilibrium of model (2) and = = Q(f,,w) is the lower separatrix of

free
here %%
where Kueo

le

saddle equilibrium (=~ m) (see Fig. 4).

After the change of varlables T = chot Y=/ mowe whree — K"“’ (@ + mve(Be)), for O.(t) € (*% +
2mn, 5 T 2mn) and 0.(t) € ( + 2mn, k +27(n+ 1)) system (2) is represented as follows:

y _ave(g ) (98)3

A2
) (A2
where a = 194/ K%;"
Upper separatrix y = S(6,) of the phase plane of (A.2) corresponds to separatrix 2 = Q(f,, w®) from

(2) (see Fig. A.1) and has the form

K
S(Qe) = KL iree _ ﬂ(Q(ge’wiree) + 7_21}6(96)).
veco 1
Thus, relation (A.1) takes the form
T Y
letfiree 0
KVCO
free
‘ e )
0 T 0.
Fig. A.1. Phase plane portraits of (2) and (A.2).
T1wWi 1w 71
— = =4/ S(0).
KVCO KVCO KVCO ( )
Hence, w; = 5%.5(0). Analogously to the phase plane analysis for w;, we get the following formula for the

conservative lock in frequency?: wf = 3759(=). Denote

u=:50), y =507

and get the formulae for w; and wy:

a
1= 272% (A.3)
. a

wi=g Y- (A4)

The computation of y; and yf from formulae (A.3), (A.4) consists of the following stages. Let’s divide
the phase plane to the following domains:

2To be more precise, for the conservative lock-in frequency it should be formally written w;’ = min(w;, 5% o S(—m)), however,

S(0) — S(—m) = TVI“’ (Q(0,wl®) — Q(—m,wfr®®)) > 0 because & = ve(6e) < 0 as b € [—m,0].
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o L {(y, be) | <0 <0,y €R},
o IL {(y, 0) | —L <0, < L 0.,y eR},
o 1L {(y, 0c) | -7 < 0. < —%; b,y € R}.

In the open domains, system (A.2) is a linear one and can be integrated analytically. Firstly, we compute
S(%), which is possible due to the continuity of (2). Using the obtained value as the initial data of the
Cauchy problem and finding its solution in the domain II, we can compute y; = S(0) and S (—%) Here exist
three cases depending on the stable equilibrium type: an asymptotically stable focus, an asymptotically
stable node, and an asymptotically stable degenerated node. For every case described above we perform
separate computations. Using the obtained value as the initial data of the Cauchy problem and finding its
solution in the domain ITI, we can compute yi = S(—m) (see Fig. A.2).

Fig. A.2. The separatrix integration. Firstly, we compute S (%) and use it as the initial data of the Cauchy problem. Secondly,
finding its solution in the domain II, we compute y; = S(0), which is used for the lock-in frequency w; computation (see
(A.3)), and S(—%). Finally, we use S(—%) as the initial data of the Cauchy problem and find its solution in the domain
II1, determining y; = S(—m), which is used for the conservative lock-in frequency w; computation (see (A.4)). Parameters:
1 = 0.0633, 72 = 0.0225, Kyeo = 250, k = 2.

Domain I.
The saddle separatrix is locally described by the saddle’s eigenvectors

s 1 s 1
=) 7= )
2 2 -

Eigenvector V* points to a saddle and V} has the opposite direction. Since in the considered domain the
system is a linear one, then the separatrix coincides with the line corresponding to V*:

c—a 1
S) = ——% (x-9,), - <. <
(6e) 9 (7T — %) (m ) & m
Let’s obtain the limit value in 6, = 1:
1 c—a
S(%) =— >0
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Domain II. If —% < 0(t) < % then system (A.2) is

) = —aky — ke,
Y Y (A.5)
0. = .
In the domains {y > 0} and {y < 0}, variable () changes monotonically and the behaviour of system
(A.5) can be described by the first-order differential equation®:
dy kO,
—— = —ak — . A6
dee a Yy ( )
The obtained equation is Chini’s equation [Chini, 1924; Cheb-Terrab & Kolokolnikov, 2003], which is a

generalization of Abel and Riccati equations. The change of variables z = % maps equation (A.6) into a
4.

separable one

zdz db,

o S AT
22 +akz+k 0. (A7)

If 2% + akz + k # 0 then solutions of system (A.6) and system (A.7) coincide in domains 0 < 6. < 7 and
—% < 0 < 0. Depending on the type of an asymptotically stable equilibrium, the following cases appear
(see section 2.1):

a’k > 4 (the equation 22 + akz + k = 0 describes the eigenvectors of the stable node),
o a’k = 4 (the equation 22 + akz + k = 0 describes the eigenvector of the stable degenerate node),
e a’k < 4 (here the case 22 + akz + k = 0 is not possible).

Case a’k > 4. Let’s take into account the location of separatrix y = S(6,), satisfying (A.6), during
its integration on intervals. The eigenvectors of the stable node

1 1
V= (_ab>7 V= <_a+b)
2 2

are described by lines y = —“Tﬂ’kee and y = —%%96, respectively, and intersect the boundary 6, = %

of domains I and II in points —“T_b < 0 and —“T'H’ < 0. Hence, the separatrix, intersecting the boundary

0. = % of domains I and II in point 5% > 0, remains over the eigenvectors within the domain II and
satisfies the following inequality: (S(0¢) + %52k0,)(S(0e) + 252k0.) > 0 as 0. € [—1, 1].
Assuming (z + %2k)(z + %52k) > 0, the general solution of equation (A.7) is as follows °:

Ni(z) = —In|f| +C

where

a—bk)b;a(ZJra—kb

Ni(z) = 1ln((er

bta
3 k:) b ), C = const.

3The similar transition to the first-order differential equation was used in [Belyustina, 1959; Huque & Stensby, 2011, 2013].
4The same change of variables was used in [Huque & Stensby, 2011, 2013].
STaking derivative of Ny (z), we have

bta
b

Ni(e) = 5 g e (552 + 5500 T (o + 210
(z+950k) ® (24 %K) b

PO T e 2 t) = (e 2 T M e 2 ) =

Gramer a6 ) = e

:m'
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Since for separatrix y = S(6.) inequality (y + “Terk@@)(y + “T_bké’e) > 0 is valid, we get that the separatrix
on interval 0 < 6,(t) < 1 satisfies N (y, 0.) = Co 1 where

N(y,ee):%1n((y+a;bkee)b_Ta(eraerkee)HT“),
. c—a 1 c—bba, ct+bbiay 1 c+b . a
%%):geggl,oN(?ﬂe)—aln(( )T ) =g (nCopE).

Thus, if a®k > 4, then separatrix y = S(f.) in domain 0 < 0,(t) < % is described by equation

a—b b-a a+b bta c+b
5 kO.) * (y+ 5 k) v =m(

Substituting . — +0 into (A.8), we get

(y =+ )% (A8)

c+b
yl:ﬁ(c—b

Then, substituting (A.9) into (A.3), we get the first case of formula (4).
To determine the conservative lock-in frequency, we firstly need to get d = S (f%), then to obtain the

equation for the separatrix in domain III, and, finally, to determine yf = S(—m). Since the separatrix on
interval —¢ < 0.(t) < 0 satisfies N(y,0.) = C(_1 4 and lim N(y,0.) = lim N(y,0.) =Iny asy > 0,
(=%:0) 0e—+0 0e——0

)35, (A.9)

then C(—%,O) = C(U,%) = %ln (W(%g)%)

Thus, if a®k > 4, then separatrix y = S(f.) in domain II is described by equation (A.8). Substituting
0. = —1 into (A.8), we get

a—b b-a a+b bia c+b.a
- b (d— b= b, A.10
(- 100 @ - e = (CE Dy (410
Since the separatrix is over the eigenvectors (y > f‘%bkﬂe), then
b
a>"2 a .

Notice that if d = “TM, then the left-hand side of equation (A.10) equals to zero, but the right-hand side
is positive. Then the left-hand side increases monotonically as value d increases and tends to infinity as
d — 400. Thus, equation (A.10) has unique solution d greater than %

Case a’k = 4.

In domain II, separatrix y = S(6e) is over eigenvector

()
_5 ?

which is described by line y = —%96 and intersects the boundary 6, = % of domains I and IT in point
—5 < 0. Hence, the separatrix, intersecting the boundary ¢, = % of domains I and II in point “5* > 0,
remains over the eigenvector within the domain II and satisfies the following inequality: S(6.) > —%96.

The general solution of (A.7) is as follows®:
Ni(z) = —Inlb.| + C

where

Ni(z) = +1n|2+az|, C = const.

24+ az

6Taking derivative of N1(z), we have

N/(z)—— 2a " a - a’z - z _ z
B T 2% az)? 2+az  (24az)? (2422 Z2takz+k
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Since for separatrix y = S(0.) inequality S(6.) > —%96. is valid, we get that the separatrix on interval
0<0.(t) < ¢ L satisfies N(y,6.) = C(o,%) where

20,
N(y,0e) = %, + ay + In(20. + ay),
c—a 2 1 2 a? a
C = i N(—,0.) = ———— +In(— ——)=—=+1 .
(0,1) 06%”%170 ( 5 e) k2+aﬁ—ﬁ+n(k+aﬁ 2) 2\/77+ n(a\/)
Thus, if a®k = 4, then separatrix y = S(6.) in domain 0 < 0,(t) < % is described by equation
20,
—— + In(20, — +1 . .
% 1 a +n( +ay) = 2f+n( ay/T) (A.11)
Substituting §. — 40 into (A.11), we get
fexp(%ﬁ) (A.12)

Then, substituting (A.12) into (A.3), we get the second case of formula (4).
To determine the conservative lock-in frequency, we firstly need to determine d = S (—%) Since the
separatrix on interval f% < 0.(t) < 0 satisfies N(y,0.) = C’(7% o) and glimON(y, 0.) = elimoN(y,He) =
: o=+ e—r—

In(ay) as y > 0, then 0(7%’0) = C(o,%) = ﬁ + In(a/7).

Thus if a®k = 4, then separatrix y = S(6,) in domain II is described by equation (A.11). Substituting
0 = —+ into (A.11), we get

2

Notice that in the considered case it is possible to obtain an explicit formula for d:

a 1
d=-(1+
2( W5 exp(ﬁ;)) (A.13)

where W (z) is the Lambert W function”.
Case a’k < 4.
The general solution of (A.6) is as follows®:

Ni(z) = —Inl0| +C

(d—)exp(zg ):ﬁeﬁ.

where

1 + 2z
2l(z +akz + k) — 3 5

Then separatrix y = S(f) in domain 0 < 6. < ; satisfies N(y,0,) = Co, 1 where

Ni(z) =

arctan( ), C = const.

1 oG abe + %y
N(y,0.) = 3 In(y? + akyb. + kO?) — 3 arctan (T),
1
Coo, %):91131—0]\]( i ,0.) = ilnw—%arctang

"For x > 0 function W (x) is a single-valued one and can be evaluated in standard numeric computing platforms.
8Taking derivative of Ni(z), we have

N (2) = 2z + ak _ ﬁ 1 - 2z + ak _ 2ak -
W T o2 T akz+ k) b2k 14 (“HEzye 27 kst k) DR (ak +22)2
b

2z + ak 2ak 2z + ak ak z

2022 fakz + k) 422 + dakz + (a2 + b2)k2  2(22 v akz+ k) 222 +akz+ k) 224 akz+k’
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Thus, if a®k < 4, then separatrix y = S(6.) in domain 0 < 6, < % is described by equation

1 abe + % 1
5 In(y? + akyf, + k6?) — %arctan (ETH) = 5w - %arctan g (A.14)
Substituting 6, — +0 into (A.14), we get
b
Yy = /mexp (% arctan 7). (A.15)
c
Then, substituting (A.15) into (A.3), we get the third case of formula (4). Thus, Theorem 1 is proved.
To determine the conservative lock-in frequency, we firstly need to determine d = S(—%). Since

the separatrix on interval f% < 0.(t) < 0 satisfies N(y,0.) = C(i% o) and glimON(y,Qe) =Iny - 57,
o) e —>+
geli_rgoN(y,He) =Iny+ 5, then 0(7%)0) -5 = C(o%) + 5
Thus, if a®k < 4, then separatrix y = S(6.) in domain II is described by

1 a abl. + 2y 1 a c . 1
5 In(y? + akyb. + kO?) — 3 arctan (Tek) =3 Inm— 3 arctan B if0 < 6e(t) < z
y=uy;, if6.(t)=0 (A.16)
1 Oc + 2 1 1
3 In(y? + akyb. + k6?) — %arctan (%) =3 Inm+ %(7‘[‘ — arctan g), if — z < 0e(t) <O.
Substituting 6, = —7 into (A.16), we get
1 2a 2d—a Ta 2a b
2 _ - = — ) = = ). A7
(d ad + k:) exp( 2 arctan 2 b ) Wexp( ) arctan c) ( )

Notice that if d = 0, then the left-hand side of equation (A.10) is less than the right-hand side:
1 2a —a  Ta 1 2a b
r exp (? arctanT — ?) < % <7 < Texp (? arctanz).
Then the left-hand side increases monotonically as value d increases and tends to infinity as d — +oo.
Thus, equation (A.17) has unique positive solution d.
Notice also that if d = §, then the left-hand side of equation (A.10) is less than the right-hand side

too:

¥4 2 b
b? exp(—%a) < a? exp(—ﬁ—a) < 47Texp(—%a) <AT——5 < — <7m < Texp (?a arctan 7).
™

b a? c
Thus, d > § and equation (A.17) can be reduced to the following:
1 2 b 2 b
(d2 —ad + E) exp (?a arctan . 2d) = Texp (?a arctan E) (A.18)
Domain III
If —7 < 6.(t) < —+ then system (A.2) is
. a
y= ¥+ g (0 + ),
T % T % (A.19)
b =y.
Analogously to the analysis in domain II, let’s study for y > 0 the first-order differential equation
dy 1 O+ 7
B~ o %(a+ ) (A.20)

and make the change of variables z mapping equation (A.20) into a separable one:

_
T et
( 1> zdz df,
- =— .

k (w—%)zQ—az—l O +m

(A.21)
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If —z < 0.(1) < L then the solutions of sustem (A 200 and svstom (A 21) coincide
Separatrix y = S(f.) is over the separatrices of saddle (0, —m), which are described by the equations

+c—a 1
= (-1 —0), —-T<l <—7.

Thus, the following inequality is valid for the separatrix: (S(0,)+ =< e )(71‘-1—9 ))(S(6e)— )(7T+9€)) > 0.

Assuming (z + 3 - ))(z - (f:“l)) > 0, the general solution of equatlon (A.21) is as follows9:
k k

Mi(z)=—In|0. + 7| +C

where
1 c—a <o c+a | ete
M =1 —) © - ¢
1(2) 2 n((z+2(ﬂ_7%)) (Z 2(7_‘,7%)) )’
C' = const.

Since for separatrix y = S(0.) inequality (y + 2(‘37“1) (m+0.))(y — ﬁ
T—% T—%

the separatrix in domain III satisfies M(y, 0.) = C(_7r -1 where

(m+6)) > 0 is valid, we get that

Tk

c—

(7T+6‘e)) ‘ (y*

1 c—a
M(y,b.) = §ln(<y+72(ﬂi iy
1 c

C=Clap=, inLOM(d 6.) = 5In ((d+

2(m — 1)

Thus, separatrix y = S(6.) in domain III is described by equation
— e c+a cre C— @, ca C+a, cta
+9) (_7 +9) = (d+ e (d— c . A.22
s e)) T (g e)) T =@ T ) (A.22)
To determine the conservative lock-in frequency, we firstly need to determine yf = S(—n). Substituting
0. = —7 into (A.22), we get

(v

C — c—a + cta
:(d+02a)2c (d_c a)z%.

Substituting (A.23) into (A.4) and taking into account formulae (A.10), (A.13), (A.18), we get (6).
Theorem 1 and Theorem 2 are proved. MW

(A.23)

Appendix B Octave code for Fig. A.2

Code below can be runned on https://octave-online.net/ in order to obtain phase portrait on Fig. A.2 and
verify formulae (4) and (6). The code simulates trajectories of system (A.2) numerically and additionally
plots two points: (0,y;) and (—,y;) where y and y; are used in lock-in range formulae (A.3) and (A.4).
Since these points are lying on the separatrices, formulae (A.3) and (A.4) are validated numerically.

9Taking derivative of M;(z), we have

1 1 — — —a + cta
Mi(z) = C+a(c a(z+ . a1)c(zf . al)‘Jr

= IR ==2) I 2 A=)
c+a c—a et cta e _1 c—a c—a -1 c¢t+a,  cta -1\
t (z+2(7r7%)) (= 2(71'7%)) )*2< c ( 2( 71)) c (= 2(7|—7%)) )
. 1 c—a,  c+a c+a c—a _ z -
,2(24,- (e 1))( 2<ﬂ_ )) c (Z 2(71'*%))_'_ c (Z+2(ﬂ_7%))> (ZJ"Q(,\- 1))(Z 2(;_a))
z
:(22_ S rz— 1)
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close all;
clc;

% VCO input gain
K_vco = 250;

% Loop filter transfer function F(s) = (1+s tau_-2)/(s tau_1), tau_-1 > 0,
% tau_-2 > 0

tau_2 = 0.0225;

tau_l = 0.0633;

% The slope coefficient of piecewise—linear PD characteristic
% it becomes triangular with this coefficient
k=2/pi;

function y = draw_saddles_symmetric(ode, saddle, V, periods, options)
% draw_saddles_symmetric draws phase portrait of the system ode,

% starting from saddle with eigenvectors V for given number of periods
% options are used to tune ODE solver

% Integration time
TIME_POSITIVE = 0:0.005:20;
TIMENEGATIVE = 0:—-0.005: —20;

vl = 0.01 .x flip(V(:,1)7);
v2 = 0.01 .x flip(V(:,2)7);

% Calculate saddle separatrices and plot them
[T-1, X_1] = oded45(ode, TIMENEGATIVE, saddle+vl, options);
[T-3, X.3] = oded45(ode, TIMENEGATIVE, saddle-vl, options);
for j=1l:length(periods)

plot (X_1(:,2)+ periods(j),X-1(:,1));

plot (X.3(:,2)+ periods(j),X3(:,1));
end
[T-2, X_.2] = oded45(ode, TIMEPOSITIVE, saddle+v2, options);
[T4, X 4] = oded45(ode, TIME POSITIVE, saddle—v2, options);
for j=l:length(periods)

plot (X_2(:,2)+ periods(j), X.2(:,1));

plot (X_4(:,2)+ periods(j), X4(:,1));
end

end

function y = sawtooth_diff(t)
% sawtooth_diff — the derivative of a triangular function
% (sawtooth (T, WIDTH) from signal package)
remain = abs(rem(t, 2xpi));
if (pi/2 <= remain && remain <= 3xpi/2)
y = —2/pi;
else
y = 2/pi;
end
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g

% PD characteristic

v_e = Q(theta_e) (sawtooth(theta_e+pi/2,0.5));
% The derivative of PD characteristic

dv_e = @Q(theta_e) (sawtooth_diff(theta_e));
period = 2xpi;

% Parameters a, b, ¢ from Theorem 1 and 2
a = sqrt(K_vco/tau_1)xtau_2;
b = sqrt(abs(a"2-4/k));
¢ = sqrt(a”2-4/k + 4xpi);
% Computing the lock—in range and the concervative lock—in range by
% Theorem 1 and 2
Syms X;
if a"2xk>4
y-1 = sqrt(pi)*x ((ctb)/(c=b)) " (a/(2xb));
fen = Q(x) (x — (a=b)/2)" ((b-a)/b) * (x — (atb)/2)" ((b+a)/b) —...
pis((ctb)/(c-b))  (a/b);
init_param = [(at+b)/2, 10000000];
% vpasolve numerically solves implicit equations with initial guess
% init_param (it was proven that the equation has a unique solution
% for z > (a+b)/2)
d = vpasolve(fen(x), x, init_param);
else
if a"2xk =— 4
y-1 = sqrt(pi)+~exp(a/2/sqrt(pi));
d =a/2%x(1 4+ 1/lambertw(a/2/sqrt(pi)*exp(—a/2/sqrt(pi))));
else
y_l = sqrt(pi)+exp(axatan(b/c)/b);

fecn = @Q(x) ((x)"2 — axx + 1/k) * exp( 2*a/bxatan((2xx-a)/b) — pixa/b) —...

pixexp(2xa/bxatan(b/c));
init_-param = [a/2, 10000000];
% vpasolve mumerically solves implicit equations with initial guess
% init_param (it was proven that the equation has a unique solution
% for © > a/2)
d = vpasolve (fen(x), x, init_param);
end
end
y-l_.¢c = (d—0.5x(a—c)) ((c—a)/c/2) * (d—0.5x(atc)) ((cta)/c/2);

h = figure (1);
hold on;
grid on;

% Ploting two points which correspond the lock—in range and the conservative
% lock—in range

plot ([0], [y-1], ’k.’, "MarkerSize’, 20);

plot([—pi], [eval(y_l_¢)], ’k.’, "MarkerSize’, 20);

% System establishment for numerocal integration
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%y =1x(1), theta_e = z(2)

pll_s = Q(t,x)([— axdv_e(x(2))*x(1) — v_e(x(2));
x(1)]);

% One of the asymptotically stable equilibria
theta_eq = 0;
x_eq = 0;

% Draw phase portrait
saddles = [x_eq, —theta_eq+period/2—2xperiod ;...
x_eq, —theta_eq+period/2—period ;...
x_eq, —theta_eq+period /2;...
x_eq, —theta_eq+period/2+period ;...
x_eq, —theta_eq+period/2+2*period |;
focuses = [x_eq, theta_eq—period;...
x_eq, theta_eq—period;...
x_eq, theta_eq;...
x_eq, theta_eq+period;...
x_eq, theta_eq+2xperiod];

plot(—focuses (:,2), —focuses (:,1), ’r.’, 'MarkerSize’, 20);
plot(focuses (:,2), focuses(:,1), ’'k.’, "MarkerSize’, 20);
plot(—saddles (:,2), —saddles(:,1), ’r.’, 'MarkerSize’, 20);
plot (saddles (:,2), saddles(:,1), ’k.’, "MarkerSize’, 20);

% Jacobian matriz of the system
A=10 1;
2/pi 2xa/pi];

% Calculating saddle eigenvectors V
[V7 D] - Eig(A)a

% Custom simulation options
options = odeset (’MaxStep’, 0.001, ’RelTol’, 2e—7, "AbsTol’, 2e—7);
draw_saddles_symmetric(pll_s ,...

[x-eq,period/2—theta_eq],

v, ...

[-2«period ,—period ,0,period ,2xperiod] ,...

options );

% Plot adjustments

axis([—2xpi 2«pi —5 5])

xticks ([~4*xpi —3xpi —2xpi —pi 0 pi 2xpi, 4xpi])
XtiCkIabCIS({774\pi’7’73\pi’7’72\pi’7’7\pi’a’0’77\pi,7’2\pi7a’4\pi7})

xlabel ( '\ theta_e’);
ylabel(y’);

References

Aleksandrov, K., Kuznetsov, N., Leonov, G., Neittaanmaki, N., Yuldashev, M. & Yuldashev, R. [2016]
“Computation of the lock-in ranges of phase-locked loops with PI filter,” IFAC-PapersOnLine 49,



REFERENCES 19

3641, doi:10.1016/j.ifacol.2016.07.971.

Alexandrov, K., Kuznetsov, N., Leonov, G., Neittaanmaki, P. & Seledzhi, S. [2015] “Pull-in range of
the PLL-based circuits with proportionally-integrating filter,” IFAC-PapersOnLine 48, 720-724, doi:
10.1016/j.ifacol.2015.09.274.

Andronov, A., Vitt, E. & Khaikin, S. [1937] Theory of Oscillators (in Russian) (ONTI NKTP SSSR),
[English transl.: 1966, Pergamon Press].

Bakaev, Y. [1963] “Stability and dynamical properties of astatic frequency synchronization system,” Ra-
diotekhnika i Elektronika (in Russian) 8, 513-516.

Belyustina, L. [1959] “The study of a nonlinear pll system,” Izv. vuzov. Radiofizika (in Russian) 2, 277-291.

Best, R. [2007] Phase locked loops: design, simulation, and applications (McGraw-Hill Professional).

Best, R. [2018] Costas Loops: Theory, Design, and Simulation (Springer International Publishing).

Best, R., Kuznetsov, N., Leonov, G., Yuldashev, M. & Yuldashev, R. [2016] “Tutorial on dynamic analysis
of the Costas loop,” IFAC Annual Reviews in Control 42, 27-49, doi:10.1016/j.arcontrol.2016.08.003.

Cheb-Terrab, E. & Kolokolnikov, T. [2003] “First-order ordinary differential equations, symmetries and
linear transformations,” Furopean Journal of Applied Mathematics 14, 231-246.

Chen, G., Kuznetsov, N., Leonov, G. & Mokaev, T. [2017] “Hidden attractors on one path: Glukhovsky-
Dolzhansky, Lorenz, and Rabinovich systems,” International Journal of Bifurcation and Chaos in
Applied Sciences and Engineering 27, art. num. 1750115.

Chini, M. [1924] “Sull’'integrazione di alcune equazioni differenziali del primo ordine,” Rendiconti Instituto
Lombardo (2) 57, 506-511.

Du, K. & Swamy, M. [2010] Wireless Communication Systems: from RF subsystems to 4G enabling tech-
nologies (Cambridge University Press).

Egan, W. [1981] Frequency synthesis by phase lock, 1st ed. (John Wiley & Sons, New York).

Egan, W. [2007] Phase-Lock Basics, 2nd ed. (John Wiley & Sons, New York).

Gardner, F. [1966] Phaselock Techniques (John Wiley & Sons, New York).

Gardner, F. [2005] Phaselock Techniques, 3rd ed. (John Wiley & Sons, New York).

Gubar’, N. [1961] “Investigation of a piecewise linear dynamical system with three parameters,” Journal
of Applied Mathematics and Mechanics 25, 1011-1023.

Huque, A. [2011] A new derivation of the pull-out frequency for second-order phase lock loops employing
triangular and sinusoidal phase detectors (The University of Alabama in Huntsville), Ph. D. thesis.

Huque, A. & Stensby, J. [2011] “An exact formula for the pull-out frequency of a 2nd-order type II phase
lock loop,” IEEE Communications Letters 15, 1384—1387.

Huque, A. & Stensby, J. [2013] “An analytical approximation for the pull-out frequency of a PLL employing
a sinusoidal phase detector,” ETRI Journal 35, 218-225.

Kaplan, E. & Hegarty, C. [2017] Understanding GPS/GNSS: Principles and Applications, 3rd ed. (Artech
House).

Kapranov, M. [1956] “The lock-in band of a phase locked loop,” Radiotekhnika (in Russian) 11, 37-52.

Karimi-Ghartemani, M. [2014] Enhanced phase-locked loop structures for power and energy applications
(John Wiley & Sons).

Kolumbén, G. [2005] The Encyclopedia of RF and Microwave Engineering, Phase-locked loops, Vol. 4 (John
Wiley & Sons, New-York).

Kuznetsov, N. [2020] “Theory of hidden oscillations and stability of control systems,” Journal of Computer
and Systems Sciences International , 647-668doi:10.1134/S1064230720050093.

Kuznetsov, N., Blagov, M., Alexandrov, K., Yuldashev, M. & Yuldashev, R. [2019a] “Lock-in range of
classical PLL with piecewise-linear phase detector characteristic,” Differencialnie Uravnenia i Protsesy
Upravlenia (Differential Equations and Control Processes) , 74-89.

Kuznetsov, N., Kolumbén, G., Belyaev, Y., Tulaev, A., Yuldashev, M. & Yuldashev, R. [2022] “Estimation
of PLL impact on MEMS-gyroscopes parameters,” Gyroscopy and Navigation (in print).

Kuznetsov, N., Leonov, G., Yuldashev, M. & Yuldashev, R. [2015] “Rigorous mathematical definitions
of the hold-in and pull-in ranges for phase-locked loops,” IFAC-PapersOnLine 48, 710-713, doi:
10.1016/j.ifacol.2015.09.272.

Kuznetsov, N., Leonov, G., Yuldashev, M. & Yuldashev, R. [2017] “Hidden attractors in dynamical models



20 REFERENCES

of phase-locked loop circuits: limitations of simulation in MATLAB and SPICE,” Communications in
Nonlinear Science and Numerical Simulation 51, 39-49, doi:10.1016/j.cnsns.2017.03.010.

Kuznetsov, N., Lobachev, M., Yuldashev, M. & Yuldashev, R. [2019b] “On the Gardner problem for phase-
locked loops,” Doklady Mathematics 100, 568-570, doi:10.1134/S1064562419060218.

Kuznetsov, N., Lobachev, M., Yuldashev, M. & Yuldashev, R. [2021a] “The Egan problem on the pull-
in range of type 2 PLLs,” Transactions on Circuits and Systems II: Express Briefs 68, 14671471,
doi:10.1109/TCSI1.2020.3038075.

Kuznetsov, N., Lobachev, M., Yuldashev, M., Yuldashev, R. & Kolumbdn, G. [2020a] “Harmonic bal-
ance analysis of pull-in range and oscillatory behavior of third-order type 2 analog PLLs,” IFAC-
PapersOnlLine 53, 6378-6383.

Kuznetsov, N., Lobachev, M., Yuldashev, M., Yuldashev, R., Kudryashova, E., Kuznetsova, O., Rosen-
wasser, E. & Abramovich, S. [2020b] “The birth of the global stability theory and the theory of hidden
oscillations,” 2020 European Control Conference Proceedings, pp. 769-774, d0i:10.23919/ECC51009.
2020.9143726.

Kuznetsov, N., Lobachev, M., Yuldashev, M., Yuldashev, R., Volskiy, S. & Sorokin, D. [2021b] “On the
generalized Gardner problem for phase-locked loops in electrical grids,” Doklady Mathematics 103,
157-161.

Kuznetsov, N., Matveev, A., Yuldashev, M. & Yuldashev, R. [2021c] “Nonlinear analysis of charge-pump
phase-locked loop: The hold-in and pull-in ranges,” IEEE Transactions on Circuits and Systems I:
Regular Papers 68, 4049-4061, doi:10.1109/TCS1.2021.3101529.

Kuznetsov, N., Volskiy, S., Sorokin, D., Yuldashev, M. & Yuldashev, R. [2020c] “Power supply system
for aircraft with electric traction,” 2020 21st International Scientific Conference on Electric Power
Engineering (EPE), pp. 1-5, doi:10.1109/EPE51172.2020.9269181.

Leonov, G. & Kuznetsov, N. [2013] “Hidden attractors in dynamical systems. From hidden oscillations in
Hilbert-Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractors in Chua circuits,”
International Journal of Bifurcation and Chaos in Applied Sciences and Engineering 23, doi:10.1142/
S0218127413300024, art. no. 1330002.

Leonov, G. & Kuznetsov, N. [2014] Nonlinear mathematical models of phase-locked loops. Stability and
oscillations (Cambridge Scientific Publishers).

Leonov, G., Kuznetsov, N., Yuldashev, M. & Yuldashev, R. [2012] “Analytical method for computation of
phase-detector characteristic,” IEEE Transactions on Circuits and Systems - 1I: Express Briefs 59,
633-647, doi:10.1109/TCSI1.2012.2213362.

Leonov, G., Kuznetsov, N., Yuldashev, M. & Yuldashev, R. [2015a] “Hold-in, pull-in, and lock-in ranges of
PLL circuits: rigorous mathematical definitions and limitations of classical theory,” IEEE Transactions
on Circuits and Systems—I: Regular Papers 62, 2454-2464, do0i:10.1109/TCSI.2015.2476295.

Leonov, G., Kuznetsov, N., Yuldashev, M. & Yuldashev, R. [2015b] “Nonlinear dynamical model of Costas
loop and an approach to the analysis of its stability in the large,” Signal Processing 108, 124-135,
doi:10.1016/j.sigpro.2014.08.033.

Rosenkranz, W. & Schaefer, S. [2016] “Receiver design for optical inter-satellite links based on digital signal
processing,” 18th International Conference on Transparent Optical Networks (ICTON) (IEEE), pp.
1-4.

Shakhtarin, B. [1969] “Study of a piecewise-linear system of phase-locked frequency control,” Radiotechnica
and electronika (in Russian) , 1415-1424.

Stensby, J. [1997] Phase-Locked Loops: Theory and Applications (Taylor & Francis).

Tricomi, F. [1933] “Integrazione di unequazione differenziale presentatasi in elettrotechnica,” Annali della
R. Shcuola Normale Superiore di Pisa 2, 1-20.

Viterbi, A. [1959] “Acquisition and tracking behavior of phase-locked loops,” Jet Propulsion Laboratory,
California Institute of Technology, Pasadena, External Publ 673.

Viterbi, A. [1966] Principles of coherent communications (McGraw-Hill, New York).

Zelenskii, A., Gapon, N., Voronin, V., Semenishchev, E., Khamidullin, I. & Cen, Y. [2021] “Robot naviga-
tion using modified slam procedure based on depth image reconstruction,” Artificial Intelligence and
Machine Learning in Defense Applications III (SPIE), pp. 73-82.



REFERENCES 21

Zelensky, A., Semenishchev, E., Alepko, A., Abdullin, T., Ilyukhin, Y. & Voronin, V. [2021] “Using neuro-
accelerators on fpgas in collaborative robotics tasks,” Optical Instrument Science, Technology, and
Applications 11 (SPIE), pp. 98-102.

Zhu, B., Wei, Z., Escalante-Gonzélez, R. & Kuznetsov, N. V. [2020] “Existence of homoclinic orbits and
heteroclinic cycle in a class of three-dimensional piecewise linear systems with three switching mani-
folds,” Chaos: An Interdisciplinary Journal of Nonlinear Science 30, art. num. 123143.



PII

THE CONSERVATIVE LOCK-IN RANGE FOR PLL WITH
LEAD-LAG FILTER AND TRIANGULAR PHASE DETECTOR
CHARACTERISTIC

by

M.V. Blagov, N.V. Kuznetsov, M.Y. Lobachev, M.V. Yuldashev, R.V. Yuldashev
2021

arXiv:2112.01602



https://arxiv.org/abs/2112.01602

2112.01602v1 [eess.SP] 2 Dec 2021

arxiv

The conservative lock-in range for PLL with lead-lag filter
and triangular phase detector characteristic

Blagov M.V.¢ Kuznetsov N.V.2, Lobachev M.Y.¢, Yuldashev M.V.4, Yuldashev R.V.4

Abstract—In the present work, a second-order PLL with
lead-lag loop filter and triangular phase detector characteristic
is analysed. An exact value of the conservative lock-in range
is obtained for the considered model. The solution is based on
analytical integration of the considered model on the linear
segments.

I. INTRODUCTION

The interest to study phase-locked loops (PLL) comes
from their wide applications. Initially described by A. Ap-
pleton in 1923 [1] and H. Bellescize [2], these circuits
became widely spread in wireless communications [3]-[9],
GPS navigation [10], gyroscope systems [11], [12], computer
architectures [13], [14], and others.

First ideas of mathematical analysis of such systems
belong to Italian academician F. Tricomi [15] and are based
on the analysis of system phase portraits. These ideas were
further developed in works of A.A. Andronov [16]. Funda-
mental monographs devoted to the problems of numerical
simulation and analysis of PLL were published in 1966
by F. Gardner [17], A. Viterbi [18], V.V. Shakhgildyan,
and A.A. Lyakhovkin [19]. These books are devoted mostly
to engineering approaches of two-dimensional PLL models
analysis.

In this article, we consider a PLL with lead-lag loop
filter and triangular phase detector characteristic. Nonlinear
analysis of this model and estimates of the global stability
domain were conducted in [20]-[25]. Basing on these works,
we analytically obtain an exact formula for the conservative
lock-in range for the first time. This characterisctic considers
the ability of PLL to synchronize in a short time and related
to the Gardner problem [26], [27].

II. MATHEMATICAL MODEL AND HOLD-IN RANGE

Consider analog PLL baseband model in Fig. 1 [18], [26],
[28]-[30]. Here Oef(t) = et + Brer(0) is a phase of the
reference signal, a phase of the VCO is 6Oy0(7), 6,(f) =
Oref(t) — Byco(r) is a phase error. A phase detector (PD)
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Fig. 1. Baseband model of analog PLLs.

generates a signal v,(6,(¢)) where v,(+) is a characteristic of
the phase detector. In the present paper, a piecewise-linear
PD characteristic, which is continuous and corresponds to
square waveforms of the reference and the VCO signals, is
considered:

ve(6,) = {

here m € Z (see Fig. 2).

20, —4m, =S 42mm < 6,(1) < & +2mm,
—20,+2+4m,
)]

Fig. 2. Triangular PD characteristic.

The state of the loop filter is represented by x(¢) € R and

Z42mm < 6,(1) < —F+2m(m+1),



the transfer function is!

F(S): 14+ 1ms

—— 171>0, n>0.
1—|—(‘L‘1+Tz)s ! 2

The output of the loop filter vg(z) = ‘L'|+‘L'2x+ ‘L'|+‘L'2 —2—v,(6,)
is used to control the VCO frequency @yco(f), which is
proportional to the control voltage:

COVCD([) = évco([) = (D&eoe +KVCOVF(I)

where Kyco > 0 is a gain and of® is a free-running frequency
of the VCO.

The behavior of PLL baseband model in the state space
is described by a second-order nonlinear ODE:

1 T]

X=— X+ ve(6e),

T1+T TI+T

1 T
0, = 0™ — K. <7 0, )
veo T +sz+ TlJrTgve( e)

(€3]

where @ = @yr — @ is a frequency error and v,(6,)

is defined in (1). It is usually supposed that the reference
frequency (hence, ®® too) can be abruptly changed and
that the synchronization occurs between those changes. Thus,
existence of locked states, acquisition and transient processes
after the reference frequency change are of interest.

The PLL baseband model in Fig. 1 is locked if the phase
error 6,(¢) is constant. For the locked states of practically
used PLLs, the loop filter state is constant too and, thus, the
locked states of model in Fig. 1 correspond to the equilibria
of model (2) [31].

Definition 1: [5], [27], [31] A hold-in range is the largest
symmetric interval of frequency errors |@°°| such that an
asymptotically stable equilibrium exists and varies contin-
uously while @f°® varies continuously within the interval.

free

Observe that system (2) is 27-periodic in 6, and has an
infinite number of equilibria (x4, 6;%) which satisfy

free
[0)
e e
ve(659) = 22—,
veco
free
T,

xeq E——
KVCO

From the boundedness of the PD characteristic it follows that
there are no equilibria for sufficiently large @.™¢. Further we
suppose that ¢ < Ky, and the equilibria are

free 7 . free
T, 5 @,
(‘, (—1)*"’}"+nm>, me Z. 3)

KVCO vco

The characteristic polynomial of system (2) linearized at
stationary states (3) is

KA =224 (g DBy

K,
gcd )l veo
T +T T1+Tzve( o)A+

T+

'If 75 = 0 then such filter is called a lag filter, if 7» > 0 then it is called
a lead-lag filter [26].

ve(69).

The ve(6e) decreases

Z+2mm < 6,(1) <

nonlinearity

free

Vé (7[ KVLU

—%+2m(m+1), and equilibria

free T free
T 5@,

e -2 _42mm
Kyco Kyeo
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are  saddles. The nonlinearity v,(6,) increases
free
vi( Igjw +am)=2>0) for —Z 4 27m < 6,(t) <

2 +27m, and equilibria

( 7 a)efree 7 %wefree N 2ﬂm>

KVCO KVCO

are asymptotically stable ones, which can be either nodes,
degenerate nodes or foci (see Appendix). Since an asymptoti-
cally stable equilibrium exists for any frequency error @™ <
Kyco, the hold-in range of model (2) is [0, @) = [0, Kyco) for
any 71 >0, 70 > 0.

III. GLOBAL STABILITY ANALYSIS

Definition 2: [5], [27], [31] A pull-in range is the largest
symmetric interval of frequency errors |@/™¢| from the hold-
in range such that an equilibrium is acquired for an arbitrary
initial state.

A. Pull-in range estimate by Lyapunov function

To obtain an estimate for the pull-in range of system (2),
we apply the direct Lyapunov method and the corresponding
theorem on global stability for the cylindrical phase space

Theorem 1: (see, e.g., [32], [33]). If there is a continuous
function V(x, 6,) : R? — R such that

then

() V(x,0,+21) = V(x,6,) YxeR,V, €R;
V(x(1),6,(t)) is nonincreasing;
(i) if V(x(0), 6.(0)),
(1)) = (x(0),6.(0));
(iv) V(x,8,) + 62 — +oo as ||x|| +|6.] — +oo

(ii) for any solution (x(z),6,(r)) of system (2) the function
V(x(1),6.(1)) =
(x(t)7 9@
then any trajectory of system (2) tends to an equilibrium.
Following [32], [34], consider the following Lyapunov
function:

1 T COfree 2
Vi 8= 5= B
9" free wfree “
v (o)— + Bolv 4 )dG
KVCO 0 ¢ ) VCO ﬁo‘ e( ) KVCO |
where o
3”(»(0) - %) do

P LO

ee
i lve(0) — ¥, | do

Such form of the integrand expression makes the Lyapunov
function 27-periodic. For triangular PD characteristic coef-
ficient By is )

2a)et’reeI(VCO

. (&)
(@) + K

Bo =



The Lyapunov function derivative along the trajectories of
system (2) is

4 1 Tofee
V(x,0,) = — ( X — G E
( 6) T+ 0 ( cho
T free free
—Boti(x— )(ve(6.) — )+
veo veo

free )
Kyco ) )

If the loop filter parameters satisfy the inequality

+ 71721 — o) (ve (6. )*

(T +7
n 2(T1 4+ )
T

Bo<2(—2

then the Lyapunov function derivative along the trajectories
of system (2) is as follows:

) ©)

free free
V(5,8) <0, XA T v (6) £ o

V€O VCO
Since the derivative along any solution other than equilibria
is not identically zero, condition (6) provides the global
stability of the system. Taking into account (5) and (6), the
following estimate for the pull-in range is obtained:

T
> ( -
? 2\/T2(T1+Tz)—21’2

2 )

- il ~1)Kueo:
(2 ‘L'z(T] +‘L’2) —

B. Analysis of cycles of first and second kind

21,'2)2
Firstly, let us analyse the dissipativity domain. Consider
the following Lyapunov function:
1
V(x, 6,) = =11x°.
2
Its derivative along the trajectories of system (2) is:

P TZx(xf Tlve(Ge)).

If |x| > 71v¢(6,), then V (x, 6,) < 0. Hence, limsup |x(¢)| < 7|
1500

V(x,0,) =—

N
and an estimate for the dissipativity domain is |x(¢)| < 7;.

free
Using change of variables z = — T’f‘;gz( — T‘Ié‘:; ), system
(2) becomes system (4.3) from [35] with & = =, B =

ﬁcho, a= +rz —2—Kyco. Applying Theorem 4.1 from [35]
we get that any trajectory of system (2) which is bounded in
R? tends to an equilibrium, hence, there are no the cycles of
the first kind. If there is a homoclinic orbit in the system, then
it envelops an asymptotically stable equilibrium and a cycle
of the second kind exists in this case due the dissipativity
[21] (thus, a homoclinic orbit does not determine the global
stability and the pull-in range).

Thus, depending on the system parameters Kyco, T1, T2
there are three possibilities of the global stability loss in
system (2):

« disappearance of equilibria (in this case [0, ®,) =

« appearance of separatrix cycle

« appearance of semi-stable cycle (cycle of the second

kind)

[07 a)h)

Applying Theorem 4.2 from [35] it can be shown that there
are no either the separatrix cycles or the cycles of the second
kind in domain x > x®4. Since the system is piecewise-linear,
its trajectories can be analytically integrated (see Appendix)
and exact frequency error values for separatrix and semi-
stable cycles (hence, the pull-in range) can be obtained (see,
e.g., [21], [22], [36]-[38]).

IV. CONSERVATIVE LOCK-IN RANGE

Although a PLL model can be globally stable, the acqui-
sition process can take long time. To decrease the synchro-
nization time, a lock-in range concept is frequently exploited
[13], [26], [28].

Definition 3: [5], [27], [31] A lock-in range is the largest
interval of frequency errors |@[¢| from the pull-in range
such that the PLL model being in an equilibrium, after
any abrupt change of @[ within the interval acquires an
equilibrium without cycle slipping (sup|6,(0) — 6,(1)| < 27).

>0

From a mathematical point of view, system (2) can initially
be in an unstable equilibrium (at one of the saddles) or
can acquire it by a separatrix after a change of @[
(see [38], [39]). Corresponding behavior is not observed
in practice: system state is disturbed by noise and can’t
remain in unstable equilibrium. Thus, two cycle-slipping-
related characteristics of the system can be considered:
the lock-in range |@°| € [0, @) where the equilibria are
considered to be stable and the conservative lock-in range
|wfre¢| € [0, 0f ) C [0, ;) which takes into account the unsta-
ble behavior described above. In this article, we analyse the
conservative lock-in range [0, o).

For the considered model boundary values @; and o] are
determined as follows: The system being in an equilibrium
state is exposed to an abrupt change of @[, and the
corresponding trajectory of the system after the switch tends
to the nearest unstable equilibrium by the corresponding
saddle separatrix. In other words, sup|9 (0) — 6,.(t)| = = for

0.(0) =27 (see Fig. 3, lower left plcture) and sup|9 (0)—

0c(1)| =27 for 6,(0) = 37 (see Fig. 3, upper rlght picture).
For a larger @™ supremum sup|6,(0) — 6,(¢)| > 27 and

>

cycle slipping occurs. Since the lock-in range is defined as a
half-open interval, boundary values @ = @; and @/" = wf
are not included in it.

Using changes of variables we represent system (2) as
the first-order differential equation [38], [40], analytically
integrate it on the linear segments, formulate, and prove the
theorem providing an exact value for the conservative lock-in
range.

Theorem 2: The conservative lock-in frequency of model
(2) with triangular PD characteristic (1) is @ which is the
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Fig. 3. Phase portraits for model (2) with the following parameters: F(s) = % 71 = 0.0633, 70 = 0.0225, Kyco = 250. Black dots are equilibria of
the model with positive ®f*® = |®|. Red color is for the model with negative @{™® = —|@|. Separatrices pass in and out of the saddles equilibria. Upper

left subfigure: @ = 65 < @f, upper right subfigure: ® = o ~73.732, lower left subfigure: @ = @; ~ 77.7583, lower right subfigure: ® =79 > @;.

unique solution of system of two variables (@], yaB): where
%’CQKVCO +1 o %TZKVCO -1

= Tl )
2\/ %cho(rl +72) 2\/ % vco(Tl + 72)

=] [SE]
Con(EE—es) T(VESED) T = emyEl kvt
8 wZ+K e 7 8 K\ S Proof: [Proof of Theorem 2] The proof given in Ap-
= (yAB -(n—x)=% KVCV:O) (yAB —(n+ K)ﬁ) , pendix is based on the fact that system (2) is piecewise-linear
r wCIKm P& o J(m pté and can be integrated analytically on the linear segments. W
(yaB = (& =p) ") P (vaB—(E+p) ") 7 =
% T V. COMPUTER SIMULATION
_ _ _ .
=(k-n+&-p p)+€ ; Based on Theorem 2 an analytical-numerical method of
(k—m+&+p) P (sz“l’%wf)z, if £€>1, the conservative lock-in range calculation was implemented
Kyeo+0f . (2”‘ e (Kot 0f) )= (see Appendix B and Fig. 4).
cho+w167%KVCo)'AB nelyas 2Kveo o
7(Kyeo—0f . VI. CONCLUSIONS
-l _tm(2 PR T
e PRI, i o=, In this work, th lue of th ive lock-i
. 5 Kot 0F) | T(Kacot06) 2 n this work, the exact value of the conservative lock-in
3In(yag —28yaB 2Kyeo +( 2Kveo )7)— range was obtained for a classical PLL with lead-lag filter
ypp—& "oty . and triangular phase detector characteristic.
f% arctan < H(Kmi’gj;?)" ) + %arctan <ﬂ> =
Tk ) ) APPENDIX A: PROOF OF THEOREM 2
=1l <((K‘— n)?+2&(k—n)+1) (KV;%*“’;) ) + Proof: Let’s find the conservative lock-in range of
movee model (2) with triangular PD characteristic (1). The conser-
_+%§7 if &£<1 vative lock-in frequency can be determined by such an abrupt

(8)  change of ®f™® that the corresponding trajectory tends to the



Fig. 4.
0.0225.

The conservative lock-in frequency. Parameters: 7, = 0.5, 7 =

nearest unstable equilibrium (by the corresponding separa-
trix). Suppose that initially the frequency error was equal to
of*® = —@ < 0, but then changed to @™ = ® > 0. Hence,
initially the system was in equilibrium x*4 = — 2% = ;9 =

T veo ’
—T+ ,fv—i, but after the switch the corresponding trajectory

F
tends to x*4 = ,T(‘—w, 051 = 22 without cycle slipping if

veo - KVCO
0 < of.
Such @y is determined by such frequency error of that
a tra]ectory being in unstable equ111br1um (before the switch)

1:1(0 e
x4 = eeq
veo

-+ % 2o tends to the closest unstable

equilibrium (after the switch) xeq = Ew’ . 0 =n—

the corresponding separatrix. Thus, the conservative lock -in
frequency @; corresponds to the case

c T ¢
_T](D[:Q(Z I—TL', (ch) 9)

KVCO KVCO

where < K is x-coordinate of equilibrium of model (2) and

x=Q(6,, a)free) is the lower separatrix of saddle equilibrium
free

(T‘K‘fzo , K . ) (see Fig. 5).

After the change of variables

Tl + 72 free 7K. vCco X+T2V
e e
vw Tl + 72) (10)
VCO
T= 71‘
\/ (T + 1)

system (2) in intervals 6,(r) € (-5 +2mm, § +27m) and
6.(t) € (5 +2mm, —5 4+2n(m+1)), m € Z is represented
as follows:

T ﬁ wtree
p= — Z1e(0) — ——Y = (1 + Kyeo TV, +
Y 2 8( e) ZKVCO(T1+TZ)( veo™ ( ))y 2cho
6 —y.
(1D

Upper separatrix y = S(6,) of the phase plane of (11)
corresponds to separatrix x = Q(6,, ®°°) from (2) (see Fig. 5

0.05

L o

/
L
——— .
7/ I
-0.05 e— I | L

Fig. 5. Separatrix x = Q(6,, 0™*®) of the phase plane of (2). Parameters:
71 = 0.0633, 75 = 0.0225, Kyco = 250, @™ = 73.732.

and Fig. 6) and has the form

(T + T
5(6,) = | (21K COZ) wéfreei
Vi

ﬂ free
2(m + 1) (Q("ev @, )+‘sze(96)),

Thus, relation (9) takes the form

S( o 71:) =2wf
2Kyeo '

The computation of @] consists of the following stages.
Let’s divide the phase plane to the following domains:

’A:{(y7 98)'2 2n<9()<_§’067y€R},

e B={(y, 6.)| -5 <6.(r) <% 6,y cR}.
In the open domains, system (11) is a linear one and can be
integrated analytically. Firstly, we compute S(%), which is
possible due to the continuity of (2), and use it as the initial
data of the Cauchy problem (see Fig. 6). Secondly, finding
its solution in the domain B, we compute S(—7%), which is
used as the initial data of the Cauchy problem. Its solution in
the domain A is used for the conservative lock-in frequency
] computation due to (12).

A. S(%) value

The saddle separatrix is locally described by the saddle’s
eigenvectors

s (1 s 1
V*‘(*Hn)’ V*‘(*ﬂ**f)

2
T T2 Kyeo — 1

(T + 1)

(12)
21<VC()

where

2 %cho(fl +m)

K=vn2+1.



Fig. 6. Separatrix y = S(6,) of the phase plane of (11) integration. Firstly,
we compute S(5) and use it as the initial data of the Cauchy problem.
Secondly, finding its solution in the domain B, we compute S(—%), which
is used as the initial data of the Cauchy problem. Its solution in the domain
A is used for the conservative lock-in frequency @; computation due to
(12). Parameters: 7; = 0.0633, 72 = 0.0225, Kyco = 250, off*® = 73.732.

Eigenvector V¥ points to a saddle and V7 has the opposite
direction. Since in the considered domain the system is
a linear one, then the separatrix coincides with the line
corresponding to V*:

ﬂa)efree
S(6,) = (x— —6,+7m— , =<6, <m.
(6.) = ( n) (=6, + 2cho) D e
(13)
Let’s obtain the limit value in 6, = %:
n.wefree

S(3) = (=5~ 5 ).

B. Analytical integration in domain B

In domain B, v.(6,) = %Ge,v;(ee) =2 and (11) can be

e
rewritten as
free

p=—0,—2 ,
y e —28y+ K

(14)
ée =Yy
where

2
DKo +1
52 7 “28vco < 0.

2\/ %cho(fl + 172)

In the domains {y > 0} and {y < 0}, variable 6,(r) changes
monotonically and the behaviour of system (14) can be
described by the first-order differential equation:

9 wé'rcc
dy ~ e ¢ ZKweo (15)
de. y oo

The obtained equation is Chini’s equation [41], [42], which
is a generalization of Abel and Riccati equations. The change

of variables z = ’w =~ Maps equation (15) into a separable

¢ ;chu
one: 4
zdz de,
2 - free 16
22+2Ez+1 0, — %‘Dle(vm (16)
If 6, # ;;f:e and z2 4 2Ez+4 1 # 0 then the solutions of sys-

tem (15)ﬂand system (16) coincide in domains 0 < 6, < % and
—2% <6, <0. Depending on the type of an asymptotically
stable equilibrium, the following cases appear:

o &> 1 (the equation 7> +2Ez+1 =0 corresponds the
eigenvectors of the stable node),

o & =1 (the equation 7> +2Ez+1 = (z+E&)? =0 corre-
sponds the eigenvector of the stable degenerate node),

o 0 <& <1 (here the case 22 +2Ez+1 =0 is not possible).

It can be shown that if £ > 1 then in domain B separatrix
y=S(6,) satisfies N(y,6,) =N(S(%), §) where

1 n.wfree p—&
N,G,:fl< —p)(O,— 2T
(6.) 5 n (Y"‘(g p)(6, 2Koeo ))
free
T P+
o+ E+P)(6.~ T2 ), &>,
2I<VC0
T free
- o,
N(.8) = —— e tIn(2y+ 6~ 52— )), E=1,
— nwf 2I(VCO
YT Y% " Ko
p=yler-1]
a7
Similarly, if & <1 then
o in domain —§ < 6, < g?{rj separatrix y = S(6,) satis-

fies N(y. 8) = N(S(5), 5)+ 7
free
e in domain g%m < 6, < & separatrix y = S(6,) satisfies
N(y,6.) =N(S(3), 3

where
N8 = S + 2850, - T ) 4 (6, - PO )
Y, Oe ) Yy V(e 2Koeo e 2Koeo
free
§ yﬂLé(Oe*%)
— = arctan (Tev“‘)
p (6 — 2y )
(18)

Let us denote yag = S(—7) and use this value as the initial
data of the Cauchy problem:

N(oas, =3 ) =NSG). 5) €21, .
N(yas, =3 ) =N(S(3), g)ﬂ%é E<l.

Taking into account equations (17) and (18), equations (19)
provide the last three formulae in (8).



C. Analytical integration in domain A

In domain A, v,(6,) = —26, +2,V.(6,) = —2 and (11)
can be rewritten as

free

2cho (20)

y=(0,+m)+2ny+
0, =y.

In the domains {y > 0} and {y < 0}, variable 6,(r) changes
monotonically and the behaviour of system (20) can be
described by the first-order differential equation:

7] free

dy :%n+9 +7+ 5 - @1)
o, u y
The change of variables z = ; I e Maps equation (21)
into a separable one: G
zdz do,
Z-mz—1 9 T4 gla;i: ‘ (22)

If 6, # — ) and z2 —21nz— # 0 then the solutions
of system (21) *and system (22) coincide.

It can be shown that in domain A separatrix y = S(6,)
satisfies M(y,6,) = M(yag, —%) where

| 9 +ﬂ:+752free %
M0 = (o T By
2 K+1 (23)
free
( MR = >ﬁ>
y n—x .

Finally, the first equation in (8) is obtained by consideration
(12) and (23):

M<2wf atn (1o

1
T|=M ——).
Ko Kuco ) s =)

APPENDIX B: CALCULATION OF THE CONSERVATIVE
LOCK-IN FREQUENCY

Calculation of the conservative lock-in frequency for PLL
with lead-lag filter and triangular phase-detector characteris-
tic.

function out = omega_l_conservative (
tau_1, tau_2, k, K_vco)

out = 0;

mu = pixk - 1;

xi = (k=xtau_2%K_vco + 1)/(2=sqrt (k=
K_vcosx(tau_1 + tau_2)));

eta = (kxtau_2+%K_vco — mu)/(2=+sqrt(k
*K_vcox(tau_1 + tau_2)));

rho = sqrt(abs(xi"2 - 1));

kappa = sqrt(eta”2 + mu);

syms y_ab zomega_lc;

curvel = (2xzomega_lc) " 2=...
(sqrt((tau_-l + tau_-2)/(kxK_vco))
(eta — kappa)/(kxK_vco)) "((kappa
— eta)/kappa) *...
(sqrt((tau_1 + tau_2)/(kxK_vco))
(eta + kappa)/(k*K,vco))A((kappa
+ eta)/kappa) ==
(y-ab - (eta - kappa)*((
zomega_lc + K_vco) /...
(k#K_vco))) "((kappa — eta)/kappa
(y-ab — (eta + kappa) =((
zomega_lc + K_vco) /...
(k*K_vco))) "((kappa + eta)/kappa
) s

if xi > 1
curve2 = (y-ab — (xi — rho)=((
zomega_lc + K_vco) /...
(kxK_vco))) " ((rho - xi)/(rho))
(y-ab — (xi + rho) =...
((zomega_lc + K_vco) /(ks=
K- VCO)))A((I’hO + xi)/(rho

) == .
(kappa — eta + xi — rho) "((
rho — xi) /...

(rho))=(kappa — eta + xi +
rho) "((rho + xi)/(rho))

((K_vco — zomega_lc)/(ks=

K_vco))"2;
else
if (abs(xi — 1) < 0.001)
curve2 = (—-(K_vco +
zomega_lc)/(k«xK_vco)) /...
(y-ab —(K_vco + zomega_lc)/(
kxK_vco)) +
log (2+abs(y_ab —(K_vco +
zomega_lc) /(kxK_vco)
)) == ...
1/(kappa — eta + 1) +
In(2«(kappa — eta + 1)=(
K_vco - zomega_lc)/(k
*K_vco));
else

curve2 = 1/2xlog(y-ab™2 — 2=
xixy_ab=(K_vco +
zomega_lc) /...



end

[1]

[2]
[3]

[4

[5

[6]

[7]
[8]

[9]

[10]

[11]

[12]

[13]

[14]

(kxK_vco) + ((K_vco +
zomega_lc)/(kxK_vco))"2)

xi/rhoxatan ((y_-ab — xis(

K_vco + zomega_lc)/(k
*K_vco)) /...

(-(K_.vco + zomega_lc)/(k
«K_vco)#rho)) ==
1/2«log (...
((kappa — eta)”2 + 2sxi*(
kappa—eta) + 1) =...
((K_vco — zomega_lc) /(k=
K_vco))" 2
) — xi/rhosxatan ((kappa - eta
+ xi)/rho) + pixxi/rho;

end

end

res = vpasolve ([curvel , curve2], [0
Inf; 0 K_vco]);

if “isempty(eval(res.zomega_lc))
out = eval(res.zomega_lc);
end

REFERENCES

E V Appleton.
volume 21. 1923.
H Bellescize. La réception synchrone, volume 11. 1932.

K.L. Du and M.N.S. Swamy. Wireless Communication Systems: from
RF subsystems to 4G enabling technologies. Cambridge University
Press, 2010.

T.J. Rouphael. Wireless Receiver Architectures and Design: Anten-
nas, RF, Synthesizers, Mixed Signal, and Digital Signal Processing.
Elsevier Science, 2014.

R E Best, N V Kuznetsov, G A Leonov, M V Yuldashev, and R V
Yuldashev. Tutorial on dynamic analysis of the {C}ostas loop. IFAC
Annual Reviews in Control, 42:27-49, 2016.

P”S. Cho. Optical Phase-Locked Loop Performance in Homodyne
Detection Using Pulsed and CW LO. Optical Society of America,
2006.

K.P. Ho. Phase-Modulated Optical Communication Systems. Springer,
2005.

G. M. Helaluddin. An improved optical Costas loop PSK receiver:
simulation analysis. Journal of Scientific & Industrial Research,
67:203-208, 2008.

W. Rosenkranz and S. Schaefer. Receiver design for optical inter-
satellite links based on digital signal processing. In /8th International
Conference on Transparent Optical Networks (ICTON), pages 1-4.
IEEE, 2016.

E.D. Kaplan and C.J. Hegarty. Understanding GPS/GNSS: Principles
and Applications. Artech House, 3 edition, 2017.

L. Aaltonen and K. A. I. Halonen. An analog drive loop for a
capacitive MEMS gyroscope. Analog Integrated Circuits and Signal
Processing, 63(3):465 — 476, 2010.

N.V. Kuznetsov, G. Kolumbdn, Y.V. Belyaev, A.T. Tulaev, M.V.
Yuldashev, and R.V. Yuldashev. Estimation of PLL impact on MEMS-
gyroscopes parameters. Gyroscopy and Navigation, 2022. (in print).
G. Kolumbéan. The Encyclopedia of RF and Microwave Engineering,
Phase-locked loops, volume 4. John Wiley & Sons, New-York, 2005.
R E Best. Costas Loops: Theory, Design, and Simulation. Springer
International Publishing, 2018.

Automatic synchronization of triode oscillators,

[15]

[16]
[17]
[18]
[19]
[20]

[21]

[22]

[23]

[24]

[25]
[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

F. Tricomi. Integrazione di unequazione differenziale presentatasi in
elettrotechnica. Annali della R. Shcuola Normale Superiore di Pisa,
2(2):1-20, 1933.

A A Andronov, E A Vitt, and S E Khaikin. Theory of Oscillators (in
Russian). ONTI NKTP SSSR, 1937.

FEM. Gardner. Phaselock Techniques. John Wiley & Sons, New York,
1966.

A. Viterbi. Principles of coherent communications.
New York, 1966.

V.V. Shakhgil’dyan and A.A. Lyakhovkin. Fazovaya avtopodstroika
chastoty (in Russian). Svyaz’, Moscow, 1 edition, 1966.

M.V. Kapranov. The lock-in band of a phase locked loop. Ra-
diotekhnika (in Russian), 11(12):37-52, 1956.

N.A. Gubar’. Investigation of a piecewise linear dynamical system
with three parameters. Journal of Applied Mathematics and Mechan-
ics, 25(6):1011-1023, 1961.

B.I. Shakhtarin.  Study of a piecewise-linear system of phase-
locked frequency control. Radiotechnica and electronika (in Russian),
(8):1415-1424, 1969.

W. Lindsey. Synchronization systems in communication and control.
Prentice-Hall, New Jersey, 1972.

Tetsuro Endo and Kenzo Tada. Analysis of the pull-in range of
phase-locked loops by the Galerkin procedure.  Electronics and
Communications in Japan (Part 1: Communications), 69(5):90-98,
1986.

J. Stensby. An exact formula for the half-plane pull-in range of a PLL.
Journal of the Franklin Institute, 348(4):671-684, 2011.

EM. Gardner. Phaselock Techniques. John Wiley & Sons, New York,
3 edition, 2005.

G.A. Leonov, N.V. Kuznetsov, M.V. Yuldashev, and R.V. Yulda-
shev. Hold-in, pull-in, and lock-in ranges of PLL circuits: rigorous
mathematical definitions and limitations of classical theory. IEEE
Transactions on Circuits and Systems—I: Regular Papers, 62(10):2454—
2464, 2015.

R E Best. Phase-Locked Loops: Design, Simulation and Application.
McGraw-Hill, 6th edition, 2007.

G.A. Leonov, N.V. Kuznetsov, M.V. Yuldashev, and R.V. Yuldashev.
Analytical method for computation of phase-detector characteristic.
IEEE Transactions on Circuits and Systems - II: Express Briefs,
59(10):633-647, 2012.

G.A. Leonov, N.V. Kuznetsov, M.V. Yuldashev, and R.V. Yuldashev.
Nonlinear dynamical model of Costas loop and an approach to the
analysis of its stability in the large. Signal Processing, 108:124—135,
2015.

N.V. Kuznetsov, G.A. Leonov, M.V. Yuldashev, and R.V. Yuldashev.
Rigorous mathematical definitions of the hold-in and pull-in ranges
for phase-locked loops. IFAC-PapersOnLine, 48(11):710-713, 2015.
G.A. Leonov and N.V. Kuznetsov. Nonlinear mathematical models of
phase-locked loops. Stability and oscillations. Cambridge Scientific
Publishers, 2014.

N.V. Kuznetsov, M.Y. Lobachev, M.V. Yuldashev, R.V. Yuldashev,
E.V. Kudryashova, O.A. Kuznetsova, E.N. Rosenwasser, and S.M.
Abramovich. The birth of the global stability theory and the the-
ory of hidden oscillations. In 2020 European Control Conference
Proceedings, pages 769-774, 2020.

Yu.N. Bakaev and A A Guzh. Optimal reception of {F}{M} signal
in a {D}oppler effect. Radiomekhanika i Elektronika, 10(1):171-175,
1965.

G.A. Leonov and S.M. Seledzhi. The Phase-Locked Loop for Array
Processors. Nevskii dialect, St.Petersburg [in Russian], 2002.

M.V. Blagov, N.V. Kuznetsov, G.A. Leonov, M.V. Yuldashev, and R.V.
Yuldashev. Simulation of PLL with impulse signals in MATLAB:
Limitations, hidden oscillations, and pull-in range. International
Congress on Ultra Modern Telecommunications and Control Systems
and Workshops (ICUMT 2015), 2016-January:85-90, 2016.

M.V. Blagov, E.V. Kudryashova, N.V. Kuznetsov, G.A. Leonov, M.V.
Yuldashev, and R.V. Yuldashev. Computation of lock-in range for clas-
sic pll with lead-lag filter and impulse signals. IFAC-PapersOnLine,
49(14):42-44, 2016.

N.V. Kuznetsov, M.V. Blagov, K.D. Alexandrov, M.V. Yuldashev, and
R.V. Yuldashev. Lock-in range of classical PLL with piecewise-linear
phase detector characteristic. Differencialnie Uravnenia i Protsesy

McGraw-Hill,



[39]

[40]
[41]

[42]

Upravlenia (Differential Equations and Control Processes), (3):74—
89, 2019.

N.V. Kuznetsov, M.Y. Lobachev, M.V. Yuldashev, R.V. Yuldashev,
and G. Kolumbdn. Harmonic balance analysis of pull-in range
and oscillatory behavior of third-order type 2 analog PLLs. IFAC-
PapersOnLine, 53(2):6378-6383, 2020.

L N Belyustina. Study of a nonlinear system of phase-locked
frequency control. Radiofizika, 2(2):277-291, 1959.

Mineo Chini. Sull’integrazione di alcune equazioni differenziali del
primo ordine. Rendiconti Instituto Lombardo (2), 57:506-511, 1924.
E.S. Cheb-Terrab and T. Kolokolnikov. First-order ordinary differential
equations, symmetries and linear transformations. European Journal
of Applied Mathematics, 14(2):231-246, 2003.



PIII

HOLD-IN, PULL-IN AND LOCK-IN RANGES FOR
PHASE-LOCKED LOOP WITH TANGENTIAL
CHARACTERISTIC OF THE PHASE DETECTOR

by
M.V. Blagov, O.A. Kuznetsova, E.V. Kudryashova, N.V. Kuznetsov, T.N. Mokaev,
R.N. Mokaev, M.V. Yuldashev, R.V. Yuldashev 2019, JuFo 1

Procedia Computer Science, Vol. 150, pp. 558-566,
https://doi.org/10.1016/j.procs.2019.02.093




Available online at www.sciencedirect.com

ScienceDirect ProcediCI

Computer Science

CrossMark

Procedia Computer Science 150 (2019) 558-566

www.elsevier.com/locate/procedia

13th International Symposium “Intelligent Systems” (INTELS’18)

Hold-in, Pull-in and Lock-in Ranges for Phase-locked Loop with
Tangential Characteristic of the Phase Detector

M.V. Blagov*“*, O.A. Kuznetsova?, E.V. Kudryashova®, N.V. Kuznetsov®P<,
T.N. Mokaev?, R.N. Mokaev®*¢, M.V. Yuldashev?, R.V. Yuldashev?®

¢Faculty of Mathematics and Mechanics, Saint-Petersburg State University, Universitetskiy pr. 28, St. Petersburg, Russia
bInstitute of Problems of Mechanical Engineering RAS, V.0., Bolshoj pr., 61. St. Petersburg, Russia
¢Dept. of Mathematical Information Technology, University of Jyvdskyld, Mattilanniemi 2, Agora, Jyviskyld, Finland

Abstract

In the present paper the phase-locked loop (PLL), an electric circuit widely used in telecommunications and computer architectures
is considered. A new modification of the PLL with tangential phase detector characteristic and active proportionally-integrating
(PD) filter is introduced. Hold-in, pull-in and lock-in ranges for given circuit are studied rigorously. It is shown that lock-in range
of the new PLL model is infinite, compared to the finite lock-in range of the classical PLL.

© 2019 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the 13th International Symposium “Intelligent Systems” (INTELS’18).

Keywords: capture range; hold-in range; pull-in range; lock-in range; nonlinear analysis; phase-locked loop; PLL.

1. Introduction

Phase-locked loop (PLL) is a non-linear control circuit, which is used in many intelligent systems [1, 2, 3]: wireless
communication, computer architectures, navigation, power systems and others [4, 5, 6, 7, 8, 9]. The circuit allows to
tune frequency (phase) of the controlled oscillator to the frequency (phase) of the reference signal. State of circuit,
when the oscillators are synchronized, is called a locked state. The main characteristics of PLL are hold-in, pull-in
(capture), and lock-in ranges (rigorous definitions are given in e.g. [10]), which are widely used by engineers (see
e.g., [5, 4, 11]). These concepts define frequency ranges in which PLL-based circuits can achieve lock under various
additional conditions ([12, 13, 14, 15, 7]). It is well known that hold-in and pull-in ranges are infinite for the PI loop
filter, but the lock-in range is finite [16]. In this article we propose and study model of PLL with tangential phase
detector, which has infinite lock-in range.
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In section 2 modified PLL model with tangent phase detector characteristic function is considered. In section 3
hold-in, pull-in and lock-in ranges proved to be infinite. In section 4 it is shown that modified PLL model locks
without cycle slipping, unlike classical model.

2. Mathematical model of PLL

Mathematical model of PLL in signal space (circuit level) is not suitable for analytical study of PLLs, because
it consists of non-linear non-autonomous differential equations. In [17, 18, 19] it was rigorously shown, that for
estimation of lock-in and pull-in range it is possible to use averaged model, which is also called signal’s phase space
model. It was originally proposed in pioneering books on PLLs [20, 21, 22] and considers only phases of signals,
discarding waveforms (see Fig. 1)'. This simplification allows to apply control theory methods such as Lyapunov
functions and phase-portrait analysis to study PLL.

x(0)
r -  —l
0.0 6.(1) v{0)
t( ’Uc(ec(t)) I > H(S) f(
L |
PD Loop filter

Oyco®)

Fig. 1. Model of the classical PLL in signal’s phase space.

Here G,.¢(7) is the phase of input signal with instantaneous frequency Oref(t) = wyer(f). The phase of voltage con-
trolled oscillator (VCO) is 6y, (#) with it’s instantaneous frequency Oyeo(t) = Wyeo(?). The phase detector generates a
signal

Ve(0e(1)) = Ve(Orer (1) = buco(1)), (1

where v,(-) is periodic function called phase-detector characteristics which depends only on phase difference 6,(f) =
Oret (1) — Byeo(2). For the classical PLL v,(6,) = % sin(6,), and for proposed model v.(6,) = tan(6,).

The relationship between input v,.(6,(¢)) and output v,(f) of for the proportionally-integrating Loop filter with
transfer function H(s) = Tastl 71>0,7,>01s

T8

{ 5= L), o

vy =x+ %%(9)-

I Remark that the averaging method has some restrictions, rigorous discussion of which is often omitted, (see, e.g. classical books [20, p.7],[21,
p-12,15-17]), and their violation may lead to unreliable results (see, e.g. [23, 24, 25]).
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The control signal v,() adjusts the VCO frequency:

gvco(t) = wvco(t) = wfll;:es + chovf(t)a (3)

where w!™ is the VCO free-running frequency and K¢, > 0 is the VCO gain. Nonlinear VCO models can be similarly

considered, see, e.g. [26, 27, 28, 29]. The frequency of input signal (reference frequency) is usually assumed to be
constant (see, e.g. [20]):

éref(t) = wref(t) = Wref- (4)
The difference between the reference frequency and the VCO free-running frequency is denoted as w'™¢:

free _— free
W, = Wref — Wigg - )

By combining equations (2), and (3)—(5) a nonlinear mathematical model in the signal’s phase space is obtained
(i.e. in the state space: the filter’s state x and the difference between signal’s phases 6,):

x = L an(,),
2 1 free L] (6)
0, = W™ — Kyeo (x +2 tan(é‘e)).

Initial state of the loop is y¢0(0) (initial phase shift of the VCO signal with respect to the reference signal) and x(0)
(initial state of the Loop filter).
Note, that (6) with tan(-) characteristic is not changed under the transformation

(W, x(1), 0,(1)) = (= W™, —x(1), —0,(1)), (7

and it allows to study system (6) for w™® > 0 only, introducing the concept of frequency deviation (or frequency

offset):

free | —
e

i
|w |wref - "-)vrce:|- (8)

Further system (6) is studied and hold-in range, pull-in range, and lock-in range are computed.
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3. Calculation of hold-in range, pull-in range, and lock-in range
3.1. Hold-in range

Definition 1 (Hold-in range of the signal’s phase space model, see [10]). The largest interval [0, wy) such that a
certain stable equilibrium varies continuously when a)’;m is changed within the range® is called hold-in range. Here
wy, is called a hold-in frequency (see [20, p.38]).

In other words, loop re-acquires lock after small perturbations of signals’ frequencies and phases, and the filter’s
state, if given frequency deviation is in the hold-in set. This effect is also called steady-state stability. To find the wy,
one should find and analyze equilibria of the system

X = L tan(4,),

=t . ©)

fe = W = Kyeo (x+ 2 tan(@,)).

This system has an infinite sequence of equilibria
W free
(xeq, Hiq) = (ﬂn, - ), neZ. (10)
KVCO
Stability of the equilibria can be studied using characteristic polynomial of the linearized system:
KVCO
YD) = 2+ Ko 2 A+ =, (11
71 71

Since 71 > 0, 7, > 0 and Ky, > 0, all equilibria are asymptotically stable for arbitrary w{ree by Routh-Hurwitz

criterion. Thus, wy, is infinite.

3.2. Pull-in range

Another important characteristic of the PLL circuit is the set of |w£f°e| such that the model acquires locked state for
any initial state.

Definition 2 (Pull-in range of the signal’s phase space model, see [10, 30, 31]). The largest interval of frequency
deviations Iwireel € [0, wpuli-in) such that the signal’s phase space model (6) acquires a locked state for arbitrary initial
state (x(0), 6.(0)) is called a pull-in range, wpyii-in is called a pull-in frequency.

ree
wl

Denote y = x — —. Then system (9) becomes

oL
{ § =7 tan(@,), 12

0. = _choy - cho% tan(96)~

2 In general (when the stable equilibria coexist and some of them may appear or disappear), the stable equilibria can be considered as a multiple-
valued function of variable w{™®, in which case the existence of its continuous singlevalue branch for |wgfee\ € [0, wp) is required.

e
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In order to prove that pull-in range is infinite it is possible to use generalization of classic LaSalle’s (also known
as Barbashin—Krasovskii—LaSalle) invariance principle for periodic functions with infinite number of equilibria (see
[32]). Consider Lyapunov function candidate

2 (%
V(6e,y) =y + T—f tan 6,d6, > 0. (13)
1 Jo

According to the principle, it is required to check the following conditions:

e Vis m-periodic in 6,;

° |llim V(0,,y) = co;

y[—00
° V(y’ 0,) = _BKVCO:% tan’ 6, <0
1
free

e V(6,,y) = 0only fory = “1);?’ 0, € tn, n € Z.

Indeed, all of these conditions are satisfied, consequently, every trajectory of system (9), except the lines 6, = 7 +

nn, n € Z, tends to one of the asymptotically stable equilibria. Lines 6, = 7 +7n, n € Z consist of unstable equilibria,
which are physically unrealizable.

) ) 0.

O — — — — — —

Fig. 2. Phase portrait of PLL model with tangential phase detector characteristic

3.3. Lock-in range

In practice it is important to guarantee that for a certain frequency range pull-in process completes in one cycle of
oscillations. This frequency range is related to lock-in range.
First lets introduce the notion of cycle slipping.

Definition 3 (Cycle slipping [10]). Let PD characteristic v.(6,) be a n-periodic function. If lim sup |6,(0) — 6,(¢)] > 7

t—oo

then it is said that cycle slipping occurs.

Now we can introduce definition of lock-in range.



M.V. Blagov et al. / Procedia Computer Science 150 (2019) 558-566 563

Definition 4 (Lock-in range of the signal’s phase space model, see [30, 10, 31]). The largest interval of frequency
deviations from the pull-in range: |w§re°| € [0, Wigek-in) C [0, Wpyit-in), is called a lock-in range if the signal’s phase
space model (6), being in a (stable) locked state, after any abrupt change of w® within the interval acquires a
(stable) locked state without cycle slipping.

Note, that all trajectories starting from —7 < 6,(0) < 7, y(0) € R stay within the same domain, i.e. these trajectories
never cross the band borders 6, = ig. Then consider behaviour of the system near 6, = -_0-%. The one-sided limits

limgﬂg,‘g and limgﬂg,g show that the vector field defined by the right-hand side of (12) is directed away from the
equilibria line:

1
lim x= lim —tanf = +oo

-3 —¢ 0—-5-e T
. ; . ]
lim 6, = lim —Ky,y— Kyco— tanf = —oo
-5 —¢ 0—-%-¢ T]

. (14)
lim = lim —tanf=-o0
——F+e O——5+e Ty

. . . T
lim 6,= lim —K,,y— cho_z tan @ = +oo
Z+e T1

AAAFS T T T T
AN
el

e

/l_.
7
/

<Y

Al A A I A A Y
A
-~

NS
A A

T AT
AP
P

7

N H

Fig. 3. Vector field of the PLL with tangential phase detector characteristic in small neighbourhood of the line 6, = 7

Therefore cycle slipping is impossible, i.e. lock-in range is infinite.
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4. Comparison of classic PLL and tan(-) PLL in Matlab Simulink

Consider Simulink models for both sinusoidal and tangential characteristics of the phase detector (see Fig. 4).

| 0.055+1 N 1 | 0.05s+1 o
a0 = QD 007 =
Loop filter Loop filter

Fig. 4. Simulink models for PLL with sinusoidal (on the left hand side) and tangential (on the right hand side) phase detector characteristics.

Here w!" = 100, 7, = 0.01, 5 = 0.05, Kyeo = 200. Initial input wrer = 100 and then jumps to wre = 350.

Here frequency of input is modeled by Step block with initial value 100, final value 350, and switch time 5.
Block { integrates frequency and forms phase of input signal. After subtracting phase of VCO, resulting signal goes
through PD block (sin and tan correspondingly). Loop filter is modeled by Transfer Fcn block. Output of loop filter
is connected to gain Kyco, which controls input gain of VCO. Gain block output is added to output of constant block
defining free-running frequency of VCO and finally got integrated to form phase of VCO.

Results of simulation are shown in Fig. 5.

) £ (t
:g‘() vs(t)

45 5 55 6 t 45 5 55 6t

Fig. 5. Simulink modelling for PLL with sinusoidal (on the left hand side) and tangential (on the right hand side) phase detector characteristics

Here one can see, that the synchronization achieved for both models, but for model with sinusoidal phase detector
characteristic cycle slipping occurs. Phase difference is shown in Fig. 6.
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150¢ 150

Fig. 6. Phase difference between input signal and VCO signal. Left sub-figure — cycle slipping for classic sinusoidal PD, right sub-figure — no
cycle slipping for tangential PD.

This means that considered frequency difference is outside of the classic PLL lock-in range, while tan(-) PLL locks
without cycle slipping. Similar results are observed for higher frequency deviations.

5. Conclusion

It was proven that tan(-) PD PLL the lock-in range is infinite for PI filter, which is significant improvement over
classic PLL. Theoretical results were checked by simulation. To study noise characteristics one can use theory devel-
oped in [22, 33, 34]. Higher order filters can be studied by frequency criterion [35].
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1. INTRODUCTION

The phase-locked loop (PLL) is an electric circuit exten-
sively used in various applications in computer architec-
tures and telecommunications (see, e.g. Kroupa (2003);
Bianchi (2005); Gardner (2005); Best (2007); Shakhtarin
et al. (2009)). A PLL is essentially a nonlinear control
system, which allows one to tune frequency (phase) of
the controlled oscillator to the frequency (phase) of the
reference oscillation (reference signal). One of the main
characteristics of PLL is the lock-in range (Gardner, 1966;
Best, 2007): the range of frequencies of the reference signal
for which fast synchronization without cycle sipping is
guaranteed.

In this work for a classic PLL with square waveform signals
and lead-lag filter for all possible parameters the lock-in
range is computed and corresponding diagrams are given.
The computed lock-in range is compared with estimates
in (Best, 2007).

2. MATHEMATICAL MODEL OF PLL WITH
LEAD-LAG FILTER

Consider signal’s phase space model of classic PLL circuit
(see Fig. 1). Here the phase detector (PD) is a nonlinear
block and the phases 61 2(t) of the input (reference) and
VCO signals are PD block inputs and the output is
a function ¢(0.(t)) = @(01(t) — 02(t)) named a phase
detector characteristic, where

Oc(t) = 01(t) — 02(1), (1)

named the phase error. Consider triangular PD character-
istic (see Fig. 2):

* This work was supported by Russian Science Foundation (project
14-21-00041, s. 3) Saint-Petersburg State University (project
6.38.505.2014, 5. 2.)

x(0)
00" 0.0 | K0, g(®)
Kyo() ft > He)
L ] |
PD Loop filter
0.0 T Kew 1
i— (0]
| +free |
0')2
R
62(0) VCO

Fig. 1. PLL-based circuit in a signal’s phase space.

EGE, for 6, € [fg, g},
80(96) = & 2 X T 3 (2)
2——6,, for b, e[, -l
s 2°2

This characteristic appears for the case of classical mul-
tiplier/mixer and impulse signal waveforms of VCO and
reference. For exclusive-or (EXOR) the phase detector
characteristic is also triangular. The output of the PD is
connected to the input of the passive lead-lag filter with
the transfer function

F(s) 3)

where 0 < 75 < 1. Loop filter dynamics can be described
by the following differential equations

_ ].+7'28
o ].4»7'157

i=—tat Lo,
T1 7_2 ! . (4)
g= (1 — ;1)% + E'Ue(ae(t))'

2405-8963 © 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
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Fig. 2. Triangular PD characteristic

-1+
0

where z(t) is a state of the loop filter, Kpy(t) is the PD
output, and g¢(t) is a filter output.

The output of the filter g(¢) adjusts the frequency of the
VCO to the frequency of the input signal:

05 (t) = wa(t) = wiee + Ky g(t), (5)
where wi® is called free-running frequency (i.e. for g(t) =
0) and Ky is the VCO gain. Nonlinear VCO models can
be studied similarly (see, e.g. Margaris (2004); Suarez
(2009)).

The frequency of the input signal (reference frequency) is
usually assumed to be constant:

91 (t) = W1 (t) = Wi. (6)

The difference between the reference frequency and the
VCO free-running frequency is denoted as wf™ee:

we = wp —wy . (7)

Combining (4) — (6), one obtains the following equations:

1 1
i=——a+ —p(6.(1)),
71 71

, (8)
b =t~ iy (1= 2y Zo0,0).
! !
System (8) is periodic in 6., therefore the analysis is
restricted to the range 6, € [—m, 7). The equilibria of (8)
are denoted by (Zeq, Oeq):

free
T_wp

2 KvcoKp’

ook o
Teg = ————.

“" KvcoKp

Stable equilibria correspond to the locked states of the
loop. Since PD characteristic (2) is an odd function
(p(—0.) = —p(be)), system is not changed by the trans-
formation

(wiree,x(t),ﬁe(t)) — (—wiree7 —z(t), —0.(t)) . (10)
This symmetric property of PD allows one the analysis of

system (8) with only wf™®® > 0 and introduces the concept
of frequency deviation

Ocq =

whree] = o — wfre].

3. LOCK-IN RANGE DEFINITION

The concepts of lock-in frequency and lock-in range were
intended to describe the set of frequency deviations for
which the loop can acquire lock within one beat without
cycle slipping. Next we use the definitions of the cycle

slipping and lock-in range from (Kuznetsov et al., 2015;
Leonov et al., 2015). If
lim sup |0.(0) — 0.(t)| > 2,

t—+o00 (11)
we say that cycle slipping occurs. The lock-in range may
be define as follows: if the model is in an equilibrium state,
then after an abrupt change of w,ef within a lock-in range
[wfre®| < Wigek—in, the model locks without cycle slipping.
Here wiock_in is called lock-in frequency.

Thus, the lock-in domain (i.e. a domain of the model
states, where fast acquisition without cycle slipping is
possible) contains both symmetric locked states (i.e. stable
equilibrium points for the positive and negative value of
the difference between the reference frequency and the
VCO free-running frequency).

3.1 Lock-in range computation
System (8) depends on 5 parameters: 71, T2, Ky, Kp, wiree.

Introduce parameter 7 = ¢t/ Ky Kp/m and reduce (8) to
the following equation

N We ee T2 de A
Qez — - — K K 705 - 9(-7 .
T KvKp VR Eon n VP, w(fe)
(12)

This equation contains only three parameters. The first
one is the normalized frequency deviation K:/U;(D , and two
others are the normalized loop filter parameters: :—f and

KvKDTl.

Consider now simple numerical algorithm for computation
of the lock-in range. For each pair (2, Ky Kp7i) the nor-

1 )
. . . we . . .
malized frequency deviation "ok 18 increased starting

from zero. The largest possible value of frequency devia-

free

free
tion is vas 7y = 1 since there are no equilibrium points
for bigger values. Taking into account that equilibria are
proportional to the frequency deviation and using the
symmetry (xeq (wl)7 eeq (wl)) = (meq(fwl)v eeq(fwl))v one
can effectively determine the lock-in range. We have to
increase the frequency deviation |wf| step by step and at
each step, after the loop achieves a locked state, to change
whree = & abruptly to w™® = —& and to check if the loop
can achieve a new locked state without cycle slipping. If
so, then the considered value belongs to the lock-in range.

Consider example in Fig. 3. Here filter parameters 7 =
T2

0.02, 75 = 0.008 correspond to a curve 2= 0.4 (see the

right-hand side axis). By substituting PD gain Kp and
VCO gain Ky into Ky Kp7; one determines a point on
the curve (see horizontal axis). The corresponding lock-
in frequency w; is then computed from the corresponding
value of the normalized value of the lock-in frequency

va;;D on the left-hand side of vertical axis. Note that
the same diagram may be used for any filter as long
as * = 0.4. Lock-in frequencies for other loop filter
parameters are in Fig. 4. Lock-in range for considered the
case is estimated in (Best (2007)) for the case of small

and large loop gain Kp Ky :

T 1
wy & KDKV(E +

—). 13
1 KpKym (13)
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Fig. 3. Lock-in range for parameters 7, = 0.02, 75 = 0.008.

For :—f = 0.01 lock-in diagrams are in Fig. 5. These
diagrams were constructed numerically in Matlab, by
integrating system (8) with “odel5s”.
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Fig. 4. Lock-in range lead-lag filter, triangular PD.
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Simulation of PLL with impulse signals in MATLAB:
limitations, hidden oscillations, and pull-in range
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Abstract—The limitations of PLL simulation are
demonstrated on an example of phase-locked loop with
triangular phase detector characteristic. It is shown
that simulation in MatLab may not reveal periodic
oscillations (e.g. such as hidden oscillations) and thus
may lead to unreliable conclusions on the width of pull-
in range.

I. INTRODUCTION

The phase-locked loop based circuits (PLL) are widely
used in various applications in computer architectures and
telecommunications (see, e.g. [1]-[3]). A PLL is essentially
a nonlinear control system and its nonlinear analysis is
a challenging task. Important characteristics of PLL are
hold-in, pull-in, and lock-in frequency deviation ranges
(see [4], [5] for rigorous mathematical definitions). Hold-
in range corresponds to the existence of a locally asymp-
totically stable locked state and can be studied by using
the Routh-Hurwitz criterion (at the stage of pre-design
analysis when all parameters of the loop can be chosen
precisely) or various frequency characteristics of the loop
(at the stage of post-design analysis when only the input
and output of the loop are considered). To estimate the
pull-in (capture) range, one has to check the global stabil-
ity (stability in the large) of the locked states, i.e. to prove
that for any initial state the loop acquires a locked state.
Its rigorous study is a challenging task.

In a recent book [6, p.123] it is noted that “the de-
termination of the width of the capture range together
with the interpretation of the capture effect in the second
order type-1 loops have always been an attractive theoretical
problem. This problem has not yet been provided with a
satisfactory solution”. Below we demonstrate that in this
case the numerical analysis may lead to unreliable results
and should be used carefully.

II. PLL WITH TRIANGULAR PHASE DETECTOR
CHARACTERISTIC

The basic blocks of the PLL are voltage-controlled
oscillator (VCO), linear loop filter, and phase detector
(PD) [3]. Balanced mixers PDs are used in the microwave
frequency range as well as in low noise frequency synthe-
sizers [7]. This type of PD is also used in optical PLLs
[8]. However, the characteristic of PD depends on the
waveforms of the reference signal and VCO [9]. Next square
waveform signals are considered since they are actively
used in practice [1], [3]. Another popular implementation
of the PD is Exclusive-OR (XOR) gate. One of the main

advantages of such PD is its independence of input signals
amplitudes. Although hardware implementations of PDs
mentioned earlier are significantly different, they have the
same characteristic. Therefore, the following analysis can
be applied to both of them.

Consider now block diagram of the classic PLL with
multiplier /mixer phase detector and square waveform sig-
nals on Fig. 1.

- sign(sin(0 (t))l o(t) »

Loop filter

X
T s1gn(cos(9 1))

0,(0)

Fig. 1: Classic PLL with square waveform signals

Here a reference oscillator and VCO generate
square waveform signals sign sin(6;(t)) and sign cos(f2(t))
with the phases 6;(f) and 62(f), respectively. Ana-
log multiplier (®) output signal is a product @(f) =
sign sin(0; (t))sign sin(f2(t)). Here we consider a lead-lag
loop filter with the transfer function

1+ 798
14718’

F(s)= (1)

where 0 <73 <7, Ky >0, and initial filter state is #(0).
Loop filter dynamics can be described by the following
differential equations

. 1 D) 1 D)
= —— 4 (1— 2ot = —axd+ 2o
@ ler( Tl)so(), g n“n‘p()’ (2)

where 2 is a state of the loop filter, and ¢ is the PD output.
Assume that the frequency of reference signal is a

constant 6 (t) =w;. The output of the loop filter adjusts
the VCO frequency to the frequency of the input signal:

02(t) = wiree + Kvcoa(t), (3)

Combining (2) and (3), one obtains the following model in



Fig. 3: Phase detector characteristic

the signal space:
. 1 T2
=—— 1— =)t
#= (1= 2,

1 D)
— x4 2ot
g lernw( ), (4)
02 = Wfree + Kvco,
(t) = sign sin(w;t)sign cos(62).

Model (4) in the signal space is a nonlinear non-
autonomous system with discontinuous right-hand side
and its rigorous analysis is a very difficult task.

x(0)
Loop filter

0,(t) 9(0,(0)-0,(1))
REF PD
[REF | D]

Y

0,(1)

6,(0)

Fig. 2: The model in the signal’s phase space

Consider corresponding nonlinear mathematical model
of the loop in the signal’s phase space (see Fig. 2):

. 1 )
— et (1—2)p0
@ 7190+( Tl)@( e),

ée=w17wfree*Lg7

1 T2 )
g= Tlx+ns0(0e),

9 T T

29, for 0c € [-5, 5]

= T %3 2

©(0e) { 2—20, for G c |3, 3m

Here PD is a nonlinear element with triangular character-
istic p(0e) (see Fig. 3), whose output depends only on the
phase error Oe(t) =01 (1) —02(1). Denote we = w —Wpee.
The model in the signal’s phase space can be obtained
from the model in the signal space by averaging under
certain conditions [9]-[13], violation of which may lead to
unreliable results (see, e.g. [14], [15]). Its rigorous analysis
and simulation is much simpler since time ¢ is excluded
and instead of high-frequency reference and VCO signals
only difference between their phases is considered.

III. SIMULATION OF THE LOOP IN THE SIGNAL’S PHASE
SPACE

Consider the implementation of the signal’s phase space
model in MatLab Simulink (see Fig. 4).

+
* Interpreted
¢ Subtract1 MATLAB Fen

Subtract triang MATLAB State-Space
Function

phase 3

Integrator1 Subtract2

delta_omega
- Constant3
+
Subtract3

10000

Constant2

Fig. 4: Simulink model of the loop in the signal’s phase space.

Here the loop filter transfer function F(s) = i*i%,

71 =0.02, 79 =0.008, L = 2000, we = 1399, phase detector
characteristic is implemented by Interpreted MatLab func-
tion “sawtooth(u+pi/2,0.5)”, and filter is implemented by
state-space block with the following parameters!:

1 1 T2

A=——B=1-2c-2p="1 6)
Tl TL TL TL

Note that since characteristic of the phase detector is not
smooth, it is better to choose a numerical method for stiff
svstems?, e.g. “odel’s”.

Now we demonstrate that simulation of the loop may
lead to wrong results. If the simulation step is too large
(e.g. default value of “Max step size” parameter is used)
the model acquires lock (see Fig. 5-left) for any initial
states. At the same time, for a smaller time step in the
numerical procedure the loop may remain unlocked (see
Fig. 5-right).

Consider the corresponding phase portrait (6¢(t),2(t))
in Fig. 6.

The green trajectory (solid green curve) in Fig. 6
corresponds to the trajectory with the loop filter initial
state (0) = 0.004 and the VCO phase shift 2(0) =60, (0) =
—3.8941 rad. This curve tends to a periodic trajectory,
therefore it will not acquire lock. All the trajectories under
the green curve also tend to the same periodic trajectory.

The solid red curve corresponds to the trajectory with
2(0) = 5351073 and 62(0) = 0 (0) = —3.8941. This trajec-
tory lies above the unstable periodic trajectory and tends
to a stable equilibrium. In this case PLL acquires lock.

All the trajectories between the stable and unstable
periodic trajectories tend to the stable one (see, e.g.,
a solid blue curve). Therefore, if the gap between the
stable and unstable periodic trajectories is smaller than
the discretization step, then the numerical procedure may

tFollowing the classical consideration [16, p.17, eq.2.20] [17, p.41,
eq.4-26], where the filter’s initial state is omitted, the filter is often
represented in MatLab Simulink as the block Transfer Fen with zero
initial state. (see, e.g. [18]—[22]). It is also related to the fact that
the transfer function (from ¢ to g) of system (2) is defined by the
Laplace transformation for zero initial data #(0) = 0. Unlike “Transfer
fen” block, “State-space” block from Simulink allows one to consider
nonzero initial states.

2Default Simulink integration method “ode45” may not work well
with non-smooth systems
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Fig. 6: Phase portrait with coexistence of stable and unstable
periodic trajectories. Red trajectory tend to an equilibrium
point, green trajectory tend to a periodic trajectory (blue).

slip through the stable trajectory. The case corresponds to
the close coexisting attractors and the bifurcation of birth
of semistable trajectory [23], [24]. In this case numerical
methods are limited by the errors on account of the linear
multistep integration methods (see [25], [26]). As noted
in [27], low-order methods give a relatively large warping
error that, in some cases, could lead to corrupted solutions
(i.e., solutions that are wrong even from a qualitative point
of view).

Corresponding limitations of simulation in SPICE are
discussed in [28].

The above example demonstrates also the difficulties
of numerical search of so-called hidden oscillations, whose
basin of attraction does not overlap with the neighborhood
of an equilibrium point, and thus may be difficult to
find numerically. In general, an oscillation in a dynamical
system can be easily localized numerically if the initial data
from its open neighborhood lead to long-time behavior
that approaches the oscillation. From a computational
point of view, on account of the simplicity of finding
the basin of attraction in the phase space, it is natural
to suggest the following classification of attractors [23],
[29]-[32]: An atlractor is called a hidden attractor if its
basin of attraction does not intersect small neighborhoods
of equilibria, otherwise it is called a self-excited attractor.

For a self-excited attractor its basin of attraction is
connected with an unstable equilibrium. Therefore, self-
excited attractors can be localized numerically by the
standard computational procedure in which after a transient
process a trajectory, started from a point of unstable
manifold in a neighborhood of unstable equilibrium, is
attracted to the state of oscillation and traces it. Thus
self-excited attractors can be easily visualized.

In contrast, for a hidden attractor its basin of attraction
is not connected with unstable equilibria. For example,
hidden attractors can be attractors in the systems with
no equilibria or with only one stable equilibrium (a special
case of multistable systems and coexistence of attractors -
in this case the observation of one or another stable solu-
tion may depend on the initial data and integration step).
Recent examples of hidden attractors can be found in The



European Physical Journal Special Topics: Multistability:
Uncovering Hidden Attractors, 2015 (see [33]-[44]).

IV. THE PULL-IN RANGE ESTIMATION

Model (5) can be effectively studied analytically by
Andronov’s point transformation method. One of the first
considerations of the above effect is due to M. Kapranov
[45] in 1956. In 1961, N. Gubar’ [46] revealed a gap in
the proof of Kapranov’s results and specified the values
of parameters for which the pull-in range was limited
by a periodic or heteroclitic solution. Finally, in 1969,
B. Shakhtarin fixed some misprints in the Gubar’s work
[47]. In 1970 [48], these results were confirmed numerically
and corresponding bifurcation diagram was given (see
Fig. 8) (see, also [12], [23)).

Consider, e.g., the parameters 7; = 0.02, 7o = 0.008 and
the corresponding curve in Fig. 8 (see the right-hand side
vertical axis). This curve corresponds to the bifurcation of

1
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04r
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Fig. 7: PLL parameters for existence of semistable periodic
trajectory.

semistable trajectory. Considering other possible bifurca-
tions, it is possible to demonstrate that this curve restricts
the area corresponding to the pull-in range. Consider this
curve separately in Fig. 8. Next we choose VCO gain L

o /L 1
09t i

0.8F 4
A | 7]
0.7r ‘ 4 7

0.6f i
0.5t ‘ i
04f ]

03F ‘ q

Pull-in range

0.2F

0.1F q

Fig. 8: Pull-in range for parameters 7| = 0.02, 72 = 0.008, L =
200.

(see horizontal axis in Fig. 8)4 which defines a point on
the curve (e.g. LT =4, L =

T—l). This point corresponds
to the normalized pull-in frequency % (see the left-hand
side vertical axis in Fig. 8), i.e. for smaller values of we
the model acquires lock for any initial state. However for
a larger value of we this is not true.

CONCLUSION

The considered example (see also the corresponding
examples with sinusoidal signals [14], [15], [24]) is a moti-
vation for the use of rigorous analyvtical methods for the
analysis of nonlinear PLL models. Various modifications
of classical stability criteria for the nonlinear analysis of
control systems in cylindrical phase space were developed
in the second half of the 20th century (see, e.g. [49]-[52]
and recent books recent books [6], [11], [12], [53], [54]).
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