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ABSTRACT

Mazumdar, Atanu
Novel Approaches for Offline Data-Driven Evolutionary Multiobjective Optimiza-
tion
Jyväskylä: University of Jyväskylä, 2021, 74 p. (+included articles)
(JYU Dissertations
ISSN 2489-9003; 456)
ISBN 978-951-39-8919-4 (PDF)

Most multiobjective evolutionary algorithms (MOEAs) assume that analytical
functions or simulation models are available while solving a multiobjective opti-
mization problem (MOP). However, in some cases we must start with data and
build approximation models known as surrogates that are later used to solve the
MOP by an MOEA. These types of problems are called data-driven MOPs. This
thesis is devoted to solving so-called offline data-driven MOPs that are particularly
challenging as no new data is available during the optimization process.

The author first presents approaches to utilize the uncertainty in the pre-
diction of Kriging or Gaussian process (GP) surrogates as additional objectives.
However, these approaches increase the complexity of the MOP being solved.
Hence, the author proposes probabilistic selection approaches that can be em-
bedded in a decomposition-based MOEA without further analytical derivations.
These approaches utilize Monte Carlo sampling and kernel density estimation
to calculate the probability of selection criterion of the MOEA and later select
individuals based on them. Next, the author proposes an interactive optimization
framework that utilizes decision maker’s preferences for uncertainties in addition
to preferences for objective values. The framework was further extended to use
probabilistic selection approaches for a decomposition-based MOEA and a custom
reference vector adaptation technique to consider uncertainty in the solutions
during the adaptation process.

Building GPs with all the provided data becomes computationally expensive
when the size of the data is large. Hence, the author finally proposes treed GP
surrogates for multiobjective optimization (TGP-MO). They can be built with a
relatively low computational cost and have a good accuracy exclusively in the
regions around the optimal solutions. This thesis provides multiple novel ap-
proaches and detailed experimental studies for solving offline data-driven MOPs
with decision support that will enhance real-world problem-solving capabilities.

Keywords: metamodelling, surrogates, Pareto optimality, Kriging, Gaussian pro-
cesses, evolutionary algorithm, decision making, uncertainty, interac-
tive methods, preference information



TIIVISTELMÄ (ABSTRACT IN FINNISH)

Mazumdar, Atanu
Uusia lähestymistapoja datapohjaiseen monitavoiteoptimointiin kun uutta data ei
ole saatavilla
Jyväskylä: University of Jyväskylä, 2021, 74 s. (+artikkelit)
(JYU Dissertations
ISSN 2489-9003; 456)
ISBN 978-951-39-8919-4 (PDF)

Monet monitavoiteoptimointiin kehitetyt evoluutioalgoritmit olettavat, että opti-
moitavien funktioiden analyyttiset lausekkeet tai simulaatiomallit ovat ratkaisu-
prosessin aikana käytettävissä. Joissakin tapauksissa lähtökohta kuitenkin on aiem-
min kerätty data, johon täytyy ensin sovittaa sijaismalleja. Näitä malleja voidaan
sitten käyttää monitavoiteoptimointiongelman muotoilussa ja ratkaisemisessa. Täl-
laisia ongelmia kutsutaan datapohjaisiksi monitavoiteoptimointiongelmiksi. Tässä
väitöskirjassa käsitellään ns. erillisiä datapohjaisia ongelmia, jotka ovat erityisen
haastavia. Tässä erillisyys tarkoittaa sitä, ettei uutta dataa ole ratkaisuprosessin
aikana saatavilla.

Ensin väittelijä esittelee lähestymistapoja, joissa käytetään Kriging- tai Gaus-
sisten prosessien sijaismallien tuottamaa epävarmuustietoa optimoitavina lisä-
funktioina. Ne kuitenkin lisäävät ratkaistavan monitavoiteoptimointiongelman
kompleksisuutta. Tämän innoittamana väittelijä esittelee todennäköisuuteen pe-
rustuvia tapoja, jotka voidaan kätevästi sisällyttää hajotelmapohjaisiin evoluutio-
algorimeihin. Tämän lisäksi väittelijä esittelee interaktiivisen optimointikehikon,
jossa päätöksentekijä antaa preferenssi-informaatiota optimoitavien funktioiden
lisäksi myös epävarmuuksille. Hän keskittyy hajontapohjaisiin evoluutioalgorit-
meihin, joissa referenssivektoreita muokataan huomioimaan epävarmuus.

Gaussisten prosessien sovittaminen on laskennallisesti raskasta kun dataa
on paljon. Tähän haasteeseen väittelijä vastaa lähestymistavalla, joka on lasken-
nallisesti varsin edullinen mutta riittävän tarkka optimaalisten ratkaisujen lä-
heisyydessä. Väitöskirja tarjoaa useita uusia lähestymistapoja ja niiden taustalle
yksityiskohtaisia laskennallisia testejä erilliseen datapohjaiseen monitavoiteopti-
mointiin. Esitellyt päätöksenteon tukimenetelmät auttavat tekemään parempia
datapohjaisia päätöksiä ja niitä voidaan soveltaa monilla käytännön sovellusaloil-
la.

Avainsanat: metamallinnus, sijaismallit, Pareto-optimaalisuus, Kriging, Gaussiset
prosessit, evoluutioalgoritmit, päätöksenteko, epävarmuus, interaktii-
viset menetelmät, preferenssi-informaatio
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1 INTRODUCTION

Most multiobjective evolutionary optimization algorithms (MOEAs) solve mul-
tiobjective optimization problems (MOPs) consisting of conflicting objectives,
assuming that analytical functions or simulation models are available [34]. How-
ever, this assumption is not true for some real-world MOPs. Instead, we start the
optimization process using the data obtained from a phenomenon, i.e. real-world
processes, sensors, historical records or physical experiments [33]. These types of
problems are known as data-driven optimization problems. The collected data
may require pre-processing since it may have noise or errors. Later we build
surrogate models (also known as meta-models) to approximate the underlying (or
real) objective functions and/or constraint functions. To find the solutions of the
MOP, we use the surrogates as objectives by embedding them in an MOEA. Using
MOEAs is advantageous since they have proven beneficial in solving black-box
MOPs [32], and can solve MOPs with non-convex and local optimal fronts. Since
MOPs have conflicting objectives, we have multiple optimal solutions known as
Pareto optimal solutions that represent the tradeoff between the objectives.

Data-driven optimization can be categorized into two types; online and
offline optimization [33, 34]. In online data-driven optimization, new data can
be generated during the optimization process by conducting further (expensive)
function evaluations. Thus we can enhance the approximation quality of the
surrogates and further improve the accuracy and objective values of the solutions.
Online data-driven optimization is also known as surrogate assisted optimization
in many pieces of literature, and there have been many works such as [11, 12, 13,
37, 70]. In offline data-driven optimization, we cannot actively sample or generate
new data during the optimization process. Therefore, we cannot validate the
accuracy of the surrogates and must utilize the available data in the best way
possible. Thus the quality of the solutions is entirely dependent on the surrogates’
approximation and the quality and quantity of the available offline data. The
primary goals of this thesis are on the development of optimization approaches
to make the best use of the offline data, and the development of decision support
approaches for solving offline data-driven MOPs.

Most of the previous works in offline data-driven multiobjective optimization
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were primarily focused on various surrogate modelling techniques and improving
the approximation accuracy of the surrogates. For instance, in [10] the operating
parameters of a blast furnace with eight objectives were optimized where the
provided dataset was small in size and noisy. The work also reduced the number
of decision variables using principal component analysis and used K-RVEA [11] for
optimization. Another work that dealt with a small dataset was the optimization of
fused magnesium furnaces in [28]. Synthetic data was generated using polynomial
regression models, and Kriging models were later built using both the provided
offline data and the generated synthetic data. The trauma system design problem
is an example where the dataset is large, and function evaluations are expensive.
A model management strategy was proposed in [67] to reduce the computation
time by adjusting the fidelity of the surrogates using hierarchical clustering. A
random forest assisted MOEA capable of handling constraints was proposed in
[66] that solved the trauma system design problem. The work also proved its
effectiveness in data-driven constrained multiobjective combinatorial optimization
problems. In [72], an optimization approach based on transfer learning was
proposed. The approach used two different surrogates for global and local search,
and information was shared between the two. The approach found promising
subregions using the coarse surrogate, and the knowledge about good solutions
was transferred for improving the solutions further. An ensemble model was
proposed in [68] where a large number of models were built using bootstrapped
samples of the dataset. The proposed surrogate model was also used to solve an
airfoil design optimization problem.

However, one of the primary challenges while solving an offline data-driven
MOP is that the MOEAs generally do not have a mechanism to understand the
error in the objective values of the solutions when they are evaluated with the
underlying objectives. One of the ways to address the challenge is by using
uncertainty in the prediction of surrogates such as Kriging. Previous works such
as [31, 53] utilized the uncertainty information by calculating the probability of
dominance and can be applied to dominance-based MOEAs. However, dominance-
based MOEAs are not suitable for solving MOPs with a high of objectives (>
3) [40, 63], also known as many-objective problems. A more practical way of
solving many-objective problems is to use decomposition-based MOEAs [8, 17,
73]. A probabilistic selection criterion for decomposition-based MOEAs will be
capable of handling uncertainties in the objectives and can solve many-objective
problems. However, calculating the probabilities of selection criteria as proposed
in [31] requires complex analytical derivations. Deriving the closed form for
the probability of selection criterion becomes difficult for decomposition-based
MOEAs that already employ complicated selection criteria.

Solving an MOP essentially means helping a human decision maker (DM)
to find a solution with the most convincing objective values (also known as the
most preferred solution) [49]. However, while using an MOEA to solve an offline
data-driven MOP produces a set of solutions spread in the entire feasible region
of the objective space. Decision making becomes a challenging task as the DM
has to choose from a large set of solutions. Interactive multiobjective optimization
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approaches are a suitable way to solve MOPs that enables the DM to find solutions
in certain regions of the Pareto front. These approaches also enables the DM to
learn about the problem [49]. There have been many developments in interactive
MOEAs [30, 44, 52, 58], and interactive approaches such as [29, 41, 75] have
been proposed for decomposition-based MOEAs. However, these approaches are
not specifically built to solve offline data-driven MOPs and do not provide any
mechanism to consider preferences for uncertainties from the DM.

Surrogates such as Kriging or Gaussian process regression (GP) [24] are a pop-
ular choice since they can provide uncertainty in their prediction [54]. However,
they become computationally expensive to build when the size of the provided
data is large. Existing offline data-driven approaches generally do not use Kriging
surrogates (or use all the provided data) when the size of the dataset is large. A
suitable alternative is to build sparse GPs [61, 62] as they use a small subset of
data called support or inducing points to build approximation models. However,
these surrogates are not tailored to solve offline data-driven MOPs and become
computationally expensive to build for larger datasets.

The primary challenges of solving offline data-driven MOPs addressed in
this thesis are:

1. how to enable MOEAs to utilize uncertainty information provided by surro-
gates,

2. how to support decision making by utilizing uncertainty information, and

3. how to handle offline datasets of large size?

This thesis addresses these challenges by proposing several approaches and em-
bedding them in frameworks to solve offline data-driven MOPs. In our works, we
used offline datasets generated from benchmark problems developed for multiob-
jective optimization. As the Pareto fronts and the objective functions are known,
we could better understand the search behaviour of the proposed approaches for
different types of problems. Using these test problems, we were able to investi-
gate and analyze the effectiveness and performance of the proposed approaches.
Considering further challenges of real-world offline data deserves more attention
that could not be incorporated in a single thesis.

The thesis consists of four articles ([PI]-[PIV]) published and submitted in
scientific journals and conference proceedings. A brief introduction of these articles
is presented in Chapters 3-6. The first article [PI] about utilizing uncertainty
information from Kriging surrogates for solving offline data-driven MOPs is
introduced in Chapter 3. In [PI] the uncertainty in the predictions of Kriging
surrogates was used as additional objectives. In other words, besides optimizing
posterior predicted mean from Kriging surrogates fitted to the data, the uncertainty
in the prediction of each surrogate was also minimized. The proposed approaches
produced solutions closer to the Pareto front and with better accuracy compared
to the generic approach. However, these approaches also increased the complexity
of the MOP being solved by increasing the number of objectives.
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In [PII] (introduced in Chapter 4) we proposed probabilistic selection ap-
proaches for decomposition-based MOEAs that explicitly considers the uncertainty
from Kriging surrogates in the selection criterion. The probability of selection
criterion of the decomposition-based MOEA is computed using numerical approx-
imation methods such as Monte Carlo sampling [46] and kernel density estima-
tion (KDE) [55]. The approaches are "plug and play" and can be applied to any
decomposition-based MOEA without the need for further analytical derivations.
We also demonstrated the capabilities of the probabilistic selection approaches
for RVEA [8] and MOEA/D [73] by comparing them to their generic counterparts
(approaches that used the original selection criteria of the MOEAs). Tests showed
that the solutions found by the proposed probabilistic approaches were better in
hypervolume and accuracy than their generic counterparts.

However, while solving real-world MOPs, the DM is interested in certain
regions of the Pareto front. This also reduces the cognitive load of the DM as
only certain solutions are shown to him/her [49]. Works such as [30, 44, 58]
have proposed different ways to solve online data-driven MOPs interactively.
However, to our knowledge, there have been no works to solve offline data-driven
MOPs interactively. Hence, in [PIII] (introduced in Chapter 5) we proposed a
framework to solve offline data-driven MOPs in an interactive way. The approach
also utilized the preferences related to uncertainty provided by the DM. The
approach deals with two types of preferences without significantly increasing
the cognitive load in decision making. This framework was further extended
to account for the uncertainty in objective values when the DM provides the
preferences. The extended framework also utilized the probabilistic selection
approaches proposed in [PII]. Tests conducted with artificial decision maker
showed improved performance compared to the other interactive approaches.

In [PIV] (introduced in Chapter 6) a surrogate modelling approach called
TGP-MO (treed GP surrogates for multiobjective optimization) was proposed to
handle offline datasets of large size. Most of the traditional surrogate models
[10, 28, 67] do not consider the tradeoff between the objectives while solving
an offline data-driven MOP. In TGP-MO, we first split the decision space into
sub-regions using regression trees. Then, GPs are built only in certain regions of
the decision space that represent the tradeoff between the objectives. TGP-MO
significantly outperformed full GPs [24] and sparse GPs [62] in surrogate building
times for datasets of different sizes, sampling strategies, number of objectives and
decision variables for various benchmark problems. It should be noted that in
[PIV] and Chapter 6, we refer to Kriging as GP. (The article devoted to this work
was submitted to a machine learning journal, and the readers are more familiar
with the term GP.)

To summarize, in this thesis, we first studied the effects of utilizing uncer-
tainty information from Kriging surrogates and proposed a few approaches in [PI].
The identified drawbacks in [PI] were tackled in [PII], where we proposed the
probabilistic selection approaches for decomposition-based MOEAs. We proposed
a framework in [PIII] to enable the DM to provide preferences for objectives and
uncertainties. This framework was further extended to utilize the probabilistic
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selection approach proposed in [PII] and adjust the diversity of the solutions based
on the uncertainties in objective values. Finally, to explore the challenges in han-
dling large datasets while solving offline data-driven MOPs, TGP-MO surrogates
were proposed in [PIV].



2 BACKGROUND

In this chapter, the author introduces the key concepts and terminologies that
were used in this thesis. A brief description of Kriging [24], decomposition-based
MOEAs [63], probabilistic selection [31], and interactive decomposition-based
MOEA [29] is provided as they were the primary building blocks of our works.

2.1 Offline Data-Driven MOP and Basic Concepts

While solving an offline data-driven MOP, analytical expression or simulation
models are not available or cannot be accessed during the optimization. Instead,
we are provided with (pre-collected) data of the phenomenon that is composed of
underlying objective functions. We can denote the underlying MOP as follows:

minimize { f1(x), . . . , fK(x)}
subject to x ∈ Ω,

(1)

where K ≥ 2 is the total number of objectives, and Ω is the feasible region of
the decision space Rn. For a feasible decision vector x, the corresponding objec-
tive vector is f(x), that comprises of the underlying objective (function) values
{ f1(x), . . . , fK(x)}.

A solution x1 ∈ Ω dominates another solution x2 ∈ Ω if fk(x1) ≤ fk(x2) for
all k = 1, . . . , K and fk(x1) < fk(x2) for at least one k = 1, . . . , K. A solution of an
MOP is called nondominated if no other feasible solution dominates it. An MOEA
typically produces solutions that are nondominated within the set of solutions it
has found. The solutions of (1) that are nondominated in Ω are also called Pareto
optimal solutions. The solutions of MOEAs is referred to approximated Pareto
optimal ones in this thesis. The set of solutions in the objective space is called the
Pareto front, and the corresponding set of decision vectors is the Pareto set.
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FIGURE 1 Flowchart of a generic offline data-driven multiobjective optimization ap-
proach.

Generic Offline Data-Driven Multiobjective Optimization

A generic approach to solve offline data-driven MOPs is shown in Figure 1. As
described in [33, 68], the optimization process can be divided into three stages.
They are: (a) data collection, (b) building surrogates, and (c) optimization using
an MOEA. We start with an offline dataset consisting of ND samples. Each sample
consists of a decision vector x and its corresponding objective vector f(x) as a
tuple of two matrices: (X, Y) where X ∈ RND×n and Y ∈ RND×K. Each row in
X represents a decision vector, whereas a row in Y represents its corresponding
objective vector. Pre-processing the data can be done in the first stage if necessary.
We then build surrogates (generally one per objective) using the provided offline
data. Surrogates such as neural networks [6], Kriging [24], and support vector
machines [6] are some of the popular choices for solving offline data-driven MOPs.
Finally, we use an MOEA to solve the MOP by considering the surrogates as
objectives. For simplicity, the objective values of the ith objective is considered as
yi ∈ RND×1 that is a vector of objective values fi(x) for all decision vectors x ∈ X.

2.2 Terminologies

1. Underlying objectives: In an offline data-driven MOP, we cannot access
the objectives of the process or phenomenon, and we start the optimization
process using data that has been acquired. For simplicity of representation,
we refer to the objective functions of the phenomenon being optimized as
underlying objective functions.

2. Surrogate: Surrogate models, also known as metamodels, are used to ap-
proximate the underlying objectives of the offline data-driven MOP.

3. Surrogate and underlying objective space: While solving a real-world of-
fline data-driven MOP, the objective values of the solutions obtained are
predictions of the surrogates. These objective values may not be accurate
and represent the real-world objective values of the underlying objectives.
For benchmarking and understanding the various optimization approaches,
we refer to two objective spaces: the surrogate and the underlying objective
spaces.
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4. Tradeoff region: In offline data-driven MOPs, the approximation accuracy
in the neighbourhood region of the Pareto set is of utmost importance. In
this thesis, we refer to this region of the decision space as the tradeoff region.
The concept of tradeoff region was used in [PIV] where the goal was to build
GP surrogates exclusively in this region of the decision space.

2.3 Kriging

Kriging or GP is one of the widely used surrogate models to approximate the
underlying objectives. As mentioned previously, a Kriging model also provides
uncertainty information along with the predicted value, which can be utilized
for solving offline data-driven MOPs [PI, PII] and efficient decision making [PIII].
Kriging surrogates have been widely used in Bayesian optimisation [57], time-
series modelling [50] and geo-statistics [14]. A Kriging model is a multivariate
normal distribution with mean µ and covariance matrix C:

y ∼ N (µ, C) (2)

As we have multiple objectives, we generally build one Kriging model (2) for each
objective function. For simplicity in calculations, we assume a mean of zero. The
correlation between two samples is defined by the covariance matrix C that uses
the kernel function. In our work in [PI], [PII], and [PIII], we used a Gaussian (or
squared exponential) kernel to define a correlation between x and x′. For squared
exponential kernel, the correlation is:

κ(x, x′, ΘΘΘ) = σ2
f exp

(
−1

2

n

∑
j=1

|xj − x′j|2

l2
j

)
+ σ2

t δxx′ . (3)

In [PIV] we used Matern 5/2 kernel and the correlation is defined as:

κ(x, x′, ΘΘΘ) = σ2
f

(
1 +
√

5
n

∑
j=1

|xj − x′j|
lj

+
5
3

n

∑
j=1

|xj − x′j|2

lj
2

)
exp

(
−
√

5
n

∑
j=1

|xj − x′j|
lj

)

+σ2
t δxx′ .

(4)

In the kernel equations (3) and (4), δxx′ denotes the Kronecker delta function and
ΘΘΘ = (σf, l1, . . . , ln, σt) is the set of parameters in the Kriging model. The Euclidean
distance between xj and x′j is represented by |xj − x′j|. The amplitude, length scale
of jth variable, and noise parameters are represented by σf, lj, and σt, respectively.
These parameters are estimated by maximising the marginal likelihood function:

p(y|X, ΘΘΘ) =
1√
|2πC|

exp
{
−1

2yTC−1y
}

. (5)
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After the parameters are estimated we can use the model to predict the posterior
predictive distribution at a new sample (or decision vector) x∗. The predicted
posterior predictive distribution of the Kriging model is Gaussian and represented
as follows:

p (y∗|x∗, X, y, ΘΘΘ) =N
(
κ(x∗, X, ΘΘΘ)C−1y,

κ(x∗, x∗, ΘΘΘ)− κ(x∗, X, ΘΘΘ)TC−1κ(X, x∗, ΘΘΘ)
)
,

(6)

where κ(x∗, X, ΘΘΘ)C−1y is the posterior mean. The uncertainty in the prediciton (or
variance) is κ(x∗, x∗, ΘΘΘ)− κ(x∗, X, ΘΘΘ)TC−1κ(X, x∗, ΘΘΘ). In our works [PI]-[PIII] we
used both the posterior mean and uncertainty where our goal was to utilize the
uncertainty in the prediction to obtain more accurate solutions and better decision
making. In [PIV] we only used the posterior mean since our focus was on building
Kriging surrogates when the size of the data is large.

2.4 Decomposition-based MOEAs

The performance of traditional MOEAs such as MOGA [23], MO-CMA-ES [65],
and NSGA-II [18], etc. deteriorates when the number of objectives increases [5, 8,
73]. Hence, decomposition-based MOEAs has been developed to solve MOPs with
more than three objectives [40, 63] (also known as many-objective optimization
problems). These algorithms generally decompose the problem into a number of
single objective subproblems using scalarizing functions (e.g. MOEA/D [73]) or
multiple MOPs (e.g. MOEA/D-M2M [43], NSGA-III [17] and RVEA [8]).

In decomposition-based MOEAs, we first create a set of N uniformly dis-
tributed unit reference vectors (or weight vectors) vj (j = 1, . . . , N). The popula-
tion of individuals generated by the MOEA is P and the objective vectors for the
individuals are F =

{
f1, . . . , f|P|

}
consisting of |P| individuals. Here the notation

|.| denotes the number of individuals. The ith individual in P is denoted by Ii.
The vector of minimum objective function values present in the given population
is zmin = (zmin

1 , . . . , zmin
K ). In our works we have used RVEA in [PII]-[PIV] and

MOEA/D in [PII] for the purpose of demonstration.

2.4.1 MOEA/D

In MOEA/D [73], we first define a neighbourhood of size Nnh of reference vectors
by pairwise comparison of the Euclidean distances between them. Here vj and
xj are the jth reference and decision vector, respectively in the neighbourhood
where j = 1, · · · , Nnh. Next, an offspring, x′, is generated in each neighbourhood
using crossover and mutation. A scalarizing function is used as the selection
criterion to compare and select the individuals. In MOEA/D, we use penalty
boundary intersection (PBI), Tchebycheff, or weighted sum as scalarizing functions
to compare the parents and the offspring. We used PBI as the scalarizing function
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for developing the probabilistic MOEA/D in [PII]. The PBI for a decision vector x
is:

gPBI
x = d1 + ρd2, (7)

where parameter ρ is the penalty term that balances between convergence (d1 =
||(zmin − f(x))Tvj||/||vj||) and diversity (d2 = ||f(x)− (zmin− d1vj)||). In MOEA/D
we compare the PBI of the parents and the offspring by checking whether gPBI

x′ ≤
gPBI

xj
. If so, then we set xj = x′ and f(xj) = f(x′) and repeat this for j = 1, · · · , Nnh.

In MOEA/D the search process is performed in the neighbourhood of each refer-
ence vector and the the population is updated sequentially.

2.4.2 RVEA

In RVEA [8] the objective vectors of the individuals are first translated as f′i =
fi − zmin, where i = 1, . . . , |P|. The individuals are then assigned to reference
vectors by measuring the cosine of the angle between the reference vector and the
translated objective vector. The cosine of the angle between the jth reference vector
vj and the ith translated objective vector f′i is given by:

cos θi,j =
f′i · vj∥∥f′i
∥∥ , (8)

where
∥∥f′i
∥∥ is the Euclidean norm. An individual Ii is included in the zth subpopu-

lation P̄z if it has the lowest angle θi,j between f′i and vz (or highest cos θi,j value).
The index of the zth reference vector to which individual Ii is assigned is:

Ii|z = argmax
j∈{1,...N}

cos θi,j. (9)

After the individuals have been assigned to subpopulations, RVEA selects the zth

individual from each subpopulation, which has the minimum APD between the
ith individual and the jth reference vector according to:

Iz|z = argmin
i∈{1,...,|P̄j|}

di,j, (10)

where APD (or di,j) is defined as,

di,j = (1 + P(θi,j)) · ||f′i||. (11)

Here P(θi,j) = K · (t/tmax)
α · θi,j/γvj is the penalty function depending on θi,j, and

γvj = mini∈1,...,N,i 6=j
〈
vi, vj

〉
, is the smallest angle between reference vector vj and

the other reference vectors. Here t is the counter for generations, and tmax is the
maximum number of generations. The parameter α controls the rate of change of
P(θi,j).
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FIGURE 2 The PDF of two individuals with uncertain objective values (approximated
by the surrogate) for a single objective minimization problem.

2.5 Probabilistic Selection in Single Objective Optimization

The probabilistic selection in single objective optimization proposed in [31] was
further extended to solve offline data-driven MOPs using decomposition-based
MOEAs in [PII]. We have a single objective offline data-driven minimization
problem where the given data may have experimental or measurement noise. The
total uncertainty estimated by the Kriging surrogate is due to the noise in the data
and the uncertainty in the prediction. Thus, during the selection process, we may
make an error by choosing an individual with a worse objective value.

In Figure 2, we have two individuals, A and B, with uncertain objective
values. These two individuals have a normally distributed probability density
function (PDF) as approximated by the Kriging surrogate. When we draw a
random sample y, from PDFA (denoted by the red star), we may observe a higher
value compared to another random sample drawn from PDFB. Thus, we will
make a wrong decision by selecting the individual B over A. The total probability
of selecting the wrong individual B over A by observing a specific sample is the
total area in the shaded region under PDFB, or cumulative density function (CDF)
of B (denoted by CDFB(y)). The probability of drawing a random sample y is
PDFA(y). Thus the total probability of a random sample drawn from PDFB being
smaller than y is PDFA(y) ·CDFB(y). When the underlying objective value of A is
smaller than that of B, the total probability of wrongly selecting B over A is [31]:

Pwrong(A > B) =
∫ ∞

−∞
PDFA(A − y) · CDFB((A − y) > (B − y)) dy. (12)

We can replace CDFB as an integral of PDFB as:

Pwrong(A > B) =
∫ ∞

−∞
(PDFA(y) ·

∫ y

−∞
PDFB(µ)dµ) dy. (13)

For comparing a set of individuals with uncertain objective values and ranking
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them based on their probabilities of wrong selection we use the following equation:

Ri =
|P|
∑
n=1

Pwrong(In > Ii)− 0.5, (14)

where Ri is the ranking score given to the ith individual Ii. The population size
is |P| that is the total number of individuals to be compared. The probability of
making a wrong decision in selection such that the fitness of Ii is smaller than the
fitness of In is Pwrong(In > Ii). We subtract a value of 0.5 from the ranking function
as Pwrong(Ii > Ii) is always 0.5. The individual achieving the smallest rank has the
best fitness value or has the smallest probability of making the wrong selection.

2.6 Interactive Decomposition-based MOEAs

While solving real-world MOPs, the DM is generally interested in a subset of
solutions or eventually a single solution to be implemented in practice. Interactive
approaches find solutions based on the preferences for objectives provided by the
DM. The interactive optimization process can be divided into two phases; learning
and decision phase [1, 49]. In the learning phase, the DM explores the objective
space to better understand the problem and identify a region of interest. In the
decision phase, the DM provides preferences to further improve the solutions that
are most interesting to him/her. The provided preferences, for example, can be
in the form of a reference point, weights or preferred ranges for objectives. For
more details, see [52, 69]. As decomposition-based MOEAs are able to solve many-
objective problems, interactive methods using such MOEAs [48] were proposed
in [29, 41, 75]. In [PIII] we utilized the approach in [29] to handle preferences for
decomposition-based MOEAs.

In order to incorporate the preference information in an MOEA, we can adapt
the reference vectors such that they follow the provided preferences for objectives
[52]. One of the ways to incorporate preferences for objectives is to ask the DM
about his/her satisfactory or desirable objective values (or aspiration levels). The
vector formed by the aspiration levels for each objective is called a reference point
[47]. In [PIII] (and the improved framework), we used a reference point as the
preferences for objectives. However, these frameworks are not limited to only this
type of preference information.

We initially have a set of uniformly distributed reference vectors V = {vi ∈
RK|i = 1, . . . , N}, where N is the total number of reference vectors, and z̄ ∈ RK is
a single reference point provided by the DM. The reference vectors are adapted as
follows [8, 29]:

vi =
r · vi + (1− r) · vc

‖r · vi + (1− r) · vc‖ , (15)

where vc = z̄/ ‖z̄‖ and r ∈ (0, 1). The reference point z̄ is projected on a unit
hypersphere to form the central vector vc. The parameter r controls the spread of
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the adapted reference vectors. If r is close to zero, the adapted reference vectors
are close to vc. However, if r is close to one, the reference vectors are not changed
much from their initial position.



3 HANDLING UNCERTAINTY FROM KRIGING
SURROGATES FOR SOLVING AN OFFLINE
DATA-DRIVEN MOP

As mentioned, in offline data-driven optimization, there is no way to update
the surrogates during the optimization process, which restricts the possibility of
verifying and improving the surrogate’s prediction accuracy. Therefore, while
solving offline data-driven MOPs, it is desirable that the surrogates have a low
approximation error. However, in practice, surrogates always have approximation
errors, and therefore the underlying objective values of the solutions found by the
MOEA may be worse than the surrogate objective values.

The author started his research by understanding the effectiveness of the
generic approach (as mentioned in Section 2.1) while solving offline data-driven
MOPs with Kriging as surrogates. The dataset was generated by sampling from
the DTLZ [19] benchmark problems with different sampling strategies. This also
enabled the author to understand the search behaviour of the MOEA for different
types of MOPs. One of the observations made during the initial tests was that
solutions that have a higher uncertainty tend to have a higher approximation

FIGURE 3 A few individuals with uncertainties in the surrogate objective space (left)
and underlying objective space (right) for a biobjective minimization problem.
The error bars show the 95% confidence interval of the objective values
approximated by the Kriging surrogates.
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error. In other words, the solutions with higher uncertainties in the surrogate
space have a higher probability of having an error when they are evaluated with
the underlying objectives. This phenomenon is illustrated in Figure 3 with the
objective values and uncertainties of a few individuals approximated by Kriging
surrogates and the objective values after they are evaluated with the underlying
objectives. In the figure on the left, we can see a few solutions in the surrogate
objective space of an MOEA with their uncertainties (here 95% confidence interval)
while solving a biobjective minimization MOP. The red individuals dominate the
green ones in the surrogate objective space. However, as can be observed, these
non-dominated individuals also have higher uncertainties. On the right, we show
the same individuals when they have been evaluated with the underlying objective
functions. It can be observed that the green individuals dominate two out of three
of the red individuals. Thus, while solving offline data-driven MOPs, utilizing just
the surrogates’ mean approximation (without including approximation error or
uncertainty) can produce solutions with worse underlying objective values. One
of the ways to tackle this problem is by using the uncertainty from the surrogates
[31, 53].

In [PI] we proposed three approaches to incorporate uncertainties predicted
by Kriging surrogates during the optimization process and addressed our first
challenge as introduced in Chapter 1.

3.1 Approaches to utilize the uncertainty in approximation from
Kriging surrogates

The primary concept of the approaches proposed in [PI] was to minimize the
uncertainties in the solutions along with the objective values. Therefore the
solutions found by the MOEA would have the best objective values with the
least possible uncertainties. The three approaches proposed are as follows:

1. Approach I: The uncertainties in the prediction of Kriging surrogates are
considered as additional objectives along with the predicted mean objective
values. The modified MOP is:

f = ( f1(x), . . . , fK(x), σ1(x), . . . , σK(x)), (16)

where fi(x) and σi(x) and are the predicted mean and the standard deviation
values for the ith objective from the Kriging models. In this approach, we
have double the number of objectives being solved and the total number of
objectives is 2K.

2. Approach II: The average of the uncertainties predicted by Kriging surro-
gates is considered as an additional objective along with the predicted mean
objective values. The modified MOP is:

f = ( f1(x), . . . , fK(x), σ̄(x)), (17)
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where σ̄(x) is the average of the standard deviations from Kriging mod-
els built for each objective function. In this approach, we have one more
objective added to the original MOP and the total number of objectives is
K + 1.

3. Approach III: Expected improvement (EI) [35] is widely used for solving
data-driven problems as it balances exploration and exploitation by utilizing
uncertainty approximation. Therefore, we modified the MOP to find the
tradeoff between the EI of the approximated objective functions as:

f = (EI1(x), . . . , EIK(x)) , (18)

where EIi(x) is the expected improvement value for the ith objective. This
approach did not increase the number of objectives.

3.2 Results and Discussion

The three approaches, along with a generic approach (as introduced in Section
2.1) were tested with offline datasets generated using the DTLZ [19] benchmark
problems (DTLZ2-7). This was done to understand the search behaviour of the
different approaches for various types of problems. The problems had ten decision
variables, and the initial dataset consisted of 109 samples (as per the recommended
sample size of 11n− 1 in [37, 74]). The sampling strategies used were (a) Latin
hypercube sampling (LHS) [45], (b) random sampling and (c) optimal random
sampling (where 50% samples were randomly generated and 50% were Pareto
optimal). The MOEA used for solving the MOPs was IBEA [76]. We chose IBEA
for the purpose of demonstration and since it performed well in [5]. Ideally, an
MOEA solving an offline data-driven MOP should not provide worse solutions
compared to the provided dataset. The optimal random sampling provided us
with a good understanding of the performance of the approaches. The solutions
found by the MOEA should not be worse in inverse generational distance (IGD)
compared to the initial dataset that already included Pareto optimal solutions.
The solutions from each generation of the MOEA were stored in an archive. A
non-dominated sorting was performed on the archive, and these sorted solutions
were evaluated using the underlying objective functions. The IGD and RMSE (for
measuring accuracy) of the evaluated solutions for all the tested approaches were
calculated, and their means were compared. Overall, Approach I and Approach
II performed the best in both IGD and RMSE compared to the generic approach
and Approach III. Surprisingly, using expected improvement as objectives actually
performed worse than the generic approach. This was primarily because EI tries
to balance between convergence and diversity. Therefore the MOEA may select
solutions that have higher uncertainty.

Out of the three approaches tested, we found that Approach I and Approach
II outperformed the generic approach in both IGD and accuracy. Their strengths
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were especially highlighted while solving MOPs with optimal-random datasets.
These approaches were able to provide solutions with equally good or better IGD
than the initial samples.

However, Approach I and Approach II increased the number of objectives,
thereby increasing the complexity of the MOP. On the other hand, Approach III
showed no improvements over the generic approach. In Approach I and Approach
II, the number of solutions that were evaluated after performing non-dominated
sorting on the archive was quite high. This may not be suitable while solving a
real-world offline data-driven MOP. A fair comparison would be to consider the
solutions of the final generation of the MOEA instead of the archive. A better
way is to explicitly utilize the uncertainty information in the selection criterion of
the MOEA. Therefore, in [PII] we proposed probabilistic selection approaches for
decomposition-based MOEAs that do not increase the number of objectives and
produces solutions with better accuracy than their generic counterparts.



4 PROBABILISTIC SELECTION IN
DECOMPOSITION-BASED MOEAS

Utilizing uncertainty in the prediction of Kriging surrogates proved beneficial for
solving offline data-driven MOP in [PI]. However, the approaches proposed in
[PI] had a few drawbacks. These approaches increased the complexity of the MOP
by increasing the number of objectives, thereby making them difficult to solve.
Furthermore, they did not explicitly use the uncertainty information in the MOEA.
Hence, we proposed improved approaches to utilize the uncertainty information
in [PII].

In [31], an approach was proposed to utilize uncertainty in objective values
in dominance-based MOEAs. The probability of making a wrong decision in
selecting a solution with uncertain objective values was utilized in dominance-
based MOEAs. However, dominance-based MOEAs are not suitable for solving
MOPs with a high number of objectives.

As mentioned in the introduction, decomposition-based MOEAs [8, 17, 40, 63,
73] were designed specifically to solve many-objective problems (K > 3 objectives).
Hence, probabilistic selection for decomposition-based MOEAs can be seen to be
more suitable for handling offline data-driven many-objective problems.

Calculating the probability of selection criterion requires analytical deriva-
tions that are tailored for a specific selection criterion used in an MOEA. Deriving
the closed form becomes difficult with complicated selection criteria such as an-
gle penalized distance (APD) in RVEA [8]. One of the primary features of the
probabilistic selection approaches proposed in [PII] is their adaptability or "plug
and play" capability for any decomposition-based MOEA. In other words, the
proposed approaches can be used in the selection criterion specific to the MOEA
without any further modifications. The adaptive ability of the approaches was
demonstrated by implementing and testing probabilistic versions of MOEA/D
[73] and RVEA [8]. These two MOEAs were chosen primarily because the closed
form of their probability of selection criterion does not exist. Thus the potential of
the proposed probabilistic selection approaches can be better demonstrated.
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4.1 Probabilistic decomposition-based MOEAs

In the probabilistic selection approaches for decomposition-based MOEAs, we
utilized the uncertainty in the prediction of Kriging surrogates in the selection
process of the individuals. This is done by modifying (12) and (13) to formulate a
probabilistic selection criterion specific to the MOEA.

We first draw samples using Monte Carlo sampling [46] from the probability
density function (PDF) of objective values approximated by the Kriging surrogates.
Certain decomposition-based MOEAs assign individuals to subpopulations. How-
ever, since we are dealing with uncertain objective values, the process of assigning
individuals is also probabilistic. Next, the values of the selection criterion (specific
to the MOEA) for all the drawn samples are calculated. The PDF of the selection
criterion is estimated using kernel density estimation (KDE) [55]. The probabil-
ity of selection is then calculated using the estimated PDFs, and individuals are
selected based on their probability values.

In Algorithm 1, we show the approach to implement probabilistic selection
for a decomposition-based MOEA. The algorithm can be adapted for other selec-
tion criteria of the decomposition-based MOEA with minor modifications. The
offline dataset consisting of ND samples is provided as input along with other
parameter settings. We assume that this dataset is provided or generated with
some sampling strategy. We first build Kriging surrogates for each objective us-
ing the provided data. Next, we initialize the population and set the number of
function evaluations FE to zero. A uniformly distributed set of unit reference
vectors (or weight vectors), V0 of size N is generated. Depending on the MOEA,
the neighbourhood of each reference vector or sub-population is defined in a
probabilistic way. The population undergoes crossover and mutation, and a total
number of |Poffspring| offspring individuals are generated. The new individuals are
evaluated using surrogates, and the function evaluation counter, FE, is updated.
Next, S samples are drawn from the PDF of objective values approximated by
Kriging surrogates. To draw the samples we use the multivariate Gaussian PDF
[24] of objective values for the individual Ii:

PDFIi =
K

∏
k=1

1
σ̂i,k
√

2π
exp

(
− ( fk − f̂i,k)

2

2σ̂2
i,k

)
, (19)

where f̂i,k is the approximated kth objective function value for the ith individual
with σ̂i,k as its standard deviation. The individuals are assigned to subpopulations
according to the MOEA (if applicable). Next, individuals are selected by the
probabilistic selection criterion of the MOEA and used as parents for the next
generation. The MOEA is run for a predefined maximum number of function
evaluation FEmax.



34

Algorithm 1: Probabilistic decomposition-based MOEA
Input: Offline data of size ND; N = number of reference vectors; FEmax

= maximum number of function evaluations using Kriging
surrogates; S = number of samples to be used for estimating the
distributions

Output: Approximated solutions
1 Build Kriging surrogates for each objective using the given offline data
2 Use the given data as the initial population; initialize the number of

function evaluations FE = 0
3 Create a set of uniformly distributed unit reference vectors V0 of size N
4 Find the neighbourhood for each unit reference vector
5 while FE < FEmax do
6 Perform crossover and mutation on population and generate

offspring
7 Evaluate the individuals using the Kriging surrogates and combine

the parents and offspring
8 Update FE = FE + |Poffspring|
9 Draw S samples using Monte-Carlo from the distribution

approximated by the surrogates
10 Perform algorithm specific sub-population assigning
11 Perform algorithm specific probabilistic selection

12 end

4.2 Probabilistic RVEA and MOEA/D

The proposed probabilistic selection approach can be adapted to any decomposition-
based MOEA by modifying steps 10 and 11 in Algorithm 1. In [PII] we demon-
strated this feature by implementing probabilistic selection for RVEA and MOEA/D.

4.2.1 Probabilistic APD

As described in Section 2.4.2, in RVEA, the individuals are first assigned to refer-
ence vectors using (9) to create subpopulations. As the individuals have uncertain
objective values, they should be assigned to reference vectors in a probabilistic way.
First, we assign each of the samples that were drawn from the PDF of objective
values of the individuals to the reference vectors. Thus different samples may be
assigned to different reference vectors depending on the distribution of objective
values of the individual. An individual is assigned to the reference vector that has
the most number of samples assigned to it.

After the subpopulations have been generated, the angle penalized distance
(APD) values of the samples are calculated using (11) (described before in Section
2.4.2). These APD values are used to estimate the PDF of the APD for every
individual using kernel density estimation (KDE) [55]. In our work, we used the
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Gaussian kernel and utilized Silvermann’s rule of thumb [59] for selecting the
bandwidth parameter that controls the smoothness of the estimated distribution.
Next, we rank the estimated PDFs of APD by modifying (10) utilizing (14) as:

Pnextgen =



Iz|z = argmin

i∈{1,...,|P̄j|}
R′i,j



 , (20)

where

R′i,j =
|P̄j|
∑
n=1

Pwrong(dn,j > di,j)− 0.5. (21)

The ith individual in the jth subpopulation P̄j is given the rank R′i,j. The probability
of wrong selection, Pwrong, is calculated by utilizing (14) and comparing the PDF
of APDs (PDFdi,j) of the ith individual in the jth subpopulation. For the population
of the next generation, Pnextgen we select the zth individual Iz from subpopulation
P̄j, where j = 1, . . . , N.

Calculating the rank R′i,j in (21) is a pairwise comparison between PDFs of
APD of individuals in a subpopulation. Therefore, the computation cost of per-
forming probabilistic selection is O(

∣∣P̄j
∣∣2), where

∣∣P̄j
∣∣ is the number of individuals

in the jth subpopulation. The double integral involved in calculating Pwrong as
shown in (13), between PDF of APD of two individuals and computing KDE of
PDFdi,j makes probabilistic selection computationally expensive. Therefore, we
proposed an efficient way to compute Pwrong. As computing R′i,j in (21) is a pair-
wise comparison, the probability Pwrong between an APD distribution with itself
is always 0.5. Also, we can calculate the ranks between the same pairs once. The
modified equation for calculating Pwrong is:

Pwrong(dn,j > di,j) =

{
0.5 if n = i,
1− Pwrong(di,j > dn,j) if n > i.

(22)

Furthermore, the calculation of CDF using integral in (13) was changed to comput-
ing the empirical CDF from the APD samples. The lower limit of the integral in
(13) was changed to zero instead of −∞ since APD can never attain a value below
zero. We further reduced the computation time by calculating Pwrong values in
parallel for all the individuals in a subpopulation.

4.2.2 Probabilistic PBI

In MOEA/D, step 10 in Algorithm 1 was skipped as the assignment of solutions
for each reference vector is performed by defining the neighbourhood of each
vector [73]. A probabilistic selection utilizing the PBI selection criterion is similar
to probabilistic APD. We draw S samples from the approximated distribution of
objective values (from Kriging surrogates) of individuals in the neighbourhood
and the offspring (see Section 2.4.1 for details on neighbourhood and offspring).
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The PBI values of all the sampled objective values are calculated for the jth in-
dividual in the neighbourhood and the offspring that we call as gPBI

xj,l
and gPBI

x′l
,

respectively, where l = 1, . . . , S and j = 1, . . . , Nnh. The PDF of gPBI
xj

and gPBI
x′ are

approximated using KDE using the Gaussian kernel and bandwidth parameter as
per Silvermann’s rule. We update the solutions in the neighbourhood by checking
if Pwrong(gPBI

x′ ≤ gPBI
xj

) < 0.5, then set xj = x′ and f(xj) = f(x′). It has to be
noted that the comparison of PDFs of PBI is within a neighbourhood and hence
one-to-many.

4.3 Analysis of the Probabilistic Selection

The closed-form of the distributions for APD and PBI is not available. The pro-
posed probabilistic approaches are beneficial for such selection criteria and require
no further analytical derivations. In Figure 4, we illustrate the estimated PDF of
APD (a) and PBI (b) samples and the empirical CDF for an individual. The PDF
of the selection criterion is approximated by KDE (shown by the red line). The
histogram is represented by the blue bars, and the samples are shown in green.
The blue line shows the empirical CDF. As can be observed, the approximated
PDFs of the selection criterion are not well-known PDFs and closely follow the
histogram.
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FIGURE 4 Illustration of samples drawn represented with ’+’, histogram, estimated PDF
and empirical CDF of the selection criterion for (a) APD and (b) PBI for one
individual.

The difference between the selection of individuals in generic and proba-
bilistic RVEA is illustrated in Figure 5. The numbers on the individuals show the
sub-population or reference vector they are assigned to. The individuals selected
from a sub-population are shown in green, and those not selected are shown in
red. It can be observed that the generic RVEA selects individuals with a better
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objective value without considering the uncertainties (e.g. individuals assigned to
reference vector ’2’). On the other hand, probabilistic RVEA considers uncertainty
in the individuals and selects the one with lower uncertainties.

0.0 0.5 1.0 1.5
f1

0.0

0.5

1.0

1.5

f 2

0
1

2

3

2
2

0
0

1
1

3
3

0.0 0.5 1.0 1.5
f1

0.0

0.5

1.0

1.5

f 2

0
1

2

3

22

0
0

1

1

3
3

(a) (b)

FIGURE 5 Individuals selected in a biobjective minimization problem using (a) generic
RVEA and (b) probabilistic RVEA. Error bars show the 95% confidence in-
terval of the distribution of objective values approximated by the surrogates.
The individuals in ’green’ are selected and ‘red’ are not selected from their
subpopulation.

4.4 Hybrid Approach

The probabilistic approach produces solutions with better objective values and
lower uncertainties (or high approximation accuracy). On the other hand, the
generic approach does not consider uncertainty in the selection and produces
solutions that are better in hypervolume (in the surrogate objective space). Hence,
we proposed a hybrid selection approach that combines the benefits of both the
selection approaches and produces solutions with a wider range of uncertainties
and objective values. This will also prove to be beneficial to the DM as (s)he is
provided with a wider variety of solutions with diverse objective and uncertainty
values [PIII].

Figure 6 shows the flowchart of the proposed hybrid approach. We select
individuals based on the generic selection criteria of the MOEA and the probabilis-
tic selection criteria. An equal proportion of solutions from both the generic and
probabilistic selection criteria are selected, and no additional parameters are neces-
sary. Finally, the redundant copies of the individuals selected by both approaches
are removed, and the combined population is used for crossover and mutation.
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FIGURE 6 Flowchart for the hybrid approach.

4.5 Performance of the Probabilistic Approaches

We tested the proposed probabilistic and hybrid versions of RVEA (Prob-RVEA
and Hyb-RVEA, respectively) and MOEA/D (Prob-MOEA/D and Hyb-MOEA/D,
respectively) along with their generic counterparts (Gen-RVEA and Gen-MOEA/D)
and a transfer learning (TL) approach [72]. The TL approach was considered in
our tests as it was specifically designed to solve offline data-driven MOPs. Addi-
tionally, the initial dataset was also considered in the comparison to check whether
the solutions found have actually improved in objective values. We chose two
distance-based visualizable test problems (DBMOPP) [21] with different parameter
settings utilizing the code in [22]. The two problems were P1 and P2 and their
configuration can be found in Table 1 in Section 5.2.2. The problem instances
had 2-10 number of objectives with ten decision variables. These problems are
advantageous as we can visualize the progress of the solution process and better
understand the behaviour of the optimizer. Further tests were also conducted
with DTLZ [19] benchmark problems.

A total of 31 independent runs were executed with all the approaches, and
the initial dataset consisting of 109 samples (as per the recommended sample
size of 11n − 1 in [37, 74]) was acquired by LHS [45] and multivariate normal
sampling (MVNS). In MVNS, the samples were generated using a multivariate
normal distribution. This type of sampling simulated real-world datasets in offline
data-driven MOPs where the data cannot be assumed to have any predefined
sampling strategy. For DBMOPP problems we considered, the objectives to be
independent with mean at the mid-point of the decision space (or zero for all
decision variables). The variance of the sampling distribution was set to 0.1 for all
the objectives. The same settings were used for the MVNS datasets in Chapter 5
and 6.

For building the Kriging surrogates, we used Scikit-learn python library [51]
with Gaussian kernel and BFGS [3] to maximize the marginal likelihood. The
indicators used for comparing the performances of the different approaches were
hypervolume and multivariate root mean squared error (RMSE) of the solutions
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after evaluating them with the underlying objectives. The multivariate RMSE is
calculated by:

RMSE =
1
N

N

∑
i=1

√√√√ K

∑
k=1

( f̂k,i − fk,i)2, (23)

where f̂k,i and fk,i are the approximated objective value and the underlying objec-
tive value, respectively for the ith solution and the kth objective. In this thesis we
refer to multivariate RMSE as RMSE for simplicity. We implemented all the pro-
posed approaches in Python utilizing the DESDEO framework (desdeo.it.jyu.fi).1

To confirm the effectiveness of our proposed approaches, we performed a
pairwise Wilcoxon two-tailed significance test [25]. The p-values were Bonferonni
corrected, and we considered α = 0.05 for rejecting the null hypothesis. The
null hypothesis in our tests was when an approach is not significantly better or
worse than another approach for a given indicator. If the calculated p-value is less
than α, we compared the median values of the approaches to determine whether
an approach is significantly better or worse than another one. The performance
ranking of the different approaches was done using a scoring system. We gave
an approach a score of +1 if it was significantly better than the other approach.
A score of −1 was given to the approach if it was significantly worse than the
other approach. We gave a score of zero to both approaches if the approach
was not significantly better or worse than the other one. Finally, we calculated
the sum of the obtained scores for ranking all the approaches (a higher score
gives a better rank) for the indicator being compared. If an approach obtained a
rank of ’1’, then that approach had performed significantly better than all other
approaches. The approaches having equal ranks were not significantly different in
their performances.

In our tests, we observed that Prob-RVEA and Hyb-RVEA performed the
best in hypervolume, and Prob-MOEA/D performed the best in RMSE. The
generic versions of RVEA and MOEA/D and the transfer learning approach
performed the worst in both hypervolume and RMSE. This was primarily because
the solution process did not consider the uncertainty in the prediction of the
surrogates. Therefore, the solutions obtained using inaccurate surrogates were
worse in objective values when evaluated with underlying objectives. This was
the primary challenge the probabilistic selection approaches were designed to
address.

The progress of the solution processes of the different approaches (the run
with the median hypervolume) is shown in Figure 7. The plots show the projec-
tion of the solutions in 10-dimensional decision space to a 2-dimensional space.
The distance between the points on the circle in different colours represents the
minimized objectives. In the first column, we show the problem instance, and
in the second column, we show the initial samples. The progress of the solution
process is shown in the next seven columns showing the underlying objective

1 Source code is available at https://github.com/industrial-optimization-group/offline_
datadriven_moea

desdeo.it.jyu.fi
https://github.com/industrial-optimization-group/offline_datadriven_moea
https://github.com/industrial-optimization-group/offline_datadriven_moea
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values of the solutions. The colour code denotes the function evaluation count,
and the non-dominated solutions/ samples are represented by the red ’+’.

In Figure 7 we can observe that Prob-RVEA, Hyb-RVEA, Prob-MOEA/D
and Hyb-MOEA/D converged much closer to the Pareto front compared to their
generic counterparts. The solutions for Gen-RVEA, Gen-MOEA/D, and TL were
further away from the Pareto front. One can also see that the non-dominated
solutions in the initial sampling were much closer to the Pareto front compared to
the generic approaches and TL. Therefore, the solutions obtained using generic
approaches (or just using the predictive mean from surrogates) were worse than
the provided dataset. We can also observe that all approaches failed to get solutions
closer to both of the Pareto sets that are disconnected. This was because we did
not have a sufficient amount of data for solving such MOPs.

As said, we demonstrated the adaptability of the probabilistic selection ap-
proaches with RVEA and MOEA/D. The first approach used the probability of
selection, whereas the second approach used a hybrid selection. The accuracy
of solutions is generally not considered in the field of data-driven optimization.
The proposed approaches were more focused on improving the accuracy of the
solutions. Detailed testing and analysis with offline datasets generated from
benchmark problems were performed. Overall results showed that the proposed
approaches produced solutions with a better hypervolume and accuracy com-
pared to their generic counterparts. However, if accuracy in the solutions is the
primary requirement, one should prefer the probabilistic approach over the hybrid
approach.

In [PI] and [PII] we tacked the first challenge (as introduced in Chapter 1) by
utilizing uncertainty information provided by surrogates in MOEAs. In the future,
we intend to test other decomposition-based MOEAs with different selection
criteria and normalization techniques. However, while solving real-world MOPs,
the DM is interested in a smaller subset of solutions as per the preferences. In the
next chapter, we discuss an interactive optimization framework for solving offline
data-driven MOPs.



5 HANDLING PREFERENCES IN OFFLINE
DATA-DRIVEN MOEA

While solving real-world MOPs, the DM is typically interested only in certain
regions of the Pareto front or a single solution, depending on his/her preferences.
This is particularly useful while solving computationally expensive MOPs (gener-
ally online data-driven MOPs) as using preferences in optimization reduces the
overall computation time. The preference information is provided in generally
three ways, (a) a priori, (b) a posteriori and (c) interactively, where the preference
information is utilized before, after and during the solution process, respectively
[47].

In interactive multiobjective optimization approaches, the DM is involved
during the optimization process and provides his/her preferences to find desirable
solutions. This enables the DM to learn about the problem and the feasibility of
the preferences and adjust them in the later interactions. Additionally, it reduces
the cognitive load on the DM due to the limited amount of information to be
considered at a time [49]. Therefore, several interactive approaches for MOEAs [30,
44, 52, 58] have been proposed. Due to the recent developments in decomposition-
based MOEAs, interactive approaches such as [29, 41, 75] have been proposed.
Most of the interactive approaches use preference information from the DM in the
form of, e.g. a reference point, pairwise comparison, weights, preferred ranges
for objectives function values and selecting a preferred solution from a given set
[48, 71]. However, as far as we know, there has been no work to address DM’s
preference for solving offline data-driven MOPs in decomposition-based MOEAs.

Generally, while solving an MOP with the involvement of the DM, the
preferences for objective values are required. Also, during the decision making
process, the DM is provided with the objective values of the solutions. However,
while solving an offline data-driven MOP, the solutions have uncertainties due to
the approximation error of the surrogates. The uncertainty information could be
vital for the DM since it provides him/her the knowledge about the probable error
in the solutions. For example, the DM may be willing to accept solutions with
higher uncertainty in one particular objective and lower uncertainty in another.
Providing this additional information to the DM and enabling him/her to provide
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preferences for uncertainties is a challenging task. This is because, firstly, the DM is
generally not familiar with what uncertainties in solutions mean. Secondly, the DM
has to provide two types of preferences that increase the cognitive load. Thirdly,
the DM provides the preferences for objectives by observing the solutions that
have uncertainly in their objective values. This sometimes results in solutions that
are not actually of the desired preferences for objectives when they are evaluated
with the underlying objective function.

In our previous works [PI, PII] we proposed approaches that utilized the
uncertainty information from Kriging surrogates. These approaches proved to
be advantageous over their generic counterparts that did not utilize uncertainty
in the solutions. Conveying the uncertainty information may be quite valuable
for the DM as (s)he can better understand the solutions and provide preferences
for objectives. Hence, in [PIII], we proposed a framework that enables the DM to
understand and make decisions based on the uncertainties in the approximated
solutions. The framework provides an additional option for the DM to provide
his/her preferences for uncertainties along with the preferences for objective
values. Furthermore, it does not significantly increase the cognitive load of the
DM while handling two types of preferences. We further extend our framework
by integrating it with the probabilistic selection approaches proposed in [PII]. We
also proposed a reference vector technique to automatically adjust the diversity of
the solutions based on their uncertainties. The new framework was tested with an
artificial decision maker (ADM), and its performance was compared with other
variants of interactive approaches. The frameworks proposed in this chapter were
developed to tackle the second challenge as introduced in Chapter 1.

5.1 The Proposed Framework

In [PIII], we proposed a framework for interactively solving offline data-driven
MOPs. The framework enables the DM to provide preferences for uncertainties
(in the form of cutoff tolerances) along with preferences for objectives (in the form
of a reference point). The framework involves two separate steps for providing
the two types of preferences (for objectives and uncertainties). Therefore, the DM
does not have to deal with two different types of preferences at the same time.
Thus the cognitive load is not increased by much. Also, the approach to handle
preferences for uncertainties does not affect the solution process of the MOEA and
thus does not increase the computation cost. A simplified block diagram of the
framework is shown in Figure 8. The framework consists of five steps that are as
follows:

Step 1: Build Kriging surrogates for each objective using the provided dataset. This
may require some domain expertise and the data may require some preprocessing.
Next, a decomposition-based MOEA is initialized considering the built surrogates
as objectives to be optimized. A uniformly distributed set of reference vectors is
generated, and a population is initialized randomly.
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FIGURE 8 The proposed framework for solving offline data-driven MOPs interactively.

Step 2: The MOEA is run for a fixed number of generations. The objective and
uncertainty values of the solutions from every generation are stored in an archive.

Step 3: A two-stage pre-filtering is applied on the archive consisting of objective
and uncertainty values. The first stage is the hypercone filtering. The solutions in the
archive that are within the hypercone formed by the extreme reference vectors are
passed by the filter. This is done to ensure that the DM considers only the solutions
in the archive that are within the preferences for objectives at the later step. In the
first iteration, the reference vectors are not adapted to incorporate preferences for
objectives (done in Step 5). Therefore, all the solutions pass the hypercone filter.
In the second stage of the pre-filtering, a non-dominated sorting is performed by
considering the objectives and uncertainties. Therefore, only the solutions that are
the best in both the objective and uncertainty values pass the filter. The solutions
at the different pre-filtering stages are shown in Figure 9. All the solutions in the
archive are shown in Figure 9(a). The solutions after the hypercone filtering and
non-dominated sorting are shown in Figure 9(b) and 9(c), respectively.

Step 4: The knowledge about uncertainty in the solutions is crucial to the DM
while solving offline optimization problems. However, the DM is not always
familiar with the uncertainty information while solving real-world problems.
Generally, the DM has an idea about the permissible tolerances in objective values.
For instance, cost and deflection are the two objectives to be minimized in the
welded beam problem [16]. The permissible deviation in cost (or the maximum
allowed cost) is known to the DM and can be regarded as is the preferred one-
sided tolerance of the DM [38]. The one-sided tolerance information is regarded as
the preferences for uncertainties provided by the DM and represent the maximum
permissible variation in the underlying objective values of the solutions. In [PIII],
we refer to one-sided tolerance as tolerance for simplicity.

The preferences for uncertainties are provided as indifference tolerances τk%
for the kth objective. The indifference tolerance is provided in percentages and
represents the 95% tolerance interval. The distribution of the predicted objective
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FIGURE 9 The solutions at the three pre-filtering stages while minimizing a bi-objective
problem. The filtered out solutions at each stage are shown in grey, and the
reference point provided by the DM is shown in blue.

values for the Kriging surrogates is Gaussian with a standard deviation of σ̂k(x)
for the kth objective. The cutoff tolerance functions are used to show the solutions
that follow the DM’s preferences for uncertainties. The cutoff tolerance function
for the kth objective is:

gk(x) = 1.96σ̂k(x)− τk · f̂k(x)/100 ≤ 0, (24)

where k = 1, . . . , K. In the framework, the DM can provide the preferences for
uncertainties as many times as (s)he wishes to, and view the solutions based on
the preferences for uncertainties. This step may be skipped by the DM if (s)he
chooses to do so.

Step 5: If satisfactory solutions are found, the DM can either stop the optimization
process or provide new preferences for objectives to find more preferred solutions.
The reference vectors are adapted according to (15) such that the solutions fol-
low the provided preferences for objectives. If the DM wishes to continue the
optimization process, we go to step 2.

Results and Discussions

Testing and benchmarking the performance of interactive approaches is still a re-
search challenge [1]. It becomes even more difficult since the proposed framework
utilizes preferences for uncertainties from the DM. Hence, we demonstrated the
working and the advantages of the proposed framework by solving the general
aviation aircraft (GAA) [56, 60] design problem. The GAA problem is an optimiza-
tion design problem for recreational pilots to business executives and consists of
27 decision variables, ten objectives and one constraint. The offline data consisting
of 1000 samples were generated using Latin hypercube sampling [45] using the
Matlab implementation of the GAA problem in [7]. We used Kriging surrogates
with a Gaussian kernel to approximate the underlying objectives. The MOEA
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used was RVEA with parameter settings as recommended in [8] and executed it
for 100 generations in each iteration (or interaction). We used a spread parameter
r = 0.2 for reference vector adaptation in our tests. However, this can be changed
as per the DM’s requirement of diversity. Since our framework did not support
constraint handling yet, we considered the constraint violation as an additional
objective function for demonstration.

FIGURE 10 The solutions found by the interactive framework for two iterations when
all the objectives are minimized. (a): solutions in the archive at the first
iteration. (b) & (c): solutions obtained after the pre-filtering stage in the first
and second iteration respectively with different preferences (blue line is the
reference point). (d): solutions shown to the DM after (s)he provided the
preferences for uncertainties.

In Figure 10, we show the solutions produced by the framework at various
steps for two iterations. The colour of the parallel coordinate lines shows the
normalized average uncertainty of the solutions (green is lowest and pink is
highest). The solutions in the archive at the first iteration are shown in sub-figure
(a). Here the author acted as the DM and provided the preferences for objectives
in the form of reference points (shown in blue). The pre-filtered solutions in the
first iteration are shown in sub-figure (b). However, as can be observed, these
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solutions had a high uncertainty and were not desirable to the DM. Hence, the DM
chose to skip the step of providing preferences for uncertainties and provide new
preferences for objectives. It can be observed in sub-figure (c) that the pre-filtered
solutions had a lower uncertainty in the second iteration. To demonstrate the
ability of the framework to handle preferences for uncertainties, we provided
hypothetical tolerances. The solutions within the preferred uncertainty are shown
in sub-figure (d). The DM could select a solution as the final decision, provided
it matches the preferences for objectives and uncertainties. (S)he could view a
new set of solutions by resetting the cutoff tolerances. Alternatively, the DM could
choose to change the preferences for objectives and continue the optimization if
(s)he was not satisfied with any solution.

The primary goal of the framework is to enable the DM to visualize and
get information about the uncertainty in the solutions while interactively solving
an offline data-driven MOP. If decision making is solely based on the objective
values of the solutions, it can be misleading (as shown in Figure 10). The proposed
framework resolves these issues by enabling the DM to change the preferences for
uncertainties in the form of tolerances and make decisions based on a wide range
of solutions with various uncertainties. The two-step interaction process also does
not excessively increase the cognitive load on the DM. This is primarily because
the DM does not need to consider and provide two different types of preferences
simultaneously.

However, one of the problems with the framework is that the adaptation of
reference vectors does not consider the uncertainty in the solutions. Therefore, the
DM misses out on solutions within the preference for objectives in the underlying
objective space. It is also desirable that the MOEA used is also capable of handling
uncertainty in the predictions of the surrogates. As we proposed the probabilistic
selection approaches in [PII], we decided to incorporate them in the framework.
Next, we discuss the extended framework that combines the probabilistic selection
approach and a new reference vector adaptation technique.

5.2 An Improved Framework

While solving offline data-driven MOPs, the preferences for objectives provided by
the DM are based on the observations made in the surrogate objective space. As we
know, the objective values in the surrogate objective space are uncertain and hence
do not necessarily reflect the objective values of the underlying objective functions.
Therefore, the solutions found by the MOEA may not reflect the preferences for
objectives provided by the DM. Hence, in the improved framework, we modify
the reference vector adaptation in (15) to adjust the spread of the reference vector
based on the uncertainty in the solutions. We further extend the framework
proposed in [PIII] with an improved reference vector adaptation, population
injection technique and probabilistic selection for decomposition-based MOEAs
[PII].
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FIGURE 11 The nearest solution (in purple) to the reference point provided by the DM
(in red). Blue and green dotted lines represent the vectors to the lower and
upper bounds of the 95% confidence intervals of the objective values of the
nearest solution.

We propose an approach for adapting the reference vectors that is dependent
on the uncertainties of the solution nearest to the reference point (z̄) provided by
the DM. We perform this by adapting the reference vectors for each component
of objectives. If the closest solution has a high uncertainty in one particular
objective, the spread of the reference vectors is increased only for that objective.
We utilize (15) and selectively adapt the components of every vector depending
on the uncertainty in the nearest solution.

An illustration of the proposed reference vector adaptation technique for a
bi-objective minimization problem is shown in Figure 11. In the figure, we show
several solutions in green. The shaded region in blue represents the distribution
of objective values (95% confidence interval) predicted by Kriging surrogates. The
DM provides the preferences for objectives as a reference point, z̄ (shown in red).
As the objective values of the solutions have uncertainties, the distance between
the reference point and the solutions is also uncertain. To find the closest solution
from the reference point, we first draw S samples using Monte Carlo sampling
[46] from the PDF of the objective values as previously defined in (19). Next,
we calculate the mean Euclidean distance between all the samples drawn. The
solution with the minimum mean Euclidean distance is the closest to the reference
point with objective values { f c

1 , · · · , f c
k , · · · , f c

K} and is shown in purple in Figure
11. The points in black over the distribution of the nearest solution are the lower
and upper bounds of the 95% confidence interval for each objective. The lower
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and upper bounds for the kth objective are f c
k min and f c

k max, respectively, where:

f c
kmin = f c

k − 1.96σc
k f c

k , and

f c
kmax = f c

k + 1.96σc
k f c

k .

The vectors to the lower and upper bounds of the confidence interval of f c
k are

represented by:
fc

kmin = { f c
1min , · · · , f c

kmin , · · · , f c
Kmin} , and

fc
kmax = { f c

1max , · · · , f c
kmax , · · · , f c

Kmax},
respectively. These bounds of confidence intervals provide the spread amount
required in each of the components of the reference vectors while adapting them.
Therefore, we need to calculate the angle between these lower and upper bounds
of the confidence interval with respect to the ideal point. In other words, we
calculate the angle between the lower and upper bound vectors for each objective.
We find the cosine of angles φ f c

k by a dot product between the extreme vectors
(shown in dotted blue and green) for the kth objective using the following equation:

cos φ f c
k =

fc
kmin · fc

kmax∥∥∥fc
kmin

∥∥∥ ·
∥∥fc

kmax

∥∥
. (25)

Finally, we calculate the adapted vector component vi
k for the kth objective and ith

reference vector by using the following equation:

vi
k = rk · vi

k + (1− rk) · vi
k, (26)

where rk is the component-wise spread parameter that is adjusted as rk = β +
α(1− cos φ f c

k ). The bias parameter, β, controls the minimum amount of change in
the reference vectors’ position when the uncertainty in the solution is zero. The
weight parameter, α, controls the magnitude of the adaptation of reference vectors.
So a higher φ f c

k means the spread parameter will be closer to one. In other words,
there will be no significant change in the reference vectors’ component for that
objective. The final set of adapted reference vectors are found by:

vi =
vi

‖vi‖ , (27)

where vi is the ith reference vector. The adapted set of reference vectors is skewed
to adjust for the solution’s uncertainty in each objective.

In Figure 12 we show the steps to perform the adaptation of reference vectors.
The approach starts after the DM has provided the preferences for objectives in
the form of a reference point. First, we find the nearest solution in the archive
from the provided reference point. The reference vectors are then adapted for
every component of the objectives according to (26), with the predefined bias and
weights parameters. Finally, the adapted reference vectors are normalized using
(27) and used by the MOEA for the next iteration.

Additionally, in the new framework, we use a probabilistic selection ap-
proach as proposed in [PII]. The probabilistic selection approaches have proven to
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FIGURE 12 Flowchart for new reference vector adaptation embedded in the framework
in Figure 8

provide solutions with better hypervolume and accuracy compared to the generic
selection criterion. Therefore, even if the DM chooses to skip the step to provide
preferences for uncertainties, the solutions found by the MOEA are better than
using the generic selection criterion.

5.2.1 Population Injection

One of the problems faced in interactive decomposition-based MOEAs is the loss
of population size when the preferences for objectives are changed drastically from
the previously provided preferences for objectives. After the DM has provided
new preferences for objectives far from the previously provided preferences, the
reference vectors are adapted to a region in the objective space with very few
or no individuals. This slows down the convergence of the MOEA leading to
solutions with poorer objective values [39]. In the proposed framework, we
inject a population from previous generations when the population size drops
below a threshold. The injection is done in the first generation of the iteration
of the MOEA, right after the DM has provided the preferences for objectives.
The threshold population size in the framework is set to Pt = 5K to have a
sufficient number of individuals in the population. If the number of individuals
falls below the threshold Pt, all the individuals from the last generation of all the
previous iterations (from the archive) are included in the current population. This
includes the objective values, uncertainty values and decision variable values of
the individuals.

5.2.2 Experiment Setup

Testing and comparing different interactive methods is still a challenge in the
field of multiobjective optimization. Here we utilized an ADM [1] for generating
preferences for objectives and comparing the performance of the proposed frame-
work. The ADM runs different interactive MOEAs simultaneously and provides
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preferences for objectives in the form of a reference point. The solutions found by
the different MOEAs are used to generate a composite front, and the preferences
for objectives are provided for the learning and decision phases of the interac-
tion (see Section 2.6). As the ADM has been designed for only reference point
based MOEAs, it does not have the ability to provide preferences for uncertainties.
Hence, we tested the various approaches only with the preferences for objectives.
We implemented the proposed framework and the test setup for the ADM in
Python utilizing the DESDEO framework (desdeo.it.jyu.fi).1

Approaches Tested

The setup of the ADM with the different interactive approaches is shown in Figure
13. In order to test the effects of different components of the new framework, we
tested various setups of generic and probabilistic RVEA [PII] with APD as the
selection criteria. The various interactive approaches with their components were
as follows:

1. Gen-RVEA V1: The framework proposed in [PIII] with generic RVEA as
MOEA.

2. Prob-RVEA V1: The framework proposed in [PIII] with probabilistic RVEA
as MOEA [PII].

3. Gen-RVEA V2: The framework proposed in [PIII] with population injection
and generic RVEA as the MOEA.

4. Prob-RVEA V2: The new framework that includes custom reference vector
adaptation, population injection and probabilistic RVEA as MOEA [PII].

The bias and weight parameters for Prob-RVEA V2 were set as β = 0.2 and
α = 0.8, respectively. The spread parameter for reference vector adaptation for
the original reference vector adaptation was kept the same as [PIII]. It should be
noted that these parameters were set for demonstrating the approaches’ potential.
The analyst can change them depending on the requirements of the DM and the
problem. The number of interactions for the learning and decision phase of the
ADM was 10 and 5, respectively. We provided a higher number of interactions for
the learning phase so that the objective space is well explored when the number of
objectives is high. The remaining parameters for the ADM were kept the same as
proposed in [1].

Dataset

In our tests, we generated the data using five distance-based visualizable test
problems (DBMOPP) [21], P1-5, with various configurations as shown in Table 1.
The problem instances and data were generated by the code provided in [22]. All

1 Source code is available at https://github.com/industrial-optimization-group/Offline_
IMOEA_Framework

desdeo.it.jyu.fi
https://github.com/industrial-optimization-group/Offline_IMOEA_Framework
https://github.com/industrial-optimization-group/Offline_IMOEA_Framework
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FIGURE 13 Structure for testing and comparing the approaches.

the combinations for numbers of objectives (K ∈ {5, 7, 9}) and number of decision
variables (n = 10) were used for our tests. We used LHS and multivariate normal
sampling (MVNS) for generating the data. The same setup was used for MVNS
sampling as previously described in Section 4.5. The sample size of initial data
was 109, and 11 sets of data were generated with a random seed. Each of these
dataset were the starting point of the different interactive approaches that were
tested. These individual runs were independent, and the results obtained were
used to compare the surrogates’ performances statistically.

Parameter settings of RVEA

We used RVEA with the default parameter settings as in [8]. The interaction with
the ADM and reference vector adaptation was done after every 100 generations
that were sufficient for the solutions found by the MOEA to converge. The stop-
ping criterion was Itermax = 15 interactions (10 interactions for the learning phase
and 5 for the decision phase).

Performance indicators

Measuring the performance of interactive methods is still a research challenge.
Currently, we have indicators such as expanding hypercube (EH) [4] and R-metric
hypervolume (R-HV) [42] to measure and compare the performances of a priori
methods with DM’s preferences for objectives. Hence, we decided to use both of
the indicators to measure the performance of the different approaches. Addition-
ally, we also used multivariate RMSE by utilizing (23) to measure the accuracy of
the solutions. However, there is no well-defined way to aggregate these indicators
for an interactive optimization method while using an ADM. In our tests, we
used the median indicator value (EH, R-HV and RMSE) of the solutions for all the
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TABLE 1 Configurations of the DBMOPP problems used.

Problem Configuration Dimension (n) Objectives (K)

P1

number of disconnected set regions = 0,
number of local fronts = 0,

number of dominance resistance regions = 0,
number of discontinuous regions = 0

10 5, 7, and 9

P2

number of disconnected set regions = 1,
number of local fronts = 0,

number of dominance resistance regions = 0,
number of discontinuous regions = 0

10 5, 7, and 9

P3

number of disconnected set regions = 2,
number of local fronts = 0,

number of dominance resistance regions = 0,
number of discontinuous regions = 0

10 5, 7, and 9

P4

number of disconnected set regions = 0,
number of local fronts = 0,

number of dominance resistance regions = 1,
number of discontinuous regions = 0

10 5, 7, and 9

P5

number of disconnected set regions = 1,
number of local fronts = 0,

number of dominance resistance regions = 1,
number of discontinuous regions = 0

10 5, 7, and 9

iterations in a given run.

5.2.3 Results and Discussion

The indicator values obtained from the 11 runs were considered for a statistical
comparison between the four different approaches tested. We used the same
scoring and ranking methodology as described previously in Section 4.5.

In Figure 14 we show the performance of the four different approaches.
Lighter colour (or towards the yellow spectrum) indicates a better performance
rank for that instance. It was observed that in terms of EH and RMSE, Prob-RVEA
V1 and Prob-RVEA V2 performed equally well. However, in terms of R-HV, Gen-
RVEA V2 performed the best, with Prob-RVEA V2 coming second. This proves
that we cannot use a single indicator to measure the performance of interactive
approaches. Thus, considering both EH and R-HV, we may say that Prob-RVEA
V2 performed better than Prob-RVEA V1 as the former showed better performance
than the latter in R-HV. Furthermore, Prob-RVEA V2 performed better than Gen-
RVEA V2 in RMSE, thus making it more desirable for the DM when solutions with
better accuracy are required.

In conclusion, we proposed an improved framework that uses custom refer-
ence vector adaptation to tackle uncertainty in the solutions while the DM provides
preferences for objectives. The approach also utilizes a population injection tech-
nique and probabilistic selection for RVEA proposed in [PII].

Overall, the framework proposed in [PIII] and the improved framework suc-
cessfully tacked the second challenge of supporting decision making by utilizing
uncertainty information (as introduced in Chapter 1). However, we were unable to
test the full potential of the framework since the ADM did not support preferences
for uncertainties. In future, we plan to work on developing an ADM capable of
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FIGURE 14 Heatmaps showing the rankings of the four interactive approaches tested
for EH, R-HV and RMSE.

generating such types of preferences. As there are no reliable indicators to measure
the performance of interactive methods, we had to rely on a combination of three
indicators. The performance of the approaches varied with the indicator used.
However, overall, the improved framework performed better than the other tested
approaches. Developing a suitable indicator for measuring the performances of
interactive methods will be one of our future works.



6 HANDLING LARGE DATASETS IN OFFLINE
DATA-DRIVEN MULTIOBJECTIVE OPTIMIZATION

As previously described, Kriging or Gaussian process (GP) regression are widely
used as surrogate for solving offline data-driven MOPs due to their ability to
provide uncertainty information in the prediction. Previous works [PI, PII] have
shown solutions with improved accuracy and hypervolume by utilizing the uncer-
tainty in the prediction of GP surrogates. Most of the previous approaches build
a global GP surrogate for each objective using all the provided data. However,
building GPs in that way becomes computationally expensive when the size of
the provided offline dataset is large. Considering ND number of samples/items in
the offline dataset, the complexity of building GP surrogates for an MOP with K
objectives is O(KN3

D). Using sparse GP surrogates [61, 62] is a suitable alternative
that reduces the complexity to O(KN2

D). However, searching the inducing points
in sparse GPs become computationally expensive as well when the size of the
dataset is large.

The surrogates used in most of the previously proposed approaches such
as [10, 28, 67] are not specifically tailored for the purpose of solving offline data-
driven MOPs. Approximating the objectives accurately in the entire decision space
is not necessary as we are only interested in a good approximation accuracy at
the neighbourhood of the Pareto set. In [PIV] we refer the neighbourhood of the
Pareto set as the tradeoff region for simplicity. Previous works in [15, 36, 64] built
local GPs by splitting the decision space into regions that reduced the computation
cost. The concept of fitting GPs in each region or leaf node was extended in [27]
by using a Bayesian treed model previously proposed in [9]. In [2] treed GPs
were proposed to handle cases where the noise is different for different samples.
However, these surrogates were not tailored to solve offline data-driven MOPs and
did not take into account the tradeoff between the objectives during the building
process. Furthermore, if the number of regions is quite high, several local GPs
must be built, which increases the computation cost.

In our previous works [PI]-[PIII] we used GP surrogates, and considered
datasets that were not large. However, building GP surrogates when the provided
data is large in size still remained a challenge. Hence, in [PIV] we proposed
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treed GP surrogates for offline data-driven MOPs (TGP-MO) to tackle the third
challenge introduced previously in Chapter 1. These surrogates are specifically
tailored to solve offline data-driven MOPs when the size of the offline dataset is
large.

6.1 TGP-MO Surrogates

The building process of a generalized treed GP surrogate consists of building
a regression tree first using all the provided data. Later, GPs are built using
the subset of data at each leaf node. Thus, GPs are built at all the leaf nodes
of the trees that accurately approximates the entire decision space of the MOP.
However, while solving offline data-driven MOPs, the approximation accuracy
of the tradeoff region is of utmost importance. Therefore, we proposed treed GP
surrogates for multiobjective optimization (TGP-MO) that build GPs exclusively
at leaf nodes consisting of the subset of data representing the tradeoff region.

Input: 
Dataset

Build regression
tree surrogates 

Start

Find solutions with
maximum error

Find leaf nodes on
which those solutions

fall 

Build GPs utilizing
subset of data at leaf

nodes 

Stop

Run MOEA 
(for building) 

No

Yes

Run MOEA 
(for solving the

MOP) 

Output:
Solutions

Building TGP-MO surrogates

AND 
any solution falls in the

leaf nodes  
without
GPs ? 

FIGURE 15 A flowchart of solving data-driven MOPs with TGP-MO surrogates with an
MOEA.

The flowchart of the proposed approach of using TGP-MO surrogates is
shown in Figure 15. We start by building regression trees using all the provided
offline data. The depth of the trees is not controlled; however, we set the minimum
number of samples for a split to occur at a node as Nmin. Next, we initialize an
MOEA that utilizes the prediction of the regression trees and solves the MOP. We
examine the solutions after a certain number of generations or after completing
an iteration (denoted by an iteration counter Iter). Next, the error in the leaf
nodes (or MSE at each leaf during the building process) predicting these solutions
is checked. The solutions with the maximum error for each objective are the
ones where prediction accuracy needs to be improved. Thus, we build GPs at
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those leaf nodes using the subset of samples at the leaf. This process of building
GPs is repeated as long as; a) any solution of the MOEA is predicted by leaf
nodes without a GP built, and b) Iter < Itermax. Thus a maximum of K GPs is
built at each iteration with few samples at the leaves that inherently reduce the
computation cost. After the building process is completed, the final prediction of
the TGP-MO surrogates consists of the posterior predictive mean of GPs at the
tradeoff region and regression trees’ prediction in the rest of the decision space.
The TGP-MO surrogates can then be used as objectives for another MOEA to find
the final solutions of the MOP.

−1.0 −0.5 0.0 0.5
x1

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

x
2

0.000

0.024

0.048

0.072

0.096

0.120

0.144

0.168

0.192

FIGURE 16 Contour plots of the objective landscape approximated by the proposed
TGP-MO surrogates. The contour lines indicate the approximated objectives
f1(x) and f2(x). Colour shade represents the RMSE in the approximation
(dark colour represents higher RMSE), and the red points show the Pareto
set.

The regression trees perform two tasks: a) they split the decision space into
sub-regions, and b) they provide an approximation (though not very accurate)
of the global landscape of the underlying objectives. The solutions found by the
MOEA at each iteration are located in the tradeoff region, and iteratively building
GPs enables the MOEA to improve the solutions further. In later iterations, if
the decision vector in the MOEA’s population falls within the path of the leaf
node where a GP is already built, the posterior predictive mean of the GP is used
as the final prediction of the surrogate. Otherwise, the prediction is the mean
value at the leaf node of the regression trees. Figure 16 shows the landscape of
the approximated objectives for a bi-objective minimization problem. It can be
observed that the contour lines representing the overall approximation of TGP-
MO surrogates are continuous near the Pareto set (represented by red points) and
discontinuous in the rest of the decision space. This is because at the tradeoff
region, we use GPs that have a continuous prediction. However, in the rest of the
decision space, we use the prediction from the trees. The colour shade representing



58

the approximation error also shows a high accuracy at the tradeoff region but low
elsewhere.

The overall complexity of building the TGP-MO surrogates cannot be ac-
curately calculated and varies with the dataset and landscape of the underlying
objectives. In the worst case scenario, GPs are built at all the leaf nodes, with
each leaf code consisting of a maximum of 2Nmin − 1 samples. Thus the complex-
ity of building a GP at a leaf node is O((2Nmin − 1)3) and the total number of
leaf nodes (in the worst case) is ND

2Nmin−1 . The overall complexity of building GPs
at all the leaf nodes is O(ND(2Nmin − 1)2). For an MOP with K objectives, the
worst case time complexity is O(KND(2Nmin − 1)2) with a memory complexity of
O(KND(2Nmin − 1)).

6.2 Results and Discussion

Tests were conducted to validate and compare the quality of solutions obtained
by using TGP-MO surrogates. The other two types of surrogates used were
full GPs (that use all the provided data), and sparse GPs proposed in [62]. We
used four configured problems from the DBMOPP benchmark [21] to generate
31 independent offline datasets of sample sizes ND ∈ {2000, 10000, 50000}. The
problem configurations used were P1-P4 (see Table 1 in Section 5.2.2). We used
LHS [45] and multivariate normal (MVNS) sampling strategies and different
number of objectives. For MVNS sampling we used the same configuration as
previously described in Section 4.5. The parameters for TGP-MO surrogates were
set as Nmin = 10n, where n is the number of decision variables, and Itermax =
ND/Nmin = ND/10n. We used the sklearn Python package [51] for building the
regression trees. For building GP surrogates we used the GPy package [26] with
Matern 5/2 kernel. We implemented the proposed TGP-MO surrogates in Python
utilizing the DESDEO framework (desdeo.it.jyu.fi).1

In our tests, we used RVEA [8] as an MOEA to build the TGP-MO surrogates
and, later, to perform optimization primarily because of its ability to handle
many-objective problems. For comparing the performance of optimization using
different surrogates, we calculated the hypervolume of the solutions evaluated
with the underlying objectives. For measuring the accuracy of the solutions, we
used multivariate RMSE by utilizing (23). Finally, we measured the time (in
seconds) taken to build the different surrogates to estimate the computation cost.
All the obtained indicator values were statistically compared with Wilcoxon rank
sum significance tests. For ranking the different approaches, we used the same
methodology as previously described in Section 4.5.

It was observed that the building process for full GPs surrogates failed due
to memory overflow for sample sizes of 10000 and 50000. This further asserted
the need for surrogates capable of handling larger datasets. The proposed TGP-

1 Source code is available at https://github.com/industrial-optimization-group/TreedGP_
MOEA

desdeo.it.jyu.fi
https://github.com/industrial-optimization-group/TreedGP_MOEA
https://github.com/industrial-optimization-group/TreedGP_MOEA
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MO surrogates performed the best in computation time in all the categories of
sample sizes and sampling strategies. For sample sizes of 2000, full GPs produced
solutions with the best hypervolume with TGP-MO surrogates coming second.
For sample sizes of 10000 and 50000, TGP-MO surrogates performed the best in
hypervolume for all sampling strategies. It also performed the best in terms of
accuracy for LHS sampling strategy. However, the accuracy of sparse GPs was
better than TGP-MO surrogates for MVNS sampling. This was primarily because
sparse GPs find the inducing points by maximizing the entropy. Therefore, they
are able to handle skewed datasets and hence do not suffer from overfitting [20].
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FIGURE 17 The total number of samples utilized (median and 95% confidence interval)
to build GPs at leaf nodes with iterations for DBMOPP problem P2 with
seven objectives, 10 decision variables and data size of 2000 generated using
MVNS sampling. The iteration axis is extended to the maximum number of
iterations, ND

10n .

In Figure 17 we show the progress of the number of samples used while
building TGP-MO surrogates for a DBMOPP problem instance with five objectives
and ten decision variables. The offline dataset was sampled by MVNS sampling
with a sample size of 2000. It can be observed that before the tenth iteration,
the process of building GPs at the leaf nodes was stopped, and the number of
samples utilized per objective converged. The number of samples utilized for
each objective differed according to the tradeoffs between the objectives and their
landscape.

The TGP-MO surrogates were proposed to address the third challenge of han-
dling offline datasets of large size (as introduced in Chapter 1). These surrogates
performed significantly better than full GPs and sparse GPs in computation time
and produced solutions with a better hypervolume and accuracy. However, the
prediction of the TGP-MO surrogates was not continuous at the splits of the regres-
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sion trees. We can tackle this problem with the approach proposed in [64]. In the
future, we plan to utilize non-linear tradeoff criteria to build the regression trees.
We also plan to perform a sensitivity analysis of the hyperparameters and solve
a real-world problem using TGP-MO surrogates. A leaf node GP approximates
only a specific region of the decision space. This feature can be exploited while
solving offline data-driven MOPs with preferences from the DM in an a priori
or interactive fashion. Therefore in the future, we plan to utilize the TGP-MO
surrogates to solve offline data-driven MOPs interactively. We will also test and
compare the uncertainty in the predictions of TGP-MO surrogates with full GPs
by applying them to the approaches proposed in [PI]-[PIII].



7 AUTHOR’S CONTRIBUTIONS

The research topics on offline data-driven multiobjective optimization and decision
support were suggested by the author’s supervisors. In the beginning, the author
performed a literature survey on the existing works in the field. As the field is
relatively new, with very little literature available, the author performed numerous
tests. These tests included solving offline data-driven MOPs using Kriging as
surrogates since they can provide uncertainty in its prediction. The data generated
for these tests was from DTLZ [19] test problems with different sampling strategies.
While testing, it was conformed that when the solutions obtained by the MOEA
were evaluated using the underlying objectives, they had approximation errors. It
was also observed that the uncertainty in the prediction of Kriging surrogates had
a relationship with the approximation error of the surrogate objective values. This
led the author to explore different ways of utilizing the uncertainty estimate from
Kriging surrogates in the optimization process.

The development of the first set of approaches to utilize uncertainty from
Kriging surrogates was proposed in [PI] and started in 2018. The author developed
several approaches and performed extensive tests with benchmark problems. Dr.
Manuel López-Ibáñez suggested checking the performance of expected improve-
ment along with the other two approaches proposed. Using the hypervolume
indicator exclusively to measure the performance of offline data-driven multiobjec-
tive optimization approaches is not sufficient. Hence, Dr. Tinkle Chugh and Prof.
Kaisa Miettinen suggested using RMSE between the surrogate objective values
and underlying objective values of the solutions. The author matured this, and the
resulting article containing test results and analysis was accepted for publication
at Evolutionary Multi-Criterion Optimization (EMO) 2019 conference.

The approaches proposed in [PI] inherently made the problem more complex
by increasing the number of objectives compared to the original MOP. Furthermore,
the population size had to be increased to have a sufficient number of solutions.
Dr. Tinkle Chugh proposed to extend the concept of probability of dominance for
decomposition-based MOEAs. Improving upon this idea, the author developed
probabilistic selection approaches that could be easily adapted for any selection
criteria of a decomposition-based MOEA. The author developed probabilistic
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selection approaches for RVEA and MOEA/D and tested with various benchmark
problems, and compared them with other state of the art offline optimization ap-
proaches. The author also utilized non-standard sampling that could better reflect
real-world datasets and suggested the use of multivariate RMSE as an indicator for
accuracy. In addition, the author put substantial effort in utilizing and integrating
the approaches in the DESDEO framework and implementations of benchmark
problems in different programming languages. The article [PII] consisting of
all the results and analyses was submitted in the journal IEEE Transactions on
Evolutionary Computation and is conditionally accepted.

There were two main motivations for the development of an interactive
framework for offline data-driven optimization. Firstly, [PI] and [PII] proved
that uncertainty information from Kriging surrogates improves the quality of the
solutions. However, making decisions under uncertainty was still a challenge.
Secondly, interactive approaches are beneficial since the DM is actively involved in
the optimization process. Prof. Kaisa Miettinen and Dr. Jussi Hakanen suggested
the use of indifference tolerance while providing preferences for uncertainties.
While developing the framework, the author understood the difficulties in human
cognition, and developed techniques for processing and visualizing the solutions.
The framework with test results was published in the Proceedings of Bioinspired
Optimization Methods and Their Applications (BIOMA) 2020 conference [PIII].
The author decided to further extend the framework by integrating it with the
probabilistic selection approach proposed in [PII]. He further developed a refer-
ence vector adaptation technique that considers uncertainty in the solutions. The
author performed tests using an artificial decision maker with various setups of
benchmark problems and has presented the results in Section 5.2.

The author recognized the challenge of building Kriging or Gaussian process
surrogates for offline datasets of large size in 2018. Various surrogate modelling
techniques were developed and tested by the author without much success. In
2020, Dr. Manuel López-Ibáñez suggested exploring treed GPs as surrogate models.
Various modelling approaches on the concept of treed GPs were developed and
tested by the author, out of which the TGP-MO surrogates performed the best. The
author conducted thorough tests with different benchmark problems, data sizes,
sampling strategies and compared the performance of the TGP-MO surrogates
with full GPs and sparse GPs. The resulting article was written in [PIV] and was
submitted to a journal in 2021.

Overall the developments of the approaches, experiments and most of the
writing in the articles were done by the author. The feedback and comments
provided by the co-authors improved the author’s writing ability, coherence and
further refined the ideas for publishing the articles.



8 CONCLUSIONS

The primary goal of this thesis was to identify the challenges of solving offline
data-driven MOPs and develop novel approaches to tackle them. The thesis is
also aimed at providing better decision support approaches for solving real-world
offline data-driven MOPs. In the first part of the thesis, the author described
one of the major challenges faced while solving offline data-driven MOPs. Since
we are unable to evaluate the underlying objectives and update the surrogates,
the solutions found by the MOEA generally have low accuracy. Utilizing the
uncertainty information from surrogates such as Kriging is one of the ways to find
solutions with better accuracy and hypervolume when they are evaluated with
the underlying objectives. A few different approaches were proposed in [PI] that
utilized the uncertainty information from Kriging surrogates and treated them as
additional objectives to the original MOP. The approaches produced promising
results; however, they increased the complexity of the MOP being solved by
increasing the number of objectives.

The concept of utilizing uncertainty information from the surrogates in the
optimization process was further extended in [PII]. We proposed probabilistic se-
lection approaches for decomposition-based MOEAs and utilized the uncertainty
in the prediction of Kriging surrogates. The approaches utilize Monte Carlo sam-
pling to estimate the distribution of the selection criterion of the decomposition-
based MOEA using kernel density estimation. The probability of selection is later
calculated by comparing the distribution of the selection criterion for different
individuals. Finally, for selecting the individuals, the probabilities are compared
or ranked based on the MOEA. The other approach proposed was a hybrid of the
generic selection (without utilizing uncertainty) and the probabilistic selection.
The probability of selection criterion selects solutions based on their objective
values and simultaneously tries to reduce the uncertainties they have. Therefore,
the solutions have a lower RMSE when they are evaluated with the underlying ob-
jectives or implemented in real life. In the experiments, we considered MOEA/D
(PBI) and RVEA (APD) as our MOEAs and embedded the proposed probabilistic
approaches in them. The probabilistic selection performed superior to their generic
counterparts in hypervolume and RMSE for several distance-based multiobjective
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visualizable test problems (DBMOPP). This further reinforced the theory that
using the uncertainty information from surrogates is crucial while optimizing
offline data-driven MOPs.

While solving real-world MOPs, the decision maker (DM) is generally inter-
ested in a subset of solutions (or a single solution) in the Pareto front. In [PIII] we
proposed an interactive framework to solve offline data-driven MOPs that is capa-
ble of handling preferences for objectives along with preferences for uncertainties.
The first challenge addressed was to enable the DM to understand and provide
preferences for uncertainties during an interaction. The second challenge was not
to drastically increase the cognitive load on the DM when two types of preferences
are required. We proposed a two-stage interaction to split the cognitive load of the
DM for providing preferences for objectives and uncertainties. The preferences
for uncertainties are provided in the form of tolerances that enables the DM to
visualize solutions within the threshold tolerances and preferences for objectives.
The working and advantages of the framework were demonstrated on the general
aviation aircraft problem.

However, as we are dealing with offline data-driven MOPs, the preferences
for objectives might not guarantee the solutions to follow the DM’s preferences
for objectives when evaluated with the underlying objectives. Thus we further
extended the framework in [PIII] by proposing a component-wise reference vector
adaptation that adjusts the diversity of the solutions based on their uncertainties.
We also tested a population injection technique to counter the loss of population
size when preferences for objectives are changed drastically. The framework was
also integrated with the probabilistic selection approaches proposed in [PII]. The
framework was tested with an artificial decision maker (ADM) with various con-
figurations of DBMOPP test problems and a number of objectives. Depending
on the indicators used, we observed significant improvement with the proposed
component-wise reference vector adaptation, probabilistic selection, and popu-
lation injection. However, further work is needed in the development of better
indicators for measuring the performances of interactive approaches and ADMs
capable of providing preferences for uncertainties.

In [PIV] we proposed treed Gaussian processes for multiobjective optimiza-
tion (TGP-MO). These surrogates consider the tradeoff region of the MOP being
solved during the building process and are capable of handling large datasets. Test
results showed that the TGP-MO surrogates outperformed full GPs and sparse
GPs in computation time for the building process. The building process of full
GPs failed for datasets of size (≥ 10000) due to memory overflow, thus making
them impractical to use when the size of the dataset is large. The solutions ob-
tained using TGP-MO as surrogates also had a better hypervolume and accuracy
than using sparse GP surrogates for most of the instances of DBMOPP problems.
Therefore using TGP-MO surrogates is a suitable choice while dealing with larger
datasets and when uncertainty in the prediction of GPs is required.

The proposed approaches in this thesis are an important first step in devel-
oping tools to solve real-world offline data-driven MOPs. This includes critical
processes such as traffic optimization, forest management and health management,
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where performing experiments is difficult or not practical. These approaches
can also be applied to solve online problems where the underlying objectives
are computationally very demanding and hence can be regarded as offline. This
includes design optimization problems (e.g. computational fluid dynamics) where
a simulation may take multiple hours or days to complete. The approaches and
frameworks are available on GitHub and implemented in the open-source frame-
work, DESDEO (desdeo.it.jyu.fi), and therefore easily accessible to researchers and
engineers.

In summary, this thesis highlights significant issues and challenges in solving
offline data-driven MOPs and proposes various approaches and embeds them in
frameworks to address them. The proposed approaches include utilizing uncer-
tainty estimates from Kriging surrogates, utilizing preferences for uncertainties
with decision support, and building computationally cheaper surrogates for large
offline datasets. Therefore, all the three challenges introduced in this thesis were
addressed in the form of articles [PI]–[PIV]. The various optimization and sur-
rogate modelling approaches and frameworks in the articles included in this
thesis will support the field of offline data-driven multiobjective optimization and
improve the DM’s ability to solve real-world offline data-driven MOPs.

In this thesis, the author has introduced various challenges and proposed ap-
proaches to tackle them. However, offline data-driven multiobjective optimization
is still a relatively new field, and there remain substantial challenges that could not
be addressed in this thesis. Hence, we intend to work on some of those areas in the
future. For instance, the approaches proposed in [PI]–[PIII] rely on the uncertainty
in the prediction of Kriging surrogates. However, in our tests, we observed that
the uncertainty in the prediction of Kriging surrogates is underestimated. In other
words, the underlying objective values lie outside the 95% confidence interval of
the surrogate’s approximation. This will be problematic for the DM as the variance
in the underlying objective values from the surrogate’s objective values is mislead-
ing. In the future, we plan to work specifically on enhancing the uncertainty in
the prediction from surrogates. We also plan to investigate the uncertainty in the
prediction provided by other types of models, i.e. random forest, neural networks
and support vector regression. Utilizing co-Kriging methods to model parameter
interactions is another interesting area we desire to work on. In future, we wish to
develop probabilistic constraint handling techniques and test the effectiveness of
the proposed approaches for noisy and real-world offline datasets with a real DM.

The TGP-MO surrogates only approximate certain regions of the decision
space. We can exploit this feature for solving MOPs with preferences from the
DM in an a priori or interactive way. The uncertainty in the prediction of TGP-
MO surrogates should also be analyzed and tested for the probabilistic selection
approaches in [PII]. The prediction from these surrogates have discontinuities
that diminish its prediction quality for certain problems. In the future, we plan
to develop non-linear splitting criteria for the regression trees to approximate
the tradeoff region. This will further improve the approximation accuracy of the
surrogates and require a lower number of samples and leaf node GPs.

desdeo.it.jyu.fi
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YHTEENVETO (SUMMARY IN FINNISH)

Tämän väitöskirjan päätavoite oli kartoittaa sellaisten datapohjaisten monitavoi-
teoptimointiongelmien ratkaisemiseen liittyvät käytännön haasteet, joissa uutta
dataa ei ole saatavilla optimoinnin aikana (ns. erilliset ongelmat) ja kehittää uusia
menetelmiä näiden haasteiden ratkaisemiseksi. Väitöskirja tarjoaa myös parempia
päätöksenteon tukimenetelmiä käytännön erillisten datapohjaisten monitavoiteop-
timointiongelmen ratkaisemiseen. Kehitetyt menetelmät esitellään väitöskirjan
tieteellisissä artikkeleissa PI-PIV ja niiden ideat ovat lyhyesti seuraavat.

Kehitetyt menetelmät hyödyntävät dataan pohjautuvia Kriging-sijaismalleja
ja niiden tuottamaa tietoa mallien epävarmuudesta. Tätä epävarmuustietoa siis
käytetään erillisten datapohjaisten optimointitehtävien ratkaisemisessa. Ensim-
mäisissä menetelmissä mallien epävarmuustieto muotoillaan optimoitaviksi li-
säfunktioiksi. Seuraavissa menetelmissä epävarmuustietoa käytetään monitavoi-
teoptimoinnin hajotelmapohjaisten evoluutioalgoritmien valintaprosessissa te-
hostamaan näiden algoritmien toimittaa epävarmuuksien huomioonottamisessa.
Laskennalliset tulokset kehitetyillä epävarmuuden huomioonottavilla MOEA/D
(PBI) ja RVEA (APD) -menetelmillä olivat selkeästi parempia kuin vastaavilla
menetelmillä, jotka eivät hyödynnä epävarmuustietoa sekä hypertilavuus- että
RMSE-mittareiden suhteen useilla DBMOPP-sarjan testitehtävillä.

Väitöskirjassa esitetään myös interaktiivinen lähestymistapa tarkasteltujen
erillisten datapohjaisten monitavoiteoptimointitehtävien ratkaisemiseen, jossa
hyödynnetään päätöksentekijän preferenssi-informaatiota sekä optimoitaville
funktioille että niihin liittyville epävarmuuksille. Lähestymistavan toimintaa ja sen
tuomia hyötyjä havainnollistetaan ratkaisemalla kirjallisuudessa aiemmin esitetty
päätösongelma, joka liittyy yleisilmailulentokoneen suunnitteluun. Kehitettyä
lähestymistapaa laajennetaan hyödyntämään funktiokohtaista referenssivektorien
päivittämistapaa, uutta populaation täydentämismenetelmää sekä artikkelissa PII
esitettyä epävarmuustietoa hyödyntävää valintaa. Automaattista päätöksentekijää
hyödyntävät testitulokset osoittivat laajennetun lähestymistavan paremmuuden
käytettyjen mittareiden suhteen.

Lopuksi väitöskirjassa esitetään puurakenteinen Gaussisiin prosesseihin pe-
rustuva malli, joka soveltuu tilanteisiin, joissa dataa on paljon. Nämä mallit hyö-
dyntävät optimoitavien funktioiden välistä vaihtosuhteiden joukkoa ja kykenevät
käsittelemään rakennusvaiheessa suurta määrää dataa. Testitulokset osoittavat, et-
tä kehitetty TGP-MO -malli suoriutuu mallin rakentamiseen käytetyn ajan suhteen
selvästi paremmin kuin vertailtavina olleet täysi GP-malli sekä harva GP-malli.
Tuotetuilla ratkaisuilla on lisäksi parempi hypertilavuus ja tarkkuus verrattuna
harvaan GP-malliin useimmissa DBMOPP-sarjan testitehvissä.

Väitöskijassa esitetyt uudet menetelmät muodostavat tärkeän ensiaskeleen
kehitettäessä työkaluja käytännön datapohjaisten monitavoiteoptimointiongel-
mien ratkaisemiseen, kun uutta dataa ei ole käytettävissä. Sovelluskohteita näille
menetelmille on esimerkiksi liikenteen, metsänhoidon suunnittelun ja terveyden-
huollon aloilla, joissa kokeellisen tiedon hankkiminen on vaikeaa tai mahdotonta.
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Kehitettyjä menetelmiä voidaan soveltaa myös laskennallisesti vaativien datapoh-
jaisten optimointiongelmien ratkaisemiseen, joissa uuden tiedon hankkiminen on
periaatteessa mahdollista mutta käytännössä mahdotonta kuten suunnitelutehtä-
vissä (esimerkiksi laskennallisessa virtausdynamiikassa), joissa käytetään useita
tunteja tai päiviä kestäviä simulaatioita.

Väitöskirjan menetelmät ovat saatavilla GitHubissa, ja ne on toteutettu osaksi
avoimen lähdekoodin DESDEO-ohjelmistokehikkoa (desdeo.it.jyu.fi), mikä mah-
dollistaa niiden helpon saatavuuden ja edelleenkehittämisen sekä tutkijoille että
käytännön soveltajille. Väitöskirjaan kuuluvissa tieteelisissä artikkeleissa esitetyt
optimointi- ja mallinnusmenetelmät tukevat erillisen datapohjaisen monitavoi-
teoptimoinnin alaa ja parantavat päätöksentekijän mahdollisuuksia käytännön
päätösten tekemisessä.
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Abstract. Many works on surrogate-assisted evolutionary multiobjec-
tive optimization have been devoted to problems where function evalua-
tions are time-consuming (e.g., based on simulations). In many real-life
optimization problems, mathematical or simulation models are not al-
ways available and, instead, we only have data from experiments, mea-
surements or sensors. In such cases, optimization is to be performed on
surrogate models built on the data available. The main challenge there
is to fit an accurate surrogate model and to obtain meaningful solutions.
We apply Kriging as a surrogate model and utilize corresponding un-
certainty information in different ways during the optimization process.
We discuss experimental results obtained on benchmark multiobjective
optimization problems with different sampling techniques and numbers
of objectives. The results show the effect of different ways of utilizing
uncertainty information on the quality of solutions.

Keywords: Machine learning · Gaussian process · Pareto optimality ·
Metamodelling · Surrogate

1 Introduction

Sometimes in real applications, multiple conflicting objectives should be opti-
mized, but there is no mathematical or simulation model of the objectives in-
volved. Instead, there is data, e.g., obtained via physical experiments. In such
cases, surrogate models can be built using the given data and optimization is
then performed with the surrogate models. In the literature, surrogate models
such as Kriging [8], neural networks [18] and support vector regression [16] have
been typically used for solving computationally expensive optimization problems
[6,10]. If we may conduct new (expensive) function evaluations when needed, this
process is called online data-driven optimization [20]. When we do not have ac-
cess to additional data during the optimization, we call it offline data-driven
optimization [11].
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In using surrogate models, the main challenge is to manage the models for
improving convergence and diversity without too much sacrifice in the accuracy
of models. In online data-driven optimization problems, an infill criterion [6] is
maximized or minimized for updating the models iteratively during the optimiza-
tion process. However, this is not applicable for offline data-driven optimization
when no further data is available during the optimization process.So far, little
research has been conducted on solving optimization problems, where no new
data is available for managing the surrogates [4,11,20]. In such case, the quality
of the solutions obtained after using the surrogate models is entirely dependent
on the accuracy of the models and optimizer used.

When solving an offline data-driven problem with multiple conflicting objec-
tives, one can fit models using all the data available for each objective function.
Then an evolutionary multiobjective optimization (EMO) algorithm can be used
on these models to find a set of approximated nondominated solutions. Essen-
tially, in that case, an offline data-driven multiobjective optimization problem
(MOP) can be divided into two major parts: model building and using an EMO
algorithm.

Some surrogate models, like Kriging, provide uncertainty information (or
standard deviation) about the predicted values. A low standard deviation implies
that the actual objective function value has a higher chance of being close to
the predicted value (though the actual function may remain unknown and the
only information is the data available). Therefore, one possible way to improve
the accuracy of the model is to utilize uncertainty in the fitted model as an
additional objective to be optimized.

In this article, we study different ways to deal with the uncertainty infor-
mation provided by the Kriging models in offline data-driven multiobjective
optimization. Moreover, we consider the effect of using different initial sampling
techniques on some benchmark test problems. In this study, we simulate offline
problems by generating data for problems with known optimal solutions to be
able to analyze the results. The results show the effect of utilizing uncertainty
information in the quality of solutions.

The rest of this article is organized as follows. We summarize the basic con-
cepts of data-driven optimization and Kriging model in Section 2. In Section 3,
we present different approaches of incorporating uncertainty information in the
optimization problem and present and analyze the results in Section 4. Finally,
we draw conclusions in Section 5.

2 Background

2.1 Generic Offline Data-Driven EMO

We consider MOPs of the following form :

minimize {f1(x), . . . , fk(x)},
subject to x ∈ S, (1)
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with k (≥ 2) objective functions and the feasible set S is a subset of the decision
space Rn. For any feasible decision vector x we have a corresponding objective
vector f(x) = (f1(x), . . . , fk(x)).

MOPs that are offline in nature can generally be solved by the approach given
in Fig. 1. In what follows, we refer to it as a generic approach. As described in
[11,21], the solution process can be split into three major components: (1) data
collection, (2) model building and management, and (3) EMO method utilized.
The collection of data may also incorporate data pre-processing, if it is required.
Once the data has been obtained, the objectives and constraints of the MOP are
formulated. The next stage is to build surrogate models (also known as meta-
models) e.g. for each objective function using the available data. Finally, an
EMO method is used to find nondominated solutions utilizing the surrogates as
objective functions. As objectives to be optimized in (1) we have for i = 1, . . . , k

the predicted means f̂i of the surrogate of objective fi and our objective vector
is denoted by:

f̂ = (f̂1(x), . . . , f̂k(x)). (2)

Offline Data
Build Surrogate

Models

Evaluation

Initialization

Variation 

Selection

Stopping 
Criteria 

reached? 

Model Management
Non-Dominated

Solutions

Yes

No

EMO Modeling Data 

Fig. 1. Flowchart of a generic offline data-driven evolutionary multiobjective optimiza-
tion approach.

Selecting proper surrogate models is a challenging task in model management.
In online data-driven EMO, the quality of the surrogate models can be accessed
and updated as new data becomes available during the optimization process.
However, for offline data-driven EMO this is not possible. It becomes even more
challenging with the data being noisy [22], skewed [23], time-varying [2] or het-
erogeneous [3]. Thus, it is crucial to build, before optimization, surrogates that
are as good approximations as possible of the “true” objective functions. One
way to improve the accuracy of the surrogates is to enhance the quality of the
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data. In this research, our consideration is on a general level and we do not go
into the characteristics of the data.

In offline data-driven EMO, the possible ways to improve the accuracy of
the surrogate models are to have an effective data pre-processing for noise re-
moval [4], creating synthetic data [23], transferring knowledge [15] or applying
advanced machine leaning techniques [19,20]. However, it is quite possible that
the surrogate models are not good representations of the true objectives. It may
even happen that the solutions obtained are actually worse than the data used
for fitting the models.

2.2 Kriging

Kriging or Gaussian process regression has been widely used as a surrogate model
for solving expensive optimization problems [6]. The main advantage of using
Kriging is its ability to provide uncertainty information of the predicted values.
Given a Kriging model, the approximated mean value y∗ and its variance s2 for
a sample (or decision variable value) x∗ are as follows:

y∗ = k(x∗,X)K(X,X)−1y, (3)

s2 = k(x∗,x∗)−K(x∗,X)K(X,X)−1K(X,x∗), (4)

where X ∈ RNI×n is the matrix of the given data with NI items with n decision
variables, y ∈ RNI is the vector of given objective values corresponding to some
decision vector, K(X,X) is the covariance matrix of X and k(x∗,X) is a vector
of covariances between x∗ and X. For more details about Kriging, see [17].

3 Approaches to Incorporate Uncertainty

As new data cannot be obtained in offline data-driven optimization, it is difficult
to update the surrogates and enhance their accuracy. One approach is to build a
very accurate surrogate model before the optimization process. Another possible
approach is to provide a suitable metric in addition to final solutions after the
optimization process, which can be used to measure the accuracy of solutions
obtained. This approach can be beneficial when the surrogate models cannot
provide a very exact representation of the true objective functions. One such
instance can be when the data consists of optimal solutions. In such a case, the
surrogate might not be a good representation of the actual objectives, which
might lead to degraded final solutions. Providing a set of solutions together with
the uncertainty information of predicted final solutions can be helpful in the
decision making process.

As previously discussed, the two major components in offline data-driven op-
timization are building a surrogate model and using an EMO algorithm. In this
research we have limited ourselves by focusing on a few variations of the opti-
mization problem which try to minimize the uncertainty in the final solutions.
As shown in Figure 2, the uncertainties in the predicted value of the Kriging
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models are utilized as additional objective functions. By considering uncertain-
ties in this way, the EMO method tries to minimize the predicted mean values
from the fitted Kriging models by subsequently minimizing the standard devia-
tions in the prediction. Thus, the final set of nondominated solutions will consist
of solutions with different levels of uncertainty.

Offline
data

Build Kriging
models for each

objective functions

Approach 1: Predicted
mean and standard

deviations

Approach 2: Predicted
mean and average of
standard deviations

Approach 3: Expected
improvement 
(Maximize) 

Evaluation

Initialization

Variation 

Selection

Stopping 
criteria 

reached? 

Non-dominated
solutions

Yes

No

EMO  Approaches
Tested

Fig. 2. Flowchart of offline data-driven optimization with uncertainty.

We have tested three different approaches for utilizing uncertainties in the
optimization. Approach 1 uses all the standard deviations given by each surro-
gate model as additional objectives. The resulting objective vector in Approach
1 is:

f̂ = (f̂1(x), . . . , f̂k(x), s1(x), . . . , sk(x)), (5)

where f̂i(x) and si(x) and are the predicted mean and the standard deviation
values for the ith objective. Final solutions are obtained by performing a non-
dominated sort on the archive of predicted solutions (predicted mean values
and standard deviations) stored while optimization. It might be possible that
the solutions have different uncertainties for different objectives. We double the
number of objectives which may increase the complexity of solving the resulting
optimization problem.

Approach 2 utilizes the average of the standard deviations given by each
of the surrogate models as an additional objective and the resulting objective
vector is:

f̂ = (f̂1(x), . . . , f̂k(x), s̄(x)), (6)

where s̄(x) is the average of the standard deviations from Kriging models built
for each objective function. This method has fewer objectives when compared to
Approach 1, however, either of the approaches provide solutions with a range of
uncertainty values. Both Approaches 1 and 2 can provide an option for filtering
solutions based on the uncertainty information.
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Algorithm 1 Uncertainties as additional objective functions
Input: k Kriging models, one for each objective function and an empty archive
Output: Final nondominated approximated solutions from the archive

1: Generate parent population
2: while Stopping criteria are not reached do
3: Generate offspring with crossover and mutation
4: Evaluate offspring using Kriging models and get the objective function values

of either Eqs. (4), (5) or (6)
5: Combine offspring population with parent population
6: Select parents for the next generation
7: Store parents in the archive
8: Perform nondominated sorting of solutions in the archive

Approach 3 utilizes the expected improvement (EI) [12] for every surrogate
model as objectives to be optimized by the EMO algorithm, see, e.g. [9]. Ex-
pected improvement can be expressed as EI(x) = (fmin− f̂(x))Φ

(
fmin−f̂(x)

s(x)

)
+

s(x)φ
(
fmin−f̂(x)

s(x)

)
, where φ(·) and Φ(·) are the standard normal density and dis-

tribution function respectively, and fmin is a k-dimensional vector, where the ith
component represents the best values of the ith objective function in the given
data. The objective vector in this case is:

f̂ = (EI1(x), . . . ,EIk(x)) , (7)

where EIi(x) is the expected improvement value for the ith objective. The EI
criterion takes the predicted mean value and the standard deviation into account.

Now we have introduced three approaches for incorporating uncertainty in-
formation. Algorithm 1 shows the process of applying any of them in the offline
optimization process, where k is the number of objectives and we can use the
maximum number of evaluations using surrogate models as a stopping criterion.

4 Experimental Results

We compare the three different approaches to each other and also to a generic
approach (as (2) in Subsection 2.1), using test problems DTLZ2, DTLZ4–DTLZ7
with 2, 3 and 5 objectives. As said, we generate data for these problems and fit
Kriging models there. The dimension of the decision variable space n is fixed to
10.

The size of the data set used is 109 (corresponds to the 11n − 1 [5,13,24]).
The sampling techniques for creating the data sets were Latin hypercube sam-
pling (LHS), uniform random sampling and a special case of sampling which we
call optimal-random sampling. In the latter, 50% of the data are nondominated
solutions and the remaining 50% are uniform random samples. This kind of hy-
pothetical sampling might resemble a special case where most of the samples in
the given data set are close to optimal, and thus the optimization process could
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no longer improve the solutions further. However, in such a scenario the offline
optimization technique should not compute final solutions which are worse than
the provided samples. A total of 31 independent runs from each sampling were
performed for each case.

We used indicator based evolutionary algorithm (IBEA) [25] as the EMO
method as it has been demonstrated to perform well in [1] even for problems
with a higher number of objectives. The selection criterion was Iε+ (Step 6 in
Algorithm 1) with κ parameter values 0.51, 0.87 and 0.48 for k = 2, 3 and 5,
respectively, and κ value of 0.5 for any other number of objectives. The popula-
tion size was 100 and the maximum number of function evaluations was 40 000
according to [1]. We used Matlab implementation of Kriging models with first
order polynomial functions and a Gaussian kernel function.

For measuring the performance of different approaches, we first performed a
nondominated sort on the archive (also including the additional objective(s)).
These nondominated solutions were then evaluated with the real objective func-
tion. After obtaining their true objective function values, dominated solutions
were removed producing the final nondominated set. For comparing the quality
of solutions for all the approaches, inverted generational distance (IGD) metric
was utilized with 5000 points in the reference set for all problems.

Table 1 shows the comparison between the mean and standard deviation
values of the IGD for all the three approaches and the generic approach. It was
observed that Approaches 1 and 2 performed better than the generic approach
for LHS and uniform random sampling for all the problems with various numbers
of objectives with the exception of DTLZ6 and DTLZ7. However, while using
optimal-random sampling, Approaches 1 and 2 performed better than the generic
approach for DTLZ2, DTLZ4-5 and better for DTLZ6 and DTLZ7 for few of the
objectives. Approach 3 did not produce good results for any of the problems,
objectives or sampling technique.

Adding uncertainties as additional objectives pose a major problem in ex-
plaining the effect of optimization as the fitness landscape of the uncertainties
is mostly unknown. A possible explanation that no noticeable performance im-
provement is observed in DTLZ6 when using Approaches 1 and 2 is because
the problem consists has a non-uniform (or biased) [7] degenerated Pareto front.
Adding additional uncertainty objectives makes the problem even harder to solve
and fewer nondominated solutions are obtained. For DTLZ7, a possible expla-
nation for the worse performance of Approaches 1 and 2 is that the objective
functions are completely separable [14]. Thus, the additional objectives added
by Approaches 1 and 2 only make the problem more difficult than the generic
approach.

For optimal-random sampling the advantage of Approaches 1 and 2 was
clearly visible. Despite the initial sampling including also nondominated solu-
tions, the generic approach failed to provide good solutions. This is because the
surrogate models do not provide a perfect representation of the true objectives.
While utilizing EIs as objectives in Approach 3, the solutions were actually worse
(comparing mean IGD values) for most of the cases. This is because EI tries to



8 Mazumdar et al.

balance between convergence and diversity. Therefore, it can select a solution
with a high uncertainty for achieving its goal.

Figure 3 shows the root mean square error (RMSE) of the final solutions
obtained by different approaches with LHS sampling on problems with two ob-
jectives. It can be observed that the solutions obtained by Approaches 1 and 2
are more accurate in most of the cases. This means that using uncertainty as
additional objective(s) helps to find solutions with a low approximation error.
Therefore, using uncertainty in the optimization process can be considered as an
advantage in solving an offline data-driven EMO problem where there is no pos-
sibility for updating the surrogate models. An illustration of solutions obtained
after evaluating them with real objectives for the DTLZ2 problem with LHS and
optimal-random sampling is shown in Figure 4. Due to space limitations, further
analysis is available at bluehttp://www.mit.jyu.fi/optgroup/extramaterial.html
as additional material. The performance of the proposed approaches on other
test problems (i.e., DTLZ1, DTLZ3, WFG1-WFG3, WFG5 and WFG9) can also
be found at the above-mentioned website.
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Fig. 3. RMSE of the final solutions for bi-objective problems. Here f1 and f2 are the
objectives and "Gen","Appr1","Appr2" and "Appr3" are the generic and Approaches
1, 2 and 3, respectively. Opt.Rand is optimal-random sampling.
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Table 1. Means and standard deviations of IGD values of the final archive, evaluated
on the true objective functions, obtained by each approach, for various problems and
sampling techniques. (Best values are in bold)

Sampling Problems k
Generic Approach 1 Approach 2 Approach 3

Mean Std.Dev. Mean Std.Dev. Mean Std.Dev. Mean Std.Dev.

LHS

DTLZ2
2 0.0989 0.1260 0.0722 0.0431 0.0770 0.0651 0.3377 0.0477
3 0.2027 0.0910 0.1787 0.0530 0.1665 0.0539 0.3471 0.0365
5 0.2708 0.0873 0.2689 0.0343 0.2574 0.0396 0.3993 0.0395

DTLZ4
2 0.6311 0.1619 0.3951 0.1935 0.4919 0.1852 0.6467 0.2098
3 0.7306 0.2021 0.5309 0.1413 0.5867 0.1467 0.7166 0.1162
5 0.6929 0.0766 0.5640 0.0653 0.6062 0.0545 0.7173 0.0514

DTLZ5
2 0.1030 0.1326 0.1032 0.0905 0.0814 0.0570 0.3716 0.0580
3 0.1191 0.0982 0.0684 0.0315 0.0701 0.0452 0.2676 0.0388
5 0.0934 0.0606 0.0655 0.0277 0.0805 0.0453 0.1486 0.0387

DTLZ6
2 0.1570 0.1078 1.6188 0.7635 2.4518 0.5797 3.5210 1.1369
3 0.9871 0.2737 1.7564 0.7308 1.5561 0.7159 3.2847 1.1907
5 0.8207 0.2158 2.3859 0.4822 1.3725 0.3734 2.8157 1.0211

DTLZ7
2 0.0023 0.0049 0.0292 0.0095 0.0095 0.0086 0.6157 0.1767
3 0.0549 0.0120 0.1791 0.1721 0.0956 0.1449 0.6529 0.1016
5 0.2800 0.0541 0.5254 0.2175 0.3675 0.1234 0.7169 0.0888

Random

DTLZ2
2 0.0947 0.0893 0.0879 0.0468 0.0828 0.0493 0.3673 0.0395
3 0.2315 0.0712 0.1907 0.0534 0.1692 0.0316 0.3591 0.0433
5 0.2843 0.0790 0.2593 0.0268 0.2514 0.0335 0.4188 0.0289

DTLZ4
2 0.5986 0.1857 0.4461 0.1850 0.4665 0.1735 0.4935 0.2243
3 0.7885 0.1465 0.5354 0.1474 0.5682 0.1320 0.7680 0.1544
5 0.7064 0.1731 0.5487 0.1021 0.6034 0.1127 0.7391 0.0697

DTLZ5
2 0.1144 0.1211 0.0949 0.0495 0.0889 0.0506 0.3590 0.0481
3 0.1114 0.0367 0.0610 0.0291 0.0615 0.0283 0.2823 0.0350
5 0.0644 0.0447 0.0498 0.0169 0.0542 0.0254 0.1521 0.0319

DTLZ6
2 0.2826 0.3739 1.8949 1.0420 2.6166 0.7696 4.6779 1.2463
3 1.2833 0.2710 2.9273 0.4893 1.2966 0.4552 3.0290 0.9259
5 0.7897 0.2869 2.5206 0.6990 1.6732 0.6577 2.9527 1.1470

DTLZ7
2 0.0081 0.0113 0.0444 0.0254 0.0260 0.0382 0.5942 0.1295
3 0.0500 0.0261 0.1635 0.1030 0.0853 0.0443 0.6159 0.0980
5 0.2821 0.0235 0.5763 0.2356 0.4916 0.3096 0.7254 0.0781

Optimal-
Random

DTLZ2
2 0.4220 0.2079 0.0053 0.0020 0.0090 0.0029 0.1244 0.1827
3 0.3152 0.2285 0.0517 0.0101 0.0554 0.0120 0.2088 0.1247
5 0.1619 0.0604 0.1582 0.0143 0.1404 0.0253 0.2758 0.0078

DTLZ4
2 0.8335 0.8480 0.0194 0.0160 0.0526 0.0351 0.5851 0.4683
3 0.7853 0.1831 0.2662 0.0738 0.2966 0.0857 0.5575 0.1704
5 0.5789 0.1020 0.4319 0.1062 0.4730 0.0904 0.6047 0.0801

DTLZ5
2 0.7489 0.4255 0.0086 0.0024 0.0094 0.0032 0.2086 0.2516
3 0.3323 0.3085 0.0064 0.0018 0.0076 0.0017 0.1010 0.0845
5 0.1890 0.2090 0.0049 0.0019 0.0055 0.0021 0.0251 0.0232

DTLZ6
2 0.0064 0.0031 0.0077 0.0013 0.0081 0.0019 0.0147 0.0019
3 0.0556 0.0868 0.0075 0.0021 0.0085 0.0029 0.0198 0.0104
5 0.0396 0.0986 0.0069 0.0014 0.0085 0.0012 0.0171 0.0078

DTLZ7
2 0.0005 0.0004 0.0013 0.0003 0.0020 0.0007 0.0177 0.0033
3 0.0397 0.0093 0.0365 0.0043 0.0388 0.0058 0.1012 0.0124
5 0.1910 0.0179 0.1855 0.0141 0.1825 0.0220 0.3404 0.0367



10 Mazumdar et al.

LHS Sampling

Optimal-Random Sampling

Fig. 4. Final solutions obtained of the run with the median IGD value using different
approaches for LHS sampling (top three rows) and optimal-random sampling (bottom
three rows) for the DTLZ2 problem.
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5 Conclusions

We have considered offline data-driven optimization with evolutionary multi-
objective optimization. We used Kriging to fit surrogate models to data and
proposed and tested three approaches to utilize uncertainty information from
Kriging models in the optimization. A comparison was done with several bench-
mark problems, sampling techniques and varying the number of objectives in
solving offline data-driven multiobjective optimization problems. Adding uncer-
tainty as one or more objectives showed improvements in the final solutions
for certain problems in our benchmark testing. However, utilizing expected im-
provements as objectives (in Approach 3) did not seem to be effective in solving
this kind of problems. The analysis also revealed that the solutions obtained in
Approaches 1 and 2 are more accurate compared to the ones obtained using a
generic approach (without uncertainty information).

Future work will include comparing the performance of the proposed ap-
proaches with bigger initial sample sizes, higher number of decision variables
and higher number of objectives. Aiding the decision making process by giving
a decision maker an option to select a final solution using the uncertainty in-
formation is another direction to work on. Moreover, filtering techniques can be
applied to remove solutions with higher uncertainties. Testing on real-world data
sets and exploring different ways to deal with uncertainties using other surrogate
models will also be future research topics.
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Abstract—In offline data-driven multiobjective optimization, no
new data is available during the optimization process. Approx-
imation models, also known as surrogates, are built using the
provided offline data. A multiobjective evolutionary algorithm
can be utilized to find solutions by using these surrogates.
The accuracy of the approximated solutions depends on the
surrogates and approximations typically involve uncertainties.
In this paper, we propose probabilistic selection approaches
that utilize the uncertainty information of the Kriging models
(as surrogates) to improve the solution process in offline
data-driven multiobjective optimization. These approaches are
designed for decomposition-based multiobjective evolutionary
algorithms and can, thus, handle a large number of objec-
tives. The proposed approaches were tested on distance-based
visualizable test problems and the DTLZ suite. The proposed
approaches produced solutions with a greater hypervolume,
and a lower root mean squared error compared to generic
approaches and a transfer learning approach that do not use
uncertainty information.

Index Terms—Kriging, Gaussian processes, Metamodelling,
Surrogate, Kernel density estimation, Pareto optimality

1. Introduction

Sometimes, real-world multiobjective optimization prob-
lems (MOPs) consisting of conflicting objectives do not have
analytical functions or simulation models. Instead, the start-
ing point for optimization is data obtained by, e.g. physical
experiments, sensors or real-life processes. The available
data can be used to build surrogates (also known as meta-
models) that approximate the underlying objective functions
involved in the phenomenon. Optimization can be performed
using these surrogates by embedding them in multiobjective

Figure 1: Individuals in the surrogate objective space (left)
and underlying objective space (right) for a minimization
problem.

evolutionary algorithms (MOEAs) which have proven to
be suitable in solving black-box optimization problems [1].
Data-driven optimization can be categorized as online or
offline. In online data-driven optimization problems, getting
more data e.g. by conducting further (expensive) function
evaluations is possible, which enables updating the surro-
gates [2]. However, if no additional data can be acquired
during the optimization process, it is known as offline data-
driven optimization [3], which is the main focus of this
paper.

Updating the surrogates is not possible in offline data-
driven optimization [4]. Thus, while solving an offline MOP,
the approximation accuracy and hypervolume of the solu-
tions obtained are entirely dependent on the optimization al-
gorithms used and the surrogates (that involve uncertainty).

In Figure 1, we show an illustration of the objective
values and uncertainties of a few individuals approximated
by the surrogates (e.g. Kriging). For simplicity, we call the
objective space of the individuals evaluated with the sur-
rogates and the underlying objective functions as surrogate

1



objective space and underlying objective space, respectively.
The red individuals dominate the green in the surrogate
objective space. However, as can be observed, these non-
dominated individuals also have higher uncertainties. On
the right, we show the same individuals when they are
evaluated with the underlying objective functions. It can be
observed that the green individuals dominate most of the red
individuals. Thus, while solving offline data-driven MOPs,
utilizing just the surrogates’ mean approximation can lead
us to worse solutions. One of the ways to tackle this problem
is by using the uncertainty from the surrogates.

Most of the previous works on offline data-driven op-
timization such as [2], [3], [5] do not consider uncertainty
information provided by the surrogates.

In [6], optimization is assisted by coarse and fine
surrogates. A coarse surrogate is used by the MOEA to
find a promising subregion in the search space. Later, the
knowledge about good solutions from the coarse search
is transferred to the fine search. On the other hand, the
works in [7], [8], [9] utilize the approximated uncertainty
information provided by Kriging surrogates. The works in
[7], [9] use probability of dominance that can be applied
to dominance-based MOEAs. The approach in [8] utilizes
the approximated uncertainties as additional objective func-
tion(s), thereby minimizing the objective values along with
the uncertainties in the solutions. However, this approach
increases the number of objectives and thus increases the
complexity of the optimization problem.

A generic approach to solve offline MOPs using MOEA
utilises the mean approximations of surrogates as objectives
(without uncertainty). The MOEA finds a set of approx-
imated nondominated solutions that represents the trade-
offs between the objectives. However, the performance of
traditional MOEAs such as MOGA [10], MO-CMA-ES
[11], and NSGA-II [12], etc. deteriorates when the number
of objectives increases [13], [14], [15]. Decomposition-
based MOEAs (e.g. MOEA/D [15], NSGA-III [16] and
RVEA [14]) have explicitly been developed to handle a large
number of objectives (> 3).

In this paper, we propose a probabilistic selection ap-
proach and an extended version of it that incorporate un-
certainty information in the solution process of offline data-
driven MOPs. The proposed approaches utilize techniques
such as Monte-Carlo sampling [17] and kernel density esti-
mation (KDE) [18] to estimate the probability of selection
criterion in decomposition-based MOEAs. This is partic-
ularly advantageous when the closed form of the proba-
bility is not available. The proposed approaches are novel
in their adaptability or “plug and play” feature for any
decomposition-based MOEAs without the requirement of
further analytical derivations specific to the MOEA.As an
example, we incorporate the proposed probabilistic selec-
tion approaches in RVEA and MOEA/D for solving offline
MOPs.

The numerical experiments show that the first proba-
bilistic selection approach produces solutions with a better
accuracy compared to the generic approach. The second
approach proposed is a hybrid selection approach that em-

ploys a combination of both the probabilistic and the generic
selection approaches. The hybrid approach produces solu-
tions better in hypervolume when compared to the parent
approaches. To summarize, the main contributions are:

• Uncertainty information from the surrogates are uti-
lized in the selection process of decomposition-
based MOEAs.

• Easy adaptability to any decomposition-based
MOEA without any need of analytical derivations.

As we use decomposition-based MOEAs, the proposed ap-
proaches are capable of handling a large number of objec-
tives.

The rest of the paper is organized as follows. The
basic notations, the background of the generic approach,
decomposition-based MOEAs, and probabilistic selection
are discussed in Section II. The proposed probabilistic and
hybrid selection approaches are presented in Section III. The
results of our experiments with analyses are compiled in
Section IV. Finally, conclusions and future research perspec-
tives are discussed in Section V.

2. Background

In offline data-driven MOPs, there exists no functional
form or simulation model which can be accessed during
the optimization process. The available (pre-collected) data
is the output of a process or phenomenon. As mentioned
in the introduction, we refer to the process generating the
offline data as underlying objective functions. We consider
the underlying MOPs of the following form:

minimize {f1(x), . . . , fK(x)},
subject to x ∈ Ω,

(1)

where K ≥ 2 is the total number of objectives, and Ω is
the feasible region of the decision space Rn. For a feasible
decision vector x, the corresponding objective vector is f(x),
that comprises of the underlying objective (function) values
(f1(x), . . . , fK(x)).

A solution x1 ∈ Ω dominates another solution x2 ∈ Ω if
fk(x1) ≤ fk(x2) for all k = 1, . . . ,K and fk(x1) < fk(x2)
for at least one k = 1, . . . ,K. A solution of an MOP is
nondominated if it is not dominated by any other feasible
solution. An MOEA typically produces solutions that are
nondominated within the set of solutions it has found.
The solutions of (1) that are nondominated in Ω are also
called Pareto optimal solutions. In what follows, we refer to
solutions of MOEAs as approximated Pareto optimal ones.
The set of solutions in the objective space is called the
Pareto front and the corresponding set of decision vectors
is the Pareto set.

2.1. Generic Offline Data-Driven Multiobjective
Optimization

The generic approach to solve offline MOPs is shown in
Figure 2. As described in [3], [4], the solution process can
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Figure 2: Flowchart of a generic offline data-driven multi-
objective optimization approach.

be split into three stages which are (a) data collection, (b)
formulating the MOP and surrogate building, and (c) opti-
mization using an MOEA. The initial step of data collection
may include pre-processing if necessary. Surrogates are then
built using the provided offline data. Some of the popular
surrogates that are used for solving offline data-driven MOPs
are Kriging [19], neural networks [20], and support vector
machines [20]. Finally, an MOEA is used to solve the MOP
with the surrogates as objectives.

2.2. Decomposition-based MOEAs in Brief

Decomposition-based MOEAs are designed to solve
MOPs with more than three objectives [21], [22]. In general,
they decompose the problem into a number of single objec-
tive subproblems using scalarizing functions (e.g. MOEA/D
[15]) or multiple MOPs (e.g. MOEA/D-M2M [23], NS-
GAIII [16] and RVEA [14]). In this paper, we use RVEA
and MOEA/D as two decomposition-based algorithms and
apply our proposed approaches in them. These algorithms
start by creating a set of N uniformly distributed unit
reference vectors (or weight vectors) vj (j = 1, . . . , N).
The population of individuals is P and the objective vectors
for the individuals are F =

{
f1, . . . , f|P |

}
consisting of |P |

individuals. The ith individual in P is denoted by Ii. The
vector of minimum objective function values present in the
given population is zmin = (zmin1 , . . . , zminK ).

2.2.1. MOEA/D in brief. MOEA/D [15] performs search
in the neighbourhood of each reference vector, it updates
the population sequentially. In each neighbourhood, the off-
spring population is generated using crossover and mutation,
which is then compared with the parent population. A selec-
tion criterion, e.g. PBI or Tchebycheff scalarizing function,
is used to select the population for the next generation. In
this article, we use PBI as the selection criterion and evaluate
it for x as:

gPBIx = d1 + ρd2, (2)

where parameter ρ is the penalty term that
balances between convergence and diversity,
d1 = ||(zmin − f(x))Tvj ||/||vj || and d2 =
||f(x) − (zmin − d1vj)||, respectively. Here vj is the
jth reference vector in the neighbourhood. MOEA/D
updates solutions in their neighbourhood by checking if
gPBIx′ ≤ gPBIxj

, then set xj = x′ and f(xj) = f(x′).
Here, x′ is the offspring and xj is the jth solution in the
neighbourhood.

2.2.2. RVEA in brief. The RVEA algorithm first translates
the objective vectors as f ′i = fi−zmin, where i = 1, . . . , |P |.
It then splits the population into subpopulations by assigning
individuals to reference vectors by measuring the cosine
between the reference vector and the translated objective
vector. The cosine value between the jth reference vector
vj and the ith translated objective vector f ′i is given by:

cos θi,j =
f ′i · vj
‖f ′i‖

, (3)

where ‖f ′i‖ is the Euclidean norm. An individual Ii is
included in the zth subpopulation P̄z if it has the lowest
angle θi,j between f ′i and vz (or highest cosθi,j value). The
index of the zth reference vector to which individual Ii is
assigned is:

Ii|z = argmax
j∈{1,...N}

cos θi,j . (4)

After the individuals are assigned to subpopulations, RVEA
selects the zth individual from each subpopulation, which
has the minimum APD between the ith individual and the
jth reference vector according to:

Iz|z = argmin
i∈{1,...,|P̄j|}

di,j , (5)

where APD (or di,j) is defined as,

di,j = (1 + P (θi,j)) · ||f ′i ||. (6)

Here P (θi,j) = K · (t/tmax)
α · θi,j/γvj

is the penalty func-
tion depending on θi,j , and γvj

= mini∈1,...,N,i 6=j 〈vi,vj〉,
is the smallest angle between reference vector vj and the
other reference vectors. Here t is the generation counter,
tmax is the maximum number of generations and α controls
the rate of change of P (θi,j). For more details, see [14].

2.3. Probabilistic Selection in Single Objective Op-
timization

We here provide an overview of probabilistic selection in
single objective optimization, which is then further extended
to solve offline data-driven MOPs. Let us consider a single
objective offline data-driven minimization problem where
the given data may have noise due to e.g., experimental or
measurement error. The total uncertainty is due to the noise
in the data (that can be estimated by Kriging surrogate)
and the uncertainty in the approximation. Due to this, an
individual with worse (greater) underlying objective values
may be selected.

For example, in Figure 3, we have two individuals A and
B with uncertain objective values. These two individuals
have a normally distributed probability density function
(PDF). The red star shows an example of a random sample,
y, drawn from PDFA. When a random sample is drawn
from PDFB , we may observe a smaller value than y thus
making us select the individual with a worse objective value.
The total probability of selecting the wrong individual B
over A by observing a specific sample is the total area in the
shaded region under PDFB , or cumulative density function
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Figure 3: Probability of choosing the individual with worse
underlying objective value in selection between two indi-
viduals with uncertain objective values (approximated by
the surrogate) for a single objective minimization problem.

(CDF) of B (denoted by CDFB(y)). The probability of
drawing a random sample y is PDFA(y). Thus the total
probability of a random sample drawn from PDFB being
smaller than y is PDFA(y) · CDFB(y).

The probability of wrongly choosing B over A when
the underlying objective value of A is smaller than that of
B according to [7] is:

Pwrong(A > B) =

∫ ∞

−∞
PDFA(A−y)·CDFB((A−y) >

(B − y)) dy, (7)

We can replace CDFB as an integral of PDFB as:

Pwrong(A > B) =

∫ ∞

−∞
(PDFA(y)·

∫ y

−∞
PDFB(µ)dµ) dy.

(8)
The work in [7] used the following equation for com-

paring a set of individuals with uncertain objective values
and ranking them based on their probabilities:

Ri =

|P |∑

n=1

Pwrong(In > Ii)− 0.5, (9)

where Ri is the ranking score given to the ith individual
Ii. The total number of individuals to be compared is |P |,
and Pwrong(In > Ii) is the probability of making a wrong
decision in selection such that the fitness of Ii is smaller
than the fitness of In. A value of 0.5 is subtracted from
the ranking function as Pwrong(Ii > Ii) is always 0.5. The
individual with the best fitness value will have the smallest
rank or has the smallest probability of making the wrong
selection.

3. Probabilistic decomposition-based MOEAs

We utilize uncertainty in decomposition-based MOEAs
and propose approaches to solve offline data-driven MOPs.

Hence, the original selection process in decomposition-
based MOEAs has to be modified to utilize the uncertainty
approximated by the surrogates. This can be done by utiliz-
ing (7) and (8) to formulate a probabilistic selection criterion
specific to the MOEA. The probability of the selection
criterion can be computed analytically. However, this is
quite complex in decomposition-based MOEAs, and the
selection criterion has to be tailor-made for every variant of
MOEA. Next, we describe our plug and play probabilistic
approaches.

We summarize the generalized steps of the proposed
probabilistic approach in Algorithm 1. We start with offline
data of size ND. Next, we build a Kriging surrogate for each
underlying objective and initialize N uniformly distributed
unit reference vectors [24].

For initializing the population we use the provided of-
fline data set. We generate offspring using crossover and
mutation in the neighbourhood (a fixed number in MOEA/D
and the maximum number of reference vectors in RVEA).
We then use Kriging models for approximating the objective
values of the offspring. As the approximation distribution of
Kriging surrogate is Gaussian, the multivariate PDF [19] for
an individual Ii is:

PDFIi =

K∏

k=1

1

σ̂i,k
√

2π
exp

(
− (fk − f̂i,k)2

2σ̂2
i,k

)
, (10)

where f̂i,k is the approximated kth objective function value
for the ith individual with σ̂i,k as its standard deviation.

We draw S samples using Monte-Carlo sampling [17]
from the distribution in (10) for the ith individual. Individ-
uals are then assigned to sub-populations in a probabilistic
manner depending on the decomposition-based MOEA. The
selection criterion is then calculated for all the generated
samples of objective values. In the next step, we apply
Kernel density estimation (KDE) [18] to approximate the
distribution of the selection criterion depending on the
decomposition-based MOEA. However, we may skip this
step if the closed form distribution of the selection criterion
is available (e.g. weighted sum and Tchebycheff as shown
in the supplementary material). We then use these estimated
PDFs to select individuals in a probabilistic way. The details
of KDE are provided in the supplementary material. The
reference vectors are then adapted after a certain number of
generations (or function evaluations) to obtain a uniformly
distributed set of solutions [14]. The stopping criterion is the
maximum number of function evaluations performed with
surrogates.

3.1. Probabilistic Selection in RVEA

The two major modifications to incorporate uncertain-
ties in approximated objective values in RVEA are, a) the
assignment of individuals to reference vectors and b) the
selection of an individual using probabilistic APD (steps 10
and 11, respectively in Algorithm 1).
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Algorithm 1: Probabilistic decomposition-based
MOEA

Input: Offline data of size ND; N = number of
reference vectors; FEmax = maximum
number of function evaluations using
Kriging surrogates; S = number of samples
to be used for estimating the distributions

Output: Approximated solutions
1 Build Kriging surrogates for each objective using

the given offline data
2 Use the given data as the initial population;

initialize the number of function evaluations
FE = 0

3 Create a set of uniformly distributed unit reference
vectors V0 of size N

4 Find the neighbourhood for each unit reference
vector

5 while FE < FEmax do
6 Perform crossover and mutation on population

and generate offspring
7 Evaluate the individuals using the Kriging

surrogates and combine the parents and
offspring

8 Update FE = FE + |Poffspring|
9 Draw S samples using Monte-Carlo from the

distribution approximated by the surrogates
10 Perform algorithm specific sub-population

assigning
11 Perform algorithm specific probabilistic

selection
12 end

3.1.1. Probabilistic Assigning to Reference Vectors. As
mentioned in Section II, assigning individuals to respective
reference vectors in RVEA depends on the objective values
as in (3). However, when the objective values (provided by
the Kriging models) have uncertainties, assigning individu-
als can not be deterministic. Hence, in step 10 we perform
a probabilistic assigning of individuals to reference vectors
by using the distribution of the objective values provided by
Kriging surrogates.

As explained previously, we draw S samples using
Monte-Carlo sampling from the distribution in (10) for
the ith individual in the current population. The vector of
samples is used to calculate cos θi,j,l for the ith individual
and jth reference vector using (3), where l = 1, . . . , S is the
sample number. These samples can then be used to estimate
the PDF of cos θi,j using KDE. We use (9) for ranking the
PDFs of cos θi,j that gives us the rank Ri,j . We use the
following modification of (4) to include an individual to a
subpopulation:

P̄z =

{
Ii|z = argmax

j∈{1,...,N}
Ri,j

}
, (11)

where

Ri,j =

N∑

n=1

Pwrong( cos θi,n > cos θi,j)− 0.5 (12)

and P̄z is the zth subpopulation and Ri,j is the probabilistic
rank of assigning an individual to a subpopulation.

Computing Pwrong in (8) is computationally expensive
as it involves double integration. Hence, calculating Ri,j
in (12) for all the individuals becomes computationally
expensive with a complexity of O(N ·|P |). This is especially
high when the numbers of individuals and reference vectors
are large. To reduce the computation time, we calculate how
many samples out of S for every individual are assigned to
different reference vectors instead of performing numerical
integration. By such a voting mechanism, the ith individual
is assigned to the reference vector to which most samples
are assigned.
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Figure 4: Distribution of samples drawn for two individuals
with different mean objective values (indicated by the red
star) and standard deviations (indicated by ellipses). The
colour code indicates the reference vector a sample drawn
from the PDF of the individual is assigned to. The reference
vector the individual is assigned to is indicated by the
number.

We provide an illustration of the probabilistic assigning
of individuals to reference vectors in Figure 4. It shows the
samples drawn for two individuals in the objective space
for the approximated distribution and the corresponding
reference vectors they are assigned to. Samples assigned
to a reference vector are colour coded. The red stars show
the mean of the distributions of objective values for the
individuals as approximated by the surrogate. The ellipses
show the distributions of objective values for two standard
deviations. It can be observed in sub-figure (a) that most of
the samples are ‘blue’ or get assigned to reference vector
‘1’. Hence we can assign the individual to reference vector
‘1’. However, in sub-figure (b) when the distributions of
objective values are changed, the individual gets assigned
to reference vector ‘2’.

3.1.2. Probabilistic Angle Penalized Distance. After as-
signing individuals to reference vectors, we select one in-
dividual from every subpopulation in step 11 of Algorithm
1. Given a subpopulation and its associated individuals with
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their PDFs, we utilize the samples for each individual and
calculate their APD values using (6). These samples of
APD values are used to estimate the distribution of APD
for every individual, PDFdi,j using KDE. In this work, we
used Gaussian kernel and adopted the Silvermann’s rule
[25] for selecting the bandwidth parameter that controls
the smoothness of the estimated distribution. The estimated
PDFs of APD are ranked by modifying (5) utilizing (9) as:

Pnextgen =



Iz|z = argmin

i∈{1,...,|P̄j|}
R′i,j



 , (13)

where

R′i,j =

|P̄j|∑

n=1

Pwrong(dn,j > di,j)− 0.5. (14)

The rank of the ith individual in the subpopulation P̄j is
R′i,j . The zth individual Iz is selected from subpopulation
P̄j , where j = 1, . . . , N , for population of the next genera-
tion Pnextgen.

To find R′i,j in (14), a pairwise comparison between
PDFdi,j has to be performed. Thus, the computation cost
of performing the probabilistic selection is O(

∣∣P̄j
∣∣2), where∣∣P̄j

∣∣ is the number of individuals in the jth subpopula-
tion. The overall computation cost becomes high due to
the double integral involved while finding Pwrong between
PDFdi,j of two individuals. Besides, there is an additional
computation cost involved while performing the KDE of
PDFdi,j .

We propose an approach to compute Pwrong in an
efficient way. As we know from (13), the calculation of
the rank matrix R′i,j in (14) is a pairwise comparison. Thus
Pwrong between an APD distribution with itself is always
0.5. Also, the computation needs to be done just once for the
same pair. The following equation describes the alteration
in the calculation of Pwrong:

Pwrong(dn,j > di,j) =

{
0.5 if n = i,

1− Pwrong(di,j > dn,j) if n > i.
(15)

The double integration in (8) with the inner integral
responsible for calculating the CDF from the approximated
PDF contributes the most to the computation cost. Instead,
we can use a coarse approximation of the CDF by computing
the empirical CDF from the APD samples which would
reduce the computation cost. To compute Pwrong in (8),
the lower limit during integration can be changed to zero
instead of −∞. This is because APD can never attain a
value below zero, and thus the PDF should be adjusted to
estimate the probability density for APD values lower than
zero. An illustration of the estimated PDF and empirical
CDF calculated from the APD samples is shown in Figure
5(a). To further reduce the computation cost, Pwrong values
for all the subpopulation individuals are computed in par-
allel. Applying all the proposed cost reduction approaches
reduced the computation cost for computing the rank R′i,j
for every generation.

3.2. Probabilistic Selection in MOEA/D

In MOEA/D, the assignment of solutions for each ref-
erence vectors is performed by defining the neighborhood
of each vector [15]. Thus, step 10 in Algorithm 1 can be
skipped. Next we demonstrate how to implement probabilis-
tic selection with PBI as selection criterion (in step 11 of
Algorithm 1).

Similar to the probabilistic selection in RVEA, we first
draw S samples from the approximated distribution of ob-
jectives for the individuals in the neighbourhood and the
offspring. The vector of sampled objective values is used to
calculate PBI samples for the jth individual in the neigh-
bourhood and the offspring that we call as gPBIxj,l

and gPBIx′
l

,
respectively, where l = 1, . . . , S. Next, we approximate the
PDF of gPBIxj

and gPBIx′ using KDE. Again, similar to the
probabilistic RVEA, we use Gaussian kernel and Silver-
mann’s rule to select the bandwidth parameter. Since we
are comparing PDFs of PBI, we need to modify the update
operation in generic MOEA/D and calculate the Pwrong
utilizing (7). We update the solutions in the neighbourhood
by checking if Pwrong(gPBIx′ ≤ gPBIxj

) < 0.5, then set
xj = x′ and f(xj) = f(x′).

It has to be noted that the comparison of PDFs of PBI
is one to many, whereas for PDFs of APD its pairwise. In
Figure 5(b), we show the estimated PDF of PBI samples for
one of the individuals and the empirical CDF.
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Figure 5: Samples drawn, histogram, estimated PDF and
empirical CDF of the selection criterion for (a) RVEA
(APD) and (b) MOEA/D (PBI) for one individual.

We illustrate the potential of the proposed probabilistic
selection approach for a bi-objective minimization prob-
lem in Figure 6. It shows different individuals with uncer-
tain objective values, with error bars representing the 95%
confidence interval of the approximated distributions. The
numbers represent the reference vector / sub-population the
individuals are assigned to. Green individuals are the ones
selected from a sub-population. It can be observed that for
the individuals assigned to reference vector ‘2’, the original
selection criterion (generic approach) selects the individual
that is better in objective values even though it has a much
higher uncertainty. On the other hand, the probabilistic
approach selects the individuals that are worse in terms of
objective values but have comparatively lower uncertainties.
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For the individuals assigned to reference vector ‘0’, both
the individuals have the same approximated mean values.
However, the probabilistic approach selects the one with
lower uncertainties. For individuals assigned to reference
vector ‘3’ or in its neighbourhood, both the individuals have
the same uncertainties with slightly different objective val-
ues. One can see that both the generic and the probabilistic
approach select the same individual with a better value of
the selection criterion.
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Figure 6: Selection of individuals using (a) generic approach
and (b) probabilistic approach for a minimization problem.
Error bars show the 95% confidence interval of the distri-
bution of objective values approximated by the surrogates.
Colours ‘green’ and ‘red’ show the individuals that are
selected and not selected by the approaches, respectively.

3.3. Hybrid of Probabilistic and Generic Ap-
proaches

The proposed probabilistic approach tends to select indi-
viduals with better objective values and lower uncertainties
(or high approximation accuracy). On the other hand, the
generic approach, without incorporating any uncertainty,
produces solutions with better hypervolume. Hence, a hybrid
of the two approaches can provide the benefits of both and
produce a set of solutions with a wider range of uncertainties
and objective values. This is especially advantageous for
decision making due to the wider choices it provides [26].

Dataset (as
parents)

Build Kriging
surrogates

Start

if

?

Stop

Yes

Select parents for
next generation

No

Probabilistic
selection

Generic
selection

Generate
offspring

Evaluate with
Kriging models

Combine parents
and offspring

Figure 7: Flowchart for the hybrid approach.

A flowchart of the hybrid approach is shown in Figure
7. In the proposed hybrid approach, we select individuals
based on both the criteria. An equal proportion of solutions

from both the generic and probabilistic selection criteria
are selected. This choice also helped in avoiding the need
of introducing extra parameters. The redundant copies of
the individuals (that were selected by both the approaches)
are removed and the entire selected population is used for
further crossover and mutation steps. It has to be noted that
all the solutions obtained by the generic and the probabilistic
approach (that are equal in number) are used, and no further
parameters are required.

4. Experimental Results

In this section, we demonstrate the potential of the
proposed approaches embedded in RVEA and MOEA/D
by solving distance-based multiobjective visualizable test
problems (DBMOPP) [27] and DTLZ [28] test problems
with different numbers of objectives. DBMOPP problems
have certain advantages over traditional benchmark suites.
First, we can simultaneously visualize the solutions in both
decision and objective spaces. Second, we can visualize the
search behaviour with the number of function evaluations.
Third, these problems do not have a limitation of having the
same values of many decision variables on the Pareto set as
in the DTLZ problems.

Experimental setup

• Benchmark problems: Two sets of DBMOPP prob-
lems denoted as P1 and P2 (details are in the
supplementary material) utilizing the code in [29].
Test results with DTLZ suite are provided in the
supplementary material.

• Number of objectives (K): 2-10
• Number of decision variables (n): 10
• Termination (FEmax): 40000 function evaluations

with surrogates
• Kriging parameters: Scikit-learn python library [30]

for Kriging with Gaussian kernel and BFGS [31] to
maximize the marginal likelihood.

• Approach specific parameters: Number of samples
for Monte-Carlo sampling S = 1000. For KDE we
used Gaussian kernel with a bandwidth parameter
set by Silvermann’s rule (details are provided in the
supplementary material).

• Other algorithms: We compared the proposed prob-
abilistic approaches for RVEA and MOEA/D with
three generic approaches that use the approximated
values (posterior mean in this case) denoted as
generic (Gen-RVEA and Gen-MOEA/D) and trans-
fer learning (TL) approach [6] and the initial sam-
ples (Init). The probabilistic approaches for RVEA
and MOEA are denoted by Prob-RVEA and Prob-
MOEA/D, respectively. The hybrid approaches for
RVEA and MOEA/D are denoted by Hyb-RVEA and
Hyb-MOEA/D, respectively.

• MOEA parameter settings: The reference vectors
were generated by simplex lattice design [24]. The
number of reference vectors was varied with the
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number of objectives as in [24]. All the approaches
except TL used reference vector adaptation after
every 10th generation as in [14] for all test in-
stances. Other settings such as crossover, mutation,
and parameters of the MOEAs are provided in the
supplementary material.

• Number of independent runs for each instance: 31
• Performance metrics: We used hypervolume and

RMSE as metrics to measure the performance of the
tested approaches. Further details regarding metrics
and reference points are provide in the supplemen-
tary material.

• Size of the initial data set (ND): 109
• Sampling of the initial data set: Latin hypercube

sampling (LHS) and multivariate normal sampling
(MVNS). In MVNS sampling, the objectives were
considered to be independent with mean at the mid-
point of the decision space (0 for P1 and P2). The
variance of the sampling distribution was set to 0.1
for all the objectives. Similarly, the mean of the
distribution for DTLZ instances was set to 0.5 with
variance of 0.1 for all objectives.

All the approaches were implemented in Python utilizing
the DESDEO framework (desdeo.it.jyu.fi) 1. For the TL
approach, we used the Matlab implementation in [6].

It should be noted that we evaluated the approximated
solutions obtained with different approaches with under-
lying objective function values to calculate hypervolume
and RMSE. This is only for experimentation and such
evaluations may not be possible while solving real-life of-
fline MOPs. We refer to the hypervolume of the solutions
evaluated with the surrogates as surrogate hypervolume for
simplicity.

A pairwise Wilcoxon significance test [32] was con-
ducted between the different approaches and the calculated
p-values were later Bonferroni corrected. The threshold
α = 0.05 was considered for rejecting the null hypothesis.
The overall ranking of the approaches was done by a scor-
ing system where the approach considered as the alternate
hypothesis is given a score +1 when it is significantly better
than the null hypothesis. A score of zero is given if the
alternate approach is not significantly better or worse than
the null hypothesis. If the alternate approach is significantly
worse than the null hypothesis, it gets a score -1. The sum
of the scores of the hypothesis testings is used for ranking
all the approaches in a descending order of the score.

We show the median hypervolumes and RMSEs (along
with the standard deviations in different runs) for a few
DBMOPP test instances in Table 1. The items in bold
represent the best performing approaches. We also show the
heatmap for all the tested DBMOPP instances comparing
hypervolume and RMSE in Figure 8. The rankings of the
approaches are colour-coded from best (yellow) to worst
(purple) using the ‘viridis’ colourmap. It can be observed

1. Python source code can be accessed from https://github.com/
industrial-optimization-group/offline data driven moea
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Figure 8: Heatmaps of: (a) hypervolume and (b) RMSE of
solutions obtained by initial sampling, transfer learning and
the generic, probabilistic and hybrid approaches for RVEA
and MOEA/D respectively for DBMOPP problem instances.

that most of the yellow colours are around the Prob-RVEA,
Hyb-RVEA and Prob-MOEA/D approaches.

As we can observe, Hyb-RVEA and Prob-RVEA per-
formed best in terms of hypervolume followed by Prob-
MOEA/D. In terms of RMSE, Prob-MOEA/D performed
the best with Prob-RVEA coming second. For certain test
instances, the generic approaches and TL produced worse
solutions (both in hypervolume and RMSE) compared to
the initial sampling. This is because they do not consider
uncertainty in approximations when selecting solutions and
thus converged far from the Pareto front. Detailed results
on other DBMOPP and DTLZ instances are provided in the
supplementary material.

Overall, the probabilistic approaches outperformed their
generic counterparts, TL and initial sampling in both hyper-
volume and RMSE. However, we found that Hyb-MOEA/D
did not perform better than Prob-MOEA/D. This is because
of the extremely poor performance of Gen-MOEA/D in
terms of both hypervolume and RMSE.

We also show the progress or search behaviour of dif-
ferent approaches of the runs with median hypervolume
values in Figure 9. The first column shows the problem
instance and the initial samples (red ‘+’ showing the non-
dominated ones). The problem instance in the top row has
five objectives, and in the bottom row eight objectives with
two disconnected Pareto sets. The black circles with centers
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TABLE 1: Hypervolume (HV) and RMSE for a few DBMOPP test instances.

Sampling Problem K Metric Init. TL Gen-RVEA Prob-RVEA Hyb-RVEA Gen-MOEA/D Prob-MOEA/D Hyb-MOEA/D

LHS

P1 8
HV

9.09E+05 5.22E+05 5.98E+05 7.38E+05 6.88E+05 6.17E+05 6.52E+05 6.18E+05
(2.65E+04) (1.65E+05) (1.00E+05) (1.01E+05) (9.63E+04) (9.67E+04) (9.70E+04) (8.83E+04)

RMSE
- 1.76E+00 1.11E+00 1.59E+00 1.55E+00 1.73E+00 1.53E+00 1.61E+00

(3.92E-01) (4.01E-01) (3.69E-01) (3.87E-01) (4.16E-01) (3.93E-01) (3.84E-01)

P2 8
HV

7.33E+05 3.86E+05 7.77E+05 8.34E+05 8.16E+05 7.24E+05 7.78E+05 7.73E+05
(7.11E+04) (1.24E+05) (5.27E+04) (3.88E+04) (4.24E+04) (3.33E+04) (3.90E+04) (4.01E+04)

RMSE
- 1.56E+00 1.34E+00 1.48E+00 1.39E+00 1.67E+00 1.34E+00 1.46E+00

(2.76E-01) (3.48E-01) (2.96E-01) (2.23E-01) (2.81E-01) (3.21E-01) (3.23E-01)

MVNS

P1 6
HV

6.13E+03 7.22E+03 7.73E+03 8.62E+03 8.52E+03 7.78E+03 8.71E+03 7.78E+03
(4.31E+02) (1.82E-12) (3.35E+02) (3.23E+02) (3.24E+02) (4.50E+02) (3.76E+02) (2.53E+02)

RMSE
- 1.85E+00 1.77E+00 1.81E+00 1.80E+00 1.89E+00 1.79E+00 1.85E+00

(1.31E-01) (1.57E-01) (1.19E-01) (1.53E-01) (1.19E-01) (1.30E-01) (1.22E-01)

P2 10
HV

4.52E+07 3.37E+07 8.05E+07 8.62E+07 9.14E+07 6.96E+07 8.85E+07 8.70E+07
(2.92E+06) (1.10E+07) (8.61E+06) (9.34E+06) (4.53E+06) (7.29E+06) (2.74E+06) (4.60E+06)

RMSE
- 1.11E+00 5.00E-01 9.16E-01 9.43E-01 1.29E+00 4.50E-01 8.81E-01

(3.50E-01) (3.59E-01) (3.22E-01) (3.64E-01) (3.48E-01) (3.00E-01) (3.35E-01)
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Figure 9: Progress of the solution process with median hypervolume values. DBMOPP P1 with K = 5 with LHS and P2
with K = 8 with MVNS. The colour code represents the number of function evaluations during the solution process.

denoted by ‘+’ are the Pareto set and dots on the circle with
different colors represent the points to which the objectives
or distances are minimized. In other words, if solutions are
on or in the circle, they are on the Pareto front. Therefore,
with these visualizations, we can see how close the solutions
from an approach can get to the Pareto front. The next seven
columns show the progress of the solutions by evaluating
with the underlying objectives for the different approaches
tested. The color of the solutions represent the function
evaluations count, and the non-dominated solutions of the
last generations are shown in red ‘+’. For visualizing the
solution of the tested DBMOPP problem instances, a 10-
dimensional decision space is projected to 2-dimensional.

It can be observed that Prob-RVEA in (d) and (l), Hyb-
RVEA in (e) and (m), Prob-MOEA/D in (g) and (o) and
Hyb-MOEA/D in (h) and (p) converged much closer to
the Pareto front. However, the solutions for the Gen-RVEA
in (c) and (k), Gen-MOEA/D in (f) and (n), and TL in
(b) and (j) converged further away from the Pareto front.
One can also see that the non-dominated solutions in the

initial sampling in (a) and (i) are much closer to the Pareto
front compared to the generic approaches and TL. We also
observed that all approaches failed to get solutions closer
to both disconnected Pareto sets in the bottom row. This is
because of the lack of adequate offline data for solving such
MOPs.

In Figure 10, we show the surrogate hypervolume, hy-
pervolume in the underlying objective space and RMSE after
every 1000 function evaluations. As can be seen, the prob-
abilistic and hybrid approaches improved the hypervolume
in the underlying objective space with function evaluations.
However, the generic approaches and TL could not further
improve the hypervolume. On the contrary, the surrogate
hypervolume for TL improved with function evaluations and
the probabilistic approaches it gradually decreased. This is
because the probabilistic approaches reject solutions with
better objective values if they have high uncertainties. The
RMSE increased for all the approaches in the initial function
evaluations. However, in the later function evaluations, it
gradually reduced for the probabilistic approaches (espe-
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Figure 10: Progress of the solution process with median hypervolume values. DBMOPP P1 with K = 5 and LHS showing
the variation of hypervolume (HV) in surrogate and underlying objective spaces, and RMSE with function evaluations.

cially for Prob-RVEA). The final RMSE in TL was the
worst.

The performances of the generic approaches and TL
were poor because they did not consider uncertainty in
the solutions during the optimization process. Hence, the
solutions, when evaluated with the underlying objectives,
produced worse objective values compared to what was
observed in the surrogate objective space. TL performed the
worst because the sparse search adopted in the approach led
to faster convergence in the surrogate objective space but far
from the Pareto front.

5. Conclusions

We have proposed two probabilistic selection approaches
for solving offline data-driven MOPs. These approaches
are designed for decomposition-based MOEAs and utilize
uncertainty in the approximations of Kriging surrogates. The
first approach estimates the distribution of selection criterion
embedding in a decomposition-based MOEA. The second
one is a hybrid of the first approach and a generic approach
(that does not use any uncertainty in the approximations).
We demonstrated the potential of the proposed approaches
with RVEA and MOEA/D, that also showed its adaptability.
For benchmarking, we used several distance-based multi-
objective visualizable test problems and DTLZ problems.
We used different sampling techniques and numbers of
objectives in our tests.

Considering the accuracy of the solutions is often ne-
glected in offline data-driven optimization. The proposed
probabilistic approaches are more focused on improving the
accuracy of the solutions. A detailed analysis of quality
measures (hypervolume and RMSE), visualization of the
solution process and comparison with existing approaches
clearly showed the advantages of the proposed approaches.
For the problem instances tested, we can conclude that
depending on the indicators used, MOEAs and problem
characteristics, both probabilistic and hybrid approaches
have their strengths. However, if more accurate solutions
are required, the probabilistic approach should be preferred.

In future, we plan to test the proposed approaches in
other decomposition-based MOEAs with different normal-
ization techniques. We will also test on real-world problems
and develop approaches to handle constraints.
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of the University of Jyväskylä. We also acknowledge Prof.
Y. Jin and C. Yang for providing the transfer learning codes.

References

[1] Y. Jin, “Surrogate-assisted evolutionary computation: Recent ad-
vances and future challenges,” Swarm and Evol. Comput., vol. 1,
pp. 61–70, 2011.

[2] H. Wang, Y. Jin, and J. O. Jansen, “Data-driven surrogate-assisted
multiobjective evolutionary optimization of a trauma system,” IEEE
Trans. Evol. Comput., vol. 20, pp. 939–952, 2016.

[3] H. Wang, Y. Jin, C. Sun, and J. Doherty, “Offline data-driven evo-
lutionary optimization using selective surrogate ensembles,” IEEE
Trans. Evol. Comput., vol. 23, pp. 203–216, 2019.

[4] Y. Jin, H. Wang, T. Chugh, D. Guo, and K. Miettinen, “Data-driven
evolutionary optimization: An overview and case studies,” IEEE
Trans. Evol. Comput., vol. 23, pp. 442–458, 2019.

[5] H. Wang and Y. Jin, “A random forest-assisted evolutionary algorithm
for data-driven constrained multiobjective combinatorial optimization
of trauma systems,” IEEE Trans. Cyber., vol. 50, pp. 536–549, 2020.

[6] C. Yang, J. Ding, Y. Jin, and T. Chai, “Offline data-driven multi-
objective optimization: Knowledge transfer between surrogates and
generation of final solutions,” IEEE Trans. Evol. Comput., vol. 24,
pp. 409–423, 2020.

[7] E. J. Hughes, “Evolutionary multi-objective ranking with uncertainty
and noise,” in Evolutionary Multi-Criterion Optimization, Proc.,
E. Zitzler, L. Thiele, K. Deb, C. A. Coello Coello, and D. Corne,
Eds. Springer, 2001, pp. 329–343.

[8] A. Mazumdar, T. Chugh, K. Miettinen, and M. López-Ibáñez, “On
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Abstract. We propose a framework for solving offline data-driven mul-
tiobjective optimization problems in an interactive manner. No new data
becomes available when solving offline problems. We fit surrogate mod-
els to the data to enable optimization, which introduces uncertainty. The
framework incorporates preference information from a decision maker in
two aspects to direct the solution process. Firstly, the decision maker can
guide the optimization by providing preferences for objectives. Secondly,
the framework features a novel technique for the decision maker to also
express preferences related to maximum acceptable uncertainty in the so-
lutions as preferred ranges of uncertainty. In this way, the decision maker
can understand what uncertainty in solutions means and utilize this in-
formation for better decision making. We aim at keeping the cognitive
load on the decision maker low and propose an interactive visualization
that enables the decision maker to make decisions based on uncertainty.
The interactive framework utilizes decomposition-based multiobjective
evolutionary algorithms and can be extended to handle different types
of preferences for objectives. Finally, we demonstrate the framework by
solving a practical optimization problem with ten objectives.

Keywords: Decision support · Decision making · Decomposition-based
MOEA · Metamodelling · Surrogate · Kriging · Gaussian processes.

1 Introduction

Sometimes while solving data-driven multiobjective optimization problems (or
MOPs) additional data can not be acquired during the solution process. Instead,
we may have pre-collected data of the phenomenon of interest that was obtained
beforehand, e.g. by conducting physical experiments. This type of optimization
problems are termed as offline data-driven MOPs [3,8, 17]. For formulating the
optimization problem, we can build surrogate models using the given data to
approximate the behaviour of the phenomenon. Optimization can then be per-
formed utilizing these surrogates as objective functions e.g. by a multiobjective
evolutionary algorithm (MOEA). However, approximation error in the surro-
gates’ prediction can not be avoided. Certain surrogate models such as Kriging
also provide information about the uncertainty (e.g. as standard deviation) in
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predictions. This uncertainty information can be utilized in the optimization
process to improve the quality of the solutions [11].

Previous works on offline multiobjective optimization such as [3,8,11,17] ap-
proximate the entire Pareto front. This makes decision making a difficult task as
the decision maker (DM) has to choose from a large set of solutions. Interactive
multiobjective optimization approaches allow the DM to find solutions in an
interesting region of the Pareto front and learn about the problem and the feasi-
bility of one’s preferences and adjust the latter. They also provide limited amount
of information at a time thereby reducing the cognitive load (see [13] for more
information). There have been many developments in interactive MOEAs [14]
and decomposition based MOEAs have become quite popular because of their
capability of solving MOPs with a large number of objectives [2, 4, 20]. Hence,
interactive approaches such as [7,10,21] have been proposed for decomposition-
based MOEAs. However, as far as we know, addressing DM’s preferences while
solving offline MOPs in decomposition-based MOEAs has not been considered.

Utilizing the uncertainty information in interactive optimization may be quite
valuable to the DM for a better understanding of the solutions and better deci-
sion making while solving offline MOPs. The major challenge in utilizing uncer-
tainty in an interactive optimization process is conveying this extra information
to the DM as (s)he may not be familiar with it.

In this paper, we propose a framework for solving offline data-driven MOPs
interactively using decomposition-based MOEAs. It enables the DM to under-
stand and make decisions based on the uncertainties present in the approximated
solutions. The framework does not increase the cognitive load of the DM signi-
ficantly while providing preference information for uncertainties along with the
preferences for objectives.

2 Background

We consider the underlying MOP that has to be solved of the following form:

minimize {f1(x), . . . , fK(x)},
subject to x ∈ S, (1)

where K ≥ 2 is the number of objectives and S is the feasible region in the deci-
sion space Rn. For a feasible decision vector x, the corresponding objective vector
f(x) comprises of the underlying objective (function) values (f1(x), . . . , fK(x)).

A solution x1 ∈ S dominates another solution x2 ∈ S if fk(x1) ≤ fk(x2)
for all k = 1, . . . ,K and fk(x1) < fk(x2) for at least one k = 1, . . . ,K. If a
solution of an MOP is not dominated by any other feasible solutions, it is called
nondominated. Solving an MOP using an MOEA typically produces solutions
that are nondominated within the set of solutions it has found. The solutions
of Eq. (1) that are nondominated in S are also called Pareto optimal solutions.
Next, we discuss a generic approach to solve an offline data-driven MOP.
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2.1 Generic Approach for Offline Data-Driven Multiobjective
Optimization

A generic way for offline data-driven optimization using an MOEA described
in [8, 18] is shown in Fig. 1. The solution process can be divided into three
parts: a) data collection, b) formulating the MOP and building surrogate models,
and c) running an MOEA. The first step involves performing experiments to
acquire the data and pre-processing it if necessary. Next, surrogate models are
built to approximate the behaviour of the underlying objective functions using
the provided data. The prediction vector of the fitted surrogate models can be
represented as f̂(x) = (f̂1(x), . . . , f̂K(x)), where f̂k is the surrogate’s prediction
for fk. Surrogate models such as Kriging also provide the uncertainty in the
model’s prediction generally in the form of standard deviation. The predicted
uncertainty vector is represented as σ̂(x) = (σ̂1(x), . . . , σ̂K(x)), where σ̂k is the
uncertainty in prediction for the kth objective function. In the third step, an
MOEA is run to solve the optimization problem with the surrogates as objective
functions.

Offline
data

Build
surrogate
models

Output 
solutionsRun MOEA

Fig. 1. A generic approach for offline data-driven multiobjective optimization.

Next, we briefly discuss an interactive approach for decomposition-based
MOEAs which is a building block of the framework proposed in this paper.

2.2 Interactive Decomposition-Based MOEA

Decomposition-based MOEAs use reference (or weight) vectors to decompose
the objective space into a number of sub-spaces. In general, they solve several
simpler sub-problems that represent an aggregate of the objective functions by
using a scalarizing function. Some examples of the scalarizing functions used
are Chebyshev [20], penalty based boundary intersection distance (PBI) [20]
and angle penalized distance (APD) [2]. The solutions obtained by solving these
sub-problems jointly represent the approximated Pareto front of the MOP in the
objective space.

Interactive decomposition-based MOEAs find solutions only in certain re-
gions of the Pareto front. These approaches utilize preference information from
the DM in the form of, e.g. a reference point, weights and preferred ranges for
objectives. For more details, see, e.g. [14, 19]. In this paper, we adopt the in-
teractive approach proposed in [7] for decomposition-based MOEAs and briefly
describe its main ideas as follows.
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Converting Preference Information to Reference Vectors: One of the
ways to incorporate preference information into decomposition-based MOEAs is
by adapting the reference vectors to follow the DM’s preferences [14]. We here
demonstrate how to utilize a reference point which consists of the DM’s desired
value for each objective. However, the framework proposed later in this paper is
not limited to only this type of preference information.

Consider a set of uniformly distributed reference vectors V = {vi ∈ Rk|i =
1, . . . ,m}, where m is the total number of reference vectors, and z̄ ∈ Rk is a single
reference point provided by the DM. Each reference vector can be adapted as
follows [2, 7]:

vi =
r · vi + (1− r) · vc

‖r · vi + (1− r) · vc‖ , (2)

where vc = z̄/ ‖z̄‖ and r ∈ (0, 1). The central vector vc is the projection of z̄ on
a unit hypersphere and the spread of the adapted reference vectors is determined
by the parameter r. The adapted reference vectors are close to vc if r is close to
zero and if r is close to one, the reference vectors are not changed much.

3 The Proposed Framework

As mentioned, since no new data is available in offline data-driven optimization,
the approximation accuracy of the surrogate models determines the quality of
solutions. In reality, the surrogate models’ approximation involve uncertainty.
As mentioned, Kriging surrogates [6] also provide an estimate of the uncertainty
in its prediction. A solution with a higher uncertainty indicates that the objec-
tive values predicted by the surrogates have a lower probability of being close to
the values of the underlying objective function. In other words, the uncertainty
predicted by the surrogate models can represent the accuracy of the solutions
when evaluated using the underlying objective functions. In [11], utilizing the
predicted uncertainties from the surrogates as additional objective(s) produced
solutions with a better hypervolume and accuracy in root mean squared er-
ror (RMSE) compared to the generic approach. This was because the approach
simultaneously minimized the objective functions and their respective uncertain-
ties. The solutions generated represented the trade-off between objective values
and uncertainties. However, this results in an increase in both computational
and cognitive load with a large number of objectives. Overall, it is desirable for
the DM to get solutions that have a low uncertainty in order to achieve better
accuracy.

As explained before, interactive approaches are quite advantageous as the
DM can guide the optimization process through preferences for objectives and
also learn about the problem. To incorporate preferences for uncertainties while
solving an MOP interactively, the DM should first understand what uncertainty
really means in regards to the MOP. Giving the DM an opportunity to provide
preferences for uncertainties is desirable but may increase cognitive load.

The proposed framework aims at solving offline data-driven MOPs inter-
actively by considering preferences for both objectives and uncertainties. The
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framework is based on a decomposition-based MOEA and preference informa-
tion for objectives in the form of reference points. The first and primary challenge
faced is the DM’s understanding of uncertainty, specifically the uncertainty in
the surrogates’ approximation. Secondly, the cognitive load should not drasti-
cally increase when the DM wants to provide preferences for uncertainties along
with the preferences for objectives. The proposed framework tackles both of
the challenges and aims at providing an improved decision support for the DM
during the solution process. Next, we discuss two steps which are the primary
building blocks of the proposed framework.

3.1 Pre-Filtering Solutions following DM’s Preferences

Generally, in offline data-driven MOPs, there exists a trade-off between the
quality of solutions (e.g. hypervolume) and the accuracy of the solutions (e.g.
RMSE) [11]. To have a diverse range of uncertainty and objective values, we
first store the solutions from all the generations of an MOEA in an archive. This
allows us to filter and make decisions from a pool of solutions having various
objective and uncertainty values. However, only the solutions representing the
DM’s preferences for objectives are interesting to him/her. Hence, the archive
needs some amount of pre-filtering before we can present it to the DM. We have
to further filter these solutions such that only the solutions that simultaneously
achieve the best objective values and the lowest uncertainties are shown to the
DM. Hence, we propose a two-stage pre-filtering approach as follows.

Fig. 2. Pre-filtering solutions: Green dots are kept and red dots are rejected.

The first stage is to find solutions in the archive that follow the DM’s pref-
erences for objectives, i.e., reference points. As described in Section 2.2, at first,
the uniformly distributed set of reference vectors are adapted using Eq. (2) that
reflects the DM’s preferences for objectives. Next, we find adapted reference vec-
tors that have the highest component in one of the objectives and the lowest in
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all other objectives and call them edge vectors. The uniformly distributed vec-
tors have just one vector at each axis (objective). Hence, we find just one edge
vector for each objtive when adaptation in performed by a linear transformation
in Eq. (2). Thus, we have K edge vectors. The multidimensional volume enclosed
by the hyperplanes formed by the edge vectors is termed as the hypercone. A
solution is accepted by the first stage pre-filter if it lies inside the hypercone.
Fig. 2 shows the idea of the pre-filtering for a bi-objective minimization prob-
lem. The edge vectors are v1 and v2 and the angle between the edge vectors is
θ0. The angle between solution A and the edge vectors v1 and v2 is θ1 and θ2,
respectively. A solution is accepted for the next pre-filtering stage if both θ1 and
θ2 are smaller than θ0. In the figure, the solutions in green (e.g. A) are accepted
by this pre-filtering stage, and the solutions shown in red (e.g. B) are rejected.
The rejected solutions do not follow the preferences and hence are not of interest
to the DM. In general, with K objectives, the angle θ0 between any two edge
vectors is the same. This is because the set of uniformly distributed reference
vectors is adapted by using a linear transformation. Hence, a solution is inside
the hypercone if θik < θ0 for all k = 1, . . . ,K, where θik is the angle between the
kth edge vector and the ith solution.
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Fig. 3. The sub-figures show the solutions in different pre-filtering stages while solving
a bi-objective minimization problem. The grey solutions are the ones filtered out at
each stage. The red point denotes the reference point provided by the DM.

The archive contains objective vectors and their respective uncertainties from
all the generations. However, only the solutions with the smallest uncertainties
and objective values are interesting for the DM. Hence, we propose a second
pre-filtering stage that performs nondominated sorting on the solutions filtered
by the first stage and include uncertainties as additional components in the
vectors while sorting (as done in [11]). Considering uncertainty while perform-
ing nondominated sorting finds the solutions representing the trade-off between
objective values and uncertainty.



Interactive Framework for Offline Data-Driven Multiobjective Optimization 7

These two stages are applied sequentially in the pre-filtering stage of our
proposed framework. The functioning of the pre-filtering stage can be understood
from Fig. 3, which shows solutions in the archive for a bi-objective minimization
problem. The colour code represents the normalized average of the uncertainty
vector for the solutions. Sub-figure (a) shows all the solutions in the archive
before the pre-filtering. Sub-figure (b) shows the solutions after the first stage
pre-filtering. It can be observed that only the solutions following the preferences
for objectives (here the reference point in red) are filtered. Sub-figure (c) shows
the solutions obtained after the second stage pre-filtering. The solutions after
the pre-filtering stage follow the DM’s preferences for objectives and represent
the trade-off between objective values and uncertainties in the solutions. The
grey solutions are the ones that are rejected at each pre-filtering stage.

3.2 DM’s Understanding of Uncertainty

As discussed before, knowledge of uncertainty is an essential aspect while solv-
ing offline optimization problems. However, while solving real-life problems, the
DM is not always familiar with uncertainty in the solutions. Depending on the
problem, the DM can be assumed to have an idea of permissible tolerances in
objective values. For example, in the welded beam problem [5], cost and end
deflection are minimized. Considering just the DM’s preference regarding cost,
(s)he is also aware of the highest permissible cost. Thus, the permissible de-
viation in the objective is the preferred one-sided tolerance of the DM [9]. In
other words, one-sided tolerance information can be considered as a cutoff over
the probable variation in the objective values of the solutions. In our case, the
variation in objective values is available in the form of uncertainty in the surro-
gates. Preferred one-sided tolerances are preferences for uncertainties provided
by the DM and represent the maximum permissible variation in the solutions
when they are evaluated by the underlying objectives. In this paper, we refer to
one-sided tolerance as tolerance for simplicity.

For the proposed framework (and later in the tests), we consider indifference
tolerances. They are provided as a percentage for every objective and represent
the 95% tolerance interval [9]. Let us consider the indifference tolerance pro-
vided by the DM for the kth objective function as τk%, where k = 1, . . . ,K. The
distribution of the predicted objective value is Gaussian while using Kriging sur-
rogates and the predicted standard deviation of the kth objectives’ surrogate is
σ̂k(x). Thus, cutoff tolerance functions can be formulated such that the solutions
do not violate the DM’s preferences for uncertainties and thus are of interest to
the DM. The kth cutoff tolerance function is:

gk(x) = 1.96σ̂k(x)− τk · f̂k(x)/100 ≤ 0, (3)

where x is the decision vector and k = 1, . . . ,K. A solution is interesting to
the DM if the objective value of the kth objective function does not exceed
1.96σ̂k(x) or 95% confidence interval of the Gaussian distribution. Thus, the DM
can change the preferences for uncertainties and visualize the solutions that do
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not violate the cutoff tolerance functions in Eq. (3). However, it has to be noted
that the cutoff tolerance function can be modified depending on the prediction
distribution of the surrogate.

3.3 Steps of the Framework

Fig. 4 shows the simplified structure of the proposed interactive offline data-
driven MOEA framework. The framework can be broadly divided into five steps:

1. Building surrogate models and initializing the MOEA.
2. Running the MOEA and storing the solutions in an archive.
3. Applying two-stage pre-filtering on the archive.
4. Interactively visualizing the solutions based on the preferences for uncertain-

ties provided by the DM.
5. Asking for preference information for objectives from the DM and adapting

the reference vectors.

Offline
data

Adapt reference
vectors

Build
surrogates DM's preferences

for objectives
Stage 2 : 

Nondominated
sorting

Cutoff tolerance
functions

Initialize
decomposition-
based MOEA

DM's preferences
for uncertainty

Visualize
solutions

(1) (2) (3) (4)

Run MOEA 

Archive

(5)

Stage 1:
Hypercone

Pre-filtering

Most
preferred
solution

DM 
satisfied?

Yes

No

Fig. 4. The proposed framework for interactive offline data-driven multiobjective op-
timization.

Step 1: We formulate the MOP by utilizing the provided data. The expertise
of the DM may be required in this. We build Kriging surrogate models for every
objective function using the data (as in the generic approach in Section 2). Next,
we initialize a decomposition-based MOEA and generate a uniformly distributed
set of reference vectors and create the initial population.
Step 2: We run an MOEA for a fixed number of generations. The objective
values and uncertainties for the individuals from every generation are stored in
an archive that serves as a database for Step 3.
Step 3: At the end of Step 2, we have an archive containing objective vectors
and uncertainties of different individuals. We apply the pre-filtering techniques
as in Section 3.1. Note that for the first iteration, we do not have any preferences
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for objectives, and the reference vectors (that includes the edge vectors) are not
adapted. Hence, the hypercone constitutes the entire objective space and the
first pre-filtering stage accepts all the solutions.
Step 4: The DM provides preferences for uncertainties (indifference tolerances)
τk% and the pre-filtered solutions from Step 3 qualifying the cutoff tolerance
functions in Eq. (3) are shown.

The DM can provide preferences for uncertainties as many times (s)he wishes
thereby enabling him/her to view different solutions within the provided toler-
ances. For a better understanding of uncertainties while visualizing, solutions
can be colour coded. This can be done by the normalized average of the uncer-
tainty vector (in percentage) or by the maximum uncertainty of a solution for
any of the objective functions. The DM may skip this step entirely if solution
uncertainties are not interesting. As this step consists of just filtering solutions
obtained after Step 3, it can be repeated with a very low computational cost.
Step 5: In this step, the DM can stop the optimization process if (s)he has found
a satisfactory solution. Otherwise, (s)he is asked for new preference information.
We adapt the reference vectors according to Eq. (2) so that solutions follow the
preferences for objectives. After adapting the reference vectors, we go to Step 2.

The interaction process is split into Steps 4 and 5, where the DM provides
preferences for uncertainties and objectives, respectively. Due to this, the cog-
nitive load on the DM does not increase significantly. The DM can provide
different preferences for uncertainties and view the corresponding solutions and
repeat this as long as one wishes. The proposed way of providing preferences for
uncertainties does not modify the selection process of the MOEA. Hence, the
solution process is not affected.

4 Numerical Results

Assessing and comparing the performance of interactive approaches is still a
research challenge. Hence, we demonstrate and discuss the advantages of the
proposed framework by solving the general aviation aircraft (GAA) [15, 16] de-
sign problem. Due to space limitations, further analysis on benchmark problems
is available at http://www.mit.jyu.fi/optgroup/extramaterial.html as ad-
ditional material.

The GAA problem refers to designing an aircraft for recreational pilots to
business executives. We solved the problem as in [15] with 27 decision variables,
ten objectives and one constraint. As we are dealing with offline optimization
problems, we generated data using the implementation [1]. We used Latin hyper-
cube sampling [12] to generate 1000 samples for decision variables and evaluated
them using the GAA functions to obtain the offline data. To approximate the un-
derlying objective functions, we used Kriging with a radial basis function kernel
as our surrogate models. We used RVEA as the MOEA with standard parame-
ter settings as in [2] and executed it for 100 generations in each iteration with
standard crossover and mutation parameters. The spread parameter r was set
as 0.2. However, it can be increased if the DM’s wants a more diverse set of solu-
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tions. As our framework does not support constraint handling, we considered the
constraint violation as an additional objective function for the demonstration.

Fig. 5. The Solutions obtained for two iterations of the interactive framework (all
objectives are minimized). (a): solutions in the archive after the first iteration. (b)
& (c): solutions after pre-filtering in the first and second iteration respectively with
different reference points (red line). (d): solutions after DM provides preferences for
uncertainties.

Fig. 5 shows solutions produced by the framework for two iterations. The
colour coding represents the normalized average of the uncertainty vector for the
solutions (blue is lowest and yellow is highest). Sub-figure (a) shows the solutions
in the archive at the first iteration when there are no preferences for objectives
available. In sub-figure (b) the DM provides the reference point (in red) and
gets the pre-filtered solutions. It can be observed that the solutions produced
follow the DM’s preferences for objectives. However, (s)he chooses to skip the
step of providing preferences for uncertainties as none of the solutions has a
low uncertainty (as represented by the colour). In the next iteration, the DM
changes the preferences for objectives. The solutions after pre-filtering, as shown
in sub-figure (c) not only follow the DM’s preferences for objectives but also have
a lower uncertainty. We now provide hypothetical tolerances to demonstrate the
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framework’s ability to consider preferences for uncertainties. In sub-figure (d)
only a few solutions that are within the preferred uncertainty of the DM are
shown. Finally, one of the solutions that matches the preferences for objectives
and uncertainties may be chosen by the DM. (S)he may choose to reset the
cutoff tolerances again to view a different set of solution to make decisions.
Alternatively, if the DM is not satisfied with any of the solutions, (s)he may
choose to change the preferences for objectives and continue the optimization.

If the DM is unaware of the uncertainties in the solutions, (s)he may be
deprived of valuable knowledge regarding the acceptability of the solutions. In
certain situations such as Fig. 5 (b), judging the goodness of a solution based on
the objective values alone may be misleading. By observing the uncertainties, the
DM avoids making a worse decision and can modify preferences for objectives.
The DM may choose to provide preferences for uncertainties and see solutions
within different tolerances with a low computational cost. As the DM can see
the solutions pre-filtered from the archive that have various uncertainties, (s)he
has a wide range of solutions to make decisions if so desired.

5 Conclusions

In this paper, we proposed a framework for interactively solving offline data-
driven MOPs. It enabled the DM to understand and provide preferences for
uncertainties during an interaction. By using preferences for objectives, the DM
can guide the solution process. The solutions generated follow the DM’s pref-
erences for objectives and have a variety of uncertainties. By preferences for
uncertainties, the DM can control which solutions (s)he can see. The two-step
interaction proposed in the framework does not significantly increase the cogni-
tive load on the DM. We also demonstrated it by solving the GAA problem that
proved its capability in solving many-objective problems. The visualization in the
framework enabled the DM to provide preferences for uncertainties interactively.
However, more work should be done in the field of reference vectors adaptation
and development of comparison metrics for interactive approaches. We also need
to perform tests with different types of preferences for objectives. Furthermore,
the framework is not designed to handle constraints. Handling constraints for
offline data-driven problems deserves further attention.
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Evolutionary Algorithms in Engineering and Computer Science. Wiley (1999)

6. Forrester, A., Sobester, A., Keane, A.: Engineering Design via Surrogate Modelling.
John Wiley & Sons (2008)

7. Hakanen, J., Chugh, T., Sindhya, K., Jin, Y., Miettinen, K.: Connections of ref-
erence vectors and different types of preference information in interactive multi-
objective evolutionary algorithms. In: Proceedings of the 2016 IEEE Symposium
Series on Computational Intelligence (SSCI). pp. 1–8 (2016)

8. Jin, Y., Wang, H., Chugh, T., Guo, D., Miettinen, K.: Data-driven evolutionary
optimization: An overview and case studies. IEEE Transactions on Evolutionary
Computation 23(3), 442–458 (2019)

9. Krishnamoorthy, K., Mathew, T.: Statistical Tolerance Regions: Theory, Applica-
tions, and Computation. John Wiley and Sons (2009)

10. Li, K., Chen, R., Min, G., Yao, X.: Integration of preferences in decomposition
multiobjective optimization. IEEE Transactions on Cybernetics 48(12), 3359–3370
(2018)

11. Mazumdar, A., Chugh, T., Miettinen, K., López-Ibáñez, M.: On dealing with un-
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Abstract—Solving offline data-driven multiobjective optimiza-
tion problems (MOPs) is challenging as we do not have
new data available during the optimization process. We first
build approximation models (or surrogates) using the provided
offline data. An optimizer, e.g. a multiobjective evolutionary
algorithm, can then be utilized to find Pareto optimal solutions
to the problem with surrogates as objectives. Gaussian process
(GP) models are widely used as surrogates because of their
ability to provide uncertainty information. However, building
GPs becomes computationally expensive when the size of the
dataset is large. Using sparse GPs is an alternative as they
reduce the computation cost of building. However, they are
not tailored to solve offline MOPs, where good accuracy of
the surrogates is needed near Pareto optimal solutions. In
this paper, we propose treed GP surrogates (TGP-MO) for
offline MOPs. We first split the decision space into subregions
using regression trees and build GPs sequentially in regions
close to Pareto optimal solutions in the decision space to
accurately approximate the tradeoffs between the objectives.
TGP-MO surrogates are computationally inexpensive as we
build GPs only in a smaller region of the decision space
utilizing a subset of the data. We tested TGP-MO surrogates on
distance-based visualizable problems with various data sizes,
sampling strategies, numbers of objectives, and decision vari-
ables. Experimental results showed that TGP-MO surrogates
are computationally cheaper and can handle datasets of large
size. Furthermore, TGP-MO surrogates produced solutions
close to Pareto optimal solutions compared to full GPs and
sparse GPs.

Index Terms—Gaussian processes, Kriging, Regression trees,
Metamodelling, Surrogate, Pareto optimality

1. Introduction

A multiobjective optimization problem (MOP) consists
of two or more conflicting objective functions that are
optimized simultaneously. The solutions of an MOP are
called Pareto optimal when we are unable to improve the
value of any objective without degrading some of the others;
thus, we have tradeoffs among the objectives. Not all real-
world MOPs have analytical functions or simulation models
available. Instead, the MOP may need to be formulated by
utilizing the data acquired from a phenomenon, i.e. real-
life processes, physical experiments, sensors, etc. To solve
the MOP, we first approximate the underlying objective
functions by fitting surrogates (also known as metamodels)
on the data available. Next, we apply a multiobjective
optimization algorithm to the problem with surrogates as
objectives to approximate the set of Pareto optimal solutions.
The optimization algorithm can be a multiobjective evolu-
tionary algorithm (MOEA) since they have shown benefits
in solving black-box optimization problems [1].

We can classify data-driven optimization problems into
online and offline ones [2]. In online data-driven optimiza-
tion, new data can be acquired during the optimization pro-
cess, i.e. by conducting further experiments or simulations
to update the surrogates [3]. In contrast, in offline data-
driven optimization problems, no new data can be acquired,
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and the optimization has to proceed by only using the
existing data [4]. Ideally, the underlying objective values
of the solutions should be better than the objective values
in the provided dataset. Thus, making the best use of all
the available data is desirable while solving offline MOPs.
However, when the size of the data set is large, e.g. in [5],
[6], building certain surrogates like Gaussian processes, can
become computationally expensive. As we cannot update the
surrogates while solving offline MOPs, the approximation
accuracy of surrogates directly influences the closeness of
the solutions to the Pareto optimal. Most of the previous
works on offline data-driven optimization, such as [4], [5],
[6], [7] considered different surrogate modelling techniques
for solving offline data-driven optimization problems. How-
ever, these works did not consider the tradeoffs between
the underlying objectives while building the surrogates. In
this paper, we propose an approach to build computationally
cheap surrogates tailored towards solving offline data-driven
MOPs. The proposed surrogates use regression trees and
Gaussian processes and can handle large datasets (tested for
a maximum size of 50,000).

To study offline data-driven MOPs, we sample data
from benchmark problems for which the Pareto optimal
set is known. This enables quality comparisons of the so-
lutions obtained by different optimization approaches and
surrogates. While solving an offline data-driven MOP, we
generally utilize two metrics to quantify the quality of the
solutions [8], [9]. We measure the approximation accuracy in
root mean squared error (RMSE) between the approximated
objective values of the surrogates and the underlying objec-
tive values. In addition, we use hypervolume [10] to measure
how close the approximated Pareto front (after evaluating
with the underlying objectives) is to the Pareto front of the
underlying MOP.

Kriging or Gaussian process (GP) regression [11] is a
popular choice of surrogate [12] for solving offline problems
since it also provides information about the uncertainty
in the approximation. Previous works [8], [13], [14] have
shown that utilizing the uncertainty prediction from GP
surrogates produces solutions with improved accuracy and
hypervolume. This makes GPs an attractive choice of surro-
gates for solving offline MOPs. Most of the approaches for
solving offline MOPs build a global GP surrogate for each
objective using all the provided data. The time and memory
complexities of building global GPs (or full GPs) are O(N3)
and O(N2), respectively, where N is the size of the dataset
(or sample size). Thus, building full GP surrogates makes
the process computationally expensive when the size of the
dataset is large. Using sparse GPs [15], [16] is a suitable
alternative as they build approximation models using a small
subset of data called support or inducing points. Using M
(with M < N ) inducing points lowers the computational
cost to O(NM2) for building the surrogates. In [16] a vari-
ational method was proposed to select the inducing points
by gradient descent or greedy search algorithm. However,
this process becomes computationally expensive when the
dataset is large. On the other hand, using fewer points for
building the surrogates reduces the approximation accuracy

of the surrogates compared to full GPs [16]. Other works
such as [17] proposed building GP using only K-nearest
neighbour samples from the point that is to be predicted.

While performing multiobjective optimization using sur-
rogates, it is desirable to obtain a good approximation
accuracy in the neighbourhood of the Pareto set (that we
refer to as the tradeoff region). The accuracy of the sur-
rogates in other regions of the decision space (excluding
the tradeoff region) is not of utmost importance. Thus, a
possible approach is to build local GP surrogates for the
underlying objectives exclusively in the tradeoff region. This
shall reduce the overall computation cost of building GPs
while preserving the accuracy at the tradeoff region. Pre-
vious works [18], [19], [20] partitioned the decision space
into regions and fitted GPs in each region. Partitioning the
decision space is relatively inexpensive, and each GP utilizes
smaller sets of data. This concept was extended by [21] to fit
GPs in each region or leaf nodes partitioned by a Bayesian
treed model previously proposed by [22]. In [23] treed GPs
was proposed to deal with cases where the noise is different
for different samples. All the previous works build GPs in
all the regions of the decision space. These types of GPs
become computationally expensive as well, depending on
the number of regions and amount of data in each region.
Moreover, these surrogates are not explicitly designed to
solve offline MOPs because they do not consider the tradeoff
region of the MOP during the building process.

In this paper, we propose treed GP surrogates for mul-
tiobjective optimization (TGP-MO) surrogates that have a
high accuracy around the tradeoff region and are tailored
for solving offline MOPs. We first build computationally
inexpensive regression tree surrogates using the provided
dataset. The regression tree surrogates provide a less accu-
rate approximation of the underlying objectives (compared
to GPs) [24] and split the decision space into regions.
Next, we run an MOEA considering the regression trees as
objectives. The solutions of the MOEA are not very accurate
but provide the approximate location of the tradeoff region.
After a certain number of generations of the MOEA, we
improve the accuracy of the trees’ prediction by building
GPs at leaf nodes within the tradeoff region. This improves
the accuracy of the solutions in the region of the decision
space corresponding to the leaf node that they replace. The
final surrogates consist of regression trees with GPs at a few
leaf nodes providing accurate approximations exclusively in
the tradeoff region.

The TGP-MO surrogates were tested on several in-
stances of distance-based visualizable test problems (DB-
MOPP) with different numbers of decision variables and
objectives. Various sizes of the initial dataset with differ-
ent sampling strategies were used in the tests. Numerical
experiments showed that TGP-MO surrogates significantly
reduced the building time for surrogates when using large
size data while solving offline data-driven MOPs. TGP-MO
surrogates also produced solutions with a better hypervol-
ume compared to sparse GP surrogates.

The rest of the paper is arranged as follows. The back-
ground of offline data-driven MOPs, GPs, and regression
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Figure 1: Flowchart of a generic offline data-driven multi-
objective optimization approach.

trees is given in Section 2. The proposed TGP-MO surro-
gates are detailed in Section 3. The experimental results
consisting of a comparison of TGP-MO surrogates with
other surrogates are presented in Section 4. In Section 5,
we conclude and discuss future research perspectives.

2. Background

In an offline data-driven MOP, the starting point for
solving the problem is (pre-collected) data. In this paper,
we assume that the available data is the output of a process
or phenomenon. Here we refer to the process generating the
data as the underlying objective functions of an MOP. We
consider the underlying MOP that has to be solved of the
following form:

minimize (f1(x), . . . , fK(x))

subject to x ∈ Ω,
(1)

where K ≥ 2 is the number of objectives and Ω is the
feasible region in the decision space <n. For a feasible de-
cision vector x (consisting of n decision variables), the cor-
responding objective vector is f(x) = (f1(x), . . . , fK(x)),
where f1(x), . . . , fK(x) are the objective (function) values.

A solution x1 ∈ Ω dominates another solution x2 ∈ Ω if
fi(x

1) ≤ fi(x
2) for all i = 1, . . . ,K and fi(x

1) < fi(x
2)

for at least one i = 1, . . . ,K. If a solution of an MOP is
not dominated by any other feasible solutions, it is called
nondominated. Solving an MOP using a multiobjective op-
timization algorithm e.g. an MOEA typically produces a set
of mutually nondominated solutions. The solutions of (1)
that are nondominated in the whole set Ω are called Pareto
optimal solutions.

A generic way to solve an offline data-driven MOP
with an MOEA as the optimizer is shown in Figure 1. As
explained in [2], [4], we can divide the solution process
into three components: (a) data collection, (b) formulating
the MOP and surrogate building, and (c) optimization with
surrogates.

We start with an offline dataset consisting of N samples.
A sample consists of a decision vector x and its corre-
sponding objective vector f(x) as a tuple of two matrices:
(X,Y ) where X ∈ <N×n and Y ∈ <N×K . Each row in X
and Y is a decision vector and its corresponding objective
vector, respectively. Next, we build surrogates using all or a
subset of the data. The surrogates are considered as objective
functions by an MOEA to solve the MOP. For simplicity of
describing a surrogate model for a single objective i, let
yi ∈ <N×1 be the vector of objective values fi(x) for all
decision vectors x ∈ X .

2.1. Gaussian Process Regression

In this work, we build a surrogate model for each objec-
tive function. For simplicity in terminologies, we consider
y instead of yi to introduce the Gaussian processes (GP)
and regression trees. GP regression (also known as Kriging)
has been widely used in surrogate assisted optimization,
time-series analysis, etc. [2], [25]. The major advantage of
using a GP is its ability to provide the distribution about
its prediction (or the uncertainty). A GP is a multivariate
normal distribution with a mean µ and a covariance matrix
C:

y ∼ N (µ, C). (2)

For simplicity in calculations, we consider a mean of zero
without loss of generality. The covariance matrix C uses a
covariance (or kernel) function to define correlation between
two samples, x and x′. For Matern 5/2 kernel the correlation
is:

κ(x,x′,Θ) =σ2
f (1 +

√
5

n∑

j=1

rj +
5

3

n∑

j=1

r2j ) exp(−
√

5

n∑

j=1

rj)

+ σ2
t δxx′

where rj =
|xj−x′j |

lj
, Θ = (σf, l1, . . . , ln, σt) is the set of

parameters in the GP model and δxx′ is the Kronecker delta
function. The notation |xj − x′j | represents the Euclidean
distance between xj and x′j . The parameters σf, lj and
σt represent the amplitude, length scale of the jth variable
and noise in the data, respectively. For more details on the
significance of these parameters, see [12].

To build a GP model, the parameters mentioned above
can be estimated by maximising the marginal likelihood
function:

p(y | X,Θ) =
1√
|2πC|

exp
(
− 1

2y>C−1y
)
. (3)

After estimating the parameters, the model (2) can be used
for the posterior predictive distribution at a new decision
vector x∗. The GP model provides a posterior predictive
distribution which is also Gaussian:

p (y∗|x∗, X,y,Θ) =N
(
κ(x∗, X,Θ)C−1y, κ(x∗,x∗,Θ)−

κ(x∗, X,Θ)>C−1κ(X,x∗,Θ)
)
.

(4)

The posterior mean in (4) is κ(x∗, X,Θ)C−1y and the
variance representing the uncertainty is κ(x∗,x∗,Θ) −
κ(x∗, X,Θ)>C−1κ(X,x∗,Θ).

2.2. Regression Trees

A regression tree recursively partitions the decision
space such that the provided samples with similar objective
function values are grouped together [24]. Each node φ of
the tree contains data Qφ = (Xφ,yφ) with Nφ samples,
where each row of Xφ ∈ <Nφ×n is a decision vector
xi and each row of yφ ∈ <Nφ×1 is its corresponding
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objective value yi, i = 1, . . . , Nφ. Node φ is split into
nodes φleft and φright according to parameter θ = (j, t),
which specifies a jth decision variable (1 ≤ j ≤ n) and
a threshold t, by partitioning Qφ into two disjoint subsets
Qφ

left

θ = {(Xφleft
,yφ

left
) | (xi, yi) ∈ Qφ ∧ xij ≤ t} and

Qφ
right

θ = Qφ \Qφ
left

θ . That is, split parameter θ partitions the
samples (rows) in Qφ according to the value of variable xj
of each decision vector x ∈ Xφ.

Given a node φ and a split parameter θ, the quality of
the split is calculated as:

G(Qφ, θ) =
Nφleft

Nφ
H(Qφ

left

θ ) +
Nφright

Nφ
H(Qφ

right

θ ), (5)

where Nφleft
and Nφright

are the number of samples in Qφ
left

θ

and Qφ
right

θ , respectively, and H(Qφ) is a loss function. For
instance, the loss function for mean-squared error is:

H(Qφ) =
1

Nφ

∑

yi∈Qφ
(yi − ȳφ)2, (6)

where ȳφ is the mean objective value in Qφ. We can find an
optimal split θ∗ of a node φ by minimizing (5) using a single
objective optimization algorithm. The splitting process is
recursed for both Qφ

left

θ∗ and Qφ
right

θ∗ until either a predefined
maximum depth of the tree is reached or the node to split
contains no more than a predefined minimum number of
samples, Nmin.

For predicting any given decision variable value, we
traverse the regression tree to the respective leaf node. The
prediction of the tree at the leaf node l is ȳl = 1

N l

∑
yi∈Ql yi

that contains training subset Ql with N l number of samples.

3. Treed GPs for Multiobjective Optimization
(TGP-MO)

In a generalized treed GP surrogate, we first build a
regression tree model using the provided data as described in
Section 2.2. The splitting at the nodes is done by minimizing
(5) with loss function as in (6). The subset of data at the
lth leaf node is Ql, where l = 1, . . . , L and L is the total
number of leaf nodes in the regression tree built. A GP
is fitted at every leaf node of the regression tree using
the data Ql = (X l,yl). The GPs are built in a similar
fashion as described in Section 2.1 by maximizing (3)
at the leaf node l. The predictive distribution of the lth

GP is p
(
y∗|x∗, X l,yl,Θ

)
using (4). Building GPs with

smaller subsets of data reduces the overall cost for building
surrogates compared to building a GP with the entire dataset.
However, building GPs at all the leaf nodes becomes expen-
sive when there are too many of them, and the data subset
at each leaf is large. Moreover, for solving an offline data-
driven MOP, we do not need to accurately approximate the
global landscape of the underlying objective functions, but
only the local landscape near the tradeoff region.

While performing multiobjective optimization using sur-
rogates, the approximation accuracy in the tradeoff region

is crucial and directly influences the quality of the approxi-
mated Pareto optimal solutions. Hence, to obtain better qual-
ity solutions, it is desirable to have accurate approximations
in the tradeoff region. While building the regression trees,
the decision space is partitioned into regions. In addition, the
initial approximation of regression tree surrogates (though
not highly accurate) provides information about the tradeoffs
between the objectives. After building the regression trees
with all the provided data, we run an MOEA considering
them as objectives. The solutions found by the MOEA
are not accurate, but they provide an approximation of the
tradeoff region. Later, we build local GPs exclusively in the
leaf nodes representing the tradeoff region and achieve an
accurate approximation only in the neighbourhood of the
Pareto set. Now, we introduce the algorithm to build the
treed GP surrogates for multiobjective optimization (TGP-
MO) tailored for the purpose of solving offline data-driven
MOPs.

Algorithm 1: Build process of TGP-MO surro-
gates

Input: Offline data of sample size N with n
decision variables and K objectives; Nmin =
minimum number of samples at a leaf node
Imax = maximum number of iterations of
building GPs at leaves; Gmax = maximum
number of generations of the MOEA per
iteration

Output: TGP-MO surrogates
1 For each objective j = 1, . . . ,K, initialize a treed

GP surrogate by building a regression tree using
the given offline data and Nmin

2 Initialize MOEA population
3 Initialize iteration counter, I = 0
4 while I < Imax and any solution falls in the leaf

nodes without GPs do
5 Set counter of generations per iteration, G = 0
6 while G < Gmax do
7 Perform crossover and mutation and

generate offspring
8 Evaluate the individuals using the treed GP

surrogates and combine the parents and
offspring

9 Perform MOEA specific selection
10 G = G+ 1

11 For each treed GP surrogate j = 1, . . . ,K, find
the leaf node that has the maximum loss
function value in the prediction of the
population of s solutions:
ljML = arg maxi=1,...,sH(Ql

j
i ) where

j = 1, . . . ,K

12 Build GPs using subset Ql
j
ML for j = 1, . . . ,K

13 Replace the prediction of the trees’ leaf nodes
with the built GPs

14 I = I + 1
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In Algorithm 1, we start with a dataset containing N
samples with K objectives and n decision variables. We
first build K regression trees (one per objective) with all
the provided data. Just the parameter Nmin is adjusted, and
we do not control the depth of the trees. After building
the regression trees, we can have a maximum of N

Nmin
leaf

nodes. Initially, there are no GPs present at the leaf nodes,
and the predictions are from the regression trees (i.e., ȳl).
Next, we initialize a population and run an MOEA that
iteratively builds GPs at specific leaf nodes. Each iteration
consists of running the MOEA for Gmax generations (that
is a predefined parameter) and building a GP at one leaf
node in every tree. In every generation, offspring individuals
are produced using crossover and mutation operators and
evaluated using the treed GPs. Selection of individuals is
then performed using MOEA-specific selection criterion,
and the process is repeated for Gmax generations within an
iteration.

After the MOEA completes Gmax generations, the ap-
proximation errors of the solutions (for each objective) are
compared. This is done by calculating the loss function
value, here mean squared error as shown in (6), of the
leaf node predicting the objective values of the solutions
found by the MOEA. The leaf nodes belonging to the jth

objective’s treed GP surrogate containing the solutions are{
lj1, . . . , l

j
s

}
, where s is the total number of solutions found

by the MOEA and j = 1, . . . ,K. The loss function values
in these leaf nodes are

{
H(Ql

j
1), . . . ,H(Ql

j
s)
}

. Next, we
find the leaf nodes that have the maximum loss function
value for the jth treed GP, ljML = arg maxi=1,...,sH(Ql

j
i ).

We build one GP for the jth treed GP using the subset of
samples Ql

j
ML . This process is repeated for j = 1, . . . ,K

treed GPs. When multiple solutions fall within the same
leaf node, we calculate the loss value once and build one
GP for that leaf node. We repeat the process of adding GPs
to the leaf nodes until any of the following criteria is met:

• Number of iterations has reached the predefined max-
imum of Imax.

• All the solutions in the MOEA’s population fall in the
leaf nodes that have GPs built.

The regression trees perform two tasks: a) they provide
an approximation of the underlying objectives, and b) they
split the decision space into smaller regions. In the initial
iterations, the MOEA first finds solutions using the approxi-
mation provided by the regression tree surrogates (that may
have a poor accuracy). These solutions have a higher ap-
proximation error (compared to while using GP surrogates),
but they provide information about the tradeoff between
the objectives. To improve the approximation accuracy, we
build GPs for solutions provided by the trees that have the
maximum approximation error. This ensures that GPs are
built exclusively in the region of the Pareto set and where
the tree’s approximation is the worst, simultaneously. In later
iterations, if the decision vector in the MOEA’s population
falls within the path of the leaf node where a GP is already
built, the posterior predictive mean of the GP is used as the

final prediction of the surrogate. Otherwise, the prediction
is the mean value at the leaf node of the regression trees.
We build local GPs sequentially because building a local
GP at a leaf node improves the accuracy of the solutions in
the following iteration. Thus, many solutions found in the
previous iteration (belonging to different leaf nodes of the
trees) may be eliminated as newer and better solutions are
discovered. This reduces the number of local GPs required
to be built for approximating the underlying objectives.

Input:
Dataset

Build regression
tree surrogates

Start

Find solutions with
maximum error

Find leaf nodes on
which those solutions

fall

Build GPs utilizing
subset of data at leaf

nodes

Stop

Run MOEA
(for building)

No

Yes

Run MOEA
(for solving the MOP)

Output:
Solutions

Building TGP-MO surrogates

AND
any solution falls in the

leaf nodes without
GPs ?

Figure 2: A flowchart of solving data-driven MOPs with
TGP-MO surrogates with an MOEA.

The flowchart of solving offline data-driven MOPs with
TGP-MO surrogates is shown in Figure 2. We start with a
dataset and build regression trees for each objective. The
blocks within the dotted lines represent the building process
of TGP-MO surrogates as described in Algorithm 1. After
the building is completed, we have surrogates composed of
regression trees with GPs at some of the leaf nodes. The
built TGP-MO surrogates are then used for multiobjective
optimization using a second MOEA (that may have the same
configuration as used in Algorithm 1).

However, instead of using two MOEAs, one may use the
same MOEA to build the TGP-MO surrogates and solve the
MOP. We can stop building the GPs at the leaves when the
two mentioned stopping criteria are met. After building the
TGP-MO surrogates, the MOEA continues to run and use
the last generation’s population for further evolution and
improve the objective values. However, to test and compare
the computation time exclusively for building the surrogates,
we used the framework in Figure 2.

3.1. Accuracy Analysis

We illustrate the fitness landscape of a bi-objective DB-
MOPP problem with n = 2 (with configuration same as P1
in Table 1) in Figure 3 to analyze the accuracy of the approx-
imation of TGP-MO surrogates. The accuracy is measured
as the RMSE (described later in subsection 4.1) between
the approximated objective values of the surrogates and the
evaluated values of the underlying objectives. The number
of samples in the dataset was N = 2000 with LHS. The
contour lines represent the underlying objectives’ landscape
in Figure 3a and the approximated objectives’ landscape in
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Figure 3b–3d. Further close up of the tradeoff regions for the
sparse GP and TGP-MO surrogates are shown in Figure 3e
and 3f, respectively. The color grading represents the RMSE
between the approximated and the underlying objectives,
and the blue dots represent the Pareto set.
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Figure 3: Contour plots of the (a) underlying objective
function, landscape approximated by (b) full GPs, (c) sparse
GPs, and (d) the proposed TGP-MO surrogates. Close up of
the Pareto set for (e) sparse GPs and (f) the proposed TGP-
MO surrogates. The contour lines (in solid and dotted) in-
dicate the value of objectives f1(x) and f2(x), respectively.
Colour shade represents the RMSE in the approximation
(darker is higher RMSE), and the blue dots show the Pareto
set.

It can be observed that full GPs (that uses all the data) in
Figure 3b has the highest accuracy in all the approximated
regions of the decision space. For the sparse GP surrogates
in Figure 3c, we can observe good accuracy in all the regions
with deterioration near the Pareto set. In the case of the
proposed TGP-MO surrogates in Figure 3d, the accuracy is
low in most of the regions of the decision space except near
the Pareto set. It can also be observed that the contour lines
are linear in most regions because of the prediction provided

by the leaf nodes of the trees. However, near the Pareto set
the GPs at the leaf nodes are used for predictions, thus
making the contours non-linear. Comparing the accuracy
near the Pareto set for sparse GP and TGP-MO surrogates
in Figure 3e and Figure 3f, it is evident that TGP-MO sur-
rogates provides a better approximation accuracy compared
to sparse GP surrogates.

3.2. Complexity

While building TGP-MO surrogates, we build a maxi-
mum of K number of GPs in every iteration. These GPs
can have Nmin to 2Nmin − 1 samples. This is because a
split at the node of a tree occurs when the subset size is
larger than or equal to 2Nmin. Thus every leaf node has at
least Nmin samples and a maximum of 2Nmin − 1 samples.
As these local GPs have a smaller number of samples, the
computational cost is low. The complexity of building TGP-
MO surrogates can vary depending on the function land-
scape, the number of decision variables, and the provided
data. The worst-case complexity will be achieved when GPs
are built at all the leaf nodes of the regression tree with
2Nmin − 1 samples at each leaf node. The complexity of
building a GP at a leaf node is O((2Nmin − 1)3). As the
total number of leaf nodes (in the worst case) is N

2Nmin−1 ,
the total complexity of building GPs at all the leaf nodes
is O(N(2Nmin − 1)2). For an MOP with K objectives, the
worst case time complexity is O(KN(2Nmin − 1)2) with a
memory complexity of O(KN(2Nmin − 1)).

Even in the worst case, the computational cost of build-
ing TGP-MO surrogates is significantly smaller than build-
ing full GPs with all the provided data with a complexity
of O(KN3). For building sparse GPs, the complexity is
O(KNM2) (where M is the number of induction points).
However, as mentioned previously, finding the induction
points uses a gradient descent or greedy search algorithm
that becomes expensive when the sample size is large,
increasing the overall computational cost. In contrast, the
complexity of TGP-MO surrogates during optimization is
primarily due to evaluating the individuals using the regres-
sion trees and GPs at the leaves, which is significantly lower.
In the next section, we show some optimization results and
time taken to build TGP-MO surrogates and compare them
with other surrogate models.

4. Experimental Results

The goal of the proposed TGP-MO surrogates is to build
computationally cheaper surrogates when dealing with large
datasets for solving offline data-driven MOPs. We perform
tests to find whether TGP-MO surrogates have significant
improvement over sparse GPs and full GPs in computation
time and the quality of the solutions by measuring hyper-
volume and accuracy. The starting point of the experiments
was data generated from distance-based visualizable test
problems (DBMOPP) [26] for a better understanding of the
behaviour of the surrogates. In the DBMOPP test problems,
we can simultaneously visualize the solutions in the decision
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and objective spaces. This gives us the ability to visualize
the search behaviour with the progress of the optimization
process. These features of DBMOPP test problems prove to
be more advantageous compared to DTLZ [27] benchmark
problems.

All the approaches for solving the MOP were
coded in Python utilizing the DESDEO framework
(http://desdeo.it.jyu.fi).1 The experiments were
executed on one node of a HPC cluster equipped with
AMD Rome CPUs, each node having 128 cores running
at 2.6 GHz, with 256 GiB of memory. Each individual run
was executed on one CPU core and allocated a maximum
memory usage of 2 GiB. The regression tree was built using
the sklearn Python package [28]. For building the GPs at the
leaf nodes, we used the GPy [29] Python package.

4.1. Experiment Setup

4.1.1. Benchmark problems:. We used four configured
DBMOPP problems P1-4 as shown in Table 1. The prob-
lem instances and data were generated by the code pro-
vided by [30]. All combinations of number of objectives
(K ∈ {3, 5, 7}) and number of decision variables (n ∈
{2, 5, 7, 10}) were used for our tests.

TABLE 1: Configurations of the DBMOPP problems used.

Problem Configuration Dimension
(n)

Objectives (K)

P1

number of disconnected set regions = 0,
number of local fronts = 0,

number of dominance resistance regions = 0,
number of discontinuous regions = 0

2, 5, 7
and 10 3, 5, and 7

P2

number of disconnected set regions = 1,
number of local fronts = 0,

number of dominance resistance regions = 0,
number of discontinuous regions = 0

2, 5, 7
and 10 3, 5, and 7

P3

number of disconnected set regions = 2,
number of local fronts = 0,

number of dominance resistance regions = 0,
number of discontinuous regions = 0

2, 5, 7
and 10 3, 5, and 7

P4

number of disconnected set regions = 0,
number of local fronts = 0,

number of dominance resistance regions = 1,
number of discontinuous regions = 0

2, 5, 7
and 10 3, 5, and 7

4.1.2. Dataset:. For generating the data, we used Latin
hypercube sampling (LHS) and multivariate normal sam-
pling (MVNS) [11]. In MVNS sampling, the objectives
were considered independent with mean at the mid-point
of the decision space, that is, zero for DBMOPP prob-
lems. The variance of the sampling distribution was set
to 0.1 for all the objectives. Sample sizes of initial data
(N ∈ {2000, 10000, 50000}) were chosen for the tests. For
each problem configuration, we generated 31 sets of data
with a random seed. Each of these dataset were the starting
point of the three different surrogate models that were tested.
These individual runs were independent, and the results were
used to compare the surrogates’ performances statistically.

1. Source code available at https://github.com/
industrial-optimization-group/TreedGP MOEA

4.1.3. Settings for TGP-MO surrogates:. We used RVEA
[31], a decomposition-based MOEA [31], [32], [33]
while building TGP-MO surrogates. Decomposition-based
MOEAs have shown to be effective in solving MOPs with
more than three objectives. However, the approach is not
limited to RVEA and one can use any MOEA of choice.
The parameters for RVEA were kept the same as suggested
by [31]. The parameter Gmax was set to 50. The maximum
number of iterations was set to Imax = N

Nmin
= N

10n . Such a
value of Imax was chosen considering we build one GP at
a leaf node for all the trees in each iteration (as maximum
number of leaf nodes are N

Nmin
). The loss function used for

building the trees was MSE (Eq. 6) with Nmin = 10n.
We chose this setting because we want to have sufficient
design points for building GPs at the leaves. Based on
recommendations from the GP literatures [34], [35], we
should have a minimum of 10n points at each leaf node.
The kernel used for building the GPs at the leaf nodes was
Matern 5/2 with automatic relevance determination enabled.

4.1.4. Other surrogates tested:. We compared the pro-
posed TGP-MO surrogates with sparse GP and full GP
surrogates. We used the same GPy package and kernel for
building both of these surrogates as for the TGP-MO sur-
rogates. For sparse GP surrogates, the number of induction
points was set to M = 10n. Here we refer to the overall
process of solving an MOP with a specific surrogate as
approach for simplicity.

4.1.5. Parameter settings of MOEA (for solving the
MOP):. For solving the MOP with surrogates as objectives,
we also used RVEA with the same default parameter set-
tings. Termination criteria for RVEA was 1000 generations
that was sufficient for all the approaches tested to converge.
To generate a uniform Pareto front, the reference vectors are
rearranged or adapted after a certain number of generations
in RVEA. In our experiments, we set the reference vector
adaptation rate to once every 100 generations.

4.1.6. Performance metrics:. We measure the quality of
the solutions obtained by the MOEA in terms of their
hypervolume (HV) after evaluating them with the underlying
objectives of the test problems. For computing the HV met-
ric, we used the reference point y∗ = (y∗1 , y

∗
2 , . . . , y

∗
K) in the

objective space, such that is dominated by all the solutions.
In this paper we used y∗ = (2

√
K, 2
√
K, . . . , 2

√
K) as this

point is always dominated in DBMOPP problems. We cal-
culated the multivariate RMSE of the objective values of the
solutions obtained by the MOEA with their respective under-
lying objective values to measure the accuracy. The multi-
variate RMSE is the Euclidean distance between the approx-
imated and evaluated underlying objective function values of
the solutions and is given by 1

s

∑s
i=1

√∑K
j=1(f̂j,i − fj,i)2,

where s is the number of solutions, f̂j,i and fj,i are the ap-
proximated and the underlying objective value, respectively,
for the ith solution and jth objective. Finally, we measure
the computational cost of the various methods as the time
in seconds required to build the surrogates.
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In this paper we refer to multivariate RMSE as RMSE
for simplicity. The hypervolume and RMSE metrics are used
here to benchmark the performance of TGP-MO surrogates
for solving an offline MOP. Evaluating the solutions with the
underlying objectives in an offline data-driven MOP may not
be possible in real life.

4.2. Results and Discussions

While running the experiments, we observed that build-
ing full GP surrogates with 10 000 and 50 000 sample sizes
consistently gave us out-of-memory errors. The storage
complexity of full GPs is O(KN2) and each element of
the array is a 64-bit float. Hence, the memory requirement
for three objectives and sample sizes of 10 000 and 50 000
is 2.3 GiB and 56 GiB, respectively. This shows that build-
ing GP surrogates using all the provided offline data will
become almost impossible with readily available computing
resources when the sample size is large. Hence the results
for full GP surrogates are not included for sample sizes of
10000 and 50000.

TABLE 2: Summary of pairwise comparison of the hyper-
volume (HV), RMSE, and time (seconds) for the different
approaches. The number of instances in which full GP
and sparse GP surrogates perform better, worse, and not
significantly different compared to the TGP-MO surrogates
is indicated by “+”, “-” and “≈”, respectively. The full GP
runs failed due to memory overflow in the instances marked
“—”. The approaches’ performance is ranked by the color
code green, yellow, and red in the order of best to worst.

Sample
size

Sampling
strategy Metric

Surrogate type

Full GP Sparse GP TGP-MO
+ / - / ≈ + / - / ≈ +

2000

LHS
HV 9 / 9 / 30 4 / 38 / 6 9

RMSE 43 / 2 / 3 19 / 21 / 8 1
Time

(s) 0 / 48 / 0 1 / 46 / 1 46

MVNS
HV 17 / 14 / 17 14 / 28 / 6 12

RMSE 34 / 7 / 7 20 / 16 / 12 2
Time

(s) 0 / 48 / 0 1 / 47 / 0 47

10000

LHS
HV — 4 / 33 / 11 33

RMSE — 19 / 23 / 6 23
Time

(s) — 0 / 48 / 0 48

MVNS
HV — 11 / 29 / 8 29

RMSE — 21 / 16 / 11 16
Time

(s) — 0 / 48 / 0 48

50000

LHS
HV — 3 / 35 / 10 35

RMSE — 15 / 24 / 9 24
Time

(s) — 0 / 48 / 0 48

MVNS
HV — 10 / 29 / 9 29

RMSE — 23 / 19 / 6 19
Time

(s) — 0 / 48 / 0 48

To compare the performance of the different approaches,
we conducted a pairwise Wilcoxon two-tailed significance
test. The calculated p-values were Bonferonni corrected, and
α = 0.05 was considered for rejecting the null hypothesis
(an approach is not significantly better or worse than an-
other approach). For determining whether an approach is

significantly better or worse than another one, we compare
their median values provided that the p-value is less than α.
For ranking the approaches, we used a pairwise comparison
of the approaches with a scoring system. An approach is
given a score of +1 if it is significantly better than the other
approach. A score of −1 is given to the approach if it is
significantly worse than the other approach. If the approach
is not significantly better or worse than the other approach,
a score of zero is given to both approaches. The sum of
the scores is used for ranking all the approaches (a higher
score gives a better rank) for the metric being compared.
A rank of ‘1’ indicates that an approach has performed
significantly better than all other approaches. Equal ranks
indicate that those approaches are not significantly different
in their performance.

In Table 2 we summarize the approaches’ performance
rankings by the colour code green, yellow, and red in the
order of best to worst for three different metrics. It should
be noted that these rankings are categorized with respect to
the sample size and sampling strategies. The total number
of instances is 96 (48 for LHS and MVNS each) for each
sample size. Each instance consists of the combination of
the various problem settings, i.e. the number of samples
(N ), sampling strategy, number of objectives (K), number of
decision variables (n) and problem configuration. The num-
ber of instances in which full GPs or sparse GPs perform
better, worse, or not significantly differently compared to the
proposed TGP-MO surrogates is denoted by “+”, “−” and
“≈” respectively. For TGP-MO surrogates, we only show
the number of instances where it performed significantly
better than both full GPs and sparse GPs (or it ranked the
best).

The rows measuring “Time” in Table 2 show that
the proposed TGP-MO surrogates was computationally the
cheapest compared to the full GP and sparse GP for dif-
ferent sample sizes and sampling strategies. The number
of instances TGP-MO performed significantly better than
the other two surrogates in each sub-category is close to
48(that was the total number of instances in each sub-
category). The TGP-MO surrogates performed better than
sparse GP surrogates in hypervolume for all sample sizes
and sampling strategies. However, full GPs performed the
best in hypervolume for sample size of 2000. For 2000
samples sparse GPs outperformed TGP-MO surrogates for
both sampling strategies in RMSE and full GP performed
the best. The RMSE of the solutions for TGP-MO surrogates
was better than sparse GPs for samples sizes of 10000
and 50000 for LHS sampling only. Whereas, for MVNS
sampling the sparse GP slightly outperformed TGP-MO
surrogates for 10000 and 50000 samples.

For a smaller sample size one may choose full GPs as
they give the best performance in hypervolume and RMSE.
However, full GPs becomes almost impossible to build due
to their high computation cost when the sample size is
large. One can use TGP-MO surrogates for larger sample
sizes as it performs better in hypervolume and RMSE and
excellently in computation time. However, for non-uniform
sampling strategies, i.e. MVNS, TGP-MO surrogates suffers
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TABLE 3: Comparison of selected test instances showing the median hypervolume, RMSE and time and their standard
deviation (in italics) of the 31 test runs. The best performing approaches are shown in bold.

Sample
size

Sampling
strategy Problem K n

Hypervolume RMSE Time (s)

Full GP Sparse GP TGP-MO Full GP Sparse GP TGP-MO Full GP Sparse GP TGP-MO

2000

LHS

P3 3 5
7.54E+01 5.49E+01 7.48E+01 4.18E-02 1.04E+00 2.67E-01 1.36E+02 8.64E+01 1.40E+01
4.02E+00 9.35E+00 2.73E+00 2.74E-01 5.72E-01 1.38E-01 1.85E+01 2.16E+01 1.20E+01

P4 5 10
1.46E+04 1.27E+04 1.64E+04 1.75E+00 1.79E+00 9.33E-01 6.16E+02 5.51E+02 2.62E+01
6.73E+02 1.23E+03 5.59E+02 3.69E-01 4.38E-01 1.66E-01 1.40E+02 1.43E+02 1.12E+01

P3 7 5
9.21E+06 6.55E+06 9.23E+06 5.11E-02 2.16E+00 1.66E-01 3.20E+02 2.10E+02 2.83E+01
1.00E+05 1.24E+06 9.32E+04 8.26E-02 9.70E-01 1.11E-01 5.38E+01 3.46E+01 1.53E+01

MVNS

P3 3 10
5.71E+01 5.65E+01 6.27E+01 1.08E+00 1.52E+00 8.55E-01 3.25E+02 3.56E+02 1.31E+01
4.14E+00 6.35E+00 5.10E+00 4.65E-01 6.09E-01 1.99E-01 6.76E+01 1.19E+02 2.45E+00

P2 5 10
1.26E+04 1.06E+04 1.30E+04 1.86E+00 2.76E+00 2.04E+00 5.34E+02 5.51E+02 1.39E+01
2.08E+03 2.10E+03 1.20E+03 1.95E-01 1.59E-01 2.78E-01 1.01E+02 7.64E+01 8.00E+00

P2 7 7
7.81E+06 6.42E+06 8.82E+06 7.80E-01 3.76E+00 9.80E-01 3.57E+02 4.36E+02 1.27E+01
5.36E+05 2.62E+05 5.30E+05 2.07E-01 8.55E-01 2.38E-01 4.40E+01 6.32E+01 1.69E+01

10000

LHS

P3 3 5 —–
6.26E+01 7.58E+01

—–
8.95E-01 1.50E-01

—–
1.45E+03 2.49E+01

9.78E+00 5.93E-01 4.85E-01 5.05E-02 2.22E+02 8.80E+00

P4 5 10 —–
1.27E+04 1.65E+04

—–
2.10E+00 7.09E-01

—–
6.52E+03 5.93E+01

6.09E+02 8.26E+02 2.22E-01 2.28E-01 1.24E+03 2.11E+01

P1 7 10 —–
6.71E+06 8.59E+06

—–
1.56E+00 9.73E-01

—–
9.37E+03 3.78E+01

1.90E+05 2.61E+05 1.84E-01 8.82E-02 1.38E+03 1.32E+01

MVNS

P3 3 10 —–
4.97E+01 6.27E+01

—–
1.68E+00 9.09E-01

—–
4.12E+03 1.42E+01

5.40E+00 3.31E+00 3.40E-01 1.52E-01 6.69E+02 1.52E+00

P3 5 5 —–
1.23E+04 1.75E+04

—–
2.32E+00 1.83E-01

—–
2.38E+03 4.73E+01

2.50E+03 3.15E+02 1.10E+00 1.22E-01 4.65E+02 1.19E+01

P3 7 5 —–
6.55E+06 9.24E+06

—–
2.91E+00 1.22E-01

—–
3.51E+03 8.94E+01

1.22E+06 1.01E+05 1.34E+00 1.42E-01 6.54E+02 3.02E+01

50000

LHS

P3 3 10 —–
6.04E+01 7.30E+01

—–
8.29E-01 3.91E-01

—–
2.16E+04 3.16E+01

7.28E+00 2.62E+00 6.08E-01 8.63E-02 1.77E+03 9.25E+00

P3 5 10 —–
1.45E+04 1.65E+04

—–
8.64E-01 6.18E-01

—–
3.59E+04 3.90E+01

4.10E+02 4.04E+02 2.10E-01 1.20E-01 6.29E+03 1.10E+01

P1 7 10 —–
7.49E+06 8.65E+06

—–
9.20E-01 7.44E-01

—–
5.05E+04 8.77E+01

1.12E+05 1.65E+05 9.23E-02 8.59E-02 9.41E+03 3.44E+01

MVNS

P3 3 5 —–
5.27E+01 7.59E+01

—–
1.77E+00 9.73E-02

—–
8.19E+03 5.29E+01

1.14E+01 4.41E-01 9.11E-01 5.04E-02 6.35E+02 2.07E+01

P3 5 5 —–
1.25E+04 1.76E+04

—–
2.73E+00 1.43E-01

—–
1.34E+04 8.68E+01

2.04E+03 3.03E+02 1.13E+00 1.49E-01 7.96E+02 4.14E+01

P3 7 5 —–
6.55E+06 9.26E+06

—–
3.75E+00 9.81E-02

—–
1.87E+04 1.91E+02

1.05E+06 1.18E+05 1.45E+00 1.36E-01 2.24E+03 7.59E+01

slightly in RMSE compared to sparse GP surrogates. This is
because in sparse GP surrogates, the variational parameters
are selected by minimizing the KL divergence. Thus, the
inducing inputs selected are not skewed even if the provided
dataset is i.e., in MVNS sampling. Therefore the RMSE is
slightly better than TGO-MO surrogates that does not have
an ability to handle skewed datasets.

The performances of a few selected instances are shown
in Table 3. The table shows the median and the standard
deviation of hypervolume, RMSE, and time taken to build
the surrogates for the three different approaches for 31 runs.
The instances shown in the table were chosen based on the
maximum difference between the median hypervolume of
the best and the second best performing surrogates. One
instance was selected from each sample size, sampling strat-
egy and number of objectives. The figures in bold represent
the best performing approaches. We can observe that the
proposed TGP-MO surrogates performed the best in build-
ing time in the instances shown. We can also also observe

an improved hypervolume and RMSE for sample sizes of
10000 and 50000 compared to sparse GP surrogates. It can
be observed that the building time of TGP-MO surrogates
are lesser than sparse GP by an order of about 102 and
103 for samples size of 10000 and 50000 respectively. The
building time also increases with the number of objectives
for sparse GP surrogates.

The quantity of data available at the tradeoff region
affects the accuracy and hypervolume of the solutions ob-
tained that is a general challenge while solving offline data-
driven MOPs. The proposed TGP-MO surrogates split the
decision space into sub-regions and approximate the under-
lying objectives at the tradeoff region. This is best suitable
when the Pareto set is located in a smaller region of the
decision space. When the Pareto set is in a larger region, the
prediction of TGP-MO surrogates is from multiple leaf node
GPs and has discontinuities near the splits of the regression
trees. Therefore the approximated Pareto front has some
discontinuities compared to sparse GPs or full GPs. Further
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tests with the DTLZ [27] benchmark problems are given in
the supplementary material.

5. Conclusions

In this paper, we proposed surrogates that can be built
with lesser computational cost compared to sparse GPs and
full GPs for solving offline data-driven MOPs when deal-
ing with large datasets. The proposed TGP-MO surrogates
performed significantly better than sparse GP surrogates in
hypervolume, RMSE, and computational time for most of
the instances for DBMOPP problems. The full GP surro-
gates failed to complete the runs for larger sample sizes
due to memory restrictions. Thus it can be concluded that
the proposed TGP-MO surrogates are best suited for solving
offline data-driven MOPs with a large size dataset.

A GP at a leaf node of a tree approximates certain
regions of the decision space. This feature can be exploited
while solving MOPs with preferences from the decision
maker in an a priori or interactive fashion. While building
the GPs at the leaf nodes, we can utilize the provided pref-
erences for objectives and approximate only solutions that
follow the preferences. Developing an interactive framework
utilizing the TGP-MO surrogates will our one of our future
works.

We will also test and compare the uncertainty prediction
provided by the proposed TGP-MO surrogates while solving
offline MOPs. Sensitivity analysis of the hyperparameters,
especially the minimum number of leaf node samples will
also be tested. One of the major drawbacks of the TGP-
MO surrogates are the discontinuity between the leaf node
GPs. Tackling discontinuity in the prediction [20] at the
partition of the decision space (as provided by the tree)
will be a future task. Further improvements can be made
in the way the trees partition the decision space. Instead of
using a traditional loss function, we can formulate a non-
linear tradeoff criteria to split the nodes. This will enable the
TGP-MO surrogates to approximate the tradeoff region with
fewer number of samples. Testing the TGP-MO surrogates
for solving real life offline data-driven MOPs will be a future
task.
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ings, B. Filipič, E. Minisci, and M. Vasile, Eds. Springer, 2020, pp.
97–109.

[10] E. Zitzler and L. Thiele, “Multiobjective optimization using evolu-
tionary algorithms — A comparative case study,” in Parallel Problem
Solving from Nature, A. E. Eiben, T. Bäck, M. Schoenauer, and H.-P.
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1. Building Process of TGP-MO Surrogates

The building process of TGP-MO surrogates are illus-
trated in Figure 1. The figures show the solutions obtained
by the MOEA in some of the iterations of Algorithm 1 (in
the main manuscript) for two bi-objective test problems. The
two problems were DTLZ2 (n = 10) Figure 1a-1c from
the DTLZ [1] test suite and a distance-based visualizable
test problem (DBMOPP) [2] (n = 2) Figure 1d-1f. The
problem configuration for the DBMOPP problem was the
same as problem P1 that can be found in Table 1 (in the
main manuscript). For both the cases we used a sample size
(size of the data) of N = 2000 with Latin hypercube (LHS)
sampling. The first column shows the solutions obtained
by the MOEA in the first iteration before any GPs are
built at the leaf nodes of the trees. As the objective values
of the solutions are predicted by the regression trees, the
obtained solutions do not form a smooth Pareto front. In
the second column, we can observe the solutions obtained
after four more iterations. Few GPs are built at the leaf
nodes, and the approximated Pareto front gradually becomes
more smooth. At this iteration, the objective values of the
solutions are predicted by the regression trees and GPs at
leaves for either or both the objectives. In the last column,
we show the final iteration of the surrogate building process,
when all solutions in the MOEA’s population are predicted
by leaf nodes that contain GPs. Building the surrogates
for the DTLZ2 problem consumes more iterations than the
DBMOPP problem instance. This behavior is due to the
Pareto set of DTLZ problems that is located in a larger

region of the decision space. Hence, more GPs are required
to be built at the leaves of the trees to approximate the
tradeoff region accurately.

In Figure 2 we show the total number of samples utilized
to build TGP-MO surrogates with the number of iterations
for six different problem instances with sample sizes of
2000, 10000, and 50000. The solid line shows the mean
number of samples used, and the shaded region denotes
the 95% confidence interval of the runs for each treed GP
surrogate (for each objective). The plots have been extended
in the iteration axis to the maximum allowed iterations,
Imax = N

10n . The iteration axis is broken when Imax is
large to reduce the width of the plots. It can be observed
that the number of samples utilized converged before the
maximum iterations and varies with the objective. Certain
problem instances required more samples during the build-
ing process than others, especially due to the number of
decision variables and the characteristics of the problem.
If the tradeoff region is located in a smaller region of the
decision space, the building process converges quickly and
therefore consumes less samples.

2. Tests with DTLZ Problems

Further tests were conducted with the DTLZ benchmark
problems. The setup for the tested surrogates, i.e. full GPs,
sparse GPs and TGP-MO surrogates were kept the same
as mentioned in the main manuscript. The setup for the
multiobjective evolutionary algorithm (MOEA) were also

1
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Figure 1: Progress of the building process of TGP-MO surrogates for a bi-objective DTLZ2 (a)–(c) and a DBMOPP (d)–(f)
problem. The plots show the solutions of the MOEA at different iterations I of the building process. The Pareto front of
the underlying MOP is shown in orange ‘?’.

kept the same. The problems used were DTLZ2 and DTLZ4-
7 with K ∈ (3, 5, 7). For DTLZ problems the number of
decision variables considered were n = K + 1. Therefore,
we tested fewer problem instances for DTLZ compared to
DBMOPP problems. The total number of problem instances
were 60 (30 for LHS and MVNS each). DTLZ1 and DTLZ3
were not included in the tests as they have local optimal
fronts. Thus it is extremely difficult to solve especially when
the surrogates cannot be updated as in offline data-driven
MOPs. For MVNS sampling, the mean of the distribution
for DTLZ instances was set to 0.5 with a variance of 0.1
for all objectives. The reference points for calculating the
hypervolume of solutions for DTLZ instances are provided
in Table 1.

Table 2 shows that sparse GP performed better than
TGP-MO surrogates for all sample sizes and sampling
strategies in hypervolume. Full GP surrogates performed
the best in hypervolume for sample size of 2000 for both
sampling strategies. Sparse GP also outperformed TGP-MO
surrogates for sample sizes of 10000 and 50000. However,
TGP-MO surrogates outperformed sparse GP for 2000 sam-
ples in RMSE. The poor performance of TGP-MO surro-

TABLE 1: Reference point for calculating hypervolume for
different test cases of DTLZ instances.

Problem Objectives (K) Reference point

DTLZ2
3 (6, 6, 6)
5 (6, 6, 6, 6, 6)
7 (6, 6, 6, 6, 6, 6, 6)

DTLZ4
3 (6, 6, 6)
5 (6, 6, 6, 6, 6)
7 (6, 6, 6, 6, 6, 6, 6)

DTLZ5
3 (6, 6, 6)
5 (6, 6, 6, 6, 6)
7 (6, 6, 6, 6, 6, 6, 6)

DTLZ6
3 (20, 20, 20)
5 (20, 20, 20,20, 20)
7 (20, 20, 20, 20, 20, 20, 20)

DTLZ7
3 (1, 1, 40)
5 (1, 1, 1, 1, 50)
7 (1, 1, 1, 1, 1, 1, 70)
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Figure 2: The total number of samples utilized (median and 95% confidence interval) to build GPs at leaf nodes with
iterations for three different DBMOPP problem instances as displayed according to the following format (N , sampling
strategy, problem, K, n). The iteration axis is extended to the maximum possible iteration N

10n . The iteration axis for plots
2c-2f are broken to accommodate the plots.

gates compared to sparse GP is due to the nature of the
Pareto set for DTLZ benchmark problems. As the Pareto
set is not locally situated in the decision space (like the
DBMOPP problems), the TGP-MO surrogates require many
leaf nodes GPs to approximate the tradeoff region. Therefore

the final approximated Pareto front has some discontinuities
compared to while using sparse GP (or full GP) surrogates
that approximates the global function landscape.
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TABLE 2: Summary of pairwise comparison of the hy-
pervolume, RMSE, and time (seconds) for the different
approaches for DTLZ problems. The number of instances
in which full GP and sparse GP surrogates perform better,
worse, and not significantly different compared to the TGP-
MO surrogates is indicated by “+”, “-” and “≈”, respec-
tively. The full GP runs failed due to memory overflow in
the instances marked “—”. The approaches’ performance is
ranked by the color code in the order of best to worst green,
yellow, and red.

Sample
size

Sampling
strategy Metric

Surrogate type

Full GP Sparse GP TGP-MO
+ / - / ≈ + / - / ≈ +

2000

LHS
HV 18 / 4 / 8 18 / 7 / 5 3

RMSE 21 / 5 / 4 13 / 15 / 2 5
Time (s) 0 / 30 / 0 2 / 28 / 0 28

MVNS
HV 18 / 7 / 5 16 / 8 / 6 6

RMSE 20 / 5 / 5 10 / 15 / 5 3
Time (s) 0 / 30 / 0 2 / 27 / 1 27

10000

LHS
HV — 14 / 9 / 7 9

RMSE — 16 / 13 / 1 13
Time (s) — 0 / 30 / 0 30

MVNS
HV — 13 / 8 / 9 8

RMSE — 15 / 11 / 4 11
Time (s) — 0 / 30 / 0 30

50000

LHS
HV — 18 / 6 / 6 6

RMSE — 18 / 7 / 5 7
Time (s) — 0 / 30 / 0 30

MVNS
HV — 14 / 7 / 9 7

RMSE — 16 / 11 / 3 11
Time (s) — 0 / 30 / 0 30
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